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Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and

estimation of its basic physical parameters, is the principal scientific aim of many current low-

frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator

(CHIPS), an algorithm developed and implemented with data from the Murchison Widefield

Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of

brightness temperature fluctuations. The principal motivations for CHIPS are the application of

realistic instrumental and foreground models to form the optimal estimator, thereby maximis-

ing the likelihood of unbiased signal estimation, and allowing a full covariant understanding of

the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum

likelihood estimator, thereby allowing use of the full parameter space for signal estimation (“fore-

ground suppression”). We describe the motivation for the algorithm, implementation, application

to real and simulated data, and early outputs. Upon application to a set of 3 hours of data, we

set a 2σ upper limit on the EoR dimensionless power at k = 0.05 h.Mpc−1 of ∆2
k < 7.6×104 mK2

in the redshift range z = [6.2− 6.6], consistent with previous estimates.

Subject headings: techniques: interferometric — Early Universe

1. Introduction

Detection of a neutral hydrogen signal from the Epoch of Reionization (EoR), and estimation of its

basic physical parameters, are primary science goals of current and future low-frequency radio telescopes.

E.g., Murchison Widefield Array (MWA)1 (Lonsdale et al. 2009; Tingay et al. 2013); Precision Array for

Probing the Epoch of Reionization (PAPER)2 (Parsons et al. 2010); the Low Frequency Array (LOFAR)3

(van Haarlem et al. 2013); the Long Wavelength Array (LWA)4 (Ellingson et al. 2009); and Hydrogen Epoch

of Reionization Array (HERA)5. The neutral hydrogen signal during the EoR corresponds to brightness

temperature fluctuations in the gas, and traces conditions within the intergalactic medium (IGM) through a

suite of radiative and collisional processes (Furlanetto et al. 2006). The spatial structure of the signal, as a

function of redshift, traces the evolution of the first ionizing sources of radiation in the Universe (e.g., Fialkov

et al. 2014; Watkinson and Pritchard 2014; Pacucci et al. 2014; Pober et al. 2014; Mesinger et al. 2014, 2011).

These studies also predict the signal amplitude to be weak (10s mK), compared with other sources in the sky

(100s K), and with radiometric noise associated with the internal electronics of the antennas and receiver

systems. The detection experiment itself is therefore difficult, and the estimation experiment more so.

Given the current lack of a detection of the signal, and the lack of an instrument with sufficient sensitivity

to directly image the brightness temperature fluctuations, research is focused on its statistical detection (Ali

et al. 2015; Jacobs et al. 2015; Patil et al. 2014; Dillon et al. 2013; Liu and Tegmark 2011, and references

therein). This has the twofold advantage of increasing signal strength by integrating over large areas of the

sky, and providing a global statistical indication of the signal (as compared with a local sample obtained by

1http://www.mwatelescope.org

2http://eor.berkeley.edu

3http://www.lofar.org

4http://lwa.unm.edu

5http://reionization.org
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imaging a small patch of sky). The variance (power) of the temperature fluctuations is used as a statistical

metric in most studies, with many computing the variance as a function of spatial scale on the sky (the power

spectrum). The probability distribution function of the signal is expected to follow a zero-mean Gaussian

distribution at early times, and a skewed Gaussian distribution at late times (Wyithe and Morales 2007;

Furlanetto et al. 2006). The variance, therefore, captures a lot of the information about the signal. Although

the power spectrum has a well-defined mathematical form, factors such as the weakness and complexity of the

signal, complexity of the instrumental response function (e.g., frequency- and direction-dependent antenna

beam response, bandpass response), and presence of structured, contaminating foregrounds, demand a careful

approach to robustly demonstrate that the power spectrum of cosmological temperature fluctuations has

been measured. Thus, there are a suite of approaches being undertaken by different research groups and

instruments (Hazelton et al. 2015, in prep.; Dillon et al. 2015; Choudhuri et al. 2014; Patil et al. 2014;

Chapman et al. 2014; Jacobs et al. 2015). In this work, we describe one of the algorithms being developed

for detection of the EoR signal, and computation of a two-dimensional (2D) and spherically-averaged (1D)

power spectrum for the MWA. Other papers will describe the other algorithms under development (Hazelton

et al. 2015, in prep.; Dillon et al. 2015; Paul et al. 2014). Each has a different approach to computing the

same metric with the same data, allowing robust cross-referencing and benchmarking of results. Jacobs

et al. (2015, submitted.) provides a high-level description of the MWA EoR project and algorithms. The

key motivations for the estimator we describe here are (1) inclusion of a full instrument and sky description

in the statistical estimator; (2) working directly with measured visibility data, where the data description

is computationally tractable; and (3) use of a maximum-likelihood estimator to form the optimal estimate

with full covariant error analysis.

In Section 2 we briefly describe the MWA, and pertinent design properties that affect how the EoR signal

is computed. In Section 3 the power spectrum is formally defined, and recent upper limits on EoR detection

using the power spectrum are reviewed. We then introduce the motivation for the CHIPS algorithm and

the mathematical basis of its computation. Section 5.1 describes the CHIPS approach to foregrounds, and

derives the expected signal from foregrounds in the power spectrum parameter space (i.e., ‘the wedge’). The

algorithm is then tested with realistic simulations in Section 6 and Section 7 describes the calibration process

and the observations used in this work. CHIPS is then applied to MWA data in Section 8.

Throughout we use a ΛCDM cosmology with H0=70.4 kms−1Mpc−1, ΩM=0.27, Ωk=0, ΩΛ=0.73 (Ben-

nett et al. 2012). The discrete Fourier Transform convention used is such that:

f̃k =
1

N

N∑
j=1

fj exp (−2πijk/N), (1)

for the forward transform. Vector quantities are expressed with an over-arrow (~r), Fourier-space quantities

have tildes (f̃), Fourier-space matrices are boldfaced (C), and mean values are overlined (S). The notation,

S̃ ∼ CN (µ,C), compactly describes a variable that is statistically distributed as a complex-normal with

mean µ and covariance C.

2. The Murchison Widefield Array

The MWA (Lonsdale et al. 2009; Tingay et al. 2013) is an aperture-array low-frequency radio telescope

operating in Western Australia in the 80–300 MHz frequency range (instantaneous available bandwidth of

30.72 MHz). Its science themes include EoR detection, discovery and monitoring of radio transients and

variables, a southern survey covering 3π steradians (Wayth et al. 2015), and solar and heliospheric science
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(Bowman et al. 2013). The array consists of 128 tiles, each of which comprises 16 dual-polarization crossed

dipole antennas in a regular 4-by-4 grid, with an effective area per tile, Aeff ' 21m2 (150 MHz).

The antennas are connected to analogue beamformers and the signals correlated within an onsite build-

ing. Correlated visibilities in full instrumental polarization flow in real-time to a computing centre located

in Perth. The simplicity of the array design and lack of mechanical steering yields a low-cost instrument

well-suited to the remoteness and climatic conditions of the desert, but determines the instrumental re-

sponse to signal from the sky. In particular, the regular grid of dipoles operating as a phased array yields a

frequency-dependent beam response with grating lobes (beam nulls), and the analogue beamforming enforces

a discretized grid of pointings on the sky where the beam is well-behaved. These design features demand that

the position- and frequency-dependent beam response is known and that this knowledge must be incorporated

into any estimator (because the beam is the ‘window’ through which the sky signal is observed).

The 30.72 MHz of instantaneous bandwidth is natively captured at 10 kHz spectral resolution, but the

standard correlation modes yield 40 kHz channels. Each of these fine channels is contained within 1.28 MHz

coarse channels (24 across the band), with substantial attenuation between coarse channels. Typically, two

fine channels are flagged with zero data in these nulls between the coarse channels, leading to a bandpass

shape with a regular spacing of zeroes. Again, this design feature needs to be correctly accounted for in the

analysis, and prevents use of some standard techniques.

3. Methodology

3.1. The power spectrum metric

The power spectral density (power spectrum) measures the spatial covariance of a signal, integrated

over a spatial volume, and corresponds to the Fourier Transform of the two-point correlation function (i.e.,

the autocorrelation function), ξ(r):

P (~k) =

∫
V

ξ(~r) exp (−2πi~k · ~r)d~r, (2)

=

∫
V

〈T (~r1)T (~r1 + ~r)〉~r1 exp (−2πi~k · ~r)d~r,

=
1

V

∫
V

T (~r1)T (~r1 + ~r) exp (−2πi~k · ~r)d~rd~r1,

=
1

V
T̃ (~k)T̃ ∗(~k),

where T (~r) is the temperature fluctuation (relative to the mean) at vector position ~r, and 〈〉 denotes an

average over positions in the volume, V , as a proxy for an ensemble sampling of the distribution. The power

spectrum has the units of temperature-squared times volume (K2Mpc3), and describes the integrated power

on a given spatial scale, ~k, averaged over the volume, V .

