



# The Chandra Survey of Extragalactic Sources in the 3cr Catalog: X-Ray Emission From Nuclei, Jets, and Hotspots in the Chandra Archival Observations

## Citation

Massaro, F., D. E. Harris, E. Liuzzo, M. Orienti, R. Paladino, A. Paggi, G. R. Tremblay, et al. 2015. "The Chandra Survey of Extragalactic Sources in the 3cr Catalog: X-Ray Emission From Nuclei, Jets, and Hotspots in the Chandra Archival Observations." The Astrophysical Journal Supplement Series 220 (1) (September 1): 5. doi:10.1088/0067-0049/220/1/5.

## **Published Version**

doi:10.1088/0067-0049/220/1/5

## Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30212129

## Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

# **Share Your Story**

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

**Accessibility** 

F. MASSARO<sup>1,2</sup>, D. E. HARRIS<sup>3</sup>, E. LIUZZO<sup>4</sup>, M. ORIENTI<sup>4</sup>, R. PALADINO<sup>4,5</sup>, A. PAGGI<sup>3</sup>, G. R. TREMBLAY<sup>2</sup>, B. J. WILKES<sup>3</sup>,

J. KURASZKIEWICZ<sup>3</sup>, S. A. BAUM<sup>6,7</sup>, AND C. P. O'DEA<sup>6,8</sup> <sup>1</sup> Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy

<sup>2</sup> Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA <sup>3</sup> Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA

<sup>4</sup> Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna, Italy

<sup>5</sup> Department of Physics and Astronomy, University of Bologna, V.le Berti Pichat 6/2, I-40127 Bologna, Italy

University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2, Canada

<sup>7</sup> Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623, USA

<sup>8</sup> School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623, USA

Received 2015 March 29; accepted 2015 June 9; published 2015 September 1

### ABSTRACT

As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which *Chandra* archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

Key words: galaxies: active - radio continuum: galaxies - X-rays: general

Supporting material: figure set

### 1. INTRODUCTION

The first release of the Third Cambridge catalog (3C), performed at 159 MHz, was published in 1959 (Edge et al. 1959). In 1962, Bennett et al. revised the whole 3C catalog using observations at 178 MHz. This revised version (3CR) was considered to be a definitive list of the brightest radio sources in the northern hemisphere for many years. The flux limit of the 3CR catalog is set to 9 Jy at 178 MHz, and it covers the whole northern hemisphere above  $-5^{\circ}$  in decl. Then, in 1985, Spinrad, Djorgovski, Marr, and Aguilar presented the last revised version of the Third Cambridge catalog (3CR; Bennett 1962), listing 298 extragalactic radio sources (see also Edge et al. 1959; Mackay 1971; Smith et al. 1976; Smith & Spinrad 1980), including new revised positions, redshifts, and magnitudes having 91% of the sources out of the Galactic plane (i.e., Galactic latitude  $|b| > 10^{\circ}$ ). Since then, several photometric and spectroscopic surveys have been carried out to obtain multifrequency coverage of the 3CR catalog. All of the 3CR sources at redshift z < 0.3 have already been observed with the Hubble Space Telescope (e.g., Chiaberge et al. 2000; Tremblay et al. 2009), and a near-infrared, optical, and ultraviolet survey for higher-redshift sources is still ongoing. A large fraction of the 3CR radio sources were also targets of the spectroscopic survey carried out with the Telescopio Nazionale Galileo (TNG; e.g., Buttiglione et al. 2009). Radio images with arcsecond resolution for the majority of the 3CR sources are available from the NRAO Very Large Array (VLA) Archive Survey (NVAS)<sup>9</sup> and from the MERLIN archive.<sup>10</sup> As a radio low-frequency catalog, the selection criteria for the 3CR

are unbiased with respect to X-rays. Since it spans a wide range of redshift and radio power and has a vast multifrequency database of ground- and spaced-based observations for comparison, it is an ideal sample to investigate the properties of active galaxies.

Motivated by the large number of multifrequency observations already available for the 3CR sources, we have undertaken a project to ensure that each 3CR extragalactic source has at least an exploratory/snapshot Chandra observation. We have chosen to accomplish this goal in a step-wise strategy, working out in redshift with modest proposals each cycle to minimize the impact on the Chandra schedule. A description of our progress in this endeavor is given in the following sections.

In this paper, we present the X-ray analyses of most of the 3CR sources present in the Chandra archive that have not already been published with our standard procedures, i.e., the snapshot surveys (Massaro et al. 2010, 2012, 2013; F. Massaro et al. 2015, in preparation) and the 3CR sources in the XJET sample (Massaro et al. 2011). Our main goal is to provide a uniform analysis of all the archival observations. X-ray flux maps were constructed and compared with radio images to search for any X-ray emission associated with radio jet knots, hotspots, and lobes. In some cases, new radio images have been constructed from archival VLA data for comparison with the X-ray images. We report measurements of the X-ray nuclear emission for all of the sources in our sample, but we did not perform a detailed spectral analysis because most of them (i.e., >70%) have already been reported in the literature (see, e.g., Hardcastle et al. 2009; Balmaverde et al. 2012; Wilkes et al. 2013; J. Kuraszkiewicz et al. 2015, in preparation).

