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Abstract

Case-control genetic sequencing studies are increasingly being conducted to identify

rare variants associated with complex diseases. Oftentimes, these studies collect a variety of

secondary traits–quantitative and qualitative traits besides the case-control disease status.

Reusing the data and studying the association between rare variants and secondary pheno-

types provide an attractive and cost effective approach that can lead to discovery of new

genetic associations.

In Chapter 1, we carry out an extensive investigation of the validity of ad hoc methods,

which are simple, computationally efficient methods frequently applied in practice to study

the association between secondary phenotypes and single common genetic variants. Though

other researchers have investigated the same problem, we make two key contributions to

existing literature. First, we show that in taking an ad hoc approach, it may be desirable

to adjust for covariates that affect the primary disease in the secondary phenotype model,

even though these covariates are not necessarily associated with the secondary phenotype

in the population. Second, we show that when the disease is rare, ad hoc methods can

lead to severely biased estimation and inference if the true disease model follows a non-

logistic model such as the probit model. Spurious associations can be avoided by including

interaction terms in the fitted regression model. Our results are justified theoretically and

via simulations, and illustrated by a genome-wide association study of smoking using a lung

cancer case-control study.

In Chapter 2, we consider the problem of testing associations between secondary phe-

notypes and sets of rare genetic variants. We show that popular region-based methods such

as the burden test and the sequence kernel association test (SKAT) can only be applied

under the same conditions as those applicable to ad hoc methods (Chapter 1). For a more
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robust alternative, we propose an inverse-probability-weighted version of the optimal SKAT

(SKAT-O) to account for unequal sampling of cases and controls. As an extension of SKAT-

O, our approach is data adaptive and includes the weighted burden test and weighted SKAT

as special cases.

In addition to weighting individuals to account for the biased sampling, we can also

consider weighting the variants in SKAT-O. Decreasing the weight of non-causal variants and

increasing the weight of causal variants can improve power. However, since researchers do not

know which variants are actually causal, it is common practice to weight genetic variants

as a function of their minor allele frequencies. This is motivated by the belief that rarer

variants are more likely to have larger effects. In Chapter 3, we propose a new unsupervised

statistical framework for predicting the functional status of genetic variants. Compared to

existing methods, the proposed algorithm integrates a diverse set of annotations—which are

partitioned beforehand into multiple groups by the user—and predicts the functional status

for each group, taking into account within- and between-group correlations. We demonstrate

the advantages of the algorithm through application to real annotation data and conclude

with future directions.

iv



Contents

Title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Copyright page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Validity of using ad hoc methods to analyze secondary traits in case-control

association studies 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Study setting and notation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Ad hoc methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Common disease, binary secondary trait . . . . . . . . . . . . . . . . 6

1.3.2 Common disease, continuous secondary trait . . . . . . . . . . . . . . 8

1.3.3 Rare disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Conditions for ad hoc analysis in the presence of covariates . . . . . . 10

1.3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.6 Data example: GWAS of smoking behavior . . . . . . . . . . . . . . . 15

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Optimal test for rare variant effects on secondary traits in case-control

sequencing studies 25

v



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Tests for rare variant effects . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Study setting and notation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 IPW SKAT-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Small-sample adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Data example: Sequencing analysis of mammographic density . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Multivariate mixed models for predicting functional regions in the human

genome 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Study setting and notation . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 The EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 CAMM: EM algorithm for mixture of binary and normal annotations 48

3.2.4 GenoCanyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendix 58

A.1 Chapter 1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.1 Derivations for common disease, binary secondary trait . . . . . . . . 58

A.1.2 Derivations for common disease, continuous secondary trait . . . . . . 59

A.1.3 Derivations for rare disease . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Chapter 2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2.1 Using SKAT-O ad hoc . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2.2 Asymptotic distribution and small-sample mean of Q∗ρ under H0 . . . 64

vi



A.2.3 Null distribution of small-sample IPW SKAT-O . . . . . . . . . . . . 65

A.2.4 Additional simulation results . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Chapter 3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3.1 Additional figures and tables . . . . . . . . . . . . . . . . . . . . . . . 66

References 69

vii



Acknowledgments

First and foremost, I thank my Lord and savior Jesus Christ for His blessings. In Him,

I am loved, redeemed, forgiven, freed, and sanctified. These spiritual blessings far outweigh

my fortunate circumstances, including my family, education, and graduating from Harvard

University. They remind me that whatever is entrusted to me is not for myself, but for

others.

I am grateful to my advisor Xihong Lin for her unwavering patience and guidance.

Without her support, none of this would have been possible. I would like to thank the other

members of my committee, Peter Kraft and Eric Tchetgen Tchetgen, for generously sharing

their time and insights with me. I also send my appreciation to the staff at the Harvard T.H.

Chan School of Public Health, especially Jelena Follweiler and Kerri Noonan who provided

me and my wife with support during a tough stretch in our second year in Boston.

I owe a great debt to my various mentors over the years. To Eric Kriekhaus, who en-

couraged me to attend Reed College as an undergraduate. To Alybn Jones, for our coffee

conversations at JSM. To Parag Mallick and Robert Rice, who kindled my interest in statis-

tics. To Martha Bulyk and Leila Shokri, for giving me the opportunity to work in a genetics

lab and entrusting a rookie with expensive equipment. And to Iuliana Ionita-Laza and Richa

Saxena, for making science and collaborating fun.

I would also like to thank all the friends that I’ve made in Boston, particularly those

from Highrock Church and the Department of Biostatistics. There are too many people to

name here, but they’ve made my time in Boston full of joy and discovery.

Finally, I express my deepest love and appreciation for my family. I am forever grateful

to my parents, who worked hard every day of their lives. They provided for me and my sister

while giving us the space to discover ourselves and our interests. And to my wife Cathy, my

best friend and my greatest gift, thank you for joining me on this five-year journey. You are

the Penny to my Leonard and you encourage me to be a better person.

viii



To

MY PARENTS

in admiration of their spirit,

and

MY WIFE

who didn’t say yes,

but at least said,

“Oh! You got the ring I wanted!”

ix



Chapter 1

Validity of using ad hoc methods to
analyze secondary traits in
case-control association studies

Godwin Yuen Han Yung1, Xihong Lin1

1Department of Biostatistics, Harvard T.H. Chan School of Public Health

1.1 Introduction

Genome-wide association studies (GWAS) examine associations between genetic variants and

disease status, often by employing a case-control design. Many of these studies also collect

a variety of secondary traits—quantitative and qualitative traits besides the case-control

status. In view of high genotyping costs, the resulting data provide a cost-effective way to

identify genetic associations with secondary traits. For example, in a lung cancer GWAS

conducted at the Massachusetts General Hospital (MGH), detailed smoking histories were

collected from each study participant. It is of interest to reuse the data to identify SNPs

associated with smoking behavior (Schifano et al., 2013).

A number of methods have been proposed for the analysis of a binary or continuous

secondary trait. They include: (a) the näıve method which analyzes the combined sample

of cases and controls, ignoring case-control ascertainment (Nagelkerke et al., 1995); (b) the

case-only or control-only analysis (Nagelkerke et al., 1995) (c) the “adjusted” analysis where

the case-control status is included as a covariate in the fitted model (Jiang et al., 2006); (d)

meta-analytic methods (Li et al., 2010); (e) the inverse probability weighted (IPW) method



(Richardson et al., 2007); and (f) the semiparametric likelihood method that explicitly ac-

counts for the case-control sampling scheme (Jiang et al., 2006; Lin and Zeng, 2009; He et al.,

2012; Tchetgen Tchetgen, 2014).

We focus here on studying the validity of using the simple and computationally efficient

methods (a)-(c), commonly referred to as the “ad hoc” or “standard” methods. Though

these methods are widely popular, a deeper understanding of when they are valid is required

for proper analysis of secondary traits. It has been argued previously that ad hoc methods

can lead to biased estimates of marker-secondary trait associations, except under special

conditions (Nagelkerke et al., 1995; Lin and Zeng, 2009; Monsees et al., 2009):

(i) If the disease is not associated with the secondary trait given the genotype, then ad

hoc methods are valid.

(ii) For a binary secondary trait, if the disease is not associated with the genotype given the

secondary trait, then ad hoc methods are valid. For a continuous secondary trait, the

same is true if, in addition, the null hypothesis of no marker-secondary trait association

holds.

(iii) If the disease is rare, then methods (b)-(c) are approximately valid.

Consequently, other methods such as (e) and (f) have been proposed as general solutions to

secondary trait analysis.

In spite of their limitations and the emergence of other approaches, ad hoc methods have

remained popular. Recent years have seen a steady stream of publications on genetic variants

influencing human quantitative traits such as body mass index (Speliotes et al., 2010; Wen

et al., 2012; Monda et al., 2013). It is common practice to obtain data from multiple case-

control association studies of complex diseases (e.g., diabetes, cancer, and hypertension),

analyze the data from each study separately using an ad hoc approach, and combine the

study-specific results via meta-analysis.

There are several reasons why ad hoc methods have remained popular. First, considering

the majority of tested markers in a GWAS are unlikely to be associated with disease risk, and

diseases of interest are usually rare, conditions (ii) and (iii) are often met in practice, making
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ad hoc methods a seemingly valid option. Second, ad hoc methods are straightforward to

apply. They require little model building and can be easily performed using linear or logistic

regression. In contrast, methods (e)-(f) are more complex. (e) requires that the disease

prevalence in a population is known and weighting the sampled subjects in such a way that

the weighted subjects approximate the underlying population, which itself might not be well

defined. (f) accounts for the case-control sampling by modeling certain nuisance terms in

the retrospective likelihood, such as the distribution of the disease given the genotype and

secondary trait in the underlying population, which might not be known in practice and

requires the knowledge of the population prevalence. In addition, methods (e)-(f), despite

their added complexity, may not necessarily be more efficient or robust than ad hoc methods

when the assumptions under which the ad hoc methods are valid are met. It has been shown

that the weighted approach generally has less power than ad hoc methods that use the entire

case-control sample when the ad hoc methods are valid (Monsees et al., 2009). If any of the

assumed nuisance models in a semiparametric likelihood are misspecified, then inference may

be invalid (Jiang et al., 2006).

Here, we revisit the problem of when ad hoc methods can and cannot be used. This

problem is of practical interest because previous discussions by Nagelkerke et al. (1995),

Lin and Zeng (2009), and Monsees et al. (2009) leading to (ii) and (iii) make two limit-

ing assumptions: that there are no covariates in the regression models for the disease and

secondary trait, and that the disease follows a correctly specified logistic regression model.

These assumptions may not be true in practice. Indeed, there may be confounders that need

to be adjusted for in order to protect against spurious associations in GWAS. A familiar

example of such confounders in GWAS is the presence of population structure, which can

be correlated with both the disease and the tested genetic markers (Rosenberg et al., 2002;

Price et al., 2006). On the other hand, researchers often assume a logistic model for the

disease model in case-control studies. In some cases, the logistic model that is used for

analysis might be misspecified, e.g., the probit model for the disease status instead of the

logistic model might be true.

Therefore, the purpose of this chapter is to study the performance of ad hoc methods

on estimation and inference for the genetic effect on a secondary trait in the presence of
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covariates and possible disease model misspecification. Our first key contribution is that

we show theoretically and with simulations that the presence of covariates confounding the

effect of a genetic marker on the disease can lead to spurious genetic associations even when

condition (ii) is met. We identify conditions under which the ad hoc methods are valid in the

presence of confounders. We show that the spurious associations can be easily and effectively

avoided by including the covariates in the fitted regression model for secondary phenotypes.

Our second key contribution is that when the disease is rare, we show that the case-only and

adjusted analyses can lead to severely biased estimation and incorrect inference if the true

disease model is a probit model instead of a logistic model. In this case, spurious associations

can be avoided by including interaction terms between the disease status, genetic marker,

and covariates in the secondary regression model.

The remainder of this chapter is organized as follows. In Section 1.2, we describe in

more detail the study setting, notation, and ad hoc methods. In Section 1.3, we derive the

conditions for valid ad hoc analysis in the presence of covariates. Some details are relegated

to the Appendix. We present simulation results to examine the conditions in finite samples

and to compare existing methods. We also illustrate various methods by applying them to

a GWAS of smoking behavior in a sample of lung cancer cases and controls. Finally, in

Section 1.4, we discuss the implications of our results for the design and analysis of GWAS

of secondary traits using samples ascertained on the basis of another trait.

1.2 Methods

1.2.1 Study setting and notation

Consider a case-control study with n1 cases and n0 controls. Let D denote the disease status

(1=case, 0=control), Y a binary or continuous secondary trait, G the genotypes, and Z and

X the covariates associated with D and Y , respectively. We assume that in the population,

disease and secondary trait are distributed with conditional means µD(Y ) = E(D|Z,G, Y )

and µY = E(Y |X,G), which follow the generalized linear models:

gD{µD(Y )} = β0 + Z′β Z + G′β G + Y βY (1.1)

gY (µY ) = α0 + X′αX + G′αG, (1.2)
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where gD(·) is the link function for the primary phenotype (disease) D model; gY (·) is

the link function for the secondary phenotype Y model; (β0, β Z , β G, βY ) are the regression

coefficients in the D model; and (α0, αX , αG) are the regression coefficients in the Y model.

For binary Y , we assume gY (·) = logit. For continuous Y , we assume gY (·) is the

identity link function and Y follows a normal distribution with the conditional population

mean µY = E(Y |X,G) and variance σ2. Our main interest is in estimating and making

inference on αG, the population parameter capturing the genetic marker-secondary trait

association.

As discussed in the Introduction, existing literature regarding the validity of ad hoc

methods often assume a logistic disease model and no covariates. Here, we allow gD(·) to be

any smooth link function. For a rare disease, we consider more closely the choice between

the logistic model and the probit model in order to show that misspecification of the disease

model by using a misspecified link function can be consequential for the secondary phenotype

analysis, which is of primary interest. It is natural to compare the logistic disease model

to the probit disease model, because the latter is arguably the most popular alternative

parametric model for analyzing binary response data. Also, there is increasing interest to

use the probit model (also known as the liability threshold model) in studies of genetic

association, heritability, and risk prediction (Wray et al., 2010; So and Sham, 2010; Lee

et al., 2011; Zaitlen et al., 2012).

1.2.2 Ad hoc methods

The typical ad hoc approach in the presence of covariates is to regress Y on X, G, and

perhaps D, using only the n1 cases, the n0 controls, or all n = n1 +n0 subjects. However, we

have found that such a simple ad hoc approach may be invalid in the presence of confounders

under the previously established conditions where the ad hoc methods are valid in the absence

of covariates. We will show in the next section that including a linear effect of disease-related

confounders Z in the regression model for Y can correct for bias under suitable conditions

similar to the existing conditions. Therefore, in the presence of covariates, there are two

types of ad hoc methods that one can consider applying. The first type, which we shall refer

to as the ad hoc methods with Y -related covariates, takes the typical approach by regressing
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Y on X, G, and perhaps D. The second type regresses Y on X, G, perhaps D, and Z. Since

this type includes both X and Z as covariates in the model for Y , we shall refer to them as

the ad hoc methods with pooled covariates. Note that if Z ⊆ X, then the two types of ad

hoc methods are equivalent. Furthermore, if an ad hoc method with Y -related covariates

(e.g., control-only analysis with Y -related covariates) is valid, then its pooled counterpart

(e.g., control-only analysis with pooled covariates) is also valid.

1.3 Results

Let P (·) denote the population-based probability, κ = P (D = 1) denote the disease preva-

lence, S indicate with the values 1 versus 0 whether or not an individual from the popu-

lation is sampled in the case-control study, and π(D) = P (S = 1|D) be the probability

of being sampled in the case-control study for an individual with disease status D. Also,

let P̃ (·) = P (·|S = 1), µ̃Y = E(Y |X,G,Z, S = 1), µ̃Y |D = E(Y |X,G,Z, D, S = 1),

σ̃2 = V ar(Y |X,G,Z, S = 1), and σ̃2
D = V ar(Y |X,G,Z, D, S = 1) denote the case-control

probability, conditional means of Y , and conditional variances of Y , all observed under the

case-control design.

