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Abstract. Mid-infrared images of the Seyfert 1 galaxy Mrk 279 obtained with the ISO satellite are presented
together with the results of a one-year monitoring campaign of the 2.5–11.7 µm spectrum. Contemporaneous
optical photometric and spectrophotometric observations are also presented. The galaxy appears as a point-like
source at the resolution of the ISOCAM instrument (4–5′′). The 2.5–11.7 µm average spectrum of the nucleus
in Mrk 279 shows a strong power law continuum with α = −0.80 ± 0.05 (Fν ∝ να) and weak PAH emission
features. The Mrk 279 spectral energy distribution shows a mid-IR bump, which extends from 2 to 15–20 µm.
The mid-IR bump is consistent with thermal emission from dust grains at a distance of >∼ 100 lt-d. No significant
variations of the mid-IR flux have been detected during our observing campaign, consistent with the relatively
low amplitude (∼10% rms) of the optical variability during the campaign. The time delay for Hβ line emission in
response to the optical continuum variations is τ = 16.7+5.3

−5.6 days, consistent with previous measurements.
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1. Introduction

According to the unified model of active galactic nuclei
(AGN), the central massive black hole, its surrounding ac-
creting material and the broad-line region (BLR) are all
embedded within a dusty region, probably a thick molec-
ular torus. Along some directions, the dust extinction is
sufficient to block all UV, optical, and near-IR radiation
originating in the inner components. A review of the ar-
guments which led to this picture is presented in Wills
(1999). The presence of a universal inflection point near
1.2µm in the spectral energy distribution of radio-quiet
AGN’s strongly suggests that the bulk of the near IR flux
arises from dust thermal emission (e.g., Barvainis 1987;
Sanders et al. 1989). The corresponding color temper-
ature, '1500 K, matches closely the sublimation tem-
perature of graphite, the most resilient of the grain
constituents. The near IR emission can be variable, and
therefore originates, at least in part, in a compact region.
Furthermore, in four AGN, the near IR variations have
been shown to be delayed with respect to the UV-optical
variations. The time delay corresponds closely to the light-
travel time to the dust sublimation radius rin; measured
values of rin are 400 light days for Fairall 9 (Clavel et al.
1989), 50 light days for NGC 1566 (Baribaud et al. 1992),
80 light days for NGC 3783 (Glass 1992) and 32 light days
for Mrk 744 (Nelson 1996).

The emerging picture is one where the near to mid-IR
emission arises from thermal re-radiation of UV and opti-
cal photons absorbed by the circumnuclear dust. Various
models for the geometry and location of this dust have
been proposed, but the exact configuration of the models
remains unconstrained due to a lack of suitable observa-
tional data.

One can use variability as a tool to probe the inner few
light years of the dusty regions. Reverberation-mapping
techniques (Blandford & McKee 1982) have been used ex-
tensively to map the BLR in several AGN, on scales of
light days to light months, notably by the International
AGN Watch1 consortium (Alloin et al. 1994). A similar
approach can be used to probe the IR-emitting region, i.e.
the warm dust component within the obscuring material.
Given UV flux variations of sufficient amplitudes, a mid-
IR monitoring campaign of sufficiently long duration and
adequate sampling rate, it may in principle be possible to
recover the transfer function of the dust.

The Infrared Space Observatory (ISO; Kessler et al.
1996) offered a unique opportunity to carry out such
a spectrophotometric monitoring program in the mid-
IR. The Seyfert 1 galaxy Mrk 279 (z = 0.0294) was
selected because its celestial position allows an unin-
terrupted 12-month visibility window for ISO and it
has a well-documented variability history in the optical
(Osterbrock & Shuder 1982; Peterson et al. 1985;
Maoz et al. 1990; Stirpe et al. 1994), the UV

1 For a complete panorama of the AGN Watch data sets,
results, and related studies, see the AGN Watch web page at
URL http://www.astronomy.ohio-state.edu/∼agnwatch/.

