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Abstract

This dissertation describes and develops methods for modeling sexual partnership

formation and termination using retrospectively collected survey data. Such methods are

required to produce information necessary to model propagation of sexually transmitted

diseases and the impact of interventions on such processes which are being used both

to design and to monitor HIV combination prevention studies. Sexual history data are

commonly obtained through surveys that collect information on relationships that are

ongoing during a fixed time window. This sampling mechanism leads to incomplete

sexual history data and duration data that are left truncated and right censored.

In Chapter 1, we describe a common sampling scheme for collecting sexual partner-

ship data, discuss a key assumption required for unbiased estimation, and provide the

conditions under which the nonparametric maximum likelihood estimator of the rela-

tionship duration distribution is unique and consistent. We also investigate the condi-

tions required for the consistency of the regression coefficient from a Cox proportional

hazards model that apply even when the distribution of duration is not completely iden-

tifiable due to restrictions on the support of the truncation distribution. Lastly, we will

provide some illustrative examples on estimating distribution of most recent partnerships

and present spline regression results based on sexual history data from Botswana.

In Chapter 2, we present a Markov framework for modeling and estimation of part-

nership transition probabilities for sexual history data collected under a retrospective

sampling scheme. We propose a stochastic expectation maximization algorithm (stEM)

coupled with rejection-sampling scheme in order to estimate transition probabilities from

a state of celibacy to monogamy and to concurrency (or vice versa). This approach ac-
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commodates the retrospective sampling scheme from which sexual partnership data is

obtained and utilizes all available information from the sexual history data. In particular,

this paper will address maximum likelihood estimation via stEM when our observed data

includes information on the number of certain types of transitions without specifying the

sojourn time in the states. For example, with regards to partnership data, the total life

time number of partnerships (or number of partnerships within a fixed window of time)

may be known even though the sojourn time of each of the partnerships in the different

states may not be known. In the process of estimating transition rates, we incorporate

such information by using rejection sampling. Simulation results showing the perfor-

mance of the stEM will be presented. We also provide an application example based on

partnership data collected from South Africa.

In Chapter 3, we extend the Markov model presented in Chapter 2 so that the sexual

history process can be fully characterized. This approach combines a Markov model and

a logistic regression framework. The Markov model states we consider include celibacy,

monogamy and concurrency; the logistic regression model classifies the pattern of con-

currency, which can be either transitional (older partnership ends first) or embedded (new

ends first). By using both types of models we can fully characterize the processes of in-

terest. Estimation of model parameters is based on a stochastic expectation maximization

algorithm (stEM) coupled with rejection-sampling scheme. Strategies based on statistics

that arise naturally from the estimation procedure itself stEM are used to validate model

assumptions. The method is illustrated using sexual history data collected from South

Africa. Simulation results are used to demonstrate properties of the estimation methods.
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1.1 Introduction

Estimating the duration of sexual partnerships is important in investigation of the epi-

demic dynamics of sexually transmitted infections (STI). Duration of such partnerships

is a key feature in mathematical models of STIs and has been shown to be an important

predictor of STI risk and of concurrency (Matson et al., 2012; Chen et al., 2008). Goodreau

et al. (2012) utilize data on duration to model sexual partnership networks in their study

of the roles of acute infection and concurrent partnerships in HIV transmission dynam-

ics.Wang et al. (2014) used duration in modeling spread of HIV for the purpose of de-

signing intervention studies. In a different application of duration information, Matson

et al. (2012) investigated the association between concurrency and duration of relation-

ships based on a prospective cohort that followed participants every six months. Using a

multilevel mixed effect logistic regression, the study found that odds of concurrency (OR

= 1.03, 95 % CI: [1.02,1.11]) increased with length of relationship.

Distributions of duration of relationships are often estimated retrospectively from sur-

veys that collect information about the length of partnerships that are ongoing or have

ended within a fixed period (typically 6 months or a year) before the date of the survey.

This form of sampling yields data that are left truncated (because the relationship had

to have endured long enough to be present within the time window before the survey)

and potentially right censored, should the relationship be ongoing at the time of the sur-

vey. Several authors have considered the problem of right censoring and left truncation

(RCLT) in analysis of survival or failure-time data. For right-censored observations, the

survival time lies in an interval of the form [C,∞] where C is the censoring time. In con-

trast, left truncation arises from sampling of observations conditional on the failure time

itself. Denoting T as the left truncation time and X as the survival time, X is observable

only if X > T . All observations on subjects for whom X < T are excluded from the

observation process.

Kaplan and Meier (1958) discussed the problem of right censoring and left truncation ;

and Tsai et al. (1987) described the asymptotic properties of the truncation product limit

estimator (TPLE), the left truncated version of the Kaplan Meier estimator, in this set-
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ting. These estimators are similar except in that the risk set of the TPLE is adjusted at

each observed failure time x to include those subjects who have not yet failed and whose

truncation time is less than x. Woodroofe (1985) demonstrated the consistency and weak

convergence of the Lynden-Bell estimator–a product limit estimator with left truncation

but no censoring. Tsai et al. (1987) and Woodroofe Woodroofe (1985) used empirical pro-

cesses to show asymptotic properties. Later, Lai and Ying (1991) noted that the TPLE

severely underestimates the true survival duration if the risk set is small at the start of

follow-up. This results from the fact that subjects can only be at risk at failure time xi

if they have truncation time less than xi. However, for small values of xi it is possible

to have only one subject in the risk set leading to a situation where the estimator takes

a value of zero. In order to remedy this problem, the authors proposed a modified ver-

sion of the TPLE and demonstrated its consistency and weak convergence to a Gaussian

process using a counting process approach. Lai and Ying (1991) also relaxed Woodroofe’s

assumption that the event times need to follow a continuous distribution.

Wang (1989) proposed a more efficient estimator of the survival distribution that required

a parametric assumption about the truncation distribution, noting that the TPLE is not a

maximum likelihood estimator when the truncation distribution can be parameterized.

Several other authors have addressed the problem of estimating the distribution function

in the special case that initiation times have uniform distribution; the sampling in this

case is referred to as length-biased (Vardi, 1982, 1989; Asgharian et al., 2002, 2005; Qin and

Shen, 2010). With this additional assumption, one can estimate the distribution function

for the failure time without conditioning on the truncation times as shown for example

in Asgharian et al. (2002). Assuming uniformly distributed truncation times is equivalent

to assuming that relationship initiation times follow a stationary Poisson process. For the

relationship data described in the next section, the relationship initiation times are not

likely to follow a Poisson process with constant intensity throughout a lifetime; people

tend to initiate more relationships in their youth than in their later years.

One of the approaches that has been used to address length-biased sampling of relation-

ship durations involves the calculation of harmonic mean of observed relationship dura-

tions (Goodreau et al., 2012). Since longer relationships are more likely to be observed
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at a given point in time, the sample mean will tend to overestimate the true mean. One

rationale for using harmonic mean is that it is always less than or equal to the arithmetic

mean for positive random variables and therefore will tend to reduce the extent of over-

estimation of the mean. Sen (1987) has shown that the harmonic mean is unbiased and

consistent estimator of the true mean in the setting of length-biased sampling. As this

result only applies to uncensored length-biased data, harmonic mean may not provide a

consistent estimator of the mean if the data are also censored.

Another approach to account for right censoring and left truncation present in partner-

ship duration data was employed by Burington et al. (2010) using the TPLE. The TPLE

assigns non-zero mass only at event times just as does the standard Kaplan-Meier esti-

mator. By assigning mass in this way, the TPLE makes the additional assumption that no

probability mass need be placed in intervals that lie between the left-end of a censoring

interval and the left end of a truncating interval (see Figure 1.2). Assigning zero mass

to such intervals avoids the problem of having multiple maxima of the nonparametric

likelihood and thereby simplifies estimation. However, Frydman (1994) demonstrated

that consistent estimation may require mass to be placed in regions where the TPLE does

not. Frydman modified Turnbull’s nonparametric estimator of the distribution function

so that it correctly accommodates interval-censored and truncated data (Turnbull, 1976).

She showed that support depends not only on the censoring intervals, as (Turnbull, 1976)

described, but also on the truncation intervals. Thus, the implications of assumptions that

restrict the support of the NPMLE, as does the TPLE, require more consideration. Further

discussion illustrating the differences between the TPLE and Turnbull’s estimator with

Frydman’s correction (TEFC) will be presented in later sections.

The primary aims of this paper are to identify sampling conditions necessary to obtain

a consistent estimator of the distribution of partnership durations from retrospectively

collected survey data and to apply these insights to an analysis of the relationship du-

ration distribution. The rest of the paper is organized as follows. The next section de-

scribes the partnership duration dataset, and the sampling scheme that motivated the

methods presented in this paper. Section 3 discusses the conditions under which the

NPMLE of the relationship duration distribution for RCLT data is unique and consistent.
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We present the conditions regarding the size of the sampling window and the censor-

ing and truncation time distributions that are necessary for the TPLE to be consistent.

Section 4 presents conditions for consistency of parameter estimates from a Cox propor-

tional hazards model where distribution of duration is not completely identifiable due to

restrictions on the support of the truncation distribution. Section 5 examines the validity

of a key assumption–the quasi-independence of truncation time and failure time–that is

also necessary for consistency of the TPLE from RCLT data. This section also discusses a

spline regression model. Section 6 provides a discussion.

1.2 Relationship Data

1.2.1 Sampling Schemes for Partnership Data

Partnership surveys may collect information on a fixed number of most recent relation-

ships or alternatively, information may be collected on all relationships that are ongoing

during a fixed time window called the sampling window (Burington et al., 2010). In such

partnership surveys, participants are repeatedly interviewed to provide detailed informa-

tion regarding their prior partnerships including age at sexual debut as well as start and

end time of their sexual partnerships. This general method of collecting cross-sectional

partnership duration yields data that are length-biased, as longer relationships are more

likely to be observed. One can avoid this observation bias only by prospectively following

participants over their lifetime starting from the time of their sexual debut. Such a design

would provide incident sampling that allows complete observation of partnerships, but

is obviously infeasible.

We note that this sampling scheme for partnership studies often combines prevalent and

incident sampling. In our application dataset from a pilot study in Mochudi, Botswana,

data are collected cross-sectionally among those whose relationships have been ongoing

within the 12 month period before the interview date. Such prevalent sampling schemes

do not generally obtain information about the time of initiation of partnerships that ended

before the window described above; hence the duration of such relationships are trun-

cated. In contrast data on subjects who initiate partnerships after the left endpoint of the
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window are observed as in incident sampling. Estimates of the distribution using only

the latter are unbiased but are censored by the end of the sampling window.

1.2.2 Statistical Notation for Relationship Data

Let Tf and Td represent the calendar time of relationship formation and dissolution, re-

spectively and let τ represent the calendar time of interview. Tf and Td are considered

random while the interview date τ is taken to be fixed. The relationship duration times

are defined as X = Td − Tf . If the relationship is ongoing at the time of the interview (i.e.

Td is after τ ), the length of X is censored at C = τ −Tf where C is known as the right cen-

soring time. The observed duration variable is Y = min (X,C); we define δ = I(X ≤ C).

The truncation time is defined as follows:

T =

{
0 : if τ − w − Tf ≤ 0 (for durations not subject to truncation)
τ − w − Tf : if τ − w − Tf > 0 (for durations subject to truncation)

where w is the length of the sampling window. If X < T , we do not observe the relation-

ship. See Figure 1.1 for an illustration of the time course of partnerships and the sampling

scheme.

The observed data are assumed to be realizations of independent and identically dis-

tributed (iid) (Ti, Yi, δi) for i = 1, ..., n that meet this sampling requirement. Note the

special nature of the relationship between the truncation and censoring times, C = T +w

for all truncated durations. Throughout the rest of the paper, we will assume X follows

the distribution function F .

1.3 Support Characterization and Consistency

This section characterizes the support for the estimator of the distribution of duration,

F̂ , and investigates the conditions required for consistency in a variety of settings with

discontinuities in the truncation and censoring distributions.

1.3.1 Turnbull’s Estimator with Frydman’s Correction (TEFC) and TPLE

Turnbull (1976) developed a nonparametric estimator of the failure-time distribution

function of random variable X for arbitrarily censored and truncated data. Truncation
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Figure 1.1: Illustration of the time course of partnerships and the sampling scheme.
Tf , Td and τ represent the calendar times of relationship formation, relationship dissolu-
tion, and interview, respectively. Partnerships ongoing within the sampling window, w,
are observed; partnerships that end prior to the sampling window are not observed and
therefore truncated. The sampling window in this figure is 1 year (365 days).

implies that independent observations are sampled from F (x) = Pr(X ≤ x|X ∈ Bi),

where the set Bi is the truncation interval, defined as Bi = [Vi, Ui]. In the case of left

truncation Bi = [Ti,∞). In addition, each Xi can be censored by Ai = [Li, Ri]. In the

case of exact observations Xi = xi, we set Ai = [xi, xi]. For right censored data we have

Ai = [Ci,∞). Note that the sets (Ai, Bi) are assumed to be independent of Xi. Turnbull’s

likelihood (Turnbull 1976) for the observed data is given by

L(F ) =
n∏
i=1

PF (Ai)

PF (Bi)

which can be simplified as

L(s) =
n∏
i=1

∑m
j=1 αijsj∑m
j=1 βijsj

. (1.1)

where αij =I([qj, pj] ∈ Ai) , βij =I([qj, pj] ∈ Bi), qj ∈ L =
⋃n
i=1{Li, Ui}, pj ∈ R =⋃n

i=1{Ri, Vi}, sj = F (pj+)− F (qj−) and j ∈ {1, · · · ,m}.
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Frydman (1994) pointed out that the support of F̂ is made up of the union of disjoint

intervals [qj, pj]. Thus, finding the NPMLE of F reduces to maximizing the likelihood

in equation (2.1) with respect to s = (s1, · · · , sm). The constraints for maximization are∑n
i=1 sj = 1 and 0 ≤ sj ≤ 1. By construction the intervals [qj, pj] cannot contain any other

members ofR or L. Frydman’s characterization of the support applies in the general case

of interval censored, grouped as well as truncated data. For the special case of partner-

ship data which are left truncated and right censored, the support of can be simplified as

follows:

1. for exactly observed relationship duration, say xi, we set qj = pj = xi.

2. for right censored observation that is immediately followed by a left truncated ob-

servation, we set qj = ci, and pj = vi provided ci < vi.

Note that in step (2), we obtain an interval where there could be non-zero mass. Hence-

forth, interval of this type will be referred as region where events are not observable

(RENO).

By contrast, the TPLE estimator for the survival function, S(x) = 1− F (x), is given by

∏
y(i)≤x

(1−
∑n

j=1 I(yj = y(i))

Di

)

where Di =
∑n

j=1 I(tj ≤ y(i) ≤ yj), y(1), · · · , y(k) are distinct ordered observed failure

times. From the form of the TPLE, it can be seen that the support of F̂ is restricted to

exact times of failure. Unlike the TPLE, Turnbull’s NPMLE with Frydman’s correction

(TEFC) allows for placement of mass in RENO.

1.3.2 Example of disagreement between TEFC and and TPLE

We consider a simple numerical example to illustrate the difference between the support

of the TEFC and TPLE. The data for the example are displayed in Figure 1.2. Partnership

durations are reported from three individuals; two of them (observations 1 and 3 in the

figure) are reported as x = 4 months and x = 9 months. These relationships are taken to

be sampled conditional on being greater than 3 and 8 months, respectively. The censored
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relationship (observation 2) is reported to be at least 6 months and is sampled conditional

on being greater than 1 month.

As shown in Figure 1.2(a), application of steps (1) and (2) from the previous section sug-

gests that TEFC put mass at x = 4 and x = 9 as well as the shaded region, [6,8]. Note

that the left and right endpoints of the shaded region are a right censored event time that

is followed by a left truncation time with no intervening events; there is no guarantee of

there is not mass in this region. From Figure 1.2(a), the shaded region reflects knowledge

that the relationship duration is greater than 6 months for observation 1. However, obser-

vation 3 implies that relationship durations less than 8 months, the truncation time, are

possible.

The likelihood for this example is:

L(s) =

(
s1

s1 + s2 + s3

)(
s2 + s3

s1 + s2 + s3

)(
s3
s3

)
(1.2)

where s1, s2, and s3 are the masses at 4, [6, 8], and 9, respectively. Since s1 + s2 + s3 = 1,

the likelihood simplifies to L(s) = s1(s2 + s3), which is maximized at s1 = 1
2

and s2 + s3 =

1
2
. TEFC is not unique for this simple problem as there are infinitely many s2 and s3

satisfying the above constraints. The TPLE shown in Figure 1.2(b) is obtained from the

above likelihood by setting mass in the shaded region to 0 (i.e. s2 = 0).