1.3.1 Common disease, binary secondary trait

When the secondary phenotype Y is binary, we can show that the conditional means of Y

in case-control samples satisfy

logit(µ̃Y ) = α0 + X′αX + G′αG + r(Z,G) (1.3)

logit(µ̃Y |d) = α0 + X′αX + G′αG + rd(Z,G) (1.4)

where

r(Z,G) = log

{∑1
d=0 π(d)[µD(1)]d[1− µD(1)]1−d∑1
d=0 π(d)[µD(0)]d[1− µD(0)]1−d

}

rd(Z,G) = log

{(
µD(1)

µD(0)

)d(
1− µD(1)

1− µD(0)

)1−d
}

and d = 0, 1. Equivalent expressions for (1.3) and (1.4) were derived by Lin and Zeng

(2009) and Tchetgen Tchetgen (2014). From (1.3) and (1.4), it is easy to see that differences
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between the mean models for the secondary phenotype in case-control studies and in the

population (1.2) are given by r(Z,G) and rd(Z,G). Therefore, validity of ad hoc methods

depends on the value of these extra terms and whether the methods properly adjust for

them. It should be noted that the true means of the secondary phenotypes Y in case-control

studies not only depend on the Y -related covariates X but also the D-related covariates Z.

If βY = 0, i.e., the secondary phenotype Y is not associated with the disease D, then

µD(1) = µD(0) and r(Z,G) = rd(Z,G) = 0. It follows that (1.3) and (1.4) reduce to (1.2),

and ad hoc methods with only Y -related covariates X can be used as a valid tool to estimate

and perform inference on all the population parameters α0, αX , and αG.

Alternatively, if β G = 0, i.e., when a SNP is not associated with disease, then r(Z,G) =

r(Z) and rd(Z,G) = rd(Z) are functions of Z but not of G. In this situation, validity of ad

hoc methods depends on whether Z and G are associated, whether r(·) and rd(·) are linear

in Z, and whether r1(·) and r0(·) differ by a constant. When Z and G are independent,

i.e., when Z is not a confounder for the genetic association with disease, it is not necessary

to adjust for r(·) and rd(·) in the secondary phenotype regression in order to obtain valid

estimation and inference of αG. Hence the ad hoc methods with only Y -related covariates X

can be used. When Z and G are correlated, i.e., Z is a confounder for the genetic association

with disease, failure to adjust for r(·) and rd(·) can lead to spurious associations between

G and Y , because an estimate of the association between G and Y may also capture the

association between Z and Y induced by r(·) and rd(·). This leads us to consider ad hoc

methods with pooled covariates (X,Z).

Suppose, in addition to β G = 0, that r(·) and rd(·) are linear in Z, and r0(·) and

r1(·) differ by a constant. Then we can write logit(µ̃Y ) = α∗0 + X′αX + G′αG + Z′α ∗Z

and logit(µ̃Y |d) = α∗∗0d + X′αX + G′αG + Z′α ∗∗Z , from which it is easy to see that ad

hoc methods with pooled covariates are valid. In Appendix A.1.1, we generalize this result

by first showing theoretically that for any smooth link function gD(·), r(·) and rd(·) are

approximately linear in Z as long as |βY | and |β Z | are not exceedingly large. We then

show for several choices of link function (logit, probit, complementary log-log) that r0(·) and

r1(·) differ by approximately, if not exactly, a constant. These theoretical results, confirmed

by our simulation studies (not provided), show that for typical values of βY and β Z , ad

7



hoc methods with pooled covariates lead to approximately unbiased estimates of αG and

nominal type I error rates. We conclude that for practical purposes, if β G = 0, then ad hoc

methods with pooled covariates can be used and provide approximately correct inference.

1.3.2 Common disease, continuous secondary trait

In the case that Y is continuous, we have for the case-control conditional distributions,

P̃ (Y |X,G,Z) =
P (S = 1|Z,G, Y )P (Y |X,G)

P (S = 1|Z,G)
(1.5)

P̃ (Y |X,G,Z, D) =
P (D|Z,G, Y )P (Y |X,G)

P (D|Z,G)
. (1.6)

If βY = 0, then factors cancel in the numerators and denominators so that P̃ (Y |X,G,Z) =

P̃ (Y |X,G,Z, D) = P (Y |X,G) and ad hoc methods with only Y -related covariates X can

be used to estimate and perform inference on all the population parameters α0, αX , and

αG. On the other hand, if βY 6= 0, then calculations of the case-control conditional means

and variances of Y , such as µ̃Y |D =
∫
yP̃ (y|X,G,Z, D)dy, are generally intractable. There

is however one exception. When gD(·) = Φ−1, it can be shown that

µ̃Y |d = µY + rd(Z,G,X) (1.7)

σ̃2
d = σ2 + sd(Z,G,X) (1.8)

where

rd(Z,G,X) =
(−1)1−d × c× φ(η)

[Φ(η)]d[1− Φ(η)]1−d

sd(Z,G,X) =
(−1)1−d × c2 × φ′(η)

[Φ(η)]d[1− Φ(η)]1−d
− [rd(Z,G,X)]2

c =
σ2βY√
σ2β2

Y + 1

η =
gD(µD(µY ))√
σ2β2

Y + 1
.

Derivations for (1.7) and (1.8) as well as closed form expressions for µ̃Y and σ̃2 can be found

in Appendix A.1.2. Given that the logit and probit functions are very close in the mid-range

(Amemiya, 1981), we can also find approximate expressions for gD(·) = logit. Together,
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these expressions can be useful for investigating what happens when βY 6= 0 and ad hoc

methods are applied.

If αG = β G = 0, then r(·) and rd(·) are functions of Z and X but not of G. In

this situation, validity of ad hoc methods depends on whether Z is associated with G,

whether r(·) and rd(·) are linear functions of (Z′,X′)′, whether r0(·) and r1(·) differ by a

constant, and whether s(·) and sd(·) are constants. For example, if r0(·) and r1(·) are linear

functions of (Z′,X′)′ that differ by a constant, and sd(·) are constants, then we can write

µ̃Y |d = α∗∗0d + X′α ∗∗X + G′αG + Z′α ∗∗Z and σ̃2
d = σ2

d. It follows that for large samples, ad hoc

method (b) with pooled covariates (X,Z) provides valid estimation and inference of αG.

The adjusted analysis (c) with pooled covariates can be used too if σ̃2
0 = σ̃2

1.

In Appendix A.1.2, we show theoretically that r(·) and rd(·) are approximately linear in

(Z′,X′)′ and s(·) and sd(·) are approximately constants as long as |βY | and |(β ′Z , α ′X)′| are

not exceedingly large. In Section 1.3.5, we show with simulations that for typical values of

βY and (β ′Z , α
′
X)′, ad hoc methods (a) and (b) with pooled covariates lead to approximately

unbiased estimates of αG and nominal type I error rates. Therefore, we conclude that for

practical purposes, if αG = β G = 0, then ad hoc methods (a) and (b) with pooled covariates

are approximately valid.

As mentioned, the adjusted analysis with pooled covariates is valid if, in addition,

r1(·) − r0(·) is a constant and σ̃2
0 = σ̃2

1. While it is easy to show that the first condition

is approximately true for common disease (Appendix A.1.2), σ̃2
0 is generally not equal to σ̃2

1.

Nevertheless, the difference between the sample variance of the case-only and control-only

analyses with pooled covariates seemed to be small enough for inference to be approximately

correct in our simulations.

1.3.3 Rare disease

For rare disease, P (D = 0|Z,G, Y ) and P (D = 0|Z,G) in (1.6) are approximately equal to

1, so P̃ (Y |X,G,Z, D = 0) ≈ P (Y |X,G). It follows that a control-only analysis is approx-

imately valid for binary and continuous secondary traits. Intuitively, when the disease is

rare, the controls closely resemble the general population. Therefore, any conclusion about

the population based on the controls will be approximately correct.
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As for ad hoc methods that use cases, these methods may or may not be valid depending

on the underlying disease model. If gD(·) = logit, then we have for binary Y that r1(Z,G) ≈

βY , and for continuous Y that r1(Z,G,X) ≈ βY σ
2 and s1(Z,G,X) ≈ 0. In fact, for continu-

ous Y , P̃ (Y |X,G,Z, D = 1) is approximately proportional to exp {−[Y − µY − βY σ2]/2σ2}

(Lin and Zeng, 2009). Thus, for both binary and continuous secondary traits, ad hoc methods

(b)-(c) with only Y -related covariates X yield approximately valid estimation and inference

for αX and αG.

If instead, gD(·) = Φ−1, then we have for binary Y that r1(Z,G) ≈ constant − βY ·

Φ−1(µD(0)), and for continuous Y , r1(Z,G,X) ≈ − σ2βY
σ2β2

Y +1
Φ−1(µD(µY )). Derivations are

available in Appendix A.1.3. Note that the first remainder is a linear function of Z and G

and the latter is a linear function of Z, G, and X. These results are substantially different

from those obtained under gD(·) = logit, where r1 for both types of secondary traits were

constants. Results assuming gD(·) = Φ−1 imply that an estimate of αG from the case-only

analysis with pooled covariates is generally biased:

E( α̂G − αG) ≈

{
−βY β G binary Y

− σ2βY
σ2β2

Y +1
(β G + βY αG) continuous Y

By extension, the adjusted analysis is also invalid. Finally, one might consider extending the

adjusted analysis with pooled variates to include D-Z, D-G, and D-X interactions. In doing

so, the main effect of G will encode the marginal association of interest αG. However, if Z

and X include large numbers of possibly confounding covariates for population stratification,

it is unlikely that adding a large number of interactions will lead to an increase in power

compared to the control-only analysis.

1.3.4 Conditions for ad hoc analysis in the presence of covariates

We have conducted a thorough investigation into the properties of the ad hoc methods. We

state here the main conclusions. Ad hoc methods can lead to invalid estimation and inference

of αG, except under special conditions:

(i) If the disease is not associated with the secondary trait (βY = 0), then ad hoc methods

are valid.
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(ii*) For binary Y , if the disease is not associated with the genotype (β G = 0), then ad

hoc methods with pooled covariates (X,Z) are approximately valid. Ad hoc methods

with only Y -related covariates X are also approximately valid if, in addition, the D-

related covariates Z is not associated with G, i.e., are not confounders for gene-disease

association. Similarly, for continuous Y , if neither the disease nor secondary trait are

associated with the genotype (αG = β G = 0), then ad hoc methods with pooled

covariates (X,Z) are approximately valid. Ad hoc methods with Y -related covariates

are also approximately valid if, in addition, Z is not associated with G.

(iii*) If the disease is rare, then the control-only analysis is approximately valid. The case-

only and adjusted analyses are also approximately valid if, in addition, gD(·) = logit;

however, if gD(·) = Φ−1, then these two analyses can lead to biased estimation and

incorrect inference.

1.3.5 Simulation study

To quantify the type I error rate, bias, and power of ad hoc methods for secondary trait

analysis, we simulated case-control association studies drawn from an underlying cohort of

size N . Our simulation procedure extends that of Monsees et al. (2009) by allowing for

covariates and a non-logistic disease model.

First, covariates Z1i and X1i for subjects i = 1, ..., N were drawn from a standard normal

distribution, and Z2i = X2i was sampled as a Bernoulli random variable with probability

of success 0.5. Diallelic genotype Gi was sampled conditional on Z1i as a binomial random

variable of size 2 with probability of success expit(γ0 + γ1Z1i). Continuous secondary trait

Yi was drawn from a normal distribution with mean α0 + X1iαX1 + X2iαX2 + GiαG and

variance 1. (In the original journal article, we consider a binary secondary trait.) Disease Di

was sampled conditional on Zi = (Z1i, Z2i)
′, Gi, and Yi as a Bernoulli random variable with

gD(P (Di = 1|Zi, Yi, Gi)) = β0 + λ(Z′iβ Z + βY Yi + βGGi). Finally, case-control samples were

selected by randomly sampling n1 cases and n0 controls from the simulated cohort. Note

that, depending on the values of γ1 and βZ1, Z1 was or was not a confounder of the effect of

G on D.
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We simulated a wide variety of scenarios, varying seven parameters: disease prevalence

κ ∈ {0.01, 0.10}; link function gD(·) ∈ {logit,Φ−1}; the increase in log odds of inheriting a

minor allele from a specific parent per unit change in Z1 = γ1 ∈ {0, ln(1.7)/2, ln 1.7}; the per-

cent of variance in Y explained by G = r2
Y G ∈ {0, 0.005, 0.01}; the association between Z1 and

D = βZ1 ∈ {0, ln(1.7)/2, ln 1.7}; the association between Y and D = βY ∈ {0, ln(2)/2, ln 2};

and the association between G and D = βG ∈ {0, ln(1.7)/2, ln 1.7}.

We fixed (α0, αXj, βZ2) = (0, 0.2, log(1.7)/2). For gD(·) = logit, we set λ = 1 so that

a non-intercept coefficient in the disease model could be interpreted as the increase in log

odds of disease per unit change in the corresponding explanatory variable. For gD(·) = Φ−1,

we set λ =
√

3/π so that the association between D and (Z, Y,G) were comparable between

the logistic and probit disease model (Amemiya, 1981). γ0 was chosen so that the genotype

had a minor allele frequency of approximately 0.13. The mean change in Y per copy of the

minor allele (αG) and the baseline odds parameter β0 were chosen to be consistent with r2
Y G

and κ. We generated large cohorts and sampled from each n1 = 1, 000 cases and n0 = 1, 000

controls. In order to estimate type I error rate (power) accurately, a total of 108 (104)

replicate data sets were simulated for each scenario.

For an example of a scenario with different confounders for the disease models and

the secondary phenotype models, consider Crohn’s disease (D) and lactase persistence (Y ).

Genetic lactase persistence has been linked to risk of Crohn’s disease, lactase persistence has

been shown to vary from northeast to southeast Europe (X1), and Jews of European descent

(Z1) are at significantly higher risk of Crohn’s disease (Nolan et al., 2010; Price et al., 2006;

Kenny et al., 2012). Another example is lung cancer (D) and smoking behavior (Y ). It is

well known that first and second hand smoking (Z1) causes lung cancer (U.S. Department

of Health and Human Services, 2006). While there is no data to suggest that the two are

themselves associated, the practice of smoking differs from culture to culture, so it is possible

that first and second hand smoking are associated with certain genetic markers.

We conducted the following nine analyses for each simulated dataset:

1. Näıve analysis with Y -related covariates: regress Y on (X, G) in the case-control sam-

ple.
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2. Control-only analysis with Y -related covariates: regress Y on (X, G) among controls.

3. Case-only analysis with Y -related covariates: regress Y on (X, G) among cases.

4. Adjusted analysis with Y -related covariates: regress Y on (X, G,D) in the case-control

sample.

5. Näıve analysis with pooled covariates: regress Y on (X,Z, G) in the case-control sam-

ple.

6. Control-only analysis with pooled covariates: regress Y on (X,Z, G) among controls.

7. Case-only analysis with pooled covariates: regress Y on (X,Z, G) among cases.

8. Adjusted analysis with pooled covariates: regress Y on (X,Z, G,D) in the case-control

sample.

9. IPW regression: regress Y on (X, G) using weights w1 = κ for cases and w0 = 1 − κ

for controls.

We included Analysis 9 for the purpose of generalizing previous results by Monsees et al.

(2009) comparing the performance of ad hoc methods to IPW regression. For each method

and scenario, the probability of rejecting the null hypothesis H0: αG = 0 was estimated by

applying a nominal significance threshold of α ∈ {10−4, 10−5, 10−6}. Bias was obtained by

taking the average of α̂G − αG.

