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Abstract 

Behavior genetics is the study of the relationship between genetic variation and psychological 

traits. Turkheimer (2000) proposed “Three Laws of Behavior Genetics” based on empirical 

regularities observed in studies of twins and other kinships. On the basis of molecular studies 

that have measured DNA variation directly, we propose a Fourth Law of Behavior Genetics: “A 

typical human behavioral trait is associated with very many genetic variants, each of which 

accounts for a very small percentage of the behavioral variability.” This law explains several 

consistent patterns in the results of gene discovery studies, including the failure of candidate 

gene studies to robustly replicate, the need for genome-wide association studies (and why such 

studies have a much stronger replication record), and the crucial importance of extremely large 

samples in these endeavors. We review the evidence in favor of the Fourth Law and discuss its 

implications for the design and interpretation of gene-behavior research. 

Keywords: behavior genetics, genome-wide association studies, polygenic architecture, 

individual differences, molecular genetics 
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The Fourth Law of Behavior Genetics 

Behavior genetics is the study of the manner in which genetic variation affects 

psychological phenotypes (traits), including cognitive abilities, personality, mental illness, and 

social attitudes. In a seminal article published in this journal, Turkheimer (2000) noted three 

robust empirical regularities that had by then emerged from the literature on behavior genetics. 

He dubbed these regularities the “Three Laws of Behavior Genetics.” They are: 

1. All human behavioral traits are heritable. [That is, they are affected to some degree by 

genetic variation.] 

2. The effect of being raised in the same family is smaller than the effect of genes. 

3. A substantial portion of the variation in complex human behavioral traits is not accounted 

for by the effects of genes or families. 

These observations surprised many outsiders to the field of behavior genetics at the time, yet 

they remain an accurate broad-brush summary of the empirical evidence fourteen years later. 

Indeed, they have attained the status of “null hypotheses”—the most reasonable a priori 

expectations to hold in the absence of contrary evidence (Turkheimer, Pettersson, & Horn, 

2014). 

The original Three Laws summarized results from biometrical studies of twins, adoptees, 

and other kinships. These research designs have many valuable uses, but they cannot discover 

particular genomic regions or specific variants that are causally responsible for downstream 

phenotypic variation. Since the completion of the Human Genome Project, numerous studies of 

behavioral traits have directly measured DNA variation among individuals in an attempt to take 

this logical next step. While there are many types of genetic variants, most studies have assayed 

single-nucleotide polymorphisms (SNPs), which are sites in the genome where single DNA base 
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pairs carried by distinct individuals may differ.2 Virtually all SNPs have two different possible 

base pairs, called alleles. The less frequent allele in the population is called the minor allele of 

the SNP. If the frequency of a SNP’s minor allele in the population exceeds 1%, the SNP is 

called a common variant. Among individuals of European descent, there are approximately 8 

million common variants in the human genome. 

The results of studies searching for SNP-behavior associations have disappointed any 

hope that a small number of these common variants are responsible for a large percentage of 

cross-sectional trait variability. Instead, the evidence to date is consistent with what we propose 

as the Fourth Law of Behavior Genetics: 

4. A typical human behavioral trait is associated with very many genetic variants, each of 

which accounts for a very small percentage of the behavioral variability.3 

For purposes of the law, a “typical human behavioral trait” is one that is (a) customarily 

measured by psychometric methods, (b) a serious psychiatric disease, or (c) a social outcome, 

such as educational attainment, that is plausibly related to a person’s behavioral dispositions. As 

is customary in behavioral science, we use the word law to describe what we consider to be a 

very robust empirical regularity (not a universal, mechanistic truth). In the remainder of this 

article we will summarize the mounting empirical evidence in favor of the Fourth Law, consider 

what gene-behavior research strategies are likely to be profitable in light of the Fourth Law, and 

briefly consider possible explanations for the Fourth Law. 

