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A Simple Effect Size Indicator

Donald B. Rubin

Harvard University

The purpose of this article is to propose a simple effect size estimate (obtained from
the sample size, &, and a p value) that can be used (a) in meta-analytic research
where only sample sizes and p values have been reported by the original investi-
gator, (b) where no generally accepted effect size estimate exists, or (c) where
directly computed effect size estimates are likely to be misleading. This effect size

estimate is called 7eqyivatent

because it equals the sample point-biserial correlation

between the treatment indicator and an exactly normally distributed outcome in a
two-treatment experiment with N/2 units in each group and the obtained p value. As

part of placing r,,
of r,

equivalent®

quivalent

Recent years have shown increasing dissatisfaction
in psychology with the use of dichotomous decision-
making based on significance tests and an increased
recognition of the value of reporting effect sizes. In-
deed, the report of the Task Force on Statistical In-
ference of the Board of Scientific Affairs of the
American Psychological Association explicitly rec-
ommended that the primary results of any research
should be presented as effect sizes, preferably with an
accompanying confidence interval (CI; Wilkinson &
the Task Force on Statistical Inference, 1999).

The purpose of the present article is to describe a
simple procedure for obtaining an estimate of an ef-
fect size from a p value and the sample size. We call
this effect size estimate rqyivaien This procedure is
especially appropriate when (a) in meta-analytic
work, or in other reanalyses of others’ studies, neither
effect sizes nor significance test statistics (such as
observed ¢ values or F values) are provided, but only
p values and sample sizes are reported; (b) no effect
size estimate has been generally accepted for the data
analytic procedures used; or (c) an effect size estimate
can be computed directly from the data, but, because
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into a broader context, the authors also address limitations

of small sample sizes or severe nonnormality, the es-
timates may be seriously misleading.

The basic idea is the following: Given the p value
(i.e., obtained level of significance) from the actual
study of a given size, what would be the point-biserial
correlation (requivateny) if the p value had been obtained
from the same-sized canonical (standard design)
study? The more different the actual study is from the
canonical study, the less relevant is the approximation
using requivaten- 1f the actual study has the same form
as the canonical study, then requivaien 18 perfectly ap-
propriate. Our choice for the canonical study is a two-
group comparison of the means of a normally distrib-
uted outcome. There are other choices for a canonical
study, but this choice seems more fundamental than
any other in psychology.

Meta-Analytic Research in Which Only
p Values Have Been Reported

In conducting meta-analyses we often find that only
p values have been provided rather than effect size
estimates or significance test statistics such as ¢ or Z,
or one degree of freedom F or x* statistics. When
those probability values are reported accurately (e.g.,
p = .11,p = .02, p = .003), we can use the method
proposed here to obtain r.yyiyaien from them and the
sample sizes. When p values are reported only as
< .05, < .01, and so on, we cannot get a unique value
Of Fequivalen» DUt WE can set a lower bound, that is, the
smallest possible value of r yiyaien- DUt NOt its upper
bound, its largest possible value. The fact that in
meta-analytic applications we can sometimes obtain
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only lower bound values must be kept in mind, but
such lower bound estimates of effect size are better
than having no estimate at all, because in simple situ-
ations they may be regarded as conservative.

No Generally Accepted Effect Size
Estimate Exists

Many effect size estimates have been described and
have been widely used (e.g., Cohen, 1988; Fleiss,
1994; Rosenthal, 1991, 1994). However, in the recent
history of statistical theory, considerably more work
has been devoted to obtaining accurate p values than
to developing indexes of effect size. Thus, there re-
main numerous statistical procedures for which no
standard effect size estimate is recognized, for ex-
ample, for many distribution-free or nonparametric
procedures. What effect size estimate should we use,
for example, when we have computed p values from
Fisher’s exact test, or from a sign test, a robust rank-
order test, a Wilcoxon signed ranks test, a Mann—
Whitney U test, or other permutation tests (Siegel &
Castellan, 1988)? In such situations, rg,iyaienc €an be
used, although as mentioned earlier, the more differ-
ent the actual study and test statistic are from the