Figures 1.1–1.3 summarize the type I error rates and bias for the control-only, adjusted,

and IPW regression analyses across the null scenarios (αG = 0) that were considered. Results

for the näıve and case-only analyses can be found in the original journal article. Results for

α ∈ {10−4, 10−5} are omitted but similar. As expected, IPW regression (Analysis 9) was

unbiased for all of the scenarios considered. However, interestingly, its type I error rates were

consistently slightly inflated due to the instability of the sandwich estimator. Increasing the

sample size (n1,n0) improved type I error control (not shown). Ad hoc methods with pooled

covariates (Analyses 5–8) had appropriate type I error rates and no perceptible bias whenever

βY = 0 or βG = 0. Likewise, ad hoc methods with Y -related covariates (Analyses 1–4) were
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Figure 1.1: Empirical type I error rates for testing genetic associations with a continuous
secondary trait, at genome-wide α = 10−6 level and across scenarios with different combi-
nations of βY , βG, γ1 and βZ1. The disease is assumed to be common (10% prevalence)
and to follow a logistic model. In row A, covariate Z1 is assumed to be associated with G
but not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D but not with G
(γ1 = 0, βZ1 = ln 1.7). In row C, Z1 is a confounder of the association between G and D
(γ1 = βZ1 = ln 1.7).

valid whenever βY = 0, or βG = 0 and Z is not a confounder for the effect of G on D (γ1 = 0

or βZ1 = 0).

For common disease (κ = 0.10; Figures 1.1 and 1.2), we detected an inflation in type I

error rates and bias for all eight ad hoc methods when βY 6= 0 and βG 6= 0. We also detected

an inflation in type I error rates and bias for Analyses 1–4 when βY 6= 0, βG = 0, and Z1

confounded the association between G and D (|γ1| > 0, |βZ1| > 0).

For rare disease (κ = 0.01; Figure 1.3) with a logistic link function, all ad hoc methods

that condition on case-control status (Analyses 2–4, 6–8) had little to no inflation in type I

error rates and bias regardless of whether βY = 0 or βG = 0. However, for rare disease with

a probit link function, only the control-only analysis (Analyses 2 and 6) and IPW regression

were approximately valid in general. All other ad hoc methods had highly inflated type I

error rates and severe bias when βY 6= 0 and βG 6= 0.

We compared the power of Analyses 1–9 whenever the analyses were approximately valid
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Figure 1.2: Empirical bias for the estimated genetic effect α̂G on a continuous secondary trait,
across null scenarios (αG = 0) with different combinations of βY , βG, γ1 and βZ1. The disease
is assumed to be common (10% prevalence) and to follow a logistic model (gD(·) = logit).
In row A, covariate Z1 is assumed to be associated with G, but not with D (γ1 = ln 1.7,
βZ1 = 0). In row B, Z1 is associated with D, but not with G (γ1 = 0, βZ1 = ln 1.7). In row
C, Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).

by varying αG ∈ {0, ln(1.7)/2, ln(1.7)}. The näıve analyses (Analyses 1 and 5) tended to be

the most powerful, followed by the adjusted analyses (Analyses 4 and 8), IPW regression

(Analysis 9), and finally the ad hoc analyses restricted to cases or controls (Analyses 2, 3, 6,

and 7) . In addition, ad hoc methods with Y -related covariates were slightly more powerful

than their corresponding ad hoc methods with pooled covariates.

1.3.6 Data example: GWAS of smoking behavior

To demonstrate the application of ad hoc methods, we performed a genome-wide association

analysis of smoking behavior using a set of 696 lung cancer cases and 730 controls.

Study population

Our study population was derived from a large ongoing case-control study of the molecular

epidemiology of lung cancer at MGH, and has been described in detail elsewhere (Schifano

et al., 2013). Briefly, the controls were recruited from the friends or spouses of cancer

15



gD(.) = logit gD(.) = probit

l l ll l l l l ll l
l1e−06

1e−05

1e−04

1e−03

0 ln(2)/2 ln(2)0 ln(2)/2 ln(2)
βY

Ty
pe

 I 
er

ro
r 

ra
te

gD(.) = logit gD(.) = probit
l

l
l

l l l
l

l
l

l
l

l

−0.08

−0.06

−0.04

−0.02

0.00

0 ln(2)/2 ln(2)0 ln(2)/2 ln(2)
βY

B
ia

s
l control−only analysis

adjusted analysis

IPW regression

w/ Y−related covariates

w/ pooled covariates

Figure 1.3: Empirical type I error rates and bias for testing and estimating genetic asso-
ciations with a continuous secondary trait, at genome-wide α = 10−6 level and across null
scenarios (αG = 0) with different combinations of βY and link function gD(·) for the disease
model. The disease is assumed to be rare (1% prevalence) and to follow either a logistic or
probit model (gD(·) = logit or Φ−1). G is assumed to be associated with D (βG = ln 1.7).
Z1 is assumed to be a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
The scenarios with a logistic disease model (left column) are the same as the scenarios in the
bottom right plots of Figures 1.1 and 1.2, except here the disease is not common but rather
rare.

patients or the friends or spouses of other surgery patients in the same hospital. To reduce

confounding due to population structure, the study was limited to individuals of self-reported

European descent.

Genotyping

Peripheral blood samples were obtained from all study participants at the time of enrollment.

DNA was extracted from samples using the Puregene DNA Isolation Kit (Gentra Systems),

and genoyping was performed with the Illumina Human610-Quad BeadChip. For quality

control, SNPs that had call rate less than 95%, that failed the Hardy-Weinberg equilibrium

test at 10−6, or that had minor allele frequency less than 5%, were excluded. Blood samples

with genotyping call rates less than 95% were also excluded. There were 513,271 SNPs
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remaining after frequency and quality control. To further control for population structure,

EIGENSTRAT was used to perform a principal components (PCs) analysis (Price et al.,

2006). We included the first four PCs, on the basis of significant Tracy-Widom tests (p <

0.05) and genomic control inflation factor, as covariates for all analyses. Of the remaining six

out of ten top PCs, we decided to also include the ninth PC as a covariate in our secondary

linear regression models because we found this PC to be significantly associated with lifetime

smoking exposure (p < 0.05).

Covariate and phenotypic data collection

Interviewer-administered questionnaires collected information on sociodemographic variables

from each subject, including age (years; continuous), gender, education history (college de-

gree or more; yes/no), and smoking intensity (cigarettes/day and number of years smoked).

Subjects were classified as either never smokers (less than 100 cigarettes in their lifetime),

former smokers (quit smoking at least 1 year prior to interview date), or current smokers

(at time of interview). Only ever-smokers (former and current) were used in our data anal-

ysis, as we were interested in studying the genetic effects on smoking intensity measured by

pack-years.

We used square root pack-years (number of packs of cigarettes smoked daily times the

number of years smoked) as our secondary outcome measure of smoking behavior. The

square root transformation was applied to better satisfy assumptions of normality.

We performed the näıve, control-only, case-only, adjusted, and IPW analyses for each

SNP by regressing square root of pack-years on genotype (number of minor alleles), age,

gender, college education, and PCs 1–4 and 9. For the adjusted analysis, lung cancer status

was included in the regression model. For IPW regression, we estimated the prevalence of

lung cancer amongst ever-smokers in Massachusetts to be 0.00148, and used this prevalence

to calculate the inverse probability weight for each study individual.

On conditions (i)-(iii∗)

Since conditions (i)-(iii∗) play an important role in determining which results from a genome-

wide ad hoc analysis of a secondary trait are credible, we sought to verify these conditions
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Figure 1.4: Top 50k SNPs from IPW regression. Observed difference between case-only
and control-only estimates has a significant tendency to increase as the log odds-ratio of a
genetic marker and lung cancer increases (slope of best fit line = 1.02, p < 10−15). Under
the assumption of a rare disease with a logistic model, one would expect the best fit line to
be y = 0.

in our dataset.

For condition (i), we found that smoking intensity is significantly associated with lung

cancer risk (OR = 1.45, p < 10−15). For condition (ii∗), we fitted for each SNP a logistic

regression model to test for genetic associations with lung cancer, adjusting for square root

pack-years, age, gender, college education, and the first four PCs. For condition (iii∗), given

an estimated prevalence of 0.00148, lung cancer can be considered a rare disease within

the at-risk population of ever-smokers in Massachusetts. We looked at diagnostic plots to

investigate whether a logistic model for (1) is a reasonable fit for lung cancer risk (Figure

1.4). Under such a model, one would expect case- and control-only estimates to be unbiased

and uninfluenced by marker-disease associations. However, we see from Figure 1.4 that for

our dataset the case- and control-only analyses were generally estimating different quantities,

and that the difference between their estimates (α̂G,case − α̂G,ctrl) tended to increase as the

log odds ratio of SNPs and lung cancer (β̂G) increased. It was only when a SNP was weakly

associated with lung cancer (β̂G ≈ 0) that the expected difference between case- and control-

only estimates equalled 0.

These observations led us to conclude that for our purpose of analyzing genome-wide

associations with smoking behavior, condition (i) does not hold, the disease is rare, and
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Figure 1.5: Number of nominally significant SNPs (p < 10−3) from the control-only, adjusted,
and IPW analysis of

√
pack-years. p values from a 1-DF Wald test assuming an additive

genetic model.

the disease model (1.1) with gD(·) = logit is somehow misspecified. Consequently, we may

prefer results from IPW regression, the control-only analysis (because the disease is rare),

and the adjusted analysis of SNPs with weak evidence of an association with lung cancer risk

(because the adjusted analysis is one of the more powerful valid ad hoc approaches under

condition (ii∗). Yet, when condition (ii∗) is not satisfied, it is not as severely biased as the

näıve analysis.)

Results

Manhattan plots for the näıve, control-only, case-only, adjusted, and IPW analyses can be

found in the original journal article. In total, 1130 SNPs were identified as nominally signifi-

cant at p < 10−3 by the control-only, adjusted, or IPW analysis (see Figure 1.5). Comparing

the control-only analysis to IPW regression, SNPs identified as nominally significant by the

control-only analysis were roughly a subset of the SNPs identified by IPW regression. In-

deed, 429 of the 468 (91.7%) SNPs identified by the control-only analysis were also identified

by IPW regression. Meanwhile, IPW regression identified 185 other SNPs. Of the 429 SNPs

identified by both analyses, the majority (328, 76.5%) were more significant when analyzed

by IPW regression than by the control-only analysis.

The adjusted analysis generally identified different SNPs as nominally significant than

the control-only and adjusted analyses. Specifically, the adjusted analysis identified 477 novel
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SNPs, novel in the sense that they were nominally significant (p < 10−3) when analyzed by

the adjusted analysis, but nominally insignificant (p ≥ 10−3) when analyzed by the control-

only and IPW analyses. Likewise, the control-only and IPW analyses identified 31 and

165 novel SNPs. However, taken together, the control-only and IPW analyses collectively

identified 542 SNPs that were nominally insignificant when analyzed by the adjusted analysis

(Figure 5).

A large number of the novel SNPs identified by adjusted analysis had weak evidence of

an association with lung cancer risk; when tested for H0: βG = 0, 139 (29.1%), 220 (46.1%),

and 118 (24.7%) SNPs had p value in the range [0.0, 0.1), [0.1, 0.5), and [0.5, 1.0], and odds

ratio in the range [0.63, 1.62], [0.74, 1.35], and [0.92, 1.09], respectively. Therefore, applying

condition (ii∗), the adjusted analysis of many of these SNPs are likely to be valid.

Table 1.1 displays the top ten SNPs for the control-only analysis. Looking at the top

SNPs and the top ten novel SNPs for the control-only, adjusted, and IPW analyses, we found

SNPs from several genes identified in previous GWASs of smoking cessation: ARHGAP24,

C1orf95, CDH18, CDYL2, DOK6, FAM189A1, HSD17B2, KSR1, NBEA, PDE10A, SLC9A2

(a paralog of SLC9A9 ), and TACR1 (Rose et al., 2010; Uhl et al., 2010; Tang et al., 2014).

In Figure 1.6, we see that the control-only analysis and IPW regression performed simi-

larly for nominally significant SNPs from the previously known genes. Meanwhile, for some

SNPs their association with smoking behavior were much more significant when analyzed by

the adjusted analysis than by the control-only or IPW analysis (e.g., SNPs from HSD17B2,

NBEA, SLC9A2 ), and vice versa (e.g., SNPs from CDH18 ). This is consistent with simula-

tion results that the adjusted analysis is more powerful than the control-only analysis and

the IPW analysis in the situations when they are valid. Only TACR1 had similar results

across the three methods. We note that SNPs which were nominally significant only when

analyzed by the adjusted analysis had weak evidence of an association with lung cancer risk.

1.4 Discussion

In this paper, we have given new conditions for using ad hoc methods. Our findings extend

previous work by demonstrating that if there are covariates confounding the effect of a genetic
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Figure 1.6: p values from the genome-wide association analysis of
√

pack-years and lung
cancer risk for nominally significant SNPs (p < 10−3) from twelve selected genes: (1)
ARHGAP24, (2) C1orf95, (3) CDH18, (4) CDYL2, (5) DOK6, (6) FAM189A1, (7) HSD17B2,
(8) KSR1, (9) NBEA, (10) PDE10A, (11) SLC9A2, and (12) TACR1. All genes have been
identified in previous studies of smoking cessation. Here, we compare the results from the
control-only, adjusted, and IPW analyses of

√
pack-years. Results can be distinguished by

gene (number), SNP (letter), and the secondary analysis applied (shape and color).
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marker on the disease but that are not adjusted for in the secondary trait analysis, then ad

hoc analysis can lead to spurious associations even when the genetic marker is not associated

with the disease. Futhermore, for a rare disease, the case-only and adjusted analyses can

lead to severely biased estimation and incorrect inference if the true disease model is not

strictly logistic.

The conditions set forth in this paper apply to the setting where there are no gene-

environment interactions in the disease. We now briefly discuss the validity of the ad hoc

methods for G-E interaction models. It is easy to show that if there is an interaction between

gene and covariates, but no interaction between gene and secondary trait, then conditions (i)

and (iii*) hold, but not condition (ii*). On the other hand, if there is an interaction between

gene and secondary trait on disease risk, then (i) and (ii*) do not hold, and the only valid

analysis for a rare disease is the control-only analysis. The fact that the case-only and

adjusted analyses lead to incorrect estimation and inference has been discussed previously

by Li et al. (2010). As a solution, the authors proposed an adaptively weighted method

that combines the case-only and control-only estimates, while reducing to the control-only

analysis if there is strong evidence of a gene-secondary trait interaction.

We considered the possibility of interaction between SNPs and smoking behavior for lung

cancer risk in our data analysis. We found that SNPs identified as nominally significant by

the adjusted analysis tended not to modify the effect of smoking behavior on lung cancer risk,

but SNPs identified by the control-only or IPW analysis had moderate to strong evidence of

G-E interaction. This difference explains why we observed relatively little overlap in Figure

1.5, and why some previously known genes were identified by only the adjusted analysis, or

by the control-only and IPW analyses but not the adjusted analysis (Figure 1.6).

The results in this paper have several important implications for secondary trait analysis.

First, when applying ad hoc methods, one should consider including potential confounders of

the association between the genetic marker and the disease, even if these covariates are not

predictors of the secondary trait. For example, one might adjust for population structure

associated with the secondary trait and population structure associated with the disease.

However, one should be aware that when including additional covariates, power may be

reduced if the secondary trait is binary and the covariates are not actually confounders
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(Pirinen et al., 2012).

Second, for a rare disease, it is crucial to verify disease model assumptions or to perform

sensitivity analysis. A potential pitfall is misspecifying the link function of the disease

model (e.g., logit vs probit). Another is ignoring gene-environment interactions in the linear

predictor. The importance of having a robust analysis applies not only to ad hoc methods,

but also to complex approaches. For instance, Li et al.’s adaptively weighted method and Lin

and Zeng’s semi-parametric approach both assume that the disease follows a logistic model.

Lin and Zeng’s semi-parametric approach further assumes that there are no G-E interactions.

It is important when applying either of these methods to verify their assumptions.

Finally, researchers may benefit from applying multiple methods rather than a one-size-

fits-all solution. In our data analysis of smoking behavior, the adjusted analysis identified

a large number of promising SNPs that were otherwise missed by the control-only analysis

and IPW regression, and vice versa. Meanwhile, the control-only analysis and IPW regres-

sion performed similarly when analyzing SNPs from previously known genes. However, the

control-only analysis was easier and computationally much faster to perform, while IPW

regression was slightly more powerful because it used both the lung cancer cases and con-

trols. Therefore, whether it is to save computational time or to improve the identification of

promising genetic markers, researchers would do well to apply several ad hoc and complex

methods.
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2.1 Introduction

Despite the success of genome-wide association studies (GWASs) in identifying common

single nucleotide polymorphisms (SNPs) that contribute to complex diseases, the majority

of genetic variants identified so far confer relatively small increments in risk, leaving many

more to be discovered (Manolio et al., 2009). The rapid evolution of massively parallel

sequencing platforms makes it possible to sequence entire genomes and has the potential to

identify rare genetic variants that contribute to disease susceptibility (Cirulli and Goldstein,

2010). In Chapter 1, we discussed the problem of using ad hoc methods to identify common

genetic variants associated with secondary traits using available case-control GWAS. We now

develop a procedure that re-uses data from case-control sequencing studies to identify rare

variants associated with secondary traits.