The power spectrum can be computed directly from an image cube, using a three-dimensional Fourier

transform of image intensities to find S̃(~k), and then squaring and normalizing by the cube volume, where

S(~x) is the measured brightness temperature in units of Jy beam−1. The conversion from brightness tem-

perature to flux density is given by:

SJy = 1026 2kTK
λ2

Ω Jy, (3)
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is the product of the specific intensity and the observation solid angle, Ω, and k is the Boltzmann constant.

Alternatively, the power spectrum can be computed directly from observed interferometric visibilities.

The visibility is the mutual coherence of the two electrical signals detected by the antennas forming a

baseline (Thompson et al. 1986). In the flat-sky approximation, where the field-of-view (FOV) of the

instrument is small such that sky curvature can be ignored, the visibility is identically the Fourier Transform

of the product of the sky signal and the beam response. For wide FOV instruments, such as the MWA,

this approximation breaks down, and there is a curvature convolving kernel in the measured visibility, in

addition to the sky signal and beam response. Thyagarajan et al. (2015b,a) studied this effect with MWA

data, but current estimators, in general, ignore this effect. The visibility is the natural measurement space

of the instrument (the radiometric noise is uncorrelated between visibilities), and will be used in CHIPS to

compute the power spectrum directly (without tranforming to and from image space). Curvature sky terms

are handled explicitly in CHIPS, and this design choice offers a natural departure from other, image-based

power spectrum estimators (Hazelton et al. 2015, in prep.; Paul et al. 2014; Dillon et al. 2015; Patil et al.

2014; Liu and Tegmark 2011), but has been used for the angular power spectrum (Choudhuri et al. 2014). A

related estimator, the ‘delay spectrum’ (Parsons et al. 2012, 2014, and references therein), directly Fourier

transforms along each visibility’s frequency channels, matching a temporal delay with the position of given

sky emission relative to the phase centre. This visibility-based estimator approximates the power spectrum

on large angular scales, but breaks down for the longer baselines.

The spherically-averaged (1D) power spectrum computes the power on three-dimensional spatial scales,

k = |~k|, under the assumption that the statistics of the signal are isotropic and translationally-invariant (the

latter being a fundamental assumption of the power spectrum, according to the Wiener-Khinchin theorem).

The 1D power spectrum has the advantage of integrating over the largest parameter space, potentially

increasing signal detectability. The dimensionless 1D power spectrum, which integrates the total power on

a given spatial scale over the volume, is given by:

∆2(k) =
k3

2π2
P (k). (4)

PAPER has published the most competitive 1D limits to date, relative to theoretical expectations, yielding

(22.4 mK)2 at z=8.4 and 0.15hMpc−1 < k < 0.5hMpc−1 (Ali et al. 2015). Patil et al. (2014) has demon-

strated the power of the LOFAR variance statistic, which computes the overall variance in each spectral

channel, with simulated data.

It is advantageous, however, to compute the 2D power spectrum as a first step, to discriminate between

continuum contaminating foreground sources and the cosmological spectral-line signal. The structure of

foregrounds in 2D space is described in Section 5.1, however we comment here that it is substantially different

from the cosmological signal. The 2D power spectrum has arguments (k⊥, k‖), where k⊥ =
√
k2
x + k2

y, resides

in the plane of the sky (angular scales), and k‖ ∝ η is the line-of-sight component. Here, η is the Fourier

dual of frequency, where we use the fact that the observed frequency of the neutral hydrogen spectral line

is linearly proportional to distance. Following Morales and Hewitt (2004) and McQuinn et al. (2006), the

transformation between Fourier dimensions and cosmological co-ordinates are:

k⊥ =
2π|u|
DM (z)

, (5)

k‖ =
2πH0f21E(z)

c(1 + z)2
η, (6)

where DM (z), H0, f21, z are the transverse comoving distance, Hubble constant, rest frequency of the hyper-
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fine transition (∼1420 MHz), and observation redshift, respectively. E(z) is (Hogg 2000):

E(z)
def
=
√

ΩM (1 + z)2 + Ωk(1 + z)2 + ΩΛ. (7)

3.2. Motivation for CHIPS algorithm

The high-level design philosophy of CHIPS is to use the data in such a way as to allow for computationally-

efficient and robust parameter estimation and error covariance estimation, while retaining maximum infor-

mation. As such, the following design features have been employed:

• Calibrated visibilities will be the primary data input — visibility-space is the natural measurement

space of interferometric data, where radiometric (stochastic) noise is uncorrelated and Gaussian dis-

tributed with color dependent on the frequency-dependent system temperature. In addition, corre-

lations due to PSF sidelobes inherent in image-space are naturally accounted for in visibility-space,

where the measured information is clearly defined;

• A Least Squares Spectral Analysis (LSSA) method will be used to compute the line-of-sight transform

from frequency to spectral space, not the Fourier Transform (Kay 1993) — the MWA bandpass has

regular missing channels, due to the coarse bandpass edges, and intermittent missing channels due to

flagged radio frequency interference (RFI, Offringa et al. 2015). The Fourier Transform cannot be used

for irregular and missing data. LSSA can compute the optimal spectral representation of the data

using all of the available information;

• A maximum-likelihood (ML) estimate of the cosmological signal (a quadratic estimator, Kay 1993;

Liu and Tegmark 2011; Dillon et al. 2013) will be computed (an inverse covariance weighting) — the

ML solution asymptotes to the optimal solution for large quantities of data, and is appropriate for

the dataset acquired here. It retains the full information contained within the data, and allows for

computation of the full uncertainty covariance matrix. (Note that this is not the only estimator that

can be used efficiently to approach this problem.);

• Foregrounds will be modelled a priori and included in the estimator (‘foreground suppression’) — as

discussed in Section 5.1, foregrounds can be approached in different ways, depending on the degree

of knowledge one assumes about them (Bonaldi and Brown 2015; Chapman et al. 2014; Dillon et al.

2013; Liu and Tegmark 2011). Here we take a two-tier approach, where known foregrounds (sky

model of point and extended sources) are subtracted from the data coherently, and the remaining

signal is treated statistically. CHIPS therefore uses the full Fourier space for estimation (contrast with

‘foreground avoidance’ techniques, where the contaminated regions are excised).

4. Mathematical formalism

The derivation shown here describes the formation of the power estimate in two steps:

1. Firstly, it introduces the computation of the coherently-averaged data from measured visibilities, in-

cluding the incorporation of the frequency-dependent beamshape, curvature terms (w-terms), and the

transforming of the visibilities in frequency to line-of-sight wavenumber (η). This step is effectively the
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visibility gridding (Section 4.1), and the Fourier-like Transform to (u, v, η) wavenumber space (achieved

using a Least Squares Spectral Analysis - LSSA, in Section 4.2). The dataset, described by S(u, v, ν),

is a function of location on the uv-plane and frequency. Practically, it is obtained by gridding mea-

sured visibilities onto the uv-plane with the beam kernel (and the w-kernel) with a weighting that is

a function of the system temperature for that observation and the visibility weight, (∝ Tsys/W , where

W is the visibility weight and corresponds to the number of fine frequency channels averaged to form

the visibility). The beam-weighted weights are also accumulated and included in the data covariance

matrix, C;

2. Secondly, the coherent information forms the power according to a maximum-likelihood estimate, using

knowledge about the data covariance matrix (stochastic noise and foreground contaminants, Section

4.3).

This process is now described in detail.