1.3.3 Intrinsic versus Ignorable RENO and implications for consis-
tency

In practice, our dataset can have two types of RENO, both of which are formed between a

right censored observation and the left-truncation times that immediately follows it. An

ignorable RENO has width that converges to 0 as n→∞; an intrinsic RENO does not. If

the truncation distribution is continuous, the width of the RENO converges to 0 as n→∞,

yielding ignorable RENO. For example the RENO shown in Figure 1 can be considered

as ignorable as the width of the RENO ( i.e. the shaded region) converges to 0 as n→∞.

However, as illustrated by Figure 1.3.3, if the truncation distribution is discontinuous

intrinsic RENOs can arise. In this setting, the support of X is continuous, the truncation

support is discontinuous, and the censoring support is equal to the truncation support

9



(a) (b)

Figure 1.2: Example of disagreement between TEFC and TPLE for the data in Figure
1.2(a). The line segments starting with ‘(’ correspond to the the truncation interval for
each observation. The support of the TEFC includes the shaded region from [6, 8] in ad-
dition to the support of the TPLE {4, 9}which is shown in Figure 1.2(b).

shifted by a fixed constant w < 0.5. The width of the RENO in this example approaches

0.5 − w as n → ∞; no values between 0.5 + w and 1 are observable irrespective of the

sample size. Any observation xi that falls within this window will either be censored to

0.5 + w if ti ∈ (0, 0.5) or will be excluded if ti ∈ (1, 1.5).

1.3.4 Consistency of the TPLE when there is intrinsic RENO

The examples above illustrate why there can be no unique NPMLE in settings with at

least one RENO. In addition, Ŝtple(x) may not be a consistent estimator for the entire

distribution of the duration variable when there are one or more RENOs. As illustrated

by simulation in the next section, if a RENO exists between x1 and x2 then it is possible

that

sup
x∈[0,x∗)

|Ŝtple(x)− S(x)| 6 p→ 0,

where x1 ≤ x2 < x∗ and x∗ lies in the interior of the support of the duration distribution

function F and the censoring distribution function G. The latter condition is equivalent
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Figure 1.3: Example of Intrinsic RENO:X has continuous support butC and T do not. No
duration values, xi, between .5+w and 1 are observable whenever the size of the sampling
window is smaller than the size of the discontinuity in the support of the truncation times
(i.e. w ≤ .5).

to 1 − F (x∗) > 0 and 1 − G(x∗) > 0, and hence F (x) > 0 and G(x) > 0 for 0 ≤ x ≤ x∗.

Nonetheless, Ŝtple(x) has some useful asymptotic properties.

Theorem 1.3.1. Given the presence of a RENO between x1 and x2 and the conditions x1 ≤ x2 <

x∗, 1−F (x∗) > 0 and 1−G(x∗) > 0, Ŝtple(x) is consistent for features of the distribution of S(x)

as follows:

sup
x∈[0,x1]

|Ŝtple(x)− S(x)| p→ 0 and sup
x∈(x2,x∗)

|Ŝtple(x|x > x2)− S(x|x > x2)|
p→ 0

The proof is provided in the appendix and relies on the work of Tsai et al. (1987) and

Lai and Ying (1991) who showed that the conditional distribution S(x|X > a) = P (X >

x|X > a) can be estimated consistently for a ≤ X ≤ b, where a is the lower boundary

on the support of the left-truncation variable T and b is the upper boundary on the right-

censoring variable C.

1.3.5 Simulation Study

We use simulation to illustrate the conditions under which the TPLE is consistent in the

presence of RENO. In order to create a sufficiently large RENO, we will generate our

dataset using the following procedure:

1. For durations subject to truncation (i.e. Ti > 0), truncation time is drawn from a

mixture of two uniform distributions,

11



Ti =

{
Vi where Vi ∈ U(0, 0.5) with probability p
Vi where Vi ∈ U(1, 1.5) with probability 1− p

2. The duration variable will be sampled from the exponential distribution with CDF

1− e−λx where λ ∈ {.25, .5, .75, 1}.

3. If Xi ≥ Ti keep data. Otherwise, discard the data since it is not possible to observe

it.

4. Repeat steps 1 and 2 until N
2

truncated subjects are obtained.

5. For durations not subject to truncation, truncation time is Ti = 0. About 50% or N
2

of

the durations will not be subject to truncation as is the case in our dataset obtained

from Mochudi, Botswana.

6. Generate the censoring times as

Ci =

{
Ti + w : if Ti > 0 (for durations subject to truncation)
Vi ∈ U(0, w) : if Ti = 0 (for durations not subject to truncation)

Ci = for i ∈ {1, · · · , N}where w is the size of the sampling window.

7. Lastly, define Yi =min(Ci, Xi) and δi =I[Xi ≤ Ci].

The final dataset contains (Ti, Ci, Yi, δi) for i ∈ {1, · · · , N}. Note the width of the sampling

window w is varied in order to control the size of the RENO and investigate its impact on

consistency.

We consider the following set of parameters: λ = 0.25, N = 104 and w ∈ {.1, .2, · · · , 1}.

Figure 1.4 illustrates the difference between TPLE Stple(x) and S(x) and the impact of the

size of the RENO. We can estimate S(x) unconditionally since the lower boundary of the

support of the truncation times, τ ∗ = 0.

In addition, the simulations suggest that even if there are discontinuities in the truncation

and censoring support, the TPLE will converge to the true distribution provided that there

is not an intrinsic RENO. Thus, it is important to distinguish between discontinuities in

the support of T and C that do and do not result in intrinsic RENOs. This distinction can

12



(a) (b)

(c) (d)

Figure 1.4: Performance of TPLE (dashed line) in the Presence of RENO: λ = 0.25, N = 104

and w = .8, .7, .2, .1 for figures (a), (b), (c), and (d), respectively. The true distribution
of the relationship duration time is given by solid line. An intrinsic RENO is present
whenever the size of the sampling window is smaller than the size of the discontinuity in
the support of the truncation times (i.e. w ≤ .5) as in (a) and (b).

be illustrated by comparing figures 2 and figures 1.5(a). In both, the support of C and T

partially overlap, but intrinsic RENOs arise only in the setting displayed in Figure 1.3.3,

because the setting of Figure 1.5(a) permits observation of duration of relationships that

fall within the regions of discontinuity, namely [0.5,0.7] and [1.5,1.7]. Additional examples

that illustrate the difference between ignorable and intrinsic RENOs are illustrated in
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Figure 1.5: Discontinuities that do not lead to RENOs are shown in figures (a) and (c). The
discontinuity shown in (b) leads to intrinsic RENO as any xi ∈ (.5, 1) is not observable.

figures 1.5(b) and 1.5(c).

1.4 Consistency of β̂ from a Cox proportional hazard model

We examine conditions for the consistency of the estimated regression parameter, β̂, from

a Cox proportional hazards model. The Cox model assumes that the hazard function for

X conditional on the covariate vector Z is given by

λ(x|Z) = λ0(x)eβ
TZ (1.3)

where βT is the vector of unknown coefficients and λ0(x) is the baseline hazard function

that is independent of covariates. In the case of left-truncated X , the hazard function is
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λ(x|Z,X > T ) can be simplified as

λ(x|Z,X > T ) =
f(x|Z,X > T )

S(x|Z,X > T )
=

f(x|Z)
P (X>T |Z)
S(x|Z)

P (X>T |Z)

= λ(x|Z)

Additional conditioning on X > T is not required as all event times are within the ob-

servable region (X > T ). Below, we explain why it is possible to consistently estimate β̂

even if S(x) is not identifiable due to the presence of a RENO.

Assumptions necessary to establish the consistency of β̂ are as follows:

1. (Ti, Yi, δi) are i.i.d for i ∈ {1, · · · , n}

2. P (Yi ≥ Ti) > 0

3. Xi ⊥⊥ Ti.

4. Xi ⊥⊥ Ci

Given these assumptions, the likelihood of the observed duration Y conditional on the

truncation time, T is:

L ∝
n∏
i=1

f(yi)
δiS(yi)

1−δi

S(ti)

where f is the density function for the duration, S is the corresponding survival func-

tion, δi = I(xi ≤ ci), yi = min(xi, ci) and xi, ci, ti are observed duration, censoring and

truncation times, respectively. Wang et al. Wang et al. (1993) showed that the above like-

lihood can be factorized into the partial likelihood for β, LP (β) and a residual (ancillary)

likelihood LR(β, λ0) that contributes no information for the estimation of β. The partial

likelihood LP (β) is given by

LP (β) =
n∏
i=1

[
eβ

TZi∑
j∈R(yi)

eβTZj

]δi
where R(yi) is the risk set given by R(yi) =

∑n
j=1 I(tj ≤ yi ≤ yj). Estimators and large

sample properties of β are derived based on LP (β). We let a⊗0 = 1, a⊗1 = a, a⊗2 = aaT

and S(r)(β, x) = 1
n

∑n
j=1Qi(x)Z⊗rj eβ

TZj where r = 0, 1 and 2 and Qi(x) = I(ti ≤ x ≤ yi).
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Also, let v(β, x) be the limit of V (β, x) = S(2)(β,x)

S(0)(β,x)
−
[
S(2)(β,x)

S(0)(β,x)

]⊗2
and s(r)(β, x) be the limit of

S(r)(β, x). Now let ∑
=

∫ ∞
0

v(β, x)s(0)(β, x)λ0(x) dx

and assume
∑

is positive definite. Note this likelihood is similar to the usual right-

censored data partial likelihood except for the difference in the definition of the risk set.

Examining the form of the partial likelihood reveals that the presence of RENO will not

affect the estimation of β since no observations are made within it. Therefore, following

argument from Anderson et al. Andersen and Gill (1982), β̂ can be shown to be consis-

tent. The regularity conditions and additional assumptions as stated in Andersen and

Gill (1982) are unaffected by the presence of RENO.

1.5 Application

1.5.1 Summary of the Mochudi Relationship Data

The relationship dataset we consider arose from an AIDS prevention pilot study con-

ducted in the village of Mochudi, Botswana. The dataset contains information on 2268

subjects who reported at least one relationship. For the 376 subjects who had two or more

sexual relationships in our dataset, we consider only the most recent, which is defined as

the partnership with the most recent sexual contact. We restrict the analysis of partner-

ships to relationship durations that are 10 years or less; longer relationship are censored

at 10 years as the reliability of recall beyond 10 years is uncertain (Nelson et al., 2010).

Furthermore, for investigation of spread of STIs, it may be more useful to focus on rela-

tionships shorter than 10 years. There were 390 relationships that were greater than 10

years and only 8 (2%) of them had observed starting times. Therefore most of the infor-

mation available for estimation of duration of relationships if rom relationships that are

shorter than 10 years. In total, we have 2050 (90%) ongoing (censored) relationships at the

time of the survey interview. In addition, 992 (44%) partnerships are untruncated since

they began within in the sampling window of 12 months. Additional descriptive statistics

pertaining to our population of study are provided in Tables 1 and 2.
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Table 1.1: Quartiles of key covariates by HIV status
HIV Negative HIV Positive Combined

N=1742 N=502
Age (Q1,Q2,Q3)∗ (23,28,40) (28,35,42) (24,30,41)
Duration (X) (.88,2,7) (.99,3,7.99) (.9,2,7)
Truncation (T ) (0,1,6) (0,2,7) (0,1,6)
Date of last sex∗∗ (5,14,42) (4,14,35) (5,14,35)
∗ Q1, Q2, Q3 refer to 25th, 50th and 75th percentile of the variable measured in years.
∗∗ Refers to time (Days) from the last sexual contact to the interview date

Table 1.2: Median of key covariates by gender
Male Female

N=790 N=1478
Age (Median) (24,31,43) (24,30,40)
Duration (X) (.66,1.4,6) (.99,3,8)
Truncation (T ) (0,.48,5) (0,2,7)
Date of last sex (4,14,60) (5,14,31)

1.5.2 Evaluating the quasi-independence assumption via Kendall’s Tau

Validity of the TPLE depends on the quasi-independence assumption, i.e. the indepen-

dence of the truncation and duration variables within the observable region. This as-

sumption allows for the factorization of the joint density of the failure time and truncation

time within in the observable region (Martin and Betensky, 2005). If this assumption of

quasi-independence is violated, the construction of the likelihood may not be valid and

the estimates derived from it may be biased. Keiding and Moeschberger (1992) showed

that the nature of the bias in the product limit estimate depends on the correlation be-

tween truncation and event time. Unlike the independence assumption of censoring and

failure times, it is possible to test for the independence of truncation and failure times

nonparametrically (Martin and Betensky, 2005; Tsai, 1990). This assumption can be tested

within the observable region (i.e. the region where Xi ≥ Ti) since we have both pairs

(Xi, Ti). The scatter plot of (Xi, Ti)(Figure 1.7) below provides a graphical check of the

independence assumption of the truncation and duration times within the observable

region. We examined Kendall’s Tau statistic for the dependence of the duration and trun-

cation variables and did not find evidence of association (Kendall’s Tau Statistic=-0.005 ,
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(a) (b)

Figure 1.6: (a) TPLE estimate of overall duration of duration of relationship (b) TPLE
estimates of duration of relationship by gender; females (solid line) and males (dashed
line).

p-value=0.0003). Conditions under which duration and truncation variables can be de-

pendent are briefly discussed in the appendix.

1.5.3 Illustration of RENOs in the Mochudi relationship dataset

Figure 1.6(a) displays the TPLE estimate of the distribution of most recent partnerships.

Applying the steps identified in Section 3.1, we observe several ignorable RENOs of var-

ious sizes with the largest RENO being around 55 days wide. As discussed above, ig-

norable RENOs do not affect consistency of estimation of the distribution. Figure 1.6(a)

shows that 50% of the most recent relationships are at least 6.75 years long. Figure 1.6(b)

shows a significant difference in the distribution of partnership durations by gender (p-

value<.0001); the median duration of relationships for women and men were 9.95 and

3.67 years, respectively.

As discussed in prior sections, if the size of the sampling window w is less than the gap in

the support of the truncation times we have a region in which consistent estimation of the

distribution function for X is not possible. For the Mochudi relationship dataset w = 365
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Figure 1.7: The observable region for the duration dataset
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days, implying that intrinsic RENOs occur only if there is a gap that exceeds 365 days

in the support of the truncation times or equivalently, the calendar time of relationship

initiations. Examples of populations where such conditions might apply include those

that experience mass circumcision campaigns that prevent young men from initiating

relationships, or those where there is seasonal migration of young men due to work (i.e.

farming, mining) (Lurie et al., 2003, 1997) or those that are characterized by cultural or

religious norms that prohibit relationship formation for a period of time. Conditions that

would lead to initiation time gap of 365 days or more are unlikely for the community

from which this data is sampled, though it may be possible within age subgroups. Hence

it is very unlikely that the consistency of estimation is compromised by the presence of

RENOs.

1.5.4 Spline Modeling of Age Effect on Duration

We use penalized smoothing spline to model the effect of age on the duration of rela-

tionship controlling for HIV and concurrency status. The analyses make use of the ap-

proach of Therneau and Grambsch (2000) to characterize linear and nonlinear effects of

age on relationship duration. The results, displayed in Figures 1.8(a) and 1.8(c), show

that the hazard of relationship termination decreases with age at relationship initiation

among males. For this group, there is a significant linear, but not nonlinear, effect of age

at relationship initiation (p=0.0006). However, for females (Figure 1.8(c)), the hazard of

relationship termination does not vary much across age at relationship initiation. We see

no significant linear (p=0.99) or nonlinear (p=0.24) effect of age at relationship initiation.

We note that that the partnerships reported in our samples do not come from a closed

population; hence there is no constraint that these curves be consistent.

The effect of the partner-reported age of males (i.e. reported by females) on the duration

of relationship is very different from the effect of self-reported age of males (compare fig-

ures 1.8(a) and 1.8(b)). There was a significant linear association with age at partnership

initiation for self-reported, but not partner-reported, age. A similar discrepancy is ob-

served when comparing self-reported vs partner-reported age in figures 1.8(c) and 1.8(d).