There has been substantial work on developing powerful methods to identify rare variants

associated with complex traits. Region-based analysis has become the standard approach,

because individual variant tests, typically used to analyze single common variants, are under-

powered to detect rare variant effects due to the low allele frequencies and the large number

of rare variants in the genome (Bansal et al., 2010). Commonly used region-based tests

include burden and non-burden tests. Burden tests assume all rare variants in a genomic

region have effects on the phenotype in the same direction and of similar magnitude (Li and

Leal, 2008; Madsen and Browning, 2009; Morris and Zeggini, 2010; Price et al., 2010). In

contrast, the sequence kernel association test (SKAT) is particularly powerful in the pres-

ence of protective and deleterious variants and null variants, but is less powerful than burden

tests when a large number of variants in a region are causal and in the same direction (Wu

et al., 2011). In practice the underlying biological mechanisms are unknown and vary from

one gene to another across the genome. To incorporate this uncertainty, Lee et al. (2012b)

proposed a data-adaptive test (SKAT-O) that is optimal within a class of tests that include

both burden tests and SKAT as special cases.

Burden tests, SKAT, and SKAT-O can be used to infer about genetic associations in a

population when the study subjects are a random sample of the population or the outcome

of interest is the disease status in a case-control study. However, when the outcome of

interest is a secondary trait in a case-control study, applying these methods may be extremely

misleading. This is because cases and controls are selected at different rates from their

respective subpopulations. As a result, the study subjects do not constitute a random

sample of the general population, and the population association between genetic variants

and the secondary trait can be distorted in the case-control sample. This phenomenon was

explored in the context of case-control GWAS in Chapter 1.

In this chapter, we propose a weighted version of SKAT-O to account for unequal sam-

pling of cases and controls. Our approach uses inverse-probabilities-of-selection as weights

and is applicable to binary and quantitative secondary traits. As an extension of SKAT-O,

the inverse-probability-weighted test (IPW SKAT-O) is likewise data adaptive and includes

inverse-probability-weighted burden tests and inverse-probability-weighted SKAT as special

cases. We derive the asymptotic distribution of the IPW SKAT-O statistic, which allows us
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to calculate the p-value analytically with high accuracy and efficiency in the tail. Because

IPW SKAT-O can be conservative for small to medium sample sizes, we further derive an

adjustment procedure for IPW SKAT-O by precisely estimating the small-sample variance

and kurtosis.

We compare, analytically and numerically, the performance of IPW SKAT-O with un-

weighted applications of SKAT-O that either ignore the sampling design, use only a subset

of the samples, or include the case-control status as an additional covariate. We demon-

strate that the finite-sample adjusted IPW SKAT-O has proper type I error rates, is more

robust than unweighted tests, and has higher power than weighted burden tests and weighted

SKAT.

2.2 Methods

2.2.1 Tests for rare variant effects

Before we describe the study setting and our method, we review existing rare variant testing

methods. Suppose n subjects are sequenced in a region with p genotyped rare variants.

For the ith subject, let Yi denote the outcome variable of interest, Gi = (gi1, ..., gip) denote

the genotypes for the p variants (gij = 0, 1, 2 for 0, 1, or 2 copies of the minor allele), and

Xi = (xi1, ..., xiq) the covariates for which we would like to adjust. Assume Yi follows an

exponential family distribution with first two moments E(Yi) = µi and V ar(Yi) = φv(µi),

and link function

g(µi) = XiαX + GiαG (2.1)

where v(·) is a variance function. αX and αG are the vectors of regression coefficients for

the covariates and rare variants, respectively. Under this generalized linear model (GLM)

framework, the association between the p rare variants and the phenotype Yi can be tested

by evaluating the null hypothesis that H0 : αG = 0. A p degree of freedom (df) test however

may lose power when p is large. To reduce the d.f., additional assumptions need to be made.

Popular burden-based tests reduce the df by assuming that αGj = wjαG0 for all j, where

each wj is some known constant that may depend on MAF. Under this assumption, (2.1)

becomes g(µi) = XiαX + αG0

∑p
j=1 wjgij and the association between the genetic variants
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and the phenotype can be tested by conducting a standard 1 d.f. test with H0 : αG0 = 0.

SKAT takes a different approach to reducing the df. It assumes that each αGj indepen-

dently follows an arbitrary distribution with mean zero and variance wjψ, where wj is again

a fixed number that may depend on MAF. As a result, the null hypothesis H0 : αG = 0

is equivalent to H0 : ψ = 0, i.e. the variance component test in generalized linear mixed

models where αGjs are treated as random effects.

Burden tests assume that all variants are causal with the same direction of association

and common αG0. Violation of these assumptions can result in a loss of power. On the other

hand, if a large percentage of variants in the target region are associated with the phenotype

with the same direction of effect, burden tests can outperform SKAT because SKAT assumes

that αGj’s are independent. To explicitly account for possible correlation among the variant

effects, Lee et al. (2012b) proposed to allow αG to follow a multivariate distribution with

exchangeable correlation structure. That is, they assumed the correlation matrix of αG to

be Rρ = (1−ρ)I+ρ11′. Then for a fixed ρ, the score test statistic of the variance component

ψ is:

Qρ = (Y − µ̂)′Kρ(Y − µ̂)/φ̂2 (2.2)

where µ̂ is an n× 1 vector of estimates of µ, W = diag[w1, ..., wp] is a p× p diagonal matrix

of weights for the p rare variants, and Kρ = GWRρWG′. When ρ = 0, Qρ reduces to

SKAT. When ρ = 1, Qρ is equivalent to the burden score test statistic.

In practice, the optimal ρ is unknown and needs to be estimated from the data to max-

imize power. Therefore, Lee and others further proposed to select ρ by using the minimum

of p-values as a test statistic. Specifically, their test statistic is Qoptimal = inf0≤p≤1 pρ, where

pρ is the p-value computed based on Qρ. The resulting optimal test SKAT-O corresponds

to a best linear combination of SKAT and burden tests that maximizes power.

2.2.2 Study setting and notation

Now consider a target population of N individuals. For the ith individual, let Di denote

the disease status (1=case, 0=control), Yi the binary or continuous secondary trait, Gi =

(gi1, ..., gip) the genotypes for the p variants, and Xi = (xi1, ..., xiq) the covariates for which
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we would like to adjust (e.g. demographic or environmental variables). To related genotypes

to the secondary trait Yi such that, in the target population, Yi follows an exponential family

distribution with first two moments E(Yi) = µi and V ar(Yi) = φv(µi), and link function

(2.1). For binary Yi, we assume g(·) = logit. For continuous Yi, we assume g(·) is the identity

link function and Yi follows a normal distribution.

For a case-control study with a total of n < N subjects (n1 cases, n0 controls), the

data consist of (Di, Yi,Xi,Gi) (i = 1, ..., n). Interest is still in evaluating the null hypothesis

that H0 : αG = 0. However, unlike in the previous subsection where αG described the

association between the variants and phenotype Yi in the population as well as in the n

sampled individuals, here αG describes the variant-phenotype association in the population

but not necessarily in the n sampled cases and controls. Consequently, applying SKAT-O

ad hoc by using (a) only the controls, (b) only the cases, (c) the combined sample of cases

and controls, or (d) the combined sample of cases and controls and adjusting for the disease

status Di in the fitted model, may lead to misleading results. For example, if the disease

is common (e.g., prevalence of 0.10) and both the secondary trait and rare variants are

associated with the disease, then (a)-(d) can produce highly inflated type I error rates. In

Appendix A.2.1, we provide detailed conditions under which ad hoc applications of SKAT-O

are appropriate. Some of these conditions will also be demonstrated through simulations in

Section.

2.2.3 IPW SKAT-O

If all of the individuals in the target population were selected, we could test H0 : αG = 0

by directly applying SKAT-O. However, in a case-control study, the individuals are selected

with unequal probabilities. Let πi denote the inclusion probability of the ith individual.

In practice, if the disease prevalence κ is known, as it often is, then one can instead use

π = Di
n1

n
1
κ

+ (1 − Di)
n0

n
1

1−κ . A Horvitz-Thompson (Horvitz and Thompson, 1952) type

”estimator” of Qρ is

Q∗ρ = (Y − µ̂)′W∗KρW
∗(Y − µ̂)/φ̂2 (2.3)
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where µ̂ = g−1(X α̂X), w∗i = 1/πi, and W∗ = diag[w∗1, ..., w
∗
n]. The estimators α̂X and φ̂ of

αX and φ can be obtained by using IPW linear or logistic regression to fit the null model

g(µi) = XiαX . Equation (2.3) can also be written as

Q∗ρ = ρQ∗1 + (1− ρ)Q∗0, (2.4)

which is a weighted average of IPW SKAT and IPW burden score test statistics. One can

easily see that the unified test statistic reduces to an IPW SKAT statistic when ρ = 0 and

to an IPW burden score test statistic when ρ = 1.

We show in Appendix A.2.2 that for a fixed ρ, Q∗ρ asymptotically follows a mixture

of χ2 distributions. Specifically, if (λ1, ..., λm) are the eigenvalues of V̂−1/2KρV̂
−1/2 where

V̂ = diag[φ̂2/w∗21 /(y1 − µ̂1)2, ..., φ̂2/w∗2n /(yn − µ̂n)2],. then the null distribution of Q∗ρ can be

approximated by
∑m

j=1 λjχ
2
1,j, where χ2

1,j are independent χ2
1 random variables. To reduce

small sample bias, the restricted maximum likelihood (REML) estimator of the variance

component can be used (Zhang and Lin, 2003). Define P = V̂−1 − V̂−1X(X′V̂X)−1X′V̂−1.

We use the eigenvalues of P1/2KρP
1/2 to obtain the null distribution of Q∗ρ. A p-value can be

calculated by matching moments (Liu et al., 2009) or by inverting the characteristic function

(Davies, 1980).

To select ρ, we follow Lee et al. (2012b) by using the minimum of p-values as a test

statistic. Our final test statistic is

Q∗optimal = inf
0≤ρ≤1

p∗ρ (2.5)

where p∗ρ is the p-value computed based on Q∗ρ. Q∗optimal can be obtained by simple grid

search across a range of ρ: set a grid 0 = ρ1 < ρ2 < · · · < ρb = 1, then the test statistic

Q∗optimal = min{ρ1, ρ2, ..., ρb}.

We show in Appendix A.2.3 that, for large samples each test statistic Q∗ρ can be de-

composed into a mixture of two random variables, one of which asymptotically follows a

χ2
1 distribution, the other of which can be asymptotically approximated by a mixture of

chi-square distributions with a variance component. As a result, the p-value of Q∗optimal can

be quickly obtained analytically by one-dimensional numeric integration.
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2.2.4 Small-sample adjustment

One of the key strengths of IPW SKAT-O is its ability to efficiently compute asymptotic

p-values without the need for resampling. It can also easily adjust for covariates. These

features are advantageous in whole-genome and whole-exome sequencing studies wherein a

large number of tests are performed and one needs to control for multiple comparisons and

account for population stratification. However, even for sample sizes of 2000, the large-

sampled based p-value calculations can produce conservative results, leading to incorrect

type I error control and power loss (see simulation results). We propose in this section small-

sample-adjusted p-value calculations for Q∗ρ and Q∗optimal. Our derivations follow closely to

that of Lee et al. (2012a).

We first consider p-value calculations for Q∗ρ. Our approach is to readjust the moments of

the null distribution of Q∗ρ. In Appendix A.2.2, we show that µQ,ρ =
∑
λj, where (λ1, .., λm)

are eigenvalues of P1/2KρP
1/2, is an unbiased estimate of E(Q∗ρ|H0), the mean of Q∗ρ under

the null hypothesis. Unfortunately, because of the case-control sampling scheme, deriving

the analytical formula of the variance and kurtosis of Q∗ρ is infeasible. Hence, we propose to

estimate the variance and kurtosis by generating resampled phenotypes from the parametric

bootstrap (Davison and Hinkley, 1999).

Specifically, suppose Q
∗(b)
ρ (b = 1, ..., B) is the test statistic Q∗ρ from the bootstrap sample

Y(b). The sample variance and kurtosis are

σ̂2 =
1

B

B∑
b=1

(Q∗(b)ρ − µq,ρ)2 and γ̂ = B

∑B
b=1(Q

∗(b)
ρ − µq,ρ)4(∑B

b=1(Q
∗(b)
ρ − µq,ρ)2

)2 − 3.

Using the estimated moments, the p-value can be calculated as

1− F

(
(Q∗ρ − µQ,ρ)

√
2df

σ̂
+ df |χ2

df

)
where df = 12/γ̂ and F (·|χ2

df ) is the cumulative distribution function of χ2
df . We can apply

the same approach to Q∗optimal. Details are shown in Appendix A.2.3.

It should be noted that our method requires substantially less computation time than

methods that compute p-values by calculating the proportion of permutation or bootstrap

test statistics larger then the observed test statistic, .e.g., P (Q
∗(b)
ρ ≥ Q∗ρ). For whole-exome
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sequencing studies, one must be able to obtain p-values at the 10−3-10−6 level to account for

multiple comparisons when testing 20,000 genes. This requires more than 107-108 permuta-

tions or bootstraps for each gene. In contrast, our approach requires sampling phenotypes

under the null model only 10,000 times to obtain stable estimates of the higher moments.

And because the null model is the same across different genes, the same resampled bootstrap

phenotypes can be used for all the genes across the genome. This saves a substantial amount

of computation time.

2.3 Results

2.3.1 Simulation study

To compare the performance of the proposed methods to the performance of applying SKAT-

O ad hoc, we simulated case-control sequencing studies drawn from an underlying cohort of

size N . First, we generated sequence data of European ancestry from 10,000 chromosomes

over 1 Mb regions using the calibrated coalescent model (Schaffner et al., 2005). We then

randomly selected regions with lengths of 3 kb and chose from each region potential causal

variants from the rare variants with true MAF < 0.03. Secondary and disease phenotypes

were generated for each individual in the cohort using the linear and generalized linear

regression models

Yi = 0.5xi1 + 0.5xi2 +
s∑
j=1

αgjgij + εi

logit(P (Di = 1)) = β0 + 0.5xi1 + 0.5xi2 + βY Yi +
s∑
j=1

βGjgij,

where X1 and ε were standard normal random variables, X2 was a Bernoulli random variable

with probability of success 0.5, and (g1, ..., gs) were the variants in a 3 kb region. Finally,

case-control samples were selected by randomly sampling n1 cases and n0 controls from the

simulation cohort.

We applied six different implementations of SKAT-O to each of the randomly selected

3 kb regions by adapting six approaches: (1) using only the controls (Ctrl); (2) using only

the cases (Case); (3) using both cases and controls (Näıve); (4) joint analysis of cases and
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controls adjusting for disease status in the fitted null model (Joint); (5) IPW without small-

sample-adjustment (IPW); and (6) small-sample adjusted IPW (IPW-S). For all the imple-

mentations, Beta(1, 25) weights were used to upweight variants (Lee et al., 2012b). The

p-values of the optimal tests were computed using the 11 values of ρ equally spaced between

0 and 1. For IPW-S, the sample variance and kurtosis were estimated from 10,000 boot-

strapped phenotype sets. We also fixed ρ at 0 and 1 to obtain corresponding SKAT and

burden test p-values for approaches (1)-(6).

We simulated a wide variety of scenarios by varying a number of parameters, including

the disease prevalence κ = P (Di = 1) ∈ {0.01, 0.10}, the increase in log-odds of D per

unit increase in Y = βY ∈ {0, ln(2)/2, ln 2}, and sample size n1 = n0 ∈ {1000, 2000}. The

baseline odds parameter β0 was chosen to be consistent with κ.