The paper is organized as follows. A brief historical overview of the Chandra observations of the 3CR sources is provided in Section 2, and a description of the selected sample

http://archive.nrao.edu/nvas/

<sup>&</sup>lt;sup>10</sup> http://www.jb.man.ac.uk/cgi-bin/merlin\_retrieve.pl

|                               |       |                 | ·····             | 8              |                                          |
|-------------------------------|-------|-----------------|-------------------|----------------|------------------------------------------|
| Program                       | Cycle | Proposal Number | Number of Sources | Redshift Range | References                               |
| 3CR snapshot survey           | 9     | 09700745        | 30 <sup>a</sup>   | z < 0.3        | Massaro et al. (2010)                    |
| XJET <sup>b</sup>             |       |                 | 47                |                | Massaro et al. (2011)                    |
| 3CR snapshot survey           | 12    | 12700211        | 26                | z < 0.3        | Massaro et al. (2012)                    |
| 3CR snapshot survey           | 13    | 13700190        | 19                | z < 0.5        | Massaro et al. (2013)                    |
| 3CR snapshot survey           | 15    | 15700111        | 23                | z < 1.0        | F. Massaro et al. (2015, in preparation) |
| Archival project <sup>b</sup> |       |                 | 93                |                | This work                                |

 Table 1

 Summary of the 3CR Sources Analyzed in Our Previous Investigations

Notes.

<sup>a</sup> The AO9 sample includes 3CR 346, which was re-observed in Cycle 12 because during Cycle 9 its *Chandra* observation was affected by high background (see Massaro et al. 2010, for details).

<sup>b</sup> The redshift ranges for both the archival and the XJET samples are unbounded with respect to selection.

is presented in Section 3. Data reduction procedures are given in Section 4, and the results are discussed in Section 5. Then, Section 6 is devoted to our summary and conclusions. Finally, we provide X-ray images with radio contours superposed for all of the sources analyzed (Appendix A) and a summary of the *Chandra* observations for the entire sample of 3CR extragalactic sources (Appendix B).

For numerical results, cgs units are used unless stated otherwise, and a flat cosmology was assumed with  $H_0 = 72$  km s<sup>-1</sup> Mpc<sup>-1</sup>,  $\Omega_M = 0.27$ , and  $\Omega_{\Lambda} = 0.73$  (Dunkley et al. 2009), to be consistent with our previous analyses (e.g., Massaro et al. 2010, 2012, 2013). Spectral indices,  $\alpha$ , are defined by flux density,  $S_{\nu} \propto \nu^{-\alpha}$ .

### 2. HISTORY OF THE 3CR CHANDRA SURVEY

A large fraction of the X-ray studies of 3CR extragalactic sources observed with *Chandra* are biased toward observations of "favorite" X-ray bright sources or objects with well-known interesting features and/or peculiarities (e.g., sources in the center of bright galaxy clusters) rather than consisting of well-defined samples. However, to complete the X-ray coverage for the whole 3CR catalog and to obtain a complete and uniform multifrequency database of these extragalactic radio sources, during *Chandra* Cycle 9, we started an X-ray snapshot survey of 3CR sources previously unobserved by *Chandra*. Several subsets of the 3CR sample have been observed by other groups (e.g., Wilkes et al. 2013; J. Kuraszkiewicz et al. 2015, in preparation).

The 3CR extragalactic catalog includes 298 sources, 248 of which are already in the *Chandra* archive. Among those observed, we have already published 47 sources as part of the XJET project (Massaro et al. 2011)<sup>11</sup> and an additional 98 as part of our 3CR *Chandra* snapshot survey (Massaro et al. 2010, 2012, 2013). Here we publish an additional 93 sources from the *Chandra* archive. It is worth noting that of the remaining 50 sources unobserved by *Chandra*, half are unidentified, i.e., lacking an assigned optical counterpart, and thus are unclassified. Table 1 provides the references for the 145 sources we have already processed and published.

According to the redshift estimates reported in the 3CR catalog, the *Chandra* archive now contains all of the 3CR sources up to z = 0.5 (i.e., 150 sources), with only the following exceptions: 3CR 27 at z = 0.184, 3CR 69 at z = 0.458 (Hiltner & Roeser 2009), and 3CR 93 at z = 0.357, as confirmed by Ho & Minjin (2009).

## 3. SAMPLE SELECTION FOR 3CR ARCHIVAL OBSERVATIONS

In the present paper, we uniformly analyzed 93 3CR sources observed by Chandra that were not reported in our previous investigations. We excluded from the present archival analysis seven 3CR sources that have been extensively discussed in the literature and that have an accumulated exposure time greater than 80 ks each. The excluded sources are 3CR 66A (e.g., Abdo et al. 2011), 3CR 71 (alias NGC 1068; e.g., Brinkman et al. 2002), 3CR 84 (alias NGC 1275 or Perseus A; e.g., Fabian et al. 2003), 3CR 186 (Siemiginowska et al. 2010), 3CR 231 (alias M82; e.g., Griffiths et al. 2000), 3CR 317 (alias Abell 2052; e.g., Blanton et al. 2009), and 3CR 348 (alias Hercules A; e.g., Nulsen et al. 2005). In addition, we also did not select for our analysis the three cases 3CR 236, 3CR 326, and 3CR 386, since the PI of these observations is currently working on them (M. Birkinshaw 2015, private communication).