Lastly, it is worth noting that whereas figures 1.8(a) and 1.8(d) look similar as expected,
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(a) (b)

(c) (d)

Figure 1.8: Spline regression modeling the effect of age at start of sexual partnership on
duration. Dashed lines represent 95 % CI for Hazard Ratio while dotted lines represent
where Hazard Ratio is equal to 1.

figures 1.8(b) and 1.8(c) do not, reflecting the fact that distribution of self-reported and

partner-reported ages are similar for women but not for men.
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1.6 Discussion

This paper identifies the sampling condition necessary to obtain a consistent estimator

of distribution of partnership durations from retrospectively collected survey data; the

partnership sampling window must be large enough to avoid potential gaps in the rela-

tionship formation times that may lead to regions where events are not observable. As

shown analytically and via simulation, the presence of RENOs will lead to inconsistent

estimation of the duration distribution function. Provided that truncation and duration

times are independent within the observable region and that the size of the partnership

sampling window is bigger than the gaps in the truncation times consistent estimation of

the distribution of partnership duration is possible using either the standard TPLE or Lai

and Ying’s version of the TPLE. If the duration and truncation variables are dependent,

consistent estimation is not possible, but these variables may be conditionally indepen-

dent given a covariate like age. If the conditional independence assumption is satisfied,

it is possible to obtain valid estimates of duration distribution conditional on age using

TPLE. This paper also addressed how RENOs may influence estimation of covariate ef-

fects from a Cox proportional hazard model. The regression coefficients explaining the

effect of a covariate on the hazard of relationship termination can be consistent even if

consistent estimation of the distribution function is not possible provided that conditions

listed in section 1.4 and the references therein are satisfied.

The steps for identifying RENOs have been outlined and illustrated by example. In addi-

tion, covariate effects on the distribution partnership duration are incorporated by using

spline models. The results from our models show marked differences in the effect of age

at initiation between men and women. Such gender difference have been noted in other

populations in prior studies (Helleringer et al., 2011; Nnko et al., 2004). As noted in Nnko

et al. (2004), one explanation for this phenomenon is that women may tend to under-

report short non-marital relationships, but not more stable (e.g. marital) relationships.

Our application dataset supports the tendency of women to report relationships with

older men; the median of the reported age distribution for men (i.e. reported by women)

is about 3 years greater than the median of this distribution reported by men. And these
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relationships with older men are perhaps more likely to be stable and durable. Moreover,

for the group of men the women in our study are reporting to have relationship with,

the effect of age at partnership initiation is not associated with hazard of relationship

termination. This is strikingly different from the association observed when analyzing

the self-reported age at the initiation of relationships for the men in our study (compare

figures 1.8(a) and (b)). In addition, for the group of women reported by the men in our

study (note this group of women are not observed directly in our study), the effect of

age at partnership initiation is associated with hazard of relationship termination. Again,

this differs from the association observed when analyzing the self-reported data for the

women in our study (compare figures 1.8(c) and 1.8(d)). Such differences may reflect the

tendency of men to have shorter relationships outside of the community as well as the

tendency of women to report only stable relationships.
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Estimation and Modeling of Partnership Transition
Probabilities

Yared Gurmu and Victor De Gruttola
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2.1 Introduction

The rate of sexual partnership formation and dissolution is important in the investigation

of dynamics of sexually transmitted infections (STI). These rates are an integral part of

mathematical models that examine the epidemiology and control of STI (May et al., 1988;

Anderson and Garnett, 2000). For example, the basic reproductive number of an STI, crit-

ical and useful metric associated with the size of an epidemic, is a function of sexual part-

ner acquisition rate (Anderson and Garnett, 2000). Therefore, it is critical that these rates

are properly estimated and modeled. The difficulty in properly estimating these rates lies

in the fact that sexual history data is usually retrospectively collected and is often fraught

with missing data; the total number of partnerships, the formation and dissolution time

of relationships (consequently the duration of relationships) may be censored, truncated

or subject to recall bias (Burington et al., 2010). Cross-sectional sexual history data is self

reported and constitutes information on relationships that are currently ongoing, or have

ended within a fixed time period before the sexual history interview date. Such sexual

history data are inherently length-biased as longer relationships are more likely to be re-

ported. In addition, such data can be right censored if the partnership is ongoing at the

end of the partnership survey.

In order to address some of these challenges, this paper develops a Markov framework

for the estimation and modeling of transition probabilities into and out of relationship

states that characterize essential features of the incomplete sexual partnership process.

Nelson et al. (2010) propose an imputation based framework to estimate partnership for-

mation rates when data are obtained from incomplete sexual partnership history. Their

estimation approach assumes that partnerships for whom start and end times were not

obtained were uniformly distributed between the time of sexual debut and the earliest

described partnership, and sensitivity analysis is employed to examine impact of this

assumption on estimation of partnership formation rates. To avoid making explicit as-

sumptions about the start and end time of unobserved relationships, this paper proposes

a stochastic expectation maximization algorithm (stEM) coupled with rejection-sampling

scheme in order to estimate transition rates from states of celibacy, monogamy, and con-
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currency. This approach accommodates data from a retrospective sampling scheme and

can utilize other available information from the sexual history data, such as total number

of relationships within a specified period of time or total lifetime number of partnerships.

Such information may be available even when the sojourn time of each of the partnerships

in the different states is not.

This paper is organized as follows. The next section describes the motivating example,

the Markov process formulation of the problem and various observation schemes under

which sexual history data can be obtained. Section 3 discusses the stochastic EM (stEM)

algorithm and its implementation, and section 4 presents simulation results for the per-

formance of the stEM algorithm in our context. Section 5 discusses modeling of transition

probabilities to permit dependence of the probabilities on time and other covariates. Sec-

tion 6 presents applications to data obtained from a sexual behavior survey, and section 7

provides a discussion.

2.2 Markov Model Formulation for the Relationship Data

The motivating example arose from a survey that collected sexual behavior information

from a cohort of HIV patients from an HIV Treatment and Care study in KwaZulu-Natal

(KZN), South Africa. Information included age of sexual debut, the total lifetime number

of partnerships, the duration and time of dissolution of partnerships. These data were

collected biannually for a period of up to 3 years (i.e. 6 rounds of interviews were con-

ducted in the process of collecting these data). The durations of all relationship that are

still ongoing on the date of the last interview are right censored. Our interest lies in apply-

ing a Markov model to estimate rates of transition from states of celibacy, monogamy, and

concurrency using incomplete sexual history data. One interesting feature of the sexual

history survey instrument used in this study is that it obtains information on relation-

ships that ended outside the sampling window if no relationships were reported to be

ongoing during that window (i.e. 6 months prior to the baseline interview date). By con-

trast, most surveys of sexual history data gather information on duration and end time of

relationships only for those relationships that are ongoing within the sampling window.
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The sampling scheme used to collect data in the study we consider leads to additional

duration information that can be utilized for efficient estimation of transition parameters

of the Markov process.

The model shown in Figure 2.1 represents a three-state Markov process of relationship

formation and dissolution. At the time of sexual debut a person enters state 1, monogamy.

Then, depending on whether the person terminates the relationship or starts a new one

the person will move to a state 0 (celibacy) or 2 (concurrency), respectively; information

about the relationship formation and dissolution process is available until the time of the

last survey. Concurrency is defined as having overlapping durations of partnerships in

which sexual relationship with a new partnership is initiated before the termination of a

preexisting sexual partnership. Note that all forward transitions in Figure 2.1 represent

relationship formation, i.e., a transition from celibacy to monogamy or from monogamy

to concurrency. Similarly, all backward transitions represent dissolution of a relationship,

i.e. movement from concurrency to monogamy or from monogamy to celibacy.

This simple Markov model was chosen because it retains essential features of the relation-

ship formation and dissolution process during the life course of an individual. Specifi-

cally, this approach allows for the estimation and modeling of the rates at which people

move in and out of state of concurrency and other states of interest by using all available

information outside the window. This is particularly of interest as concurrency may be an

important risk factor for STI transmission as suggested by both mathematical models and

empirical studies (Doherty et al., 2006; Morris and Kretzschmar, 1997; Watts and May,

1992; Koumans et al., 2001; Rosenberg et al., 1999).

2.2.1 Markov Model Notation

Let Xi(t) represent the relationship status of person i at time t and let {Xi(t), t =

0, 1, · · · , Ti} be the person’s complete sexual history process until the date of the last

survey,Ti. A discrete time representation of the Markov process is used since the duration

data collected is of discrete nature. The relationship states of the process X(t) are {0, 1, 2}

corresponding to states of celibacy, monogamy and concurrency, respectively. Transition
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Figure 2.1: Markov Model Representation of Sexual History Data

from state to state is governed by the transition probability matrix

P (t) =

p00(t) p01(t) 0
p10(t) p11(t) p12(t)

0 p21(t) p22(t)


where pij(t) = P (X(t+ 1) = j|X(t) = i) ∀ t.

2.2.2 Information available from sexual history data

Example of duration data and Markov model representation

Figure 2.2 illustrates the information available from surveys that collect retrospective

partnership histories. We represent the situation in which an individual reported hav-

ing two relationships within the sampling window (see Figure 2.2(a) and 2.2(b)), and one

of the relationships is terminated before the end of the survey period, T , while the other

one is ongoing at the end of the survey period (i.e. right censored duration). We assume

the availability of full information on X(t) from T −w until the time of the last survey T ,

where w is the total period over which the survey is conducted. Prior to T −w only partial

information is available about the state of the relationship process. For example, in both

figures 2.2(a) and 2.2(b) it is known that the first relationship started at T ∗. Therefore, T ∗

is a relationship formation time, which impliesX(T ∗) = 1 andX(T ∗−1) = 0 orX(T ∗) = 2

and X(T ∗− 1) = 1. As T ∗ must be a transition time, either the individual has just entered

either the state of monogamy or the state of concurrency. If an individual reports having

two or more relationships at T − w, then the last time of transition into a state of concur-
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rency will also be known. In addition, as shown in Figure 2.3(b), the sample path of the

process will be fully observed on the interval [T ∗2 ,T ]. Similarly, if an individual reports

having no relationship at T − w, then the individual is asked to report the duration and

date of termination of his or her partnership. Figures 2.4(a) and 2.4(b) provide illustration

of this scenario.

Lastly, Figure 2.2 also provides insight regarding the connection between the relationship

data collected in partnership surveys and the Markov process representation of such data.

Although relationship duration data represented in Figure 2.2(a) and 2.2(b) differ, they

are both represented by the sample path as shown in 2.2(c). This figure illustrates that the

relationship formation and dissolution process does not uniquely map to specific start

and stop times of each relationship. Further discussion and a modeling framework that

addresses this issue are presented in Chapter 3.

By design, partnership surveys collect sexual history data for relationships that are on-

going during the sampling window. Therefore, most such surveys omit data on sexual

partnerships that end prior to the window. In the Markov process representation of the

partnership data, this corresponds to not observing X(s) for all s < t if X(t) = 0 prior

to the sampling window, T − w. However, it is important to note that such missing data

only occurs prior to the sampling window; within in the sampling window, X(t) is fully

observed. In the context of time-homogeneous Markov processes, such missingness does

not lead to biased estimates of the transition probabilities as unbiased estimation can

be performed by combining data across the sampling windows (Bee, 2005; Guttorp and

Minin, 1995). However, the estimates obtained by using data from the sampling window

only do not make as efficient use of available information as those estimates that make

use of retrospective data.

2.3 Methods for estimating transition probabilities

This section discusses estimation of transition rates assuming a Markov process, when

the process is partially observed. We begin with a discussion of how maximum likelihood

estimation (MLE) of the transition probabilities proceeds in the case of the complete data.
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(a)

(b)

(c)

Figure 2.2: Two different duration data (a) and (b) have identical sample path (1→ 2→ 1)
as shown in (c)
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(a)

(b)

Figure 2.3: Duration representation (a) and corresponding Markov representation (b).
Dashed line in (b) reflects the uncertainty in the state of the process between T ∗1 and T ∗2

The imputation of missing data and calculation of MLEs will make use of a stochastic

version of the expectation-maximization algorithm (EM) of Dempster et al. (Dempster

et al., 1977) and Celeux et al. (Celeux and Diebolt, 1985; Gilks et al., 1996). The proposed

version of the stochastic EM incorporates a rejection-sampling feature to draw samples

conditional on the observed data.
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(a)

(b)

Figure 2.4: Duration representation (a) and corresponding Markov representation (b).
Dashed line in (b) reflects the uncertainty in the state of the process

2.3.1 Maximum Likelihood Estimation for Complete Data

Let {Xi(t), t = 0, 1, · · · , Ti} represent the complete sample path for individual i. Individ-

ual i′s contribution to the complete data likelihood can be formulated as follows:
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Li(p) = P (Xi(0) = x0, Xi(1) = x1, · · · , Xi(Ti) = xTi)

= P (Xi(0) = x0) ∗ P (Xi(1) = x1|Xi(0) = x0)

· · · ∗ P (Xi(Ti) = xTi |Xi(Ti − 1) = xTi−1, · · · , Xi(0) = x0)

= P (Xi(0) = x0) ∗ P (Xi(1) = x1|Xi(0) = x0)

· · · ∗ P (Xi(Ti) = xTi |Xi(Ti − 1) = xTi−1)

∝
Ti−1∏
t=0

P (Xi(t+ 1) = xt+1|Xi(t) = xt) =
S∏
j=0

S∏
i=0

p
Nij(Tk)
ij

where Nij(Ti) =
∑Ti−1

t=0 I(Xt = i,Xt+1 = j) = #{i to j transitions until Ti} and the pro-

cess transitions through states {0, 1, · · · , S}. Note that the above likelihood is a prod-

uct of multinomial likelihoods given the current state with parameters Nij(Ti) and pij .

Therefore, conditioning on the initial state probability, P (Xi(0) = x0), the MLEs can be

calculated as

p̂ij =
Nij(Ti)∑S
j=0Nij(Ti)

And for K independent observations of the process, the individual likelihoods can be

combined to get the MLEs as follows:

p̂ij =

∑K
k=1Nij(Tk)∑K

k=1

∑S
j=0Nij(Tk)

Asymptotic properties of the MLEs are shown in Guttorp (Guttorp and Minin, 1995) and

Billingsley (Billingsley, 1961).

If the entire process had been observed for each subject in the survey, the transition rates

could be estimated explicitly using the simple formulas shown above. However, if the

process was observed only at time points {t0, t1, · · · , tN} ⊆ {0, 1, · · · , Ti} the observed

data likelihood is:
N∏
n=0

P (Xi(tn+1) = xtn+1 |Xi(tn) = xtn)

is not a simple function of the one-step transition parameters, pij . Rather, P (Xi(tn+1) =

xtn+1 |Xi(tn) = xtn) =
∑

xtn ,··· ,x(tn+1−1)
pxtnx(tn+1)

· · · pxtn+1x(tn+1−1)
which involves tn+1− tn−1

integrals. Therefore, maximization of the observed data likelihood may be cumbersome

as tn+1− tn− 1 gets larger, because simple closed form solutions do not exit. In particular,
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procedures such as PROC NLP (in SAS) for constrained maximization of the nonlinear

equations arising from the observed data likelihood may occasionally lead to negative

estimates of the transition probabilities as reported in Yeh et al. (Yeh et al., 2010). Because

the complete data likelihood has simple closed form MLEs, the problem of maximizing

the observed data likelihood lends itself well to a stochastic version of the EM algorithm

that uses rejection sampling to calculate MLEs under different sampling schemes.

2.3.2 Stochastic EM algorithm

The E-step of the EM algorithm may often be intractable or cumbersome due to high

dimensional integration. In addition, the EM estimate may be sensitive to the initial value

of the unknown parameter. Given these difficulties, (Celeux and Diebolt, 1985; Gilks et al.,

1996) provide a stochastic version of the EM algorithm as an alternative to standard EM

algorithm. For a general discussion of the deterministic EM algorithm in the context

of observational data arising from discrete time Markov chain, we refer the reader to

Sherlaw-Johnson et al. (1995).

The stochastic EM (stEM) algorithm replaces the E-step with a stochastic step (S-step)

whereby a sample is drawn from the conditional distribution of the missing data given the

current parameter estimate and the observed data. Then, combining the observed data

with the sample drawn at the S-step, a pseudo-complete dataset is obtained which can be

maximized to obtain a new parameter estimate for the next iteration. The Stochastic step

and the Maximization step are iterated until convergence. Thus, the stEM algorithm is

implemented by alternating the following steps:

1. Find an initial value of p, p(0)

2. S (Stochastic) -Step: at the kth step, draw samples from f(Z|Y, p(k))–the distribution

of the missing data given the observed data and the current estimate of the param-

eter p(k)

3. Maximization Step: determine the new estimate p(k+1) as the maximizer of the com-

plete data likelihood in step 2.
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4. Iterate steps 2 and 3 until convergence

As discussed in Diebolt and Ip (1996); Diebolt and Celeux (1993) the sequence of p(k) ob-

tained from iterating the above 2 steps is a Markov chain that converges to a stationary

distribution that is centered around the MLE of our parameter. The stochastic EM (stEM)

estimate, denoted by p̃, is obtained from the mean of the sequence of p(k) after an appro-

priate burn-in period. In the applications discussed in this paper, the stEM estimate is

calculated by averaging estimates from the last 1000 iterations. In addition, in order to

allow the sequence of p(k) to settle and approach the stationary distribution, a burn-in

period of 100 iterations is used. As discussed in Diebolt and Ip (1996), and the references

therein, the stEM and EM estimators are asymptotically equivalent.