 

Empirical Evidence for the Fourth Law 

Each person inherits two copies of any DNA segment, one from each parent, and 

therefore may carry 0, 1, or 2 copies of the minor allele at a particular SNP. The number of 
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minor alleles can be taken to characterize the individual’s genotype at that SNP. The straight line 

that best fits the overall genotype-phenotype relationship is called the average effect of gene 

substitution (Fisher, 1941; Lee & Chow, 2013). The true genotype-phenotype relationship will 

certainly not be precisely linear, but the slope of the best-fitting straight line is equal to a 

weighted average of the phenotypic changes following from the possible gene substitutions. In 

principle, it is also possible to estimate the nonlinear effects of genotype, as well as gene-gene 

and gene-environment interactions. In practice, however, given the staggering combinatorial 

explosion of possible hypotheses, it will normally be a useful first step to estimate the average 

effects in order to identify a subset of SNPs that should be studied in greater detail (e.g., 

Rietveld, Esko, et al., 2014). 

For example, a SNP designated “rs9320913” is located on chromosome 6 and has two 

alleles: C (cytosine) and A (adenine). It was identified in a recent genome-wide association study 

(GWAS) of educational attainment (Rietveld et al., 2013). A GWAS is a hypothesis-free analysis 

of the predictive power of each of approximately one million (or more) individual SNPs spread 

across the genome.  The goal of a GWAS is to discover which SNPs are associated with a trait of 

interest (e.g., educational attainment, intelligence, extraversion, or schizophrenia). Because so 

many statistical tests are performed in a GWAS, the significance threshold is typically set at a 

stringent 5×10–8 (“p < .00000005”) rather than the 5×10–2 (“p < .05”) that is standard for 

behavioral studies assumed to be testing a single hypothesis; this practice is analogous to a 

Bonferroni correction. The association between rs9320913 and education reached the GWAS 

significance threshold and was also replicated at a conventional level in two follow-up studies of 

separate samples (Rietveld et al., 2013; Rietveld, Conley, et al., 2014). 



THE FOURTH LAW OF BEHAVIOR GENETICS 6 

Strikingly, each additional copy of A (the education-increasing allele) is associated with 

only one additional month of schooling. Note that a combined sample size of 126,599 

participants from over 50 cohorts in 15 countries was used to discover and initially replicate this 

gene-education association; an additional sample of 34,428 participants was used for a second 

replication. The SNP rs9320913 is estimated to account for only 0.02% of the overall variability 

in educational attainment, but biometrical studies show that the total percentage of variability 

owed to genetic differences is three orders of magnitude larger (Heath et al., 1985; Rietveld et 

al., 2013). Since the SNPs with the largest effects are the easiest to find, these results suggest that 

educational attainment is a phenotype affected by thousands of undiscovered genetic variants, 

each responsible for a minuscule fraction of individual differences. 

The story is similar for the better-studied phenotype of schizophrenia. Studies of DNA 

from over 36,000 diagnosed cases and 113,000 controls have so far identified 108 SNPs 

associated with schizophrenia at a strict evidentiary threshold, yet these 108 SNPs jointly account 

for only 3.4% of the variance of the trait (measured on a liability scale; Ripke et al., 2014). Each 

of these 108 “hits” has a small effect size: typically, less than a 1.1-fold increase in the odds of a 

schizophrenia diagnosis with each additional risk-conferring allele.  

As GWAS sample sizes get larger, will more variants (presumably with even smaller 

effect sizes) be identified? The answer is surely yes, since the fraction of trait variance captured 

by currently known SNPs falls well below the traits’ heritabilities. This quantity—the total 

fraction of variance in a trait attributable to genetic factors—is traditionally estimated using 

behavioral genetics methods. In recent years, however, a novel technique has been developed 

that uses GWAS data from nominally unrelated individuals to estimate an even more relevant 

benchmark: the total fraction of variance in a trait that is attributable to the average effects of 
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SNPs (Yang et al., 2010; Lee, Wray, Goddard, & Visscher, 2011; Speed, Hemani, Johnson, & 

Balding, 2012; Lee & Chow, 2014). This technique is called genomic-relatedness-matrix 

restricted maximum likelihood (GREML).4 In essence, GREML determines whether the 

randomly-arising genetic similarity between pairs of unrelated individuals predicts the 

phenotypic similarity between those individuals; a stronger relationship between genetic and 

phenotypic similarity implies a greater influence of the measured SNPs on the trait of interest. 

Importantly, the magnitude of this influence can be accurately estimated even if the sample size 

is too small to identify all (or any) of the associated variants at a high level of confidence. 