(Chapman et al. 1985), and X-rays (Reichert et al. 1985).
Balmer-line time-delays (Maoz et al. 1990; Stirpe & de
Bruyn 1991; Stirpe et al. 1994) suggest a BLR size in the
range 6 to 12 light days. A search for day-to-day variability
across the Balmer-line profile was unsuccessful (Eracleous
& Halpern 1993). No far-IR flux variations were detected
with IRAS (Edelson & Malkan 1987).

2. IR observations and data reduction

Mrk 279 was observed with two of the instruments on
board the ISO satellite: nine narrow-band filter images
were obtained with ISOCAM (Cesarsky et al. 1996), while
spectra were recorded with the PHT-S spectrometer, a
subsystem of the ISOPHOT instrument (Lemke et al.
1996). The PHT-S spectrometer covers the 2.5–12 µm
spectral range at a mean resolution of ∼3150 km s−1,
with a gap between 4.9 and 5.9µm. Its entrance aperture
projects to 24′′ × 24′′ on the sky. All PHT-S observations
were carried-out in an identical fashion. The integrating
amplifiers were reset every 32 s and on-source measure-
ments were interleaved with background measurements by
“chopping” on the sky at a frequency of 1/256 Hz. The
chopper throw was set to 300′′. For each of the observa-
tions, total on-source integration time was 2048 s and total
observing time (including background measurements and
instrument overheads) was 4236 s.

The CAM observations were performed in staring
mode at a magnification of 3′′ per pixel and with a gain
of 2. Nine different filters were used. The unit integration
time was 2.1 s per readout and there were between 72 and
197 readouts per image, depending on the filter used. The
particular sequence of filters was chosen to go from high
to low illumination so as to minimize the detector stabi-
lization time. Good stabilization was also guaranteed by
the relatively large number of readouts per exposure.

The PHT-S observations were made at 16 different
epochs, from 1996, February 5 to 1997, February 13
(Table 1). The ISOCAM observations of Mrk 279 were all
carried out on 1996 February 5, contemporaneously with
the first of the PHT-S spectra.

Standard procedures from the CAM Interactive
Analysis (CIA) software package2 were used for the reduc-
tion of the ISOCAM data (Ott et al. 1997). The full width
at half maximum (FWHM) of Mrk 279 varies with the fil-
ter wavelength from 3.′′3 to 5.′′0 (Table 2), but is always
consistent with that of a point source. Monochromatic in-
tensities were obtained by integration of the source flux
within a circle of radius 6 pixels (18′′) and subtraction of
a normalised background measured in a concentric circu-
lar ring. The intensity of Mrk 279 in the different filters is
listed in Table 2. The accuracy of these measurements is
±10 %.

2 CIA is a joint development by the ESA Astrophysics
Division and the CAM Consortium.
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Fig. 1. The ISOPHOT-S spectrum from 1996 February 5 to-
gether with the ISOCAM photometric fluxes from the same
date. The x-axis shows the rest frequency at the bottom and
the rest wavelength in microns at the top, both on a logarith-
mic scale

The ISOPHOT-S data were reduced with the PHOT
Interactive Analysis (PIA3; Gabriel 1998) software pack-
age. However, because ISOPHOT-S was operating close
to its sensitivity limit, special reduction and calibration
procedures had to be applied. After a change of illumina-
tion, the responsivity of the Si:Ga photoconductors imme-
diately jumps to an intermediate level. This initial jump is
followed by a characteristic slow transient to the final level.
At the faint flux limit, this time constant is extremely
long, and in practice only the initial step is observed in
chopped-mode. The spectral response function for this
particular mode and flux-level was derived directly from
observations of a faint standard star HD 132142 whose flux
ranges from 0.15 to 2.54 Jy. The calibration star observa-
tion was performed with the same chopper frequency and
readout-timing as the AGN observations. The S/N of the
ISOPHOT-S spectra was considerably enhanced by two
additional measures: i) the 32-s integration ramps were
divided into sub-ramps of 2 s and no de-glitching (removal
of cosmic ray hits) was performed at ramp-level ii) after
slope-fitting and de-glitching at slope-level, the maximum
of the distribution of the slopes was determined by fitting
a gaussian to the histogram. The resulting ISOPHOT-S
fluxes are accurate to within ±10%.