In Table 2 we list all 93 selected sources, their coordinates, redshift estimates, luminosity distance, the *Chandra* observation ID number, exposure times, and observing dates. In the same table, we also list the references where the *Chandra* observations were analyzed/presented.

### 4. DATA REDUCTION AND DATA ANALYSIS

The radio and X-ray data reduction and analysis procedures adopted in the present analysis were extensively described in Massaro et al. (2012, 2013) and references therein. Here we report only the basic details.

### 4.1. Radio Observations

Radio observations presented in this paper were retrieved from the publicly available websites of M. J. Hardcastle and C. C. Cheung, from the NVAS (National Radio Astronomy Observatory VLA Archive Survey), from NED (NASA Extragalactic Database), from the DRAGN website, or were constructed from data available in the VLA archives. A summary of the archival data used is reported in Table 3. To produce our final images, we calibrated the data with standard procedures using AIPS, edited the visibilities, and carried out a few self-calibration cycles. Image parameters for each figure are given in Appendix A.

<sup>&</sup>lt;sup>11</sup> http://hea-www.cfa.harvard.edu/XJET/

|             | Source List of the Archival Chandra 3CR Radio Sources |                              |        |                           |                         |                                         |                             |               |                      |                                                      |  |
|-------------|-------------------------------------------------------|------------------------------|--------|---------------------------|-------------------------|-----------------------------------------|-----------------------------|---------------|----------------------|------------------------------------------------------|--|
| 3CR<br>Name | R.A. (J2000)<br>(hh mm ss)                            | decl. (J2000)<br>(dd mm ss)  | Z      | kpc Scale<br>(kpc/arcsec) | D <sub>L</sub><br>(Mpc) | <i>Chandra</i><br>Obs. and Proposal IDs | Obs. Date<br>yyyy-mm-dd     | Data Mode     | Live<br>Time<br>ksec | References                                           |  |
| 2.0         | 00:06:22.6                                            | -00:04:24.6                  | 1.0374 | 7.999                     | 6849.63                 | 5617 (06700116)                         | 2005 Jul 28                 | ACIS-S FAINT  | 16.93                | Miller et al. (2011)                                 |  |
| 13.0        | 00:34:14.500                                          | +39:24:17.00                 | 1.351  | 8.357                     | 9528.43                 | 9241 (09700482)                         | 2008 Jun 01                 | ACIS-S FAINT  | 19.53                | Wilkes et al. (2013)                                 |  |
| 14.0        | 00:36:06.447                                          | +18:37:59.08                 | 1.469  | 8.412                     | 10578.07                | 9242 (09700482)                         | 2008 May 29                 | ACIS-S FAINT  | 3.00                 | Wilkes et al. (2013)                                 |  |
| 22.0        | 00:50:56.222                                          | +51:12:03.26                 | 0.936  | 7.792                     | 6024.20                 | 14994 (14700660)                        | 2013 Jun 05                 | ACIS-S FAINT  | 9.35                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 28.0        | 00:55:50.6                                            | +26:24:36.7                  | 0.1953 | 3.162                     | 931.87                  | 3233 (03800625)                         | 2002 Oct 07                 | ACIS-I VFAINT | 49.72                | McCarthy et al. (2004), Donato et al. (2004)         |  |
| 35.0        | 01:12:02.288                                          | +49:28:35.62                 | 0.067  | 1.250                     | 293.48                  | 10240 (10700504)                        | 2009 Mar 08                 | ACIS-I VFAINT | 25.63                | Isobe et al. (2011)                                  |  |
| 40.0        | 01:26:00.616                                          | -01:20:42.44                 | 0.018  | 0.356                     | 75.99                   | 7823 (08700576)                         | 2007 Sep 07                 | ACIS-S VFAINT | 64.82                | Sun (2009)                                           |  |
| 43.0        | 01:29:59.776                                          | +23:38:19.85                 | 1.459  | 8.409                     | 10488.44                | 9324 (09700482)                         | 2008 Jun 17                 | ACIS-S FAINT  | 3.04                 | Wilkes et al. (2013)                                 |  |
| 48.0        | 01:37:41.301                                          | +33:09:35.27                 | 0.367  | 4.991                     | 1923.58                 | 3097 (03700781)                         | 2002 Mar 06                 | ACIS-S VFAINT | 9.22                 | Worrall et al. (2004)                                |  |
| 49.0        | 01:41:09.159                                          | +13:53:28.33                 | 0.621  | 6.687                     | 3837.59                 | 14995 (14700660)                        | 2013 Aug 31                 | ACIS-S FAINT  | 9.45                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 65.0        | 02:23:43.1                                            | +40:00:51.9                  | 1.176  | 8.203                     | 8011.89                 | 9243 (09700482)                         | 2008 Jun 30                 | ACIS-S FAINT  | 20.91                | Wilkes et al. (2013)                                 |  |
| 68.1        | 02:32:28.8                                            | +34:23:45.9                  | 1.238  | 8.269                     | 8543.36                 | 9244 (09700482)                         | 2008 Feb 10                 | ACIS-S FAINT  | 3.05                 | Wilkes et al. (2013)                                 |  |
