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SHEAVES OF CATEGORIES AND THE NOTION OF 1-AFFINENESS

DENNIS GAITSGORY

Abstract. We define the notion of 1-affineness for a prestack, and prove an array of results
that establish 1-affineness of certain types of prestacks.
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Introduction

0.1. The notion of sheaf of categories.

0.1.1. Before we define what we mean by a sheaf of categories, let us specify what these are
sheaves on: we will consider sheaves of categories over arbitrary prestacks.

In this paper we work in the framework of derived algebraic geometry, as developed by
J. Lurie. For a brief summary of our conventions, the reader is referred to the paper [GL:Stacks].
Throughout this paper we will be working over a fixed ground field k of characteristic 0.

Let DGSchaff be the category of affine DG schemes. By definition, a prestack is an arbitrary
functor 1 of ∞-categories

Y : (DGSchaff)op →∞ -Grpd .

I.e., a prestack is given by its functor of points on affine DG schemes (with the only condition
being of set-theoretic nature, referred to in the footnote).

0.1.2. Informally, a sheaf of categories C over a prestack Y is a functorial assignment for every
affine DG scheme S, mapping to Y, of a DG category Γ(S,C), which is acted on by the monoidal
DG category QCoh(S) of quasi-coherent sheaves on S. I.e.,

(0.1) (S → Y) ∈ DGSchaff
/Y  Γ(S,C) ∈ QCoh(S) -mod,

where we denote by QCoh(S) -mod the ∞-category of QCoh(S)-module categories.

The assignment (0.1) must be functorial in S in the sense that for a map f : S1 → S2 in

DGSchaff
/Y we must be given an isomorphism in QCoh(S1) -mod:

QCoh(S1) ⊗
QCoh(S2)

Γ(S2,C)→ Γ(S1,C),

together with a homotopy-coherent system of compatibilities for compositions of morphisms.

A precise definition of the ∞-category ShvCat(Y) is given in Sect. 1.1.

1Technically, we require our prestacks to be accessible as functors.
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0.1.3. As is often the case with subjects such as the present one, a natural question to ask is
why we should care about the notion of sheaf of categories, and especially in such generailty.

The author was led to the study of this notion by the (still highly conjectural) local geometric
Langlands program. Namely, the object of study of this program is the notion of category,
equipped with an action of the loop group G((t)).

Now, the ∞-category of categories acted on by G((t)) is (more or less by definition) the same
as ShvCat(Y), for

Y := B (G((t))dR) ,

where B(G) denotes the classifying prestack of a given group-prestack G, and (−)dR is the de
Rham prestack of a given stack.

It turns out that the case of B (G((t))dR) contains the complexity of all the examples consid-
ered in this paper combined (algebraic stacks, indschemes, classifying stacks of formal groups,
de Rham prestacks).

0.2. Quasi-coherent sheaves on a prestack. We shall now take a slightly different approach
to what a sheaf of categories over a prestack might mean.

0.2.1. For every prestack Y we have the DG category QCoh(Y). By definition, its objects are
assigments

(S → Y) ∈ DGSchaff/Y  FS ∈ QCoh(S),

endowed with the data of

f∗(FS2) ≃ FS1 , (f : S1 → S2) ∈ DGSchaff/Y,

together with a homotopy-coherent system of compatibilities for compositions of morphisms.
I.e., informally, a quasi-coherent sheaf on Y is a compatible family of quasi-coherent sheaves on
affine DG schemes mapping to Y.

The DG category QCoh(Y) has a natural (symmetric) monoidal structure given by term-wise
tensor product:

(F1 ⊗ F2)S := F1
S ⊗

OS

F2
S .

0.2.2. Can consider the ∞-category QCoh(Y) -mod of module categories over QCoh(Y). The
goal of this paper is to study the connection between the ∞-categories

ShvCat(Y) and QCoh(Y) -mod.

The above two ∞-categories are tautologically equivalent if Y is an affine DG scheme.

0.2.3. The first observation is that the categories ShvCat(Y) and QCoh(Y) -mod are related
by a pair of adjoint functors:

Given C ∈ ShvCat(Y), we can take the DG category Γ(Y,C) of its global sections over Y. It
will be naturally acted on by QCoh(Y). Thus, we obtain an object

Γenh(Y,C) ∈ QCoh(Y) -mod,

and we obtain a functor

Γenh
Y := Γenh(Y,−) : ShvCat(Y)→ QCoh(Y) -mod.
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The functor Γenh
Y admits a left adjoint, denoted LocY, given by tensoring up. Namely, for

C ∈ QCoh(Y) -mod we let LocY(C) be the sheaf of categories, whose value on S ∈ DGSchaff/Y
is

QCoh(S) ⊗
QCoh(Y)

C.

0.2.4. We can now give the definition central for this paper: we shall say that a prestack Y is
1-affine if the functors Γenh

Y and LocY are (mutually inverse) equivalences of ∞-categories.

Thus, Y is 1-affine, if and only if the category ShvCat(Y) can be completely recovered from
the monoidal DG category QCoh(Y).

As was mentioned above, an affine DG scheme is tautologically 1-affine.

0.2.5. The origin of the name is the following: let us say that a prestack Y is weakly 0-affine
if the functor

Γ(Y,−) : QCoh(Y)→ Γ(Y,OY)-mod

is an equivalence of categories. Here Γ(Y,OY) is the (DG) algebra of global sections of OY, and
Γ(Y,OY)-mod is DG category of its modules.

Tautologically, an affine DG scheme is weakly 0-affine. However, the class of weakly 0-affine
prestacks is much larger than just affine DG schemes. For example, any quasi-affine DG scheme
is weakly 0-affine. In addition, the algebraic stack pt /Ga is also weakly 0-affine.

The notion of 1-affineness is a higher-categorical analog, where instead of modules over DG
algebras, we consider module categories over monoidal DG categories.

0.3. Main results. This paper aims to determine which prestacks are 1-affine.

Remark 0.3.1. Let us say right away that it is “much easier” for a prestack to be 1-affine than
weakly 0-affine. We shall see multiple manifestations of this phenomenon below (however, it is
not true that every weakly 0-affine prestack is 1-affine).

0.3.2. First, one shows that any (quasi-compact, quasi-separated) DG scheme is 1-affine (The-
orem 2.1.1).

Furthermore, we show that algebraic stacks (under some not too restrictive technical condi-
tions) are also 1-affine (Theorem 2.2.6). 2

One of the technical conditions for 1-affineness of algebraic stacks is that the inertia group
of points be of finite type. This condition turns out to be necessary. Namely, we show (Theo-
rem 2.2.3) that the classifying stack of a group-scheme of infinite type is typically not 1-affine.

0.3.3. One can wonder whether it is reasonable to expect higher Artin stacks to be 1-affine.
Unfortunately, we did not find a principle that governs the answer:

Consider the iterated classifying spaces BGa, B
2Ga, B

3Ga. We prove (Theorem 2.5.7) that
they are all 1-affine. However, we also prove that B4Ga is not 1-affine.

0.3.4. Another class of prestacks of interest for us is (DG) indschemes. These turn out not to
be 1-affine, even in the nicest cases, such as A∞.

2Unfortunately, the only proof of this result that we could come up with for arbitrary algebraic stacks is
rather complicated. On the other hand, a much simpler proof can be given for algebraic stacks that are global
quotients (Theorem 2.2.4). The core idea of both proofs is due to J. Lurie.
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0.3.5. A third class of primary interest is prestacks of the form ZdR, where Z is a scheme of
finite type. We can think of ShvCat(ZdR) as the category of crystals of categories over Z.

We prove (Theorem 2.6.3) that ZdR is 1-affine.

Note, however, that if Z is not a scheme but an algebraic stack, then ZdR is no longer 1-affine.

0.3.6. Methods. Let us say a few words about what goes into proving that a given class of
prestacks is or is not 1-affine. Invariably, this question reduces to that of whether a certain
functor between two very concrete DG categories is monadic (see Sect. 0.5.1 for what this
means).

Usually, the monadicity of a functor is established using the Barr-Beck-Lurie theorem ([Lu2,
Theorem 6.2.2.5]). In order to apply this theorem, one needs to check two conditions. One is
that the functor in question is conservative (usually, this is fairly easy). The second condition is
that the functor commutes with certain geometric realizations. This condition is much harder to
check in practice, unless our functor happens to commute with all colimits (i.e., is continuous),
while the latter is not always the case.

Verifying this second condition constitutes the bulk of the technical work in this paper. Let
us emphasize again that, although our main assertions are initially about continuous functors
between DG categories (i.e., functors that commute with all colimits), the core of the proofs
involves non-continuous functors.

So, one can say that at the end of the day, the proofs consist of showing that certain colimits
commute with certain limits, i.e., we deal with convergence problems. In this sense, what we
do in this paper can be called “functional analysis within homological algebra.”

0.4. Organization of the paper. The paper can be loosely divided into three parts.

0.4.1. In Part I we give the definitions and discuss some general constructions.

In Sect. 1 we define sheaves of categories, the property of 1-affineness, and discuss some basic
results.

In Sect. 2 we state the main results of this paper pertaining to 1-affineness and non 1-
affineness of certain classes of prestacks.

In Sect. 3 we discuss the functors of direct and inverse image of sheaves of categories, and
study how these functors interact with the functors Γenh and Loc mentioned earlier.

In Sect. 4 we show that the property of 1-affineness survives the operation of taking the
formal completion of a prestack along a closed subset.

0.4.2. In Part II we consider the question of 1-affineness of algebraic spaces and algebraic
stacks.

In Sect. 5 we prove that (quasi-compact, quasi-separated) algebraic spaces are 1-affine. In
addition, we single out a class of prestacks (we call them passable; this class includes algebraic
stacks satisfying certain technical hypotheses) for which the functor Γenh is fully faithful.

In Sect. 6 we give several equivalent conditions for a (passable) algebraic stack to be 1-affine.
Essentially, these conditions reduce the verification of 1-affineness of a given algebraic stack to
the question of monadicity of a certain very concrete functor.

In Sect. 7 we show that the classifying stack of a (classical) algebraic group of finite type is
1-affine. The proof is based on the criterion of 1-affineness developed in Sect. 6. The idea of
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the proof belongs to J. Lurie. From the 1-affineness of the classifying stack we (easily) deduce
the 1-affineness of algebraic stacks that are global quotients.

Finallly, in Sect. 8 we prove that algebraic stacks (under certain technical hypotheses) are 1-
affine. As was mentioned above, the proof is rather long. It consists of checking the monadacity
of a functor when the conditions of the Barr-Beck-Lurie theorem could not be checked directly
(or, rather, the author did not find a way to do so).

0.4.3. In Part III we treat the question of 1-affineness of a host of cases: (DG) indschemes,
classifying prestacks of general group-prestacks, classifying prestacks of formal groups, de Rham
prestacks, and other related types of prestacks.

In Sect. 9 we specify a class of (DG) indschemes, for which the functor Loc is fully faithful.
This class includes formally smooth indcshemes locally almost of finite type. We also show that
(DG) indschemes are typically not 1-affine.

In Sect. 10 we study sheaves of categories over prestacks of the form BG, where G is a group-
object in the category of prestacks. We explain how the theory of sheaves of categories over
such prestacks can be viewed as “higher representation theory,” i.e., as the theory of categories
acted on by G.

In Sect. 11 we show that prestacks of the form BG, where G is a formal group, which as a
formal scheme is isomorphic to Spf(k[t1, ..., tn]), is 1-affine.

In Sect. 12 we study the question of 1-affineness of prestacks of the form ZdR, where Z is a
scheme or algebraic stack. The proof of 1-affineness in the case of schemes relies on 1-affineness
of formal classifying spaces, developed in the previous section.

In Sect. 13 we study the following problem: we start with a DG scheme Z with a point
z ∈ Z(k), and consider the (derived) inertia group Ω(Z, z) (a.k.a. the infinitesimal loop group
of Z at z). We study the connection between sheaves of categories on the prestack B(Ω(Z, z))
and sheaves of categories on the formal completion of Z at z.

In Sect. 14 we study the question of 1-affineness of iterated classifying prestacks of the form
Bk(Ga), and of classifying prestacks of iterated loop groups Ωk(Z, z).

0.4.4. This paper contains several appendices, included for the reader’s convenience in order
to make the exposition more self-contained.

In Sect. A we reproduce the proof of the result of J. Lurie that the assigment

Y ShvCat(Y)

is itself a sheaf in the fppf topology.

In Sect. B we reproduce proofs of several statements from [GL:QCoh] pertaining to the
behavior of quasi-affine morphisms from the point of view of tensor products of categories.

In Sect. C we review the (monadic and co-monadic) Beck-Chevalley conditions for co-
simplicial categories. These conditions make the totalization of the given co-simplicial category
calculable: namely the forgetful functor of evaluation on 0-simplices turns out to be monadic
(resp., co-monadic), and the corresponding monad (resp., co-monad) can be described explicitly.
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In Sect. D we review the notion of rigidity for a monoidal DG category. 3 This notion turns
out to be very convenient, as it allows for explicit control of the operation of tensor product of
module categories over our monoidal DG category.

In Sect. E we prove a certain basic result about commutative Hopf algebras in symmetric
monoidal ∞-categories (its version in ordinary categories is easy to prove by hand, and so is
often passed by, without being stated explicitly).

0.5. Conventions.

0.5.1. This paper relies on the theory of ∞-categories as developed by J. Lurie in [Lu1] and
[Lu2]. By a slight abuse of terminology we shall sometimes say “category”, when we actually
mean ∞-category.

0.5.2. The following terminology is used throughout the paper. If M is a monad acting on
an ∞-category C, we let M-mod(C) denote the category of M-modules (sometimes also called
M-algebras) in C. We let

indM : C⇄ M-mod(C) : oblvM

the resulting adjoint pair of functors (“oblv” stands for the forgetful functor, and “ind” for the
induction functor).

Let

C← D : G

be a functor between ∞-categories. We shall say that G is monadic if it admits a left adjoint,
denoted F, and when we view the composition G ◦ F as a monad acting on C, the resulting
functor

(G ◦ F)-mod(C)← D : Genh

is an equivalence.

Replacing “left” by “right”, we obtain the notion of co-monadic functor.

0.5.3. Our conventions regarding DG categories follow those adopted in [GL:DG].

We let Vect denote the DG category of chain complexes of k-vector spaces. 4 In this paper
all DG categories will be assumed presentable (in particular, cocomplete, i.e., closed under
arbitrary direct sums).

We let DGCat denote the ∞-category of DG categories and accessible exact functors. We
let DGCatcont denote the category with the same objects, but where we restrict 1-morphisms
to be continuous (i.e., commuting with all direct sums, equivalently, with all colimits).

In multiple places of the paper we will use the result of [Lu1, Corollary 5.5.3.3] that says the
colimit of a diagram in DGCatcont, can be computed as a DG category, as the limit in DGCat
of the diagram obtained by passage to right adjoint functors. For a sktech of the proof of this
result the reader is referred to [GL:DG, Lemma 1.3.3].

3For compactly generated monoidal DG categories, the condition of rigidity is equivalent to requiring that
every compact object admit a left and right monoidal duals.

4The reader can substitute the notion of DG category by a better documented notion of presentable stable
∞-category, tensored over Vect.



SHEAVES OF CATEGORIES 9

0.5.4. The ∞-category DGCatcont carries a natural symmetric monoidal structure given by
tensor product of DG categories. (We emphasize that we live in the world of cocomplete DG
categories and continuous functors.)

If O is an algebra object in DGCatcont, i.e., a monoidal DG category, we let O -mod denote
the category of O-modules in DGCatcont, i.e., the ∞-category of O-module categories.

In general, throughout the paper, we use boldface symbols for “higher” objects and functors.
E.g., if G is an affine DG group-scheme, we use invG to denote the functor

Rep(G)→ Vect,

of invariants on the category of G-representations, and we use invG to denote the functor

G -mod→ DGCatcont

that sends a DG category acted on by G to the category of G-equivariant objects.

For a pair of DG categories D1,D2, we let Hom(D1,D2) denote their “internal Hom”, i.e.,
the DG category of continuous functors D1 → D2. Similarly, for D1,D2 ∈ O -mod we will use
the notation Hom

O
(D1,D2) for the DG category of functors compatible with the O-module

structure.

0.5.5. Our conventions regarding derived algebraic geometry follow those of [GL:Stacks]. We

let DGSchaff denote the ∞-category of affine DG schemes, which is by definition the opposite
category to that of connective k-algebras.

We let PreStk denote the∞-category of all prestacks, i.e., the category of accessible functors

(DGSchaff)op →∞ -Grpd,

where ∞ -Grpd is the ∞-ategory of ∞-groupoids (a.k.a., spaces).

In the main body of the paper, we will need the notion of fppf morphism between DG
schemes, for which the reader is referred to [GL:Stacks, Sect. 2.1]5.

We will need the notion of what it means for a DG scheme or Artin stack to be classical (resp.,
eventually coconnective). By definition, an affine DG scheme is classical (resp., eventually
coconnective) if its DG ring of functions has no (resp., finitely many) non-zero cohomology
groups. An Artin stack is classical (resp., eventually coconnective) if it admits an fppf cover by
an affine DG scheme which is classical (resp., eventually coconnective). For further details see
[GL:Stacks, Sects. 1.1, 2.4 and 4.6].

We let PreStklaft denote the full subcategory of PreStk formed by prestacks that are locally
almost of finite type, see [GL:Stacks, Sect. 1.3.9].

0.5.6. In some proofs, we will need to use the category of ind-coherent sheaves, developed in
[Ga]. This category is defined on prestacks that belong to PreStklaft.

5In this paper we use the more common “fppf” rather than “fpppf.”
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Part I: Generalities

1. Quasi-coherent sheaves of categories

1.1. Definition of a quasi-coherent sheaf of categories.

1.1.1. Consider the functor

ShvCatDGSchaff : (DGSchaff)op →∞ -Cat, S 7→ QCoh(S) -mod,

that assigns to an affine DG scheme the ∞-category of module categories over the monoidal
DG category QCoh(S).

Let
ShvCatPreStk : (PreStk)op →∞ -Cat

be the right Kan extension of ShvCatDGSchaff along the Yoneda embedding

(DGSchaff)op →֒ PreStkop .

For a prestack Y, we let
ShvCat(Y) ∈ ∞ -Cat

denote the value of ShvCatPreStk on Y ∈ PreStk.

We shall refer to objects of ShvCat(Y) as a “quasi-coherent sheaves of DG categories on Y.”

1.1.2. In other words, for Y ∈ PreStk, an object C ∈ ShvCat(Y) is an assignment

S ∈ DGSchaff/Y  Γ(S,C) ∈ QCoh(S) -mod,

and for an arrow g : S1 → S2 in DGSchaff
/Y of an equivalence

QCoh(S1) ⊗
QCoh(S2)

Γ(S2,C) ≃ Γ(S1,C),

along with a homotopy-coherent system of compatibilities.

Morphisms between sheaves of categories are defined naturally.

From the definition of ShvCat(−) as the right Kan extension we obtain:

Lemma 1.1.3. The functor ShvCat(−) takes colimits in PreStk to limits in ∞ -Cat.

1.1.4. The basic example of an object of ShvCat(Y) is QCoh/Y, whose value on S ∈ DGSchaff/Y
is QCoh(S).

The category ShvCat(Y) carries a symmetric monoidal structure given by component-wise
tensor product, and QCoh/Y is its unit object.
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1.1.5. The category ShvCat(Y) contains colimits that are computed value-wise.

The category ShvCat(Y) contains limits, which are computed by

Γ


S, lim

←−
i

(Ci)


 ≃ lim

←−
i

Γ(S,Ci).

Indeed, this follows from the fact that for a morphism f : S1 → S2 in DGSchaff
/Y, the functor

QCoh(S1) ⊗
QCoh(S2)

− : QCoh(S2) -mod→ QCoh(S1) -mod

commutes with limits, which in turn follows from the fact that the category QCoh(S1) is
dualizable as an object of QCoh(S2) -mod, see Lemma 1.4.7.

1.2. Global sections.

1.2.1. For a given Y and C ∈ ShvCat(Y), we can right-Kan-extend the functor

Γ(−,C) : (DGSchaff
/Y)

op → DGCatcont

to a functor

(PreStk/Y)
op → DGCatcont; Z 7→ Γ(Z,C).

I.e.,

Γ(Z,C) := lim
←−

S∈DGSchaff
/Z

Γ(S,C).

For example, it is clear that

Γ(Z,QCoh/Y) ≃ QCoh(Z).

In particular, we obtain a DG category Γ(Y,C).

1.2.2. It is clear that the functor

Z 7→ Γ(Z,C)

takes colimits in PreStk/Y to limits in DGCatcont.

1.2.3. The functor

Γ(Z,−) : ShvCat(Y)→ DGCatcont

is lax symmetric monoidal.

In particular, we obtain that it natually upgrades to a functor

ShvCat(Y)→ Γ(Z,QCoh/Y) -mod ≃ QCoh(Z) -mod.

We shall denote the resulting functor

ShvCat(Y)→ QCoh(Z) -mod

by Γenh(Z,−).

When Z = Y, we shall sometimes write

Γenh
Y : ShvCat(Y)→ QCoh(Y) -mod

instead of Γenh(Y,−).

1.3. Posing the problem.
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1.3.1. We note that the functor

Γenh
Y : ShvCat(Y)→ QCoh(Y) -mod

admits a left adjoint; we denote it by LocY.

Namely, for C ∈ QCoh(Y) -mod we have

Γ(S,LocY(C)) = QCoh(S) ⊗
QCoh(Y)

C, S ∈ DGSchaff/Y .

It clear from the construction that the functor

LocY : QCoh(Y) -mod→ ShvCat(Y)

is symmetric monoidal.

1.3.2. The questions that we want to address in this paper are the following:

Question 1.3.3.

(1) Under what conditions, for C ∈ ShvCat(Y) is the co-unit map

(1.1) LocY
(
Γenh(Y,C)

)
→ C

an equivalence?

(2) Under what conditions on Y is (1.1) an equivalence for all C ∈ ShvCat(Y)? I.e., when
is Γenh

Y fully faithful?

(3) Under what conditions, for C ∈ QCoh(Y) -mod is the unit map

(1.2) C→ Γenh(Y,LocY(C))

an equivalence?

(4) Under what conditions on Y is (1.2) an equivalence for all C ∈ QCoh(Y) -mod? I.e.,
when is LocY fully faithful?

1.3.4. In some cases, the answer is very easy:

Lemma 1.3.5. Suppose that C is dualizable as an object of QCoh(Y) -mod. Then the adjunc-
tion map

C→ Γenh(Y,LocY(C))

is an equivalence.

Proof. This follows from the fact that for C ∈ QCoh(Y) -mod dualizable, the functor

− ⊗
QCoh(Y)

C : QCoh(Y) -mod→ DGCatcont

commutes with limits. Indeed,

Γ(Y,LocY(C)) ≃ lim
←−

S∈DGSchaff
/Y

(QCoh(S) ⊗
QCoh(Y)

C) ≃


 lim

←−
S∈DGSchaff

/Y

QCoh(S)


 ⊗

QCoh(Y)
C ≃ QCoh(Y) ⊗

QCoh(Y)
C ≃ C.

�
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1.3.6. We give the following definition:

Definition 1.3.7. We shall say that Y is 1-affine if the functors Γenh
Y and LocY are mutually

inverse equivalences.

The main results of this paper will amount to saying that certain classes of prestacks are (or
are not) 1-affine.

1.4. Dualizability and compact generation.

1.4.1. Recall that in any symmetric monoidal ∞-category we can talk about the property of
an object to be dualizable.

Since the functor LocY is symmetric monoidal, it automatically sends dualizable objects in
QCoh(Y) -mod to dualizable objects in ShvCat(Y).

The following is also tautological:

Lemma 1.4.2. If Y is 1-affine, then the lax symmetric monoidal structure on Γenh
Y is strict

(i.e., non-lax).

From here we obtain:

Corollary 1.4.3. If Y is 1-affine, and C ∈ ShvCat(Y) is dualiable, then Γ(Y,C) is dualizable
as an object of QCoh(Y) -mod.

1.4.4. Let us make the notion of being dualizable as an object of ShvCat(Y) more explicit:

Proposition 1.4.5. An object C ∈ ShvCat(Y) is dualizable if and only if for every S ∈

DGSchaff
/Y, the category Γ(S,C) is dualizable as a plain DG category.

Proof. The proof follows from the combination of the following two lemmas:

Lemma 1.4.6 (Lurie). Let a symmetric monoidal category O be equal to the limit

lim
←−
α

Oα

of a diagram α 7→ Oα of symmetric monoidal categories. Then an object o ∈ O is dualizable if
and only if its projection oα ∈ Oα is dualizable for every index α.

For the next lemma recall the notion of rigid monoidal DG category, see Sect. D.1. For
example, for an affine DG scheme S, the monoidal DG category QCoh(S) is rigid (this is the
trivial case of Lemma B.2.3).

We have (see Sect. D.5.3):

Lemma 1.4.7. Let A is a symmetric monoidal DG category, which is rigid as a monoidal DG
category. Then C ∈ A -mod is dualizable as an object of the symmetric monoidal category
A -mod if and only if C is dualizable as a plain DG category (i.e., as an object of DGCatcont).

�

We also notice the following corollary of Lemma 1.4.7:

Corollary 1.4.8. Let Y be such that QCoh(Y) is rigid. Then:

(a) An object C ∈ QCoh(Y) -mod is dualizable if and only if it is dualizable as a plain category.

(b) Then the functor LocY commutes with limits.



14 DENNIS GAITSGORY

1.4.9. One can also ask the following questions:

Question 1.4.10.

(1) Suppose that C ∈ ShvCat(Y) is such that for all S ∈ DGSchaff/Y, the category Γ(S,C) is

compactly generated. When can we guarantee that Γ(Y,C) is compactly generated as a
plain category?

(2) Let C ∈ QCoh(Y) -mod be compactly generated as a plain DG category. When can we

guarantee that QCoh(S) ⊗
QCoh(Y)

C is compactly generated for any S ∈ DGSchaff/Y.

These questions appear to be more subtle. For example, to the best of our knowledge, it is
not known whether the category QCoh(Y) is compactly generated when Y is an algebraic stack
(when Y is neither smooth nor a global quotient).

1.5. Descent. Before we proceed to the discussion of main results of this paper, let us remark
that the questions such as those in Question 1.3.3 are insensitive to fppf sheafification:

1.5.1. First, we recall that following result, which is essentially established in [Lu3, Theorem
5.4]:

Theorem 1.5.2. Let Y be an affine DG scheme, and let C be an object QCoh(Y ) -mod. Then
the functor

(DGSchaff/Y )
op → DGCatcont, S  Γ(S,LocY (C)) = QCoh(S) ⊗

QCoh(Y )
C

satisfies fppf descent.

This theorem is proved in [Lu3] when instead of the fppf topology one considers the étale
topology. The remanining step is easy (and well-known), since

“fppf descent”=“Nisnevich descent”+“finite flat descent.”

For the sake of completeness, we will prove Theorem 1.5.2 in Appendix A.

1.5.3. As a formal consequence, we obtain:

Corollary 1.5.4. For a prestack Y and C ∈ ShvCat(Y), the functor

(DGSchaff
/Y)

op → DGCatcont, S  Γ(S,C)

satisfies fppf descent.