Outlined below is a version of the Stochastic EM algorithm in which the S-step imple-

ments a rejection sampling approach so a draw can be made from f(Z|Y, p(k)). Note

that given Y and a value for p(k) the missing data distribution is completely determined.

Therefore, the S-step eliminates the need to evaluate complicated nonlinear likelihood ex-

pressions that appear in the observed data likelihood and the E-step of the deterministic

EM algorithm.

Stochastic EM steps

Let T ∗ be the earliest observed non-zero time of realization of the process. In the KZN

partnership data, T ∗ can be a partnership initiation time of the earliest reported relation-

ship. For simplicity of notation, we drop the subscript i.

1. S-step:

Given Y, T ∗ and T , generate a new process, Z(t), with initial transition probability

p = p0, which can be set to the MLE using data only on the process observed within

the sampling window from t = T − w to t = T . Rejection sampling is employed to

assure that Z(t) satisfies the following matching criteria:

(a) Z(0) = Y (0). (The initial state of the partnership process is known.)

(b) Z(T ∗) ∈ {1, 2} since T ∗ is formation time.

(c) Z(t) is identical to Y (t) within the sampling window {T −w, T −w+1, · · · , T }.
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(d) if Y (T − w) = 2 then Z(t) = Y (t) for t ∈ {T ∗2 , T ∗2 + 1, · · · , T } where T ∗2 is the

last transition time to state 2 before T − w.

(e) Match the process at the earliest time of sexual contact Tinit. In other words,

Z(t) = X(t) for t ≤ Tinit.

(f) If the process entered state 0 prior to T − w and is in state 1 or 2 at T − w,

Z(t) ∈ {1, 2}, ∀t ∈ {T ∗, T ∗ + 1, · · · T − w}where T ∗ is defined as above.

(g) If the process is in state 0 at T − w (X(T − w) = 0), then the 1 → 0 transition

time and the start time of this relationship will be known: individuals report

the duration and termination date of their last partnership if they report no

relationship on the date of the baseline interview (T −w). Z(t) and Y (t) will be

identical from the time state 0 is entered most recently.

(h) The total number of formation times (0→ 1 and 1→ 2 transitions) for Z(t) has

to match the total life-time number of partnerships reported in the partnerships

dataset.

2. M-Step:

Maximize the likelihood of the pseudo-complete data comprising the imputed pro-

cess (Z) and the observed process (Y) as follows:

p(1) = max
p

( log(L(p; (Z,Y)|Y,p(k))))

Further details on the above matching criteria can be obtained from section 2.2.2. The

matching criteria of this procedure are general enough that they can accommodate var-

ious types of partnership surveys. For example, if a partnership survey does not collect

the time of earliest sexual contact or it is missing from the data collected, part (e) of the S-

step can be omitted assuming first sexual initiation occurs after the age of 15 (time origin

of the Markov chain). Alternatively, if researchers collect sexual history data only if the

individual has ongoing relationships within in the sampling window, part (e) and (f) of

S-step can be omitted in order to account for the lack of information outside the sampling

window.
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Investigating information on the total number of partnerships

If the lifetime number of partnerships is provided in the partnership survey, that infor-

mation can be utilized in maximum likelihood estimation because of its inclusion in the

sufficient statistic for the Markov process. The sufficient statistics for the parameter pij

of our Markov model are the number of i to j transitions and total number of transitions

out of state i. Specifically, knowing the total lifetime number of partnerships is equiv-

alent to knowing the total number of 0 → 1 and 1 → 2 transitions assuming all new

concurrent relationships are formed from the state of monogamy and not within the state

of concurrency. In other words, if a person is in a state of concurrency the only way to

form another new relationship is first to break up the concurrent relationship, enter the

state of monogamy, and then enter the state of concurrency. Without making this assump-

tion, there does not seem to be a direct connection between the sufficient statistic for our

Markov model and information on the life time number of relationships. If this assump-

tion is not tenable, other approaches, which include a larger number of states, must be

developed as described in the discussion section.

The Markov assumption simplifies sampling from the missing data distribution given the

observed data, f(Z(t)|Y, p(k)). Furthermore, rejection sampling by utilizing information

on the total number of forward transitions restricts list of possible sample paths even

when sojourn times are not known.

2.3.3 Variance of the stEM estimate

Variance estimation relies on an approach of Louis (1982) who formalized the missing

information principle of Orchard et al. (1972) in the context of the EM algorithm. This

principle can be summarized as:

Observed information=Complete information-missing information

Applying this principle, Louis provides the following identity:

∂2lobs(p; y)

∂p ∂pT
= Ep

(
∂2lc(p;x)

∂p ∂pT

∣∣∣y)− covp

(
∂lc(p;x)

∂p

∣∣∣y)
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where lobs and lc are the log likelihood of the observed and complete data, respectively,

and p is a vector of the parameters of interest. Given the above identity, parametric boot-

strap approach (Efron and Tibshirani, 1994) can now be used to calculate the theoretical

covariance and mean functions of the information and score of the complete data like-

lihood. The following steps are implemented in the calculation of the variance of stEM

estimator p̃:

1. Generate bootstrap samples

(a) For each observed process Yi, simulate a realization of the process from

f(Z|Y, p̃) to get a pseudo-complete process Xi = {Xi(t), t = 0, 1, · · · , Ti}.

(b) Repeat 1a for all reported partnerships i = 1, · · · , K to obtain a pseudo-

complete dataset.

(c) Generate M pseudo-complete datasets by repeating the above steps.

2. Calculate the sample mean, the estimate of the first term on the right hand side of

the identity, as:
1

M

M∑
m=1

(
∂2lmc (p;x)

∂p ∂pT

)
where lmc (p;x) is the complete data log likelihood for the mth simulated process and

is given by

lmc (p;x) ∝
K∑
k=1

2∑
j=0

2∑
i=0

p
Nij(Tk)
ij
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The elements of the information matrix necessary for the above computation are:

∂2lc(p;x)

∂p201
=

K∑
k=1

−
(
N01(Tk)
p201

+
N00(Tk)

(1− p01)2

)
∂2lc(p;x)

∂p210
=

K∑
k=1

−
(
N10(Tk)
p210

+
N11(Tk)

(1− p10 − p12)2

)
∂2lc(p;x)

∂p10 ∂p12
=

K∑
k=1

− N11(Tk)
(1− p10 − p12)2

∂2lc(p;x)

∂p212
=

K∑
k=1

−
(
N12(Tk)
p212

+
N11(Tk)

(1− p10 − p12)2

)
∂2lc(p;x)

∂p221
=

K∑
k=1

−
(
N21(Tk)
p221

+
N22(Tk)

(1− p21)2

)

3. Calculate the sample covariance, the estimate of the second term on the right hand

side of the identity, as:

1

M

M∑
m=1

[
∂lmc (p;x)

∂p
− l̄
] [

∂lmc (p;x)

∂p
− l̄
]T

where

l̄ =
1

M

M∑
m=1

∂lmc (p;x)

∂p
.

The score equations necessary for calculating the sample covariance are:

∂lc(p;x)

∂p01
=

K∑
k=1

(
N01(Tk)
p01

− N00(Tk)
1− p01

)
∂lc(p;x)

∂p10
=

K∑
k=1

(
N10(Tk)
p10

− N11(Tk)
1− p10 − p12

)
∂lc(p;x)

∂p12
=

K∑
k=1

(
N12(Tk)
p12

− N11(Tk)
1− p10 − p12

)
∂lc(p;x)

∂p21
=

K∑
k=1

(
N21(Tk)
p21

− N22(Tk)
1− p21

)

Note that all the steps in the parametric bootstrap are carried out setting p = p̃, the stEM

estimate. Finally, the variance covariance of the stEM estimates can be calculated as usual
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by inverting the estimate of the observed information obtained above.

2.4 Time Dependent Markov Chain and Modeling of Tran-
sition Rates

The partnership formation and dissolution process may not be homogeneous over time.

In order to incorporate time variation, we model dependence on time according to the

following multinomial logistic model:

log
pij(t, t+ 1)

pii(t, t+ 1)
= αij + βij ∗ t

where i, j = 1, · · · , S, i 6= j and
∑

j pij(t, t + 1) = 1 for t ∈ {0, 1, · · · , T − 1}. Note that the

above model implies

pij(t) = pii(t) ∗ exp{αij + βij ∗ t}

where

pii(t) =
1

1 +
∑

j,j 6=i exp{αij + βij ∗ t}

In the setting of partnership survey data, the time origin 0 can correspond to the age at

which the sexual history process begins. In sexual behavior surveys, this age is usually

around 15 years old (Nelson et al. (2010), Mochudi Pilot Study). Therefore, we can incor-

porate the effect of age in our modeling by noting that t = age − 15 and each additional

unit of time changes the logit of the transition probability by βij .

The stEM procedure can be used to estimate the time-dependent transitions of the param-

eter. The complete data likelihood can be written as a product of multinomial likelihoods

at each time point since the transition probability matrix P (t) is a stochastic matrix at

each time point. An individual’s contribution to the complete data likelihood is given as

follows:

lc ∝
T −1∑
t=0

S∑
j=0

S∑
i=0

pij(t, t+ 1)Nij(t,t+1)

where pij(t, t+ 1) is as given above. In the context of the time dependent transition rates,

Maximum Likelihood estimation does not yield simple closed form solution due to the

logistic link. Estimation of pij and βij involves maximization of a likelihood that is non-
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linear in the parameters. Although the stEM procedure and the standard error computa-

tion proceeds in the same way as in the time-homogeneous case, the M-step of the pro-

cedure will be considerably slower due to increased number of parameters and the com-

plicated form of the likelihood. Standard multinomial software in R can be useful for the

maximization of the likelihood as long as βij varies with i (i.e. different covariate effects

are assumed for the different transition types). Otherwise, if the different multinomial

likelihoods (formed conditional on the starting states i) share common parameters, direct

maximization of the likelihood must be performed and standard multinomial software

may not be used. In order to improve the efficiency of the optimization of the likelihood,

analytical gradient and Hessian functions may be provided to optimization routines in R.

The above model formulation is flexible and allows for hypothesis testing. For example,

we can test whether there is differential effect of time on the transition probabilities for

different types of transition. This corresponds to testing the hypothesis βij = β, ∀i, j using

a standard likelihood ratio test given the stEM estimates under the null and alternative

hypothesis. Another hypothesis may be that there is a quadratic effect of age on the tran-

sition probabilities as sexual partnership formation rates increase until early adulthood

and decrease as most people age. Transition rates of the Markov chain may also depend

on additional covariates such as gender and HIV status. Further discussion of modeling

the effect of covariates on transition probability is discussed in the application section.

2.5 Simulation Study

A simulation study was carried out to evaluate the performance of stEM under sampling

conditions that were similar to those in our applications dataset. In the sexual behavior

survey from South Africa, participants were asked bi-annually to provide detailed infor-

mation regarding their prior partnerships including age at sexual debut, and start and

end time of their sexual partnerships. The sampling window–the total period over which

the interview is conducted–is denoted by w. The partnership history process is generated

according to the Markov model described in section 2.2. 100 subjects (N = 100) start

the sexual partnership process in state 0 at the time origin (time = 0). The initial state
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distribution probabilities are (1,0,0) for states 0,1,2 respectively; all begin the process in

a state of celibacy (state 0). The transition probabilities corresponding to each state are

as follows: p01 = .2, p10 = .5, p12 = .4 and p21 = .6. Given these initial state and tran-

sition probabilities, a subject’s complete sexual history is generated following a Markov

model. Each subject is observed for a period of Ti units of time where Ti ∼ Unif(1, 30)

and therefore the corresponding complete sample path is {Xi(t), t = 0, 1, · · · , Ti}. Ti is

the end of the sampling window and corresponds to the time of the final interview in our

partnership dataset. Finally, the observed data can be obtained from the complete data

by imposing the following sampling scheme that was present in our application dataset:

1. If the process X(t) entered state 0 before T − w and exited state 0 at Texit < T − w,

all history before Texit is set to missing. This happens because all relationships that

were not long enough to make it into the sampling window are not reported except

in the case where X(T − w) = 0.

2. If the process is in state 0 at T − w (X(T − w) = 0),then the 1 → 0 transition time

and the start time of this relationship is known. This corresponds to the fact that

individuals report the duration and date of termination of their last partnership if

they report no relationship at the date of the baseline interview (T − w).

3. After eliminating the unobservable history, we randomly pick T ∗, earliest reported

relationship formation time, uniformly between Texit and T − w. Note that T ∗ has

to be a 0 → 1 or 1 → 2 transition time since it is reported as a time of partnership

initiation. (See section 2.2.2 for further explanation.)

4. If the process is in state 1 at T −w (X(T −w) = 1), then all data between T ∗ and T −w

is also set to missing as the transition of the process relationships between these two

time points is unobservable. This condition arises since a person who only reports

1 long relationship starting at T ∗ could have had multiple other short relationships

that started and ended between T ∗ and T − w.

5. If the process is in state 2 at T − w (X(T − w) = 2), then the time point between

T ∗ and T ∗2 is set to missing where T ∗2 is the time of the last 1 → 2 transition before
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the sampling window. In this case, sojourn time in the most recent visit to state 2 is

known.

In addition, note that the process cannot enter state 0 after T ∗ since there is an observed

reported relationship indicating X(t) ∈ {1, 2} for t ≥ T ∗. This modifies the transition

probabilities that are used for imputation after T ∗. As an example, the probability of

transitioning from state 1 to 2 (conditional on not allowing for transitions to state 0) can

be calculated as follows for t ≥ T ∗:

P (X(t) = 2|X(t− 1) = 1, X(t) 6= 0)

= P (X(t) = 2|X(t− 1) = 1, X(t) ∈ {1, 2})

=
P (X(t) = 2, X(t− 1) = 1, X(t) ∈ {1, 2})

P (X(t− 1) = 1, X(t) ∈ {1, 2})

=
P (X(t) = 2, X(t− 1) = 1)

P (X(t− 1) = 1, X(t) ∈ {1, 2})

=
P (X(t) = 2, X(t− 1) = 1)

P (X(t− 1) = 1, X(t) = 1) + P (X(t− 1) = 1, X(t) = 2)

=
p12(t− 1, t)

p12(t− 1, t) + p11(t− 1, t)

=
p12(t− 1, t)

1− p10(t− 1, t)

where the second from last equality is obtained by dividing with

P (X(t− 1) = 1).

2.5.1 Stationary transition probabilities

Once the observed data are generated following the above steps, the stEM algorithm is

implemented to estimate transition probabilities. The performance of the stEM algorithm

is compared to the WW estimator for sampling windows of w = 3 and w = 10 (see Ta-

bles 2.1 and 2.2). In each run of the stEM algorithm, there were 1100 iterations of the S

and M-step each with the first 100 iterations discarded for burn-in period. Empirical bias

and empirical standard deviation of the stEM and WW estimators were computed across

simulations. In addition the average of the standard deviation of each stEM estimate ob-

tained from the Louis’ formula is provided for comparison with the asymptotic variance

of WW. Lastly, the empirical mean square error (MSE) is presented. As expected, the stEM
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and WW estimators have similar point estimates but the former have lower variance. The

estimates of variance based on Louis’ formula are similar to the empirical estimate of the

variance. Overall, both the stEM and WW estimates have lower MSE with increasing w

because more information is available for estimation as the sampling window gets longer

and more partnership transitions are captured.