| 68.2        | 02:34:23.8                                            | +31:34:17.0                  | 1.575  | 8.435                     | 11537.52                | 9245 (09700482)                         | 2008 Mar 06                 | ACIS-S FAINT  | 19.88                | Wilkes et al. (2013)                                 |  |
| 75.0        | 02:57:41.570                                          | +06:01:36.92                 | 0.0232 | 0.456                     | 98.33                   | 4181 (04800347)                         | 2003 Sep 19                 | ACIS-I VFAINT | 21.49                | Balmaverde et al. (2006), Hudson et al. (2006)       |  |
| 78.0        | 03.08.26.222                                          | +04.06.39.26                 | 0.0287 | 0.560                     | 122.12                  | 4157 (04700407)                         | 2004 Jun 28                 | ACIS-S VEAINT | 50.86                | Harwood & Hardcastle (2012)                          |  |
| 88.0        | 03.27.54 171                                          | +02:33:42.24                 | 0.0302 | 0.588                     | 128.66                  | 11977 (11800517)                        | 2009 Oct 06                 | ACIS-S VEAINT | 49.62                | Sun (2009)                                           |  |
| 98.0        | 03:58:54 431                                          | +10:26:02.72                 | 0.0305 | 0.594                     | 129.97                  | 10234 (10700504)                        | 2009 Dec 24                 | ACIS-I VEAINT | 31.71                | Hodges-Kluck et al. $(2010)$                         |  |
| 99.0        | 04:01:07.6                                            | +00:36:33.1                  | 0.426  | 5 474                     | 2296.01                 | 5680 (06700612)                         | 2005 Nov 28                 | ACIS-S FAINT  | 5.07                 |                                                      |  |
| 129.1       | 04:50:06 645                                          | +45:03:05.91                 | 0.420  | 0.436                     | 94.03                   | 2219 (02800530)                         | 2001 Jan 09                 | ACIS-I FAINT  | 9.63                 | Krawczynski (2002)                                   |  |
| 136.1       | 05:16:03 275                                          | +24.58.25.68                 | 0.0222 | 1 198                     | 279.75                  | 9326 (09700606)                         | 2008 Jan 11                 | ACIS-S FAINT  | 9.05                 | Balmaverde et al. $(2012)$                           |  |
| 138.0       | 05:21:09.906                                          | +16:38:22.16                 | 0.759  | 7 273                     | 4641 94                 | 14996 (14700660)                        | 2008 Juli 11<br>2013 Mar 22 | ACIS-S FAINT  | 2.00                 | L Kuraszkiewicz et al. (2015, in preparation)        |  |
| 147.0       | 05:42:36 127                                          | +10.58.22.10<br>+40.51.07.10 | 0.739  | 6.276                     | 3271.83                 | 14997 (14700660)                        | 2013 Mar 22                 | ACIS-S FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 172.0       | 07:02:08 305                                          | +49.51.07.19                 | 0.545  | 6.110                     | 3083 34                 | 14008 (14700660)                        | 2013 Aug 20<br>2013 San 05  | ACIS S FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 172.0       | 07.12.02.303                                          | +25.15.55.52                 | 0.319  | 7 212                     | 4725.25                 | 14998 (14700660)                        | 2013 Sep 03                 | ACIS-S FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 175.0       | 07.13.02.422                                          | +11.40.10.23                 | 0.77   | 7.512                     | 5906 15                 | 14999 (14700660)                        | 2013 Feb 21<br>2013 Feb 10  | ACIS-5 FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 1/3.1       | 07:14:04.095                                          | +14:30:22.57                 | 0.92   | 7.734<br>9.275            | 3890.13                 | 13000 (14/00660)                        | 2013 Feb 10<br>2000 E-h 12  | ACIS-S FAINT  | 9.94                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 181.0       | 07:28:10.216                                          | +14:37:30.00                 | 1.382  | 8.373                     | 9802.28                 | 9246 (09700482)                         | 2009 Feb 12                 | ACIS-S FAINT  | 3.02                 | while set al. $(2013)$                               |  |
| 184.0       | 07:39:24.4                                            | +70:23:10.0                  | 0.994  | 7.917                     | 6493.56                 | 3226 (03800590)                         | 2002 Sep 22                 | ACIS-S VFAINT | 18.89                | Beisole et al. $(2004)$ , Hardcastle et al. $(2004)$ |  |
| 190.0       | 08:01:33.552                                          | +14:14:42.83                 | 1.1956 | 8.225                     | 81/9.15                 | 9247 (09700482)                         | 2007 Dec 31                 | ACIS-S FAINT  | 3.06                 | Wilkes et al. $(2013)$                               |  |
| 191.0       | 08:04:47.968                                          | +10:15:23.72                 | 1.956  | 8.375                     | 15096.31                | 5626 (06700234)                         | 2005 Dec 14                 | ACIS-S VFAINT | 19.77                | Erlund et al. $(2006)$                               |  |
| 192.0       | 08:05:35.005                                          | +24:09:50.36                 | 0.0597 | 1.123                     | 260.18                  | 9270 (09700606)                         | 2007 Dec 18                 | ACIS-S FAINT  | 10.02                | Hodges-Kluck et al. $(2010)$                         |  |