From here:

Corollary 1.5.5. Let C be an object of ShvCat(Y).

(a) If Z→W is an fppf surjection in PreStk/Y, then the pullback functor

Γ(W,C)→ Tot(Γ(Z•/W,C))

is an equivalence, where Z•/W is the Čech nerve of the map Z→W.

(b) For Z ∈ PreStk/Y, the pullback functor

Γ(L/Y(Z),C)→ Γ(Z,C)

is an equivalence, where L/Y(−) is fppf sheafification in the category PreStk/Y.

(b’) If Y is an fppf stack, then for Z ∈ PreStk/Y, the pullback functor

Γ(L(Z),C)→ Γ(Z,C)

is an equivalence, where L(−) is fppf sheafification in the category PreStk.
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1.5.6. Next, from Theorem 1.5.2, one formally deduces the next result (this is [Lu3, Theorem
5.13]):

Theorem 1.5.7. The functor ShvCatPreStk : (PreStk)op →∞ -Cat satisfies fppf descent.

For the reader’s convenience, we will supply the derivation Theorem 1.5.2 ⇒ Theorem 1.5.7
in Appendix A.

As a formal consequence of Theorem 1.5.7, we obtain:

Corollary 1.5.8.

(a) If Z→ Y is an fppf surjection in PreStk, the pullback functor

ShvCat(Y)→ Tot(ShvCat(Z•/Y))

is an equivalence, where Z•/Y is the Čech nerve of the map Z→ Y.

(b) For Y ∈ PreStk, the pullback functor

ShvCat(L(Y))→ ShvCat(Y)

is an equivalence, where L(−) is fppf sheafification.

2. Statements of the results

2.1. Algebraic spaces and schemes. The following will not be difficult (see Sect. 5.3):

Theorem 2.1.1. Let Y be a quasi-compact quasi-separated algebraic space. Then Y is 1-affine.

2.2. Algebraic stacks. Our conventions regarding algebraic stacks follow those of [DrGa, Sect.
1.3.3]. In particular, we assume that the diagonal morphism is representable, quasi-compact
and quasi-separated.

2.2.1. In Sect. 7 we will prove:

Theorem 2.2.2. The stack pt /G, where G is a classical affine algebraic group of finite type,
is 1-affine.

The assumption that the group G be of finite type is important. Namely, in Sect. 7.3 we will
prove:

Theorem 2.2.3. The stack pt /G for G = lim
←−
n

(Ga)
×n is not 1-affine.

In Sect. 7.1.1, from Theorem 2.2.2 we will deduce:

Theorem 2.2.4. An algebraic stack that can be realized as Z/G, where Z is a quasi-compact
quasi-separated algebraic space and G is a classical affine algebraic group of finite type, is 1-
affine.

2.2.5. Finally, in Sect. 8 we will prove:

Theorem 2.2.6. An eventually coconnective quasi-compact algebraic stack locally almost of
finite type with an affine diagonal is 1-affine.

We conjecture that in Theorem 2.2.6, the assumption that Y be eventually coconnective is
superfluous.
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2.3. Formal completions. In Sect. 4 we will prove:

Theorem 2.3.1. Suppose that Y is obtained as a formal completion 6 of a 1-affine prestack
along a closed subfunctor such that the embedding of its complement is quasi-compact. Then Y

is 1-affine.

In particular, combining with Theorem 2.1.1, we obtain:

Corollary 2.3.2. Let Y be the formal completion of a quasi-compact quasi-separated algebraic
space, along a closed subset whose complement is quasi-compact. Then Y is 1-affine.

2.4. (DG) ind-schemes. We refer the reader to [GR1] for our conventions regarding DG
indschemes. In particular, we will need the notions of a weakly ℵ0 DG indscheme (see [GR1,
1.4.11]) and of formally smooth DG indscheme (see [GR1, 8.1.3]).

2.4.1. In Sect. 9.2 we will prove:

Theorem 2.4.2. Let Y be a weakly ℵ0 formally smooth DG indscheme localy almost of finite
type. Then the functor LocY is fully faithful.

From here in Sect. 9.2.2 we will deduce:

Theorem 2.4.3. Let G be a classical affine algebraic group of finite type. Then for the DG
indscheme G((t)), the functor LocG((t)) is fully faithful.

2.4.4. We should note that even the “nicest” DG indschemes are typically not 1-affine. As a
manifestation of this, in Sect. 9.3 we will prove:

Theorem 2.4.5. Let Y = A∞ := colim
−→
n

An. Then Y is not 1-affine.

2.4.6. We do not know whether the functor LocY is fully faithful for more general DG ind-
schemes. For example, we do not know this in the example of

Y := pt ×
A∞

pt .

2.5. Classifying prestacks.

2.5.1. Let G be a group-object in PreStk. We let B•G denote the standard simplicial object
of PreStk associated with G, i.e., the usual simplicial model for the classifying space.

We let BG denote the geometric realization,

BG := |B•G| ∈ PreStk .

We remark that if G is an algebraic group, then the algebraic stack pt /G, mentioned earlier,
is by definition the fppf sheafification of BG.

If G is such that LocG is fully faithful, the category ShvCat(BG) can be described more
explicitly, see Sect. 10.1.

Remark 2.5.2. Note that Theorem 2.2.2 (combined with Corollary 1.5.8(b)) implies that if G is
a classical an affine algebraic group of finite type, then BG is 1-affine. Note also that according
to Theorem 2.2.3, if G is an affine group-scheme of infinite type, then BG is typically not
1-affine. Below we will discuss several more cases when BG is (or is not) 1-affine.

6The definition of formal completion will be recalled in Sect. 4.1.2.
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2.5.3. In Sect. 11.3 we will prove:

Theorem 2.5.4. Let G be a group-object in PreStk, which as a prestack is a weakly ℵ0 formally
smooth DG indscheme locally almost of finite type with (clG)red = pt. In this case:

(a) The functor LocBG is fully faithful.

(b) The prestack BG is 1-affine if and only if the tangent space of G at the origin is finite-
dimensional.

In addition, in Sect. 12.3, we will prove:

Theorem 2.5.5. Let G be a classical affine algebraic group of finite type, and H ⊂ G a
subgroup. Let G be the formal completion of G along H. Then BG is 1-affine.

2.5.6. Let 0 6= V ∈ Vect♥ be finite-dimensional, regarded as a commutative (i.e., E∞) group-
object of PreStk.

Recall that by Remark 2.5.2, the prestack BV is 1-affine. As another series of examples of
group-objects G for which BG is (or is not) 1-affine, in Sect. 14 we will prove:

Theorem 2.5.7.

(a) The prestack B2(V ) is 1-affine.

(b) The prestack B3(V ) is 1-affine.

(c) The prestack B4(V ) is not 1-affine.

(d) The prestack B2(V ∧0 ) is not 1-affine, where V ∧0 is the completion of V at the origin, regarded
as a commutative group-object of PreStk.

2.5.8. Let now G be a group-object of DGSchaff
aft. (Note that the fppf sheafification of BG is

not an algebraic stack, so the discussion in Sect. 2.2 is not applicable to it.)

We propose the following conjecture:

Conjecture 2.5.9. The classifying prestack BG is 1-affine.

As a piece of evidence toward this conjecture, in Sect. 14.2 we will prove:

Theorem 2.5.10. Let V ∈ Vect♥ be finite-dimensional, and for n ∈ Z+ let us view G =
Spec(Sym(V [n])) as a group-object of DGSchaffaft. Then BG is 1-affine.

2.5.11. Finally, let us take
G = colim

−→
n

(Ga)
×n.

In Sect. 12.1.5 we will show that BG is not 1-affine. In this example, the functor Γenh
BG fails

to be fully faithful. We do not know whether LocBG is fully faithful.

2.6. De Rham prestacks.

2.6.1. Let Z be a prestack. Recall that the prestack ZdR is defined by

Maps(S,ZdR) := Maps((clS)red,Z).

2.6.2. In Sect. 12.1 we will prove:

Theorem 2.6.3. Let Y be of the form ZdR, where Z is an indscheme 7 locally of finite type.
Then Y is 1-affine.

7We say “indscheme” instead of “DG indscheme”, because for a prestack Z, the prestack ZdR only depends
on the underlying classical prestack.
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2.6.4. However, in Sect. 12.2 we will show:

Proposition 2.6.5. Let Y = ZdR, where Z = pt /Ga. Then Y is not 1-affine.

Hence, if Y = ZdR, where Z is quasi-compact algebraic stack locally of finite type with an
affine diagonal, it is not in general true that Y is 1-affine.

However, we propose:

Conjecture 2.6.6. Let Z is quasi-compact algebraic stack locally of finite type with an affine
diagonal. Then the functor LocZdR

is fully faithful.

In fact, we conjecture that in the situation of Conjecture 2.6.6 it should be possible to
describe the essential image of the functor LocZdR

in terms of the groups of automorphisms of
geometric points of Z.

3. Direct and inverse images for sheaves of categories

3.1. Definition of functors. Let f : Y1 → Y2 be a morphism between prestacks.

3.1.1. The monoidal functor

f∗ : QCoh(Y2)→ QCoh(Y1)

defines a forgetful functor

resf : QCoh(Y1) -mod→ QCoh(Y2) -mod.

It has a left adjoint, denoted indf , given by

C2 7→ QCoh(Y1) ⊗
QCoh(Y2)

C2.

3.1.2. We also have a tautological functor

coresf : ShvCat(Y2)→ ShvCat(Y1).

Namely, for C2 ∈ ShvCat(Y2), we restrict the assignment S 7→ Γ(S,C2) from DGSchaff/Y2
to

DGSchaff
/Y1

.

We shall sometimes denote this functor by

C2 ∈ ShvCat(Y2) 7→ C2|Y1 ∈ ShvCat(Y1).

3.1.3. We claim that the functor coresf admits a right adjoint (to be denoted coindf ).

Namely, for C1 ∈ ShvCat(Y2) and S ∈ DGSchaff/Y2
we set

Γ(S, coindf (C1)) := Γ(S ×
Y2

Y1,C1).

The fact that this is indeed a quasi-coherent sheaf of categories follows from the next lemma:

Lemma 3.1.4. For a map S′ → S in DGSchaff/Y2
, the functor

QCoh(S′) ⊗
QCoh(S)

Γ(S ×
Y2

Y1,C1)→ Γ(S′ ×
Y2

Y1,C1)

is an equivalence.
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Proof. By definition, we calculate Γ(S ×
Y2

Y1,C1) as

lim
←−

T∈DGSchaff
/S ×

Y2

Y1

Γ(T,C1).

Since QCoh(S′) is dualizable as a QCoh(S)-module (by Lemma 1.4.7), tensoring with it
commutes with limits in the category QCoh(S) -mod. Hence, we obtain:

QCoh(S′) ⊗
QCoh(S)

Γ(S ×
Y2

Y1,C1) ≃ lim
←−

T∈DGSchaff
/S ×

Y2

Y1

(
QCoh(S′) ⊗

QCoh(S)
Γ(T,C1)

)
.

Note that the functor

DGSchaff/S×
Y2

Y1
→ DGSchaff

/S′×
Y2

Y1
, T 7→ T ×

S
S′

is cofinal. Hence, we can calculate Γ(S′ ×
Y1

Y1,C1) as

lim
←−

T∈DGSchaff
/S ×

Y2

Y1

(
Γ(S′ ×

S
T,C1)

)
,

and the two expressions are manifestly isomorphic.
�

3.1.5. Let

Y1
f1,2
−→ Y2

f2,3
−→ Y3

be a pair of morphisms. We have an obvious isomorphism

coresf1,2 ◦ coresf2,3 ≃ coresf1,3 .

By passing to right adjoints we obtain a canonical isomorphism

coindf2,3 ◦ coindf1,2 ≃ coindf1,3 .

3.1.6. We note that the functor

Γ(Y,−) : ShvCat(Y)→ DGCatcont

is a particular case of coind, namely, for for the morphism pY : Y→ pt.

In particular, we obtain:

Lemma 3.1.7. For a morphism f : Y1 → Y2 and C ∈ ShvCat(Y1) there is a canonical isomor-
phism

Γ(Y2, coindf (C)) ≃ Γ(Y1,C).
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3.1.8. Let us note the following property of prestacks for which Γenh
Y is fully faithful:

Proposition 3.1.9. Suppose Y is such that Γenh
Y is fully faithful. Then for S ∈ DGSchaff/Y and

f : Y′ → Y, the map

QCoh(S) ⊗
QCoh(Y)

QCoh(Y′)→ QCoh(S ×
Y

Y′)

is an equivalence.

Proof. Consider the object

C := coindf (QCoh/Y′) ∈ ShvCat(Y).

Now, the two sides in the proposition are obtained by evaluation the two sides in

LocY(Γ
enh(Y,C))→ C

on S ∈ DGSchaff/Y. �

3.2. Commutation of diagrams. Let f : Y1 → Y2 be a morphism of presracks.

3.2.1. We note that the following diagram is commutative by construction

(3.1)

QCoh(Y1) -mod
LocY1−−−−→ ShvCat(Y1)

indf

x
xcoresf

QCoh(Y2) -mod
LocY2−−−−→ ShvCat(Y2).

By adjunction, the following diagram is commutative as well:

(3.2)

QCoh(Y1) -mod
Γ

enh
Y1←−−−− ShvCat(Y1)

resf

y
ycoindf

QCoh(Y2) -mod
Γ

enh
Y2←−−−− ShvCat(Y2).

3.2.2. Hence, each of the following two diagrams

(3.3)

QCoh(Y1) -mod
LocY1−−−−→ ShvCat(Y1)

resf

y
ycoindf

QCoh(Y2) -mod
LocY2−−−−→ ShvCat(Y2)

and

(3.4)

QCoh(Y1) -mod
Γ

enh
Y1←−−−− ShvCat(Y1)

indf

x
xcoresf

QCoh(Y2) -mod
Γ

enh
Y2←−−−− ShvCat(Y2)

commutes up to a natural transformation.
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3.2.3. For future use, let us record the following:

Lemma 3.2.4. Let f : Y1 → Y2 be a morphism between 1-affine prestacks. Then for C ∈
ShvCat(Y2), the functor

QCoh(Y1) ⊗
QCoh(Y2)

Γenh(Y2,C)→ Γenh(Y1, coresf (C))

is an equivalence, i.e., the natural transformation in the diagram (3.4) is an isomorphism.

Proof. Follows from the commutation of (3.1), as the horizontal arrows are equivalences. �

3.2.5. The following assertion will be a key tool for many proofs:

Proposition 3.2.6. Assume that for any S ∈ DGSchaff
/Y2

the map

QCoh(S) ⊗
QCoh(Y2)

QCoh(Y1)→ QCoh(S ×
Y2

Y1)

is an equivalence.

(a) Suppose that f is such that its base change by every affine DG scheme yields a prestack for
which Loc is fully faithful. Then:

(i) The diagram (3.3) commutes, i.e., the natural transformation is an isomorphism.

(ii) If QCoh(Y1) is dualizable as an object of QCoh(Y2) -mod, then the diagram (3.4) commutes,
i.e., the natural transformation is an isomorphism.

(iii) If LocY2 is fully faithful, then so is LocY1 .

(b) Suppose that f is such that its base change by every affine DG scheme yields a 1-affine
prestack. Then if Γenh

Y2
is fully faithful, then so is Γenh

Y1
.

Corollary 3.2.7. Let f : Y1 → Y2 be a map, where Y2 is 1-affine, and the base change of f by
an affine DG scheme yields a 1-affine prestack. Then Y1 is 1-affine.

Proof. Follows from Proposition 3.2.6, points (a,iii) and (b). The condition of the proposition
holds because of Proposition 3.1.9. �

Corollary 3.2.8. The product of two 1-affine prestacks is 1-affine.

3.3. Proof of Proposition 3.2.6.

3.3.1. Proof of point (a,i).

Fix C1 ∈ QCoh(Y1) -mod and S ∈ DGSchaff
/Y2

. By definition:

Γ(S,LocY2 ◦ resf (C1)) = QCoh(S) ⊗
QCoh(Y2)

C1 ≃

≃ (QCoh(S) ⊗
QCoh(Y2)

QCoh(Y1)) ⊗
QCoh(Y1)

C1,

while the latter maps isomorphically to

QCoh(S ×
Y2

Y1) ⊗
QCoh(Y1)

C1,

by the assumption of the proposition.

Also,
Γ(S, coindf ◦ LocY1(C1)) ≃ Γ(S ×

Y2

Y1,LocY1(C1)).

Set
C := QCoh(S ×

Y2

Y1) ⊗
QCoh(Y1)

C1 ∈ QCoh(S ×
Y2

Y1) -mod.
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We have

LocY1(C1)|S×
Y2

Y1 ≃ LocS×
Y2

Y1(C),

and hence

Γ(S ×
Y2

Y1,LocY1(C1)) ≃ Γ(S ×
Y2

Y1,LocS×
Y2

Y1(C)).

Now, the assumtion in (a) implies that the latter is isomorphic to C itself, as desired.
�

3.3.2. For the proof of point (a,ii) we will need the following assertion:

Lemma 3.3.3. Under the assumption of (a) for S ∈ DGSchaff
/Y2

we have:

(1) For C ∈ QCoh(S) -mod, the natural map

(3.5) QCoh(Y1) ⊗
QCoh(Y2)

C→ Γ(S ×
Y2

Y1,LocS(C))

is an isomorphism.

(2) For C2 ∈ ShvCat(Y2), the natural map

(3.6) QCoh(Y1) ⊗
QCoh(Y2)

Γ(S,C2)→ Γ(S ×
Y2

Y1,C2)

is an isomorphism.

Proof. We rewrite the left-hand side in (3.5) as

(QCoh(Y1) ⊗
QCoh(Y2)

QCoh(S)) ⊗
QCoh(S)

C,

which by the assumption of the proposition maps isomorphically to

QCoh(S ×
Y1

Y2) ⊗
QCoh(S)

C.

So, in order to prove that (3.5) is an isomorphism, we have to show that the natural map

(3.7) QCoh(S ×
Y1

Y2) ⊗
QCoh(S)

C→ Γ(S ×
Y2

Y1,LocS(C))

is an isomorphism.

Set

C′ := QCoh(S ×
Y1

Y2) ⊗
QCoh(S)

C ∈ QCoh(S ×
Y1

Y2) -mod.

We have:

LocS(C)|S×
Y2

Y1 ≃ LocS×
Y2

Y1(C
′),

and the map in (3.7) identifies with

C′ → Γ(S ×
Y2

Y1,LocS×
Y2

Y1(C
′)),

which is an isomorphism by the assumption in (a). This shows that (3.5) is an isomorphism.

To prove that (3.6) is an isomorphism, we note that the two sides identify with the corre-
sponding sides in (3.5) for

C := Γ(S,C2),

using the fact that

C2|S ≃ LocS(Γ(S,C2)).

�
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3.3.4. Proof of point (a,ii). For C2 ∈ ShvCat(Y2), we have

(3.8) Γ(Y1, coresf (C2)) ≃ Γ(Y2, coindf ◦ coresf (C2)) ≃ lim
←−

S∈DGSchaff
/Y2

Γ(S ×
Y2

Y1,C2).

By Lemma 3.3.3(2), we have

Γ(S ×
Y2

Y1,C2) ≃ QCoh(Y1) ⊗
QCoh(Y2)

Γ(S,C2).

Hence, the expression in (3.8) identifies with

(3.9) lim
←−

S∈DGSchaff
/Y2

QCoh(Y1) ⊗
QCoh(Y2)

Γ(S,C2).

Now, the assumption that QCoh(Y1) is dualizable as an object of QCoh(Y2) -mod implies
that

QCoh(Y1) ⊗
QCoh(Y2)

− : QCoh(Y2) -mod→ DGCatcont

commutes with limits, so we can rewrite the expression in (3.9) as

QCoh(Y1) ⊗
QCoh(Y2)


 lim

←−
S∈DGSchaff

/Y2

Γ(S,C2)


 ≃ QCoh(Y1) ⊗

QCoh(Y2)
Γ(Y2,C2),

as desired.

3.3.5. Proof of point (a,iii). We need to show that the unit map

C1 → Γenh(Y1,LocY1(C1))

is an isomorphism. Note that the functor resf is conservative. Hence, it suffices to show that

resf (C1)→ resf
(
Γenh(Y1,LocY1(C1))

)

is an isomorphism. However, we have a commutative diagram

resf
(
Γenh(Y1,LocY1(C1))

) ∼
−−−−→ Γenh (Y2, coindf (LocY1(C1)))x

x

resf (C1) −−−−→ Γenh (Y2,LocY2(resf (C1))) ,

where the right vertical arrow is an isomorphism by point (a,i). Hence, if LocY2 is fully faithful,
the bottom horizontal arrow is an isomorphism, and hence so is the left vertical arrow.

3.3.6. Proof of point (b). By an argument similar that in point (a,iii), it suffices to show that
under the assumption of point (b), the functor coindf is conservative.

Let φ : C′1 → C′′1 be a morphism in ShvCat(Y1), such that coindf (φ) is an isomorphism. We

need to show that for every T ∈ DGSchaffY1
, the resulting map

(3.10) Γ(T,C′1)→ Γ(T,C′′1)

is an isomorphism (under the assumption of the proposition).

Set Z := T ×
Y2

Y1, considered as a prestack over Y1. Consider the corresponding map

(3.11) C′1|Z → C′′1 |Z.
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The assumption that coindf (φ) is an isomorphism implies that the induced map

Γ(Z,C′1|Z)→ Γ(Z,C′′1 |Z)

is an isomorphism. Now, the fact that Z is 1-affine implies that (3.11) is an isomorphism as
well.

Evaluating (3.11) on T ∈ DGSchaff
/Z, we obtain that (3.10) is an isomorphism, as required.

�

4. The case of formal completions

Let Y be a 1-affine prestack, Y′
ι
→ Y a closed embedding, and let Y0


→֒ Y be the complemen-

tary open. Throughout this section, we will be assuming that  is quasi-compact.

4.1. QCoh-modules on a formal completion.

4.1.1. We have an adjoint pair of functors

∗ : QCoh(Y)⇄ QCoh(Y0) : ∗.

The assumption that  is quasi-compact implies that ∗ is continuous (see, e.g., [GL:QCoh,
Proposition 2.1.1]).

Let QCoh(Y)Y′ be the full subcategory of QCoh(Y) consisting of objects set-theoretically
supported on Y′, i.e., QCoh(Y)Y′ = ker(∗).

Let

ı̂QCoh
! : QCoh(Y)Y′ →֒ QCoh(Y)

denote the tautological embedding.

The functor ı̂QCoh
! admits a continuous right adjoint, denoted by ı̂QCoh,!, and given by

F 7→ Cone(F → ∗ ◦ 
∗(F))[−1].

We obtain a localization sequence:

(4.1) QCoh(Y)Y′

ı̂QCoh
!

⇄
ı̂QCoh,!

QCoh(Y)
∗

⇄
∗

QCoh(Y0).

4.1.2. Let Y∧Y′ the formal completion of Y along Y′, see [GR1, Defn. 6.1.2]. I.e., Y∧Y′ is the
prestack defined by

Maps(S,Y∧Y′) := Maps(S,Y) ×
Maps((clS)red,Y)

Maps((clS)red,Y
′).

Let î : Y∧Y′ → Y denote the tautological map.

The following results from [Ga, Proposition 7.1.3] by base change:

Proposition 4.1.3. The functor

ı̂∗ : QCoh(Y)→ QCoh(Y∧Y′)

factors as

QCoh(Y)
ı̂QCoh,!

−→ QCoh(Y)Y′ → QCoh(Y∧Y′),

where the second arrow is an equivalence.
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4.1.4. Consider now the adjoint functors

indî : QCoh(Y) -mod⇄ QCoh(Y∧Y′) -mod : reŝi.

Proposition 4.1.5. The functor reŝi is fully faithful; its essential image consists of those

CY ∈ QCoh(Y) -mod, on which ker(̂i∗) = Im(∗) ⊂ QCoh(Y) acts trivially (i.e., by zero).

The assertion of the proposition follows from Proposition 4.1.3 and the next general assertion:

Let O be a monoidal DG category, and let F : O→ O′ be a monoidal functor. Let C be an
O-module category, on which ker(F) acts by zero.

Lemma 4.1.6. Assume that F admits a fully faithful continuous right or left adjoint, which is
a map of right O-module categories. Then the canonical map

C ≃ O⊗
O

C→ O′ ⊗
O

C

is an equivalence.

Proof. Let F have a fully continuous right adjoint. The assumption on F implies that in the
localization sequence

O′
F

⇄ O⇄ ker(F),

all functors are maps of right O-module categories. Hence, tensoring up by C over O on the
right, we obtain a localization sequence of DG categories:

O′ ⊗
O

C
F⊗IdC

⇄ C⇄ ker(F)⊗
O

C.

However, the assumption on C says that the functor C← ker(F)⊗
O

C is zero, and since this

functor is fully faithful, we obtain that ker(F) ⊗
O

C = 0. Hence, the functor

O′ ⊗
O

C← C,

is an equivalence, as desired.

The proof when F admits a fully faithful left adjoint is similar.
�

4.2. Sheaves of categories on a formal completion.

4.2.1. Consider now the pair of adjoint functors

coreŝi : ShvCat(Y)⇄ ShvCat(Y∧Y′) : coindî,

see Sect. 3.1.3.

Since Y∧Y′ ×
Y

Y∧Y′ ≃ Y∧Y′ , the adjunction map

coreŝi ◦ coindî → Id

is an isomorphism. Hence, the functor coindî is fully faithful. We now claim:

Proposition 4.2.2. The essential image of coindî consists of those C ∈ ShvCat(Y), for which
C|Y0 = 0.
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Proof. The assertion readily reduces to the case when Y = S ∈ DGSchaff . Let S′ ⊂ S be a

closed DG subscheme whose complement S0

→֒ S is quasi-compact. We need to show that for

C ∈ QCoh(S) -mod,

on which the action of QCoh(S) factors through the restriction functor QCoh(S)→ QCoh(S∧S′),
the map

C = Γ(S,LocS(C))→ Γ(S∧S′ ,LocS(C))

is an equivalence.

By [GR1, Proposition 6.7.4], we can exhibit S∧S′ as

lim
−→
n

Sn,

where Sn are closed subschemes of S, and the transition maps ιn1,n2 : Sn1 → Sn2 are such that
the functors ι∗n1,n2

admit left adjoints.

In this case, by [GL:DG, Lemma 1.3.3], we calculate

QCoh(S∧S′) := lim
←−
n

QCoh(Sn) ≃ colim
−→
n

QCoh(Sn),

where the limit is taken with respect to the transition functors ι∗n1,n2
, and the colimit is taken

with respect to the transition functors (ι∗n1,n2
)L.

Similarly,

Γ(S∧S′ ,LocS(C)) := lim
←−
n

(
C ⊗

QCoh(S)
QCoh(Sn)

)
≃ colim

−→
n

(
C ⊗

QCoh(S)
QCoh(Sn)

)
≃

≃ C ⊗
QCoh(S)

(
colim
−→
n

QCoh(Sn)

)
≃ C ⊗

QCoh(S)
QCoh(S∧S′) ≃ C,

where the latter is isomorphism holds by Proposition 4.1.3 and Lemma 4.1.6.
�

4.3. Proof of Theorem 2.3.1.

4.3.1. Recall the commutative diagram:

ShvCat(Y∧Y′)
coindî−−−−→ ShvCat(Y)

Γ
enh
Y∧
Y′

y
yΓ

enh
Y

QCoh(Y∧Y′) -mod
resî−−−−→ QCoh(Y) -mod.