canonical study, the less relevant is r.quivatent

Directly Computed Effect Size Estimates Are
Likely to Be Seriously Misleading

Consider a very small randomized experiment in
which three animals are vaccinated and all survive,
and three animals are not vaccinated and do not sur-
vive. The sample correlation between vaccination and
survival for these six animals is 1.00. Because of the
small sample size and the nonnormality of survival,
the obtained sample correlation () is probably a
very misleading estimate of the population correla-
tion. We can do better by computing an accurate prob-
ability for these six animals and then using the prob-
ability to compute a more appropriate effect size

estimate, requivatent

The Proposed Procedure

Our procedure yields 7equivaiene from an accurate
one-tailed p value and sample size N by obtaining the
value of ¢ (with df = N — 2) associated with the one-
tailed p value. When the p value we use to obtain the
value of ¢ is based on a contrast using more than two
conditions, we obtain the value of ¢ for N — k df,

where k is the number of conditions. The general prin-

ciple is that we obtain the value of ¢ with the degrees
of freedom on which the p value is based. Although it
is possible, in principle, to use two-tailed p values as
well as one-tailed p values, we recommend consistent
use of one-tailed p values to reduce ambiguity on this
point. One-tailed p values in the “wrong” or unpre-
dicted direction are recorded as rqiyaien With @ nega-
tive sign. We find these values of 7 quite readily from
extended tables of 7, from handheld calculators, or
from computers. Once we have the ¢ associated with
the one-tailed p value and N, we compute r,
from

quivalent

r

equivalent =

(1

a well-known general relationship (Cohen, 1965;
Rosenthal & Rosnow, 1991). When the p value we
used to obtain the value of ¢ was based on a contrast
using more than two conditions, we replace the ex-
pression (N — 2) in Equation 1 by the expression (N —
k), where k is the number of conditions. Even more
generally, N — 2 is replaced by the degrees of freedom
on which the p value is based.

The interpretation of reqyivaienc 1S that it is the
sample point-biserial correlation we would have
found in data yielding our obtained p value in a two-
group, equal-group-size study with N/2 in each group,
a study that we call the canonical study. That is, sup-
pose we conducted a randomized experiment with N/2
assigned to the treatment condition and N/2 assigned
to the control condition. Also suppose that the data are
independently normally distributed in each condition
with the same variance. Then, when the value of the
t-test statistic is ¢ with the obtained p value, the value
of the point-biserial correlation between treatment
condition and outcOmMe is 7eqyivatens Ziven by Equation 1.

Although effect size estimates are available for om-
nibus, unfocused tests of significance (e.g., F' with df
> 1 in the numerator or x> on df > 1), these are so
much less specific and less interpretable that they
should almost always be replaced by one or more
single degree of freedom contrasts (Rosenthal, Ros-
now, & Rubin, 2000).

ClIs for r,

equivalent

More research is needed to set appropriate CIs for
Fequivalen- UNtil that research becomes available, how-
ever, we believe the usual procedure for forming Cls
will work adequately for r, Thus, a 95% CI

quivalent*
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around the Fisher Z-transformed r.gyiyaiene can be
found from the following equation:

95% Cl=2Z, + 1.96/\/N - 3. )

The upper and lower limits computed from Equation
2 in units of Z, are then transformed into their corre-
sponding units of r using commonly available tables
(e.g., Rosenthal & Rosnow, 1991, Table B.8).

Improving the Accuracy of 7y,
A Simple Example

Earlier we described a randomized experiment in
which three vaccinated animals survived and three
unvaccinated animals did not survive, yielding a
sample correlation of 1.00 between being vaccinated
and survival. We can obtain an accurate p value for
these data from Fisher’s exact test:

31313131
P= 613101013

Hencep = .05 and N = 6, so #(4) = 2.13, and from
Equation 1 we find

r (2.13)
Fequivalent = P = 5 = 73,
A+ (N=2) (2.13)*+ (6 2)

a more realistic estimate of the population value of the
correlation between vaccination and survival than the
estimate of 1.00 based on the correlation in the
sample, g mple-

We now use Equation 2 to compute a 95% CI
around the obtained rgyivatent- FOT Fequivatent = 73, We
find Z, = .93, so, with N = 6, the 95% CI around Z,
runs from .93 — 1.9673 to .93 + 1.96/\3 or from
—0.20 to +2.06. Transforming our 95% CI for Z, back
t0 a 95% CL for reqyivatent yi€lds the interval from —.20
to .97. Had we tried to compute a 95% CI around the
obtained value of rg,;,,. (i.e., 1.00, with a Z, value of
+), we would have found it to show no uncertainty
at all, a result that is entirely unreasonable, because
the population correlation is not known to be 1.00
based on those six data points.