Table 2.1 Comparison of within window (WW) and stochastic EM (stEM)

Time homogeneous model with w=3 and N=100

Parameter

Truth 0.2 0.5 0.4 0.6

stEM WW stEM WW stEM WW stEM WW

Bias -0.0005 0.0033 -0.0107 0.0125 -0.0032 -0.0082 0.0117 -0.0090

0.0137 0.0297 0.0385 0.0619 0.0367 0.0603 0.0496 0.0753

0.0150 0.0289 0.0402 0.0476 0.0371 0.0574 0.0537 0.0696

MSE 0.0002 0.0008 0.0017 0.0024 0.0014 0.0033 0.0029 0.0048

p
01

p
10

p
12

p
21

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is
computed for the stEM estimator only. The corresponding entry for the WW estimator is the
asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

Table 2.2 Comparison of within window (WW) and stochastic EM (stEM)

Time homogeneous model with w=10 and N=100

Parameter

Truth 0.2 0.5 0.4 0.6

stEM WW stEM WW stEM WW stEM WW

Bias 0.0004 0.0019 -0.0003 -0.0034 -0.0004 0.0040 0.0063 0.0041

0.0127 0.0173 0.0304 0.0357 0.0293 0.0351 0.0381 0.0442

0.0113 0.0125 0.0312 0.0375 0.0281 0.0363 0.0412 0.0491

MSE 0.0001 0.0002 0.0009 0.0014 0.0008 0.0013 0.0017 0.0024

p
01

p
10

p
12

p
21

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is
computed for the stEM estimator only. The corresponding entry for the WW estimator is
the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

2.5.2 Time dependent transition probabilities

For time dependent transition rates, the Markov chain is generated following the multi-

nomial logistic model provided in section 2.4. The intercepts αij in the model are logit

transformations of the baseline probabilities of transitions and are the same as in the
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time-homogeneous case (p01 = .2, p10 = .5, p12 = .4 and p21 = .6) . The number of sub-

jects (realizations of the process) is increased to 1000 in order to accommodate for the

increase in the number of estimated parameters in this case. The time-effect parameters

are β01 = −0.1, β10 = −0.05, β12 = 0.05, and, β21 = 0.2. When the stEM algorithm is ex-

ecuted there were 1100 iterations of the S and M-step each with the first 100 iterations

discarded for burn-in period. Tables 2.3 and 2.4 presents a comparison of the stEM and

WW estimators for sampling windows w = 3 and w = 10, respectively. As in the time-

homogeneous case, the stEM estimates are more efficient and have lower MSE compared

to the WW estimates. Both the stEM and WW estimators have lower MSE with the longer

sampling window which contains more transition data for estimation purpose.

Table 2.3 Comparison of within window (WW) and stochastic EM (stEM)

Time inhomogeneous model with W=3, N=1000

Time effect

Parameter

Truth -0.01 -0.05 0.05 0.02

stEM WW stEM WW stEM WW stEM WW

Bias -0.00170 0.00273 -0.00398 -0.00453 0.00100 -0.00029 0.00913 0.01414

0.00587 0.01168 0.01553 0.02411 0.01374 0.02141 0.03839 0.04898

0.00746 0.01311 0.01393 0.02585 0.01396 0.02212 0.03477 0.05543

MSE 0.00006 0.00017 0.00021 0.00067 0.00019 0.00048 0.00126 0.00320

Intercept

Parameter

Truth -1.386294 1.609438 1.386294 .405465

stEM WW stEM WW stEM WW stEM WW

Bias -0.00567 -0.02216 -0.05809 0.09660 -0.03872 0.10424 0.00337 -0.02038

0.04650 0.12979 0.17936 0.34246 0.17102 0.32714 0.26320 0.43277

0.05124 0.11605 0.15484 0.40326 0.18690 0.38366 0.24630 0.45275

MSE 0.00259 0.01361 0.02675 0.16788 0.03556 0.15438 0.06042 0.20454

β
01

β
10

β
12

β
21

Louis SE1

Empirical SE2

α
01

α
10

α
12

α
21

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for
the stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.
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Table 2.4 Comparison of within window (WW) and stochastic EM (stEM)

Time inhomogeneous model with W=10, N=1000

Time effect

Parameter

Truth -0.01 -0.05 0.05 0.02

stEM WW stEM WW stEM WW stEM WW

Bias -0.00001 0.00097 0.00123 0.00094 -0.00041 -0.00366 -0.00112 -0.00277

0.00565 0.00709 0.01268 0.01483 0.01143 0.01341 0.02248 0.02522

0.00454 0.00585 0.01281 0.01722 0.01176 0.01542 0.01836 0.01914

MSE 0.00002 0.00003 0.00016 0.00029 0.00014 0.00025 0.00033 0.00037

Intercept

Parameter

Truth -1.386294 1.609438 1.386294 .405465

stEM WW stEM WW stEM WW stEM WW

Bias -0.00480 0.00295 -0.04853 0.02166 -0.02851 0.02959 0.01314 -0.01694

0.04572 0.07181 0.14596 0.19260 0.13841 0.18475 0.18836 0.23447

0.04226 0.06482 0.14558 0.22720 0.14490 0.23288 0.18660 0.22906

MSE 0.00176 0.00411 0.02302 0.05080 0.02128 0.05375 0.03485 0.05253

β
01

β
10

β
12

β
21

Louis SE1

Empirical SE2

α
01

α
10

α
12

α
21

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for the
stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

2.6 Analysis of relationship transitions in KZN dataset

The application below considers the setting where the total number of relationships

within the past year is known but the start and end time of a subset of the relationships

is not. Data arose from sexual behavior survey at an HIV/AIDS clinic cohort in KZN,

South Africa conducted bi-annually for 3 years. Data collected included duration of up to

3 relationships that were ongoing in the last 6 months, date of last sex, and total number

of partnerships on-going within the last year from baseline. Figure 2.5 below illustrates

an example of such data where an individual reported having a total of 2 relationships

but only 1 of the relationships made it into the sampling window.

For our application, the stEM algorithm of section 3.3 can be adapted to estimate transi-

tion probabilities. Although the Stochastic and Maximization steps remain the same in

this application, the Markov chain is initiated at time b−12; therefore, we need to calculate

the distribution of states at b − 12 conditional on the observed data and the distribution

of states at b − 6. This can be accomplished by employing the following Markov chain
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Figure 2.5: Illustration of partnership data where 2 relationships are reported ongoing
within the last year but only 1 of them is exactly known.

identity:

(π0(t), π1(t), π2(t))

t+n∏∏∏
i=t

P (i) = (π0(t+n), π1(t+n), π2(t+n))

where πi(t+n) = P (X(t+n) = i) is the probability of being in state i at time t+n and P (t)

is the transition probability matrix at time t. For the time-homogeneous case, the above

identity simplifies to

(π0(t), π1(t), π2(t))P
n = (π0(t+n), π1(t+n), π2(t+n)) (2.1)

In order to obtain the state distribution at b− 12, the above identity can be rearranged as:

(π0(b−12), π1(b−12), π2(b−12)) = (π0(b−6), π1(b−6), π2(b−6)) ∗

(b−12+6)∏
t=b−12

P (t)

−1 (2.2)

Given an initial estimate of the state distribution at b− 12, (π0(b−12),

π1(b−12), π2(b−12)), and an initial transition probability matrix, P = P(0), we can implement

the stEM algorithm. We illustrate the steps of the implementation using Figure 2.5 as an
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example. First, we determine the distribution of states at b − 12; possible states at b − 12

are 1 and 2 as there is already one ongoing relationship reported at that time. Therefore,

we can calculate the conditional probability

P (X(b− 12) = 1|X(b− 12) ∈ {1, 2}) =
π1(b−12)

π1(b−12) + π2(b−12)

where π1(b−12) and π2(b−12) are the respective probabilities of being in state 1 and state 2 at

time b− 12. Similarly,

P (X(b− 12) = 2|X(b− 12) ∈ {1, 2}) = 1− P (X(b− 12) = 1|X(b− 12) ∈ {1, 2})

as there are only two possible states the process can be in at time b − 12. Second, we

impute all missing data (between b− 12 and b− 6) by drawing samples from the missing

data distribution. Note 2.1 can be utilized to obtain the distribution of states at the next

time point given the current state and transition probability matrix. In the imputation

process, the following two possibilities have to be considered: either relationship 2 ended

between b − 12 and b − 6 (if X(b − 12) = 2) or relationship 2 began and ended between

b − 12 and b − 6 (if X(b − 12) = 1). In this example, the imputation accepts only those

draws that satisfy 1 of these 2 possibilities. At the end of this step, a pseudo-complete

dataset is obtained. Third, we maximize the likelihood of the pseudo-complete data set

to get a new estimate P(1). These three steps are iterated until convergence. In summary,

we can follow the steps below to implement stEM algorithm for estimation of transition

probabilities:

1. Obtain initial estimates of (π0(b−12), π1(b−12), π2(b−12)) based on the identity provided

in 2.2. Note that the initial transition probability P (0) can be estimated from data

available within the window and the initial state distribution at b − 6 can be com-

puted empirically from the observed data since relationships ongoing within 6

months of baseline are captured within the sampling window.

2. Stochastic Step: Given the current estimate of P (k),

(π
(k)
0(b−12), π

(k)
1(b−12), π

(k)
2(b−12)) and the observed data including the total number of re-

lationships within the past year, draw samples from the distribution of the missing
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data in order to obtain a pseudo complete data set. (See section 3.3 for further details

on the stochastic step)

3. Maximization Step: Update the new estimates P (k+1) as the maximum of the likeli-

hood for the pseudo complete data from step 2.

4. Iterate steps 1-3 until convergence

Tables 2.5 - 2.8 summarize the results of fitting the following models to our dataset:

1. Model 1: Time-homogeneous Markov model: results are summarized in Tables 2.5 and

2.6 for males and females respectively.

2. Model 2: Time dependent transition-probability model within each gender group

log
pij(t, t+ 1)

pii(t, t+ 1)
= αij + βij ∗ t

Results are summarized in Tables 2.7 and 2.8 for males and females respectively.

The variance estimates in Tables 2.5 through 2.8 show that the stEM estimates have lower

variance compared to the WW estimates since the stEM algorithm uses more information

for estimation. The reduction in the estimation of variance seemed to depend on the type

of model that was considered. In the case of the time-homogeneous transition probabil-

ities (Tables 2.5 and 2.6), there was as much as 15% reduction in variance whereas in the

case of the case of covariate dependent transition probabilities (Table 2.6) there was as

much as 25% reduction in standard error. We note that inference regarding the transition

probabilities is not significantly affected by assuming stationary transition probabilities

(Table 2.5). However, as shown in Table 2.7 the time effect associated with 2 → 1 transi-

tion probability achieves statistical significance under the stEM method but not the WW

method.

Tables 2.7 and 2.8 summarize the impact of time on the partnership transition probabili-

ties for each gender. For men, the odds of transitioning out of any relationship state de-

creased with each additional month. For women, the odds of transitioning from celibacy

to monogamy and from monogamy to celibacy decreased with each additional month.
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Table 2.5

Time homogenous model for men

 stEM WW stEM WW

Estimate 0.01540 0.01540 0.01782 0.01788

SE 0.00123 0.00132 0.00110 0.00120

CI (0.01299 , 0.01782) (0.01281 , 0.01799) (0.01566 , 0.01998) (0.01553 , 0.02023)

stEM WW stEM WW

Estimate 0.00177 0.00174 0.03892 0.03180

SE 0.00035 0.00036 0.00407 0.00428

CI (0.00108 , 0.00247) (0.00103 , 0.00245) (0.03094 , 0.04689) (0.02342 , 0.04019)

Stochastic EM (stEM) versus within window(WW) estimation of transition rates when the
total number of relationships within one year of baseline is known

P
01

P
10

P
12

P
21

Table 2.6

Time homogeneous model for women

 stEM WW stEM WW

Estimate 0.01567 0.01557 0.01843 0.01822

SE 0.00125 0.00133 0.00113 0.00122

CI (0.01321 , 0.01813) (0.01296 , 0.01817) (0.01621 , 0.02065) (0.01584 , 0.0206)

stEM WW stEM WW

Estimate 0.00177 0.00177 0.02714 0.02676

SE 0.00035 0.00039 0.00332 0.00385

CI (0.00108 , 0.00246) (0.001 , 0.00253) (0.02063 , 0.03364) (0.01921 , 0.0343)

Stochastic EM (stEM) versus within window(WW) estimation of transition rates when the
total number of relationships within one year of baseline is known

p
01

p
10

p
12

p
21
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However, the odds of transitioning from monogamy to concurrency and from concur-

rency to monogamy increased with each additional month. We note that for both men

and women, the impact of time on the probabilities of transitioning out of the state of

monogamy (either to celibacy or concurrency) was not significant.

Table 2.7

Time inhomogeneous model for men

Intercept

stEM WW stEM WW

Estimate -3.1702 -2.8478 -3.8017 -3.6554

SE .2523 .3368 .2102 .2730

CI (-3.66478 , -2.67563) (-3.50798 , -2.18758) (-4.21375 , -3.38965) (-4.19043 , -3.12029)

stEM WW stEM WW

Estimate -5.0244 -4.8318 -2.3661 -3.7278

SE .5620 .8268 .2370 .5358

CI (-6.12594 , -3.92276) (-6.45232 , -3.21121) (-2.83064 , -1.90156) (-4.7779 , -2.6776)

Time-effect

 stEM WW stEM WW

Estimate -.0380 -.0497 -.0062 -.0109

SE .0115 .0145 .0086 .0105

CI (-0.06052 , -0.01543) (-0.07816 , -0.0212) (-0.02304 , 0.01065) (-0.03145 , 0.00965)

stEM WW stEM WW

Estimate -.0659 -.0743 -.0392 .0101

SE .0344 .0449 .0150 .0203

CI (-0.13345 , 0.00156) (-0.16229 , 0.01365) (-0.06853 , -0.00987) (-0.02957 , 0.04986)

Stochastic EM (stEM) versus within window(WW) estimation of transition rates when the
total number of relationships within one year of baseline is known

α
01

α
10

α
12

α
21

β
01

β
10

β
12

β
21

The above analysis was performed separately for each gender because of differences in

partnership reporting patterns; the data in Table 2.9 shows that women report far fewer

partnership breakups compared to men. Additionally, when examining the goodness of

fit of the time-inhomogeneous model assumption for each gender (see Figure 2.6), the

model fit for women seems poor compared to men. The goodness of fit was checked

using a statistic that naturally arises from the stEM algorithm. In short, the idea behind

this procedure is to compare the observed and expected number of trials until a match
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Table 2.8

Time inhomogeneous model for women

Intercept

stEM WW stEM WW

Estimate -3.7202 -3.3557 -3.8455 -3.7386

SE .1739 .2202 .1335 .1767

CI (-4.06111 , -3.37932) (-3.78734 , -2.924) (-4.10704 , -3.58392) (-4.08487 , -3.39231)

stEM WW stEM WW

Estimate -6.5453 -6.1995 -3.7966 -3.6280

SE .4574 .5413 .2865 .3649

CI (-7.44184 , -5.64869) (-7.2605 , -5.1385) (-4.35809 , -3.23503) (-4.34316 , -2.91284)

Time-effect

 stEM WW stEM WW

Estimate -.0213 -.0338 -.0085 -.0117

SE .0072 .0089 .0055 .0068

CI (-0.03543 , -0.00714) (-0.05124 , -0.01639) (-0.01932 , 0.00237) (-0.02507 , 0.00158)

stEM WW stEM WW

Estimate .0111 .0003 .0191 .0136

SE .0167 .0196 .0110 .0134

CI (-0.02174 , 0.04389) (-0.03815 , 0.03875) (-0.00257 , 0.04069) (-0.01254 , 0.03984)

Stochastic EM (stEM) versus within window(WW) estimation of transition rates when the
total number of relationships within one year of baseline is known

α
01

α
10

α
12

α
21

β
01

β
10

β
12

β
21
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(i.e. a simulated sample path matches all observed data). This procedure is similar in

spirit to the Quantile-Quantile plot and further details are given in the model validation

section of Chapter 3.

Table 2.9 

Gender

F M

0 448 155

1 4 8

2 0 9

3 0 1

Number of relationship dissolutions
during the 6 month before the sampling window

Number of

dissolutions

 Observed vs. simulated number of trials by gender

ordered simulated # of trials
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Figure 2.6: Observed vs expected number of trials from fitting time-inhomogeneous
Markov model to the application data separately for each gender. Each of the 20 pan-
els represent a plot of the observed versus expected number trials (obtained from a single
run of step 2 of the validation procedure)
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2.7 Discussion

This paper describes a Markov framework to model and estimate transition probabilities

from duration data collected under a complex sampling scheme. Estimation of partner-

ship transition parameters is achieved by using a stochastic expectation maximization

algorithm coupled with a rejection sampling scheme. The algorithm provided here is suf-

ficiently flexible enough to be to accommodate a variety of sampling schemes that arise

in collection of retrospective data. In our setting, the stEM algorithm permits utilization

of information outside the sampling window; as shown in the simulation study as well

as in the application to KZN data, the stEM estimate had considerably lower SE and con-

sequently far lower MSE compared to the WW estimator.

The application discussed in this paper provides a practical illustrative example of the

value of utilizing information outside the sampling window when estimating and mod-

eling transition probabilities. Specifically, the result of Table 2.7 indicates that one could

arrive at different conclusions from hypothesis testing of parameters since the time ef-

fect associated with 2 → 1 transition probability was statistically significant at the 0.05

level under the stEM method but not the WW method. Overall the results of our anal-

ysis suggest that with increasing age both genders had lower odds of transitioning into

and out of the state of monogamy, and men had increased of odds of ending concurrent

relationships.