By Propositions 4.1.5 and 4.2.2, the horizontal arrows in this diagram are fully faithful.
Hence, we obtain that if Γenh

Y is fully faithful, then so is Γenh
Y∧

Y′
.
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4.3.2. We now claim that the map

î : Y∧Y′ → Y

satisfies the conditions of Proposition 3.2.6(a).

Indeed, the assumption of Proposition 3.2.6 is satisfied by the localization sequence (4.1) and
[GL:QCoh, Proposition 3.2.1], applied to . The assumption of Proposition 3.2.6(a) is satisfied
by Sect. 4.3.1 above, applied to an affine DG scheme and its formal completion.

Hence, by Proposition 3.2.6(a,i), we obtain that the diagram

ShvCat(Y∧Y′)
coindî−−−−→ ShvCat(Y)

LocY∧
Y′

x
xLocY

QCoh(Y∧Y′) -mod
resî−−−−→ QCoh(Y) -mod.

commutes as well.

4.3.3. From the above diagram, we conlcude that if the functor LocY is fully faithful, then so
is LocY∧

Y′
.

�

Part II: 1-Affinness of Algebraic Stacks

5. Algebraic stacks: preparations

5.1. Passable prestacks.

5.1.1. We give the following definition, taken from [GL:QCoh, Sect. 3.3]:

Definition 5.1.2. A prestack Y is called passable if it satisfies:

• The diagonal morphism Y→ Y× Y is schematic, quasi-affine and quasi-compact;
• OY ∈ QCoh(Y) is compact;
• QCoh(Y) is dualizable as a plain DG category.

As our initial observation, we will prove:

Proposition 5.1.3. Let Y be a passable prestack. Then the functor

Γenh
Y : ShvCat(Y)→ QCoh(Y) -mod

is fully faithful.

5.1.4. Many algebraic stacks are passable as prestacks. In particular, any algebraic stack,
which in the terminology of [BFN] is perfect, is passable.

The following assertion is proved in [DrGa, Theorems 4.3.1 and 1.4.2]:

Theorem 5.1.5. An eventually coconnective QCA 8 algebraic stack locally almost of finite type
is passable.

We conjecture that in Theorem 5.1.5 the hypothesis that Y should be eventually coconnective
is unnecessary.

8Under the “locally almost of finite type” assumption, QCA means “quasi-compact and the automorphism
group of every field-valued point is affine.”
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5.1.6. The proof of Proposition 5.1.3 will use the following ingredient (see [GL:QCoh, Propo-
sition 2.3.2]; the proof is reproduced in Sect. B.2.4 for the reader’s convenience):

Proposition 5.1.7. If Y is passable, the category QCoh(Y) is rigid as a monoidal DG category.

Proof of Proposition 5.1.3. We need to show that for C ∈ ShvCat(Y) and T ∈ DGSchaff
/Y, the

canonical map

QCoh(T ) ⊗
QCoh(Y)

Γ(Y,C)→ Γ(T,C)

is an isomorphism. We will prove this by applying Proposition 3.2.6(a,ii) to the morphism
T → Y.

The condition of Proposition 3.2.6 holds by [GL:QCoh, Proposition 3.3.3] (for the reader’s
convenience we will reproduce the proof in Proposition B.2.2).

The condition of Proposition 3.2.6(a) holds by Theorem 2.1.1 in the case of the quasi-affine
schemes (which will be proved independently).

The condition of Proposition 3.2.6(a,ii) holds by Lemma 1.4.7, using Proposition 5.1.7.
�

5.2. A corollary of fully faithfulness of Loc.

5.2.1. Let Y1,Y2 be two objects of PreStk, and recall that we have a canonically defined
(symmetric monoidal) functor

(5.1) QCoh(Y1)⊗QCoh(Y2)→ QCoh(Y1 × Y2).

Recall also that the map (5.1) is an equivalence if for one of the prestacks, the category
QCoh(Yi) is dualizable (for the proof see, e.g., [GL:QCoh, Proposition 1.4.4]).

5.2.2. We shall now prove:

Proposition 5.2.3. Suppose that Y1 is such that LocY1 is fully faithful. Then (5.1) is an
equivalence.

Proof. Consider

C := QCoh(Y1)⊗QCoh(Y2) ∈ QCoh(Y1) -mod.

The value of LocY1(C) on S ∈ DGSchaff/Y1
is

QCoh(S) ⊗
QCoh(Y1)

(QCoh(Y1)⊗QCoh(Y2)) ≃ QCoh(S)⊗QCoh(Y2),

and the latter is isomorphic to QCoh(S × Y2), since QCoh(S) is dualiazable.

Hence, the category Γ(Y1,LocY1(C)) is

lim
←−

S∈DGSchaff
/Y1

QCoh(S × Y2),

and the latter is isomorphic to QCoh(Y1 × Y2).

Hence, if C→ Γ(Y1,LocY1(C)) is an equivalence, then so is

QCoh(Y1)⊗QCoh(Y2)→ QCoh(Y1 × Y2).

�
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5.2.4. As a corollary of Proposition 5.2.3, we obtain:

Corollary 5.2.5. Let Y1,Y2 ∈ PreStk such that the functors LocYi i = 1, 2 are fully faithful.
Then LocY1×Y2 is also fully faithful.

Proof. Follows from Proposition 3.2.6(a,iii), applied to the map Y1 × Y2 → Y1. �

5.2.6. As another corollary of Proposition 5.2.3, we obtain:

Corollary 5.2.7. Let Y be prestack that satisfies:

• The diagonal morphism Y→ Y×Y is representable, quasi-compact and quasi-separated;
• OY ∈ QCoh(Y) is compact;
• LocY is fully faithful.

Then QCoh(Y) is rigid as a monoidal DG category, and in particular, dualizable as a plain DG
category.

Proof. Follows from [GL:QCoh, Proposition 2.3.2]. �

5.2.8. Hence, we we obtain:

Corollary 5.2.9. Let Y ∈ PreStk be such that:

• The diagonal morphism Y→ Y× Y is schematic, quasi-affine and quasi-compact;
• OY ∈ QCoh(Y) is compact.

Then we have the following implications:

LocY is fully faithful ⇒ Y is passable ⇒ Γenh
Y is fully faithful.

5.3. Algebraic spaces: proof of Theorem 2.1.1. We shall first prove Theorem 2.1.1, as-
suming its validity in the case of quasi-compact quasi-affine schemes. In particular, we assume
the validity of Proposition 5.1.3.

5.3.1. First, we know that any quasi-compact quasi-separated algebraic space Y is passable as
a prestack: this is given by [GL:QCoh, Propositions 2.2.2 and 2.3.6]. Hence, the functor Γenh

Y

is fully faithful by Proposition 5.1.3. It remains to show that LocY is fully faithful.

By [GL:QCoh, Lemma 2.2.4], we can exhibit Y is a finite union

∅ = Y0 ⊂ Y1 ⊂ . . . ⊂ Yk−1 ⊂ Yk = Y

of open subsets, such that for each 1 ≤ i ≤ k there exists a quasi-affine quasi-compact scheme
Uk equipped with étale map fk : Uk → Yk, which is one-to-one over Yk − Yk−1.

By induction, we can assume that Yk−1 is 1-affine. Thus, we can assume having a Cartesian
diagram of algebraic spaces

U ′
jU

−−−−→ U

f ′

y
yf

Y′
jY−−−−→ Y,

where the horizontal maps are open embeddings, the vertical maps are étale, f is one-to-one
over Y−Y′, and U,U ′,Y′ are 1-affine. We wish to deduce that the functor LocY is fully faithful.
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5.3.2. In Sect. A.1.2 it is shown that for C ∈ QCoh(Y) -mod the diagram

(5.2)

QCoh(U ′) ⊗
QCoh(Y)

C
(jU )∗⊗IdC

←−−−−−−− QCoh(U) ⊗
QCoh(Y)

C

(f ′)∗⊗IdC

x
xf∗⊗IdC

QCoh(Y′) ⊗
QCoh(Y)

C
(jY)∗⊗IdC

←−−−−−−− C

is a pull-back diagram of DG categories.

For C ∈ ShvCat(Y) consider the diagram

(5.3)

Γ(U ′,C)
(jU )∗C←−−−− Γ(U,C)

(f ′)∗C

x
xf∗

C

Γ(Y′,C)
(jY)∗C←−−−− Γ(Y,C),

which is a pull-back diagram by Corollary 1.5.5(a) (applied to Nisnevich covers).

Taking C := LocY(C), and using the fact that Y′ is 1-affine, we obtain that the map

QCoh(Y′) ⊗
QCoh(Y)

C→ Γ

(
Y′,LocY′(QCoh(Y′) ⊗

QCoh(Y)
C)

)
≃ Γ(Y′,C)

is an equivalence, and the same holds for Y′ replaced by U ′ and U .

Hence, we obtain a map from the diagram (5.2) to (5.3), which induces equivalences

QCoh(U) ⊗
QCoh(Y)

C→ Γ(U,C), QCoh(Y′) ⊗
QCoh(Y)

C→ Γ(Y′,C)

and

QCoh(U ′) ⊗
QCoh(Y)

C→ Γ(U ′,C).

Hence, the map

C→ Γ(Y,C)

is also an equivalence, as required.

5.3.3. To finish the proof of Theorem 2.1.1, it remains to give an a priori proof in the case
when Y is a quasi-compact quasi-affine scheme. More generally, let us assume that Y is a
quasi-compact separated scheme.

Note that Proposition 5.1.3 is valid for Y, because the diagonal of Y is a closed embedding,
and hence is affine (in the proof of Proposition 5.1.3 we used the fact that the base change of
the diagonal morphism of Y by an affine scheme yields a prestack which is 1-affine, which is
tautological if the diagonal morphism is affine).

The proof proceeds by induction on the number of affine opens by which we can cover Y.
Namely, we repeat the proof of Theorem 2.1.1, given above, replacing the word “étale morphism”
by “open embedding”, and where the schemes Uk are affine. In the induction step, Y′ and U ′

are both 1-affine by the induction hypothesis.
�

5.4. Direct image for representable morphisms.
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5.4.1. Let f : Y1 → Y2 be a representable, quasi-compact and quasi-separated morphism
between prestacks. For C ∈ ShvCat(Y2), we have a canonically defined functor

f∗C : Γ(Y2,C)→ Γ(Y1,C) = Γ(Y1, coresf (C)).

We claim:

Proposition 5.4.2. The above functor f∗C : Γ(Y2,C)→ Γ(Y1, coresf (C)) admits a continuous
right adjoint (to be denoted fC,∗). For a Cartesian diagram of prestacks

Y′1
g1

−−−−→ Y1

f ′

y
yf

Y′2
g2

−−−−→ Y2,

the diagram

Γ(Y′1,C)
(g1)

∗
C←−−−− Γ(Y1,C)

f ′
C,∗

y
yfC,∗

Γ(Y′2,C)
(g2)

∗
C←−−−− Γ(Y2,C),

which a priori commutes up to a natural transformation, actually commutes.

5.4.3. Proof of Proposition 5.4.2, Step 1. Let us first consider the case when Y2 is a quasi-
compact and quasi-separated algebrac space. In this case, Y1 has the same properties.

By Lemma 3.2.4, we have

Γ(Y1, coresf (C)) ≃ QCoh(Y1) ⊗
QCoh(Y2)

Γ(Y2,C).

In this case, the sought-for functor fC,∗ identifies with

QCoh(Y1) ⊗
QCoh(Y2)

Γ(Y2,C)
f∗⊗IdΓ(Y2,C)

−→ QCoh(Y2) ⊗
QCoh(Y2)

Γ(Y2,C) = Γ(Y2,C).

5.4.4. Proof of Proposition 5.4.2, Step 2. It suffices to show that for any S ∈ DGSchaff/Y2
, the

functor

Γ(S,C)→ Γ(S ×
Y2

Y1,C)

admits a right adjoint, and that for a map g : S′ → S, the corresponding diagram

Γ(S′ ×
Y2

Y1,C) ←−−−− Γ(S ×
Y2

Y1,C)
y

y

Γ(S′,C) ←−−−− Γ(S,C),

commutes.

However, this follows from Step 1 using base change for QCoh for maps between quasi-
compact and quasi-separated algebraic spaces (see, e.g., [DrGa, Corollary 1.4.5] for the latter
assertion).

�

5.5. Global sections via a Čech cover. Let Y be a quasi-compact algebraic stack. In this
subsection we will describe a more economical way to compute the functor Γ(Y,−).
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5.5.1. Let U → Y be an fppf cover, where U is a quasi-compact and quasi-separated algebraic
space. Note that all the terms of the Čech nerve U•/Y are also quasi-compact and quasi-
separated algebraic spaces.

Consider the co-simplicial category Γ(U•/Y,C)∗: for [i] ∈∆ the category of i-th simplices is
Γ(U i/Y,C), and for a map α : [j] → [i] in ∆, and the corresponding map fα : U i/Y → U j/Y,
the functor

Γ(U j/Y,C)→ Γ(U i/Y,C)

is (fα)∗C.

The following results from Corollary 1.5.5(a):

Lemma 5.5.2. For C ∈ ShvCat(Y), the restriction map

Γ(Y,C)→ Tot (Γ(U•/Y,C)∗)

is an equivalence.

We shall now describe the category Tot (Γ(U•/Y,C)∗) as co-modules over a co-monad acting
on Γ(U,C).

5.5.3. We claim that the co-simplicial category Γ(U•/Y,C) satisfies the co-monadic Beck-
Chevalley condition (see Sect. C.1 for what this means). Indeed, this follows from Proposi-
tion 5.4.2.

Hence, from Lemma C.1.9, we obtain:

Lemma 5.5.4.

(a) The functor of evaluation on 0-simplices

ev0 : Tot (Γ(U•/Y,C)∗)→ Γ(U,C)

admits a (continuous) right adjoint; to be denoted (ev0)R.

(b) The co-monad AvU/Y∗ := ev0 ◦(ev0)R, acting on Γ(U,C), is isomorphic, as a plain endo-
functor, to (pr2)C,∗ ◦ (pr1)

∗
C, where pr1, pr2 denote the two projections

U ×
Y

U ⇒ U.

(c) The functor

ev0 : Tot (Γ(U•/Y,C)∗)→ Γ(U,C)

is co-monadic, i.e., the natural functor

Tot (Γ(U•/Y,C))→ AvU/Y∗ -comod(Γ(U,C))

is an equivalence.

Combining with Lemma 5.5.2, we obtain:

Corollary 5.5.5. The functor

f∗C : Γ(Y,C)→ Γ(U,C)

is co-monadic.

5.6. The Čech picture for sheaves of categories. We retain the notations of Sect. 5.5.
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5.6.1. Consider the following co-simplicial object of ∞ -Cat, denoted ShvCat(U•/Y). For
[i] ∈ ∆, its category of i-simplices is ShvCat(U i/Y). For a map α : [j] → [i] in ∆, the
functor

ShvCat(U i/Y)→ ShvCat(U i/Y)

is coresfα .

The following results from Corollary 1.5.8(a):

Lemma 5.6.2. The pullback functor

ShvCat(Y)→ Tot (ShvCat(U•/Y))

is an equivalence.

5.6.3. We now claim that ShvCat(U•/Y) ∈ ∞ -Cat∆ satsfies the co-monadic Beck-Chevalley
condition. This amounts to the fact that the diagram

ShvCat(U i/Y)
coind

f∂i

←−−−−−− ShvCat(U i+1/Y)

coresfα

x coresfα+1

x

ShvCat(U j/Y)
coind

f∂i

←−−−−−− ShvCat(U j+1/Y)

being commutative, which follows from the definitions.

Hence, from Lemma C.1.9, we obtain:

Lemma 5.6.4.

(a) The functor of evaluation on 0-simplices

ev0 : Tot (ShvCat(U•/Y))→ ShvCat(U)

admits a right adjoint; to be denoted (ev0)R.

(b) The co-monad ev0 ◦(ev0)R, acting on ShvCat(U), is isomorphic, as a plain endo-functor,
to coindpr2 ◦ corespr1 .

(c) The functor
ev0 : Tot (ShvCat(U•/Y))→ ShvCat(U)

is co-monadic, i.e., the natural functor

Tot (ShvCat(U•/Y))→
(
ev0 ◦(ev0)R

)
-comod(ShvCat(U))

is an equivalence.

Combining with Lemma 5.6.2, we obtain:

Corollary 5.6.5. The functor

coresf : ShvCat(Y)→ ShvCat(U)

is co-monadic.

6. Algebraic stacks: criteria for 1-affineness

In this section we let Y be a quasi-compact algebraic stack, which is passable as a prestack
(see Sect. 5.1 for what this means). Note that in view of Corollary 5.2.9, the assumption that
Y be passable is not very restrictive.

We will give a series of equivalent conditions for Y to be 1-affine.

6.1. The 1st criterion for 1-affineness.
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6.1.1. Note that under our assumptions on Y, the functor Γenh
Y is fully faithful, by Proposi-

tion 5.1.3. Hence, the question of 1-affineness for Y is equivalent to that of fully faithfulness of
the functor LocY.

We are going to prove:

Proposition 6.1.2. The following conditions are equivalent:

(i) Y is 1-affine.

(ii) The functor LocY is fully faithful;

(iii) The functor LocY is conservative;

(iv) The functor Γenh
Y commutes with tensor products by objects of DGCatcont.

(v) The unit morphism Id→ Γenh(Y,LocY(−)) is an equivalence on objects of the form

QCoh(Y)⊗D ∈ QCoh(Y) -mod, D ∈ DGCatcont .

Proof. Since ΓY is fully faithful, the equivalence of (i), (ii) and (iii) is evident. It is also clear
that (i) implies (iv) and that (iv) implies (v).

Let assume (v) and deduce (ii). We need to show that for C ∈ QCoh(Y) -mod, the unit of
the adjunction

C→ Γenh(Y,LocY(C))

is an equivalence. Since QCoh(Y) is rigid, an arbitrary object of QCoh(Y) -mod can be written
as a limit of objects of the form QCoh(Y) ⊗D for D ∈ DGCatcont, see Corollary D.4.7.

Now, the assertion follows from the fact that both Γenh
Y and LocY commute with limits: the

former because Γenh
Y admits a left adjoint, and the latter by Corollary 1.4.8(b).

�

6.2. The 2nd criterion for 1-affineness. We shall now give another set of criteria for Y to
be 1-affine. The idea of this approach goes back to Jacob Lurie.

We shall consider another functor

co-Γenh(Y,−) : ShvCat(Y)→ QCoh(Y) -mod.

6.2.1. Choose a fppf cover U → Y, where U is a quasi-compact and quasi-separated algebraic
space.

For C ∈ ShvCat(Y) we consider a simplicial object

Γ(U•/Y,C)∗ ∈ QCoh(Y) -mod.

Namely, for [i] ∈∆, the category of i-simplices in Γ(U i/Y,C). For a map [j]→ [i] in ∆, the
corresponding functor

Γ(U i/Y,C)→ Γ(U j/Y,C)

is (fα)C,∗, see Sect. 5.4.
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6.2.2. We set
co-ΓU (Y,C) := |Γ(U

•/Y,C)∗|.

Note that the simplicial object Γ(U•/Y,C)∗ of DGCatcont naturally upgrades to one in
QCoh(Y) -mod; we will denote it by Γenh(U•/Y,C)∗

We denote the resulting functor ShvCat(Y)→ QCoh(Y) -mod by co-Γenh
U (Y,C).

Note that the functors co-ΓU (Y,C) and co-Γenh
U (Y,C) commute with colimits and tensor

products by objects of DGCatcont, by construction.

Remark 6.2.3. The functor
C 7→ co-Γenh

U (Y,C)

a priori depends on the choice of the cover. However, it follows from Proposition 6.2.7 below
(specifically, from the fact that Proposition 6.2.7(b) holds for quasi-compact quasi-separated
algebraic spaces) that this definition can be rewritten invariantly as

colim
−→

X∈(AlgSpcqc,qs)/Y

Γ(X,C) ≃ colim
−→

S∈DGSchaff
/Y

Γ(S,C).

So, in fact, we have a well-defined functor

co-Γenh
U (Y,−) : ShvCat(Y)→ QCoh(Y) -mod.

6.2.4. We claim now that there exists a canonically defined natural transformation

(6.1) co-ΓU (Y,−)→ Γ(Y,−).

Indeed, if f i denotes the morphism U i → Y, the corresponding compatible family of functors

Γ(U i,C)→ Γ(Y,C)

is given by (f i)C,∗.

The natural transformation (6.1) can be interpreted in the framework of the following general
paradigm (specifically, it is a particular case of the map (6.2) below):

Let C• be a co-simplicial category, in which all functors admit right adjoints. Let C•,R be
the simplicial category obtained by passing to the right adjoint functors. Then each of the
evaluation functors

evi : Tot(C•)→ Ci

admits a right adjoint, and these right adjoints together define a functor

(6.2) |C•,R| → Tot(C•).

Note also that by replacing the word “right” by “left” we obtain a functor

|C•,L| → Tot(C•),

which is an equivalence by [GL:DG, Lemma 1.3.3].

In the above constructions, the category of indices ∆ can be replaced by any other index
category.

6.2.5. The natural transformation (6.1) upgrades to

(6.3) co-Γenh
U (Y,−)→ Γenh(Y,−).

In particular, by evaluating on C := QCoh/Y, we obtain a functor

(6.4) |QCoh(U•/Y)∗| → QCoh(Y).
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6.2.6. We claim:

Proposition 6.2.7. The following conditions are equivalent:

(a) Y is 1-affine.

(b) The natural transformation in (6.1) is an isomorphism.

(c) The functor co-Γenh
U (Y,−) is a left inverse of LocY.

(d) The functor in (6.4) is an equivalence.

(e) There exists an isomorphism |QCoh(U•/Y)∗| ≃ QCoh(Y) as QCoh(Y)-module categories.

(f) The category |QCoh(U•/Y)∗| is dualizable.

Proof. First note that following tautological implications: (b)⇒ (d), (d) ⇒ (e), and (e) ⇒ (f).

The implication (b) ⇒ (a) follows from the implication (iv) ⇒ (i) in Proposition 6.1.2. The
implication (c) ⇒ (a) follows from the implication (iii) ⇒ (i) in Proposition 6.1.2. Clearly, (a)
and (b) together imply (c); hence (b) implies (c).

Let us show that (e) implies (c). Given C ∈ QCoh(Y) -mod, we have:

co-Γenh
U (Y,LocY(C)) ≃ co-Γenh

U (Y,QCoh/Y) ⊗
QCoh(Y)

C,

which identifies with C by assumption.

Let us now show that (a) implies (d). The assumption in (a) implies that LocY is conserva-
tive, i.e., it suffices to show that the map

LocY

(
co-Γenh

U (Y,QCoh/Y)
)
→ QCoh/Y

is an isomorphism. By Lemma 5.6.2, it suffices to show that the map

LocY

(
co-Γenh

U (Y,QCoh/Y)
)
|U → QCoh/U

is an isomorphism. Since U is 1-affine, it suffices to show that

Γ
(
U,LocY

(
co-Γenh

U (Y,QCoh/Y)
)
|U
)
→ QCoh(U)

is an isomorphism. Using Proposition 3.2.6(a,ii), we have:

Γ
(
U,LocY

(
co-Γenh

U (Y,QCoh/Y)
)
|U
)
≃ QCoh(U) ⊗

QCoh(Y)
co-Γenh

U (Y,QCoh/Y),

and the latter identifies with

|QCoh(U) ⊗
QCoh(Y)

QCoh(U•/Y)∗|.

However, the simplicial category QCoh(U) ⊗
QCoh(Y)

QCoh(U•/Y)∗ identifies with

QCoh(U•+1/Y)∗,

(e.g., because Y is passable), and hence is split by QCoh(U). This implies the required assertion.

Thus, we obtain that (a)⇔ (c)⇔ (d)⇔ (e). Let us show that these conditions imply (b). It is
sufficient to evaluate both sides of (6.1) on objects of the form LocY(C) forC ∈ QCoh(Y) -mod.
By (a), both sides in (6.1) commute with colimits and tensor products by objects of DGCatcont;
hence, we can take C = QCoh(Y). In this case, the required isomorphism is supplied by (d).

Finally, let us show that (f) implies (e). This follows from the fact that

Functcont(|QCoh(U•/Y)∗|,Vect) ≃ Tot(QCoh(U•/Y)∗) ≃ QCoh(Y),



SHEAVES OF CATEGORIES 37

while QCoh(Y) is its own dual.
�

6.3. The 3rd criterion for 1-affineness. We will now give an explicit criterion for condition
(d) of Proposition 6.2.7 to hold. This will provide a 3rd criterion for 1-affiness of an algebraic
stack.

6.3.1. We define the co-simplicial object of DGCat, denoted QCoh(U•/Y)? as follows. For
[i] ∈ ∆, the category of i-simplices is QCoh(U i/Y). For a map [j] → [i], the corresponding
functor

QCoh(U j/Y)→ QCoh(U i/Y)

is (fα)?, right adjoint to fα∗ : QCoh(U i/Y)→ QCoh(U j/Y).

We note that the functors (fα)? are typically non-continuous, so QCoh(U•/Y)? is a co-
simplicial object of DGCat, but not in DGCatcont.

Note that by [GL:DG, Lemma 1.3.3], we have a canonical equivalence

(6.5) |QCoh(U•/Y)∗| → Tot
(
QCoh(U•/Y)?

)
.

6.3.2. We now claim that the co-simplicial category QCoh(U•/Y)? satsifies the monadic Beck-
Chevalley condition (see Sect. C.1 for what this means). Indeed, this follows by applying
Lemma C.1.6 to the simplicial category QCoh(U•/Y)∗.

Hence, from from Lemma C.1.8, we obtain:

Lemma 6.3.3.

(a) The functor of evaluation on 0-simplices

ev0 : Tot
(
QCoh(U•/Y)?

)
→ QCoh(U)

admits a left adjoint; to be denoted (ev0)L.

(b) The monad Av
U/Y
? := ev0 ◦(ev0)L, acting on QCoh(U), is isomorphic, as a plain endo-

functor, to (pr2)∗ ◦ (pr1)
?.

(c) The functor

ev0 : Tot
(
QCoh(U•/Y)?

)
→ QCoh(U)

is monadic, i.e., the natural functor

Tot
(
QCoh(U•/Y)?

)
→ Av

U/Y
? -mod(QCoh(U))

is an equivalence.

6.3.4. Consider now the functor f∗ : QCoh(U) → QCoh(Y). Let f ? denote its right adjoint.
Consider the monad f ? ◦ f∗ acting on QCoh(U), and the corresponding functor

(6.6) (f ?)enh : QCoh(Y)→ (f ? ◦ f∗)-mod(QCoh(U)).

Note now that ?-pullback defines a functor

QCoh(Y)→ Tot
(
QCoh(U•/Y)?

)
.

which under the equivalence of (6.5), identifies with the right adjoint to the functor

|QCoh(U•/Y)∗| → QCoh(U)

of (6.4).
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Note also that the following diagram tautologically commutes:

(6.7) QCoh(Y) Tot(QCoh(U•/Y)?)

QCoh(U).

//

ev0

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

f?