To study the effects of varying proportions of variants being causal variants (causal with

respect to Y or D), we followed Lee and others Lee et al. (2012a) by considering four different

settings in which 0%, 10%, 20% or 50% of the rare variants were causal variants. For each

setting, we considered three different sign configurations of the nonzero αG’s (βG’s): 50% of

αG’s (βG’s) were positive, 80% of αG’s (βG’s) were positive, and all αG’s (βG’s) were positive.

We used |αGj| = cY | log10(pj)|/2 and |βGj| = cD| log10(pj)|/2, where pj was the MAF of the

jth variant. When 10%, 20%, and 50% of the rare variants were causally associated with

Y , we set cY = 0.6, cY = 0.4, and cY = 0.2, respectively. Similarly, when 10%, 20%, and

50% of the rare variants were causally associated with D, we set cD = log 7, cD = ln 5, and

cD = ln 2.5. In doing so, we used decreasing effects to compensate for the increased number

of causal variants.

For each scenario, we evaluated type I error rates at level α ∈ {0.01, 0.05} by simulating

a total of 10,000 replicate data sets, one for each of the 10,000 randomly selected 3 kb

regions. To investigate type I error rates at a level for exome-wide testing, we reduced the

computational burden by generating 1000 phenotype sets for each 3 kb region, giving a

total of 107 phenotypes. Type I error rates and power were estimated by the proposition of

p-values smaller than the given α-level.

Tables 2.1 and 2.2 show that, in all scenarios, IPW-S SKAT-O accurately controls type

I error with moderate α levels. Meanwhile, IPW SKAT-O produces slightly conservative
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Table 2.1: Empirical type I error rates for six different implementations of SKAT-O aimed at
testing an association between randomly selected 3 kb regions with a continuous secondary
trait. From left to right, the table considers scenarios with different disease-secondary trait
associations (βY ) and % of variants in the region that are causally associated with the disease.
The effects of causal variants decrease as the % of causal variants increases. The disease is
assumed to be common (10% prevalence) and to follow a logistic model. Sample size is fixed
at 1000 cases and 1000 controls.

0% causal 20% causal 50% causal

βY = 0 βY = ln 1.4 βY = ln 2 βY = 0 βY = ln 1.4 βY = ln 2 βY = 0 βY = ln 1.4 βY = ln 2
Ctrl

α = 0.05 0.047 0.048 0.047 0.048 0.051 0.067 0.051 0.055 0.059
α = 0.01 0.009 0.009 0.010 0.010 0.012 0.016 0.010 0.011 0.014

Case
α = 0.05 0.053 0.052 0.052 0.052 0.235 0.539 0.050 0.210 0.476
α = 0.01 0.011 0.010 0.011 0.012 0.111 0.368 0.010 0.096 0.317

Näıve
α = 0.05 0.047 0.049 0.051 0.052 0.064 0.094 0.049 0.063 0.081
α = 0.01 0.010 0.010 0.010 0.011 0.016 0.026 0.010 0.015 0.023

Joint
α = 0.05 0.047 0.048 0.050 0.053 0.204 0.457 0.049 0.183 0.402
α = 0.01 0.010 0.011 0.010 0.011 0.095 0.300 0.010 0.084 0.261

IPW
α = 0.05 0.044 0.044 0.043 0.046 0.044 0.047 0.046 0.045 0.043
α = 0.01 0.008 0.008 0.008 0.008 0.010 0.009 0.009 0.007 0.008

IPW-S
α = 0.05 0.049 0.048 0.047 0.050 0.048 0.048 0.051 0.048 0.046
α = 0.01 0.009 0.009 0.009 0.010 0.011 0.010 0.010 0.009 0.010

type I error rates. The four ad hoc implementations of SKAT-O control type I error well

if the secondary trait is not associated with the disease (i.e. βY = 0) or none of variants

in the region are causally associated with the disease (ı.e. βGj = 0 for all j); however, if

both conditions are not satisfied, then these methods can result in highly inflated type I error

rates. For rare diseases (Table 2.2), the control-only SKAT-O accurately controls type I error

since the control population closely resembles a random sample of the target population.

Figure 2.1 shows the empirical power at α = 2.5× 10−6 under various considered config-

urations. When the percentage of SNPs causally associated with the secondary trait Y was

low, SKATs and SKAT-Os had higher power than the burden tests. SKATs and SKAT-Os

also outperformed the burden tests when 50% of the causal SNPs were deleterious, regard-

less of what percentage of variants in the genomic region were causal. The burden tests

performed better than SKATs when both the percentage of variants that were causal and

the percentage of causal variants that were deleterious were high. Even then, SKAT-Os

performed better or similar to the burden tests. This suggests that the performance of

SKAT-O is data adaptive. Comparing the six different implementations (Ctrl, Case, Näıve,
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Table 2.2: Empirical type I error rates for six different implementations of SKAT-O aimed at
testing an association between randomly selected 3 kb regions with a continuous secondary
trait. From left to right, the table considers scenarios with different disease-secondary trait
associations (βY ) and % of variants in the region that are causally associated with the disease.
The effects of causal variants decrease as the % of causal variants increases. The disease is
assumed to be rare (1% prevalence) and to follow a logistic model. Sample size is fixed at
1000 cases and 1000 controls.

0% causal 20% causal 50% causal

βY = 0 βY = ln 1.4 βY = ln 2 βY = 0 βY = ln 1.4 βY = ln 2 βY = 0 βY = ln 1.4 βY = ln 2
Ctrl

α = 0.05 0.049 0.049 0.048 0.050 0.051 0.051 0.050 0.050 0.051
α = 0.01 0.011 0.011 0.009 0.010 0.010 0.012 0.010 0.011 0.010

Case
α = 0.05 0.050 0.051 0.051 0.051 0.211 0.486 0.049 0.178 0.394
α = 0.01 0.009 0.011 0.012 0.011 0.108 0.342 0.011 0.091 0.269

Näıve
α = 0.05 0.049 0.052 0.050 0.051 0.160 0.356 0.051 0.156 0.328
α = 0.01 0.011 0.012 0.010 0.010 0.065 0.195 0.012 0.061 0.167

Joint
α = 0.05 0.049 0.052 0.052 0.050 0.189 0.418 0.049 0.165 0.344
α = 0.01 0.011 0.012 0.010 0.011 0.093 0.287 0.011 0.079 0.229

IPW
α = 0.05 0.046 0.045 0.044 0.046 0.046 0.045 0.048 0.044 0.044
α = 0.01 0.008 0.007 0.007 0.008 0.009 0.009 0.009 0.009 0.007

IPW-S
α = 0.05 0.051 0.050 0.049 0.050 0.050 0.050 0.054 0.048 0.048
α = 0.01 0.010 0.008 0.008 0.010 0.011 0.009 0.010 0.010 0.009

Joint, IPW, and IPW-S) for each rare variant test (SKAT, burden, SKAT-O), we see that

the näıve and joint analyses were most powerful. Meanwhile, IPW-S, IPW, the control-only,

and case-only analyses had similar power. At less stringent levels of α (0.001–0.05), we

have found that IPW-S and IPW perform slightly better than the control-only and case-only

analyses (Figure A.1 in Appendix A.2.4). On the other hand, the control-only and case-only

analyses has slightly more power than IPW-S and IPW for studies with smaller sample sizes

(Figure A.2 in Appendix A.2.4).

2.3.2 Data example: Sequencing analysis of mammographic den-
sity

We applied the proposed IPW SKAT-O and other competing methods to next-generation

sequencing data from the Nurses’ Health Studies I and II (Mensah-Ablorh et al., 2016) to

test for association between mammographic density (MD) and rare variants. MD is regarded

as an intermediate phenotype in breast cancer development. The identification of genes that

regulate MD might enhance the ability to identify women at risk of developing breast cancer
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Figure 2.1: Empirical power at α = 2.5×10−6 of methods for testing an association between
randomly selected 3 kb regions with a continuous secondary trait. From top to bottom, the
plots consider settings in which 10%, 20% and 50% of rare variants were causally associated
with the secondary trait. From left to right, the plots consider settings in which 50%/50%,
80%/20%, and 100%/0% of the causal variants were deleterious/protective. The secondary
trait and variants are assumed to be not associated with the disease, i.e. βY = 0 and βGj = 0
for all j. Sample size is fixed at 2000 cases and 2000 controls.

(Kelemen et al., 2008).

Boundaries of 12 target regions were defined by recombination hotspots flanking SNPs

with published genome-wide significant associations to breast cancer risk. These regions

contained 75 genes, ranging in length from 0.5 to 770 kb. A total of 27,102 variants across

the 75 genes, including variants in exons, introns, and UTRs, were observed in 467 breast

cancer cases and 591 controls. 22,364 of the 27,102 observed variants (83%) had MAF < 0.03.

All subjects were female and of European ancestry.

We first applied a rank-based inverse normal transformation to MD (percentage of dense

breast tissue). We then considered each gene separately and tested the association between

variants in each gene and transformed MD. All 6 methods used in the simulation studies

were applied, adjusting for age (year), body mass index, menopause (yes or no), and top 10
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principal components of ancestry. To calculate subject-specific weights for IPW and AIPW

SKAT-O, we used statistics from the National Cancer Institute (2012) and the 2010 US

Consensus to estimate the prevalence of breast cancer at 2.67%.

To determine which ad hoc adaptations of SKAT-O might or might not in fact be valid,

we fitted the null model for the primary trait association analysis by regressing breast cancer

status on age, body mass index, menopause, top 10 principal components of ancestry, and

transformed MD. The estimated positive increase in log-odds of breast cancer risk per unit

increase in transformed MD (OR=1.62, p-value = 4.02×10−9) confirmed what is well known,

that having dense breast tissue increases risk of getting breast cancer (Vachon et al., 2007).

We also tested the association between variants in each gene and breast cancer status. Based

on what we learned from simulation studies, we concluded that ad hoc analysis of a gene

was valid only if there was little evidence of association between variants in the gene and

breast cancer risk.

The top 5 genes identified by IPW-S SKAT-O are shown in Table 2.3. The results show

that IPW-S SKAT-O was often the most powerful test. Four of the five genes (AC008937.3,

AC026462.2, ATE1 and NXN1 ) were mild to strongly associated with breast cancer risk.

Therefore, ad hoc analyses for these genes are likely invalid. Although no gene was significant

after Bonferroni correction (p-value < 0.05/75), there is reported evidence of association

with MD for variant rs3803662 on TOX3 (Fernandez-Navarro et al., 2013). This variant

was included in our set of TOX3 SNPs. However, since rs3803662 is a common variant

(MAF=0.29), more than 96% of the other SNPs on TOX3 are rare (MAF < 0.03), and

Beta(1, 25) weights were used in IPW-S SKAT-O to upweight rare variants and downweight

common variants, the association here between MD and TOX3 is driven by rare variants

and independent of the previously identified rs3803662.

To explore the individual variants within the top 5 genes and their effects, we per-

formed single-variant association analysis. Specifically, we applied IPW linear regression on

transformed mammographic density, adjusting for a single variant, age, body mass index,

menopause, and top 10 principal components. t-statistics based on the estimated variant

effects were computed (Figures 2.2(a)-(e)). There is no clear evidence that AC026462.2,

ATE1, and TOX3 have variants with opposing or similar effects. However, in AC008937.3
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Figure 2.2: Single variant analysis results from IPW linear regression of transformed mam-
mographic density. (a)-(e) Plots of log10(MAF) verses t-statistic values of each variant for
the top 5 genes identified by the small-sample adjusted IPW SKAT-O. The dashed line repre-
sents the 95% confidence interval of no association. (f) Histogram of minor allele frequencies
for 2,307 variants with MAF< 0.03.

and NXNL1, the majority of variants have noticeable effects in the same direction. 2,307 of

the 2,670 variants (86.4%) observed in the top five genes have MAF < 0.03. The histogram

of the estimated allele frequencies of the 2,307 variants with MAF < 0.03 is presented in

Figure 2.2(f) and indicates that the majority of variants are extremely rare.

2.4 Discussion

In this chapter, we propose a weighted version of SKAT-O to account for the biased sampling

when testing for rare variant effects on secondary traits using case-control sequencing data.

As an extension of SKAT-O, our proposed IPW SKAT-O includes both IPW burden and

IPW SKAT as special cases. IPW SKAT-O is computationally efficient and easily adjusts

for covariates such as age, gender, and principal components for population stratification.

We show in simulation studies that using SKAT-O ad hoc can result in highly inflated type

I error rates. Meanwhile, IPW SKAT-O maintains good control of type I error. We also
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show that IPW SKAT and IPW burden tests can lose power when underlying assumptions

are violated. In contrast, IPW SKAT-O is more robust in the wide range of circumstances

we considered.

In simulation and real data analysis, we used a flexible beta weight to upweight the influ-

ence of rarer variants. In addition to using a function of the MAF of variants as weights, we

can also consider choosing variants to be tested or constructing weights based on functional

information. For example, evolutionary biologists use computational tools like PhastCons,

PhyloP, and GERP to identify genetic regions that show preferential conservation across

evolutionary time. A variant that shows strong selective constraint might be deemed likely

functional, and therefore given a larger weight in SNP-set analyses. However, it is important

to recognize that there is no universal definition of what constitutes function. As a result,

there is currently a diverse set of functional annotations for every genetic variant. The

challenge of integrating different pieces of functional information to obtain a comprehensive

picture of the biological relevance of a variant is the topic of Chapter 3.
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3.1 Introduction

Since the completion of the human genome sequence, substantial effort has been put into

identifying and annotating its functional DNA elements. With no universal definition of

what constitutes function, we now have for any genetic variant, whether protein coding or

noncoding, a diverse set of functional annotations. For example, the computational tool

PolyPhen (Adzhubei et al., 2010) predicts damaging effects of missense mutations. Other

tools such as phastCons (Siepel et al., 2005), PhyloP (Siepel et al., 2006), and GERP++

(Davydov et al., 2010) leverage comparative sequence information by looking for regions

that show preferential conservation across evolutionary time. The Encyclopedia of DNA El-

ements (ENCODE) is a large-scale genomic project that has mapped regions of transcription,

transcription factor association, chromatin structure and histone modification, effectively as-

signing biochemical functions for 80% of the genome (The ENCODE Project Consortium,

2012). Although the set of available functional annotations vary considerably with respect

to the specific elements they predict and the extent of the human genome annotated by each,



it is well understood that they provide complementary lines of evidence (Kellis et al., 2014).

Therefore, in order to obtain a comprehensive picture of the biological relevance of genomic

segments, all of the information acquired by the different annotations need to be taken into

account.

Several unsupervised statistical learning algorithms have been proposed recently which

integrate large, diverse sets of annotations into single measures of functional importance

for a variant (Lu et al., 2015; Ionita-Laza et al., 2016). Compared to existing supervised

algorithms (Kircher et al., 2014), these approaches do not rely on any labelled training data.

This is particularly advantageous because with our current limited knowledge of non-coding

regions, labelled training data are inevitably biased. Summarizing multiple annotations with

a single measure also enables easy application. For instance, GenoCanyon (Lu et al., 2015)

integrates a collection of 22 comparative genomic conservation scores and biochemical signals

from the ENCODE project to calculate the posterior probability of a genomic position being

functional. These posterior probabilities can help guide researchers in prioritizing variants

for association analysis.

Existing unsupervised algorithms are not without limitations. GenoCanyon does not

fully take into account correlations between the functional scores. Instead, it assumes that

all annotations for a variant are conditionally independent given the variant’s functional

status. Another algorithm, EIGEN (Ionita-Laza et al., 2016), is arguably more robust. In

estimating the predictive accuracy for each annotation, it assumes that the annotations are

block-wise conditionally independent given, again, the variant’s functional status. However,

when EIGEN derives its final aggregate functional meta-score for each variant as a weighted

linear combination of the individual annotations, the applied weights only take into account

predictive accuracy of the annotations but not correlation between the annotations. In

practice, certain sets of annotations measure similar elements (e.g., evolution conservation)

and are therefore highly correlated.