The 1996 February 5 PHT-S spectrum is shown in
Fig. 1, together with the monochromatic intensities mea-
sured with ISOCAM on the same day. Each PHT-S data-
point is shown with its formal error as propagated by the
PIA software. The CAM and PHT-S fluxes agree to better
than ±10%, providing further confidence in the reliability
of the flux calibration.

3 PIA is a joint development by the ESA Astrophysics
Division and the ISOPHOT Consortium led by the ISOPHOT
PI, D. Lemke, MPIA, Heidelberg.

3. MIR flux measurements and uncertainties

3.1. PHT-S flux measurements and reproducibility

For each epoch of observation the continuum flux was mea-
sured over two different intervals, at short wavelengths
(SW: 2.5–4.7µm) and long wavelengths (LW: 5.8–9.9µm).
Table 1 lists the mean intensities over these intervals and
their uncertainties, while the light curves are shown in
Fig. 2.
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Fig. 2. IR and optical light curves of Mrk 279. The top
two panels show the IR light curves from the SW and
LW detectors (2.52–4.70 µm and 5.8–9.9 µm, respectively).
The third panel shows V -band photometric measurements
from Wise Observatory. The forth panel shows the 5100 Å
continuum flux measured from the spectra, in units of
10−15 ergs s−1 cm−2 Å−1. The Hβ flux is shown in the bottom
panel, in units of 10−13 ergs s−1 cm−2. The optical photome-
try, optical continuum and Hβ fluxes are available in electronic
form at the CDS

An accurate determination of the flux uncertainties
is essential when discussing source variability. We have
therefore investigated the different source of errors which
could potentially affect our PHT-S measurement.

In staring mode, the overall responsivity of PHT-S is
known to remain stable within ± 10% (Schulz 1999). We
have assessed the stability of the PHT-S responsivity more
specifically at the time of each of the Mrk 279 observations
and verified that no other systematic effects were present.
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For this purpose, two different types of calibration mea-
surements were used as diagnostic:

1. The detector dark current measurements, which are
obtained immediately prior to each PHT-S observa-
tion: throughout the campaign, the dark current sig-
nal retained its nominal value of ∼zero V/s. We can
therefore be confident that none of the Mrk 279 obser-
vations suffered from detector remanence induced by
a prior exposure to a bright source;

2. Measurements with an internal calibration source
which are carried out systematically at the beginning
of each ISO revolution: averaged over all pixels, the
variations of detector responsivity from epoch to epoch
are ' ± 2%, with upper limits of 3% and 5% in the
SW and LW range, respectively.

A conservative upper limit of ±10% was thus adopted
for the systematic uncertainty on the PHT-S fluxes of
Mrk 279. Internal measurement errors were added in
quadrature to this systematic uncertainty. The internal
errors were computed as the dispersion about the mean
flux in the SW and LW integration intervals, after nor-
malization of the spectra. The purpose of the normal-
ization is to remove the spectral curvature. Each spec-
trum was first divided by its best-fit power-law continuum
(Fν = 8.44 10−14 ν−0.8 erg s−1 cm−2 Hz−1; see Sect. 5)
and the rms deviations were computed. The results show
that the internal errors associated with each flux mea-
surement are of 2.8% and 1.7% for the 2.52–4.70µm and
5.76–9.89µm bands, respectively.

As a consistency check, errors were also computed by
comparing PHT-S fluxes obtained within 30 days from
each others. This gives a conservative error estimate since
it assumes that there are no flux variations on time scales
shorter than 30 days. Taking every pair of fluxes within
30 days and measuring the error on their means, we get
mean relative errors of 3.5% and 1.6% for the SW and LW
bands, respectively.