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

Hence, we obtain a homomorphism of monads acting on QCoh(U)

(6.8) Av
U/Y
? :=

(
(ev0)L ◦ ev0

)
→ (f ? ◦ f∗).

Lemma 6.3.5. The map (6.8) is an isomorphism.

Proof. It is enough to show that the map in question is an isomorphism as plain endo-functors.
Using Lemma 6.3.3(b), the map (6.8) identifies with

(pr2)∗ ◦ (pr1)
? → f ? ◦ f∗,

which is obtained by passing to right adjoints from the base change map

f∗ ◦ f∗ → (pr1)∗ ◦ (pr2)
∗,

while the latter is an isomorphism.
�

6.3.6. Hence, in view of Lemma 6.3.3(c), we can identify the diagram (6.7) with

(6.9) QCoh(Y) (f ? ◦ f∗)-mod(QCoh(U))

QCoh(U).

(f?)enh //

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

f?

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

From here we obtain:

Proposition 6.3.7. The following conditions are equivalent:

(1) Y is 1-affine.

(2) The functor |QCoh(U•/Y)∗| → QCoh(Y) is an equivalence.

(3) The functor QCoh(Y)→ Tot
(
QCoh(U•/Y)?

)
is an equivalence.

(4) The functor f ? : QCoh(Y)→ QCoh(U) is monadic.

7. Classifying stacks of algebraic groups

The goal of this section is to prove Theorems 2.2.2, 2.2.4 and 2.2.3.

7.1. Reduction steps. Let G be a classical affine algebraic group of finite type.
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7.1.1. First, let us note that Theorem 2.2.2 implies Theorem 2.2.4. Indeed, apply Corol-
lary 3.2.7 to the morphism

Z/G→ pt /G.

7.1.2. Let G1 →֒ G2 be a closed embedding. Note that the corresponding map

pt /G1 → pt /G2

is schematic, quasi-compact and quasi-separated.

Hence, by Corollary 3.2.7, if G2 is such that pt /G2 is 1-affine, the same will be true for
pt /G1.

7.1.3. Choose a closed embedding G →֒ GLn. We obtain that in order to prove Theorem 2.2.2,
it is enough to consider the case of G = GLn. I.e., we can assume that G is reductive.

7.2. Proof of Theorem 2.2.2 in the reductive case. The idea of the proof belongs to Jacob
Lurie.

7.2.1. Note that for Y = pt /G, the category QCoh(Y) identifies with Rep(G), i.e., the category
of G-representations. Under this identification, the functor

f∗ : QCoh(pt /G)→ QCoh(pt) ≃ Vect,

corresponding to f : pt→ pt /G, is the forgetful functor oblvG : Rep(G)→ Vect.

The right adjoint f∗ of f
∗ is the (usual) functor of co-induction

coindG : Vect→ Rep(G),

right adjoint to the forgetful functor oblvG.

7.2.2. By Proposition 6.3.7, it is enough to show that the functor

(coindG)
R : Rep(G)→ Vect

is monadic, where (coindG)
R is the (discontinuous) right adjoint of coindG.

Remark 7.2.3. Note that, according to Proposition 6.3.7, the assertion of Theorem 2.2.2 is
equivalent to the fact that the functor (coindG)

R is monadic for any classical affine algebraic
group of finite type (i.e., not necessarily reductive).

7.2.4. Let A be the set of irreducible representations of G. Since G is reductive (and we are
over a field of characteristic 0), choosing representatives, we obtain an equivalence

Rep(G) ≃ VectA,

where VectA is the product of copies of Vect, indexed by the set A.

The functor

coindG : Vect→ Rep(G)

is the functor

S : Vect→ VectA, V  V A ∈ VectA,

(i.e., V in each component).

The right adjoint functor (coindG)
R is

T : VectA → Vect, {Wa, a ∈ A} ∈ VectA  Π
a∈A

Wa ∈ Vect .
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7.2.5. We recall that a DG category C equipped with a t-structure is said to be right-complete
with respect to this t-structure if the functor

C→ lim
←−
n∈Z+

C≤n, c 7→ {τ≤n(c)}

is an equivalence.

If this happens, the inverse equivalence is given by

{cn ∈ C≤n} 7→ lim
−→
n∈Z+

cn.

Recall also C is said to be left-complete with respect to its t-structure if the functor

C→ lim
←−
n∈Z+

C≥−n, c 7→ {τ≥−n(c)}

is an equivalence.

If this happens, the inverse equivalence is given by

{cn ∈ C≥−n} 7→ lim
←−
n∈Z+

cn.

7.2.6. Note that both categories Vect and VectA carry t-structures, in which they are both
right-complete and left-complete.

The functors S and T are t-exact. In particular, they define a pair of adjoint functors

S
≤n : Vect≤n ⇄ (VectA)≤n : T≤n

for every n.

7.2.7. Consider the following general paradigm. Let I be an index category, and let

i Ci and i Di

be two family of categories. Let

C := lim
i∈I

Ci and D := lim
i∈I

Di

be the limits.

Let us be given a compatible system of adjoint functors

Si : Ci ⇄ Di : Ti.

Denote by

S : C⇄ D : T

the resulting adjoint pair.

We have the following general lemma:

Lemma 7.2.8. Suppose that for every i, the pair Si : Ci ⇄ Di : Ti is monadic. Then the pair
S : C⇄ D : T is also monadic.
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7.2.9. Applying Lemma 7.2.8, we obtain that it suffices to show that the pair of adjoint functors

S
≤n : Vect≤n ⇄ (VectA)≤n : T≤n

is monadic. With no restriction of generality, we can assume that n = 0.

We will prove that the pair

S
≤0 : Vect≤0 ⇄ (VectA)≤0 : T≤0

is monadic by verifying that the functor T≤0 satsifies the conditions of the Barr-Beck-Lurie
theorem ([Lu2, Theorem 6.2.2.5]).

The fact that T is conservative is manifest from the explicit description of the functor in
question.

The fact that the functor T, restricted to (VectA)≤0, commutes with G-split geometric real-
izations follows from the next general assertion:

Lemma 7.2.10. Let T : C1 → C2 be a functor between DG categories. Assume that both

categories are equipped with a t-structure and that T sends C≤01 to C≤k2 for some k. Assume
that C2 is left-complete in its t-structure. Then T commutes with all geometric realizations of

objects in C≤01 .

7.3. Classifying stacks of group-schemes of infinite type. In this subsection we will prove
Theorem 2.2.3.

7.3.1. Let G be the affine group-scheme lim
←−
n

(Ga)
×n. Note that the map

(7.1) BG→ pt /G

is an isomorphism (indeed, on an affine DG scheme S there are no non-trivial G-torsors).

7.3.2. Note that since G is of infinite type, the map pt→ pt /G is not an fppf cover (it is an
fpqc cover). However, since (7.1) is an isomorphism, the map

ShvCat(pt /G)→ ShvCat(BG) ≃ Tot(ShvCat(B•G) = Tot (QCoh(B•G) -mod)

is an equivalence.

Denote

Rep(G) := QCoh(pt /G).

Let f denote the tautological morphism pt→ pt /G. Set

oblvG := f∗ : Rep(G)→ Vect, coindG := f∗ : Rep(G)→ Vect .

Suppose, for the sake of contradiction that pt /G was 1-affine. Then by the same logic as
in Sect. 7.2.2, we would obtain that the functor (coindG)

R, right adjoint to coindG would be
monadic.

However, we claim that (coindG)
R fails to be conservative:
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7.3.3. Note that the functor coindG sends k ∈ Vect to the regular representation OG ∈ Rep(G).
We claim that

MapsRep(G)(OG, k) = 0,

where k ∈ Rep(G) is the trivial representation.

Indeed, if G = Spec(Sym(W )), where W is a countable-dimensional vector space, then the
object k ∈ Rep(G) admits a resolution whose n-term is coindG(Λ

n(W )).

Hence, MapsRep(G)(OG, k) is computed by the complex whose n-th term is

HomVect♥(Sym(W ),Λn(W )),

which is easily seen to be acyclic.
�

8. Algebraic stacks: proof of Theorem 2.2.6

Let Y be as in Theorem 2.2.6. I.e., Y is a quasi-compact algebraic stack, locally almost of
finite type, which is eventually coconnective and has an affine diagonal.

We know that Y is passable by Theorem 5.1.5. We will prove that Y is 1-affine by verifying
condition (4) of Proposition 6.3.7.

8.1. Strategy. Let f : U → Y be an smooth cover, where U is an affine DG scheme. We
consider the functor

f ? : QCoh(Y)→ QCoh(U),

and the resulting monad f ? ◦ f∗ acting on QCoh(U). We denote the resulting pair of adjoint
functors by

(f∗)
enh : (f ? ◦ f∗)-mod(QCoh(U))⇄ QCoh(Y) : (f ?)enh.

We will deduce Theorem 2.2.6 from the combination of the following two statements:

Proposition 8.1.1.

(a) The functor f ? is conservative.

(b) The functor (f∗)
enh is conservative.

Proposition 8.1.2. There exists a constant n that depends only on Y, such that for any flat
map f : U → Y with U ∈ DGSchaff , the functor

f ? : QCoh(Y)→ QCoh(U),

right adjoint to f∗, has a cohomological amplitude bounded on the right by n.

8.2. Proof of Theorem 2.2.6. Let us assume both Propositions 8.1.1 and 8.1.2 and deduce
Theorem 2.2.6.
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8.2.1. Let f : U → Y be an fppf cover, where U ∈ DGSchaff .

By Proposition 8.1.1(b), we only have to show that co-unit map

(f∗)
enh ◦ (f ?)enh → IdQCoh(Y)

is an isomorphism.

For an object F ∈ QCoh(Y), the object (f∗)
enh ◦ (f ?)enh(F) is the gemetric realization of the

simplicial object given by
[i] 7→ (f i)∗ ◦ (f

i)?(F),

where f i : U i → Y, and where U i is the i-th term of the Čech nerve of f : U → Y.

The map
|(f•)∗ ◦ (f

•)?(F)| → F

is the natural augmentation map.

8.2.2. Step 1. We first consider the case when F is bounded above with respect to the standard
t-structure on QCoh(Y). With no restriction of generality, let us assume that F ∈ QCoh(Y)≤0.

Since the functor f ? is conservative (by Proposition 8.1.1(a)), it suffices to show that the
map

f ?
(
|(f•)∗ ◦ (f

•)?(F)|
)
→ f ?(F)

is an isomorphism.

Consider the composition

|f ?((f•)∗ ◦ (f
•)?(F))| → f ?

(
|(f•)∗ ◦ (f

•)?(F)|
)
→ f ?(F).

The composed map is an isomorphism, since the simplicial object f ?((f•)∗ ◦ (f
•)?(F)) of

QCoh(U) is split by f ?(F). Hence, it suffices to show that the map

|f ?((f•)∗ ◦ (f
•)?(F))| → f ?

(
|(f•)∗ ◦ (f

•)?(F)|
)

is an isomorphism.

Since the t-structure on QCoh(U) is left-complete, it suffices to show that the map

τ≥−k
(
|f ?((f•)∗ ◦ (f

•)?(F))|
)
→ τ≥−k

(
f ?
(
|(f•)∗ ◦ (f

•)?(F)|
))

is an isomorphism for every k ∈ Z
≥0.

Let n be the integer from Proposition 8.1.2. Consider the commutative diagram

(8.1)

τ≥−k
(
|f ?((f•)∗ ◦ (f•)?(F))|

)
−−−−→ τ≥−k

(
f ?
(
|(f•)∗ ◦ (f•)?(F)|

))
x

x

τ≥−k
(
|f ?((f•)∗ ◦ (f•)?(F))|k+2n

)
−−−−→ τ≥−k

(
f ?
(
|(f•)∗ ◦ (f•)?(F)|k+2n

))
,

where for m ∈ Z≥m, we denote by | − |≤m the gemetric realization of the m-skeleton (i.e., the
colimit over the subcategory of ∆op corresponding to [i] with i ≤ m).

We claim that both vertical arrows and the bottom horizontal arrow in the diagram (8.1)
are isomorphisms.

The assertion regarding the bottom horizontal arrow follows from the fact that | − |≤k+2n is
a finite colimit, and hence commutes with f ?.

Note that since the diagonal of Y is affine, all of the maps f i are affine. In particular, each of
the functors (f i)∗ is t-exact. Furthermore, by the assumption on n, each of the functors (f i)?

has a cohomological amplitude bounded on the right by n.
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In particular, each of the terms (f i)∗ ◦ (f i)?(F) lies in QCoh(Y)≤n. Hence, we obtain that
for any k′, the map

τ≥−k
′ (
|(f•)∗ ◦ (f

•)?(F)|
)
→ τ≥−k

′ (
|(f•)∗ ◦ (f

•)?(F)|≤k′+n
)

is an isomorphism.

Taking k′ = k+ n, and using the fact that the cohomological amplitude of f ? is bounded on
the right by n, we obtain that the right vertical arrow in (8.1) is an isomorphism.

Similarly, the terms of the simplicial object f ?((f•)∗ ◦ (f•)?(F)) lie in QCoh(Y)≤2n. Hence,
the left vertical arrow in (8.1) is an isomorphism, as required.

8.2.3. Step 2. Let now F be arbitrary. Consider the commutative diagram

(8.2)

|(f•)∗ ◦ (f•)?(F)| −−−−→ F
x

x

colim
−→
n

|(f•)∗ ◦ (f•)?(τ≤n(F))| −−−−→ colim
−→
n

τ≤n(F).

We need to show that the top horizontal arrow in (8.2) is an isomorphism. We will do so by
showing that the bottom horizontal arrow, as well as the vertical arrows, are isomorphisms.

The assertion regarding the bottom horizontal arrow follows from Step 1. The assertion
regarding the right vertical arrow expresses the fact that the t-structure on QCoh(Y) is right-
complete.

To show that the left vertical arrow in (8.2) is an isomorphism, it suffices to show that for
every i, the map

colim
−→
n

(f i)∗ ◦ (f
i)?(τ≤n(F))→ (f i)∗ ◦ (f

i)?(F)

is an isomorphism.

Since the functor (f i)∗ commutes with colimits, it suffices to show that the map

colim
−→
n

(f i)?(τ≤n(F))→ (f i)?(F)

is an isomorphism in QCoh(U i). Since the t-structure on QCoh(U i) is right-complete and
compatible with filtered colimits, it suffices to show that for every k ∈ Z≥0, the map

colim
−→
n

τ≤k
(
(f i)?(τ≤n(F))

)
→ τ≤k

(
(f i)?(F)

)

is an isomorphism. However, the map

τ≤k
(
(f i)?(τ≤n(F))

)
→ τ≤k

(
(f i)?(F)

)

is already an isomorphism for any n ≥ k, since the functor (f i)? is left t-exact (the latter is
because its left adjoint, namely (f i)∗, is t-exact, and in particular, right t-exact.)

�

8.3. Proof of Proposition 8.1.2.
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8.3.1. Let A be a connective k-algebra. Let us recall that an object M ∈ A-mod is said to be
flat if

• M ∈ A-mod≤0;
• H0(M) is flat as an H0(A)-module;
• the natural maps H−i(A) ⊗

H0(A)
H0(M)→ H−i(M) are isomorphisms.

For a prestack Y and F ∈ QCoh(Y), we shall say that F is flat if its pullback to any affine
scheme is flat.

Note that the assumption of the proposition implies that the object f∗(OU ) ∈ QCoh(Y) is
flat. Hence, the assertion of Proposition 8.1.2 follows from the next general result:

Proposition 8.3.2. Let Y be a QCA9 stack, locally almost of finite type. There exists an integer
n, such that for any flat E ∈ QCoh(Y), the functor

MapsQCoh(Y)(E,−) : QCoh(Y)→ Vect

has a cohomological amplitude bounded on the right by n.

The proof of this proposition will occupy the rest of this subsection.

8.3.3. Step 1. We claim that it is sufficient to show that there exists an integer n such that

HomQCoh(Y)(E,F[i]) = 0 for all i > n and F ∈ QCoh(Y)♥.

The proof is the same as that of [DrGa, Lemma 2.1.3].

As in [DrGa, Sect. 2.2.1], this allows to assume that Y is classical: if n is the integer that
works for clY, then it also works for Y.

Since Y is Noetherian, we can further replace clY by (clY)red: if an integer n works for (clY)red,
then it works also for clY.

8.3.4. Step 2. Recall the setting and notations of Sect. 4.1.1.

We consider the (discontinuous) functor

ı̂QCoh
? : QCoh(Y)Y′ → QCoh(Y),

right adjoint to ı̂QCoh
! .

Let
? : QCoh(Y)→ QCoh(Y0)

denote the (discontinuous) right adjoint of ∗. For F ∈ QCoh(Y) we have a distinguished
triangle

(8.3) ∗ ◦ 
?(F)→ F → ı̂QCoh

? ◦ ı̂QCoh,!(F).

We will prove:

Lemma 8.3.5. Let Y satisfy the assumption of Proposition 8.3.2, and assume that Y is classical.

(a) The functor ı̂QCoh
? ◦ ı̂QCoh,! is right t-exact.

(b) Assume that Y′ satisfies the conclusion of Proposition 8.3.2 with an integer n′. Then for
F ∈ QCoh(Y)≤0, we have

MapsQCoh(Y)

(
E, ı̂QCoh

? ◦ ı̂QCoh,!(F)
)
∈ Vect≤n

′+1 .

9See [DrGa, Definition 1.1.8] for what this means.
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8.3.6. Step 3. Let us assume Lemma 8.3.5 and finish the proof of Proposition 8.3.2.

By Step 1, we can assume that Y is classical and reduced. We can choose a closed substack
Y′ ⊂ Y such that the complementary open Y0 is smooth. In Step 4 we will show that a smooth
QCA stack satisfies the conclusion of Proposition 8.3.2. Let n0 denote the corresponding integer.

We claim that n := max(n′, n0) + 1 will work for Y. Indeed, let F be an object QCoh(Y)≤0,
and let us show that

MapsQCoh(Y)(E,F) ∈ Vect≤n+1 .

By (8.3) and Lemma 8.3.5(b), it suffices to show that

MapsQCoh(Y)

(
E, ∗ ◦ 

?(F)
)
≃MapsQCoh(U)

(
∗(E), ?(F)

)
∈ Vect≤n0+1 .

By the construction of n0, it suffices to show that ?(F) ∈ QCoh(U)≤1. Since ∗ ◦ ∗ ≃
IdQCoh(U) and 

∗ is t-exact, it suffices to show that

∗ ◦ 
?(F) ∈ QCoh(Y)≤1.

However, the latter follows from Lemma 8.3.5(a).

8.3.7. Step 4. Assume that Y is a smooth QCA stack. Let us prove Proposition 8.3.2 directly
in this case. We claim that in this case the category QCoh(Y) is of bounded cohomological
dimension.

Indeed, as in Step 1, it is sufficient to show that there exists an integer n such that

HomQCoh(Y)(F
′,F[i]) = 0 for all i > n and F ∈ QCoh(Y)♥,F′ ∈ Coh(Y)♥.

Since Y is smooth and quasi-compact, there exists an integer n′, such that any F′ ∈ QCoh(Y)♥

admits a resolution of length n′ consisting of locally free OY-modules of finite rank. Hence, it
suffices to show that there exists an integer n′′ such that

HomQCoh(Y)(E
′,F[i]) = 0 for all i > n′′ and F ∈ QCoh(Y)♥

for E′ locally free of finite rank (we will then set n = n′ + n′′).

However,

HomQCoh(Y)(E
′,F[i]) ≃ Γ(Y,F′ ⊗ (E′)∨),

and the existence of n′′ follows from [DrGa, Theorem 1.4.2(ii)].
�

8.4. Proof of Lemma 8.3.5.

8.4.1. Note that from Proposition 4.1.3 we obtain:

Corollary 8.4.2. The endo-functor ı̂QCoh
? ◦ ı̂QCoh,! is canonically isomorphic to

ı̂∗ ◦ ı̂
∗,

where

ı̂∗ : QCoh(Y∧Y′)→ QCoh(Y)

is the right adjoint to ı̂∗.
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8.4.3. Let Y′k
ık
→֒ Y denote the k-th classical infinitesimal neighborhood of Y′ inside Y. The

following results from [GR1, Proposition 6.8.2]:

Lemma 8.4.4. The map colim
k

Y′k → Y∧Y′ becomes an isomorphism after fppf sheafification.

Corollary 8.4.5.

(a) We have a canonical equivalence

QCoh(Y∧Y′) ≃ lim
←−
k∈Z+

QCoh(Y′k).

(b) The endo-functor ı̂∗ ◦ ı̂∗ of QCoh(Y) is canonically isomorphic to

F 7→ lim
←−
k∈Z+

(ık)∗ ◦ (ık)
∗(F).

8.4.6. We are now ready to prove Lemma 8.3.5. Point (a) of Lemma 8.3.5. follows immediately
from Corollaries 8.4.2 and 8.4.5(b).

To prove point (b) of Lemma 8.3.5, we note by Proposition 4.1.3 and Corollary 8.4.5(a), that
for E,F ∈ QCoh(Y), we have:

MapsQCoh(Y)

(
E, ı̂QCoh

? ◦ ı̂QCoh,!(F)
)
≃ lim
←−
k∈Z+

MapsY′
k
(ı∗k(E), ı

∗
k(F)).

Since the functor of projective limit over Z+ in Vect has cohomological amplitude 1, it is
sufficient to show that for E flat and F ∈ QCoh(Y)≤0, each term

MapsY′
k
(ı∗k(E), ı

∗
k(F))

belongs to Vect≤n
′

.

However, ı∗k(E) is flat on Y′k, and ı∗k(F) ∈ QCoh(Y′k)
≤0, and the assertion follows from the

definition of n′, combined with Step 1 of the proof of Proposition 8.3.2.
�

8.5. Proof of Proposition 8.1.1(a).

8.5.1. Step 1. Let Y′
ı
→֒ Y be a closed substack, and let Y0


→֒ Y be a complementary open.

Denote U ′ := U ×
Y

Y′ and U0 := U ×
Y

Y0, and let ıU and U denote the corresponding maps, and

f ′ : U ′ → Y′ and f0 : U0 → Y0.

Consider the commutative diagrams

QCoh(U)
(U )∗

−−−−→ QCoh(U0)

f∗

y
y(f0)∗

QCoh(Y)
∗

−−−−→ QCoh(Y0)

and

QCoh(U)
(U )∗
←−−−− QCoh(U0)

f∗

y
y(f0)∗

QCoh(Y)
∗

←−−−− QCoh(Y0).
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By passing to right adjoints we obtain the commutative diagrams

QCoh(U)
(U )∗
←−−−− QCoh(U0)

f?

x
xf?

0

QCoh(Y)
∗

←−−−− QCoh(Y0)

and

QCoh(U)
(U )?

−−−−→ QCoh(U0)

f?

x
xf?

0

QCoh(Y)
?

−−−−→ QCoh(Y0).

Hence, from the exact triangle (8.3), we obtain that f ? defines a functor

(f̂ ′)? : QCoh(Y)Y′ → QCoh(U)U ′

that makes the diagrams

QCoh(U)U ′
(̂ıU )QCoh,!

←−−−−−−− QCoh(U)

(f̂ ′)?
x

xf?

QCoh(Y)Y′
ı̂QCoh,!

←−−−− QCoh(Y)

and

QCoh(U)U ′

(̂ıU )QCoh
?−−−−−−→ QCoh(U)

(f̂ ′)?
x

xf?

QCoh(Y)Y′

ı̂QCoh
?−−−−→ QCoh(Y)

commute.

From the exact triangle (8.3), we obtain that if the functors f ?
0 and (f̂ ′)? are both conserva-

tive, then so is f ?.

8.5.2. Step 2. We will now show that if the functor (f ′)? : QCoh(Y′)→ QCoh(U ′) is conserva-
tive, then so is

(f̂ ′)? : QCoh(Y)Y′ → QCoh(U)U ′ .

We note that the functor ı∗ : QCoh(Y′)→ QCoh(Y) factors canonically as

QCoh(Y′)→ QCoh(Y)Y′

ı̂QCoh
!
→֒ QCoh(Y),

and the diagram

QCoh(U ′) −−−−→ QCoh(U)U ′

(̂ıU )QCoh
!−−−−−−→ QCoh(U)

f ′
∗

y f∗

y
yf∗

QCoh(Y′) −−−−→ QCoh(Y)Y′

ı̂QCoh
!−−−−→ QCoh(Y)
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commutes. Hence, the diagram

QCoh(U ′) ←−−−− QCoh(U)U ′
(̂ıU )QCoh,!

←−−−−−−− QCoh(U)

(f ′)?
x (f̂ ′)?

x
yf?

QCoh(Y′) ←−−−− QCoh(Y)Y′
ı̂QCoh,!

←−−−− QCoh(Y)

commutes, as well, where the left horizontal arrows are obtained by restricting the (discon-
tinuous) functor ıQCoh,! (resp., (ıU )

QCoh,!), right adjoint to ı∗ (resp., (ıU )∗), to QCoh(Y)Y′ ⊂
QCoh(Y) (resp., QCoh(U)U ′ ⊂ QCoh(U)).

Hence, in order to show that (f̂ ′)? is conservative, it is sufficient to show that the restriction
of the functor

ıQCoh,! : QCoh(Y)→ QCoh(Y′)

to QCoh(Y)Y′ ⊂ QCoh(Y) is conservative.

I.e., we have to show that the essential image of the functor

ı∗ : QCoh(Y′)→ QCoh(Y)

generates QCoh(Y)Y′ .

However, that latter is established in [DrGa, Sect. 2.6.8]. 10

8.5.3. Step 3. By Step 2, we can assume that Y is classical and reduced (take Y′ := (clY)red).
By Step 1 and Noetherian induction, it suffices to show that Y contains a non-empty open
substack Y0, for which Proposition 8.1.1(a) holds.

Hence, by [DrGa, Proposition 2.3.4], we can assume that Y admits a finite étale cover π :

Ỹ → Y, such that Ỹ is isomorphic to the quotient of a quasi-compact quasi-separated classical
reduced scheme by an action of a classical affine algebraic group of finite type.

For Y of this form we will establish the assertion of Proposition 8.1.1(a) directly. First, since

the right adjoint of π∗ is isomorphic to π∗, we can replace Y by Ỹ. So, we can assume that Y

itself is of the form Y/G, where Y is a quasi-compact quasi-separated classical scheme and G
is an algebraic group of finite type.

In this case, the assertion of Proposition 8.1.1(a) follows from Theorem 2.2.4 and Proposi-
tion 6.3.7. Here is an argument independent of Theorem 2.2.4:

We need to show that the essential image of the functor f∗ : QCoh(U)→ QCoh(Y) generates
QCoh(Y), where Y = Y/G.

With no restriction of generality, we can assume that G is reductive. Let p denote the
projection Y → Y/G. Since G is reductive, its regular representation contains the trivial
representation as a direct summand. Hence, any F ∈ QCoh(Y/G) is a direct summand of
p∗ ◦ p∗(F). This reduces the assertion to the case when Y/G is replaced by Y , i.e., we can
assume that Y is a quasi-compact quasi-separated classical reduced scheme Y . One further
easily reduces to the case when Y is affine.