GREML is perhaps the most important innovation in quantitative genetics to have been 

introduced in the last dozen years, and it has provided convincing evidence that the heritabilities 

of many psychological traits are more or less accurately estimated in traditional family studies 

(e.g., Lee et al., 2011; Davies et al., 2011; Chabris et al., 2012; Rietveld et al., 2013; Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013).  

It is also noteworthy that even if few individual SNPs contributing to the GREML-

estimated heritability meet the evidentiary threshold of a hit, it is possible to use summary 

statistics from GWAS results to estimate coarse-grained quantities such as the total number of 

SNPs that will ultimately be found to be associated with the trait (Stahl et al., 2012). Applying 

this method to a subset of the schizophrenia data produced an estimate of 8,300 trait-associated 

SNPs (Ripke et al., 2013). Figure 1 demonstrates that the number of schizophrenia-associated 

SNPs discovered has increased substantially as GWAS sample sizes have increased. The results 

of Ripke et al. (2013) and the GREML studies cited above tell us is that there is every reason to 

expect the trend in Figure 1 to continue. 
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The genetic architectures of many human phenotypes tend to be highly polygenic 

(influenced by many different variants; Gottesman & Shields, 1967; Visscher, Brown, 

McCarthy, & Yang, 2012), and what the Fourth Law states is that this is also true for behavioral 

phenotypes. Since the number of common variants is finite (albeit large), the Fourth Law 

suggests in turn that the genetic architectures of human phenotypes are also pleiotropic (each 

variant affects many different traits). Moreover, evidence to date, implies that behavioral 

phenotypes are even more polygenic than typical physical and medical traits. For example, the 

SNPs that have the largest effects on education (Rietveld et al., 2013) account for roughly one 

tenth as much variability (0.02%) as those with the largest effects on physical traits such as 

height and body mass index (roughly 0.3%). Moreover, as shown in Figure 2, a comparison of 

schizophrenia with a number of physical diseases suggests that its genetic variability is 

distributed among a greater number of variants with smaller effects (Ripke et al., 2013). 

Besides the small effect sizes of positive results in well-powered (large-sample) studies, 

null results (at the 5×10–8 level) in less powerful studies provide converging evidence that 

variants with large effects are unlikely to exist. For example, null results have been obtained in 

GWAS of personality (de Moor et al., 2012), suggesting that these traits are not exceptions to the 

pattern described here. 

It is possible that rare SNPs (with <1% frequencies of the minor allele) make an 

important contribution to the heritabilities of behavioral traits; such SNPs are not well-

represented in the GWAS we have cited. However, recent studies comprehensively assaying both 

common and rare variants in certain regions of the genome have failed to find any variants 

accounting for large portions of phenotypic variability (e.g., Purcell et al., 2014). Thus it seems 

that the inclusion of more variants in whole-genome sequencing studies will not alter the 
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conclusion that individual genetic polymorphisms with effects on cognition, personality, 

education, or psychiatric disease accounting for even 1% of the variability are unlikely to exist. 

At this point, claims to the contrary should be considered extraordinary, and require 

corresponding amounts of evidence. 

The Fourth Law also explains why the results of “candidate gene” studies, which focus 

on a handful of genetic variants, usually fail to replicate in independent samples. The main 

problem is that such studies tend to have insufficient statistical power. If well-powered studies 

that search the entire genome for associations find only tiny effects, then large effects found in 

studies with sample sizes in the dozens to hundreds (e.g., Kogan et al., 2011; Skafidas et al., 

2012) are likely to be false positives. This was shown empirically for the trait of general 

intelligence (g) by Chabris et al. (2012), who, using a sample of about 10,000 participants, failed 

to replicate published associations between g and 12 genetic variants. Accordingly, results of 

small-sample genetic studies should be regarded with great caution, especially in studies 

claiming to have identified interactions (Duncan & Keller, 2012). 

However, candidate gene studies can succeed when the sample is large and the candidate 

variants to be investigated have high prior probabilities of being associated with the trait—for 

example, when they consist of hits from a previous GWAS of a “proxy phenotype” that is itself 

strongly associated with the trait of interest. For example, Rietveld, Esko, et al. (2014) began 

with 69 SNPs that were associated with educational attainment (in a subset of the data from 

Rietveld et al., 2013) and tested them for association with g (which is correlated with educational 

attainment) in a separate sample of 24,189 individuals. Three of those SNPs were significant hits 

after adjustments for multiple hypothesis testing, and represent the first robust discovery of 
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common genetic variants associated with normal-range, non-age-related variation in general 

cognitive ability. 