3.2. Comparison with ground based measurements
and estimation of the host galaxy contribution

Spinoglio et al. (1985) measured L-band (∼3.5µm) fluxes
of 100± 21 mJy, 112± 27 mJy, and 68 ± 15 mJy through
apertures of 12′′, 12′′, and 17′′, respectively, consistent
with our results to within the measurement uncertainties.

Given the spectrograph aperture (24′′× 24′′), the host
galaxy of Mrk 279 could, in principle, contribute to the
PHT-S flux. Indeed, a faint extended nebulosity is appar-
ent in the K-band (∼2.2µm) image of McLeod & Rieke
(1995). This extended flux arises from the integrated emis-
sion of giants and supergiants in the galactic disk whose
energy distribution is maximum at ∼2µm and falls-off
abruptly at longer wavelengths. In practice, stellar emis-
sion will therefore make a negligible contribution to the

Table 1. PHT-S observation log and fluxes

UT MJD F (2.5–4.7 µ) F (5.8–9.9 µ)

(−2 450 000) (mJy) (mJy)

(1) (2) (3) (4)

1996 Feb. 5 119 73.5 ± 7.6 132 ± 13

1996 Mar. 3 146 75.3 ± 7.8 123 ± 12

1996 Mar. 12 155 65.2 ± 6.8 125 ± 13

1996 Apr. 2 176 69.5 ± 7.2 129 ± 13

1996 Apr. 27 201 72.7 ± 7.6 127 ± 13

1996 May 11 215 72.8 ± 7.6 128 ± 13

1996 May 29 233 73.2 ± 7.6 131 ± 13

1996 Jul. 29 294 63.6 ± 6.6 127 ± 13

1996 Aug. 12 308 61.8 ± 6.4 122 ± 12

1996 Aug. 27 323 62.0 ± 6.4 123 ± 12

1996 Sep. 15 342 60.0 ± 6.2 124 ± 13

1996 Oct. 17 374 73.8 ± 7.7 128 ± 13

1996 Nov. 1 389 62.6 ± 6.5 120 ± 12

1996 Nov. 18 406 73.7 ± 7.7 128 ± 13

1996 Dec. 5 423 70.1 ± 7.3 124 ± 13

1997 Feb. 13 493 81.8 ± 8.5 128 ± 13

Table 2. ISOCAM narrow band filter intensities

Filter λc Range Flux FWHM

(µm) (µm) (mJy) (′′)

(1) (2) (3) (4) (5)

SW1 3.57 3.05–4.10 68 3.9

SW5 4.25 3.00–5.5 60 3.3

LW4 6.00 5.50–6.50 106 4.1

LW2 6.75 5.00–8.50 115 4.8

LW5 6.75 6.50–7.00 106 4.2

LW6 7.75 7.00–8.50 120 5.0

LW7 9.62 8.50–10.7 159 3.8

LW8 11.4 10.7–12.0 212 4.5

LW3 15.0 12.0–18 209 5.0

PHT-S flux. Nevertheless, this was positively verified by
comparison with ground-based data as follows:

1. In the K-band, McLeod & Rieke (1995) estimated that
the AGN contributes 90% of the flux within the central
1.′′5 (FWHM) and 55% (35 mJy) of the total K-band
flux (68 mJy) integrated over the whole galaxy (i.e.,
out to a radius of 35′′). Assuming “normal” near-IR
colors (K−L = 0.22±0.02mag; Clavel et al. 1989) for
the stellar population, we derive a total host-galaxy
flux of 18 mJy at 3.5µm;

2. Using the B-and R-band nucleus–galaxy decomposi-
tion of Granato et al. (1993), and assuming normal
optical-to-IR (V − K = 3.22 mag; Clavel et al. 1989)
and K − L colors, we estimate a total galaxy flux of
20 mJy and 17 mJy respectively at 3.5µm.
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These consistent estimates can be used to infer the amount
of stellar light which enters the 24′′×24′′ PHT-S aperture,
5±2 mJy at 3.5µm. Such a small contamination is within
the measurement errors and can be neglected.