Now, for a map f : U → Y , where Y is an affine classical reduced scheme, the assertion of
Proposition 8.1.1(a) is easy: the full subcategory generated by the essential image of f∗ is a
tensor ideal, and since f is faithfully flat, it contains the structure sheaf of the generic point of
any irreducible subscheme of Y , and thus equals all of QCoh(Y ).

10Here the assumption that Y be eventually coconnective is crucial.
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Alternatively, the assertion of Proposition 8.1.1(a) for any affine DG scheme follows from
Proposition 6.3.7.

8.6. Passing from QCoh to IndCoh. In order to prove Proposition 8.1.1(b), we will need to
replace the categories QCoh(Y) and QCoh(U) by IndCoh(Y) and IndCoh(U), respectively. The
reason for this will be explained in Step 2 of the proof of Proposition 8.6.5, which is an IndCoh
version of Proposition 8.1.1(b).

8.6.1. Let us recall that for an algebraic stack Y locally almost of finite type, there exists a
canonically defined natural transformation

ΨY : IndCoh(Y)→ QCoh(Y),

see [Ga, Sect. 11.7].

Moreover, when Y is eventually coconnective, the functor ΨY admits a left adjoint ΞY, see
[Ga, Sect. 11.7.3]. The interactions of the pair (ΞY,ΨY) with the functors arising from schematic
maps between stacks are the same as those for maps between DG schemes, see [Ga, Sect. 3].

8.6.2. Consider the commutative diagram:

(8.4)

QCoh(U)
ΨU←−−−− IndCoh(U)

f∗

y
yf IndCoh

∗

QCoh(Y)
ΨY←−−−− IndCoh(Y).

According to [Ga, Proposition 3.6.7], since f is fppf, the diagram

(8.5)

QCoh(U)
ΞU−−−−→ IndCoh(U)

f∗

y
yf IndCoh

∗

QCoh(Y)
ΞY−−−−→ IndCoh(Y),

obtained from (8.4) by passing to left adjoints along the horizontal arrows is also commutative.

8.6.3. Let f IndCoh,? denote the (discontinuous) right adjoint to f IndCoh
∗ . By passing to right

adjoints along all arrows in (8.5), we obtain a commutative diagram

(8.6)

QCoh(U)
ΨU←−−−− IndCoh(U)

f?

x
xf IndCoh,?

QCoh(Y)
ΨY←−−−− IndCoh(Y).

Consider the monad Av
IndCoh,U/Y
? := f IndCoh,?◦f IndCoh

∗ acting on IndCoh(U). We obtain that

the functor ΨU intertwines the actions of the monads AvIndCoh
? on IndCoh(U) and Av

U/Y
? :=

f ? ◦ f∗ on IndCoh(Y), respectively.

In particular, we obtain commutative diagrams

Av
U/Y
? -mod(QCoh(U))

oblv

��

Av
IndCoh,U/Y
? -mod(IndCoh(U))

ΨAv
Uoo

oblv

��
QCoh(U)

ind

OO

IndCoh(U)
ΨUoo

ind

OO
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and

Av
U/Y
? -mod(QCoh(U))

ΨAv
U←−−−− Av

IndCoh,U/Y
? -mod(IndCoh(U))

(f?)enh
x

x(f IndCoh,?)enh

QCoh(Y)
ΨY←−−−− IndCoh(Y).

8.6.4. In Proposition 8.1.1(b) we need to show that the left adjoint (f∗)
enh of (f ?)enh is con-

servative.

In the remainder of this subsection, we will deduce this assertion from the next one:

Proposition 8.6.5. The functor

(f IndCoh
∗ )enh : Av

IndCoh,U/Y
? -mod(IndCoh(U))→ IndCoh(Y),

left adjoint to (f IndCoh,?)enh, is conservative.

8.6.6. Proof of Proposition 8.1.1(b). We need to show that the essential image of the functor

(f ?)enh co-generates Av
U/Y
? -mod(QCoh(U)), i.e., generates under the operation of taking limits.

The assertion of Proposition 8.6.5 is equivalent to the fact that the essential image of the

functor (f IndCoh,?)enh co-generates Av
IndCoh,U/Y
? -mod(IndCoh(U)).

Hence, it is sufficient to show that the functor ΨAv
U is essentially surjective. We will show

that the functor ΨAv
U admits a fully faithful right adjoint.

First, since the functor ΨU is a co-localization (see [Ga, Proposition 1.5.3]) and is continuous,
it admits a right adjoint, denoted ΦU , which is also fully faithful. Hence, it suffices to show that

the functor ΦU intertwines the actions of the monads Av
U/Y
? on QCoh(U) and Av

IndCoh,U/Y
? on

IndCoh(U), respectively. For that, it is sufficient to show that the diagrams

QCoh(U)
ΦU−−−−→ IndCoh(U)

f∗

y
yf IndCoh

∗

QCoh(Y)
ΦY−−−−→ IndCoh(Y)

and

QCoh(U)
ΦU−−−−→ IndCoh(U)

f?

x
xf IndCoh,?

QCoh(Y)
ΦY−−−−→ IndCoh(Y)

commute.

The commutation of these diagrams is obtained by passing to right adjoints in the diagrams

QCoh(U)
ΨU←−−−− IndCoh(U)

f∗

x
xf IndCoh,∗

QCoh(Y)
ΨY←−−−− IndCoh(Y)

(see [Ga, Proposition 3.5.4]) and (8.4), respectively.
�
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8.7. Proof of the IndCoh-version of Proposition 8.1.1(b). In this subsection we will prove
Proposition 8.6.5. We need to show that the essential image of the functor (f IndCoh,?)enh co-

generates Av
IndCoh,U/Y
? -mod(IndCoh(U)).

8.7.1. Step 1. Let Y′
ı
→֒ Y be a closed substack, and let Y0


→֒ Y be the complementary open.

Consider the corresponding adjoint pair of functors

IndCoh,∗ : IndCoh(Y)⇄ IndCoh(Y0) : 
IndCoh
∗ .

Recall the notation

IndCoh(Y)Y′ := ker(IndCoh,∗),

see [Ga, Sect. 4.1.2]. Let

ı̂! : IndCoh(Y)Y′ ⇄ IndCoh(Y) : ı̂!

be the resulting adjoint pair of functors. Let ı̂? denote the (discontinuous) right adjoint of ı̂!.
We will use similar notations for the corresponding objects on U .

We have a commutative diagram

IndCoh(U0)
(U )IndCoh

∗

//

(f0)
IndCoh
∗

��

IndCoh(U)
(U )IndCoh,∗

oo

f IndCoh
∗

��
IndCoh(Y0)

IndCoh
∗

// IndCoh(Y)
IndCoh,∗

oo

and the diagram

IndCoh(U0)
(U )∗
−−−−→ IndCoh(U)

f IndCoh,∗
0

x
xf IndCoh,∗

IndCoh(Y0)
∗

−−−−→ IndCoh(Y)

is also commutative, see [Ga, Lemma 3.6.9].

Hence, by passing to the right adjoint functors, we obtain that both functors (U )
IndCoh
∗ and

(U )
IndCoh,? intertwine the monads Av

IndCoh,U/Y
? and Av

IndCoh,U0/Y0

? acting on IndCoh(U) and
IndCoh(U0), respectively.

In addition, we obtain a monad Âv
U ′/Y′

? , acting on IndCoh(U)U ′ , such that both functors

(̂ıU )
! and (̂ıU )? intertwine the monads Av

IndCoh,U/Y
? and Âv

IndCoh,U ′/Y′

? acting on IndCoh(U)
and IndCoh(U)U ′ , respectively.

Thus, we obtain a localization sequence of categories

Av
IndCoh,U0/Y0

? -mod // AvIndCoh,U/Y
? -modoo // Âv

IndCoh,U ′/Y′

? -mod,oo
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which makes the diagram

IndCoh(Y0)
IndCoh
∗ //

(f IndCoh,?
0 )enh

��

IndCoh(Y)
ı̂! //

IndCoh,?

oo

(f IndCoh,?)enh

��

IndCoh(Y)Y′

ı̂?

oo

((f̂ ′)IndCoh,?)enh��

Av
IndCoh,U0/Y0

? -mod //

oblv

��

Av
IndCoh,U/Y
? -modoo //

oblv

��

Âv
IndCoh,U ′/Y′

? -modoo

oblv

��
IndCoh(U0)

(U )IndCoh
∗ // IndCoh(U)

(̂ıU )! //
(U )IndCoh,?

oo IndCoh(U)U ′

(̂ıU )?

oo

commute.

Therefore we obtain that if the essential image of (f IndCoh,?
0 )enh co-generates the cate-

gory Av
IndCoh,U0/Y0

? -mod(IndCoh(U0)), and the essential image of ((f̂ ′)IndCoh,?)enh co-generates

the category Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′ ), then the essential image of (f IndCoh,?)enh co-

generates Av
IndCoh,U/Y
? -mod(IndCoh(U)).

8.7.2. Step 2. We will now show that if the essential image of

(f ′)IndCoh,?)enh : IndCoh(Y′)→ Av
IndCoh,U ′/Y′

? -mod(IndCoh(U ′))

co-generates Av
IndCoh,U ′/Y′

? -mod(IndCoh(U ′)), then the essential image of

((f̂ ′)IndCoh,?)enh : IndCoh(Y)Y′ → Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′ )

co-generates Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′).

We have a commutative diagram

(8.7)

IndCoh(Y)Y′
ı!

−−−−→ IndCoh(Y′)

(f̂ ′)IndCoh
∗

x
x(f ′)IndCoh

∗

IndCoh(U)U ′
(ıU )!

−−−−→ IndCoh(U ′)

(which expresses the base change isomorphism) and the commutative diagram

(8.8)

IndCoh(Y)Y′
ı!

−−−−→ IndCoh(Y′)

(f̂ ′)IndCoh,∗

y
y(f ′)IndCoh,∗

IndCoh(U)U ′
(ıU )!

−−−−→ IndCoh(U ′),

see [Ga, Proposition 7.1.6].

Note that since the functor ı! is continuous, it admits a (discontinuous) right adjoint 11,
denoted ı? : IndCoh(Y)Y′ → IndCoh(Y′). By passing to right adjoints in the diagrams (8.7) and

11This manipulation is the reason for replacing QCoh by IndCoh in the proof of Proposition 8.1.1(b).
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(8.8), we obtain commutative diagrams

IndCoh(Y)Y′
ı?←−−−− IndCoh(Y′)

(f̂ ′)IndCoh,?

y
y(f ′)IndCoh,?

IndCoh(U)U ′
(ıU )?
←−−−− IndCoh(U ′)

and

IndCoh(Y)Y′
ı?←−−−− IndCoh(Y′)

(f̂ ′)IndCoh
∗

x
x(f ′)IndCoh

∗

IndCoh(U)U ′
(ıU )?
←−−−− IndCoh(U ′).

In particular, we obtain that the functor (ıU )? intertwines monads Av
IndCoh,U ′/Y′

? acting on

IndCoh(U ′) and Âv
IndCoh,U ′/Y′

? acting on IndCoh(U)U ′ , and we have a commutative diagram

IndCoh(Y)Y′
ı?←−−−− IndCoh(Y′)

((f̂ ′)IndCoh,?)enh
y

y((f ′)IndCoh,?)enh

Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′)
(ıAv

U )?
←−−−− Av

IndCoh,U ′/Y′

? -mod(IndCoh(U ′)).

Hence, to carry out Step 2, it remains to show that the essential image of (ıAv
U )? co-generates

Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′). For this, it suffices to show that (ıAv
U )? admits a left adjoint,

to be denoted (ıAv
U )!, which is conservative.

We claim that (ıAv
U )! exists and makes the diagram

Âv
IndCoh,U ′/Y′

? -mod(IndCoh(U)U ′)
(ıAv

U )!

−−−−→ Av
IndCoh,U ′/Y′

? -mod(IndCoh(U ′))

oblv

y
yoblv

IndCoh(U)U ′
(ıU )!

−−−−→ IndCoh(U ′)

commutative. This would also imply that (ıAv
U )! is conservative, since (ıU )

! is conservative, by
[Ga, Proposition 4.1.7(a)].

To prove the existence of (ıAv
U )! with the required property, it suffices to show that the functor

(ıU )
! intertwines the monads Âv

IndCoh,U ′/Y′

? acting on IndCoh(U)U ′ and Av
IndCoh,U ′/Y′

? acting
on IndCoh(U ′).

The latter follows from the commutativity of the diagram (8.8) and the diagram

IndCoh(Y)Y′
ı!

−−−−→ IndCoh(Y′)

(f̂ ′)IndCoh,?

y
y(f ′)IndCoh,?

IndCoh(U)U ′
(ıU )!

−−−−→ IndCoh(U ′),
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which is obtained by passing to right adjoints in the commutative diagram

IndCoh(Y)Y′
ı∗←−−−− IndCoh(Y′)

(f̂ ′)IndCoh
∗

x
x(f ′)IndCoh

∗

IndCoh(U)U ′
(ıU )∗
←−−−− IndCoh(U ′).

8.7.3. Step 3. By Step 2, we can assume that Y is classical and reduced (take Y′ := (clY)red).
By Step 1 and Noetherian induction, it suffices to show that Y contains a non-empty open
substack Y0, for which Proposition 8.6.5 holds.

In particular, we can replace Y by its open substack, which is smooth. By assumption, the
morphism f : U → Y is smooth, so U is smooth as well. Now, for smooth schemes, there is no
difference between IndCoh and QCoh, and the conclusion of Proposition 8.6.5 is identical to
that of Proposition 8.1.1(b).

Thus, it suffices to show that any classical reduced Y contains a non-empty open that satisfies
the conclusion of Proposition 8.1.1(b).

The rest of the proof is the same as that of Step 3 in the proof of Proposition 8.1.1(a):

We reduce the assertion to the case when Y is of the form Y/G, where Y is a quasi-compact
quasi-separated scheme, and G is a classical affine algebraic group of finite type. However,
Y if this form satisfies the conclusion of Proposition 8.1.1(b) because of Theorem 2.2.4 and
Proposition 6.3.7.

Part III: (DG) Indschemes, Classifying Prestacks and De Rham Prestacks

9. DG indschemes

9.1. A key proposition.

9.1.1. Recall that PreStklaft denotes the full subcategory of PreStk formed by prestacks locally
almost of finite type, and that on this category we have a well-defined functor

IndCohPreStklaft : (PreStklaft)
op → DGCatcont,

see [Ga, Sect. 10.1].

In addition, we recall that the functor IndCohPreStklaft , comes equipped with a natural trans-
formation, denoted

ΥPreStklaft : QCohPreStklaft
→ IndCohPreStklaft

,

see [Ga, Sect. 10.3].

For an individual object Y ∈ PreStklaft, the corresponding functor

ΥY : QCoh(Y)→ IndCoh(Y)

is given by

F ∈ QCoh(Y) 7→ F ⊗ ωY ∈ IndCoh(Y),

where ωY ∈ IndCoh(Y) is the dualizing object, and where ⊗ is the canonical action on QCoh(Y)
on IndCoh(Y).
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9.1.2. A key technical tool that will allow us to establish the results pertaining to 1-affineness
of DG indschemes (as well as formal classifying spaces and de Rham prestacks) is the following
assetion:

Proposition 9.1.3. Let Y ∈ PreStklaft be such that the unctor ΥY : QCoh(Y)→ IndCoh(Y) is
an equivalence. Suppose also that Y can be written as a colimit of colim

−→
i∈I

Zi with Zi ∈ PreStklaft,

where I is some index category, such that:

(1) For every i, the functor LocZi is fully faithful;
(2) For every i, the functor ΥZi : QCoh(Zi) → IndCoh(Zi) is fully faithful and admits a

continuous right adjoint, compatible with the action of QCoh(Zi);
(3) For every arrow (i → j) ∈ I and the corresponding map fi,j : Zi → Zj, the functor

f !
i,j : IndCoh(Zj) → IndCoh(Zi) admits a left adjoint, compatible with the action of
QCoh(Zj);

Then the functor LocY is fully faithful.

The rest of this subsection is devoted to the proof of Proposition 9.1.3.

9.1.4. Step 1. Let Y ≃ colim
−→
i

Zi be a presentation of Y as in Proposition 9.1.3.

For C ∈ QCoh(Y) -mod, we have:

Γ(Y,LocY(C)) ≃ lim
←−
i

Γ(Zi,LocY(C)).

Note, however, that

LocY(C)|Zi ≃ LocZi(QCoh(Zi) ⊗
QCoh(Y)

C).

Hence, the assumption that the functor LocZi is fully faithful implies that

Γ(Zi,LocY(C)) ≃ QCoh(Zi) ⊗
QCoh(Y)

C.

Hence, we conclude that

Γ(Y,LocY(C)) ≃ lim
←−
i

(
QCoh(Zi) ⊗

QCoh(Y)
C

)
.

9.1.5. Step 2. Consider also the category

(9.1) Γ!(Y,LocY(C)) := lim
←−
i

(
IndCoh(Zi) ⊗

QCoh(Y)
C

)
,

where the functors

IndCoh(Zj) ⊗
QCoh(Y)

C→ IndCoh(Zi) ⊗
QCoh(Y)

C

are f !
i,j⊗idC, where for an arrow (i→ j) ∈ I, we denote by fi,j the corresponding map Zi → Zj.

Since in the formation of (9.1), the transition functors admit left adjoints, by [GL:DG,
Lemma 1.3.3], we can rewrite Γ!(Y,LocY(C)) also as

colim
−→
i

(
IndCoh(Zi) ⊗

QCoh(Y)
C

)
,
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where the transition functors

IndCoh(Zi) ⊗
QCoh(Y)

C→ IndCoh(Zj) ⊗
QCoh(Y)

C

are now (f !
i,j)

L ⊗ IdC.

Commuting the colimit with the tensor product we obtain:

Γ!(Y,LocY(C)) ≃ colim
−→
i

(
IndCoh(Zi) ⊗

QCoh(Y)
C

)
≃

≃


colim
−→
i

IndCoh(Zi)


 ⊗

QCoh(Y)
C ≃


lim
←−
i

IndCoh(Zi)


 ⊗

QCoh(Y)
C ≃ IndCoh(Y) ⊗

QCoh(Y)
C.

9.1.6. Step 3. Recall now the natural transformation ΥPreStklaft
.

For any Y ∈ PreStklaft, this gives rise to a functor, denoted ΥY,C,

Γ(Y,LocY(C)) ≃ lim
←−
i

(
QCoh(Zi) ⊗

QCoh(Y)
C

)
→

→ lim
←−
i

(
IndCoh(Zi) ⊗

QCoh(Y)
C

)
≃ Γ!(Y,LocY(C)),

and we have a commutative diagram

(9.2)

C
∼

−−−−→ QCoh(Y) ⊗
QCoh(Y)

C −−−−→ Γ(Y,LocY(C))

ΥY⊗IdC

y
yΥY,C

IndCoh(Y) ⊗
QCoh(Y)

C
∼

−−−−→ Γ!(Y,LocY(C)).

By assumption, ΥY is an equivalence, and hence so is the left vertical arrow in diagram (9.2).

Thus, we obtain that C is a retract of Γ(Y,LocY(C)). To prove the proposition, it remains
to show that the functor ΥY,C is fully faithful.

9.1.7. Step 4. To prove that ΥY,C is fully faithful, it is sufficient to show that each of the
functors

ΥZi ⊗ IdC : QCoh(Zi) ⊗
QCoh(Y)

C→ IndCoh(Zi) ⊗
QCoh(Y)

C

is fully faithful.

However, this follows from the fact that ΥZi is fully faithful and admits a continuous right
adjoint, compatible with the action of QCoh(Zi). Indeed, in this case, the functor ΥZi ⊗ IdC
admits a right adjoint, given by (ΥZi)

R ⊗ IdC, and the unit of the adjunction

IdQCoh(Zi) ⊗
QCoh(Y)

C →
(
(ΥZi)

R ⊗ IdC
)
◦ (ΥZi ⊗ IdC) ≃

(
(ΥZi)

R ◦ΥZi

)
⊗ IdC

is an isomorphism.
�

9.2. Fully faithfulness of Loc. In this subsection we will prove Theorems 2.4.2 and 2.4.3.
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9.2.1. Proof of Theorem 2.4.2. Let Y be a DG indscheme, which is weakly ℵ0, locally almost
of finite type and formally smooth. First, by [GR1, Theorem 10.1.1], the functor ΨY is an
equivalence.

Next, by [GR1, Theorem 9.1.6], we obtain that Y is classical, i.e., it can be written (up to
fppf sheafification) as

lim
−→
α

Zα,

where Zα are classical schemes of finite type, and the maps Zα1 → Zα2 are closed embeddings.

Let us show that this presentation satisfies that conditions of Proposition 9.1.3. Indeed,
Condition (1) is satisfied by Theorem 2.1.1. Condition (2) is satisfied by [Ga, Corollary 9.6.3].
Condition (3) is satisfied because the left adjoints are given by (fi,j)

IndCoh
∗ .

9.2.2. Proof of Theorem 2.4.3. Consider the affine Grassmannian GrG and the canonical pro-
jection π : G((t))→ GrG.

By Theorem 2.4.2, the functor LocGrG is fully faithful. Hence, in order to show that LocG((t))

is also fully faithful, it suffices to show that π satisfies the assumptions of Proposition 3.2.6(a).

However, since π is affine this follows from [GL:QCoh, Proposition 3.2.1] (reproduced for the
reader’s convenience in the Appendix as Proposition B.1.3).

9.3. Non 1-affineness of A∞. In this subsection we will prove Theorem 2.4.5. I.e., we will
show that the functor ΓA∞ fails to be fully faithful.

9.3.1. Let ι denote the map pt→ A∞ corresponding to 0 ∈ A∞. Consider

C := coindι(Vect).

We will show that the counit map

Γ
(
pt,LocA∞ ◦ Γenh

A∞(C)
)
→ Γ(pt,C)

is not an equivalence.

By definition

Γ(pt,C) ≃ QCoh(pt ×
A∞

pt),

and

Γ
(
pt,LocA∞ ◦ Γenh

A∞(C)
)
≃ Vect ⊗

QCoh(A∞)
Vect .

Thus, we want to show that the naturally defined functor

(9.3) Vect ⊗
QCoh(A∞)

Vect→ QCoh(pt ×
A∞

pt)

is not an equivalence.
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9.3.2. Let S denote the tautological functor

Vect→ Vect ⊗
QCoh(A∞)

Vect,

and let T be its (discontinuous) right adjoint.

The composed functor

Vect
S
→ Vect ⊗

QCoh(A∞)
Vect→ QCoh(pt ×

A∞
pt)

is the pull-back functor p∗, where p denotes the map pt ×
A∞

pt→ pt. The right adjoint of p∗ is

the usual direct image functor p∗.

We will show:

Lemma 9.3.3. The functor T is monadic.

Lemma 9.3.4. The functor p∗ is not monadic.

Together, these two lemmas imply that (9.3) is not an equivalence.

9.3.5. Proof of Lemma 9.3.3. To analyze (S,T) we identify QCoh(A∞) with IndCoh(A∞) via

the functor ΨA∞ . The usual monoidal structure on QCoh(A∞) goes over to the
!
⊗ monoidal

structure on IndCoh(A∞). Similarly, ι∗ : QCoh(A∞)→ Vect goes over to the functor ι!.

Note in this case the tensor product functor

IndCoh(A∞)⊗ IndCoh(A∞)→ IndCoh(A∞)

admits a left adjoint, given by (∆A∞)IndCoh
∗ . Similarly, the functor ι! admits a left adjoint given

by ιIndCoh
∗ , which is a map of IndCoh(A∞)-module categories.

This implies that T is monadic by Corollary C.2.3.
�

9.4. Proof of Lemma 9.3.4.

9.4.1. By definition:

QCoh(pt ×
A∞

pt) ≃ lim
←−
n

QCoh(pt ×
Vn

pt),

where Vn = An. Set V := lim
−→
n

Vn.

For each n, we have:

QCoh(pt ×
Vn

pt) ≃ Sym(V ∗n [1])-mod.

Hence, the monad H := p∗ ◦ p∗ is given by

M 7→ lim
←−
n

(Sym(V ∗n [1])⊗M) .

Consider the corresponding functor

(p∗)
enh : QCoh(pt ×

A∞
pt)→ H-mod(Vect).

We need to show that (p∗)
enh is not an equivalence. We will do so by showing that it does

not send a certain direct sum to the direct sum.
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9.4.2. Consider the object N of

QCoh(pt ×
A∞

pt) ≃ lim
←−
n

Sym(V ∗n [1])-mod,

whose n-th term is

lim
←−
m≥n

Sym (ker(V ∗m → V ∗n )[2]) ,

viewed as an object of Sym(V ∗n [1])-mod via the trivial action.

We have p∗(N) = k ∈ Vect. It is also easy to see that (p∗)
enh = k ∈ H-mod, where the action

of H on k is trivial.

Consider now the object ⊕
i
N [−2i] ∈ QCoh(pt ×

A∞
pt). We will show that the map

⊕

i

(p∗)
enh(N)[−2i]→ (p∗)

enh

(
⊕
i
N [−2i]

)

is not an isomorphism.

9.4.3. On the one hand, it is easy to see that the object of Vect, underlying the object

⊕
i
k[−2i] ∈ H-mod

is isomorphic to ⊕
i
k[−2i] (although the forgetful functor H-mod → Vect does not commute

with arbitrarty direct sums).

9.4.4. On the other hand, we will show that the object of Vect underlying

(p∗)
enh

(
⊕
i
N [−2i]

)

has a non-trivial cohomology in degree 1.

Namely, the 1st cohomology in question is equal to R1(limproj) of the following inverse
family of vector spaces

n 7→
⊕

i


 lim
←−
m≥n

(
Symi(ker(V ∗m → V ∗n ))

)

 .

We compute R(limproj) of the above family by embedding it into the constant family with
value

⊕

i

(
lim
←−
m

Symi(V ∗m)

)
.

To see that R1(limproj) 6= 0, we need to show that the map

(9.4)
⊕

i

lim
←−
m

Symi(V ∗m)→

→ limproj
n


⊕

i

coker


 lim
←−
m≥n

Symi(ker(V ∗m → V ∗n ))→ lim
←−
m

Symi(V ∗m)






is not surjective.
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9.4.5. Choose a basis v1, v2, . . . of V so that {v1, ..., vn} is a basis of Vn. For every m, let
{v∗m,1, ..., v

∗
m,m} be the corresponding dual basis of V ∗m.

The following element in the right-hand side of (9.4) does not lie in the image of the left-hand
side:

Its n-th component, i.e., the corresponding element of

(9.5)
⊕

i

coker


 lim
←−
m≥n

Symi(ker(V ∗m → V ∗n ))→ lim
←−
m

Symi(V ∗m)




equals the sum over i = 1, 2, . . . of the elements wn,i, where each wn,i is the image under

lim
←−
m

Symi(V ∗m)→ coker


 lim
←−
m≥n

Symi(ker(V ∗m → V ∗n ))→ lim
←−
m

Symi(V ∗m)




of the family of elements

m 7→ (v∗m,i)
⊗i ∈ Symi(V ∗m), m ≥ i.

Note that wn,i = 0 if i ≥ n, because in this case

(v∗m,i)
⊗i ∈ Symi(ker(V ∗m → V ∗n )).

Hence, the sum Σ
i
wn,i is finite, i.e., gives rise to a well-defined element in (9.5).