In addition, GenoCanyon and EIGEN assume function as a binary outcome (functional

or non-functional), which may be over-simplistic and unrealistic. The concept of functionality

may be defined similarly between annotations measuring similar elements. However, what

constitutes function may be quite different between annotations measuring different elements.
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Figure 3.1: Models for the causal relations among variables. (a) All annotations yij (e.g.,
conservation measures, open chromatin data) are treated as consequences of a single latent
dichotomous variable of function ci. Annotations are assumed to be independent conditional
on ci. (b) All annotations yij are treated as consequences of ci. Annotations may be
correlated conditional on ci. (c) There are multiple, possibly related, latent dichotomous
variables of function ci1, ..., ciM . For each functional status cij, a subset of annotations
yij1, ..., yijLj

are observed as consequences. Annotations measuring the same cij may be
correlated conditional on cij.

A single binary outcome cannot effectively summarize multiple, complementary concepts of

functionality.

In this chapter, we propose to use a mixed model approach to integrate multiple anno-

tations (Figure 3.1). Our model defines function as a vector of binary outcomes, each meant

to capture functionality defined by a specific group of annotations. It also allows for correla-

tions within and between the different groups of annotations. Using the EM algorithm, our

approach calculates the posterior probability of a genomic position being functional.

We show that failure to take into account correlations between the functional scores can

result in an algorithm that is biased in favor of larger groups of correlated annotations. We

also show that if one assumes function is a binary outcome, then one also assumes that all

annotations are unconditionally correlated. This is in stark contrast to the observed corre-

lation structure between available functional annotations. Finally, we apply the proposed

algorithm to real annotations of non-coding and synonymous variants.
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3.2 Methods

3.2.1 Study setting and notation

Suppose that for SNP i and annotation group j, we have a set yij = (yij1, ..., yijLj
)′ of Lj

annotations. Each SNP has L =
∑M

j=1 Lj annotations in total. We wish to estimate the

binary functional statuses ci = (ci1, ..., ciM) corresponding to each group. Conditionally

on cij and the random effect variable bijk, assume that the elements of yi are independent

observations, each from a one-parameter exponential family with canonical parameterization

and a mean that is a function of cij and bijk. That is, for j = 1, ...,M and k = 1, ..., Lj

m = 1, ...,M ,

fjk(yijk|cij, bijk) = exp[{yijkηijk − djk(ηijk)}/φjk + hjk(yijk, φjk)] (3.1)

with

µijk = E(yijk) = d′jk(ηijk),

Vijk = var(yijk) = d′′jk(ηijk)φjk,

where ηijk = gjk(µijk) is a linear function of the functional status cij and random effect

variable bijk such that

ηijk = β0jk + cijβ1jk + bijk = xTij β jk + bijk

for xij = (1, cij)
T and β jk = (β0jk, β1jk)

T . To allow for additional correlations between

elements of yij, we assume that

bij =


bij1
bij2

...
bijLj

 iid∼ MVN(0,Σj(θ))

The marginal distribution of yi can be obtained by integrating over the distribution of ci

and bi,

f(yi) =

1,...,1∑
ci1=0,...,ciM=0

(
M∏
j=1

∫
f(yij|cij,bij)f(bij,θ)dbij

)
p(ci1, ..., ciM) (3.2)
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The primary focus is on calculation of p(ci|yi), the posterior probability of ci conditional

on the observed data. Because of the conditional independence of yi given ci and bi, an

EM algorithm (Dempster et al., 1977) provides a natural approach. However, the integra-

tion necessary in equation (3.2) cannot be evaluated in closed form for many choices of

f(yij|cij,bij). An EM algorithm becomes complicated then because calculating p(ci|yi) =

f(yi|ci)p(ci)/f(yi) involves this integration. As described in more detail, we apply an EM

algorithm using approximations where necessary for the required expectations with respect

to the posterior distribution.

In the following, we let 1m be the vector of length m with each element being one and

let Jm be the m × m matrix of ones, i.e. Jm = 1m1Tm. We let Im be the m × m identity

matrix. Subscripts are dropped whenever the dimensions of the vector or matrix is obvious.

Our derivations follow closely that of Sammel et al. (1997), who considered a general class

of latent variable models that allows for linear effects of covariates on multiple outcomes.

3.2.2 The EM algorithm

Maximization step

If ci and bim were directly observable we would simply maximize the complete data log-

likelihood,

log f(y, c,b) =
N∑
i=1

 M,Lj∑
j=1,k=1

log fjk(yijk|cij, bijk; β jk, φjk) +
M∑
j=1

log f(bij;θ) + log p(ci;γ)


(3.3)

to estimate the unknown parameters ζ = (β ,φ,γ,θ). Since ci and bi are unobservable,

the EM algorithm can be applied by solving instead the expected score functions, where the

expectation is taken with respect to the posterior distribution

f(ci,bi|yi) = f(bi|yi, ci)p(ci|yi) =
M∏
j=1

f(bij|yij, cij) · p(ci|yi)

of the missing data, conditionally on the observed data (Little and Rubin, 1987). In partic-

ular, if we let Si(ζ) denote the complete data score function ∂log f(yi, ci,bi)/∂ζ, then each
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SNP’s contribution to the expected score function for γ is given by

Ec,bSi(γz1,...,zM ) =
p(ci1 = z1, ..., ciM = zM |yi)

γz1,...,zM
(3.4)

for all (z1, ..., zM) ∈ {0, 1}M . Therefore,

γ̂(k+1)
z1,...,zM

=

∑N
i=1 p̂

(k)(ci1 = z1, ..., ciM = zM |yi)
N

(3.5)

For ζjk, the subset of parameters corresponding to the jkth outcome, the contribution to

the expected score equation for SNP i is

Ec,bSi(ζjk) =
∑

ci∈{0,1}M

(∫
Si(ζjk)f(bi|yi, ci) dbi

)
p(ci|yi) (3.6)

Depending on the form of the score function associated with the complete data log-likelihood

S(ζjk) =
∑N

i=1 Si(ζjk), the solution to Ec,bS(ζjk) = 0 may or may not be available in closed

form. In the absence, of a closed form solution, we update the estimates ζjk by using a one-

step Fisher scoring algorithm. The usual method of estimation for this model is iteratively

reweighed least squares (McCullagh and Nelder, 1989) where the weight function is updated

at every iteration.

Expectation step

Given the current estimates of the parameters, ζ = (β ,φ,γ,θ), the E-step is complicated by

the need to compute expectations with respect to the posteriors distributions f(bi|yi, ci) and

p(ci|yi) of the missing data, conditionally on the observed data. Only for normal outcomes

will the posterior distributions have closed form solutions. First consider the Monte Carlo

approximation. If we could generate a sample (c1,b1), ..., (cT ,bT ) directly from f(bi|yi, ci)

and p(ci|yi), we could estimate the expectation of functions of the data g(ci,bi) = g(yi, ci,bi)

by

Ec,bg(ci,bi) =
∑

ci∈{0,1}M

(∫
g(yi, ci,bi)f(bi|yi, ci) dbi

)
p(ci|yi) ≈

1

T

T∑
t=1

g(yi, ct,bt) (3.7)

However, in our setting, there are generally no closed form expression for f(bi|yi, ci) and

p(ci|yi). Rewriting the posterior distributions as

f(bi|yi, ci) =
M∏
j=1

f(yij|cij,bij)f(bij)

/∫
f(yij|cij,bij)f(bij) dbij,
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p(ci|yi) =

∏M
j=1

[∫
f(yij|cij,bij)f(bij) dbij

]
· p(ci)∑

c∈{0,1}M
∏M

j=1

[∫
f(yij|cj,bij)f(bij) dbij

]
· p(c)

and substituting into equation (3.7) we obtain

Ec,bg(ci,bi) =

∑
ci∈{0,1}M

[∫
g(yi, ci,bi)

∏M
j=1 f(yij|cij,bij)f(bij) dbi

]
· p(ci)∑

ci∈{0,1}M
∏M

j=1

[∫
f(yij|cij,bij)f(bij) dbij

]
· p(ci)

(3.8)

Now, given a sample of bis generated from the distribution f(bi), the Monte Carlo

approximation of each integral, top and bottom, is

Ec,bg(ci,bi) =

∑
ct1∈{0,1}M

[∑T2
t2=1 g(yi, ct1 ,bt2)

∏M
j=1 f(yij|ct1j,bt2j)

]
· p(ct1)∑

ct1∈{0,1}M

[∑T2
t2=1

∏M
j=1 f(yij|ct1j,bt2j)

]
· p(ct1)

(3.9)

Since this approximation is based on the weak law of large numbers, and our quantity is a

ratio of two approximate integrals, a large value of T2 is needed to yield precise estimates.

In practice, this method may be quite slow.

If g(yi, ci,bi) = g(yij′ , cij′ ,bij′) for some j′ ∈ {1, ...,M}, then the integral in the numer-

ator of Equation (3.8) is equivalent to

M∏
j=1

[∫
g(yij′ , cij′ ,bij′)

1(j=j′)f(yij|cijbij)f(bij) dbij

]
(3.10)

where 1(j = j′) is equal to 1 if j = j′ and 0 otherwise. In this case, an alternative to Monte

Carlo approximation is to use multivariate Gauss-Hermite quadratures. To approximate

quantity (3.10), select T fixed abscissae {zt}Tt=1 and corresponding weights {wt}Tt=1 for a

quadrature whose integration kernel is given by the density of a standard normal distribution

(Abramowitz and Stegun, 1987). Given the spectral decomposition of Σj = SjΛjS
T
j , let σjt =

{σjt(1), ..., σjt(Lj)} be an ordered set of Lj integers obtained by sampling with replacement

from {1, ..., T}, zjt = (zσjt(1), ..., zσjt(Lj))
T the corresponding set of abscissae, and bjt =

SjΛ
1/2
j zjt. Then each term in the product (3.10)∫

g(yij′ , cij′ ,bij′)
1(j=j′)f(yij|cijbij)f(bij) dbij

can be approximated as

∑
σjt

 Lj∏
k=1

wσjt(k)

 g(yij′ , cij′ ,bj′t)
1(j=j′)f(yij|cij,bjt)
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where the sum is over all the possible ordered sets σjt. For some ordered sets σjt, the weights∏Lj

k=1 wσjt(k) are very small, and thus contribute little to the sum. We may choose to remove

these quantities by pruning a specified fraction of the smallest weights.

3.2.3 CAMM: EM algorithm for mixture of binary and normal
annotations

The general formulation (3.1) allows different link functions gjk(·) for different annotations

and different covariance structures Σj(θ) to accommodate for correlations between the an-

notations. In this section, we derive specific results for the EM algorithm when annotations

are either conditionally bernoulli or normal random variables, i.e. all link functions gjk(·)

are either the identity or logistic link. We also introduce restrictions on the covariance ma-

trices Σj(θ) that allow for accurate approximations while greatly reducing the algorithm’s

computational speed. We call this algorithm CAMM for combined annotation mixed models.

Suppose that conditionally on cij and bij, the first L
(1)
j of the Lj outcomes yij fol-

low a bernoulli distribution and the remaining L
(2)
j = Lj − L(1)

j outcomes follow a normal

distribution. That is, for k = 1, 2, ..., L
(1)
j , yijk has distribution

fjk(yijk|cij, bijk) = exp[yijkηijk − log{1 + exp(ηijk)}]

where µijk = exp(ηijk)/{1 + exp(ηijk)} and Vijk = µijk(1− µijk), and for k = L
(1)
j + 1, L

(1)
j +

2, ..., Lj, yijk has distribution

fjk(yijk|cij, bijk) = exp[{yijkµijk − µ2
ijk/2}/φjk −

1

2
{y2

ikl/φjk + log(2πφjk)}]

where µijk = ηijk and Vijk = φjk.

If Σj is left unstructured, then the EM algorithm will need to estimate Lj(Lj + 1)/2

parameters for the covariance matrix of group j. An even greater computational challenge is

that the multivariate Gauss-Hermite quadrature will require TLj fixed abscissas. For Lj = 22

and T = 10, that amounts to 253 parameters and 10 sextillion abscissas. Thus, to reduce

the number of model parameters and to make the algorithm computationally feasible, we

assume that bij = Λjfij where fij is an unobserved vector of length Pj < Lj that follows
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MVN(0, I). Then for the E-step,∫
g(yij′ , cij′ ,bij′)

1(j=j′)f(yij|cijbij)f(bij) dbij

∫
g(yij′ , cij,bij′)

1(j=j′)f(yij|cij,bij)f(bij) dbij =

∫
g(yij, cij,bij)f(yij|cij,bij)f(fij) dfij

so that integration is over a Pj-dimensional space as opposed to an Lj-dimensional space.

The assumption bij = Λjfij forms the basis of factor analysis models (Lawley and Maxell,

1962) and is appropriate when the relationship between Lj manifest variables is thought

to be primarily a result of the relationship between Pj latent variables. For functional

annotations, the latent variables are likely to correspond to difference approaches measuring

the same element. As in factor analysis, the larger the factor loading λjkp, the more the jkth

annotation is said to “load” on the pth factor.

For the Lj1 binary outcomes, substituting the appropriate quantities into equation (3.6)

leads to the following expected score functions for variant i on outcome jk:

Ec,bSi(β jk) =
1∑

cij=0

(∫
xij(yijk − µijk) · f(bij|yij, cij) dbij

)
p(cij|yi) (3.11)

Ec,bSi(Λjk) =
1∑

cij=0

(∫
fij(yijk − µijk) · f(bij|yij, cij) dbij

)
p(cij|yi) (3.12)

To update estimates for β jk using a one-step Fisher scoring algorithm, consider a Taylor

series expansion of the expected score function (3.11) about the true parameter β jk,

Ec,bSi( β̂ jk) ≈ Ec,bSi(β jk) +

{
∂

∂β T
jk

Ec,bSi(β jk)

}
( β̂ jk − β jk).

Since Ec,bS( β̂ jk) =
∑N

i=1 Ec,bSi( β̂ jk) = 0 and assuming regularity conditions that allow the

interchange of differentiation and integration, we have

Ec,bS(β jk) ≈

{
N∑
i=1

Ii(β jk)

}
( β̂ jk − β jk),

where Ii is the ith SNP’s contribution to the observed complete data Fisher information

associated with the jkth outcome:

Ii(β jk) = − ∂

∂β T
jk

Ec,bSi(β jk) = −
∑

ci∈{0,1}M

[∫
∂

∂β T
jk

Si(β jk)f(bi|yi, ci)dbi

]
· p(ci|yi).
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The expected information is obtained by taking an additional expectation with respect to

the observed outcomes yi:

Ji(β jk) = −Eyi

∂

∂β T
jk

Ec,bSi(β jk).

Interchanging derivatives and expectations yield

Ji(β jk) = −
∑

ci∈{0,1}M

[∫
Eyi

{
∂

∂β T
jk

Si(β jk)

}
f(bi|yi, ci) dbi

]
· p(ci|yi)

For binary outcomes with logistic link, the expected information is

Ji(β jk) =
∑

ci∈{0,1}M

[∫
xijµijk(1− µijk)xTijf(bi|yi, ci)dbi

]
· p(ci|yi) (3.13)

Equations (3.11) and (3.13) yield the following scoring algorithm at iteration r + 1:

β̂
r+1

jk = β̂
(r)

jk +

(
N∑
i=1

Ec,b[xijµ̂
(r)
ijk(1− µ̂

(r)
ijk)x

T
ij]

)−1 N∑
i=1

Ec,b[xij(yijk − µ̂(r)
ijk)] (3.14)

Similarly,

Λ̂r+1
jk = Λ̂

(r)
jk +

(
N∑
i=1

Ec,b[fijµ̂
(r)
ijk(1− µ̂

(r)
ijk)f

T
ij ]

)−1 N∑
i=1

Ec,b[fij(yijk − µ̂(r)
ijk)] (3.15)

For the L
(2)
j normal outcomes, contributions to the complete data score functions for

each SNP i are

Si(β jk) =
1

φjk
xijeijk

Si(Λjk) =
1

φjk
fijeijk

Si(φjk) = − 1

2φjk
+

1

2φ2
jk

e2
ijk

where eijk = yijk − xTij β jk − fTijΛjk. It follows that

β̂
(r+1)

jk =

(
N∑
i=1

Ec,b[xijx
T
ij]

)−1 N∑
i=1

Ec,b[xij(yijk − fTij Λ̂
(r)
jk )] (3.16)
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Λ̂
(r+1)
jk =

(
N∑
i=1

Ec,b[fijf
T
ij ]

)−1 N∑
i=1

Ec,b[fij(yijk − xTij β̂
(r)

jk )] (3.17)

φ̂jk =
1

N

N∑
i=1

Ec,b[ê
2
ijk] (3.18)

Beginning with reasonable initial estimates of the parameters, CAMM proceeds by first

using the E-step to obtain the desired expectations relative to the posterior distribution.