There are caveats to the use of the causality-implying term “effect” when discussing 

GWAS. One is that a SNP-phenotype association may reflect the causal effect of a correlated but 

unmeasured variant in the same genomic region. For example, if rs9320913 turns out to be a 

mere proxy for the causal variant, then the average effect of the true causal SNP on education 

may be somewhat larger than estimated by Rietveld et al. (2013). It is natural to wonder whether 

the empirical findings summarized by the Fourth Law might be artifacts attributable to the 

attenuation of larger effect sizes at unmeasured causal variants, but careful investigation has 

shown that a multitude of causal variants with small effects must still be invoked to explain 

GWAS results (Wray, Purcell, & Visscher, 2011). 

 

 The Relevance of GWAS in Light of the Fourth Law 

It has been argued that the empirical regularity summarized by the Fourth Law 

strengthens the case for deemphasizing gene-mapping studies (Turkheimer, 2012). We believe 

that the appropriate response to the Fourth Law is instead to pursue research strategies suited to 

the reality that most genetic effects on behavioral traits are very small. 

 Critics of GWAS findings have argued that they have a poor record of replication 

(McClellan & King, 2010; Turkheimer, 2012). It is true that the small SNP-trait association 

signals described by the Fourth Law are impossible to distinguish from noise in poorly-powered 

studies. In our view, however, the Fourth Law makes clear that one solution is larger samples—

much larger than most psychologists contemplate in the normal course of their research. Indeed, 

when GWAS are conducted with adequate sample sizes and strict evidentiary standards, the 
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degree of quantitative replication is extremely strong (e.g., Rietveld, Conley, et al., 2014).5 In a 

GWAS of height, the correlation among strictly significant hits between initial-sample and 

replication-sample estimates of SNP effects was nearly .97 (Lango Allen et al., 2010)—almost 

perfect agreement. Such precision holds even when comparing groups of different geographic 

origin (see Figure 3). The correlation between effects measured in European and East Asian 

samples is only about .75 because the disease studies represented in Figure 3 employed smaller 

sample sizes than the height study. Nevertheless it is evident that the best-fitting straight line in 

Figure 3 would approximate an intercept of zero and a slope of one, as would be expected if 

European effect sizes were estimated with no error and were equal to East Asian effect sizes (up 

to sampling noise). This concordance is particularly remarkable because East Asians differ from 

Europeans in genetic background and environmental exposures. Evidence from studies of 

schizophrenia (de Candia et al., 2013; Ripke et al., 2014) suggests that this pattern will 

generalize to behavioral traits. 

Skeptics also caution that the problem of distinguishing causation from correlation in 

genetic association studies may be intractable (Charney, 2012; Turkheimer, 2012). Since 

observational studies can usually only reveal correlation, what is the justification for inferring 

that a SNP-phenotype association reflects an effect on the trait? Here we consider the issue of 

whether we can be confident that an association signal from some genomic region reflects the 

causal effect of a gene in that region rather than confounding with trait-affecting environmental 

conditions (Lee, 2012). 

One major potential confound of this type is population stratification: If a SNP is more 

common in individuals of a certain ancestry or region, then it may falsely appear that the SNP is 

associated with a trait when the trait is actually associated with a pattern of ancestry or region of 
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origin. Modern GWAS of unrelated individuals seek to account for this possibility by controlling 

for several principal components of the massive correlation matrix of all the assayed SNPs. 

These principal components typically identify geographic ancestry of individuals in the sample 

(Price et al., 2006). There is a more elegant study design, however, that can provide powerful 

evidence in followup studies against confounding as an explanation for genetic associations. 

When an organism becomes a parent, it passes on a randomly chosen allele from each of 

its pairs to a given offspring. Because the offspring’s genotype is randomly assigned conditional 

on the parental genotypes, a significant association between the presence of a particular allele 

and the focal phenotype within families is strong evidence for the presence of a nearby causal 

variant (Fisher, 1952; Ewens, Li, & Spielman, 2008; Lee & Chow, 2013). And indeed, family-

based genetic studies have so far affirmed the results of GWAS that use unrelated individuals. 