4.1. Coherent visibility data: angular modes

We aim to take the large number of measured, calibrated visibilities and grid them onto a regular grid

representing the uv-plane, in each frequency channel. The true sky signal is shaped by the antenna primary

beam, and the measured visibilities sample a range of modes. Each datum represents information from

a region of the uv-plane, according to the beam, and we grid a measurement across this region. For an

instrument with linear crossed-polarization feeds, xx and yy, we model the correlator output as:
Ṽxx
Ṽxy
Ṽyx
Ṽyy

 =


B̃xx
B̃xy
B̃yx
B̃yy

 ∗


gxx gxx cos 2ψ gxx sin 2ψ 0

gxy∆xy −gxy sin 2ψ gxy cos 2ψ i

gyx∆yx −gyx sin 2ψ gyx cos 2ψ −i
gyy −gyy cos 2ψ −gyy sin 2ψ 0




Ĩ

Q̃

Ũ

Ṽ

 , (8)

which maps the Stokes visibilities in sky co-ordinates, (Ĩ , Q̃, Ũ , Ṽ ), to the measurement set in instrumen-

tal co-ordinates (Hamaker et al. 1996). Here we are explicitly describing the relationship in the flat-sky

approximation, although the curvature terms are introduced below. The 4 × 4 matrix encodes projec-

tion effects from the parallactic angle, ψ, polarization leakage, (∆xy,∆yx), and the direction-independent,

antennas-based complex gains, (gxx, gxy, gyx, gyy). The convolution accounts for the primary beam shape,

(B̃xx, B̃xy, B̃yx, B̃yy). To extract the total intensity, Ĩ, we could use all four polarization outputs from the

correlator. Instead, to reduce computational load, we use only Vxx and Vyy. This choice is made at the

expense of some signal when the zenith angle is large. Failure to treat individual linear feeds will lead to

polarization leakage if the visibilities are combined without consideration for beam shape differences (Moore

et al. 2013).

Absorbing the complex gains into the beams, ~B, we write the xx and yy visibilities as:

Ṽxx(u, v, w) = (Ĩ + Q̃ cos 2ψ + Ũ sin 2ψ) ∗ B̃xx ∗
∫

exp [−2πi(D · s)]√
1− l2 −m2

dldm (9)

Ṽyy(u, v, w) = (Ĩ − Q̃ cos 2ψ − Ũ sin 2ψ) ∗ B̃yy ∗
∫

exp [−2πi(D · s)]√
1− l2 −m2

dldm, (10)

where,

D · s = ul + vm+ w(
√

1− l2 −m2 − 1)), (11)
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is the projection of the baseline vector onto the sky co-ordinates, and we have now explicitly included the

w-terms in the equations through the phase integral (final term).

Using the convolution theorem, the mapping from the underlying sky Fourier representation and the

measured visibilities can be written,

Ṽxx = G̃w ∗ B̃xx ∗ (Ĩ + Q̃ cos 2ψ + Ũ sin 2ψ) (12)

Ṽyy = G̃w ∗ B̃yy ∗ (Ĩ − Q̃ cos 2ψ − Ũ sin 2ψ), (13)

where,

G̃w
def
=

∫
exp [−2πi(w(

√
1− l2 −m2 − 1))]√

1− l2 −m2
exp [−2πi(ul + vm)]dldm, (14)

explicitly highlights the additional convolution due to curvature terms. These functions encode the deviation

from a strict 2D Fourier transform between sky and visibilities, and the spectral leakage due to the primary

beam.

We now expand from considering a single visibility, to a set, and describe these as a vector. In doing so,

we extend the convolutions to describe the transform from the underlying sky, Ĩ, to the full measurement

set of data. We can write the discrete convolutions as matrix operations, to encode this transformation, and

find the measurements for a set of baselines:

~̃Vxx = GwBxx(~̃I + ~̃Q cos 2ψ + ~̃U sin 2ψ) (15)

~̃Vyy = GwByy(~̃I − ~̃Q cos 2ψ − ~̃U sin 2ψ). (16)

We are interested in determining the underlying Stokes I sky distribution at a given angular scale, uα,

given the measured visibilities, ~̃V (u). A vector of (N × 1) measured visibilities, ~̃V , is generated from an

underlying (M×1) sky distribution, ~̃I, via a (N×M) matrix transform, GwB. We can re-write and combine

Equations 15 and 16 such that:

~̃I(u, v, ν) =
1

2

(
B†xxG

†
wGwBxx

)−1
B†xxG

†
w
~̃Vxx +

1

2

(
B†yyG

†
wGwByy

)−1
B†yyG

†
w
~̃Vyy, (17)

where the square matrix inversion involves inverting an (M ×M) Hermitian complex-valued matrix, which

will be (almost) diagonal for independent modes, ~u. Equation 17 effectively unwraps the effects of w-terms

and the polarized beams, before combining xx and yy information to remove the polarized component of the

sky signal (Q̃, Ũ). The G† matrix serves to distribute the footprint of the visibilities across the uv-plane, as

dictated by the amplitude of the w-term; for large w, the Fourier-space beam is effectively broader and the G

matrix captures this. In practise, as discussed by Dillon et al. (2013), the uv-plane needs to be fully-sampled

(the matrix full rank) for this matrix inverse to exist (i.e., there needs to be independent information in all

modes). For the MWA and using rotation synthesis, this requirement is met for parts of the uv-plane, but

not in general.

There are multiple approaches to handling this, including computation of the pseudoinverse and sim-

plification of the matrix by considering only diagonal components. The former inverts the matrix in regions

where there is sufficient information. The latter effectively ignores the correlations introduced by the finite

extent of the beam across the uv-plane, and reduces the matrix inverse step to a simple weighting of the

data according to the measurements (averaging). It does, however, still encode the distribution of power

across multiple modes in the uv-plane. The approximation is reasonable given that the matrix is already
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highly diagonal. In the testing phases of CHIPS, as described here, we will implement the latter:

~̃S(~u,~v, ν) =
1

2

(
B†xxG

†
wGwBxx

)−1

diag
B†xxG

†
w
~̃Vxx +

1

2

(
B†yyG

†
wGwByy

)−1

diag
B†yyG

†
w
~̃Vyy. (18)

This introduces an error, for each polarization, with the XX polarization expression:

~̃SXX(~u, ν) = RXX
~̃IXX(~u, ν). (19)

Here, the error matrix, RXX , is:

RXX
def
= (diag(B†B))−1

XX(B†B)XX . (20)

The same applies to the YY polarization, where the error matrix, in general, is different, depending on the

shape of the beams for each telescope pointing. In general, this can invalidate the cancelling of the Q and

U linear polarization signals in Equation 17, because there is now the potential for mismatch between the

two polarizations. In practise, the XX and YY polarizations are not combined in CHIPS at this point (the

results described in this work remain in the two instrumental poarizations), because the current MWA beam

model is known to be imperfect. In future, this mismatch will need to be further studied for leakage effects.

4.2. Least Squares Spectral Analysis

Upon gridding the data onto the uv-plane for each frequency channel, the next step is to estimate

the line-of-sight wavenumber information, by transforming the data at each gridpoint from frequency, ν,

to η. For a complete and regularly-sampled set of N complex-valued discrete datapoints embedded within

white Gaussian noise, ~̃S(ν), the information contained within a spectral mode, η, can be obtained using the

Discrete Fourier Transform (DFT):

S(u, v, η) =
1√
2π

N−1∑
j=0

S̃(u, v, νj) exp [−2πijη/N ], (21)

where η ∈ [0, N − 1]. This can be written in matrix formalism, where the Fourier Transform has convenient

properties as a Vandermonde matrix;

~̃S(η) = F† ~̃S(ν), (22)

F†F = I. (23)

Here ~̃S(η) is the complex-valued estimate of the spectral information in mode η, and F is a square, Hermitian

matrix containing the trigonometric kernel. We have also explicitly dropped the parametrization by u, v,

because the transform is performed for each point on the uv-plane, with the understanding that these

parameters are carried along for the computations presented in this section.

When the data have generalized covariance (correlated samples, unequal weightings), the signal in some

spectral mode can be estimated using a generalized maximum likelihood Fourier Transform. If the data are

distributed such that,
~̃S(ν) ∼ CN (S(ν),C), (24)

the optimal estimate is given by (i.e., the inverse covariance weighting estimator, Liu and Tegmark 2011;

Dillon et al. 2015);
~̃S(η) ∼ CN (F†C−1 ~̃S(ν),F†CF), (25)
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where we have used the fact that the Fourier Transform is unitary (F† = F−1). Effectively, this prewhitens

the signal (by suppressing data with a lot of noise and removing correlation), and computes the Fourier

Transform. The result has noise properties consistent with a prewhitening operation, and with the reordering

of the data according to the summing of phased datapoints.

Finally, when the data have incomplete sampling, the above formalism naturally generalizes and is

described by Least Squares Spectral Estimation, LSSA. When there are only M sampled points at locations

νj , within N frequency channels, the generalized least squares estimate is:

~̃S(η) = H ~̃S(ν) (26)

def
=

1√
2π

M−1∑
j=0

S̃(νj) exp [−2πiνjη/M ], (27)

where η = [0, ..., Nfreq] are evenly-spaced and Nfreq < N . The optimal estimator is:

~̃S(η) ∼ CN ((H†C−1H)−1H†C−1 ~̃S(ν), (H†C−1H)−1), (28)

where the LSSA operator has been labelled H. Note that now M < N and the H matrix is not square. In

general, this method leads to correlated information between different modes, but this can be reduced by

estimating Nfreq .M/2 modes (Vio et al. 2013).