The galaxy contributes 11 ± 4 mJy, 14 ± 5 mJy and
11±4mJy to the 12 ′′ photometric measurements in the J ,
H, and K bands respectively (Granato et al. 1993). These
values are used in Sect. 6 to infer the intrinsic spectral
energy distribution of the active nucleus in Mrk 279.

4. Optical observations and data reduction

Ground-based optical observations were made in sup-
port of the ISO observations. Spectroscopic monitoring
was carried out with the 1.8-m Perkins Telescope of the
Ohio State and Ohio Wesleyan University at the Lowell
Observatory, the 1.0-m telescope of the Wise Observatory,
the 2.6-m Shajn Telescope of the Crimean Observatory,
and the 1.5-m Mt. Hopkins Telescope of the Harvard-
Smithsonian Center for Astrophysics (CfA). A detailed
log of the spectroscopic observations can be found at the
International AGN Watch website.

In addition, CCD photometry was made on the 1.0-m
telescope of the Wise Observatory. The flux was measured
using a fixed aperture of radius 7′′, under seeing conditions
of 2–3′′. The B, V , R, and I instrumental magnitudes are
listed in Cols. (3)–(6) of Table 4. They have not been
scaled to any standard system.

The spectroscopic data were processed by the indi-
vidual observers in standard fashion for CCD frames.
However, the standard astronomical flux calibration tech-
niques based on determining the instrument response
function from observations of standard stars are only ac-
curate for AGN spectrophotometry at about the 10% level
even under ideal observing conditions. We used the stan-
dard stars only for relative calibration, and employed dif-
ferent calibration techniques for absolute calibration: the
data from Wise Observatory were calibrated following the
method described by Maoz et al. (1994). The data from
Ohio, Crimea, and CFA were calibrated through scaling
through [O iii]λ5007 flux that was measured on five pho-
tometric nights, at F ([O iii]λ5007) = (1.512 ± 0.096)×
10−13 ergs s−1 cm−2.

On these calibrated spectra we measured the contin-
uum flux by averaging the flux in a 10 Å wide band cen-
tered at 5105 Å in the rest frame of Mrk 279 (Fλ(5100 Å)).
The Hβ line flux has been measured by linear interpolation
between rest-frame wavelengths ∼4765 Å and ∼5105 Å,
and line integration between 4770 Å and 4935 Å. The long-
wavelength cutoff of this integration band misses some of
the Hβ flux underneath [O iii]λ4959, but avoids the need
to estimate the Fe ii contribution to this feature and still
gives a good representation of the Hβ variability. We did
not correct for the narrow-line, which is expected to be
constant.

As the measurements made from the spectra are sub-
ject to systematic differences between the four data sets
used, we applied the prescriptions of Peterson et al. (1999)

Fig. 3. The weighted averaged mid-IR spectrum of Mrk 279
(dark line), the rms deviations about the mean (light line)
and the error (dotted line). The best-fit power law with index
α = −0.8 is shown as a dashed line. The expected positions of
PAH and Brα features are indicated. The x-axis shows the rest
frequency at the bottom and the rest wavelength, in microns,
at the top, both represented on a logarithmic scale

to intercalibrate the data sets, and correct for aperture
effects. The final continuum Fλ(5100 Å) and Hβ emission-
line fluxes are given in Table 5. The spectrophotometric
and photometric light curves are shown in Fig. 2. Using
the results of Granato et al. (1993), we estimate that stars
contribute for 1.2± 0.6 mJy or 20± 10% to the mean red-
dening corrected 5100 Å flux.

5. The mid-IR spectrum of Mrk 279

Figure 3 shows the weighted mean 2.5–11.7µm spectrum
of Mrk 279 obtained by averaging all 16 PHT–S spectra.