The analysis of our application data was restricted to the time frame beginning one year

prior to baseline and ending with the last date of interview. Therefore, this analysis did

not utilize information on total life-time number of partnerships as well as partnership

history data earlier than 1 year from the baseline interview date. The reason that we

did not make use of this information was the lack of fit of our models to these data; the

number of reported partners was not compatible with the data on partnership formation

and dissolution. A more complex model would be required to utilize sexual history data

across the lifetime of each individual; such a model must take into account the likely error

in reporting lifetime number of partners. When fitting models using data across the life-

time, it is important to check the validity of the assumption that concurrent individuals
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cannot form new relationships without first ending 1 of the two ongoing relationships

(See section 3.3.1 for details). For our application dataset, only about 1% of the subjects

reported 3 or more overlapping partnerships ongoing within the sampling window and

therefore this assumption is plausible. If this assumption is not tenable, one of the fol-

lowing two approaches is suggested in order to utilize information on the total lifetime

number of partnerships. First, increase the number of states in the Markov model by fur-

ther compartmentalizing the concurrency state to allow transitions into states with more

than 2 partnerships at a time. This approach equates lifetime number of partnerships to

n01 + n12 + n23 + n34 + · · · where nij is the total number of transitions from being in a

state with i ongoing partnerships to being in a state with j ongoing partnerships. Sec-

ond, keep the simplified 3-state Markov model, but adjust the reported lifetime number

of partnerships by subtracting expected number of 3 or more simultaneous relationships.

Besides checking the aforementioned assumptions, two caveats should be kept in mind

when analyzing longer periods (or entire lifetime) of retrospectively collected sexual his-

tory data . First, such data is subject to recall bias, which is likely to be worse for longer

periods of recall (James et al., 1991; Ellish et al., 1996; Nelson et al., 2010). In addition,

counts of lifetime sexual partnerships may suffer from measurement errors arising from

such phenomenon as heaping (Fenton et al., 2001; Weinhardt et al., 1998). Sensitivity

analysis may be useful to examine the impact of such bias on the estimation of transition

probabilities.

There are various ways in which our work presented can be extended. First, the methods

considered in this paper were applied to a discretely measured partnership history data;

analogous methods for the case of continuous time partnership history data will be re-

quired. Second, other possible approaches for modeling time dependent transition rates

can be considered, such as those based on piecewise-constant Markov models, as sug-

gested in (Kay, 1986). Such an approach divides the time axis [0, T ] into several intervals

across which transition rates are allowed to vary. Likelihood ratio-tests may be used in

order to compare if the piecewise-constant model is a better fit for the data compared to

the time-homogeneous model.

Finally, the Markov assumption in this paper can be relaxed by, for example, employing
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a semi-markov model, which would permit transition probabilities to depend on the so-

journ times in the current state. This has the advantage that the duration of the current

relationship can be inversely correlated with the probability of dissolution (Felmlee et al.,

1990). The suitability of the Markov assumption made in this paper and the goodness of

fit of our model is further explored in Chapter 3 where a more general combined Markov

and logistic regression model is employed to characterize the sexual history process.
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3.1 Introduction

Modeling and estimation of patterns of sexual partnership formation and dissolution is

important in investigation of the epidemic dynamics of sexually transmitted infections

(STI). Various features of the partnership process such as overlap of sexual partnerships,

gap between partnerships, duration of partnerships as well as patterns of relationship

formations and dissolutions need to be properly estimated for accurate modeling of STIs

(Morris et al., 2007, 2010; Foxman et al., 2006). The difficulty in properly modeling and

estimating these features lies in the fact that sexual history data is usually retrospectively

collected and is often fraught with missing data; the total number of partnerships, the for-

mation and dissolution time of relationships (consequently the duration of relationships)

may be censored, truncated or subject to recall bias (Burington et al., 2010).

Sexual partnership data are commonly obtained through retrospective surveys that col-

lect information on relationships that are ongoing during a fixed time window. Estima-

tion of partnership transition probabilities from partnership data collected under such

sampling scheme is discussed in Chapter 2. The Markov modeling framework from

Chapter 2 is able to capture essential features of the relationship history through three

discrete states of celibacy, monogamy and concurrency. The stochastic expectation max-

imization algorithm discussed there is useful for estimating transition probabilities into

and out of the relationship states mentioned above. Although the Markov framework

is useful for characterizing transition through discrete states of the sexual history pro-

cess, this framework did not incorporate information on the type of concurrency pattern

that may have occurred. In this paper, we extend the framework presented in Chapter

2 by incorporating logistic regression model to classify the type of concurrency that oc-

curred prior to the time when the Markov process exited concurrency state. As different

concurrency patterns may impact network structures, incorporation of such information

allows investigation of the impact of concurrency patterns on STI transmission dynamics

(Goodreau et al., 2012; Gorbach et al., 2002; Kretzschmar et al., 2010). Proper estimation

of concurrency types as well as the transition probabilities from incomplete partnership

data aids in understanding STI spread and in developing targeted intervention to prevent
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transmission.

As in Chapter 2, the focus of this chapter will be on performing efficient estimation of

model parameters by utilizing additional sexual history data that is available outside of

the sampling window. Such data may include total number of relationships within a spec-

ified period of time, start and end time of a subset of relationships partnerships. Methods

discussed in this paper are a generalization of the framework discussed in Chapter 2 and

further details on the sampling scheme as well as partnership data can be found there.

This paper is organized as follows. The next section describes the Markov and logistic

modeling framework. Section 3 discusses the stochastic EM algorithm and its implemen-

tation, and section 4 presents simulation results for the performance of stEM. Section 5

discusses model validation strategies based on statistic that arise from the stEM proce-

dure. Section 6 presents applications to data obtained from a sexual behavior survey, and

section 7 provides a discussion.

3.2 Methods

3.2.1 Markov model and logistic regression framework for partnership
duration data

The Markov model discussed in this chapter is described in detail in Chapter 2 section 2.2.

We extend this Markov model to include the type of concurrency pattern that occurred in

a person’s sexual relationship history. Such an extension is necessary because the Markov

process for relationship transition does not identify which relationship ended when the

process makes 2→ 1 transition. Figure 3.1 illustrates the connection between the duration

data collected in partnership surveys and the Markov process representation. Although

the concurrency pattern of the partnership durations represented in Figures 3.1 (a) and

(b) differ, they are both represented by the same sample path (1→ 2→ 1) as shown in (c).

The patterns in 3.1 (a) and (b) are referred to as transitional and embedded concurrency,

respectively. As shown in 3.1 (a) transitional concurrency occurs when a second partner-

ship begins before an earlier (older) partnership is terminated and the second partnership

continues after the first one is terminated. Embedded concurrency (Figure 3.1 (a)) occurs
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when the older partnership persists and the new side-partnership ends first.

(a)

(b)

(c)

Figure 3.1: Two different duration data (a) and (b) have identical sample path (1→ 2→ 1)
as shown in (c)

60



As the Markov model is not sufficient to fully characterize sexual relationship history, we

define the following indicators of concurrency that will permit unique mapping of the

Markov data to the corresponding duration data. Let Yik be defined as follows:

Yik =

{
1 : kth concurrency for individual i is transitional
0 : kth concurrency for individual i is embedded

Going back to Figure 3.1 (c), an observed sample path of 1 → 2 → 1 and Y=1, corre-

sponds to transitional concurrency while an observed sample path of 1 → 2 → 1 and

Y=0, corresponds to embedded concurrency. Therefore, in order to fully characterize the

duration data, we need both the Markov process data and the concurrency indicator. The

implications of the Markov assumption on the partnership durations of an individual is

discussed in the appendix. As described there, depending on the partnership formation

pattern of an individual, the Markov assumption may imply independent partnership

durations or positively correlated partnership durations.

The combined Markov and logistic framework described here provides quantitative in-

formation on the essential features of the relationship process (i.e. duration, gap, overlap

of sexual partnerships, as well as the timing and patterns of relationship formations and

dissolutions) which are important in the modeling of the spread of STIs (Morris et al.,

2007, 2010; Foxman et al., 2006). For example, a gap in the formation process can be

described as the sojourn time in state 0 after a 1 → 0 transition, and duration can be for-

mulated as the sum of the sojourn times in states 1 and 2 as described in the appendix

section.

3.2.2 Estimation of transition probability and concurrency pattern pa-
rameters

Let Xi={Xi(t), t = 0, 1, · · · , Ti} represent the complete sample path for individual i. Let

Yi = {Yik, k = 1, 2, · · · , n21i} represent the concurrency pattern indicator for person i that

experiences n21i transitions from state 2 to 1.Given both Xi and Yi, we can uniquely map

from the Markov process to the relationship history. For the purpose of this paper, we

assume Yik to have Bernoulli distribution with parameter π(xik) that depends on vector
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of covariates at the kth concurrency (i.e. kth visit to state 2). The conditional probability of

observing transitional concurrency will be given by the following logistic regression:

logit (P (Yik|xi1k, xi2k)) = γ0 + γ1 ∗ xi1k + γ2 ∗ xi2k (3.1)

where Xi1k is the sojourn time in state 1 before the kth visit to state 2 and and Xi2k is the

sojourn time in state 2 at the kth visit. In the context of time-homogeneous Markov, it

can be shown that Xi1k and Xi2k have Geometric distribution with parameters p11 and p22,

respectively. In the case of time-inhomogeneous Markov, the distribution ofXi1k depends

on the transition probabilities at the time steps at which state 1 is entered. For example, if

state 1 was just entered at time t then the sojourn time in in state 1 during this particular

visit is distributed as follows:

P (Xi1k = xi1k) = p11(t, t+ 1) ∗ p11(t, t+ 2) ∗ · · · ∗ p11(t, t+ xi1k− 2) ∗ (1− p11(t, t+ xi1k − 1))

Similar reasoning can be used to determine the distribution ofXi2k in the case of the time-

inhomogeneous process.

3.2.3 Maximum Likelihood Estimation

Given the complete Markov data Xi and the indicators for transitional concurrency Yi,

individual i′s contribution to the likelihood for the duration data is

L(p, γ;X,Y) = L1(p;X)L2(γ;Y,X)

∝

(
S∏
j=0

S∏
i=0

p
Nij(Tk)
ij

)
n21i∏
k=1

(
π(xik)yik ∗ [1− π(xik)]1−yik

)
where p is the transition parameter matrix, γ = (γ0, γ1, γ2) is vector of parameters of the

logistic model and Nij(Ti) =
∑Ti−1

t=0 I(Xt = i,Xt+1 = j) = #{2 to 1 transitions until Ti}

and the process transitions through states {0, 1, · · · , S} (See Chapter 2 for additional

details). Note that the complete data likelihood is a product of a Markov chain

likelihood(L1) and a logistic regression likelihood (L2). Because the two likelihood do not

share parameters, we can independently estimate the model parameters when the sexual

histories are fully observed. For the Markov portion of the likelihood (L1) we have a sim-
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ple closed form estimate (see Chapter 2) in the complete data scenario. For the logistic

regression piece(L2), parameters can be estimated using Newton-Raphson or iteratively

re-weighted least squares approaches.

In practice, the partnership process is only partially observed outside of the sampling

window.Therefore, the observed data likelihood L(p, γ|Xobs,Yobs) cannot be expressed

in-terms of simple functions of the one-step transition parameters, pij and is no longer

separable. This suggests the use of the Expectation-Maximization (EM) algorithm because

conditioning on the parameter estimates and observed data the complete data likelihood

is separable.

3.2.4 Stochastic EM for estimation of transition probability and con-
currency pattern parameters

Maximum likelihood estimation makes use of a stochastic version of the expectation-

maximization algorithm (EM) of Dempster et al. (Dempster et al., 1977) and Celeux et

al. (Celeux and Diebolt, 1985; Gilks et al., 1996). Stochastic versions of the EM have been

applied in various settings including those where the E-step of the EM algorithm is in-

tractable. The stochastic EM algorithm replaces missing values with samples drawn from

the conditional distribution of the missing data given the current parameter estimate and

the observed data. This replacement produces a pseudo-complete dataset that can then

be maximized to obtain a new parameter estimate for the next iteration of the procedure.

In our context, given the pseudo-complete Markov data set, X, the logistic regression co-

variate dataXi1k andXi2k as well as n21i will be treated as known. Then, pseudo-complete

concurrency indicator data, Y, can be obtained by imputing Yik ∼ Bernoulli(π(xik)) for

missing Yik values. Given the pseudo-complete (X,Y) direct maximization is straightfor-

ward and yields a new parameter estimate for the next iteration of the algorithm.

Details of the stochastic EM algorithm for estimating transition parameters, p, and con-

currency pattern parameters γ = (γ0, γ1, γ2) is given as follows:

1. Based on within window data, calculate initial estimates of γ0 and p0.

2. Stochastic-step I: Obtain pseudo-complete Markov data set, X
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At the jth iteration, draw samples from the distribution of the missing data given

the observed data and the current estimate of the transition parameter p(j). Rejection

sampling is utilized to match on relationship start times, the state of the process at

T −w and total number of relationships ongoing within the past year from baseline.

This results in a pseudo-complete dataset for the Markov process.

3. Maximization-step I:

Determine the new parameter estimate p(j+1) as the maximizer of the pseudo-

complete Markov data.

4. Stochastic-step II: Obtain pseudo-complete logistic data set, Y

Given the pseudo-complete Markov chain dataset, we can now impute the concur-

rency indicator conditional on the covariates corresponding to the sojourn times in

states 1 and 2. The concurrency indicator at the kth 2→ 1 transition will be sampled

from Yik ∼ Bernoulli(π(xik)) where

π(xik) = P (Yik = 1|xik) =
eγ

j−1
0 +γj−1

1 ∗xi1k+γj−1
2 ∗xi2k

1 + eγ
j−1
0 +γj−1

1 ∗xi1k+γj−1
2 ∗xi2k

5. Maximization-step II:

The above step (4) will result in a pseudo-complete concurrency indicator data.

Based on this data we can obtain new estimates of (γj0, γ
j
1, γ

j
2) by fitting the logis-

tic regression model in equation 3.1.

6. Iterate steps 2 through 5 until convergence

3.2.5 Variance of the stEM estimate

Variance estimation makes use of the method of Louis discussed in (Louis, 1982) :

∂2lobs(θ;xobs, yobs)

∂θ ∂θT
= Eθ

(
∂2lc(θ;x, y)

∂θ ∂θT

∣∣∣xobs, yobs)− covθ

(
∂lc(θ;x, y)

∂θ

∣∣∣xobs, yobs)
where lobs and lc are the log likelihood of the observed and complete data, respectively,

and θ =(p, γ) is a vector of the parameters of interest. As shown above, this approach ac-

counts for the loss of information due to missing data by subtracting from the information
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from the complete data.

The bootstrap approach (Efron and Tibshirani, 1994) can be used to calculate the theo-

retical covariance and mean functions of the information and score of the complete data

likelihood. The following steps are implemented in the calculation of the variance of stEM

estimators p̃ and γ̃:

1. Generate bootstrap samples

(a) For each individual’s observed partnership history process Xi,obs,Yi,obs, sim-

ulate a realization of the Markov process conditional on the observed data

using the stEM estimate p̃). This results in a pseudo-complete Markov data

Xi = {Xi(t), t = 0, 1, · · · , Ti}. Given the pseudo-complete Markov chain

dataset, we can now obtain pseudo-complete concurrency indicator data Yi

following stochastic step II discussed in prior section.

(b) Repeat 1a for all individuals i = 1, · · · , K in our partnership dataset to obtain

pseudo-complete Markov chain and logistic dataset for all individuals in our

study.

(c) Generate M pseudo-complete datasets by repeating the above steps.

Given the bootstrap samples, the next two steps will be utilized to calculate the right

hand side of the Louis’ identity.

2. Calculate the sample mean, the estimate of the first term on the right hand side of

the Louis’ identity, as:
1

M

M∑
m=1

(
∂2lmc (θ;x, y)

∂θ ∂θT

)
where lmc (θ;x, y) is the complete data log likelihood for the mth simulated process.

As discussed in the previous section, the complete data log-likelihood lmc is a sum of

Markov and logistic log likelihoods that do not share parameters; hence, the Hessian

matrix ∂2lmc (θ;x,y)
∂θ ∂θT

will be block diagonal as follows:

H =

[
A 0
0 D

]
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with A corresponding to the Markov parameters and D corresponding logistic pa-

rameters. The elements of the Hessian matrix correspond to A can be computed by

taking the second derivative for the Markov likelihood (see Chapter 2 for details).

The elements of the Hessian matrix H corresponding to D are easily calculated by

taking second derivative of a logistic regression log-likelihood.

3. Calculate the sample covariance, the estimate of the second term on the right hand

side of the identity, as:

1

M

M∑
m=1

[
∂lmc (θ;x, y)

∂θ
− l̄
] [

∂lmc (θ;x, y)

∂θ
− l̄
]T

where

l̄ =
1

M

M∑
m=1

∂lmc (θ;x, y)

∂θ
.