4.3. Likelihood function and ML estimate

Now we have described the computation of the coherently-averaged (gridded and LSSA) data from the

underlying measured visibilities, we can write the likelihood function of the data to compute the power

estimates.

We describe the data with a generalized multi-variate Gaussian, with zero mean, and general covariance

matrix, C. This form describes data that are drawn from a statistical distribution of possible universes, with

temperature fluctuations that are Gaussian-distributed. This covariance matrix contains all of the terms

contributing to the signal in a visibility. The joint likelihood for the vector of complex-valued coherently-

averaged data, ~S(u, v, η), is given by:

L( ~̃S; C) =
1

πNdet(C)
exp [− ~̃S†C−1 ~̃S], (29)

where the complex-valued covariance matrix is;

C
def
=

〈
~̃S ~̃S†

〉
(30)

= CFG + CN + CP, (31)

where,

CP =


p11 p12 · · · p1N

p12 p22 · · · p2N

...
...

. . .
...

p1N p2N · · · pNN

 , (32)

describes the parameters of interest (the mode powers, pαα), and the correlations between powers imprinted

by the instrument and the experiment (“window functions”). Strictly, the cosmological information forms
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a diagonal matrix, with uncorrelated power between modes, but the imperfect data correlate contiguous

modes. In this implementation of CHIPS, we assume a diagonal cosmological signal matrix, but do encode

the correlations between modes in the data by capturing and propagating the covariances introduced by

the line-of-sight transform (LSSA). These correlations are important when combining modes together to

perform the binning to 1D (see Section 4.3.1). Note that here we are explicitly identifying the power, in

which we are interested, with the likelihood function of the coherently-averaged data. The other terms in

equation (31) describe the statistical contribution to mode (u, v, η) from foregrounds (CFG) and measurement

(radiometric) noise (CN). In uv space, measurement noise is uncorrelated and Gaussian-distributed (colored

Gaussian noise - CGN), where the ‘color’ for a coherently-averaged datum describes the weighting of the

noise due to the number of visibilities contributing to that cell. The statistical foreground contribution will

be treated in Section 5.1.

The maximum likelihood estimate, obtained by finding the value of a given parameter that maximizes

the likelihood function (or minimizes the negative log likelihood), is asymptotically efficient (achieves optimal

estimation precision for large datasets). We aim to determine an expression for the parameters of interest

(mode powers) in terms of the data and data covariance matrix. The log likelihood function is minimized by

differentiating with respect to the parameter, setting to zero, and solving for that parameter. The derivative

of the log likelihood for a zero-mean generalized Gaussian is given by:

∂lnL

∂pα
= tr

(
C−1 ∂C

∂pα

)
− ~̃S†(u, v, η)C−1 ∂C

∂pα
C−1 ~̃S(u, v, η), (33)

where ‘tr’ denotes the trace of the matrix. For clarity, we now drop the dependence of the data on (u, v, η),

with the understanding that we are working with the data in wavenumber space. Setting Equation 33 to

zero, and then using in the first term the identity, I = C−1C, and expanding the covariance matrix into its

constituent parts, we find:

p̂αtr

(
C−1C−1 ∂C

∂pα

)
def
= tr

(
CPC−1C−1 ∂C

∂pα

)
(34)

= ~̃S†C−1 ∂C

∂pα
C−1 ~̃S − tr

(
(CFG + CN)C−1C−1 ∂C

∂pα

)
, (35)

where p̂α = p̂αα denotes our estimate of the power in mode α, as described in the diagonal elements of the

cosmological power matrix, Equation 32. Note here that the first term in the RHS of Equation 35 is squaring

the coherently-averaged data, and therefore producing the desired power-like quantity.

Therefore, the estimate of the power in mode α is given by computation of:

p̂α =
1

tr
(
C−1C−1 ∂C

∂pα

) ( ~̃S†C−1 ∂C

∂pα
C−1 ~̃S − tr

(
(CFG + CN)C−1C−1 ∂C

∂pα

))
, (36)

where we decouple dependence of the estimator on the mode powers by making the approximation,

C ≈ CFG + CN, (37)

under the assumption that CFG + CN � CP.

In practice, the data can be split into two and cross-correlated. This removes thermal noise power from

the final power estimate, at the expense of a factor of
√

2 in the final signal-to-noise ratio (in temperature; a

factor of 2 in power). Although noise power has been removed from the estimate, thermal noise uncertainty
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remains in the final covariance of the power estimates. Typically, alternate correlator output datasets are

processed into alternate coherent data vectors, to ensure uniform uv coverage between the two (this is

important for applying the same data covariance matrix to both datasets). Using this scheme, the cross-

correlation power formed from coherent data vectors, 1
~S and 2

~S, is:

p̂α =
1

tr
(
C−1C−1 ∂C

∂pα

) (1
~S
†
C−1 ∂C

∂pα
C−1

2
~S − tr

(
CFGC−1C−1 ∂C

∂pα

))
. (38)

The expected values and covariances are derived in the Appendix, and demonstrate that the expected value

of the ML estimate yields the cosmological power.

The second term in Equation 38 is the foreground power bias. As discussed in a number of recent papers

(Liu and Tegmark 2011; Dillon et al. 2013, 2015), subtraction of this term requires an accurate model for the

foregrounds. Inaccurate subtraction leads to bias in the power. Given the relative power of the foreground

and cosmological signal, mis-subtraction will occur when the foreground power is incorrect at the fraction

of a percent level. To avoid this, we retain the foreground power bias, and allow the noise covariance to

indicate which modes are contaminated (i.e., the second term is set to zero).

4.3.1. Explicitly including LSSA

To connect the LSSA transform with the ML estimate, we can take the expression for the optimal power,

Equation 38, which is a function of (u, v, η), and insert the LSSA estimate of ~̃S(u, v, η) from the underlying

gridded data, ~̃S(u, v, ν). To do so, we combine equations 28 and 38 to compute the optimal (ML) power

estimate:

p̂α =
(H†C−1

1S(ν))† ∂C∂pα (H†C−1
2S(ν))

tr
(

(H†C−1H) ∂C∂pα (H†C−1H)
) . (39)

The denominator (the normalization) reduces to:∑
i

|Aiα|2, (40)

where Aij are the elements of the inverse covariance matrix,

A
def
= H†C−1H. (41)

This then yields the sum over the square of the matrix elements for the normalization. Finally, the vector

of power estimates is χ2-distributed:

~̂p(η) ∼ χ2
(
~p, 2

(
(H†C−1H)(H†C−1H)

)−1
)
, (42)

where the (identity) diagonal cosmological signal matrix, dC/dp, has been dropped.

To compute the spherically-averaged (1D) power spectrum from the 2D output, we average in elongated

cylindrical shells, allowing for differences in the line-of-sight and angular modes for the cosmological signal

in redshift space in the conversion from u, v, η to k (Mpc−1). The ML estimate of the 1D power is given by

weighting the individual 2D mode powers contributing to a cell, k, with the inverse of their power covariance

matrix. This is the inverse of the covariance term from Equation 42, with:

A def
= (H†C−1H)(H†C−1H). (43)
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Thus:

Pk =

∑
i∈k

A,i~p

tr(D†A,iD)
, (44)

where the covariance matrix of data is used quadratically to reflect that we are now working to optimally

average power, and D is a binning matrix which reduces the full 2D space to the subspace spanned by i ∈ k.

The numerator terms here come from performing the matrix multiplication from Equation 42, and including

all of the covariances between 2D modes, i, contributing to binned mode k. The denominator provides the

variances and covariances between the 1D k modes, encoding the degree of uncertainty on each parameter

and the relationship between estimates. The syntax, ,i, denotes the matrix, A, as formed from projecting

onto the bin, including parameter covariances.