| 196.0       | 08:13:36.058                                          | +48:13:02.66                 | 0.871  | 7.627                     | 5507.36                 | 15001 (14/00660)                        | 2013 Mar 23                 | ACIS-S FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 200.0       | 08:27:25.384                                          | +29:18:45.01                 | 0.458  | 5.711                     | 2504.16                 | 838 (01700549)                          | 2000 Oct 06                 | ACIS-S FAINT  | 14.66                | Hardcastle et al. (2004)                             |  |
| 204.0       | 08:37:45.003                                          | +65:13:35.34                 | 1.112  | 8.119                     | 7470.55                 | 9248 (09700482)                         | 2008 Jan 13                 | ACIS-S FAINT  | 3.05                 | Wilkes et al. (2013)                                 |  |
| 205.0       | 08:39:06.534                                          | +57:54:17.09                 | 1.534  | 8.429                     | 11164.65                | 9249 (09700482)                         | 2008 Jan 26                 | ACIS-S FAINT  | 9.67                 | Wilkes et al. (2013)                                 |  |
| 208.0       | 08:53:08.608                                          | +13:52:54.85                 | 1.1115 | 8.118                     | 7466.35                 | 9250 (09700482)                         | 2008 Jan 08                 | ACIS-S FAINT  | 3.01                 | Wilkes et al. (2013)                                 |  |
| 210.0       | 08:58:10.0                                            | +27:50:54.9                  | 1.169  | 8.194                     | 7952.27                 | 5821 (06800802)                         | 2004 Dec 25                 | ACIS-S VFAINT | 20.57                | Gilmour et al. (2009)                                |  |
| 215.0       | 09:06:31.874                                          | +16:46:11.81                 | 0.4121 | 5.366                     | 2206.92                 | 3054 (03700563)                         | 2003 Jan 02                 | ACIS-S FAINT  | 33.80                | Hardcastle et al. (2004)                             |  |
| 216.0       | 09:09:33.498                                          | +42:53:46.51                 | 0.6699 | 6.916                     | 3978.18                 | 15002 (14700660)                        | 2013 Feb 25                 | ACIS-S FAINT  | 2.00                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 220.1       | 09:32:40.025                                          | +79:06:30.14                 | 0.61   | 6.632                     | 3545.74                 | 839 (01700549)                          | 1999 Dec 29                 | ACIS-S FAINT  | 18.92                | Worrall et al. (2001)                                |  |
| 220.3       | 09:39:23.4                                            | +83:15:26.2                  | 0.68   | 6.961                     | 4052.36                 | 14992 (14700660)                        | 2013 Jan 21                 | ACIS-S FAINT  | 9.94                 | Haas et al. $(2014)$                                 |  |
| 226.0       | 09:44:16.522                                          | +09:46:17.07                 | 0.8177 | 7.471                     | 5091.20                 | 15003 (14700660)                        | 2013 Oct 07                 | ACIS-S FAINT  | 9.94                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 228.0       | 09:50:10.794                                          | +14:20:00.68                 | 0.5524 | 6.319                     | 3141.17                 | 2095 (02700363)                         | 2001 Jun 03                 | ACIS-S FAINT  | 13.78                |                                                      |  |
| 241.0       | 10:21:54.6                                            | +21:59:31.2                  | 1.617  | 8.438                     | 11921.71                | 9251 (09700482)                         | 2008 Mar 13                 | ACIS-S FAINT  | 18.93                | Wilkes et al. (2013)                                 |  |
| 245.0       | 10:42:44.609                                          | +12:03:31.15                 | 1.0279 | 7.982                     | 6771.29                 | 2136 (02700500)                         | 2001 Feb 12                 | ACIS-S FAINT  | 10.40                | Gambill et al. (2003)                                |  |
| 249.1       | 11:04:13.842                                          | +76:58:58.17                 | 0.3115 | 4.474                     | 1587.34                 | 3986 (04700368)                         | 2003 Jul 02                 | ACIS-I VFAINT | 24.04                | Stockton et al. (2006)                               |  |
| 252.0       | 11:11:32.995                                          | +35:40:41.50                 | 1.1    | 8.102                     | 7370.04                 | 9252 (09700482)                         | 2008 Mar 11                 | ACIS-S FAINT  | 19.45                | Wilkes et al. (2013)                                 |  |
| 256.0       | 11:20:43.02                                           | +23:27:55.2                  | 1.819  | 8.417                     | 13798.51                | 1660 (02800089)                         | 2001 Apr 23                 | ACIS-I VFAINT | 71.25                | Vikhlinin et al. (2002)                              |  |
| 263.1       | 11:43:25.094                                          | +22:06:56.10                 | 0.824  | 7.490                     | 5140.19                 | 15004 (14700660)                        | 2013 Mar 20                 | ACIS-S FAINT  | 9.94                 | J. Kuraszkiewicz et al. (2015, in preparation)       |  |
| 266.0       | 11:45:43.30                                           | +49:46:08.0                  | 1.275  | 8.302                     | 8863.60                 | 9253 (09700482)                         | 2008 Feb 16                 | ACIS-S FAINT  | 18.23                | Wilkes et al. (2013)                                 |  |
| 267.0       | 11:49:56.506                                          | +12:47:18.83                 | 1.14   | 8.158                     | 7706.55                 | 9254 (09700482)                         | 2008 Jul 07                 | ACIS-S FAINT  | 19.18                | Wilkes et al. (2013)                                 |  |