Again, the score equations necessary for calculating the sample covariance can be

separated into the score equation for the Markov likelihood and the score equation

for the logistic regression likelihood.

Note that all the steps in the parametric bootstrap are carried out setting θ = θ̃, the stEM

estimate. Finally, the variance covariance of the stEM estimates can be calculated as usual

by inverting the estimate of the observed information obtained above.

3.3 Simulation

A simulation study was carried out to evaluate the performance of stEM under sampling

conditions that were similar to those in our applications dataset. The sampling window–

the total period over which the survey is administered is denoted by w and is allowed to

be w = 15 or w = 30. The number of subjects (realization of the process) is N = 500 and

N = 2000 for the homogenous and time-inhomogeneous models, respectively. The transi-

tion parameters for the time-homogeneous model are p01 = .2, p10 = .5, p12 = .4 and p21 =

.6. For time dependent transition rates, the Markov chain is generated according to fol-
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lowing multinomial logistic model

log
pij(t, t+ 1)

pii(t, t+ 1)
= αij + βij ∗ t

where αij are logit transformations of the baseline probabilities of transitions and are the

same as in the time-homogeneous case. The time-effect parameters are β01 = .07, β10 =

−0.05, β12 = −0.03, and, β21 = −0.01. The initial state distribution probabilities are (1,0,0)

for states 0,1,2 respectively. Given the initial state and transition probabilities, a subject’s

complete sexual history ({Xi(t), t = 0, 1, · · · , T }) is generated up until the end of the sam-

pling window T ∼ U(1, 100). Given the complete Markov process data, the concurrency

classifier data is generated following the logistic regression model in 3.1 with coefficients

close to what we estimated in our application dataset (γ0 = 4, γ1 = −.2, γ2 = −.2). Finally,

the observed data can be obtained from the complete data by imposing the sampling

scheme that was present in our application dataset:

1. If the process X(t) entered state 0 before T −w and exited state 0 at Texit < T −w, all

history before Texit is set to missing: only relationships that lasted long enough to

make it into the sampling window are reported except in the case whereX(T −w) =

0.

2. If the process is in state 0 at T − w (X(T − w) = 0), then the 1 → 0 transition time

and the start time of this relationship will be known. This corresponds to the fact

that individuals report the duration and date of termination of their last partnership

if they report no relationship at the date of the baseline interview (T − w).

3. After eliminating the unobservable history, we randomly pick T ∗, earliest reported

relationship formation time, uniformly between Texit and T − w. Note that T ∗ has

to be a 0 → 1 or 1 → 2 transition time since it is reported as a time of partnership

initiation.

4. If the process is in state 1 at T − w (X(T − w) = 1), then all data between T ∗ and

T − w are also set to missing as the transition of the process relationships betweens

these two time points is unobservable due to the sampling scheme. This condition
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arises since a person who only reports 1 long relationship starting at T ∗ could have

had multiple other short relationships that started and ended between T ∗ and T −w.

5. If the process is in state 2 at T − w (X(T − w) = 2), then the time point between T ∗

and T ∗2 is set to missing where T ∗2 is the time of the last 1 → 2 transition before the

sampling window. In this case, sojourn time in the most recent visit to state 2 will

be known.

As the focus of the application dataset begins with the period that starts one year prior to

baseline interview (b− 12) and ends with the last date of interview T (see Figure 2.5), the

matching procedure for the Stochastic-step matches on the total number of partnerships

since b− 12, and the observed state distribution at b− 6. Additionally, if T ∗ ≥ b− 12, the

imputation procedure has to ensure T ∗ is 0 → 1 or 1 → 2 transition time. If T ∗ ≤ b − 12,

then the state distribution at b − 12 should be calculated conditional on X(b − 12) ∈ 1, 2

(see Chapter 2 for additional details regarding imputations after T ∗).

Once the observed data are generated following the above steps, the stEM algorithm is

implemented to estimate transition probabilities and concurrency model parameters. The

stEM estimate is compared to the within window (WW) estimate which relies solely on

data collected during the sampling window. In each run of the stEM algorithm, there were

1100 iterations of the S and M-step each with the first 100 iterations discarded for burn-in

period. Empirical bias, standard deviation (SD), the mean Louis’ standard deviation and

mean square error (MSE) are presented in the tables below. Our results in Tables 3.1-3.4

show that the stEM estimates have lower variance compared to the WW estimates. Both

estimates perform well with longer sampling period or increased sample size.
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Table 3.1 Comparison of within window (WW) and stochastic EM (stEM)

Time homogeneous model with W=15, N=500

Transition probabilities

Parameter

Truth 0.1 0.2 0.5 0.6

stEM WW stEM WW stEM WW stEM WW

Bias .000395 -.000666 .003458 .002317 .000816 -.002319 .001242 -.006275

.003206 .005329 .006711 .010207 .008875 .012730 .010040 .013729

.004376 .005397 .007395 .008864 .011149 .012941 .013081 .014493

MSE .000019 .000030 .000067 .000084 .000125 .000173 .000173 .000249

Concurrency parameters

Parameter

Truth 4 -0.2 -0.2

stEM WW stEM WW stEM WW

Bias .077217 .116000 .020412 .031070 .020845 .029459

.314658 .417468 .162078 .212920 .099684 .140625

.317529 .465223 .143229 .224810 .104564 .154532

MSE .106787 .229888 .020931 .051505 .011368 .024748

p
01

p
10

p
12

p
21

Louis SE1

Empirical SE2

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for
the stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

γ
0 γ

1
γ
2

Table 3.2 Comparison of within window (WW) and stochastic EM (stEM)

Time homogeneous model with W=30, N=500

Transition Parameters

Parameter

Truth 0.1 0.2 0.5 0.6

stEM WW stEM WW stEM WW stEM WW

Bias -.000458 .000674 .000053 -.004962 -.002763 -.001389 -.001781 .002532

.002513 .003763 .005160 .007195 .006612 .009001 .007313 .009680

.003363 .003705 .006673 .007191 .009083 .009832 .010570 .010913

MSE .000012 .000014 .000045 .000076 .000090 .000099 .000115 .000126

Concurrency parameters

Parameter

Truth 4 -0.2 -0.2

stEM WW stEM WW stEM WW

Bias -.055086 -.063342 .006748 .007137 .014000 .023220

.227218 .310975 .100630 .140236 .074937 .099362

.261240 .276958 .088824 .113526 .073453 .094182

MSE .071281 .080718 .007935 .012939 .005591 .009409

p
01

p
10

p
12

p
21

Louis SE1

Empirical SE2

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for the
stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

γ
0

γ
1

γ
2
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Table 3.3 Comparison of within window (WW) and stochastic EM (stEM)

Time inhomogeneous model with W=15, N=2000

Time effect

Parameter

Truth 0.07 -0.05 -0.03 -0.01

stEM WW stEM WW stEM WW stEM WW

Bias -.000243 -.000202 .000805 .000863 -.000109 -.000036 .000095 .000077

.001591 .003638 .003288 .004629 .001382 .001892 .001586 .002123

.002691 .003846 .003103 .003961 .001398 .001641 .001749 .001784

MSE .000007 .000014 .000010 .000016 .0000020 .0000026 .00000307 .00000311

Intercept

Parameter

Truth -2.197225 -.405465 .510826 .405465

stEM WW stEM WW stEM WW stEM WW

Bias -.042185 -.007944 -.017397 -.042971 .001433 -.023824 .022984 .018349

.025104 .088745 .057439 .130317 .037581 .081005 .042791 .089890

.054425 .106838 .072839 .122876 .038918 .093846 .050579 .082538

MSE .004668 .011192 .005608 .016442 .001517 .009081 .003086 .006922

Concurrency Indicators

Parameter

Truth 4 -0.2 -0.2

stEM WW stEM WW stEM WW

Bias -.020959 -.026557 .001779 .002650 .005569 .007673

.158239 .238381 .048451 .061729 .038320 .077731

.171499 .256818 .052984 .081927 .044506 .070070

MSE .029851 .066661 .002810 .006719 .002012 .004969

β
01

β
10

β
12

β
21

Louis SE1

Empirical SE2

α
01

α
10

α
12

α
21

Louis SE1

Empirical SE2

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for the
stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

γ
0

γ
1

γ
2
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Table 3.4 Comparison of within window (WW) and stochastic EM (stEM)

Time inhomogeneous model with W=30, N=2000

Time effect

Parameter

Truth 0.07 -0.05 -0.03 -0.01

stEM WW stEM WW stEM WW stEM WW

Bias .000530 -.001088 .000852 -.000348 .000035 -.000141 -.000741 .000353

.001217 .002640 .001536 .002360 .001276 .001558 .001087 .001547

.002148 .003335 .002336 .002795 .001352 .001899 .001327 .001566

MSE .000005 .000012 .000006 .000008 .0000018 .0000024 .0000023 .0000025

Intercept

Parameter

Truth -2.197225 -0.405465 0.510826 0.405465

stEM WW stEM WW stEM WW stEM WW

Bias -.024639 .026318 -.005085 -.019780 .001935 .008595 .002269 -.006297

.021805 .064177 .040226 .091968 .026664 .057409 .029875 .063440

.043303 .077264 .062335 .097462 .044650 .052251 .039470 .066971

MSE .002420 .006463 .003912 .009574 .001997 .002713 .001563 .004375

Concurrency Indicators

Parameter

Truth 4 -0.2 -0.2

stEM WW stEM WW stEM WW

Bias .005877 .012928 .001684 .002002 -.002478 -.003078

.116167 .171108 .026066 .041517 .028604 .055979

.119998 .171255 .034237 .050129 .030146 .044995

MSE .014434 .029496 .001175 .002517 .000915 .002034

β
01

β
10

β
12

β
21

Louis SE1

Empirical SE2

α
01

α
10

α
12

α
21

Louis SE1

Empirical SE2

Louis SE1

Empirical SE2

Louis SE1 is the average of the Louis standard error estimates across all runs. It is computed for
the stEM estimator only. The corresponding entry for the WW estimator is the asymptotic SE.

Empirical SE2 is the sample standard deviation of the stEM estimates across all the runs.

γ
0 γ

1
γ
2

3.4 Model validation

As our estimation procedure involves rejection sampling, we recommend using the

number of trials until a simulated sample path is accepted as a test statistic to check

model fit. In the section that follows we provide details of the validation approach. The

basic idea behind this procedure is to compare the observed and expected number of

trials until a match; below we describe a method for calculating the expected number.

If the hypothesized model matches the data generating mechanism, we expect a slope

close to 1 when the observed number of trials is plotted against the expected number of
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trials. The procedure below outlines a simulation based approach for performing model

validation.

1. Data Generation I — Compute observed number of trials

(a) Simulate complete data under the true model

(b) Apply sampling scheme to obtain observed data

(c) Apply stEM to the observed data to obtain an estimate of the transition matrix

p̂1

(When stEM is applied, imputation is performed under the hypothesized model)

(d) Store the number of trials until a match from the last iteration of the stochastic

EM. Let this quantity be Y match. (This quantity will be plotted on Y-axis).

2. Data Generation II — Compute expected number of trials

(a) Generate complete data under hypothesized model using p̂1 and observed τi

from data generation I

(b) Apply sampling scheme to obtain observed data

(c) Apply stEM to observed data to obtain pstEM2 p̂2

(d) Store the number of trials until acceptance.

(e) Repeat above steps M times and average the number of trails until acceptance

across the M simulations to obtain the expected number of trials until a match.

Let this quantity be Xmatch.(This quantity will be plotted on X-axis).

3. Plot the fitted line from regression of Y match against Xmatch.

Alternatively, it is possible to plot the number of trials from each of the simulations in

step 2e against the Y Match, to obtain M scatter plots in order to assess goodness of fit.

In addition, examples discussed in this section applied log transformation to both the

observed and expected number of trials as these statistics are often skewed.
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A penalized spline model is fit to the ordered observed and expected statistics. The 95%

confidence band for the spline curve (dashed lines) are calculated by bootstrapping the

observed and expected statistics 1000 times. When implementing the validation steps in

practice, we apply the validation procedure starting with step 1(c) as we do not know the

true data generating mechanism.

Figures 3.2 and 3.3 provide two different scenarios under which the model fitting as-

sumptions are violated. In Figure 3.2, the true data generating mechanism is a time-

inhomogeneous Markov process following the parameters given in the simulation section

above. In Figure 3.3, the true data generating mechanism is a second order Markov pro-

cess where the transition probability depends on both the current and prior state of the

process. In both examples when stEM estimation is performed under the wrong model,

the distribution of the observed vs expected statistics deviate sharply from the line y = x.

However, when estimation is performed under the correct model, the scatter plot follows

the line y = x closely. Further examples of the implementation of the validation steps can

be found in the data analysis section.

3.5 Analysis of relationship patterns in KZN dataset

We apply the proposed methods to analyze sexual history data collected from an HIV

treatment and care study in KZN, South Africa. The data was collected through a survey

that was conducted bi-annually for 3 years and included information on duration of up to

3 relationships that were ongoing in the last 6 months, date of last sex, and total number

of partnerships on-going within the last year from baseline. The application considers the

setting where the total number of relationships during the year prior to the first interview

date is known but the start and (possibly censored) end time of a subset of the relation-

ships is not. Further details about the application dataset and relevant assumptions can

be found in Chapter 2.

The observed duration data was modeled using a 3-state time-inhomogeneous Markov

model to characterize relationship transitions and a logistic regression model to describe

the patterns of concurrency. Table 3.5 presents a comparison of the stEM and WW param-
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Figure 3.2: Observed vs expected number of trials when there is no model violation (Fig-
ure 3.2(a), Time-inhomogeneous model) and when there is model violation (Figure 3.2(b),
Time Homogeneous model). The expected number trials until a match are calculated by
averaging the number of trials until a match across M = 30 simulations.
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Figure 3.3: Observed vs expected number of trials when there is no model violation (Fig-
ure 3.3(a), Time-inhomogeneous model) and when there is model violation (Figure 3.3(b),
Time Homogeneous model). The expected number trials until a match are calculated by
averaging the number of trials until a match across M = 30 simulations.
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eter estimates for partnership transitions and concurrency patterns. Because of concerns

regarding apparent under-reporting among women as revealed in our validation plot, the

analysis presented in Table 3.5 restricted the data for women to what is available within

the sampling window. For both the relationship transition and concurrency model pa-

rameters, the stEM estimates were noted to have as much as 30% lower standard error

compared to the WW estimates. When examining the impact of age on relationship tran-

sitions, we found that with increasing age subjects had lower odds of transitioning out

of their current relationship state; these results are consistent even whether the analy-

sis is performed adjusting for gender effects or not. Of note, the odds of transitioning

from concurrency to monogamy decreased by roughly 2% (OR=.979, 95% CI: [.961, .997])

for each additional month. The results from the concurrency pattern analysis show that

the odds of a transitional concurrency (ending the older relationship) decreased with in-

creasing length of time spent in a state of concurrency as well as monogamy just before

entering the concurrent state. The odds of ending the partnership that started first de-

creased by about 20% (OR=.8, 95% CI: [.638, 1.015]) for each additional month a person

stays in both the old and new partnerships (i.e. concurrent state). The odds of ending

the older partnership decreased by about 15%(OR=.85, 95 % CI:[.718,1.001]) for each ad-

ditional month a person remained in the first relationship prior to the start of the second

concurrent relationship.
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Table 3.5 Stochastic EM (stEM) versus within window (WW) estimates of transition rates and concurrency 

patterns when the total number of relationships within one year of baseline is known*

Time Inhomogeneous Markov Model

Intercept

stEM WW stEM WW

Estimate -3.7218 -3.3252 -3.9572 -3.8695

SE 0.1124 0.1962 0.0864 0.1572

CI (-3.94212 , -3.5015) (-3.70972 , -2.94063) (-4.12661 , -3.78776) (-4.17757 , -3.56148)

stEM WW stEM WW

Estimate -5.4924 -5.2721 -3.1191 -3.0754

SE 0.2147 0.4114 0.1522 0.2972

CI (-5.9131 , -5.07167) (-6.07854 , -4.46569) (-3.41748 , -2.82071) (-3.65789 , -2.49283)

Time Effect

 stEM WW stEM WW

Estimate -0.0241 -0.0373 -0.0017 -0.0040

SE 0.0063 0.0077 0.0046 0.0056

CI (-0.03635 , -0.01182) (-0.05243 , -0.02223) (-0.01066 , 0.00732) (-0.01493 , 0.00697)

stEM WW stEM WW

Estimate -0.0321 -0.0359 -0.0190 -0.0141

SE 0.0097 0.0172 0.0065 0.0118

CI (-0.05106 , -0.01304) (-0.06963 , -0.00224) (-0.03181 , -0.00614) (-0.0373 , 0.00902)

Gender Effect (Male=1, Female=0)

 stEM WW stEM WW

Estimate 0.1557 0.1095 -0.0447 -0.0838

SE 0.1317 0.1990 0.0982 0.1494

CI (-0.10243 , 0.4138) (-0.28057 , 0.49967) (-0.23715 , 0.14774) (-0.37663 , 0.20908)

stEM WW stEM WW

Estimate 0.2843 -0.0382 0.6016 0.1879

SE 0.2548 0.4189 0.1603 0.2764

CI (-0.21503 , 0.78362) (-0.85922 , 0.78276) (0.2874 , 0.91572) (-0.35372 , 0.72959)

α
01

α
10

α
12

α
21

β
01

β
10

β
12

β
21

male
01

male
10

male
12

male
21

Concurrency Indicators

 stEM WW stEM WW stEM WW

Estimate 4.77 4.00 -0.1659 -0.1699 -0.2181 -0.2206

SE 1.98 2.02 0.0873 0.1176 0.1201 0.1334

CI (0.899, 8.64) (0.044 , 7.95) (-0.337, 0.005) (-0.400 , 0.061) (-0.453 , 0.0173) (-0.482, 0.041)

*Data for women is restricted to what was observed within the sampling window

γ
0

γ
1

γ
2
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Model fit was assessed by comparing the observed number of trials until a match with the

expected number of trials until a match following the procedure outlined in section 3.4.