5. Building the data covariance matrix

5.1. Foregrounds

Dealing with foreground contamination can be approached in different ways, all of which rely on the

basic distinction that foreground sources are continuum emitters, and therefore have a smooth spectrum

over a small bandwidth, and the cosmological signal is a spectral line with structure reflecting the brightness

temperature at different spatial depths. This distinction fundamentally dissociates angular modes from

line-of-sight modes, and is the reason for operating with the 2D power spectrum. In 2D, the power from

flat spectrum foregrounds that could be observed through a perfect instrument (no frequency-dependent

instrumental response, no spectral incompleteness, and complete sampling of the Fourier plane), would be

contained within the DC (η = 0) mode of k‖, because they add a simple amplitude across frequency. For a

real instrument and non-flat sources, foregrounds occupy a broader region of parameter space, colloquially

termed the ‘wedge’, because of its broad wedge-like structure in (k⊥, k‖) space. The wedge has been well-

studied (Datta et al. 2010; Trott et al. 2012; Morales et al. 2012; Vedantham et al. 2012; Hazelton et al.

2013; Thyagarajan et al. 2013; Parsons et al. 2012). It results from the incomplete sampling of the Fourier

modes and/or spectral modes by an interferometer, and the migration of the angular mode sampled by a

given baseline as a function of observation frequency (‘mode-mixing’). A mathematical derivation of the

expected structure of the wedge for the MWA is included in this section.

Broadly, there are two primary foreground treatment design options employed in the literature: (1)

‘avoidance’, where it is attempted to contain foregrounds to a region of parameter space, and ignore this re-

gion (e.g., PAPER’s approach, Parsons et al. 2012; Jacobs et al. 2015); (2) ‘suppression’, where the foreground

contribution to the signal is modelled (using either an a priori source model, non-parametric methods, or a

data-driven model) and the estimator uses this knowledge to suppress contaminated information. The latter

option includes the non-parametric fitting of low-order polynomials (Bowman et al. 2009), and the more

sophisticated Component Analysis techniques discussed by Chapman et al. (2014, 2012); Bonaldi and Brown

(2015), and references therein. It also includes model- and data-driven (parametric) statistical descriptions of

the sky itself, and incorporation of that information (Liu and Tegmark 2011; Dillon et al. 2013, 2015). These

approaches all have their own advantages and disadvantages. Broadly, non-parametric approaches are simple

to implement, but, requiring no input physical knowledge, can destroy cosmological information and retain

foreground signal. Typically, the metric for an adequate solution is not well-defined. Conversely, parametric

models are designed to include as much physical information about the foregrounds and cosmological signal

as is available. However, they can be computationally difficult to implement, are limited by our knowledge
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of the sky at low radio frequencies, and can also destroy information if the models are incorrect. Surveys

such as the MWA’s GLEAM (Wayth et al. 2015) and LOFAR’s MSSS (Heald et al. 2015), will be crucial for

improving our understanding.

Ultimately, the key to a robust estimator is to have an understanding of the limitations and biases

of one’s method, and incorporate that knowledge into the methodology and results. CHIPS aims to do

this, and handles foregrounds using a two-tiered approach: (1) known foregrounds (sky model of point and

extended sources, with updated calibration solutions and ionospheric corrections) are subtracted from the

data coherently (visibility data) using the Real-Time System (RTS) calibration (see Section 7); (2) remaining

signal is handled statistically, using an a priori model for the expected distribution and spectral structure of

sources (CHIPS). We then use a perturbative calculation to ascertain our degree of confidence in the model

(Liu et al. 2015).

We initially employ a two-component statistical foreground model, consisting of extragalactic point

sources and Galactic synchrotron, described here. The component describing the Galactic Plane is omitted.

The Galactic Plane is more difficult to describe statistically, with definite sky position and skewed statistics.

We leave this as an open problem for future work.

Point source covariance matrix

We consider the additional noise-like signal contained within a visibility due to unmodelled point sources

present within the primary beam (where the Poisson-distributed number of sources within any differential

patch of sky yields the variant, noise-like signal). To compute the contribution of these sources, we perform

the following calculation. The number of sources within a small area of the sky is assumed to be Poisson-

distributed. For a Poisson distribution, the variance is equal to the mean.

1. Calculate the Poisson noise due to the random number of sources within a small patch of sky and a

small range of source flux density (N(S, S + dS; l, l + dl;m,m+ dm));

N(S, S + dS; l, l + dl;m,m+ dm) =
dN

dS
dSdldm, (45)

where dN/dS is the source density per unit flux density, and is given parametrically by,

dN

dS
(ν) = α

(
SJy

S0

)−β
Jy−1sr−1. (46)

For this work we use the number counts of Intema et al. (2011), with α = 4100Jy−1sr−1, and β = 1.59

at 150 MHz.

2. Compute the variance on a visibility measurement due to the Poisson noise from a differential patch

of sky at (l′,m′); For N sources with flux density S(ν) located at sky position (l′,m′) within the beam

B(l,m, ν), the mean visibility is given by;

〈V (u, v)〉 = NSB(l′,m′, ν) exp [−2πi(ul′ + vm′)]. (47)

3. Compute the total variance within a visibility from all sources (in the simple model where there is

no source clustering, covariance matrices sum because sources are independent); the total covariance
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between two visibilities on the same baseline (different frequencies) can be computed by considering

the response of the instrument at different frequencies, for a fixed location in the uv-plane. The source

number density, primary beam, and uv-sampling all change, with the latter (the physical source of

the wedge) being encapsulated in the term fν = (ν′′ − ν′)/νlow, which produces the frequency phase-

wrapping that yields the wedge feature in power. Here νlow is the lowest measurement frequency

channel, and ν′ and ν′′ denote different frequencies within the band. The covariance is1;

CPS =

∫∫∫
S2

(√
ν′′ν′

νlow

)−γ
B(l,m; ν′′)B(l,m; ν′)

dN

dS
dSdldm (53)

=
α

3− β

(√
ν′′ν′

νlow

)−γ
S3−β

max

S−β0

∫∫
B(~l; ν′′)B(~l; ν′) exp [−2πi(~u ·~l)fν ]dldm Jy2, (54)

where Smax is the brightest unmodelled source in the field (the peeling limit), here taken as 1 Jy.

Galactic synchrotron covariance matrix

Galactic synchrotron emission, from electrons spiralling along our Galaxy’s magnetic field lines, produces

emission on large scales. We use the parameters of Jelić et al. (2008, 2010) to motivate our model, which

also includes the effects of the MWA primary beam and instrumental chromaticity.

The intrinsic temperature power spectrum is modelled as:

〈∆T 2
GS〉(u, ν) = (ηTB)2

(
u

u0

)−2.7(
ν

ν0

)−2.55

K2, (55)

where η = 0.01 is the fluctuation level relative to the uniform brightness temperature, TB = 253K, u0 = 10

wavelengths, and ν0 = 100 MHz is the reference frequency. The covariance matrix is a function of the

1This expression simplifies for a circularly-symmetric beam, where the 2D Fourier Transform can be written as a 1D Hankel

Transform:

CPS =
α

3− β

(√
ν′′ν′

νlow

)−γ
S3−β
max

S−β0

∫ ∞
0

B(l; ν′′)B(l; ν′)J0
(
2π(ul)(ν′′ − ν′)

)
ldl Jy2. (48)

For a top-hat beam truncated at the horizon (l = 1), the foreground covariance has a simple form, which is similar to a sinc

function:

CPS =
α

3− β

(√
ν′′ν′

νlow

)−γ
S3−β
max

S−β0

J1(2πufν)

fνu
, (49)

where fν = (ν′′ − ν′)/νlow and u = |x|νlow/c. Similarly, a frequency-dependent Gaussian-shaped beam is often a reasonable

approximation to the beam shape;

B(l; ν) ∝ exp [−l2/σ2], (50)

where,

σ(ν) ' εc/νD, (51)

and ε ' 0.42, and D ' 4m are the scalings from an Airy disk to a Gaussian width, and the tile diameter, respectively. Using

this, and the Hankel Transform of a Gaussian, yields;

CPS =
α

3− β
Γ(ν′′)Γ(ν′)

(√
ν′′ν′

νlow

)−γ
S3−β
max

S−β0

πc2ε2

D2

1

ν′′2 + ν′2
exp

(
−u2c2f2ν ε2

4(ν′′2 + ν′2)D2

)
, (52)

where Γ indicates the use of a frequency taper function to reduce spectral leakage (e.g., a Hanning Window, as used here). For

a real, frequency-dependent MWA beam, the foreground covariance can be computed numerically.
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(a) Beam-convolved Galactic synchrotron compo-

nent.

(b) Foreground model.