Table 2

| Table 2     |  |
|-------------|--|
| (Continued) |  |

| 200   | D A (12000)  | 1.1.(12000)   |         | 1              | D           |                                    |                             | D. O. M. L    | Live          | D. Comment                                                                    |
|-------|--------------|---------------|---------|----------------|-------------|------------------------------------|-----------------------------|---------------|---------------|-------------------------------------------------------------------------------|
| 3CR   | K.A. (J2000) | deci. (J2000) | z       | (Imp(scale     | $D_{\rm L}$ | Chanara                            | Obs. Date                   | Data Mode     | lime          | References                                                                    |
| Name  | (nn mm ss)   | (dd min ss)   |         | (kpc/arcsec)   | (Mpc)       | Obs. and Proposal IDs              | yyyy-mm-dd                  |               | Ksec          |                                                                               |
| 268.1 | 12:00:24.482 | +73:00:45.81  | 0.97    | 7.868          | 6298.40     | 15005 (14700660)                   | 2013 Jul 08                 | ACIS-S FAINT  | 9.94          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 268.3 | 12:06:24.89  | +64:13:37.9   | 0.3717  | 5.032          | 1952.68     | 10382 (10700678)                   | 2009 Jul 29                 | ACIS-S VFAINT | 42.53         |                                                                               |
| 268.4 | 12:09:13.610 | +43:39:20.89  | 1.4022  | 8.385          | 9981.44     | 9325 (09700482)                    | 2009 Feb 23                 | ACIS-S FAINT  | 3.02          | Wilkes et al. (2013)                                                          |
| 270.1 | 12:20:33.881 | +33:43:11.99  | 1.5284  | 8.428          | 11113.88    | 9255 (09700482)                    | 2008 Feb 16                 | ACIS-S FAINT  | 9.67          | Wilkes et al. (2012)                                                          |
| 277.1 | 12:52:26.353 | +56:34:19.58  | 0.3198  | 4.556          | 1636.83     | 3102 (03700781)                    | 2002 Oct 27                 | ACIS-S VFAINT | 14.01         | Siemiginowska et al. (2008)                                                   |
| 277.3 | 12:54:12.010 | +27:37:33.86  | 0.0853  | 1.559          | 378.60      | 11391 (11700216)                   | 2010 Mar 03                 | ACIS-S VFAINT | 24.80         | Balmaverde et al. $(2012)$                                                    |
| 285.0 | 13:21:17.868 | +42:35:14.91  | 0.0794  | 1.461          | 351.00      | 6911 (07701073)                    | 2006 Mar 18                 | ACIS-S VFAINT | 39.62         | Hardcastle et al. (2006)                                                      |
| 286.0 | 13:31:08.292 | +30:30:32.95  | 0.8499  | 7.760          | 5341.81     | 15006 (14700660)                   | 2013 Feb 26                 | ACIS-S FAINT  | 2.00          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 287.0 | 13:30:37.689 | +25:09:10.96  | 1.055   | 7.567          | 6995.09     | 3103 (03700781)                    | 2002 Jan 06                 | ACIS-S VFAINT | 36.21         | Siemiginowska et al. (2008)                                                   |
| 288.0 | 13:38:49.9   | +38:51:09.5   | 0.246   | 3.777          | 1209.42     | 9257(09700482)                     | 2008 Apr 13                 | ACIS-S VFAINT | 39.64         | Hardcastle et al. (2007), Lal et al. (2010)                                   |
| 289.0 | 13:45:26.251 | +49:46:32.47  | 0.9674  | 7.862          | 6643.17     | 15007 (14700660)                   | 2013 Jul 28                 | ACIS-S FAINT  | 9.70          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 298.0 | 14:19:08.18  | +06:28:34.8   | 1.4381  | 8.401          | 10301.34    | 3104 (03700781)                    | 2002 Mar 01                 | ACIS-S VFAINT | 17.88         | Siemiginowska et al. (2008)                                                   |
| 299.0 | 14:21:05.631 | +41:44:48.68  | 0.367   | 4.991          | 1923.58     | 12019 (10700678)                   | 2009 Nov 08                 | ACIS-S VFAINT | 39.53         |                                                                               |
| 309.1 | 14:59:07.58  | +71:40:19.9   | 0.905   | 7.717          | 5776.46     | 3105 (03700781)                    | 2002 Jan 28                 | ACIS-S VFAINT | 16.95         |                                                                               |