�

10. Classifying prestacks

10.1. Sheaves of categories over classifying prestacks.

10.1.1. In this section we let G be a group-object of PreStk such that the functor LocG is fully
faithful.

Note that by Corollary 5.2.5, the functor LocGn is fully faithful for any n.

We will give a more explicit description of the category ShvCat(BG) as well as the functors
ΓBG and LocBG.

10.1.2. First, by definition, we have:

ShvCat(BG) ≃ Tot(ShvCat(B•G)).

We now claim:

Proposition 10.1.3. The term-wise Loc functor

Tot(QCoh(B•G) -mod)→ Tot(ShvCat(B•G))

is an equivalence.

Proof. The functor in question is fully faithful since each LocG×n is fully faithful. To prove
that it is essentially surjective, we need to show that for C• ∈ Tot(ShvCat(B•G)), each term
Cn lies in the essential image of the functor LocG×n .
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Choosing any map [0]→ [n] in ∆, from the commutative diagram

QCoh(G×n) -mod
Loc

G×n

−−−−−→ ShvCat(G×n)
x

x

QCoh(G×0) -mod
Loc

G×0

−−−−−→ ShvCat(G×0),

we obtain that it is sufficient to consider the case of n = 0. However, since G×0 = pt, the latter
case is evident. �

10.1.4. Note that, by Proposition 5.2.3, the assumption that LocG be fully faithful implies
that for any n, the functor

QCoh(G)⊗n → QCoh(G×n)

is an equivalence.

In particular, the structure on G is group-object of PreStk defines on QCoh(G) a structure
of augmented co-monoidal DG category, such that the corresponding co-simplicial category
co-Bar•(QCoh(G)) identifies with QCoh(B•G).

We note, however, that the above co-monoidal structure on QCoh(G) naturally extends to a
commutative Hopf algebra structure (see Sect. E for what this means) as an object of DGCatcont,
via pointwise (symmetric) monoidal structure. In particular, co-Bar•(QCoh(G)) is naturally a
co-simplicial (symmetric) monoidal DG category.

From Proposition E.1.4 we obtain:

Corollary 10.1.5. The category Tot(QCoh(B•G) -mod) is canonically equivalent to the cate-
gory QCoh(G) - comod. Under this identification, for D ∈ QCoh(G) - comod, the correspond-
ing object of Tot(QCoh(B•G) -mod) identifies with

co-Bar•(QCoh(G),D) ∈ co-Bar•(QCoh(G)) -mod ≃ QCoh(B•G) -mod.

10.2. Categories acted on by G.

10.2.1. Let G -mod denote the category QCoh(G) - comod.

Combining Corollary 10.1.5 and Proposition 10.1.3, we obtain an equivalence

(10.1) ShvCat(BG) ≃ G -mod.

In what follows we shall refer to objects of G -mod as categories endowed with an action of
the group-prestack G.

10.2.2. Under the equivalence (10.1) the category QCoh(BG) identifies with

Rep(G) := HomG(Vect,Vect).

The functor

ΓBG : ShvCat(BG)→ DGCatcont

identifies with the functor

invG : G -mod→ DGCatcont, D 7→ HomG(Vect,D) ≃ Tot (co-Bar•(QCoh(G),D)) .

This functor naturally upgrades to the functor

invenh
G : G -mod→ Rep(G) -mod,

and the latter identifies with Γenh
BG .
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Remark 10.2.3. We regard Rep(G) as being equipped with a monoidal structure resulting from
its definition as HomG(Vect,Vect). However, this structure naturally extends to a symmetric
(i.e., E∞) monoidal structure:

The right-lax symmetric monoidal structure on the functor invG defines on

Rep(G) ≃ invG(Vect)

a structure of unital symmetric monoidal DG category, which is compatible (=distributive) with
the monoidal structure given by composition. Hence, by Eckmann-Hilton, the latter structure
is induced by the former.

10.2.4. The functor

LocBG : Rep(G) -mod→ ShvCat(BG)

identifies with the functor

recenhG : Rep(G) -mod→ G -mod, C 7→ Vect ⊗
Rep(G)

C,

where 12 the right hand side naturally acquires a structure of an object of G -mod via the
commuting G- and Rep(G)-actions on Vect.

Here the action of Rep(G) on Vect is given by the augmentation (forgetful) functor

oblvG : Rep(G)→ Vect, HomG(Vect,Vect)→ Hom(Vect,Vect).

In what follows we shall denote by recG the composition of recenhG and the forgetful functor

oblvG : G -mod→ DGCatcont .

I.e.,

recG(C) = Vect ⊗
Rep(G)

C ∈ DGCatcont .

10.2.5. It is easy to see that invG(QCoh(G)) ≃ Vect, and moreover, this equivalence extends
to an isomorphism

invenh
G (QCoh(G)) ≃ Vect

in Rep(G) -mod, where Rep(G) acts on Vect “trivially”, i.e., via the functor oblvG.

In particlar, by adjunction, we obtain a map in G -mod

(10.2) recenhG (Vect)→ QCoh(G).

At the level of plain DG categories, the map (10.2) identifies with the functor

(10.3) p∗ : Vect ⊗
Rep(G)

Vect→ QCoh(G).

12The symbol recenh is for ”reconstruction.”
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10.2.6. Assume for a moment that QCoh(G) is dualizable as a plain DG category. Consider
its dual, QCoh(G)∨, as a monoidal DG category (the monoidal structure on QCoh(G)∨ is the
dual of the co-monoidal structure on QCoh(G)).

In this case, by taking the dual of the co-action of QCoh(G)∨, we can identify

QCoh(G) - comod ≃ QCoh(G)∨ -mod,

and hence

(10.4) G -mod ≃ QCoh(G)∨ -mod.

Let us note that in this case, in addition to the functors invG and invenh
G we also have the

functor

coinvG : G -mod→ DGCatcont and coinvenh
G : G -mod→ Rep(G) -mod,

defined by

D 7→ Vect ⊗
QCoh(G)∨

D ≃ |Bar•(QCoh(G)∨,D)|.

10.3. Affine group DG schemes. In this subsection we let G be a group-object of DGSchaff .

10.3.1. For D ∈ G -mod we consider the co-simplicial category co-Bar•(QCoh(G),D). As
in Lemma 5.5.4, we note that co-Bar•(QCoh(G),D) satisfies the co-monadic Beck-Chevalley
condition.

In particular, the forgetful functor

oblvG : invG(D)→ D

admits a right adjoint, denoted coindG, and the co-monad

oblvG ◦ coindG

identifies, when viewed as a plain endo-functor of D, with the composition

D
co-action
−→ D⊗QCoh(G)

IdD⊗p∗
→ D,

where p : G→ pt.

10.3.2. Note that in the affine case we have a canonical identification

(10.5) QCoh(G)∨ ≃ QCoh(G).

Moreover, we note that the monoidal structure on QCoh(G), induced by (10.5) and the co-
monoidal structure on QCoh(G), is canonically equivalent to that given by the structure on G

of an algebra-object in DGSchaff (with respect to the monoidal structure on DGSchaff given by
the Cartesian product) and the monoidal functor

QCoh∗ : DGSchaff → DGCatcont, S  QCoh(S), (f : S1 → S2) f∗.

We shall denote the resulting monoidal DG category by QCoh(G)conv.

When we consider QCoh(G) with the (symmetric) monoidal structure given by the pointwise
tensor product, we shall denote it by QCoh(G)ptw.

10.4. A criterion for 1-affineness in the affine case case. In this subsection we continue
to assume that G is an affine group DG scheme.
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10.4.1. Consider the simplicial category Bar•(QCoh(G)conv). It is obtained by applying the

functor QCoh∗ to the simplicial object B•G ∈ DGSchaff . In particular, we have a canonical
identification

|QCoh(B•G)∗| ≃ Vect ⊗
QCoh(G)conv

Vect .

As in Lemma 6.3.3, from Lemma C.1.6 and [GL:DG, Lemma 1.3.3], we obtain:

Lemma 10.4.2. The right adjoint of the tautological functor

Vect→ Vect ⊗
QCoh(G)conv

Vect

is monadic, and the corresponding monad on Vect, viewed as a plain endo-functor, identifies
canonically with p∗ ◦ (p∗)R, where

p : G→ pt .

10.4.3. Finally, we note that as in Sect. 6.2.4, from the natural transformation (6.2) we obtain
that there exists a canonically defined functor

(10.6) coindG : Vect ⊗
QCoh(G)conv

Vect→ Rep(G),

which lifts to a map

coinvenh
G (Vect)→ invenh

G (Vect) = Rep(G)

in Rep(G) -mod.

We claim:

Proposition 10.4.4. The following conditions are equivalent:

(a) BG is 1-affine;

(b) The following two conditions hold:

(1) The functor (10.6) is an equivalence;
(2) The functor (10.3) is an equivalence.

(b’) The following two conditions hold:

(1) There exists some isomorphism of objects of Rep(G) -mod

coinvenh
G (Vect) ≃ Rep(G).

(2) There exists some isomorphism of objects of objects of G -mod

recenhG (Vect) ≃ QCoh(G)conv.

Proof. Let assume (a) and deduce (b). The fact that the map (10.3) is an equivalence holds is
the expression of the fact that the functor Γenh

BG is fully faithful.

Let us view Vect as object of G -mod, endowed with a commuting action of Rep(G). Ten-
soring up the map (10.6) on the right by Vect over Rep(G), we obtain a map

(10.7) Vect ⊗
QCoh(G)conv

(
Vect ⊗

Rep(G)
Vect

)
≃

≃

(
Vect ⊗

QCoh(G)conv

Vect

)
⊗

Rep(G)
Vect→ Rep(G) ⊗

Rep(G)
Vect,
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so that the diagram

Vect ⊗
QCoh(G)conv

(
Vect ⊗

Rep(G)
Vect

)
−−−−→ Rep(G) ⊗

Rep(G)
Vect

IdVect⊗p
∗

y
y∼

Vect ⊗
QCoh(G)conv

QCoh(G)conv
∼

−−−−→ Vect

commutes. Since the left vertical arrow is an isomorphism (by the above), we obtain that so is
the top horizontal map.

Now, since recG is conservative, the fact that (10.7) is an equivalence, implies that so is the
map (10.6).

The fact that (b) implies (b’) is tautological.

Let us show that (b’) implies (a). However, this is obvious: (b’) implies that the functors

coinvenh
G and recenhG are mutually inverse on the nose.

�

11. Groups with a rigid convolution category

11.1. The rigidity condition. We return to the conext of Sect. 10.2.6. In this subsection we
will assume that QCoh(G) is dualizable as a plain category, and, moreover, that the monoidal
category QCoh(G)∨ is rigid (see Sect. D.1 for what this means).

11.1.1. The self-duality of QCoh(G)∨ induced by its rigid monoidal structure (see Sect. D.1.2)
defines, in particular, an identification

QCoh(G)∨ ≃ QCoh(G),

as plain categories.

Thus, we can again think of QCoh(G) is a monoidal DG category; when considered as such,
it will be denoted by QCoh(G)convL . This monoidal structure should not be confused with the
pointwise (symmetric) monoidal structure; the latter is denoted by QCoh(G)ptw.

11.1.2. By Sect. D.3, we obtain that the monoidal structure on QCoh(G)convL is obtained from
the co-monoidal structure on QCoh(G) by passage to the left adjoint functors.

By construction, the unit in QCoh(G)convL is given by the functor

(e∗)L : Vect→ QCoh(G),

which is both the left adjoint and the dual of e∗ : QCoh(G) → Vect, where e : pt → G is the
unit point.

By Proposition D.3.6, the augmentation on QCoh(G)convL is given by the functor

(p∗)L : QCoh(G)→ Vect,

which is both the left adjoint and the dual of p∗ : Vect→ QCoh(G).
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11.1.3. Let now D be an object of G -mod, thought of as an object of QCoh(G)convL -mod.
From Sect. D.3 we obtain:

Lemma 11.1.4.

(a) The right adjoint of the action data

QCoh(G)convL ⊗D→ D

identifies with the data of co-action

D→ QCoh(G)⊗D.

(b) The simplicial category Bar•(QCoh(G)convL ,D) is obtained from co-Bar•(QCoh(G),D) by
passage to the left adjoint functors.

From Corollary D.4.9, we obtain:

Corollary 11.1.5.

(a) The co-simplicial category co-Bar•(QCoh(G),D) satisfies the monadic Beck-Chevalley con-
dition.

(b) The forgetful functor

oblvG : invG(D)→ D

admits a left adjoint (denoted indG) and is monadic. The monad

oblvG ◦ indG,

viewed as a plain endo-functor of D, identifies with the composition

D
co-action
−→ QCoh(G) ⊗D

(p∗)L⊗IdD

−→ D,

where (p∗)L is the left adjoint of the functor p∗ : Vect→ QCoh(G).

11.1.6. Combining Lemma 11.1.4(b) with [GL:DG, Lemma 1.3.3], we obtain:

Corollary 11.1.7. There exists a canonical isomorphism of functors

coinvG ≃ invG : G -mod→ DGCatcont .

It follows from the construction, the isomorphism of Corollary 11.1.7 lifts to an isomorphism

(11.1) coinvenh
G ≃ invenh

G

as functors G -mod→ Rep(G) -mod.

11.2. A criterion for 1-affineness in the rigid case. The goal of this subsection is to prove
the following assertion:

Proposition 11.2.1. Let G be as in Sect. 11.1. Then the following conditions are equivalent:

(a) BG is 1-affine;

(b) The functor (10.3) is an equivalence.

(b’) There exists an equivalence in G -mod:

recenhG (Vect) ≃ QCoh(G).

(c) The functor p∗ : QCoh(G)→ Vect, right adjoint to p∗, is monadic.



68 DENNIS GAITSGORY

11.2.2. Step 1. Let us assume (a). Then (b) expresses the fact that the functor Γenh
BG is fully

faithful.

The implication (b) ⇒ (b’) is tautological. The implication (b’) ⇒ (a) is easy: we obtain

that the functors coinvenh
G and recenhG are mutually inverse on the nose.

11.2.3. Step 2. It remains to establish the equivalence of (b) and (c). We claim that the functor

Vect→ Vect ⊗
Rep(G)

Vect

is monadic, and the corresponding monad on Vect maps isomorphically, as a plain endo-functor,
to p∗ ◦ p∗.

We will prove this by applying Corollary C.2.3. In Step 3 we will show that the monoidal
operation

Rep(G) ⊗ Rep(G)→ Rep(G)

admits a left adjoint. Assuming this, the required assertion follows from Corollary C.2.3,
combined with Lemma C.2.5:

Indeed, it remains to show that the map

oblvG ◦(oblvG)
R → p∗ ◦ p

∗

is an isomorphism, which follows from the fact that the corresponding map of left adjoints

(p∗)L ◦ p∗ → oblvG ◦ indG

is an isomorphism, by Corollary 11.1.5(b).

11.2.4. Step 3. Using Corollary 11.1.7, we interpret Rep(G) as

Vect ⊗
QCoh(G)

convL

Vect .

Hence, we can identify

Rep(G)⊗ Rep(G) ≃ Rep(G× G),

so that the monoidal operation on Rep(G) identifies with restriction under the diagonal map.

We now claim that if φ : G1 → G2 is any homomorphism between group-objects of PreStk,
satisfying the assumption of Sect. 11.1, then the restriction functor Rep(G2)→ Rep(G1) admits
a left adjoint.

Indeed, interpreting Rep(Gi) as Vect ⊗
QCoh(Gi)convL

Vect, the left adjoint in question is given

by the homomorphism

QCoh(G1)convL → QCoh(G2)convL ,

which is the left adjoint (and simultaneously dual, see Proposition D.3.6) of the restriction map
φ∗ : QCoh(G2)→ QCoh(G1) of the corresponding co-monoidal categories.

�

11.3. Classifying prestacks of formal groups. In this subsection we will prove Theo-
rem 2.5.4. Let G be a weakly ℵ0 formally smooth formal group locally almost of finite type.
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11.3.1. Proof of point (a). We will deduce the required assertion by applying Proposition 9.1.3.

By definition,
BG := |B•G|,

and we claim that this presentation satisfies the conditions of Proposition 9.1.3. Note that each
term of B•G is of the form G×n.

Condition (1) is satisfied by Theorem 2.4.2.

Condition (2) is satisfied by [GR1, Theorem 10.1.1]: indeed, each of the functors

ΥG×n : QCoh(G×n)→ IndCoh(G×n)

is an equivalence. This also shows that

QCoh(BG) ≃ Tot(QCoh(B•G))→ Tot(IndCoh(B•G)) ≃ IndCoh(BG)

is an equivalence.

Finally, condition (3) is satisfied because all the maps in B•G are ind-proper (see [GR1, Sect.
2.7.4 and Corollary 2.8.3]).

�[Theorem 2.5.4(a)]

11.3.2. Proof of point (b). In Sect. 11.3.3, we will show that G satisfies the assumption of
Sect. 11.1.

Assuming this, in order to prove point (b) of the theorem, by Proposition 11.2.1, it remains
to show that the functor p∗, right adjoint to p

∗ is monadic if and only if the the tangent space
of G at the origin is finite-dimensional. We will do this in Sect. 11.4.

11.3.3. Using [GR1, Theorem 10.1.1], we identify QCoh(G) ≃ IndCoh(G) via the functor ΥG

as co-monoidal categories, where the co-monoidal structure on IndCoh(G) is induced by the
structure on G of group-object in PreStklaft via the operation of !-pullback.

Recall now the self-duality
IndCoh(G) ≃ IndCoh(G)∨

(see [GR1, Corollary 2.6.2]).

The above co-monoidal structure on IndCoh(G) defines via duality a monoidal structure
on IndCoh(G); we shall denote the resulting monoidal DG category by IndCoh(G)conv. By
construction, the monoidal operation on IndCoh(G)conv is given by the operation of (IndCoh, ∗)-
direct image, i.e., it is obtained by applying the (symmetric) monoidal functor

IndCohDGindSchlaft
: DGindSchlaft → DGCatcont

of [GR1, Sect. 2.7] to the algebra object G ∈ DGindSchlaft.

We claim:

Lemma 11.3.4. The monoidal DG category IndCoh(G)conv is rigid.

Proof. Follows from the fact that G is ind-proper and the base change isomorphism of [GR1,
Proposition 2.9.2]. �

This implies that QCoh(G)convL is rigid as a monoidal DG category, as

IndCoh(G)conv ≃ QCoh(G)convL ,

as monoidal DG categories, by construction.

11.4. Computation of the monad. Let G be as in Theorem 2.5.4.
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11.4.1. We identity QCoh(G) ≃ IndCoh(G) by means of the functor ΥG, so that the functor
p∗ corresponds to

p! : Vect→ IndCoh(G),

and p∗ corresponds to the right adjoint of p!, denoted p?.

We will show that the functor p? : IndCoh(G) → Vect is monadic if and only if the tangent
space of G at the origin is finite-dimensional.

11.4.2. Note that this assertion does not involve the group structure on G. By [BD, Propo-
sitions 7.12.22 and 7.12.23], the assumption on G implies that, as a DG indscheme, it can be
described as follows:

• If the tangent space of G at the origin is finite-dimensional, then G is isomorphic to the
completion of a the vector group V at the origin, where V ∈ Vect♥ is finite-dimensional.
• If the tangent space of G at the origin is infinite-dimensional, then G is isomorphic to

colim
−→
n

(An)∧0 .

11.4.3. Let G = V ∧0 . In this case the category IndCoh(G) identifies with Rep(V ∗), where V ∗

is the dual vector space.

Under this identification p! identifies with the functor coindV ∗ , the right adjoint to the
forgetful functor oblvG : Rep(V ∗) → Vect. The functor p? is the (discontinuous) right adjoint
(coindV ∗)R of coindV ∗ .

Hence, the functor p? is monadic by Remark Sect. 7.2.3.

Remark 11.4.4. Let us note that for G = V ∧0 , the assertion of Theorem 2.5.4(b) is equivalent
to that of Theorem 2.2.2 for the group V ∗. Indeed, in this case

IndCoh(G) ≃ Rep(V ∗),

as monoidal categories, so that G -mod ≃ Rep(V ∗) -mod and the functor invenh
G ≃ coinvenh

G

identifies with recenhV ∗ . In addition,

Rep(G) ≃ QCoh(V ∗)conv,

also as monoidal categories, so

Rep(G) -mod ≃ V ∗ -mod,

and the functor recenhG idenitifies with coinvenh
V ∗ .

11.4.5. Let

G := colim
−→
n

(An)∧0 .

We claim that in this case the functor p? fails to be conservative. Indeed, let ιn denote the
embedding

(An)∧0 →֒ G.

We claim that the functor p? annihilates (ι0)
IndCoh
∗ (k). To prove this we have to show that

MapsIndCoh(G)(ωG, (ι0)
IndCoh
∗ (k)) = 0.

We note that

ωG ≃ colim
−→
n

(ιn)
IndCoh
∗ (ω(An)∧0

),
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and so

MapsIndCoh(G)(ωG, (ι0)
IndCoh
∗ (k)) ≃ lim

←−
n

MapsIndCoh(G)((ιn)
IndCoh
∗ (ω(An)∧0

), (ι0)
IndCoh
∗ (k)).

Now, for every n,

(ιn)
IndCoh
∗ (ω(An)∧0

) ∈ IndCoh(A∞)≤−n,

so

MapsIndCoh(G)((ιn)
IndCoh
∗ (ω(An)∧0

), (ι0)
IndCoh
∗ (k)) ∈ Vect≥n,

and hence the above limit vanishes.

12. De Rham prestacks

12.1. De Rham prestacks of indschemes.

The goal of this subsection is to prove Theorem 2.6.3. Recall that we fix a DG indscheme Z

locally almost of finite type, and we want to show that the prestack ZdR is 1-affine.

12.1.1. Step 1. We will first prove that the prestack ZdR is 1-affine, where Z is an affine scheme
of finite type. We can embed Z into An. Since ZdR identifies with its formal completion inside
(An)dR, by Theorem 2.3.1, it is enough to consider the case of Z = An.

Let G be the formal completion of An at the origin, considered as a formal group. Note that
the prestack quotient of An by G identifies with (An)dR. Hence, we have a canonical map

(An)dR → BG,

and for any S ∈ (DGSchaff)BG, the fiber product

S ×
BG

(An)dR

identifies with S × A
n.

Applying Theorem 2.5.4(b) and Corollary 3.2.7, we deduce that (An)dR is 1-affine.

12.1.2. Step 2. We now claim that for an arbitrary scheme of finite type Z, the prestack ZdR

is 1-affine. Indeed, the reduction to the affine case is routine and is left to the reader.

12.1.3. Step 3. Let Z be an indscheme written as

colim
−→
i∈I

Zi,

where Zi are schemes of finite type, and the maps fi,j : Zi → Zj are closed embeddings.

The fact that the functor LocZdR
is fully faithful follows from Proposition 9.1.3: indeed, the

functor

ΨZdR
: QCoh(ZdR)→ IndCoh(ZdR)

is an equivalence for any Z ∈ PreStklaft, see [GR2, Proposition 2.4.4].
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12.1.4. Step 4. It remains to show that for C ∈ ShvCat(ZdR), the co-unit of the adjunction

LocZdR
◦ Γenh

ZdR
(C)→ C

is an equivalence.

Since the theorem has been established for schemes, it is sufficient to show that for every
index i0 ∈ I, the functor

(12.1) QCoh((Zi0)dR) ⊗
QCoh(ZdR)

ΓZdR
(C) ≃ Γ

(
(Zi0)dR,LocZdR

◦ Γenh
ZdR

(C)
)
→ Γ((Zi0 )dR,C)

is an equivalence.

As in the proof of Proposition 9.1.3, we can express ΓZdR
(C) as

colim
−→
i∈I

Γ((Zi)dR,C).

Since I is filtered, the map Ii0/ → I is cofinal. Hence,

ΓZdR
(C) ≃ colim

−→
i∈Ii0/

Γ((Zi)dR,C).

Therefore, the left-hand side in (12.1) identifies with

(12.2) colim
−→
i∈Ii0/

(
QCoh((Zi0)dR) ⊗

QCoh(ZdR)
QCoh((Zi)dR)

)
⊗

QCoh((Zi)dR)
Γ((Zi)dR,C).

Note, however, that for every i ∈ Ii0/, the map

QCoh((Zi0 )dR) ⊗
QCoh(ZdR)

QCoh((Zi)dR)→ QCoh((Zi0 )dR)

is an equivalence. Indeed, this follows by Lemma 4.1.6 from the fact that the restriction functor

QCoh((Zi)dR)→ QCoh((Zi0 )dR)

admits a left adjoint that commutes with the QCoh((Zi)dR)-action.

Furthermore, the fact that Theorem 2.6.3 holds for schemes implies that

QCoh((Zi0)dR) ⊗
QCoh((Zi)dR)

Γ((Zi)dR,C)→ Γ((Zi0)dR,C)

is an equivalence.

Hence, the expression in (12.2) identifies with

colim
−→
i∈Ii0/

Γ((Zi0)dR,C).

However, since the category of indices is contractible, the resulting colimit is isomorphic to
Γ((Zi0 )dR,C), as required.

�
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12.1.5. To conclude this subsection, consider the group prestack

G = colim
−→
n

(Ga)
×n,

see Sect. 2.5.11. Let us show that BG is not 1-affine.

Let G′ be the formal completion of G at the origin. I.e.,

G′ := colim
−→
n

((Ga)
×n)∧0 .

Consider the natural map
BG′ → BG.

Note that its base change by any S ∈ DGSchaff
/BG yields the prestack

S × (G)dR,

which is 1-affine by Corollary 3.2.8 and Theorem 2.6.3.

Assume for the sake of contradiction that Γenh
BG was fully faithful. Then by Proposition 3.1.9

and Proposition 3.2.6(b), we would obtain that Γenh
BG′ is also fully faithful. However, the latter

is false by Theorem 2.5.4(b).

12.2. De Rham prestacks of classifying stacks. In this subsection we let G be a classical
affine algebraic group of finite type.

12.2.1. Note that we tautologically have:

B(GdR) ≃ (BG)dR.

Next, we note that since the canonical map

BG→ pt /G

becomes an isomorphism after the étale sheafification, the same is true for the map

(BG)dR → (pt /G)dR.

Hence,
ShvCat((pt /G)dR) ≃ ShvCat((BG)dR) ≃ ShvCat(B(GdR)),

and by Theorem 2.6.3 and Sect. 10.1, we have

ShvCat(B(GdR)) ≃ GdR -mod.

12.2.2. Let us now prove Proposition 2.6.5. We will show that the functor ΓB(GdR) fails to be
conservative for G = Ga.

Consider the following two objects D1,D2 ∈ GdR -mod. Namely, we take D1 = Vect, with
the trivial action, and D2 := QCoh(GdR). There is a canonical map D2 → D1, which is not
an equivalence. However, we claim that it becomes an equivalence after applying the functor
ΓB(GdR).

Indeed, it is easy to see that invGdR
(QCoh(GdR)) ≃ Vect. Note that

invGdR
(Vect) ≃ QCoh(B(GdR)).

Thus, it remains to show that the natural functor

Vect→ QCoh(B(GdR))

is an equivalence for G = Ga.
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12.2.3. We calculate QCoh(B(GdR)) as

Tot(QCoh((G•)dR)).

Note, however, that for G = Ga, for any n, the pullback functor

Vect ≃ QCoh(pt)→ QCoh((Gn)dR)

is fully faithful. Since it is an equivalence on 0-simplices, we obtain that

Tot(Vect•)→ Tot(QCoh((G•)dR))

is an equivalence, where Vect• is the constant co-simplicial category with value Vect.