Fig. 1.— (a) Intrinsic (red, dashed) and beam-convolved (green, solid) power spectra for the Galactic

synchrotron model. (b) Power spectrum for the input foreground covariance model, including contributions

from extragalactic point sources and Galactic synchrotron.

parameter, u, to reflect that we expect the statistics to be rotationally-invariant. The apparent steep

spectral index in temperature units is flattened once converting to flux density (integrated) units for a given

instrument, such that the intrinsic power is:

PGS(u, ν) =

(
2k

λ2

)2

Ω(ηTB)2

(
u

u0

)−2.7(
ν

ν0

)−2.55

Jy2 (56)

=

(
2k

λ

)2
1

Aeff
(ηTB)2

(
u

u0

)−2.7(
ν

ν0

)−2.55

Jy2 (57)

=

(
(2k)2

Aeff

)
(ηTB)2

(
u

u0

)−2.7(
ν

ν0

)−0.55

Jy2. (58)

The truncation of the spectrum due to the primary beam can be obtained via convolution (via a Fourier

transform), and Figure 1(a) shows the intrinsic and convolved power spectra. Here, the Fourier Transform is

used (rather than LSSA) because the plot uses complete and regularly-sampled spacing for display purposes.

The actual covariance contains the same incompleteness as the data, when implemented in CHIPS. Note that

the primary beam convolution is frequency-dependent, generating complex structure at small wavenumbers.

Finally, the instrumental chromaticity is included in a similar manner as for the point source model,

yielding the following model for the spectral covariance matrix:

CGS(ν, ν′;u) = 2π
√
P ′GS(u, ν)P ′GS(u, ν′)

∫
J0 (2π(ul)f(ν)) ldl Jy2, (59)

where P ′ denotes the beam-convolved power.
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5.1.1. Total covariance matrix

The two foreground components are summed to form the complete foreground contribution to the data

covariance matrix, as observed by the instrument. After performing a spectral transform to η-space, and

converting to cosmological units, the final total foreground contribution to the power spectrum is shown in

Figure 1(b) (coarse bandpass missing channels are omitted for this plot, for clarity). Note the presence of

coherent streaks of emission beyond the foreground wedge region, but parallel to it. This is caused by spectral

structure in the window taper function (in this example, a Blackman-Nuttall taper is used) interacting with

the non-smooth shape of the MWA primary beam. Note also the apparent brightening towards the edge

of the wedge region. Naively, the wedge shape in the k‖ direction is dictated by the primary beam (for a

uniform foreground brightness distribution), suggesting that the edge should be attenuated. However, as

predicted in Thyagarajan et al. (2013) and demonstrated in Thyagarajan et al. (2015a), wide-field curvature

effectively compresses the sky, increasing the density of emission at the edge of the wedge.

5.2. Thermal noise

The final component of the data covariance corresponds to the thermal (measurement, radiometric)

noise. This is the measurement uncertainty on each visibility due to the finite number of data samples

(information) that contribute to it. We are effectively estimating the sky signal with a fixed amount of

information, which depends on the signal strength and the number of samples. The former is set by the

system temperature, which is dominated by sky temperature at low frequencies, and the latter is set by the

bandwidth and sampling time for each visibility. For a single polarization,

σ = 1026 2kTsys

Aeff

1√
∆ν∆t

Jy. (60)

When gridding the visibilities onto the uv-plane, as described in Section 4.1, the noise decreases coherently

(with square-root improvement). This noise reduction therefore follows the evolution of sampled points in

the uv-plane for a nightly track of the EoR field. Identical observations on subsequent nights yields the

same coherent reduction in power. The thermal noise contribution to the power spectrum therefore maps

the distribution of points in the uv-plane for a nightly track, thereby reflecting the array configuration.

6. Simulations

To test the estimator we generated a set of end-to-end noise-free simulations of a single 2-minute snapshot

of visibilities, and passed them through the pipeline, using a power-law input power spectrum. The aims of

these simulations were to verify that the slope and normalization were unbiased. We chose the amplitude of

the spectrum arbitrarily (A = 1 K2), and the index was set to n = −1, where P (|k|) = Akn K2. To produce

realistic visibilities, we included the following in the simulations: (1) The full frequency-dependent primary

beamshape of the instrument; (2) The actual uv distribution of a zenith-pointed observation; (3) Curvature

of the sky (w-terms).

The simulations were produced by starting with an image-cube Gaussian random field of brightness

temperature fluctuations (l,m, ν), performing a 3D Fourier Transform to k-space, multiplying by the square-

root of the input power spectrum, and inverse Fourier Transforming back to the real space-frequency cube.

The data were then multiplied by the frequency-dependent beam shape, and regridded to a curved co-
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ordinate system. Finally, the uv-plane for each frequency channel was generated by performing a 2D Fourier

Transform to (u, v, ν)-space. This cube formed the underlying data from which the visibilities were sampled

according to the baseline distribution of the MWA (Beardsley et al. 2013).

Figure 2 displays the computed spherically-averaged power spectrum and input power spectrum, showing

agreement between the two within a few percent.

7. The Real-Time System and Observations

Data are calibrated using the MWA Real-Time System (RTS, Mitchell et al. 2008, 2015, in prep.).

The RTS has been specifically designed to calibrate MWA data at high cadence, using the full frequency-

and direction-dependent beam response, ionospheric modelling and correction, and multi-source in-field

calibration using point and extended source models.

MWA EoR observations used in this work were collected in 112s integrations during which the MWA

correlator outputs raw visibilities every 0.5s. Data are used from the MWA EOR0 field, centered at RA=0h,

Dec.=−27 degrees. This sky position is chosen to avoid the Galactic plane and yield a relatively cold sky.

Radio frequency interference was detected and excised using AOFlagger (Offringa et al. 2012). Each such

observation is independently calibrated by the RTS in a two stage process. First, the entire observation is

used to determine the direction-independent Jones matrices (complex gains) of each MWA tile by fitting

the observed visibilities to a model which consists of the 1000 apparently2 brightest sources which lie within

20 degrees of the pointing center. This model is constructed from catalogues of known radio sources using

the PUMA algorithm (Line et al. 2015, in prep.)3. This method of combining faint sources into a single

high S/N calibrator is similar to source clustering as proposed by Kazemi et al. (2013), although in this

case we only construct a single compound source. Following this averaged calibration stage, the sky model

sources are subsequently individually passed through the RTS Calibrator Measurement Loop (CML). For

each source within the CML, i) the model visibilities of all other calibrator sources are subtracted, ii)

an ionospheric offset and gain4 term is measured by fitting a phase ramp to the visibilities when rotated

towards the catalogue position of the calibrator, and iii) for the brightest sources, direction-dependent (DD)

corrections to the antenna gains are fitted to the residual visibilities following ionospheric correction. In

practice, a combination of limited processing time, S/N, and available degrees of freedom limit the number

of sources which can receive this full direction-dependent treatment. In this work, five sources are treated

as full direction-dependent calibrators and the rest are only updated for ionospheric effects as above. For

the EOR0 field, which has relatively few bright sources, the DD calibrators have flux densities ∼ 10−20

Jy. Once the CML model has converged, the best-fit model of each calibrator source is subtracted from the

visibilities. The RTS is parallelized over frequency, so that each of the 24 coarse channels (1.28 MHz) is

effectively independently calibrated. One exception to this are the ionospheric offset fits which are fitted to a

2As attenuated by the primary beam.

3In addition to the positional matching, PUMA uses entries from known catalogues and fits a power law to these data

points to assess the reliability of the matching. In practise, each source in the catalogue almost always has more than one flux

entry. Contiguous entries are then used in the RTS to compute the spectral index for that frequency band. The relatively large

frequency intervals between the catalogue entries enforce a generally smooth behaviour of the sources in the band considered

while preserving the overall SEDs features.

4Ostensibly, this term is intended to account for ionospheric attenuation. However, at present it subsumes and it is likely

dominated by errors in the interpolated catalogue source fluxes.
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Fig. 2.— Spherically-averaged power spectrum of simulated power spectrum (red solid), and input spectrum

(blue dashed). The error bars quantify 2σ uncertainties due to sample variance.
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λ2 dependence over the entire bandwidth. The second calibration and subtraction step is performed on an 8

second cadence in order to resolve in time ionospheric fluctuations. Note that for sources subtracted during

this step, the requirement that they must lie within 20 degrees of the pointing center is removed so that

sufficiently bright sources can be subtracted from anywhere in the sky. As a result, the lists of sources used in

the two calibration stages are not identical. Subtracting 1000 sources corresponds to a subtraction threshold

of ∼ 350 mJy at the center of the beam. All calibration operations are performed at 40 kHz frequency

resolution but the residual visibilities are averaged to 80 kHz for power spectrum estimation. Hence, the

output from the RTS to the power spectrum estimation module are calibrated, residual visibilities averaged

to 80 kHz and 8s.