The spectrum of Mrk 279 is quite similar to the mean
Seyfert 1 spectrum obtained by Clavel et al. (2000) from
their sample of 28 type 1 AGNs. It shows a strong con-
tinuum, with a flux density per frequency unit that drops
sharply with increasing frequency and only weak broad
emission features. The continuum is well approximated by
a power law (Fν ∝ να) of spectral index α = −0.80± 0.05
(Fig. 3), close to the average Seyfert 1 mid-IR index
α = −0.84± 0.24 (Clavel et al. 2000). Its flux at a fidu-
cial wavelength of 7µ is 103 mJy. While the broad emis-
sion features of Polycyclic Aromatic Hydrocarbon (PAH)
bands (Puget et al. 1985) at 3.3µm, 6.2µm, 7.7µm, and
8.6µm are ubiquitous in many different galactic and ex-
tragalactic line of sight, only the strongest band at 7.7 µm
is unambiguously detected in Mrk 279, with an intensity
of 0.76± 0.12 mJy. Clavel et al. (2000) showed that PAH
emission in AGNs originates in the interstellar medium
(ISM) of the galaxy, whereas the mid-IR power-law con-
tinuum arises from near nuclear dust emission in the torus.
Because Mrk 279 is a luminous AGN, almost a quasar, the
apparent weakness of its PAH emission can be understood
as a contrast effect whereby a faint ISM is observed against
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Fig. 4. The spectral energy distribution (SED) of Mrk 279,
from the far-IR to the X-rays. The IRAS data are represented
as open squares whereas near-IR ground-based data are shown
as stars. The PHT-S spectrum is shown as a dotted line, while
ISOCAM fluxes are plotted as crosses where the horizontal bars
indicate the filter range. The two open circles in the optical are
the nuclear R- and B- band fluxes. The filled circle is the mean
5100 Å flux. Optical and near IR data have been corrected for
stellar light while UV and optical data have been corrected for
galactic reddening. The best fit power laws mid-IR and UV
(α = −0.7) continua are also displayed. The error bar on the
UV flux represents the rms fluctuation about the mean 1500 Å
due to variability. X-rays represent fits to EXOSAT and ASCA
data. This SED was assembled from data gathered over a time
span of ∼19 years

a bright nucleus. The 9.7µm silicate absorption feature,
conspicuous in the mid-IR spectra of starburst galaxies
(Moorwood et al. 1996; Rigopoulou et al. 1996; Acosta-
Pulido et al. 1996), is absent from the Mrk 279 spectrum.

6. The spectral energy distribution

Figure 4 shows the continuum spectral energy distribu-
tion (SED) of Mrk 279 from the far-IR to the X-rays.
The IRAS data points are the average of 6 pointed ob-
servations reported by Edelson & Malkan (1987). The
near-IR data are from Spinoglio et al. (1985) after sub-
traction of the stellar light (Sect. 3.2). The R and B
band fluxes (Granato et al. 1993) and the mean 5100 Å-
flux (this paper) have also been corrected for the under-
lying galaxy contribution and de-reddened. The 1500 Å
data point represents the average of 26 observations made
with IUE (Rodriguez et al. 1998) between 1978 and 1991.
It has been corrected for foreground reddening using
NH = 1.6 1020 cm−2 (Elvis et al. 1989). The large er-
ror bar reflects the strong variability of Mrk 279 at UV
wavelengths. The EXOSAT X-ray data are from 1983 and
1984 and are best described in terms of a broken power-
law (Ghosh & Soundararajaperumal 1992), while the 1994
data from ASCA are modeled with a unique power law in
the Tartarus Database (http://tartarus.gsfc.nasa.gov/).

Since this SED is constructed from data collected over
∼19 years, we caution that it may be distorted by variabil-
ity. Variability is important in shaping the X-ray, ultravi-
olet, and optical spectrum, but is much less significant at
longer wavelengths (see Sect. 7). Bearing these limitations
in mind, it is still possible to draw some general conclu-
sions which are not affected by flux variations at short
wavelengths.