= .05, one—tailed.

Versus r.

r sample

equivalent

In what sense is 7qyiyalene @ MOTe accurate estimate
of the population correlation than is the sample cor-
relation, 7g,mp.? A formal answer to this question is
based on the fact that 7,1, although approximately
unbiased for the population correlation, in small
samples is a poor (i.e., high-variance) estimate. For

example, suppose that in the population 80% of vac-
cinated animals survive whereas only 20% of unvac-
cinated animals survive. That difference in survival
rates is associated with a correlation between vacci-
nation and survival of .60. If we repeated our experi-
ment on three vaccinated and three unvaccinated ani-
mals over and over, we would often find 7. of
1.00 even though we know the population correlation
is only .60. If the population survival rate for vacci-
nated animals were 90%, whereas only 10% of un-
vaccinated animals survived, we would be even more
likely to see rg,mpe values of 1.00, but our population
value of » would still be far from 1.00; it would be .80.
Even if 95% of vaccinated animals in the population
survived, whereas only 5% of unvaccinated animals
survived, we would still have a population correlation
of only .90 while obtaining 7, values of 1.00 most
of the time.

Table 1 illustrates further that r.gyiyaen based on
exact p values behaves in an intuitively more realistic
way than rg,, . in small samples. Table 1 shows the
results of seven hypothetical small-sample studies of
the effects of treatment on primate survival with
sample sizes ranging from 2 to 20. For each study, the
p value reported is based on Fisher’s exact test along

with the associated r, . and the sample correla-

equivalen
tion, 7gumple- AS sample size, N, increases, the p value
decreases, and Fequivalene IDCTEASES; hOWEVET, 7gymole

never changes—it remains at 1.0.

Providing Effect Sizes Where None Are
Currently Available: A Simple Example

Suppose that experts have ranked the performance
of nine children on a reading ability measure where
four randomly selected children were taught by a new
method (treatment), and five children were taught by
an old (control) method. All four of the treated chil-
dren were ranked higher than any of the five control
children, yielding an exact probability of .008, one-
tailed Mann—Whitney U test (Siegel, 1956, p. 271).
With p = .008 and N = 9, (7) = 3.16, and from
Equation 1 we find

r (3.16)*
Tequivalent = o = 5 =717,
A+v-2) V3167 +0-2)

for which we find Z. = 1.02 with the 95% CI ex-
tending from a Z, of .22 to a Z, of 1.82. Transforming
our 95% CI into correlation units yields the interval
from r = 22 to r = .95. Despite the limitations of
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Table 1
Seven Studies Showing Sample Size, p Value, 1,,ia1enp AN T gppie
Results One-tailed

Study Condition Survive Die N exact p Tequivalent Fsample

1 Treatment 1 0 2 .50 .00 1.00
Control 0 1

2 Treatment 2 0 3 .33 .50 1.00
Control 0 1

3 Treatment 2 0 4 17 .67 1.00
Control 0 2

4 Treatment 3 0 5 .10 .69 1.00
Control 0 2

5 Treatment 3 0 6 .050 .73 1.00
Control 0 3

6 Treatment 5 0 10 .0040 78 1.00
Control 0 5

7 Treatment 10 0 20 .0000054 .82 1.00
Control 0 10

Note.  Tequivalen 18 cOmputed from sample size and p value; r,

data.
Fequivatent that we describe shortly, it is useful to have
a generally serviceable effect size estimate available
where otherwise there would be none.