| 310.0 | 15:04:57.12  | +26:00:58.5   | 0.0538  | 1.019          | 233.38      | 11845 (11700016)                   | 2010 Apr 09                 | ACIS-S FAINT  | 57.58         | Kraft et al. (2012)                                                           |
| 318.0 | 15:20:05.484 | +20:16:05.75  | 1.574   | 8.435          | 11528.39    | 9256 (09700482)                    | 2008 May 05                 | ACIS-S FAINT  | 9.78          | Wilkes et al. (2013)                                                          |
| 318.1 | 15:21:51.9   | +07:42:31.9   | 0.0453  | 0.867          | 195.26      | 900 (01800303)                     | 2000 Apr 03                 | ACIS-I VFAINT | 57.32         | Mazzotta et al. (2002)                                                        |
| 324.0 | 15:49:48.811 | +21:25:38.34  | 1.2063  | 8.237          | 8270.74     | 326 (01600145)                     | 2000 Jun 25                 | ACIS-S VFAINT | 42.18         | Boschin (2002)                                                                |
| 325.0 | 15:49:58.421 | +62:41:21.57  | 1.135   | 8.151          | 7664.22     | 6267 (05700521)                    | 2005 Apr 14                 | ACIS-S VFAINT | 29.65         | Salvati et al. (2008)                                                         |
| 334.0 | 16:20:21.819 | +17:36:23.90  | 0.5551  | 6.335          | 3159.91     | 2097 (02700363)                    | 2001 Aug 22                 | ACIS-S FAINT  | 32.47         | Hardcastle et al. (2004)                                                      |
| 336.0 | 16:24:39.090 | +23:45:12.23  | 0.9265  | 7.769          | 5948.01     | 15008 (14700660)                   | 2013 Mar 03                 | ACIS-S FAINT  | 2.00          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 337.0 | 16:28:52.569 | +44:19:06.58  | 0.635   | 6.755          | 3724.80     | 15009 (14700660)                   | 2013 Oct 05                 | ACIS-S FAINT  | 9.95          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 338.0 | 16:28:38.240 | +39:33:04.14  | 0.0304  | 0.592          | 129.53      | 10748 (10800906)                   | 2009 Nov 19                 | ACIS-I VFAINT | 40.58         | Kirkpatrick et al. (2011), Nulsen et al. (2013)                               |
| 340.0 | 16:29:36.591 | +23:20:12.83  | 0.7754  | 7.331          | 4766.4      | 15010 (14700660)                   | 2013 Oct 20                 | ACIS-S FAINT  | 9.95          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 343.0 | 16:34:33.809 | +62:45:35.89  | 0.988   | 7.905          | 6444.64     | 15011 (14700660)                   | 2013 Apr 28                 | ACIS-S FAINT  | 9.94          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 343.1 | 16:38:28.203 | +62:34:44.29  | 0.75    | 7.240          | 4573.74     | 15012 (14700660)                   | 2013 Feb 25                 | ACIS-S FAINT  | 9.94          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 352.0 | 17:10:44.138 | +46:01:28.47  | 0.8067  | 7.436          | 5006.3      | 15013 (14700660)                   | 2013 Oct 10                 | ACIS-S FAINT  | 9.95          | J. Kuraszkiewicz et al. (2015, in preparation)                                |
| 356.0 | 17:24:19.041 | +50:57:40.14  | 1.079   | 8.069          | 7194.59     | 9257 (09700482)                    | 2008 Jan 20                 | ACIS-S FAINT  | 19.87         | Wilkes et al. $(2013)$                                                        |
| 368.0 | 18:05:06.3   | +11:01:32.0   | 1.131   | 8.146          | 7630.44     | 9258 (09700482)                    | 2008 Jun 01                 | ACIS-S FAINT  | 19.91         | Wilkes et al. (2013)                                                          |
| 382.0 | 18:35:03.387 | +32:41:46.85  | 0.0579  | 1.092          | 251.98      | 6151 (05701042)                    | 2004 Oct 30                 | ACIS-S FAINT  | 63.87         | Gliozzi et al. (2007)                                                         |
| 388.0 | 18:44:02.374 | +45:33:29.56  | 0.0917  | 1.663          | 408.83      | 5295 (05700009)                    | 2004 Jan 29                 | ACIS-I VFAINT | 30.71         | Kraft et al. $(2006)$                                                         |
| 401.0 | 19.40.25 039 | +60.41.36.05  | 0.2011  | 3 236          | 962.99      | 4370 (03700685)                    | 2002 Sep 21                 | ACIS-S FAINT  | 24.85         | Revnolds et al. (2005)                                                        |