Since the category ∆ os contractible, we obtain that

Vect→ Tot(Vect•)

is also an equivalence, implying the desired assertion.

12.3. Classifying prestack of a formal completion: Proof of Theorem 2.5.5.

12.3.1. Let G be a classical affine algebraic group of finite type, and let H ⊂ G be a closed
subgroup. Let G be denotes the formal completion of H in G.

We need to show that the prestack BG is 1-affine.

12.3.2. Consider the tautological homomorphism G→ G, and the resulting map

BG→ BG.

Since BG is 1-affine (by Theorem 2.2.2 and Corollary 1.5.8(b)), by Corollary 3.2.7, in order

to show that BG is 1-affine, it suffices to show that for S ∈ (DGSchaff)/BG, the prestack

S ×
BG

BG

is 1-affine.

We note that any map S → BG factors as S → pt→ BG, so

S ×
BG

BG ≃ S × (pt ×
BG
BG).

By Corollary 3.2.8, we obtain that it suffices to show that the prestack pt ×
BG
BG is 1-affine.

12.3.3. Note now that we have a canonical map

pt ×
BG
BG→ (G/H)dR,

which becomes an isomorphism after étale sheafification.

This implies that pt ×
BG
BG is 1-affine by Theorem 2.6.3 and Corollary 1.5.8(b).

13. Infinitesimal loop spaces

13.1. The setting.



SHEAVES OF CATEGORIES 75

13.1.1. Consider the following situation. Let Z be an affine DG scheme locally almost of finite
type, and ι : pt→ Z a point with image z.

Consider the adjoint pairs of functors:

ι∗ : QCoh(Z){z} ⇄ Vect : ι∗

and
ι∗ : Vect⇄ QCoh(Z){z} : ι

QCoh,!.

Conjecture 13.1.2. Assume that Z is eventually coconnective. Then the functor ιQCoh,! is
monadic.

In Sect. 13.3 we will prove:

Proposition 13.1.3.

(1) Conjecture 13.1.2 holds if Z is smooth.

(2) Conjecture 13.1.2 holds if Z is of the form pt ×
An

pt.

Remark 13.1.4. One can show that Proposition 13.1.3 implies that Conjecture 13.1.2 holds for
any Z, which is quasi-smooth.

13.2. Consequences of Conjecture 13.1.2. In this subsection we will assume that Conjec-
ture 13.1.2 holds for a given (Z, z), and deduce some consequences.

13.2.1. Consider the group-object of DGSchaff

Ω(Z, z) := pt×
Z
pt,

i.e., the (derived!) inertia group of Z at z.

We will prove:

Theorem 13.2.2. Assume that (Z, z) satisfies Conjecture 13.1.2. Then the prestack B(Ω(Z, z))
is 1-affine and we have a canonical equivalence of symmetric monodical categories

Rep(Ω(Z, z)) ≃ QCoh(Z){z}.

The rest of this subsection is devoted to the proof of this theorem.

13.2.3. Note that the functor ι∗ : Vect→ QCoh(Z){z} naturally upgrades to a functor:

(13.1) Vect ⊗
QCoh(Ω(Z,z))conv

Vect→ QCoh(X){z}.

Moreover, the functor (13.1) upgrades to a map in QCoh(Z) -mod, where QCoh(Z) acts on
Vect via ι∗.

We claim (assuming that the pair (Z, z) satisfies Conjecture 13.1.2):

Proposition 13.2.4. The functor (13.1) is an equivalence.

Proof. By Lemma 10.4.2, the right adjoint of the functor

Vect→ Vect ⊗
QCoh(Ω(Z,z))conv

Vect

is monadic. Hence, to prove the assertion of the proposition, it remains to show that the functor
(13.1) induces an isomorphism of the resulting monads on Vect, regarded as plain endo-functors.

However, unwinding the definitions, we obtain that the resulting map of endo-functors is

p∗ ◦ (p∗)
R ≃ (p∗ ◦ p

∗)R ≃ (ι∗ ◦ ι∗)
R ≃ (ι∗)

R ◦ ι∗,
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where the isomorphism p∗ ◦ p∗ ≃ ι∗ ◦ ι∗ comes from base change along the Cartesian diagram

pt×
Z
pt

p
−−−−→ pt

p

y
yι

pt
ι

−−−−→ Z.

�

13.2.5. Consider now the category

ShvCat(Z∧{z}),

which according to Theorem 2.3.1, identifies with

QCoh(Z∧{z}) -mod ≃ QCoh(Z){z} -mod.

Consider the functor

(13.2) QCoh(Z){z} -mod→ DGCatcont, C 7→ Vect ⊗
QCoh(Z){z}

C ≃ Vect ⊗
QCoh(Z)

C

(the last equivalence is due to Lemma 4.1.6).

Note that since QCoh(Z) is rigid, by Corollary D.4.5, we can rewrite the functor (13.2) also
as

HomQCoh(Z)(Vect,C) ≃ HomQCoh(Z){z}
(Vect,C).

We note that the functor (13.2) naturally upgrades to a functor

(13.3) QCoh(Z∧{z}) -mod→ Ω(Z, z) -mod

by regarding Vect as equipped with the trivial action of Ω(Z, z) that commutes with one of
QCoh(Z).

13.2.6. We claim (assuming that the pair (Z, z) satisfies Conjecture 13.1.2):

Proposition 13.2.7. The functor (13.3) is an equivalence.

Proof. We construct a functor

Ω(Z, z) -mod→ QCoh(Z) -mod

by

(13.4) D 7→ Vect ⊗
QCoh(Ω(Z,z))conv

D;

It is easy to see that the essential image of (13.4) lies in the full subcategory

QCoh(Z∧{z}) -mod ⊂ QCoh(Z) -mod.

We claim that the functors (13.2) and (13.4) are mutually inverse. Indeed, this follows from
the (tautological) equivalence

(13.5) Vect ⊗
QCoh(Z){z}

Vect ≃ Vect ⊗
QCoh(Z)

Vect ≃ QCoh(Ω(Z, z))

combined with that of (13.1).
�
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13.2.8. Note that the functor ι∗ naturally upgrades to a functor

(13.6) QCoh(X){z} → HomQCoh(Ω(Z,z))conv (Vect,Vect).

We claim (still assuming that the pair (Z, z) satisfies Conjecture 13.1.2):

Proposition 13.2.9. The functor (13.6) is an equivalence.

Proof. Follows from Proposition 13.2.7. �

Corollary 13.2.10.

(a) There exists a canonical equivalence

Rep(Ω(Z, z)) ≃ QCoh(Z){z}.

(b) The map (10.6) is an equivalence for Ω(Z, z).

Proof. Point (a) is a reformulation of Proposition 13.2.9. Point (b) follows by combining point
(a) with Proposition 13.2.4. �

Finally, we obtain (always assuming that the pair (Z, z) satisfies Conjecture 13.1.2):

Corollary 13.2.11. The prestack B(Ω(Z, z)) is 1-affine.

Proof. Follows using Proposition 10.4.4(b’) from Corollary 13.2.10(b) and the equivalence (13.5).
�

Note that Corollaries 13.2.11 and 13.2.10(a) together amount to the statement of Theo-
rem 13.2.2.

13.3. Towards Conjecture 13.1.2.

13.3.1. Consider the pair of adjoint functors

ιIndCoh,∗ : Vect⇄ IndCoh(Z){z} : ι
!.

We claim that the functor ι! is monadic. Indeed, it is conservative by [Ga, Proposition
4.1.7(a)], and is continuous.

Note that this implies the statement of Proposition 13.1.3(1), as in the smooth case there is
no difference between IndCoh and QCoh.

13.3.2. Let us show that the functor ιQCoh,! is conservative for Z eventually coconnective.
Recall the functor

ΦZ : QCoh(Z)→ IndCoh(Z),

right adjoint to the functor ΨZ : IndCoh(Z)→ QCoh(Z).

Note that
ι∗ ≃ ΨZ ◦ ιIndCoh,∗,

and hence
ιQCoh,! ≃ ι! ◦ ΦZ .

We have just seen that the functor ι! is conservative. Hence, it is enough to show that Z
eventually coconnective, the functor ΦZ is conservative.

We claim that ΦZ is in fact fully faithful. Indeed, this follows from the fact that ΨZ admits
a fully faithful left adjoint (see [Ga, Proposition 1.5.3]).

Hence, we obtain that the monadicity of ιQCoh,! is equivalent to it satisfying the second
condition in the Barr-Beck-Lurie theorem.
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13.3.3. Let us show that ιQCoh,! fails to be monadic for the non-eventually coconnective DG
scheme Z = pt ×

pt ×
A1

pt
pt. In fact, we claim that in this case, it fails to be conservative.

Indeed, Z = Spec(k[ξ]), where deg(ξ) = −2. The functor ιQCoh,! annihilates the module
k[ξ, ξ−1].

13.4. Shift of grading and proof of Proposition 13.1.3(2).

13.4.1. Shift of grading. In order to prove Proposition 13.1.3(2), we will use the “shift of grad-
ing” trick (see, e.g., [AG, Sect. A.2]).

Consider the symmetric monoidal DG category Rep(Gm), i.e., the category chain complexes
of Z-graded vector spaces. It carries a canonical (symmetric monoidal self-equivalence), denoted

M 7→M shift.

Namely, the n-graded piece of the m-th cohomology of M shift equals by definition the n-th
graded piece of the (m+ 2n)-th cohomology of M .

If A is an algebra object of Rep(Gm), we obtain an equivalence

(13.7) A-mod(Rep(Gm)) ≃ Ashift-mod(Rep(Gm)).

Note, however, that the equivalence (13.7) does not commute with the forgetful funcors

A-mod(Rep(Gm))→ A-mod(Vect) and Ashift-mod(Rep(Gm))→ Ashift-mod(Vect).

13.4.2. Let O be an algebra object in the symmetric monoidal category ShvCat(BGm) ≃
Gm -mod, and let C1 and C2 be right and left O-modules, respectively. Let

C1 ⊗
O

C2 → C

be a map in Gm -mod.

The following results from Theorem 2.2.2 applied to G = Gm:

Lemma 13.4.3. The functor C1 ⊗
O

C2 → C is an equivalence as plain DG categories if and

only if the functor

invGm(C1) ⊗
invGm (O)

invGm(C2)→ invGm(C)

is an equivalence of plain DG categories.

13.4.4. Proof of Proposition 13.1.3(2). Let V be a finite-dimensional vector space so that An =
Spec(Sym(V )).

By Lemma 10.4.2, it is enough to show that the functor

(13.8) Vect ⊗
Sym(V [2])-mod

Vect→ Sym(V [1])-mod

is an equivalence.

We will deduce this from the fact that the functor

(13.9) Vect ⊗
Sym(V )-mod

Vect→ Sym(V [−1])-mod

is an equivalence; the latter is due to Theorem 2.2.2 and Proposition 10.4.4, once we identify

QCoh(V ∗)conv ≃ Sym(V )-mod and Rep(V ∗) ≃ Sym(V [−1])-mod.
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Indeed, by Lemma 13.4.3, to show that (13.8) is an equivalence, it is enough to show that

Rep(Gm) ⊗
Sym(V [2])-mod(Rep(Gm))

Rep(Gm)→ Sym(V [1])-mod(Rep(Gm))

is an equivalence.

By (13.7), the latter is equivalent to

Rep(Gm) ⊗
Sym(V )-mod(Rep(Gm))

Rep(Gm)→ Sym(V [−1])-mod(Rep(Gm))

being an equivalence, which, again by Lemma 13.4.3, follows from the fact that (13.9) is an
equivalence.

14. Classifying prestacks of (co)-affine group-prestacks

14.1. The iterated classifying prestack. In this subsection we will prove Theorem 2.5.7.

14.1.1. Proof of Theorem 2.5.7(a). Let V ∈ Vect♥ be finite-dimensional. Set G := BV ; we
already know that G is 1-affine, so the category ShvCat(BG) can be described as in Sect. 10.1.

We note that there is a canonical equivalence

(14.1) QCoh(G) ≃ QCoh(V ∗){0},

under which the co-monoidal structure on QCoh(G) (induced by the group structure on G) is
obtained via the duality (

QCoh(V ∗){0}
)∨
≃ QCoh(V ∗){0}

from the pointwise monoidal structure on QCoh(V ∗){0}.

Thus, the category G -mod can be identified with

QCoh(V ∗){0} -mod,

with the functor invG being

D 7→ HomQCoh(V ∗){0}
(Vect,D),

where QCoh(V ∗){0} acts on Vect via the functor ι∗, where ι : pt→ V ∗ corresponds to 0 ∈ V ∗.

Now, the assertion of Theorem 2.5.7(a) follows from Proposition 13.2.7 for (Z, z) = (V ∗, 0).

14.1.2. Proof of Theorem 2.5.7(b). Let G1 = B2(V ). According to Theorem 2.5.7(a), proved
above, G1 is 1-affine. Hence, the category ShvCat(BG1) can be described as in Sect. 10.1.

Moreover, we have identified QCoh(G1) as a plain category with QCoh(Z1), where

Z1 := pt ×
V ∗

pt .

Under this identification, the co-monoidal structure on QCoh(G1) (induced by the group
structure on G1) is obtained via the duality

QCoh(Z1) ≃ QCoh(Z1)
∨,

from the pointwise monoidal structure on QCoh(Z1). Since QCoh(Z1)ptw is rigid, the group G1

satisfies the assumption of Sect. 11.1.

Thus, the category G1 -mod can be identified with

QCoh(Z1) -mod,

with the functor invG1 being

D 7→ HomQCoh(Z1)(Vect,D),
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where QCoh(Z1) acts on Vect via the functor ι∗1, where ι1 : pt → Z1 is the unique k-point z1
of Z1.

The category Rep(G1) therefore identifies with QCoh(Ω(Z1, z1))conv. We will show that BG1

is 1-affine by applying Proposition 11.2.1(b’). Indeed, the condition that

Vect ⊗
Rep(G1)

Vect ≃ QCoh(G1)

translates as

Vect ⊗
QCoh(Ω(Z1,z1))conv

Vect ≃ QCoh(Z1),

and follows from Proposition 13.2.4 for (Z, z) = (Z1, z1).

14.1.3. Proof of Theorem 2.5.7(c). Denote G2 := B3(V ). According to Theorem 2.5.7(a),
proved above, G2 is 1-affine. Hence, the category ShvCat(BG2) can be described as in Sect. 10.1.

Moreover, we have identified QCoh(G2) as a plain DG category with QCoh(Z2), where

Z2 := pt ×
Z1

pt, where Z1 := pt ×
V ∗

pt .

Under this identification, the co-monoidal structure on QCoh(G2) (induced by the group
structure on G2) is obtained via the duality

QCoh(Z2) ≃ QCoh(Z2)
∨,

from the pointwise monoidal structure on QCoh(Z2). Since QCoh(Z2)ptw is rigid, the group G2

satisfies the assumption of Sect. 11.1.

Thus, the category G2 -mod can be identified with

QCoh(Z2) -mod,

with the functor invG2 being

D 7→ HomQCoh(Z2)(Vect,D),

where QCoh(Z2) acts on Vect via the functor ι∗2, where ι2 : pt → Z2 is the unique k-point z2
of Z2.

The category Rep(G2) therefore identifies with QCoh(Ω(Z2, z2))conv. We will show that BG2

is not 1-affine by applying Proposition 11.2.1(c).

The functor p∗ : Vect→ QCoh(G2) is the right adjoint of the functor QCoh(G2)convL → Vect
that defines the trivial action of G2 on Vect. Thus, under the identification

QCoh(G2)convL ≃ QCoh(Z2)ptw,

the functor p∗ corresponds to (ι2)∗. Hence the functor (p∗)
R translates as ιQCoh,!

2 . However, we

claim that ιQCoh,!
2 is not monadic. In fact, we claim that ιQCoh,!

2 is not conservative. Indeed,
this follows from Sect. 13.3.3.
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14.1.4. Proof of Theorem 2.5.7(d). Set Ginf := B(V ∧{0}). We know that Ginf is 1-affine by

Theorem 2.5.4.

We note that Ginf falls into the paradigm of Sect. 11.1, where

QCoh(Ginf)convL ≃ QCoh(V ∗)ptw.

Under this identification, the trivial action of QCoh(Ginf)convL on Vect corresponds to

ι∗ : QCoh(V ∗)→ Vect,

where ι : pt→ V ∗ corresponds to 0 ∈ V ∗.

We will show that BGinf is not 1-affine by applying Proposition 11.2.1(c). We note that the
functor

p∗ : Vect→ QCoh(Ginf)

is the right adjoint to one corresponding to the augmentation QCoh(Ginf) → Vect. I.e., p∗

indentifies with the functor

ι∗ : Vect→ QCoh(V ∗).

Its right adjoint is, therefore, the functor

ιQCoh,! : QCoh(V ∗)→ Vect .

However, it is clear that ιQCoh,! is not conservative: it annihilates any object that comes as
direct image from V ∗ − {0}.

14.2. Group DG schemes. In this subsection we will prove Theorem 2.5.10.

14.2.1. Denote Gn = Spec(Sym(V [n])). The case n = 0 follows from Theorem 2.2.2 for
G = V ∗. For n > 0, we will consider the cases of n even and odd separately.

14.2.2. Let first n = 2. In this case, the assertion follows from Corollary 13.2.11 applied to
Z := Spec(Sym(V [1])).

Let now n be an arbitrary even integer. The required assertion follows Proposition 10.4.4(b)
and the case of n = 2, using the “shift of grading” trick, as in Sect. 13.4.4.

14.2.3. Let us now take n = 1. In this case the assertion follows from Corollary 13.2.11 applied
to Z := Spec(Sym(V )).

Let now n be an arbitrary odd integer. The required assertion follows Proposition 10.4.4(b)
and the case of n = 1, using the “shift of grading” trick, as in Sect. 13.4.4.

Appendix A. Descent theorems

A.1. Descent for module categories. In this subsection we will prove Theorem 1.5.2. Let
Y be an affine DG scheme.
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A.1.1. Step 1. Let

P : (DGSchaff/Y )
op → T

be a functor, where T is some ∞-category. It is well-known that if P satisfies descent with
respect to finite flat maps and Nisnevich covers, then P satisfies fppf descent. This follows from
the fact that, Nisnevich-locally, any fppf map admits a section after a finite flat base change.

We let T = DGCatcont and P be the functor

S ∈ DGSchaff
/Y  QCoh(S) ⊗

QCoh(Y )
C.

In Step 2 we will show that T satisfies Nisnevich descent, and in Step 3 we will show that T
satisfies finite flat descent. This will prove Theorem 1.5.2.

A.1.2. Step 2. For Nisnevich descent, it is enough to consider the case of basic Nisnevich covers.

I.e., let
◦

S

→֒ S be an open embedding, and π : S1 → S an étale map, such that π is one-to-one

over S −
◦

S. Set
◦

S1 :=
◦

S ×
S
S1. Let

◦
π :

◦

S1 →
◦

S and 1 :
◦

S1 → S1 denote the corresponding

morphisms.

We need to show that

QCoh(S) ⊗
QCoh(Y )

C
∗⊗IdC

−−−−−→ QCoh(
◦

S) ⊗
QCoh(Y )

C

π∗⊗IdC

y
y◦
π∗⊗IdC

QCoh(S1) ⊗
QCoh(Y )

C
∗1⊗IdC

−−−−−→ QCoh(
◦

S1) ⊗
QCoh(Y )

C

is a pull-back square.

By definition, the pull-back
(
QCoh(S1) ⊗

QCoh(Y )
C

)
×

QCoh(
◦

S1) ⊗
QCoh(Y )

C

(
QCoh(

◦

S) ⊗
QCoh(Y )

C

)

is the category of quintuples

(A.1) {c1 ∈ QCoh(S1) ⊗
QCoh(Y )

C, c1 ∈ QCoh(
◦

S1) ⊗
QCoh(Y )

C, c ∈ QCoh(
◦

S) ⊗
QCoh(Y )

C,

α : (∗1 ⊗ IdC)(c1) ≃ c1, β : (
◦
π∗ ⊗ IdC)(c) ≃ c1.}

We define the right adjoint to the natural functor

QCoh(S) ⊗
QCoh(Y )

C→ QCoh(S1) ⊗
QCoh(Y )

C ×
QCoh(

◦
S1) ⊗

QCoh(Y )
C

QCoh(
◦

S) ⊗
QCoh(Y )

C

by sending a quintuple as in (A.1) to

Cone
(
(π∗ ⊗ IdC)(c1)⊕ (∗ ⊗ IdC)(c)→ (( ◦

◦
π)∗ ⊗ IdC)(c1)

)
[−1].

Thus, we obtain that the above right adjoint is obtained from the right adjoint for C :=
QCoh(Y ) by tensoring by − ⊗

QCoh(Y )
C. Therefore, since the unit and the co-unit of the

adjunction are isomorphisms in the former case (by Nisnevich descent for QCoh), they are
isomorphisms for any C.
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Remark A.1.3. It is very easy to prove directly that for QCoh(Y ), the unit and co-unit map
are isomorphisms, see [GL:QCoh, Lemma 2.2.6].

A.1.4. Step 3. Let now π : T → S be a finite faithfully flat map, and let T •/S be its Čech
nerve. We need to show that the functor

QCoh(S) ⊗
QCoh(Y )

C→ Tot

(
QCoh(T •/S)∗ ⊗

QCoh(Y )
C

)

is an equivalence.

We note that for every map α : [j]→ [i] and the corresponding map fα : T i/S → T j/S, the
functor (fα)∗ admits a left adjoint, denoted fα♯ . Namely, for any finite flat map f , the functor

f♯ is the ind-extension of the functor on QCoh(−)perf , defined as

E 7→ (f∗(E
∨))∨.

In particular, we obtain that the functors (fα)∗ ⊗ IdC all admit left adjoints, given by
fα♯ ⊗ IdC. Hence, by [GL:DG, Lemma 1.3.3], we have

Tot

(
QCoh(T •/S)∗ ⊗

QCoh(Y )
C

)
≃ |QCoh(T •/S)♯ ⊗

QCoh(Y )
C|.

From the commutative diagram

Tot (QCoh(T •/S)∗) ⊗
QCoh(Y )

C −−−−→ |QCoh(T •/S)♯| ⊗
QCoh(Y )

C

y
y∼

Tot

(
QCoh(T •/S)∗ ⊗

QCoh(Y )
C

)
−−−−→ |QCoh(T •/S)♯ ⊗

QCoh(Y )
C|

we obtain that the functor

Tot (QCoh(T •/S)∗) ⊗
QCoh(Y )

C→ Tot

(
QCoh(T •/S)∗ ⊗

QCoh(Y )
C

)

is an equivalence.

Now, the required assertion follows from the commutative diagram

QCoh(S) ⊗
QCoh(Y )

C −−−−→ Tot (QCoh(T •/S)∗) ⊗
QCoh(Y )

C

Id

y
y∼

QCoh(S) ⊗
QCoh(Y )

C −−−−→ Tot

(
QCoh(T •/S)∗ ⊗

QCoh(Y )
C

)

and the fact that

QCoh(S)→ Tot (QCoh(T •/S)∗)

is an equivalence, by the fppf descent for QCoh.

Remark A.1.5. One can show directly that QCoh(S) → Tot (QCoh(T •/S)∗) is an equivalence
(so that together with Remark A.1.3 one obtains an alternative proof of fppf descent for QCoh,
without apealing to the t-structures).
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Proof of finite flat descent for QCoh.

By Lemma C.1.8, the functor of evaluation on 0-simplices

Tot (QCoh(T •/S)∗)→ QCoh(T )

is monadic, and the corresponding monad on QCoh(T ), viewed as a plain endo-functor, is
canonically isomorphic to (pr2)♯ ◦pr

∗
1, where pr1, pr2 : T ×

S
T ⇒ T are the two projections. Note

also that we have a canonical isomorphism of endo-functors:

(pr2)♯ ◦ pr
∗
1 ≃ ((pr1)∗ ◦ pr

∗
2)
L ≃ (π∗ ◦ π∗)

L ≃ π∗ ◦ π♯.

Hence, it remains to show that the functor π∗ : QCoh(S) → QCoh(T ) is monadic (we
have just seen that the corresponding monad π∗ ◦ π♯ maps isomorphically to one defining
Tot (QCoh(T •/S)∗)).

Since π is faithfully flat, it is easy to see that π∗ is conservative. Now, since π∗ is continuous,
it commutes with all geometric realizations. Hence, the monadicity of π∗ follows from the
Barr-Beck-Lurie theorem.

�

A.2. Descent for sheaves of categories. In this subsection we will prove Theorem 1.5.7.

A.2.1. Step 0. Let π : T → S be an fppf cover, and let T •/S be its Čech nerve. We need to
show that the functor

(A.2) ShvCat(S)→ Tot(ShvCat(T •/S))

is an equivalence.

Since all the DG schemes involved are affine, we have

ShvCat(S) = QCoh(S) -mod and ShvCat(T •/S) = QCoh(T •/S) -mod.

The right adjoint to the functor (A.2) sends

C• ∈ Tot(QCoh (T •/S) -mod) Tot(C•),

where the totalization is taken in QCoh(S) -mod.

We need to show that the functor (A.2) and its right adjoint are mutually inverse. We will
check that the unit and the co-unit of the adjunction are isomorphisms.

A.2.2. Step 1. The fact that the unit of the adjunction is an isomorphism follows immediately
from Theorem 1.5.2.

A.2.3. Step 2. To say that the co-unit of the adjunction is an isomorphism is equivalent to
saying that for C• ∈ Tot (QCoh(T •/S) -mod) the functor

QCoh(T ) ⊗
QCoh(S)

Tot(C•)→ C0

is an equivalence.

By Lemma 1.4.7, QCoh(T ) is dualiazable as an object of QCoh(S) -mod. Hence, the functor

QCoh(T ) ⊗
QCoh(S)

Tot(C•)→ Tot(QCoh(T ) ⊗
QCoh(S)

C•)

is an equivalence. Hence, it remains to show that the functor

(A.3) Tot(QCoh(T ) ⊗
QCoh(S)

C•)→ C0

is an equivalence.
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Now, we note that the co-simplicial category QCoh(T ) ⊗
QCoh(S)

C• identifies with C•+1, which

is split, and its map to C0 is the augmentation. Hence, (A.3) is an equivalence, as desired.

Appendix B. Quasi-affine morphisms

B.1. Fiber products of prestacks vs. tensor products of categories.

B.1.1. Let

Y′1
g1

−−−−→ Y1

f ′

y
yf

Y′2
g2

−−−−→ Y2

be a Cartesian diagram in PreStk. It gives rise to a (symmetric monoidal) functor

(B.1) QCoh(Y′2) ⊗
QCoh(Y2)

QCoh(Y1)→ QCoh(Y′1).

In this section we will discuss two instances in which the functor (B.1) is an equivalence.

B.1.2. We will prove:

Proposition B.1.3. Assume that f (and hence f ′) is quasi-affine and quasi-compact. Then
(B.1) is an equivalence.

The proof will use the following lemma, proved in Sect. B.1.7:

Lemma B.1.4. Let f : Y1 → Y2 be a quasi-affine quasi-compact map, and consider f∗(OY1) as
an assciative algebra in QCoh(Y2). Then the functor

QCoh(Y1)→ f∗(OY1)-mod(QCoh(Y2))

is an equivalence.