The Mrk 279 SED displays three broad maxima or
“bumps”. The first maximum occurs in the far-IR at
wavelengths ≥25µm. Given the large IRAS (∼1′) aper-
tures and the cold color temperature of the far-IR bump,
the 100µm and 60µm fluxes are probably dominated by
cold dust from the host galaxy’s ISM. Hence, the far-IR
“bump” is most likely not related to the AGN itself. The
second maximum is the usual “big blue bump” which dom-
inates the SED of type 1 AGNs from the optical to the soft
X-rays. It is usually identified as thermal emission from an
accretion disk. In between these two maxima lies a third
and smaller bump which extends from ∼1µm to ∼15–
20µm. We tentatively identify this mid-IR bump as ther-
mal emission from dust in the putative molecular torus
and/or from dust in the NLR, as discussed below.

7. The IR variability

The total duration of our ISO campaign was 374 days,
with a mean sampling interval of 24.9 days. In addition
to the weighted-mean spectrum, 〈Fν〉, Fig. 3 displays the
rms spectrum 〈rmsν〉, and the mean error spectrum εν .
The latter was evaluated as

ε2ν =
1

N
∑N
i=1 1/∆2

ν,i

(1)

where ∆ν,i is the uncertainty associated with the flux Fi
at epoch i and N = 16 is the number of epochs. We
can exclude significant (i.e. 3σ) flux variability since the
largest value of 〈rmsν〉/εν is only ≈ 1.4. A chi-square test
was also applied to the average PHT-S fluxes of Table 1.
The reduced chi-squares are <1 which confirms that no
significant variations of the mid-IR flux took place during
our ∼ 1-year observing campaign.

8. Optical variability and the Hβ emission-line lag

The relatively dense sampling of the optical light curves
between January and July 1996 allows us to measure
the time-delayed response, or “lag”, of the Hβ emission
line to continuum variations by cross-correlation of the
light curves shown in Fig. 2. We used both the interpola-
tion method of Gaskell & Sparke (1986) and the discrete-
correlation function (DCF) method of Edelson & Krolik
(1988), in both cases employing the specific implementa-
tion described by White & Peterson (1994). The centroid
of the cross-correlation is at 16.7+5.3

−5.6 days. Uncertainties
were estimated using the model-independent FR/RSS
Monte-Carlo method described by Peterson et al. (1998).
The cross-correlation results are shown in Table 3 and
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Table 3. Cross-correlation results

This Work (Hβ) Wise Obs. (Hβ) Wise Obs. (Hα) LAG (Hα)
Parameter (1996) (1988) (1988) (1990)

(1) (2) (3) (4) (5)

Cross-correlation centroid τcent (days) 16.7+5.3
−5.6 2.5+25.5

−5.4 11.6+8.5
−11.7 6.8+19.8

−6.9

Cross-correlation peak τpeak (days) 21+2
−9 3+28

−5 11+11
−11 2+29

−3

Peak correlation coefficient rmax 0.769 0.799 0.793 0.795
Continuum rms fractional variability Fvar 0.093 0.071 0.071 0.126
Mean time between observations (days) 2.3 4.1 4.1 6.0
Duration of campaign (days) 195 156 156 152
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Fig. 5. Cross-correlation function of the Hβ line intensity ver-
sus the 5100 Å optical continuum flux between JD 2 450 095.1
and JD 2 450 289.7 (Fig. 2). The interpolation CCF is shown as
a solid line and the points with error bars are computed using
the DCF method (with a bin size of 8 days). The Hβ line lags
behind the continuum by about 16 days

Fig. 5. For comparison, Table 3 also lists the results of
previous Mrk 279 monitoring campaigns by Maoz et al.
(1990) and Stirpe et al. (1994).