For example, alleles identified as increasing liability to schizophrenia in standard GWAS were 

more likely, in a separate sample of families, to be transmitted from parents to affected children 

(Ripke et al., 2014; see also Benyamin, Visscher, & McRae, 2009; Lango Allen et al., 2010; 

Turchin et al., 2012; Wood et al., 2014). There is also evidence that the top SNPs identified by 

Rietveld et al. (2013) are jointly predictive of sibling differences in educational attainment 

(Rietveld, Conley, et al., 2014). 

It has been argued that the effect sizes discovered by GWAS are so small that they are 

scientifically inert (e.g., Turkheimer, 2012). However, a small effect size from variation across 

individuals in a gene does not rule out a major qualitative role of the gene product itself in the 

relevant biological pathway. The principle is that making a small change to one step in a process 

may cause only a small change in the final output of the process, but making a large change, or 

omitting the step entirely, can halt the entire process. For example, by using molecular biological 
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techniques to silence zebrafish genes whose orthologs were discovered in a GWAS to contain 

variants with small effects on human platelet count, researchers were able to abolish platelet 

production in this model organism (Gieger et al., 2011). Whether such cases will be numerous or 

rare for behavioral traits is a question that future GWAS-based research may soon answer.  

Moreover, even though individual genetic variants have small effects, GWAS results can 

be used to construct a polygenic score, a variable that exploits the joint predictive power of many 

variants and therefore can explain substantial variance in the trait or outcome. The simplest 

polygenic score for a trait is constructed by adding up the individual effects measured for all of 

the SNPs in a GWAS (Dudbridge, 2013). Rietveld et al. (2013) found that such a polygenic score 

for educational attainment explains 2–3% of the variation across people—one hundred times 

more than was explained by the most predictive individual SNP. The power of polygenic scores 

increases with the size of the GWAS samples they are derived from; e.g., 15% of the variance in 

educational attainment could be explained if the scores came from a sample of 1 million 

individuals (Rietveld et al., 2013). Polygenic scores could have value for predicting disease or 

disability risk (Ripke et al., 2014), for identifying individuals who might benefit from early 

treatment or intervention, for studying gene-environment interactions, and for modeling genetic 

differences among individuals in epidemiological and experimental studies of behavioral and 

biological treatments (Rietveld et al., 2013; Rietveld, Conley, et al., 2014). 

When the early height GWAS were published, the confirmed SNP associations had a 

combined explanatory power of only 2–3%. This low predictive power was thought by some to 

illustrate fundamental limitations of GWAS methodology, such as its inability to estimate 

interactions and nonlinear effects that were hypothesized to account for the apparently “missing 

heritability.” This may turn out to be true for some phenotypes, but GREML studies have now 
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confirmed that that for many phenotypes, including height, intelligence and schizophrenia, the 

combined additive effects of common SNPs do account for a large fraction of the variance. The 

most recent height GWAS (Wood et al., 2014) brings this fraction to about 17% (if the criterion 

is out-of-sample predictive accuracy) and 29% (if the criterion is GREML-estimated heritability 

attributable to 10,000 SNPs with the strongest evidence for association). Thus, much of the 

heritability of height was not missing, but merely hiding in the form of small but additive effect 

sizes. This can be seen as yet another illustration of the Fourth Law in action. 

 

The Importance of the Fourth Law 

We have recently highlighted two possible explanations for the Fourth Law (Chabris et 

al., 2013). First, causal chains from DNA variation to behavioral phenotypes are likely very long 

(longer than with physical traits, such as eye color), so the effect of any one variant on any one 

such trait is likely to be small. For example, a SNP may have a substantial effect on the 

concentration of an enzyme in cortical synapses, but that proximal biochemical phenotype is 

only one of many factors that explain why some people score higher than others on paper-and-

pencil IQ tests, so the SNP has only a tiny effect on the distal phenotype of cognitive function. 