Proof of Proposition B.1.3. By Lemma B.1.4, we have:

QCoh(Y1) ≃ f∗(OY1)-mod(QCoh(Y2)) and QCoh(Y′1) ≃ f
′
∗(OY′

1
)-mod(QCoh(Y′2)).

Hence, it is sufficient to show that the functor g∗2 induces an equivalence

QCoh(Y′2) ⊗
QCoh(Y2)

(f∗(OY1)-mod(QCoh(Y2)))→ f ′∗(OY′
1
)-mod(QCoh(Y′2)).

By base change, f ′∗(OY′
1
) ≃ g∗(f∗(OY1)). Now, the required assertion follows from the fol-

lowing general lemma:

Lemma B.1.5. Let O be a monoidal DG category, C a left O-module category, and A ∈ O an
algebra. Consider A-mod(O) as a right O-module category. Then the natural functor

A-mod(O)⊗
O

C→ A-mod(C)

is an equivalence.

�
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B.1.6. Proof of Lemma B.1.5. We have an adjoint pair

indA,O : O⇄ A-mod(O) : oblvA,O

as right O-module categories. Tensoring up on the right with C over O, we obtain an adjoint
pair

(indA,O⊗ IdC) : C⇄ A-mod(O)⊗
O

C : (oblvA,O⊗ IdC).

The functor (oblvA,O⊗ IdC) is monadic: indeed, it commutes with all colimits and its left
adjoint generates A-mod(O)⊗

O

C.

Consider also the adjoint pair

indA,C : C⇄ A-mod(C) : oblvA,C .

The functor oblvA,C is tautologically monadic.

Hence, to prove the lemma, it suffices to show that the functor A-mod(O)⊗
O

C→ A-mod(C)

defines an isomorphism of the corresponding monads on C as plain endo-functors. However,
this follows from the fact that

(oblvA,O⊗ IdC) ◦ (indA,O⊗ IdC) ≃ ((A ⊗−)⊗ IdC)

identifies with the action of A on C.
�

B.1.7. Proof of Lemma B.1.4. We shall deduce the assertion from the Barr-Beck-Lurie theorem.
Since the morhism f is quasi-compact and quasi-separated, it satisfies base change and the
projection formula. and the functor f∗ is continuous.

The projection formula implies that the monad f∗ ◦ f
∗ is given by tensor product with

f∗(OY1). The continuity of f∗ implies that it commutes with all geometric realizations. It
remains to show that f∗ is conservative.

By base change, the conservativity assertion reduces to the case when Y2 is an affine DG
scheme, in which case Y1 is quasi-affine. In this case, the conservativity of f∗ is equivalent to
that of Γ(Y2,−).

Thus, we need to show that for a quasi-affine DG scheme Y , the functor

Γ(Y,−) : QCoh(Y )→ Vect

is conservative. Let  : Y → Y be an open embedding, where Y is affine. Now, the functors ∗
and Γ(Y ,−) are both conservative, and hence so is Γ(Y,−).

�

B.2. Fiber products of passable prestacks.

B.2.1. Recall the notion of passable prestack, see Sect. 5.1. We are going to prove:

Proposition B.2.2. Assume that Y2 is passable and that QCoh(Y1) is dualizable as a DG
category. Then (B.1) is an equivalence.

The proof will use the following assertion:
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Lemma B.2.3. Let Y ∈ PreStk be such that the diagonal morphism is representable, quasi-
compact and quasi-separated, and OY ∈ QCoh(Y) is compact. Then the following conditions are
equivalent:

(a) The functor QCoh(Y)⊗QCoh(Y′)→ QCoh(Y× Y′) is an equivalence for any Y′ ∈ PreStk.

(b) The functor QCoh(Y) ⊗QCoh(Y)→ QCoh(Y× Y) is an equivalence.

(c) The monoidal DG category QCoh(Y) is rigid.

(d) The category QCoh(Y) is dualizable as a DG category.

Proof of Proposition B.2.2. We have

QCoh(Y′1) ≃ lim
←−

S∈DGSchaff
/Y′

2

QCoh(S ×
Y2

Y1).

By Lemma B.2.3, the category QCoh(Y2) is rigid. Hence, by Lemma 1.4.7, the functor

C 7→ C ⊗
QCoh(Y2)

QCoh(Y1), QCoh(Y2) -mod→ DGCatcont

commutes with limits. In particular, the functor

QCoh(Y′2) ⊗
QCoh(Y2)

QCoh(Y1) =


 lim

←−
S∈DGSchaff

/Y′
2

QCoh(S)


 ⊗

QCoh(Y2)
QCoh(Y1)→

→ lim
←−

S∈DGSchaff
/Y′

2

(
QCoh(S) ⊗

QCoh(Y2)
QCoh(Y1)

)

is an equivalence.

This reduces the assertion to the case when Y′2 = S ∈ DGSchaff . However, in the latter case,
the morphism g2 is quasi-affine, and the assertion follows from Proposition B.1.3.

�

B.2.4. Proof of Lemma B.2.3. The implications (a) ⇒ (b) and (c) ⇒ (d) are tautological. The
implication (d) ⇒ (a) is [GL:QCoh, Proposition 1.4.4]. Thus, it remains to show that (b)
implies (c).

Thus, we need to show that the right adjoint to the monoidal operation

(B.2) QCoh(Y) ⊗QCoh(Y)→ QCoh(Y)

is continuous, and is a map of QCoh(Y)-bimodule categories.

Using the assumption in (b), we identify the functor (B.2) with the functor

∆∗Y : QCoh(Y× Y)→ QCoh(Y).

The required properties follow now from the assumptions on the morphism ∆Y.
�

Appendix C. Beck-Chevalley conditions

C.1. Monadic and co-monadic Beck-Chevalley conditions.
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C.1.1. Let C• be a co-simplicial category; for a map α : [j] → [i] in ∆, let Tα : Cj → Ci

denote the corresponding functor.

Definition C.1.2. We shall say that C• satisfies the monadic Beck-Chevalley condition, if the
following holds:

• For every i and the last face map ∂i : [i]→ [i+1], the functor T∂i admits a left adjoint.
• For every α : [j]→ [i] (and the corresponding map α+1 : [j+1]→ [i+1]), the diagram

Ci (T∂i )L

←−−−− Ci+1

T
α

x
xT

α+1

Cj (T∂j )L

←−−−− Cj+1,

that a priori commutes up to a natural transformation, commutes.

Definition C.1.3. We say that C• satisfies the co-monadic Beck-Chevalley condition, when
we replace “left adjoint” by “right adjoint” in the above definition.

C.1.4. We also give the following definition:

Definition C.1.5. Let C• be a simplicial category. We shall say that C• satisfies the monadic
Beck-Chevalley condition if for every i and the last face map ∂i : [i] → [i + 1], the functor
T∂i : Ci+1 → Ci admits a left adjoint and for every α : [j]→ [i] the diagram

Ci (T∂i )L

−−−−→ Ci+1

T
α

y
yT

α+1

Cj (T∂j )L

−−−−→ Cj+1,

that a priori commutes up to a natural transformation, commutes.

The following (tautological) observation is often useful:

Lemma C.1.6. Let C• be a simplicial category, in which for every ([j]
α
→ [i]) ∈ ∆, the

corresponding functor Tα : Ci → Cj admits a right adjoint, and every i and the last face map
∂i : [i] → [i + 1], the functor T∂i admits a left adjoint. Then the co-simplicial category C•,R,
obtained by passing to the right adjoints, satisfies the monadic Beck-Chevalley condition if and
only if C• does.

Interchanging the words “left” and “right” in Definition C.1.5 and Lemma C.1.6 we obtain
the dual definition and assertion for the co-monadic Beck-Chevalley conditions.

C.1.7. We have the following basic results (see [Lu2, Theorem 6.2.4.2]):

Lemma C.1.8. Let C• satisfy the monadic Beck-Chevalley condition. Then:

(a) The functor of evaluation on 0-simplices

ev0 : Tot(C•)→ C0

admits a left adjoint; to be denoted (ev0)L.

(b) The monad ev0 ◦(ev0)L, acting on C0, is isomorphic, as a plain endo-functor, to

(Tprs)L ◦ Tprt ,

where prs, prt are the two maps [0]→ [1]13.

13The notation “s” is for “source” and “t” for “target.”
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(c) The functor
ev0 : Tot(C•)→ C0

is monadic.

Similarly, we have:

Lemma C.1.9. Let C• satisfy the co-monadic Beck-Chevalley condition. Then:

(a) The functor of evaluation on 0-simplices

ev0 : Tot(C•)→ C0

admits a right adjoint; to be denoted (ev0)R.

(b) The co-monad ev0 ◦(ev0)R, acting on C0, is isomorphic, as a plain endo-functor, to

(Tprs)R ◦ Tprt .

(c) The functor
ev0 : Tot(C•)→ C0

is co-monadic.

C.2. Calculating tensor products. For future use, here are some examples, of how the
Beck-Chevalley conditions can be used to calculate tensor products of categories.

C.2.1. Let A be a monoidal DG category, and let Cr and Cl be right and left A-module
categories respectively.

Consider the corresponding “Bar” complex, i.e., simplicial category Bar•(Cr,A,Cl), so that

|Bar•(Cr,A,Cl)| = Cr ⊗
A

Cl.

The next assertion is tautological:

Lemma C.2.2.

(i) Assume that the action functors actCr,A : Cr ⊗A → Cr and actA,Cl : A ⊗Cl → Cl and
the monoidal operation multA : A⊗A→ A all admit continuous right adjoints, and the right
adjoint to actA,Cl is also a map of A-module categories.

Then the co-simplicial category Bar•,R(Cr,A,Cl), obtained from Bar•(Cr,A,Cl) by passage
to the right adjoint functors, satisfies the monadic Beck-Chevalley condition.

(ii) Assume that the action functors actCr,A and actA,Cl and the monoidal operation multA
all admit left adjoints, and that the left adjoint of the action functor actA,Cl is also a map of
A-module categories.

Then the co-simplicial category Bar•,L(Cr,A,Cl), obtained from Bar•(Cr,A,Cl) by passage
to the left adjoint functors, satisfies the co-monadic Beck-Chevalley condition.

(ii’) In the situation of point (ii), the simplicial category Bar•(Cr,A,Cl) satisfies the monadic
Beck-Chevalley condition.

From here we will deduce:

Corollary C.2.3. In the situation of either of the points of Lemma C.2.2, the right adjoint to

Cr ⊗Cl → Cr ⊗
A

Cl

is monadic, and the resulting monad on Cr ⊗Cl is isomorphic, as a plain endo-functor to

(actCr ,A⊗ IdCl) ◦ (IdCr ⊗ actA,Cl)R.
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Proof. In the situation of Lemma C.2.2(i), this follows from Lemma C.1.8.

In the situation of Lemma C.2.2(ii), this follows from Lemmas C.1.8, and C.1.6, combined
with [GL:DG, Lemma 1.3.3].

�

C.2.4. The next lemma implies that Corollary C.2.3 is applicable to the computation of the
tensor product as along as the corresponding functors admit continuous right (resp., left) ad-
joints:

Assume that Cl = Vect, with the action map actA,Cl being given by a monoidal functor
F : A→ Vect. We can view F as a datum of augmentation on A, and in this case we will write
Bar•(Cr,A) instead of Bar•(Cr,A,Vect). (When Cr is also Vect with the action given by F,
we will simply write Bar•(A).)

We note:

Lemma C.2.5. Assume that the functor F is conservative.

(i) If the functor A → Vect admits a continuous right adjoint, then this right adjoint is auto-
matically a map of A-module categories.

(ii) If the functor A→ Vect admits a left adjoint, then this left adjoint is automatically a map
of A-module categories.

Proof. Since F is conservative, it suffices to show that the composition

Vect
F
R

→ A
F
→ Vect

is a map of A-module categories. However, the latter is evident: the functor in question is
given by tensor product with F ◦ FR(k).

�

Appendix D. Rigid monoidal categories

D.1. The notion of rigidity.

D.1.1. Let O be a monoidal DG category. We shall say that O is rigid if the following
conditions are satisfied:

• The right adjoint multR
O

of the monoidal operation multO : O⊗O→ O is continuous;

• The functor multRO : O → O ⊗ O is strictly (rather than lax) compactible with the
action of O⊗O;
• The right adjoint unitR

O
of the unit functor unitO : Vect→ O is continuous.

D.1.2. A basic feature of rigid monoidal categories is that the monoidal structure on O gives
rise to a canonical identification

(D.1) O∨ ≃ O

as plain DG categories.

Namely, we define the co-unit O⊗O→ Vect as

O⊗O
multO−→ O

unitR
O−→ Vect,

and the unit Vect→ O⊗O as

Vect
unitO−→ O

multR
O−→ O⊗O.
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The fact that the above maps indeed define a data of duality is immediate from the assump-
tion on O.

Under the identification (D.1), the dual of multO is multR
O
, and the dual of unitO is unitR

O
.

D.1.3. Assume for a moment that O is compactly generated. Then it is easy to show that O
is rigid in the sense of Sect. D.1.1 if and only if every compact object of O admits both left and
right monoidal duals.

In this case, the equialence (D.1) is given at the level of compact objects by

o 7→ o∨,

where o∨ denotes the right monoidal dual.

D.2. Modules over a rigid category. In this subsection we let O be a rigid monoidal DG
category.

D.2.1. We have the following key assertion:

Proposition D.2.2. Let C be an O-module category. Then the right adjoint to the action
functor

actC,O : O⊗C→ C

is continuous and is given by the following functor (to be denoted co-actC,O):

(D.2) C
unitO⊗ IdC−→ O⊗C

multR
O
⊗ IdC

−→ O⊗O⊗C
IdO⊗ actC,O
−→ O⊗C.

Proof. We construct adjunction data for the functors actC,O and co-actC,O as follows. The
composition actC,O ◦ co-actC,O is isomorphic to the composition

(D.3) C
unitO⊗ IdC−→ O⊗C

multR
O
⊗ IdC

−→ O⊗O⊗C
multO⊗ IdC−→ O⊗C

actC,O
−→ C.

The natural transformation multO ◦multR
O
→ IdO defines a natural transformation from (D.3)

to

C
unitO⊗ IdC−→ O⊗C

actC,O
−→ C,

while the latter functor is canonically isomorphic to the identity functor on C. This defines the
co-unit of the adjunction.

The composition co-actC,O ◦ actC,O is isomorphic to the composition

(D.4) O⊗C
unitO⊗ IdO⊗ IdC−→ O⊗O⊗C

multR
O
⊗ IdO⊗ IdC

−→ O⊗O⊗O⊗C→

IdO⊗multO⊗ IdC−→ O⊗O⊗C
IdO⊗ actC,O
−→ O⊗C.

The condition on O implies that the diagram

O⊗O
multR

O
⊗ IdO

−−−−−−−−→ O⊗O⊗O

multO

y
yIdO⊗multO

O
multR

O−−−−→ O⊗O

commutes.

Hence, the functor in (D.4) can be rewritten as

(D.5) O⊗C
multR

O
⊗ IdO

−→ O⊗O⊗C
IdO⊗ actC,O
−→ O⊗C.
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Now, the isomorphism

multO ◦(IdO⊗ unitO) ≃ IdO

gives rise to a natural transformation

IdO⊗ unitO → multRO .

Hence, the functor in (D.5) receives a natural transformation from

O⊗C
IdO⊗ unitO⊗ IdO−→ O⊗O⊗C

IdO ⊗ actC,O
−→ O⊗C,

whereas the latter is the identity functor on O⊗C.

This defines the unit for the (actC,O, co-actC,O)-adjunction The verification that the above
unit and co-unit satisfy the adjunction requirements is a straightforward verification.

�

D.2.3. As a formal corollary by diagram chase we obtain:

Corollary D.2.4. For an O-module C, the right adjoint of the action map is a map of O-
module categories.

D.3. The dual co-monoidal category. Let O be a monoidal DG category, dualizable as a
plain DG category.

D.3.1. The monoidal structure on O gives rise to a co-monoidal structure on O∨, so that we
have a canonical equivalence

(D.6) O -mod ≃ O∨ - comod,

commuting with the forgetful functor to DGCatcont.

D.3.2. From now in this subsection, let us assume that O is rigid.

The assumption on O implies that the right adjoint of the monoidal structure on O defines
a co-monoidal structure on O. We shall denote O, equipped with this co-monoidal structure
by Oco.

Furthermore, Proposition D.2.2 implies that the procedure of taking the right adjoint of the
action defines a functor

(D.7) O -mod→ Oco - comod,

which commutes with the forgetful functor to DGCatcont.

D.3.3. Combining (D.6) to (D.7), we obtain that there exists a canonically defined functor

(D.8) O∨ - comod→ Oco - comod,

that commutes with the forgetful functor to DGCatcont.

Hence, the functor (D.8) comes from a homomorphism of co-monoidal categories

(D.9) φO : O∨ → Oco.

Lemma D.3.4. The homomorphism (D.9) is an isomorphism.

Proof. It follows from the construction that at the level of plain DG categories, the functor
(D.9) equals that of (D.1). �
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D.3.5. Homomorphisms between rigid categories. In a similar way to the construction of (D.9)
we obtain:

Proposition D.3.6. Let F : O1 → O2 be a homomorphism between rigid monoidal categories.
Then the following diagram of homomorphisms of co-monoidal categories commutes:

(O2)co
F
R

−−−−→ (O1)coy
y

O∨2
F
∨

−−−−→ O∨1 .

D.3.7. Left modules vs. right modules. Note that if O is rigid, then so is the category Oo

with the opposite monoidal structure. Applying the construction of Sect. D.3, we obtain an
isomorphism

φOo : (Oo)∨ → (Oo)co.

We obtain that there exists a canonically defined monoidal automorphism ψO of O, which
intertwines the isomorphisms φOo and

(Oo)∨ ≃ (O∨)o
(φO)o

−→ (Oco)
o ≃ (Oo)co.

We note that the automorphism ψO is trivial when the monoidal struture on O is commu-
tative.

Remark D.3.8. When O is compactly generated, at the level of compact objects, the automor-
phism ψO acts as

o 7→ (o∨)∨.

D.4. Hochschild homology vs cohomology.

D.4.1. Let O be a monoidal DG category, and let Cl and Cr be a left and right O-module
categories. We can form their tensor product

Cr ⊗
O

Cl ∈ DGCatcont,

which is computed as

|Bar•(Cr,O,Cl)|.

Assume that O is dualizable as a plain DG category, and consider O∨ as a monoidal DG
category. Consider the co-tensor product

Cr
O

⊗Cl ∈ DGCatcont,

defined as

Tot(co-Bar•(Cr,O∨,Cl)).
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D.4.2. We now claim:

Proposition D.4.3. Assume that O is rigid. Then there exists a canonical isomorphism in
DGCatcont

Cr ⊗
O

Cl ≃ (Cr)ψO

O

⊗Cl,

where (Cr)ψO
is the right O-module category, obtained from Cr by twisting the action by the

automorhism ψO of Sect. D.3.7.

Proof. By [GL:DG, Lemma 1.3.3], the tensor product Cr⊗
O

Cl can be computed as the totaliza-

tion of the co-simplicial category Bar•,R(Cr,O,Cl), obtained from Bar•(Cr,O,Cl) by passing
to the right adjoint functors.

Now, by the construction of Sect. D.3, the co-simplicial categories

Bar•,R(Cr,O,Cl) and co-Bar•((Cr)ψO
,O∨,Cl)

are canonically equivalent.
�

D.4.4. Let C1 and C2 be two left O-module categories, and assume that C1 is dualizable as
a plain category. Consider C∨1 as a right O-module category. Then we have

Hom
O
(C1,C2) ≃ C∨1

O

⊗Cl.

Hence, from Proposition D.4.3 we obtain:

Corollary D.4.5. Assume that O is rigid. Then for C1 and C2 as above, there exists a
canonical isomorphism

Hom
O
((C1)ψO

,C2) ≃ C∨1 ⊗
O

Cl.

D.4.6. As another corollary of Proposition D.4.3, we obtain:

Corollary D.4.7. Let O be rigid. Then any O-module category can be obtained as a totalization
of a co-simplicial object, whose terms are of the form O⊗D with D ∈ DGCatcont.

Proof. For C ∈ O-mod, we have

C ≃ O⊗
O

C,

(where the right-hand side is regarded as a left O-module category via the left action of O on
itself). Now, by Proposition D.4.3

O⊗
O

C ≃ Tot (co-Bar•(OψO
,O,C)) ≃ Tot

(
co-Bar•(O,O, (C)ψ−1

O

)
)
.

Now, the terms of co-Bar•(O,O, (C)ψ−1
O

), when regarded as left O-modules, have the re-

quired form.
�
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D.4.8. Finally, combining Corollaries D.2.4 and C.2.3, we obtain:

Corollary D.4.9. Let O be rigid.

(a) The co-simplicial category co-Bar•(Cr,O∨,Cl) satisfies the monadic Beck-Chevalley con-
dition.

(b) The functor of evaluation on 0-simplices

Tot
(
co-Bar•(Cr,O∨,Cl)

)
→ Cr ⊗Cl

admits a left adjoint and is monadic. The resulting monad, viewed as a plain endo-functor of
Cr ⊗Cl, identifies with the composition

Cr ⊗Cl
IdCr ⊗ co-act

Cl,O
−→ Cr ⊗O⊗Cl actCr,O⊗ Id

Cl

−→ Cr ⊗Cl.

D.5. Dualizability of modules over a rigid category.

D.5.1. Let O be a monoidal DG category, and let Cr and Cl be a right and left O-module
categories, respectively.

Recall that a data of duality between Cr and Cl as O-module categories consists of a unit
map

Vect→ Cr ⊗
O

Cl,

which is a map in DGCatcont, and a co-unit map

Cl ⊗Cr → O,

which is a map on (O⊗O) -mod, which satisfy the usual axioms.

Equivalently, the datum of duality between Cr and Cl as O-module categories is a functorial
equivalence

HomO(Cl,C) ≃ Cr ⊗
O

C, C ∈ O -mod.

Remark D.5.2. Assume for a moment that O is symmetric monoidal. Then it is easy to see
that a duality data between two O-module categories is equivalent to a duality data inside the
symmetric monoidal DG category O -mod.

D.5.3. We claim:

Proposition D.5.4. Assume that O is rigid. Then Cl ∈ O -mod is dualizable if and only if
it is dualiable as a plain DG category. The DG category underlying the O-module dual of O is
canonically equivalent to (Cl)∨.

Proof. Suppose first being given a duality data between Cr and Cl as O-module categories.
We define a duality data between Cr and Cl as plain DG categories by taking the unit to be

Vect→ Cr ⊗
O

Cl → Cr ⊗Cl,

where the second arrow is the right adjoint to the tautological functor Cr ⊗Cl → Cr ⊗
O

Cl (it

is continuous, e.g., by Corollary D.4.9(b)). We take the co-unit to be

Cl ⊗Cr → O
unitR

O−→ Vect .

The fact that the duality axioms hold is straightforward.

Vice versa, let Cl be dualizable as a plain DG category. Set Cr := ((Cl)∨)ψO
. Now, the

functorial equivalence
Hom

O
(Cl,C) ≃ Cr ⊗

O

C
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follows from Corollary D.4.5.
�

Appendix E. Commutative Hopf algebras

E.1. The setting.

E.1.1. Let O be a symmetric monoidal category14.

Consider the category co-Alg(O) of co-algebras in O. We regard it as a symmetric monoidal
category under the operation of tensor product.

By a (commutative) bi-algebra in O we will mean a (commutative) algebra in co-Alg(O).
We shall say that a (commutative) bi-algebra is a (commutative) Hopf algebra if it is such at
the level of the underlying ordinary categories (i.e., if it admits a homotopy antipode).

E.1.2. Recall that if A is an augmented co-algebra object in a monoidal category O, we can
canonically attach to it a co-simplicial object

co-Bar•(A).

If A is a bi-algebra, the object co-Bar•(A) ∈ O∆ naturally lifts to one in

Alg(O∆) ≃ (Alg(O))∆,

i.e., co-Bar•(A) is a co-simplicial algebra in O, or equivalently, a co-simplicial object of O
endowed with a compatible family of simplex-wise monoidal structures.

E.1.3. Consider the corresponding co-simplicial category

co-Bar•(A)-mod

(where the transition functors are given by tensoring up along the maps in co-Bar•(A)).

Consider the totalization

Tot (co-Bar•(A)-mod) .

The goal of this Appendix is to prove the following:

Proposition-Construction E.1.4. Let A be a Hopf algebra in O. Then there exists a canon-
ical equivalence of categories

A -comod→ Tot (co-Bar•(A)-mod) .

E.2. Construction of the functor. To construct the sought-for functor in Proposition E.1.4
we proceed as follows.

14In this section O is not necessarily stable, e.g., O = DGCatcont.



SHEAVES OF CATEGORIES 97

E.2.1. Let

coAlg + comod(O)

be the category of pairs

(A ∈ co-Algaug(O),M ∈ A -comod(O)).

Note that the assignment A co-Bar•(A) can be extended to a functor

(E.1) coAlg + comod(O) co-Bar•(A,M ′) ∈ O∆.

Moreover, this functor is (symmetric) monoidal, when on coAlg + comod(O) we consider the
(symmetric) monoidal structure

(A1,M1)⊗ (A2,M2) := (A1 ⊗A2,M1 ⊗M2),

and on O∆ the component-wise (symmetric) monoidal structure.

E.2.2. Note that for a bi-algebra A, the pair (A,1O) is naturally an algebra object in the
category coAlg + comod(O), and we have a canonically defined functor

(E.2) A -comod→ (A,1O)-mod(coAlg + comod(O)).

We note that the value of the functor (E.1) on (A,1O) is co-Bar•(A) ∈ Alg(O∆). Now
composing the functor (E.2) and (E.1), we obtain a functor

(E.3) A -comod→ co-Bar•(A)-mod(O∆).

E.2.3. Now, it is easy to see that if A is a Hopf algebra, then for M ∈ A -comod and a map
[j]→ [i] in ∆, for the corresponding map of algebras and modules

co-Barj(A)→ co-Bari(A), co-Barj(A,M)→ co-Bari(A,M),

the resulting map

co-Bari(A) ⊗
co-Barj(A)

co-Barj(A,M)→ co-Bari(A,M)

is an isomorphism.

Hence, the functor (E.3) defines a functor

(E.4) A -comod→ Tot (co-Bar•(A)-mod) .

E.3. Proof of the equivalence.

E.3.1. The fact that A is a Hopf algebra implies that the co-simplicial category co-Bar•(A)-mod
satisfies the co-monadic Beck-Chevalley condition. Hence, by Lemma C.1.9, the functor ev0 of
evaluation on 0-simplices is co-monadic, and the resulting co-monad on O is given by tensor
product with A.

E.3.2. Consider now the composition

A -comod→ Tot (co-Bar•(A)-mod)
ev0

−→ O.

It identifies with the forgetful functor oblvA : A -comod→ O. In particular, it is co-monadic,
and the resulting monad on O being the tensor product with A.

E.3.3. It remains to show that the map of co-monads, induced by the functor (E.4), is an iso-
morphism as plain endo-functors ofO. However, it is easy to see that the natural transformation
in question is the identity map on the functor of tensor product by A.
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