Different calibration and peeling strategies were tested to find the optimal calibration settings for these

data. Beyond the usual image-quality and calibration-stability metrics employed to assess calibration perfor-

mance, we also used the power spectrum to assess the impact of different strategies. Three such modes were

(1) Self-calibrate with 300 sources, peel 300 sources; (2) Self-calibrate with 1000, peel 300 sources; and (3)

Self-calibrate with 300 sources and peel 1000 sources. Figure 3 shows the ratio of cross power for strategies

(2) and (3), relative to strategy (1) (which we expect to leave the most power in the power spectrum), for the

fifteen zenith-only observations of the data used in this work. Calibrating on more sources leads to a more

precise calibration solution, and improves the regions of interest for EoR science. Peeling additional sources

reduces power in the wedge, as expected for removing signal power. An interesting feature of removing

more wedge power is the reduction in power at higher k‖, where copies of the wedge caused by harmonics

introduced by the regular coarse bandpass missing channels leak power beyond low k modes. Hence, peeling

more sources allows a reduction in foreground power throughout the 2D power spectrum parameter space.

Ultimately, a strategy self-calibrating with 1000 sources and peeling 1000 sources was employed for the work

presented in this paper.

8. Results

Application to data

The set of high-band EoR data were taken from a single night of observations during the first semester

of MWA EoR observing (2013, August 23). These data were chosen to test, refine and compare different

calibration and analysis methodologies, as described in Jacobs et al. (2015, submitted.). The original dataset

consists of 160 112-second observations. These data were refined to a final set of 94 observations, removing

pointings that were > 25 degrees from zenith, and a pointing heavily affected by Galactic emission in the

sidelobes. As described in Section 7, the data were calibrated and provided as 8 second visibilities, yielding

14 timesteps per observation, and seven per interleaved dataset per observation (temporally-interleaved data

are used to compute the cross power spectrum). After calibration, we performed a uv cut at a maximum

distance of 300 wavelengths at the lowest frequency, within which the EoR signal is expected to fall, and

used the full bandwidth dataset for the initial analysis (30.72 MHz).

The cross power spectra are produced with CHIPS both with, and without, the foreground covariance

matrix included in the estimator. Without foreground covariance, the data are weighted purely by the system

temperature for that observation, the relative weight of the visibility (determined from the number of 10 kHz

channels contributing), and the uv-sampling of the instrument, and corresponds to the most straight-forward

application of a power spectrum analysis. With foreground covariance, the data are down-weighted according

to the modelled and measured noise and signal contamination within the data.
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Fig. 3.— Ratio of the power in two calibration and peeling strategies, relative to a standard strategy

of self-calibrating with 300 sources and peeling 300 sources, as described in the text. Self-calibrating on

more sources (left) produces a more well-calibrated dataset and yields improvement in the non-foreground

dominated regions of the power spectrum. Leaving the calibration the same but peeling more sources removes

power from the foregrounds, thereby yielding lower power in the wedge and coarse bandpass harmonics. The

diagonal dashed and solid lines refer to where flat-spectrum foregrounds would lie if contained within the

main lobe of the primary beam, and the horizon, respectively.



– 22 –

Figure 4 shows the instrumental North-South and East-West cross power polarizations for the full

bandwidth. The solid and dashed diagonal lines correspond roughly to the expected locations of foregrounds

within the main lobe of the MWA primary beam and the horizon, respectively. There is clear foreground

contribution within the expected region. Note that this wedge emission is consistent with the input fore-

ground model, as shown in Figure 1. There is also the clear imprint of the MWA’s uv-sampling function,

which has few very short and few very long (k > 0.08h.Mpc−1) baselines. The copies of the wedge are visible

at regular intervals in k‖, corresponding to the comb-like bandpass sampling function of the MWA. The

errors and expected noise, and the measured signal-to-error ratio can also be computed (Figures 5 and 6).

The error is computed using Equation 42 for the thermal-noise only data covariance matrix, as considered

for the estimator (foreground data covariance contribution is omitted here). The expected thermal noise is

computed by gridding visibilities with a thermal noise contribution given an average system temperature

of Tsys = 240 K, and propagating through the same estimator. This system temperature was estimated

by matching the observed noise (obtained through the difference in the even and odd datasets) to unity-

valued gridded visibilities. Note that this is only the thermal noise contribution, and the signal-to-error plot

shows all of the high ratio detections expected in the foreground-dominated regions. The signal-to-error

shows behaviour consistent with thermal noise away from the contaminated wedge and bandpass harmonics

regions.

When the foreground contribution is included in the data covariance matrix, power is effectively removed

from the contaminated regions, and the errors reflect those parts of the parameter space (Figure 7b). The

errors at the locations of the coarse bandpass features are also elevated, but this is not obvious from the plots

as shown. The small signal-to-error ratio in the wedge indicates that these modes are highly contaminated

and should be down-weighted in the final binning from 2D to 1D. The ratio is close to unity in the wedge,

suggesting that the foreground covariance is capturing the contamination appropriately. These data can

then be averaged in cylindrical bins and normalized to obtain the spherically-averaged dimensionless power

spectrum. Instead of treating the full bandwidth, which corresponds to a redshift range of 6.2–7.5 and

therefore is highly likely to contain signal evolution, we follow Dillon et al. (2015) and split the coherent

data into three contiguous 10.24 MHz bins, corresponding to redshifts z=[6.2–6.6], [6.6–7.0], [7.0–7.5], and

compute the 1D power spectra for those (Figure 8) for the E-W polarization (which shows reduced foreground

leakage from the Galaxy). This is effectively using the top and bottom plots from Figure 7 as the power

and errors, but with the reduced bandwidth (it is not exactly this process, because the inverse covariance

estimator also uses all of the off-diagonal error terms, which are not represented in the 2D error plots).

Unlike Dillon et al. (2015) however, we do not exclude any wedge contribution here, and instead allow the

estimator to ‘work within the wedge’ and downweight contaminated modes. The only data cut performed

is to remove the k⊥ = 0 and k‖ = 0 bins, which show large contamination and a poor foreground model

response. Both the thermal noise-only and the full thermal noise+foreground data covariance matrices are

shown. The error bars reflect 95% confidence regions in both dimensions. Inclusion of the foreground model

increases the uncertainties on those modes, corresponding to the substantial contamination in those regions.

The full data covariance model increases the uncertainties such that the results are consistent with thermal

noise+foregrounds across most of parameter space. The ‘detections’ in the k⊥ = [0.03−0.10] h.Mpc−1 region

are due to power bias from unmodelled foregrounds, recalling that the power bias term from Equation 36 is

omitted from the estimator.

From these results, we can set 2σ upper limits on the EoR power spectrum at the point where the 1D

power is at a minimum and we achieve a ‘detection’, corresponding to k = 0.05h.Mpc−1. (We omit the inner

detection because the power associated with this bin includes power on the scale of the primary beam size).

Table 1 lists the upper limits at this wavenumber for the 3 hours of data in the E-W polarization. While
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Fig. 4.— E-W (left) and N-S (right) cross power spectra when foregrounds are excluded from the estima-

tor. Both polarizations demonstrate foreground power consistent with smooth point sources and large-scale

Galactic emission. The N-S polarization has additional power beyond the theoretical edge of the main pri-

mary beam lobe (into the region approaching the horizon) and corresponds to Galactic emission rising or

setting during the observations.
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Fig. 5.— Error and expected noise computed from the input visibility weights and a system temperature of

240 K at 170 MHz, for both instrumental polarizations.
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Fig. 6.— Signal-to-error ratio (ratio of cross power to errors) for both polarizations where the errors term

only includes the thermal noise contribution to the estimator (no foreground contribution). As expected

when the foreground contribution is excluded from the estimator, the foreground-dominated wedge and

coarse bandpass harmonics shows high signal-to-error ratio detections of signal.
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Redshift ∆2
k (mK2)

z = [6.2− 6.6] 7.6×104

z = [6.6− 7.0] 8.8×104

z = [7.0− 7.5] 16.5×104

Table 1: 95% confidence (2σ) upper limits on the EoR power in three redshift bins at k = 0.05 h.Mpc−1,

using the full CHIPS estimator and including all data.

not competitive with the results from deeper studies with other telescopes, it is consistent with previously

published values, with a best detection value of ∆2
k = (275 mK)2 in the redshift range z = [6.2− 6.6].