Given those estimates, we then solve the expected score equations to obtain new parameter

estimates or one-step updates. The algorithm proceeds until the relative change in the

estimated parameters is sufficiently small.

3.2.4 GenoCanyon

GenoCanyon is a special case of CAMM: it assumes that there is a single group of annotations

and that the annotations are independent conditional on the univariate functional status ci1,

i.e. M = 1 and Σ1 = 0. However, assuming a single binary functional status implies that

all annotations are unconditionally correlated. Also, failure to take into account correlations

between annotations, conditional on the functional status, can result in an algorithm that is

biased in favor of certain types of functional measures. These concepts are best demonstrated

by a simple example.

Suppose we have two normally distributed annotations, yi11 and yi12, equally informative

in predicting ci1 but independent conditional on ci1. For simplicity, we drop the jth index,

e.g. yi1k = yik. Then, since

cov(yi1, yi2) = β1β2var(ci),

the annotations are unconditionally correlated provided that var(ci) > 0, i.e. there are

functional and non-functional variants present. Meanwhile, the posterior probability of ci

given yi1 and yi2 is

p(ci|yi1, yi2) =
f(yi1|ci) · f(yi2|ci) · p(ci)∑1
c=0 f(yi1|c) · f(yi2|c) · p(c)

.

Now suppose we have a third normally distributed annotation, yi3, that is independent of yi2

but highly correlated with yi1, conditionally on ci. Intuitively, yi3 provides little additional

information beyond what is already available from yi1 and yi2. Thus, a sensible algorithm
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would calculate

p(ci|yi1, yi2, yi3) ≈ p(ci|yi1, yi2).

On the other hand, an algorithm that incorrectly assumes conditional independence between

yi2 and yi3 would calculate

p(ci|yi1, yi2, yi3) ≈ f(yi1|ci)2 · f(yi2|ci) · p(ci)∑1
c=0 f(yi1|c)2 · f(yi2|c) · p(c)

.

This effectively says that yi2 is twice as informative as yi1, even though in reality the two

annotations are equally informative. A similar argument can be made for EIGEN.

GenoCanyon integrates 22 different annotations to calculate posterior probabilities, in-

cluding 2 genomic conservation measures, 2 indicators of open chromatin, 8 histone modi-

fications, and 10 transcription factor binding site (TFBS) peaks. While some groups may

be correlated with others, some may be independent. Also, annotations within each of the

four groups of measures are likely correlated. In Figure 3.2, we show the empirical matrix of

correlations between 7 conservation measures and 3 open chromatin data across non-variant

or synonymous variants of chromosome 1. It is easy to see that there is minimal correlation

between the two groups, but measures within each group are highly correlated. The block-

diagonal correlation structure contradicts the assumption of a single binary functional status,

because under this assumption, all groups should be unconditionally correlated. Correlation

between measures of the same group and the unequal number of measures within each group

also lead us to conclude that GenoCanyon is biased in favor of histone modifications and

TFBS peaks, which have more annotations than genomic conservation measures and open

chromatin.

3.3 Results

We downloaded a set of 7 evolutionary conservation annotations (GERP RS, PhyloP, Phy-

loM, PhyloV, PhastP, PhastM, PhastV) and 3 open chromatin data (OCPval, PolIIPval,

ctcfPval) for noncoding and synonymous coding variants on chromosome 1 from the UCSC

genome browser (January 2015). GERP RS, PhyloP, PhyloM, and PhyloV were continuous

measures. The rest were probabilities. In total, there were 38,402 variants with scores for
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Figure 3.2: Matrix of correlations between 7 conservation scores and 3 open chromatin data.

all 10 annotations. The matrix of correlations between the annotations is provided in Fig-

ure 3.2. We chose from the list of functional annotations several subsets to integrate: (A)

GERP RS, PhyloP, PhyloM, PhyloV; (B) PhastP, PhastM, PhastV; (C) OCPval, PolIIPval,

ctcfPval; (D) GERP RS, PhyloP, PhyloM, PhyloV, PhastP, PhastM, PhastV; (E) PhastP,

PhastM, PhastV, OCPval, PolIIPval, ctcfPval; and (F) all 10 annotations.

For subsets A-D, which included only annotations measuring similar elements, we defined

function of a variant as a univariate bernoulli outcome. We considered defining function of

a variant as a univariate as well as a bivariate bernoulli outcome for the remaining subsets

E and F, which included both conservation measures and open chromatin data. To provide

CAMM with initial parameter estimates, for each group j of annotations, we partitioned the

variants into 2 clusters by either applying (1) 2-means clustering to the annotations of group

j or (2) a threshold to one of the annotations in group j. We then fitted marginal linear or

logistic regression models on each score, adjusting for the predicted cluster assignment. We

experimented with different number of factors Pj for each conditional covariance matrix Σj

of random effects.

The chosen number of factors as well as the estimated intercepts and slopes from CAMM

are provided in Table 3.1. Many annotations provided information for predicting functional
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Table 3.1: Parameter settings and estimates for Models A-F, including the method for calcu-
lating initial parameters (2-means clustering, thresholding, or both), dimension of functional
status (univariate or bivariate), chosen number of factors for the conditional covariance ma-
trices Σj of random effects, estimated intercepts β0jk, and estimated slopes β1jk for the effect
of functional status cij on annotation yijk.

Model A B C D E1 E2 F
Initial both both both both 2-means thresh both
Dim function 1 1 1 1 1 1 2
Num factors 2 1 1 2 1 1 2, 1
Conservation GERP RS Intercept -0.580 -0.494 -0.494

Slope 4.948 4.913 4.916
PhyloP Intercept -0.177 -0.166 -0.166

Slope 0.059 0.570 0.570
PhyloM Intercept -0.203 -0.170 -0.170

Slope 2.110 2.084 2.085
PhyloV Intercept -0.180 -0.152 -0.152

Slope 6.903 6.850 6.845
PhastP Intercept -2.268 -2.223 -2.122 -2.272 -2.223

Slope 3.135 3.181 0.318 3.088 3.181
PhastM Intercept -3.124 -5.191 -3.608 -3.150 -5.191

Slope 5.536 11.748 0.658 5.380 11.758
PhastV Intercept -2.775 -4.678 -3.191 -2.792 -4.677

Slope 5.121 17.769 0.326 4.950 17.744
Open chromatin OCPval Intercept -2.542 -2.619 -4.726 -2.542

Slope 7.282 7.482 6.411 7.261
PolIIPval Intercept -6.508 -6.391 -8.490 -6.559

Slope 8.521 8.396 6.603 8.572
ctcfPval Intercept -17.779 -13.604 -8.315 -17.928

Slope 19.108 14.936 6.300 19.257

status, as indicated by the magnitude of the estimate slopes relative to the estimated con-

ditional variances (not shown). In Figure A.3 (Appendix A.3.1), we show that CAMM

accurately decomposed each of the four continuous scores in set A into a mixture of two

normal distributions.

For models B, C, E1, and E2, which only used probability scores, the estimated loading

factors converged to 0. Thus, it is reasonable to assume that the scores in these models

are independent conditional on functional status. On the other hand, for models A, D,

and F which used continuous scores, we found that annotations were correlated even after

adjusting for functional status. In Table A.1 (Appendix A.3.1), we compare the empirical

unconditional covariance matrix of scores in A to the estimated conditional covariance matrix

Σ̂1 + diag(φ̂11, ..., φ̂14). Though the two matrices measure slightly different quantities, it

is clear that CAMM accurately estimates the correlation structure between the different

annotations and that the annotations are correlated conditional on the estimated functional

status.
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Table 3.2: Correlation between the posterior probabilities of functional status from applying
CAMM to annotation sets A-E. Using different initial parameters and applying CAMM to
annotation set E resulted in two converged models, E1 and E2.

A B C D E1 E2
A 1.000 0.575 0.027 0.995 0.564 0.025
B 0.575 1.000 0.108 0.583 0.988 0.103
C 0.027 0.108 1.000 0.028 0.157 1.000
D 0.995 0.583 0.028 1.000 0.572 0.025
E1 0.564 0.988 0.157 0.572 1.000 0.152
E2 0.025 0.103 1.000 0.025 0.152 1.000

For models A-D, which defined function as a univariate bernoulli outcome and only

included annotations measuring similar elements, using 2-means clustering or thresholding

to propose initial parameters for the EM algorithm resulted in the same fitted model upon

convergence. When applied to the set E of annotations, however, CAMM either had trouble

converging or it converged to different models depending on the initial parameters. In Table

3.1, we see that, compared to models B and C, models E1 and E2 shrink the estimated

slopes for certain annotations towards zero, but leave estimates for other annotations rela-

tively unchanged. The posterior probabilities of function from models E1 and E2 were also

near perfectly correlated with either the posteriors from B or the posteriors from C (Table

3.2). This indicates that, although set E consists of both conservation and open chromatin

scores, assuming function as a single binary outcome resulted in models that, rather than

integrating all the scores, used only one type of score, conservation or open chromatin, to

predict functional status.

Model F used both conservation and open chromatin scores. However, unlike models E1

and E2, F assumed variant function to be a bivariate bernoulli outcome, the first outcome

being functional status defined by conservation scores, the second being functional status

defined by open chromatin data. The model was not sensitive to initial parameters. The

estimated posterior probabilities of function were also highly discrete; the probability of

function for each variant tended to be high for one of the four functional states (0,0), (0,1),

(1,0), or (1,1), and low for the remaining states (Figure A.4 of Appendix A.3.1).

In Table 3.3, we estimate the percentage of variants in each state. A chi-squared test

comparing the observed to the expected percentages under independence gives a significant
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Table 3.3: Distribution of posterior probabilities, averaged across all ∼38,000 variants. The
expected distribution assuming the two binary functional outcomes are independent is pro-
vided in parentheses.

conservation
0 1

open chromatin

0 68.71% 3.79% 72.50%
(68.41%) (4.09%)

1 25.65% 1.85% 27.50%
(25.95%) (1.55%)
94.36% 5.64%

p-value of 1.5×10−8. We estimate that 100−68.71 = 31.29% of the variants are either (1,0),

(0,1), or (1,1), that is, functional in terms of evolutionary conservation, chromatin structure,

or both. Since the observed percentage of functional variants that are (1,1) is greater than

that expected percentage under independence (1.85% > 1.55%), there is evidence of enrich-

ment between conservation and open chromatin scores. Finally, we estimate that 5.64% and

27.50% of the variants are conserved and part of open chromatin, respectively. It is worth

noting that comparative genomic studies estimate that 5% of mammalian genomes are under

strong evolutionary constraint (Kellis et al., 2014).

3.4 Discussion

Recently proposed statistical frameworks including GenoCanyon and EIGEN assume that

there exists a single latent dichotomous variable summarizing functional status. They also

either ignore or do not fully take into account correlation between annotations conditional on

function. In view of what biologists have observed, that the diverse set of available functional

annotations provide complementary–rather than entirely overlapping–information, a more

realistic model is one that assumes annotation scores are measured responses of multiple

possibly related yet distinct latent variables. In this chapter, we proposed CAMM, a mixed

model approach that allows for multiple, possibly correlated, binary functional statuses.

Individually, each status captures functionality defined by a certain group of annotations.

Annotations within each group can also be correlated conditional on function.

We demonstrated using real data that CAMM can integrate annotations of different
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types and predict a variant’s posterior distribution of multivariate functional status. The

posterior can be highly intuitive if it is clear how function is defined by each group of

annotations. (In our data example, we grouped conservation measures into one group and

open chromatin data into another. Therefore, function in the two groups corresponded

to strong evolutionary constraint and open chromatin, respectively.) Also, if needed, the

posterior can be conveniently summarized by single measures such as the “probability of

function according to at least one group of annotations” or “probability of function according

to all groups of annotations”. This will be particularly useful with increasing number of

groups.

CAMM is a flexible and informative approach for predicting functional regions in the

genome. However, there are many ways in which we can apply CAMM, and more thought

needs to be given on what annotations to include, how to group the annotations, and what

assumptions can be reasonably made to increase computational speed. If we are interested

in eventually identifying variants associated with some phenotype, then it may be desirable

to use certain cell-type specific, species specific, or phenotype-related annotations to predict

functionality. Also, certain groups of annotations may be correlated, for example, histone

marker and open chromatin data. Should they constitute two different functions or just

one? Finally, having a large number of groups may better reflect the true nature of the

data. However, fitting an algorithm to estimate all the parameters may be computationally

expensive. Therefore, although some groups of annotations may be correlated, it may be

computationally advantageous to assume they are not and estimate the parameters of the

two groups separately, especially if the correlation is weak.
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Appendix

A.1 Chapter 1 Appendix

A.1.1 Derivations for common disease, binary secondary trait

Here, we determine the conditions under which r and rd are approximately linear functions

of Z. First, note that r and rd are functions of Z and G through the conditional means µD(1)

and µD(0), which are themselves functions of η = Φ−1(µD(0)) = β0+Z′β Z+G′β G. It follows

that r and rd are functions of η and we can write r(Z,G) = r(η) and rd(Z,G) = rd(η). We

will use the different forms interchangeably. Now consider the second order Taylor series

expansions of r(η) and rd(η) centered at η0 = gD(κ):

r(η) = r(η0) + r′(η0)(η − η0) +
r′′(η∗)

2
(η − η0)2

rd(η) = rd(η0) + r′d(η0)(η − η0) +
r′′d(η

∗
d)

2
(η − η0)2

where η∗ and η∗d are some real numbers between η and η0. One can show that for gD(·) = logit

and κ ∈ (0.1, 0.5),

max
η

∣∣∣∣r′′(η)

2

∣∣∣∣ ≈
{

1
4

(
1− κ

P̃ (D=1)

)
|βY | if κ ≤ P̃ (D = 1)

1
2
(κ− P̃ (D = 1))|βY | if κ > P̃ (D = 1)

and ∣∣∣∣r′′d(η)

2

∣∣∣∣ < 1

20
|βY | ∀η.

Similar bounds can be found for gD(·) = Φ−1 and, in general, any smooth gD(·). These

bounds suggest that if β G = 0 and |βY | and |η− η0| are not exceedingly large (i.e., Y and Z

are not strongly associated with D), then the quadratic terms in the Taylor expansions will

be small, and the remainders r(η) and rd(η) will be approximately linear in η = β0 + Z′βZ .



An interesting aside: r(η) becomes increasingly linear in η as κ tends to P̃ (D = 1). In

fact, if κ = P̃ (D = 1), then π(0) = π(1) and it is easy to show from Equation (3) in the

article that r(·) is exactly equal to 0. This result reflects the notion that a näıve analysis is

valid when the study population is a random sample of the general population. Of course,

this condition is not true in the setting of case-control studies.

When r0(·) and r1(·) are linear functions of Z, the control-only and case-only analyses

can be applied to estimate and make inference on αG. An adjusted analysis is also valid

if, in addition, r1(·) − r0(·) is a constant. It is easy to show that this required condition is

true for gD(·) = logit and approximately true for gD(·) = Φ−1 when the disease is common.

Specifically, if gD(·) = logit, then

r1(Z,G)− r0(Z,G) = βY .

Meanwhile, the probit and logit link functions are very close in the mid-range. For η such

that Φ(η) ∈ (0.2, 0.8), the standard normal cumulative distribution can be approximated

accurately by a transformed logistic distribution Φ(η) ≈ expit(η/λ). Popular choices for

λ include
√

3/π and 5/8 [Amemiya, 1981]. This approximation implies that for common

disease and gD(·) = Φ−1,

r1(Z,G)− r0(Z,G) ≈ βY /λ.