Choice of Effect Sizes

The same logic that leads to the use of 7equiyaienc €aN
be used to compute alternative indexes of effect size.
For example, should we want to use Cohen’s (1988)
d, we would use Equation 3 to go from an obtained p

value to its associated ¢ and then find dg;yq1enc from
the following:
J 2t 3)
equivalent — N _ 2

If our research consistently called for comparisons
of only two groups, we could use dgqyivaten: €XClU-
sively. In practice, however, effect sizes are often
needed for contrasts based on more than two groups,
for example, in computing linear trends or any other
predicted pattern of three or more means with each
pattern based on a single degree of freedom. In those
situations it is less natural to use a two-group-based
effect size indicator such as Cohen’s d, Hedges’s g,
Glass’s A, or related indexes. A limitation is that with
more than two treatment conditions, requivatent COITE-
sponds tO 7qnirast DOt Teprect size—1it 18 @ fully partial
correlation and therefore tends to overstate what
might be viewed as the more natural effect size cor-
relation; see Rosenthal et al. (2000) for discussion.

is computed directly from observed

sample

More detailed discussions of the use of various ef-
fect size indicators can be found in Rosenthal (1994)
and in Rosenthal et al. (2000). The latter, in particular,
describes a number of different correlational effect
size indicators and gives reasons for often preferring
them over various alternatives.

Nevertheless, the index reqyivatene €an be used in a
wide variety of contexts beyond the simple contrasts
computed among two or more treatment conditions.
As long as a contrast is involved, comparisons among
conditions leading to ¢ tests or Z tests (or to F' tests
with one degree of freedom in the numerator, or
chi-square tests on one degree of freedom) can all be
used to COMPULE 7'eqyiyalen- EXamples include contrasts
taken in the cells of any factorial design with only
between factors, only repeated measures factors, or
both. Also, we can use 7qyivaten N Tandom effects or
fixed effects analyses, for example, when the sam-
pling units are conditions (random) or units nested
within conditions (fixed) as in hierarchically nested
designs. In meta-analytic applications, however, we
typically do not have a choice of which to use to
Obtain reqyivaen: We are often able only to compute
Tequivalent 10T Whatever type of analysis the original
researcher reported; random effects in some cases,
fixed in others.

The Meaning of 7qyivaten: in Less

Canonical Situations

As indicated in the previous discussion, because

Tequivalent 18 Calculated from the obtained p value and

(&1
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the associated degrees of freedom, it is not the same
as effect sizes that use more information. For ex-
ample, in the context of designs with one treatment
with more than two levels, rquivatent 18 Tcontrast Tather
than 7.peo(size; 10 the context of factorial designs,
again T'equivatent 18 Teonuase Tather than the usually more
appropriate 7grq size» OF the even more generally ap-
Propriate 7egrect sizelns, that is, given nonsubstantive
factors—see Rosenthal et al. (2000, chap. 4); and in
repeated measures designs, reguivaent treats all such
designs as if they were intrinsically repeated measures
designs (Rosenthal et al., 2000, chap. 5), which is
clearly not always appropriate.

Similarly, in hierarchical designs with nested struc-
ture, or mixed and random effects models, there are
choices of denominator error terms, and 7 qyivatent COT-
responds only to the choice used to obtain the p value.
And in analyses that produce a p value but are not
adequately conceptualized as being a comparison of
levels of a treatment (e.g., more than one numerator
degree of freedom, more complex models), equivatent
may be deceptive, although we have not investigated
such situations.

Limitations of 7equivatent

In closing, we want to emphasize that, although
Fequivalent 18 Widely calculable, it is not a uniformly
optimal procedure. It is not intended to be a kind of
ubiquitous effect size indicator. It is, instead, designed
specifically for those situations in which, first, the
actual study is close in form to the canonical study,
and, second, (a) the alternative is to have no effect
size estimate at all (e.g., only sample sizes and
p values are known for a study), (b) nonparametric
procedures were used for which there are no currently
accepted effect size indicators, or (c) sample sizes are
so small or data so nonnormal that the directly com-
puted effect sizes would be more misleading than the

computed value of 7equivaient-

To conclude with a medical analogy: We think of
Tequivatent @S @ first-aid Kit to be used for the time being
until we can get to a highly sophisticated medical
center. The medical center would be better, but it may
be a long way away.
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