9. Discussion and conclusions

The CHIPS estimator is one of several EoR power spectrum estimators being developed and applied

within the MWA collaboration, and broadly amongst the community with other low-frequency telescopes. It

takes one possible approach to the substantial systematic problems of structured and bright foregrounds, and

complex instrumentation. The primary design principles for CHIPS include (1) a full instrumental model

(bandpass, frequency- and pointing-dependent primary beam shape, uv-sampling, observation-dependent

system temperature, instrumental chromaticity); (2) a model-driven foreground component to the data

covariance, drawing upon previous observational studies to extract a realistic statistical model for an extra-

galactic point source population and Galactic synchrotron emission; (3) a maximum-likelihood estimator to

tie together the full sky and instrumental information in a consistent and robust framework, and yield a

fully-covariant set of output uncertainties.

This approach is not unique, and likely not the full solution to addressing this complex task. In

particular, the approach to foregrounds has many options and others have demonstrated the benefits of em-

pirical (Dillon et al. 2015) and blind parametric and non-parametric (e.g., Chapman et al. 2014) approaches.

Ultimately, the approach to foregrounds may require a combination of these techniques. Conversely, an

understanding of the full impact of the instrumental and analysis signal chain on the final data product,

is crucial for complicated low-frequency telescopes. In this regard, a CHIPS-like approach is likely to be

required for most current and future instruments.

The results presented here are from a very small amount of data, and are meant to be interpreted

as a proof-of-principle for the general approach. The outputs are visually as we would expect given our

understanding of the instrument and expectations of system noise, and quantitatively in one dimension

are consistent with previous estimates. In the regions of parameter space where we expect to be thermal

noise-limited, this small dataset shows consistency with those expectations.

The foreground model employed here, while multi-component, is still very simple, and includes none

of the intricacies of different underlying extragalactic populations (for example, star-forming galaxies and

AGN). Being a statistical model, it also lacks the ability to treat any outlier emission that remains after

peeling (for example, when peeling sources, the Galactic Centre and main Galactic plane are not treated in

this current calibration strategy, but are very bright), leaving additional power in the output power spectrum

that would be contained in the unsubtracted bias term. As we probe deeper into the data, we will use the new

information gleaned to form better sky models, but this is ultimately an iterative process at low frequencies,

where deep observations are sparse.
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Chapman E, Abdalla F B, Harker G, Jelić V, Labropoulos P, Zaroubi S, Brentjens M A, de Bruyn A G and

Koopmans L V E 2012 MNRAS 423, 2518–2532.

Chapman E, Zaroubi S and Abdalla F 2014 ArXiv/1408.4695 .

Choudhuri S, Bharadwaj S, Ghosh A and Ali S S 2014 MNRAS 445, 4351–4365.

Datta A, Bowman J D and Carilli C L 2010 ApJ 724, 526–538.

Dillon J S, Liu A and Tegmark M 2013 Phys. Rev. D 87(4), 043005.

Dillon J S, Neben A R, Hewitt J N, Tegmark M, Barry N, Beardsley A P, Bowman J D, Briggs F, Carroll

P, de Oliveira-Costa A, Ewall-Wice A, Feng L, Greenhill L J, Hazelton B J, Hernquist L, Hurley-

Walker N, Jacobs D C, Kim H S, Kittiwisit P, Lenc E, Line J, Loeb A, McKinley B, Mitchell D A,

Morales M F, Offringa A R, Paul S, Pindor B, Pober J C, Procopio P, Riding J, Sethi S, Shankar

N U, Subrahmanyan R, Sullivan I, Thyagarajan N, Tingay S J, Trott C, Wayth R B, Webster R L,

Wyithe S, Bernardi G, Cappallo R J, Deshpande A A, Johnston-Hollitt M, Kaplan D L, Lonsdale

C J, McWhirter S R, Morgan E, Oberoi D, Ord S M, Prabu T, Srivani K S, Williams A and Williams

C L 2015 Phys. Rev. D 91(12), 123011.

Ellingson S W, Clarke T E, Cohen A, Craig J, Kassim N E, Pihlstrom Y, Rickard L J and Taylor G B 2009

IEEE Proceedings 97, 1421–1430.

Fialkov A, Barkana R and Visbal E 2014 Nature 506, 197–199.

Furlanetto S R, Oh S P and Briggs F H 2006 Phys. Rep. 433, 181–301.

Hamaker J P, Bregman J D and Sault R J 1996 A&AS 117, 137–147.

Hazelton B, Beardsley A, Morales M, EoR collaboration and MWA Builders 2015, in prep. ApJ .

Hazelton B J, Morales M F and Sullivan I S 2013 ApJ 770, 156.



– 28 –
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A. Expected powers and covariances

To assess the performance of the estimator, we can take the expected value of the estimate, 〈p̂α〉, noting

that 〈~xTA~x〉 = tr(AC),

〈p̂α〉 =
tr
(
CPC−1C−1 ∂C

∂pα

)
tr (C−1C−1)

(A1)

=

∑
β

pβ |(C−1)αβ |2∑
β

|(C−1)αβ |2
. (A2)

The estimate of the power in mode α is therefore a mixture of the cross-power between mode α and others

(denoted β in the sum), with whitening (decorrelation and weighting) by the data covariance matrix. This

expression reduces to this simple form because the derivative,

∂C

∂pα
=


0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 0

 (A3)

has only a single non-zero entry, with a corresponding single non-zero row in the quantity, C−1 ∂C
∂pα

. This is

for the case where the cosmological signal is not contaminated, and is confined to a single mode.

The final weighting matrix for the vector of estimates contains all of the weighting and correlation due

to the primary beam, and weighting and correlation due to the foreground structure.

Example

In the simplest case, there is no foreground or noise contribution, and the covariance matrix, C = CP. Then,

equation (A2) reduces to:

〈p̂α〉 =
tr
(
C−1

P
∂C
∂pα

)
tr
(
C−1

P C−1
P

∂C
∂pα

) (A4)

=
1/pα∑

β

|(C−1
P )αβ |2

, (A5)

yielding the true power estimate, weighted by the correlations between mode α and all other modes. In the

limit where there are no covariances between modes,

〈p̂α〉 =
1/pα
1/p2

α

= pα, (A6)

yielding an unbiased estimator.

The covariance matrix of the estimator provides a measure of its performance. In the case of a general

data covariance, the covariance between powers, pα and pβ is given by:

cov(pα, pβ)
def
= 〈p̂αp̂β〉 − 〈p̂α〉〈p̂β〉 (A7)

=
K

tr(Eα)tr(Eβ)
, (A8)
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where,

K = 2tr(C−1CαC−1Cβ) + tr(C−1CαC−1CβC−1CN,FG) (A9)

+ tr(C−1CαC−1CN,FGC−1Cβ) + tr(C−1CαC−1CN,FGC−1CβC−1CN,FG),

with, CN,FG
def
= CFG + CN , and,

Eα = C−1C−1 ∂C

∂pα
(A10)

Cα =
∂C

∂pα
. (A11)

We have used the expression for the covariance of a zero-mean bilinear quadratic form,

cov(~V †1 A1
~V2, ~V

†
1 A2

~V2) = 2tr(A1CA2C), (A12)

where A1 and A2 are general matrices, and the datasets have means ~V1 and ~V2 and covariance C.

Given that we are using derived data as input into the estimator (coherently-averaged visibilities, rather

than individual measured visibilities), the squaring operates on a small number of visibilities, yielding a

χ2-distribution for the data. (Although the quadratic form formally sums power over the whole uv range, in

practise the localization of the beam makes most added powers have zero weight. This is by design to obtain

a mostly-diagonal covariance matrix, and coupling only between neighbouring uv points.) The covariance

expression described above is therefore an input to an underlying skewed distribution.
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(a) Cross power spectra with the foreground model included in

the estimator.

(b) Errors, when the foregrounds are included in the data covari-

ance matrix.

(c) Signal-to-error ratio plot demonstrating the large suppression

of modes within the wedge. Compare with Figure 6 where no

foregrounds are included in the estimator.

Fig. 7.— Cross power spectra, errors and signal-to-error ratios for the two instrumental polarizations, when

the foreground model is included in the estimator. The small signal-to-error ratio in the wedge indicates

that these modes are highly contaminated and should be down-weighted in the final binning from 2D to 1D.
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(a) ∆z=6.2–6.6. (b) ∆z=6.6–7.0.

(c) ∆z=7.0–7.5.

Fig. 8.— 1D spherically-averaged E-W polarization power spectra for three redshift ranges, corresponding

to the upper, mid and lower 10.24 MHz bands of the data. Both a thermal noise-only (red) and a full

foreground (blue) data covariance model has been used, and the full parameter space (no wedge excision).
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