For gD(p) = log(− log(1 − p)), it can be shown, by taking a second order Taylor series

expansion of

T (η + βY ) = log

{
g−1
D (η + βY )

1− g−1
D (η + βY )

}
centered at η, that

r1(Z,G)− r0(Z,G) = T (η + βY )− T (η) ≈ T ′(η∗)βY + 0.5T ′′(η∗)β2
Y ≈ 1.3βY + 0.22β2

Y .

A.1.2 Derivations for common disease, continuous secondary trait

Here, we derive Equations (1.7) and (1.8) from the article and provide the closed form

expressions for µ̃Y and σ̃2. We then determine the conditions under which r(·) and rd(·)

are approximately linear in Z and X. First, suppose that θ is a parameter in R and

Y ∼ N(µY + θσ2, σ2). Our interest is in calculating E(Y |X,G,Z, D, S = 1, θ = 0) and
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V ar(Y |X,G,Z, D, S = 1, θ = 0), but since P̃ (Y |X,G,Z, D) = P (Y |X,G,Z, D), it suf-

fices to calculate the mean and variance of Y |X,G,Z, D, θ = 0. With that in mind, as-

sume gD = Φ−1 and define D∗ to be the random variable such that D∗ = gD(µD(Y )) + ε,

ε ∼ N(0, 1). Then P (D∗ > 0|Z,G, Y ) = P (D = 1|Z,G, Y ). Furthermore,

P (D = 1|Z,G,X, θ) =

∫
P (D = 1|Z,G,X, θ, y)P (y|X,G,Z, θ)dy

=

∫
P (D∗ > 0|Z,G,X, θ, y)P (y|X,G,Z, θ)dy D|Z,G, y⊥⊥X, θ

= P (D∗ > 0|Z,G,X, θ)

= P (ε∗ > −gD(µD(0)))

= Φ(f(θ))

where ε∗ ∼ N ((µY + θσ2)βY , σ
2β2

Y + 1) and

f(θ) =
gD(µD(µY + θσ2))√

σ2β2
Y + 1

.

We can now calculate the first two moments of Y |X,G,Z, D, θ = 0 via its moment generating

function:

E(etY |X,G,Z, D = d, θ = 0) = exp

(
tµY +

t2σ2

2

){
Φ(f(t))

Φ(f(0))

}d{
1− Φ(f(t))

1− Φ(f(0))

}1−d

E(Y |X,G,Z, D = d, θ = 0) = µY + (−1)1−d · c · φ(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

E(Y 2|X,G,Z, D = d, θ = 0) = σ2 + (−1)1−d · c2 · φ′(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

+ µ2
Y + 2µY (−1)1−d · c · φ(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

The variance follows immediately:

V ar(Y |X,G,Z, D = d, θ = 0) =

σ2 + c2

(
(−1)1−d · φ′(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d −
φ(f(0))2

{Φ(f(0))}2d{1− Φ(f(0))}2(1−d)

)

Letting η denote f(0) gives us Equations (1.7) and (1.8).
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Next, to calculate µ̃Y and σ̃2, note that

P̃ (D|Z,G,X, θ) =
P (S = 1|D) · P (D|Z,G,X, θ)∑1

d=0 P (S = 1|D = d) · P (D = d|Z,G,X, θ)
.

Therefore,

E(Y |X,G,Z, S = 1, θ = 0) = µY + c · φ(η) · g(Z,G,X)

= µY + r(Z,G,X)

V ar(Y |X,G,Z, S = 1, θ = 0) = σ2 + c2 ·
{
φ′(η) · g(Z,G,X)− φ(η)2 · g(Z,G,X)2

}
= σ2 + s(Z,G,X)

where

g(Z,G,X) =
P (S = 1|D = 1)− P (S = 1|D = 0)∑1

d=0 P (S = 1|D = d) · P (D = d|Z,G,X, θ = 0)
.

Finally, we determine the conditions under which r(·) and rd(·) are approximately linear

in Z and X, and s and sd are approximately constants. We begin by again noting that the all

remainders are a function of η, which is itself a linear function of Z, G, and X. Thus, we can

write r(Z,G,X) = r(η), rd(Z,G,X) = rd(η), s(Z,G,X) = s(η), and sd(Z,G,X) = sd(η).

If αG = β G = 0, then the remainders are functions of Z and X alone. Meanwhile, consider

the second and first order order Taylor series expansions of rd(η) and sd(η) centered at

η0 = gD(κ)/
√
σ2β2

Y + 1. One can show that in these expansions the quadratic and linear

coefficients are bounded: ∣∣∣∣r′′d(η)

2

∣∣∣∣ < 3

20
|c|

and

|s′d(η)| < 3

10
c2

for all η and d = 0, 1. Similar bounds can be derived for r(η) and s(η). Therefore, if

αG = β G = 0 and |βY | and |η−η0| are not exceedingly large (i.e., Y and Z are not strongly

associated with D and X is not strongly associated with Y ), then the quadratic and linear

terms in the Taylor expansion of r(η), rd(η), s(η), and sd(η) will be small, r(η) and rd(η) will

be approximately linear in η—hence in X and Z—and s(η) and sd(η) we be approximately

constant.
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An adjusted analysis is unbiased if, in addition, α ∗∗Z0 = α ∗∗Z1 and α ∗∗X0 = α ∗∗X1 or,

equivalently, r1(·) − r0(·) is a constant. It is easy to show that this required condition is

approximately true for common disease by using the logit approximation for the probit:

r1(X,G,Z)− r0(X,G,Z) ≈ c/λ

While s0(η) is generally not equal to s1(η), in our simulations, the difference between the

sample variance of the case-only and control-only analyses with pooled covariates seemed to

be small enough for inference to be approximately correct.

A.1.3 Derivations for rare disease

Here, we derive the theoretical bias for the case-only analysis with pooled covariates when

the disease is rare and gD = Φ−1. If Y is binary, then

lim
η→−∞

r′1(η) = lim
η→−∞

φ(η + βY )

Φ(η + βY )
− φ(η)

Φ(η)

= lim
η→−∞

φ(η)

Φ(η)
+
φ′(η∗)Φ(η∗)− φ(η∗)2

Φ(η∗)2
βY −

φ(η)

Φ(η)
η∗ between η and η + βY

= βY · lim
η→−∞

φ′(η)Φ(η)− φ(η)2

Φ(η)2

= βY · lim
η→−∞

ηφ(η) + (η2 − 1)Φ(η)

2Φ(η)
L’Hopital’s rule

= βY · lim
η→−∞

ηΦ(η)

φ(η)
L’Hopital’s rule

= −βY

and

lim
η→−∞

r′′1(η) = lim
η→−∞

d

d(η + βY )

φ(η + βY )

Φ(η + βY )
− d

d(η)

φ(η)

Φ(η)

= (−1)− (−1)

= 0.

It follows that

lim
η→−∞

r1(η) = r1(Φ−1(κ))− βY (η − Φ−1(κ)),

or equivalently,

lim
κ→0

r1(Z,G) =
{
r1(Φ−1(κ)) + βY (Φ−1(κ)− β0)

}
− Z′βY β Z −G′βY β G.
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If instead Y is continuous, then because limη→−∞
φ(η)
ηΦ(η)

= −1,

r1(Z,G,X) = c
φ(η)

Φ(η)
≈ −cη.

Meanwhile,

lim
κ→0

s1(Z,G,X) = lim
η→−∞

c2 ·
{
φ′(η)Φ(η)− φ(η)2

Φ(η)2

}
= −c2.

A.2 Chapter 2 Appendix

A.2.1 Using SKAT-O ad hoc

Define the working vector Y∗ = XαX + ∆ (Y − µ) where ∆ = diag{g′(µi)}, and the

variance matrix V = diag{φv(µi)[g
′(µi)]

2}. Their estimates under the null hypothesis are

Ŷ∗ = X α̂X + ∆̂ (Y − µ̂), ∆̂ = diag{g′(µ̂i)}, and V̂ = diag{φ̂v(µ̂i)[g
′(µ̂i)]

2}, where α̂X

and φ̂ are obtained by using generalized linear regression to fit the null model g(µi) = XαX .

Given that g(·) is a canonical link function,

Qρ = (Y − µ̂)′Kρ(Y − µ̂)/φ̂2 = (Y − µ̂)′ ∆̂ V̂−1KρV̂
−1 ∆̂ (Y − µ̂)/φ̂2.

Now, if V̂−1/2 ∆̂ (Y − µ̂) ∼ MVN(0, I), then it can be easily shown that Qρ ∼
∑
λjχ

2
1j

where λj’s are eigenvalues of V̂−1/2KρV̂
−1/2 and χ2

1j’s are independent χ2
1 random variables.

A p-value for Qρ can then be calculated. The requirement V̂−1/2 ∆̂ (Y− µ̂) ∼MVN(0, I) is

satisfied when the study subjects are a random sample of the population or Y is the disease

status in a case-control study. However, it is not necessarily satisfied when Y is a secondary

trait in a case-control study.

Indeed, V̂−1/2 ∆̂ (Y − µ̂) ∼MVN(0, I) if and only if the score

X′V̂−1 ∆̂ (Y − µ̂) ∼MVN(0,X′V̂−1X)

if and only if generalized linear regression can be applied to properly estimate and make

inference on αG. Conditions under which generalized linear regression can be applied to

estimate and make inference on αG have been studied previously [Lin and Zeng, 2009] and

was the topic of Chapter 1. We summarize here without proof the conditions under which a

standard p df test, and therefore Qρ and SKAT-O, can be applied ad hoc: if the secondary
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trait or rare variants is not associated with the disease (i.e. βY = 0 or β G = 0), then all

ad hoc applications of Qρ and SKAT-O (e.g., methods (a)-(d)) can be used; if the disease is

rare and is assume to follow a logistic model, then ad hoc applications of Qρ and SKAT-O

that condition on disease status (e.g., (a), (b), and (d)) can be used; if, however, the disease

is rare but is assumed to follow a non-logistic model such as the probit model, then only ad

hoc applications of Qρ and SKAT-O based on only the controls (e.g., (a)) can be used.

A.2.2 Asymptotic distribution and small-sample mean of Q∗ρ under

H0

Suppose αX and φ are known. Let si indicated with the values 1 versus 0 whether or not an

individual from the target population is sampled in the case-control study. Use the subscript

N to denote matrices or vectors for the target population, e.g., YN , µN , W∗
N , KρN , SN .

Then

Q∗ρ = (Y − µ)′W∗KρW
∗(Y − µ)/φ2

= (YN − µN)′W∗
NSNKρNSNW∗

N(YN − µN)/φ2.

Since E[siw
∗
i (yi − µi)/φ] = E[E{siw∗i (yi − µi)/φ|Di}] = E[(yi − µi)/φ] = 0, it follows that

asymptotically

SNW∗
N(YN − µN)/φ ∼MVN(0,V−1

N ),

where V−1
N = diag{E[siw

∗2
i (yi − µi)2/φ2]}, and

Q∗ρ ∼
∑

λjχ
2
1,j,

where (λ1, ..., λm) are the eigenvalues of V
−1/2
N KρNV

−1/2
N . In practice, the eigenvalues can

be estimated with the eigenvalues of V̂−1/2KρV̂
−1/2 where V̂ = diag[φ̂2/w∗21 /(y1 − µ̂1)2, ...,

φ̂2/w∗2n /(yn − µ̂n)2], which only uses data from the case-control samples. To calculate the

mean of Q∗ρ, let (u1, ...,um) be the eigenvectors of V
−1/2
N KρNV

−1/2
N . Then

Q∗ρ =
∑

λj(YN − µN)′W∗
NSNuju

′
jSNW∗

N(YN − µN)/φ2

and E(Q∗ρ) =
∑
λj.
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A.2.3 Null distribution of small-sample IPW SKAT-O

Define Z = V̂−1/2GW and z̄ = (z̄1, ..., z̄n)′, where z̄i =
∑p

j=1 zij/p. Additionally, let M =

z̄(z̄′z̄)−1z̄′ and

τ(ρ) = p2ρz̄′ +
1− ρ
z̄′z̄

p∑
j=1

(z̄′z·j)
2,

where z·j is the jth column of Z. Following the same argument in Lee and others (2012), it

can be shown that Q∗ρ is equivalent to

(1− ρ)κ1 + τ(ρ)κ2

where

κ1 = (1− ρ)ȳ′(I−M)ZZ′(I−M)ȳ + 2(1− ρ)ȳ′(I−M)ZZ′Mȳ

and

κ2 =
ȳ′z̄z̄′ȳ

z̄′z̄
.

It can be shown that κ2 asymptotically follows the χ2
1 distribution, and κ1 is asymptotically

the same as
∑m

k=1 λkηk+ζ where {λ1, ..., λm} are non-zero eigenvalues of Z′(I−M)Z, ηk(k =

0, ...,m) are independent and identically distributed χ2
1 random variables, and ζ satisfies the

following conditions: E(ζ) = 0, Var(ζ) = 4trace(Z′MZZ′(I−M)Z), Corr(
∑m

k=1 λkηk, ζ) = 0,

and Corr(η0, ζ) = 0.

From there, asymptotic p-values can be obtained through one-dimensional integration.

When the sample size is small, however, the asymptotic moments of κ1 and κ2 can be larger

than their small-sample moments. Thus, we apply a small-sample adjustment procedure to

the null distributions of κ1 and κ2 that is similar to the adjustment procedure we applied

to the null distribution of Q∗ρ in Section 2.2.4. Specifically, we compute the small-sample

variance and kurtosis of κ1 and κ2 and apply the moment-matching approximation to obtain

their adjusted asymptotic distribution. To obtain a p-value, we apply the algorithm in Lee

and others (2012) with the null distributions of κ1 and κ2.

A.2.4 Additional simulation results
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Figure A.1: Empirical power at α = 0.001 of methods for testing an association between
randomly selected 3 kb regions with a continuous secondary trait. From top to bottom, the
plots consider settings in which 10%, 20% and 50% of rare variants were causally associated
with the secondary trait. From left to right, the plots consider settings in which 50%/50%,
80%/20%, and 100%/0% of the causal variants were deleterious/protective. The secondary
trait and variants are assumed to be not associated with the disease, i.e. βY = 0 and βGj = 0
for all j. Sample size is fixed at 2000 cases and 2000 controls.

A.3 Chapter 3 Appendix

A.3.1 Additional figures and tables

Table A.1: Empirical unconditional vs. estimated conditional covariance matrix of random
effects for model A.

Empirical Estimated
GERP RS PhyloP PhyloM PhyloV GERP RS PhyloP PhyloM PhyloV

GERP RS 7.896 1.016 2.752 3.787 6.4325 0.9046 2.1486 1.9214
PhyloP 1.016 0.668 0.611 0.668 0.9046 0.6643 0.5534 0.4682
PhyloM 2.752 0.611 1.319 1.675 2.1486 0.5534 1.0784 0.8748
PhyloV 3.787 0.668 1.675 4.122 1.9214 0.4682 0.8748 1.5773
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Figure A.2: Empirical power at α = 2.5×10−6 of methods for testing an association between
randomly selected 3 kb regions with a continuous secondary trait. From top to bottom, the
plots consider settings in which 10%, 20% and 50% of rare variants were causally associated
with the secondary trait. From left to right, the plots consider settings in which 50%/50%,
80%/20%, and 100%/0% of the causal variants were deleterious/protective. The secondary
trait and variants are assumed to be not associated with the disease, i.e. βY = 0 and βGj = 0
for all j. Sample size is fixed at 1000 cases and 1000 controls.

GERP_RS

score

D
en

si
ty

−5 0 5

0.
00

0.
10

0.
20

0.
30

PhyloP

score

D
en

si
ty

−3 −2 −1 0

0.
0

0.
5

1.
0

1.
5

PhyloM

score

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

PhyloV

score

D
en

si
ty

−4 0 2 4 6 8 10

0.
0

0.
2

0.
4

Figure A.3: Empirical distribution of functional scores for annotation set (A) and estimated
conditional distributions using CAMM. Red and solid curves correspond to the estimated dis-
tributions for non-functional variants. Green and dotted curves correspond to the estimated
distributions for functional variants.
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Figure A.4: Distribution of posterior probabilities for model F.
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