First, we considered the goodness of fit a model that combined data across both genders.

For this model, when stEM estimation is performed assuming the application data arose

from the time-inhomogeneous model (3.4, (a)), the model validation scatter plots show a

violation of this assumption; in order to assess the violation of the assumption, this plot

can be compared to the adjacent plot (b) that is generated from a time-inhomogeneous

Markov model with the same parameters as in our application dataset. Second, we con-

sidered the goodness of fit of separate models for each gender. This allows us to assess

the contribution of each gender to the overall model violation. As shown in (2.6) a gender

difference in the model fit is noted; the model fit for women seems poor compared to men.

As the validation plots show the observed number of trials until a match is far fewer than

expected for women who report no relationship dissolution (i.e. have complete data) in

the 6 months prior to the sampling window. This underreporting by women can also be

seen by examining Table 2.9 where women reported only 4 dissolutions compared to 29

by men within the same period. Given this reporting pattern, the analysis (presented in

Table 3.5) restricted the data reported by women to what was observed during the sam-

pling window. Lastly, the goodness of fit of the logistic model was evaluated using the

Hosmer-Lemeshow test (Hosmer and Lemeshow, 1980) for the data observed within the

window. This test did not reject the null hypothesis that the fitted model is adequate

(χ2
8 = 12.9, p-value= .115).

3.6 Discussion

This paper describes a Markov and logistic regression framework to characterize the

partnership transition and concurrency pattern parameters from incomplete and retro-

spectively sampled duration data. Estimation of these parameters is achieved by using a

stochastic expectation maximization algorithm coupled with a rejection sampling scheme.

The algorithm provided here is sufficiently flexible enough to accommodate a variety of

sampling schemes that arise in collection of retrospective data. In our setting, the stEM
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Figure 3.4: Observed vs expected number of trials combining data across both genders for
(a) the application dataset and (b) for data generated from time-inhomogeneous Markov
Chain using the parameters estimated from the application dataset. Each of the 20 panels
represent a plot of the observed versus expected number trials (obtained from a single
run of step 2 of the validation procedure)

algorithm permits utilization of information outside the sampling window; as shown in

the simulation study as well as in the application to KZN data, the stEM estimate had
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lower SE and MSE compared to the WW estimator.

When the modeling framework was applied to duration data from a cohort of HIV pa-

tients, it was noted that with increasing age subjects had lower odds of forming new re-

lationships or dissolving their current one; all of the transition parameter estimates were

negative indicating subjects had decreased odds of transitioning out of their current rela-

tionship state. In addition, the concurrency pattern analysis suggested that subjects with

concurrent partnerships had lower odds of dissolving the older partnership (transitional

concurrency) for every additional month spent in a state of concurrency or in the pre-

ceding state of monogamy with the older partnership; in other words, the newer (side)

partnership was at an increased odds of dissolving for every additional month spent in

states of concurrency as well as monogamy. Prior research has suggested that concurrent

partnerships with longer overlap have greater impact on the spread of STIs than those

with shorter overlaps (Morris et al., 2010). In our context, longer periods of overlap are at

increased odds of being classified as embedded concurrency adjusting for the period of

time spent in monogamous state. Further risk factors may need to be examined to deter-

mine correlates of embedded concurrency and how it is associated with STI transmission

at the individual or community level.

The validation method introduced in this paper reveals partnership reporting differences

between men and women and underscores the importance of performing the validation

procedure at the covariate-level in addition to hypothesis testing effect of the covariate on

each transition type. When model validation was performed for each gender (Figure 2.6),

our results showed a difference in the model fit by gender and that women may perhaps

report far fewer relationship dissolutions than men. This finding is consistent with the

literature as similar reporting differences have been found in prior studies (Helleringer

et al., 2011; Nnko et al., 2004). Figure 2.6 also shows a low level of under-reporting of rela-

tionship breakups for men. One way to adjust this small amount of under-reporting that

is observed among men could involve multiple imputation to impute what appears to be

missing data (unreported breakups). This approach might assign to each person in each

of the M imputed data sets (for example, M = 20 in Figure 2.6, the number of breakups

that are expected in the simulated trials for those observations that have no breakups.
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This approach allows us to use the validation method to suggest the possible number of

missing breakups. If we were to iterate this procedure, it may also be turned into yet

another level of stochastic EM and can be further investigated in the future. In addition

to the validation procedure described in this paper, alternative validation procedures can

also be developed based on the results of the implications of the Markov assumption

on the covariance between duration of relationships which is outlined in the appendix.

These results are valid for first order time-homogeneous processes and can be extended

to the case of time-inhomogeneous processes.

Proper modeling and estimation of temporal features of the relationship process (i.e.

duration, gap, overlap of sexual partnerships, as well as the timing and patterns of

relationship formations and dissolutions) is important in the modeling of the spread

of STIs (Morris et al., 2007, 2010; Foxman et al., 2006). The framework presented

in this paper provides quantitative information on these features of the relation-

ship process and enhance our understanding of STI transmission when properly

incorporated in mathematical and network models of disease spread. The method

presented in this paper can be extended to allow for correlation in concurrency pat-

terns across the lifetime of an individual. If study participants experience recurring

episodes of concurrency over a period of time, a generalized estimating equation

(GEE) approach (Zeger and Liang, 1986) can be implemented to account for correlation.
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Appendix A

Consistency of the TPLE estimator when
there is RENO

We need to demonstrate

sup
x∈[τ∗,x1]

|Ŝtple(x)− S(x|x > τ ∗)| p→ 0 (A.1)

sup
x∈(x1,x2)

|Ŝtple(x)− S(x1)|
p→ 0 (A.2)

sup
x∈(x2,x∗)

|Ŝtple(x|X > x2)− S(x|X > x2)|
p→ 0 (A.3)

where x∗ lies in the interior of the support of the duration distribution function F and

the censoring distribution function G, and τ ∗ = inf{t : H(t) > 0} where H(t) is the

distribution function for the truncation times. Now, recall that TPLE estimate of S(x) is

Ŝtple(x) =
∏
yi≤x

(1− di
Ri

)

where di =
∑n

j=1 I(yj = y(i)), Ri =
∑n

j=1 I(tj ≤ y(i) ≤ yj), and y(1), · · · , y(k) are distinct

ordered observed failure times and t(1), · · · , t(k) are the corresponding truncation times.

Proof of Theorem 1.3.1:

Since there is no intrinsic RENO between [τ ∗, x1], claim (A.1) above follows directly from

the results of Tsai et al. (1987) or Lai and Ying (1991). In order to show claim (A.2), note

that Ŝtple(x), x1 ≤ x ≤ x2 can be factorized as follows:
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Ŝtple(x) =
∏

yi≤x1(1−
di
Ri

) ∗
∏

x1<yi≤x(1−
di
Ri

)

= Ŝtple(x1) ∗ Ŝtple(x)

Ŝtple(x1)

Since there are no observation made in the interval (x1, x), the TPLE puts a mass of zero

and hence Ŝtple(x1) = Ŝtple(x) which proves claim (A.2).

Finally, claim (A.3) can be proven by factorizing Ŝtple(x), ∀x > x2 as follows :

Ŝtple(x) =
∏

yi≤x1(1−
di
Ri

) ∗
∏

x1≤yi≤x2(1−
di
Ri

) ∗
∏

x2<yi≤x(1−
di
Ri

)

= Ŝtple(x1) ∗ Ŝtple(x2)

Ŝtple(x1)
∗ Ŝtple(x)

Ŝtple(x2)

Since there are no observation made in the interval (x1, x2), the TPLE puts a mass of zero

and hence Ŝtple(x1) = Ŝtple(x2). Thus,

Ŝtple(x) = Ŝtple(x1) ∗
Ŝtple(x)

Ŝtple(x2)
.

Now consider the TPLE estimator, Ŝ∗(x),which is constructed based only on observations

yi > x2. Note that this estimator can equivalently be represented as

Ŝ∗(x) =
∏

x2<yi≤x

(1− di
Ri

) =
Ŝtple(x)

Ŝtple(x2)

where the second equality follows from the factorization of Ŝtple(x) as shown above. Since

Ŝ∗(x) is a TPLE the results of Tsai et al. (1987) can be applied to show Ŝ∗(x) uniformly

converges to S(x|X > 2) i.e.

sup
x∈[x2,x∗]

|Ŝ∗(x)− S(x)

S(x2)
| p→ 0...................(1a)

Now observe that the only difference between Ŝ∗(x) and Ŝtple(x) is the presence of the

extra term Ŝtple(x1) in the equation for Ŝtple(x). Thus, we get

Ŝtple(x) = Ŝtple(x1) ∗ Ŝ∗(x), ∀x > x2.
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Since Ŝtple(x1)
p→ S(x1) an application of Slutsky’s theorem to (1a) leads to:

sup
x∈[τ∗,x]

|Ŝtple(x)− S(x)
S(x1)

S(x2)
| p→ 0.

Lastly, observing Ŝtple(x2) = Ŝtple(x1), and once again applying Slutsky’s theorem to the

above expression, we obtain the desired result:

sup
x∈(x2,x∗)

|Ŝtple(x|X > x2)− S(x|X > x2)|
p→ 0.
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Appendix B

A Look at Within-Window (WW)
Estimator from a Truncation Perspective

For a time-homogeneous Markov process, the within window (WW) estimator described

in this paper can be seen as arising from a process where the last transition time before the

sampling window is observed and the sojourn time in the last state entered just before the

sampling window is known to be left truncated. In order to see this, let this last transition

time, last state and sojourn time be denoted by T l ,l and S . By definition of T l, the sojourn

time in the last state before the sampling window has to be long enough to make it into the

sampling window. Let the next time of transition (i.e. after the beginning of the sampling

window) be T l+1 and let the state entered at time T l+1 be l+ 1. Now the likelihood of our

observed data is:
∝ P (S = (T l+1 − T l)|S ≥ T − w − T l)

∗
Ti−1∏
t=T l+1

P (Xi(t+ 1) = xt+1|Xi(t) = xt)
(B.1)

We note that the sojourn time in S is geometrically distributed with parameter 1 − pll,

where pll is the probability of staying in the last state l or equivalently probability of

making transition from state l to state l. Since geometric distribution is memoryless the

first part of the above likelihood can be simplified as
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P (S = (T l+1 − T l)|S ≥ T − w − T l) =

(
p
(T l+1−T l)−1
ll ∗ (1− pll)

)
p
(T −w−T l)
ll

=
T l+1−1∏
t=T −w

P (X(t+ 1) = xt+1|X(t) = xt)

where xt = l for t ≤ T − w ≤ T l+1 − 1. Now substituting for the first part of equation B.1

with the simplified version, we get the following:

∝
T −1∏

t=T −w

P (X(t+ 1) = xt+1|X(t) = xt) (B.2)

which is the likelihood contribution for the data from within the window only. There-

fore, we can view the WW estimator which is based on observations made within in the

window only, as arising from a process where the sojourn time in the state just before the

sampling window is left truncated.

93



Appendix C

Implication of the Markov Chain
framework on the association between
the duration of partnerships

The following section examines how the independence assumption for the sojourn times

of the Markov model impacts the correlation between the various relationship durations.

Let Sij denote the sojourn time in state i at the jth visit. Let Dj represent the duration

of the jth relationship ordered by the formation time. We review common partnership

formation patterns that arise in partnership data and investigate the implications of the

time-homogeneous Markov assumption.

Case I: Serial Monogamy

In the case of serial monogamy the sojourn times in state 1 are identical to duration of the

partnership as shown in Figure 4.1(a). Since the sojourn times in state i, Si are indepen-

dent and have a geometric distribution with parameter 1−pii = 1−
∑

i 6=j pij , the duration

of relationships will also be independent and geometrically distributed with parameter

1− p00 = p01.

Case II: Transitional Concurrency

When we have an individual that has relationships that overlap in a transitional-

concurrency manner (see Figure 4.1(b)), the independence assumption of the sojourn

times implies that the relationship durations will be positively correlated as explained

below. Let S1
1 and S1

2 represent so sojourn time in state 1 at the first visit and the second

visit, respectively. Let S2
1 represent the sojourn time in state 2 at the first visit. We now
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(a) Serial monogamy

(b) Transitional concurrency

(c) Embedded concurrency

(d) Embedded-transitional concurrency

Figure 4.1: Duration and Markov chain data by partnership types
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want to to know how the independence assumption of the sojourn times affects the asso-

ciation between duration of relationship 1 (S1
1 + S2

1 ) and relationship 2 (S2
1 + S1

2 ). In order

to see if the duration of relationship 1 is independent of duration of relationship 2, we can

calculate the covariance of the two durations, D1 = S1
1 + S2

1 and D2 = S2
1 + S1

2 :

COV (D1, D2) = COV (S1
1 + S2

1 , S
2
1 + S1

2)

= COV (S1
1 , S

2
1) + COV (S1

1 , S
1
2) + COV (S2

1 , S
2
1) + COV (S2

1 , S
1
2)

= V AR(S2
1) =

1− p21
p221

> 0

The third equality holds since the sojourn times are independent and the last equality

holds since S2
1 is Geometric (p21). Therefore, the duration of relationship 1 and relation-

ship 2 are positively correlated.

Case III: Embedded Concurrency

In the context of embedded concurrency (see Figure 4.1(c)), the duration of the first and

second relationships are D1 = S1
1 + S2

1 + S1
2 and D2 = S2

1 , respectively. We can now

determine the covariance between the two relationships following similar reasoning as

above.
COV (D1, D2) = COV (S1

1 + S2
1 + S1

2 , S
2
1)

= COV (S1
1 , S

2
1) + COV (S2

1 , S
2
1) + COV (S1

2 , S
2
1)

= V AR(S2
1) =

1− p21
p221

> 0

Once again, we note that the covariance between the two durations of relationships is

positive. In addition, it appears that whether the concurrency is embedded or transitional

the covariance between two relationships stays the same.

Case IV: Embedded Concurrency followed by Transitional Concurrency

We now examine the association between duration of relationships in the context of an

embedded concurrency followed by (see Figure 4.1(d)). The durations of the three rela-

tionships are given by: D1 = S1
1 + S2

1 + S1
2 + S2

2 , D2 = S2
1 and D3 = S2

2 + S1
3 , respectively.

Using similar reasoning as in the prior sections, we conclude the covariance between the
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different durations is:

COV (D1, D2) = V AR(S2
1) =

1− p21
p221

> 0

COV (D1, D3) = V AR(S2
2) =

1− p21
p221

> 0

COV (D2, D3) = 0

We note that relationship 1 is positively correlated with both relationships 2 and 3. Al-

though both relationships 2 and 3 are concurrent with relationship 1, the covariance be-

tween the two relationships is 0 as the two relationships do not overlap relative to one

another.

In general, it appears that durations that overlap will have a positive covariance and

those that do not overlap (relative to one another) will have zero covariance. In addition

since the duration of a relationship can be determined as the sum of independent (not

necessarily identical) geometrically distributed sojourn times, the marginal distribution

of durations can be determined using convolution. In summary, the Markov model as-

sumption has important implications on the distribution of the duration of relationships

as discussed in the above cases. Therefore, simulations of duration data in a Markov

chain framework have to account for the dependence between the Markov chain model

and duration data model.
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