Second, when a population is already well-adapted to its environment, mutations with 

large effects on a focal trait are likely to have deleterious side effects (Fisher, 1930). If the effect 

of a genetic variant is small enough, however, then its population frequency has some chance of 

drifting upward to a detectable level (Kimura, 1983).6 These forces could conspire to keep 

variants of large effect on a trait at negligible frequency, while allowing some variants of small 

effect to become relatively common. Some support for this hypothesis comes from two 

observations: (1) SNPs discovered in GWAS that have larger additive effects tend to have lower 
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frequencies of the minor allele (Park et al., 2011), and (2) variants with very large phenotypic 

effects, such as those causing mental retardation, are always very rare and thus contribute little to 

overall population variability, or they have their effects later in life (e.g, the well-documented 

relationship between variants of the APOE gene and cognitive decline). These examples suggest 

that valuable evolutionary insights might flow from the detailed analysis of GWAS data (Turchin 

et al., 2012). 

In conclusion, we shall place the Fourth Law in the context of what has long been well-

understood about the relationship between genes and human behavior, namely that it is mistaken 

to believe that there might be a gene “for” one complex trait or another (for an eloquent 

statement of this basic point, see Dawkins, 1979, p. 189). What the Fourth Law adds to this 

understanding is that most genetic variability in behavior between individuals is attributable to 

genetic differences that are each responsible for very small behavioral differences.  

The law we have proposed here provides a unified conceptual explanation for several 

consistent patterns in the results of the past two decades of gene discovery studies, including the 

failure of candidate gene studies to replicate, the need for genome-wide association studies (and 

why they actually do replicate), and the crucial importance of extremely large samples in these 

endeavors. We believe that compelling motives for pursuing gene-mapping studies of behavioral 

traits can be found in the promise of learning more about the evolutionary trajectory of the 

human species, the formulation of new biological hypotheses regarding cognition and neural 

function, and the value of polygenic scores in the social and medical sciences. The Fourth Law 

of Behavior Genetics provides fundamental guidance for how research in all of these areas can 

most efficiently progress. 
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Notes 

1 Address correspondence to: Christopher F. Chabris, Department of Psychology, Union College, 

807 Union Street, Schenectady, NY 12308 USA (chabris@gmail.com). 

2 There are other kinds of genetic variants besides SNPs, including insertions, deletions, and 

variable-length repeats of one or more base pairs or short sequences, but SNPs are the most 

abundant and readily assayed kind of variant. 

3 A recent review of genetic research on intelligence has formulated a similar generalization: “A 

third law has emerged from has emerged from molecular genetic research that attempts to 

identify specific genes responsible for widespread heritability, especially genome-wide 

association (GWA) studies of the past few years: The heritability of traits is caused by many 

genes of small effect” (Plomin & Deary, in press). Note that the parallel is between Plomin and 

Deary’s “third law” and what we are calling the “Fourth Law of Behavior Genetics.”    

4 This technique is also sometimes called GCTA, for Genomewide Complex Trait Analysis (e.g., 

Plomin and Deary, in press). 

5 Additionally, when the results of GWAS and candidate gene studies are compared directly, 

GWAS hits are usually more likely to replicate (e.g., in a study of SNPs reportedly associated 

with glioma, Walsh et al., 2013). 

6 This explanation was first put forth by Lande (1983) to explain, for instance, why pesticide 

resistance is polygenic in some insect populations and dependent on variants of large effect in 

other populations that have been disturbed by humans. 
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Figure 1. Number of schizophrenia-associated SNPs clearing the strict GWAS significance 

threshold (p < 5×10–8) as a function of discovery-stage sample size, which has increased over 

time. Although the four studies presented are not methodologically identical (because of 

different ratios of cases to controls), the increasing number of “hits” with sample size is 

nevertheless informative. 
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Figure 2. Estimated total number of SNPs associated with five disease phenotypes based on 

results of genome-wide association studies (based on a figure in Ripke et al., 2013). 
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Figure 3. The strong agreement between genetic effects on 28 diseases estimated in Europeans 

and East Asians (reproduced from Marigorta & Navarro, 2013). The x-axis corresponds to the 

increment in the odds (on a logarithmic scale) of suffering from the disease for each additional 

copy of the reference allele, as estimated in Europeans. The y-axis corresponds to the same 

quantity estimated in East Asians. The increment in log(odds) is the equivalent of the “additive 

effect” for dichotomously scored traits such as disease status (affected versus unaffected). The 

gap in the data on the x-axis results from the fact that non-significant genetic effects would have 

odds ratios near 1 (and thus logarithms of 0) and therefore would not be included in the results of 

European samples. 

 

 