9. Discussion and concluding remarks

The mid-IR spectrum of Mrk 279 shows a strong power-
law continuum of spectral index −0.80± 0.05, with weak
PAH emission bands and no detectable silicate ∼9.7 µm
feature. The mid-IR bump of Mrk 279 extends4 from
roughly 1.25µm to 15–20µm and is wider than a single
blackbody. It peaks near ≈3µm. In Fairall 9, the mid-IR
bump most likely originates from the re-processing of UV
and optical photons by nuclear dust (Sect. 1). We can es-
timate the distance to the central source of the innermost
and hottest dust grains in Mrk 279, rin, by scaling directly
from Fairall 9 (Clavel et al. 1989). Mrk 279 is approxi-
mately eight times less luminous than Fairall 9. Since the
inner radius of the dust distribution is presumably con-
trolled by sublimation, rin should scale approximately as

4 For the extension of the bump we consider the wavelength
range ∆λ over which νFν exceeds one third of its peak value.

L1/2, so rin should be a factor of ' 2.8 smaller in Mrk 279
than in Fairall 9, i.e. rin ≈ 140± 36 light-days.

During the ISO campaign, the mid-IR flux did not ex-
perience variations of amplitude larger than 10%, the de-
tection limit of the PHT-S instrument. Optical data con-
temporaneous to the IR observations revealed significant
fluctuations of the 5100 Å flux with a relative rms ampli-
tude of 9% and a ratio of the maximum to the minimum
fluxes, Rmax ∼ 1.64±0.11. Any upper limit to the mid-IR
variability in Mrk 279 has to be examined in the light of
the UV and optical continuum variations over the same
period of time. As noted earlier, in the dust reprocess-
ing scenario the amplitude of the MIR flux variations will
be reduced compared to that of the primary UV-optical
source because of the finite propagation time of the pho-
tons. Imagine a short (duration ≤1 day) pulse of the UV-
optical source illuminating a thin dust annulus, inclined
by i = 10◦ with respect to the line of sight. The annulus
IR response will be delayed by δt = (1 − sin i)rin/c and
will last for 2(sin i)rin/c. For numerical values appropriate
to Mrk 279, the duration of the IR reverberated pulse will
be 38 days and its peak amplitude thereby reduced by a
factor of order 38. Given the relatively low amplitude of
the optical flux variations (Fig. 2), the absence of mea-
surable variations of the MIR flux is consistent with the
above scenario.

Though a detailed quantitative fit with a particular
model is beyond the scope of this paper, it is neverthe-
less illustrative to perform a qualitative comparison of
our data with the theoretical predictions from the torus
model by Pier & Krolik (1992). This model predicts a mid-
IR “bump” that is approximately 0.7 to 1 decade wide in
wavelengths, in agreement with the Mrk 279 observations.
In the Pier & Krolik (1992) model, the torus emission is
expected to peak at a wavelength λpeak that depends pri-
marily on the flux illuminating the torus inner surface and
its inclination angle i with respect to the line of sight. The
relatively high color temperature implied by λpeak ≈ 3µm
constrains the inclination to be small (cos i ≥ 0.75). The
absence of silicate absorption also rules out very optically
thick models and constrains the vertical column density
at the torus inner edge, NH ≤ 1024 cm−2. Comparison of
Fig. 4 with Fig. 5 of Pier & Krolik (1992) also suggests a
moderately thick torus, with rin/h = 0.3.

The delay ∆T of Hβ w.r.t. the optical continuum was
16.7+5.3

−5.6 days during this campaign. Comparison with the
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results from previous monitoring campaigns (see Table 3)
does not reveal any significant change of ∆T over a time
span of ∼8 years. In other words, we find no evidence for
a secular change in the structure of the BLR in Mrk 279.
Equating c × ∆T with the emissivity weighted radius
RBLR of the Hβ emitting region, one sees that rin is about
8 times larger than RBLR. In other words, the BLR lies
well within the dust evaporation radius.
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