| 427.1 | 21:04:06 966 | +76.33.10.28  | 0.572   | 6 430          | 3277 55     | 2194 (02700664)                    | 2002 Jan 27                 | ACIS-S FAINT  | 39.45         | Hardcastle et al. $(2004)$ Belsole et al. $(2007)$                            |
| 432.0 | 21.22.46 327 | +17:04:37.96  | 1 785   | 8 424          | 13479 35    | 5624 (06700234)                    | 2002 Jan 27<br>2005 Jan 07  | ACIS-S VEAINT | 19.78         | Friend et al. $(2001)$ , Beisole et al. $(2007)$                              |
| 433.0 | 21.22.10.527 | +25:04:27.63  | 0.1016  | 1 823          | 456.17      | 7881 (08700989)                    | 2005 Jun 07                 | ACIS-S VEAINT | 37.17         | Miller & Brandt (2009)                                                        |
| 437.0 | 21.25.44.562 | +15.20.32.03  | 1.48    | 8 415          | 10677.05    | 9259 (09700482)                    | 2007 Aug 20<br>2008 Jap 07  | ACIS-S FAINT  | 10.88         | Wilkes et al. (2013)                                                          |
| 438.0 | 21.47.25.205 | +38.00.28.33  | 0.20    | 4 257          | 1/60.96     | 12879 (12800244)                   | 2000 Jan 07<br>2011 Jan 28  | ACIS-S VEAINT | 72.04         | Hardcastle et al. $(2013)$                                                    |
| 441.0 | 22:06:04:00  | +30.00.20.33  | 0.29    | 7.078          | 4259 10     | 15656 (14700660)                   | 2011 Jan 26                 | ACIS-S FAINT  | 6.98          | L Kuraszkiewicz et al. $(2004)$                                               |
| 442.0 | 22.00.04.90  | +29.29.20.0   | 0.0263  | 0.515          | 4239.10     | 6302 (06700271)                    | 2015 Juli 20<br>2005 Oct 07 | ACIS I VEAINT | 32.60         | Worrall et al. $(2007)$ Hardcastle et al. $(2007)$                            |
| 442.0 | 22.14.40.094 | +13.30.27.15  | 0.0203  | 0.315          | 72 12       | 13123 (11800387)                   | 2003 Oct 07<br>2010 Sep 20  | ACIS-S VEAINT | 50.09         | I al et al. $(2007)$ , finitucastic et al. $(2007)$                           |
| 455.0 | 22.51.20.362 | +39.21.29.35  | 0.543   | 6 264          | 3240.00     | 15125(11000507)<br>15014(14700660) | 2010 Sep 20<br>2013 Aug 12  | ACIS-S FAINT  | 0.05          | Let $\mathbf{u} \in (2015)$<br>I. Kuraszkiewicz et al. (2015, in preparation) |
| 455.0 | 22.33.03.91  | +15.15.55.0   | 1 3 2 6 | 8 248          | 0306 52     | 0.014 (14700000)                   | 2015 Aug 15<br>2000 May 24  | ACIS-S FAINT  | 7.7J<br>10.01 | Wilkes et al. $(2013)$                                                        |
| 409.1 | 23.55.25.054 | +17.33.10.20  | 1.550   | 0.340<br>8 420 | 12252 69    | 9200 (09700402)<br>0261 (00700402) | 2009 May 24<br>2008 Mar 02  | ACIS-S FAINT  | 19.91         | Wilkes at al. $(2013)$                                                        |
| 4/0.0 | 23.36.33.910 | T44.04.45.51  | 1.055   | 0.439          | 12232.08    | 9201 (09700482)                    | 2006 Iviai 03               | ACIS-S FAINI  | 19.91         | which that $(2013)$                                                           |

4

Massaro

 $\mathbf{ET}$ 

ΑĽ.

Notes. Col. (1): the 3CR name. Col. (2): R.A. and decl. (equinox J2000) of the radio position used to perform the registration (see Section 4 for details). We reported here the original 3CR position (Spinrad et al. 1985) of the sources for which the radio core was not clearly detected. Col. (3): redshift *z*. We also verified in the literature (e.g., NED and/or SIMBAD databases) if new *z* values were reported after the release of the 3CR catalog. Col. (4): the angular to linear scale factor in arcseconds. Cosmological parameters used to compute it are reported in Section 1. Col. (5): luminosity distance in Mpc. Cosmological parameters used to compute it are reported in parentheses. Col. (7): *Chandra* observation date. Col. (8): data mode indicates how the *Chandra* ACIS detector was configured for the observation analyzed. Col. (9): the live time of the *Chandra* observation. Col. (10): the reference for the *Chandra* observation.

 Table 3

 Summary of Radio Observations

|           | NRAO Pro- |       | Time on |                                                        |
|-----------|-----------|-------|---------|--------------------------------------------------------|
| Name      | ject ID   | Freq  | Source  | HPBW                                                   |
|           |           | (GHz) | (s)     | $(\operatorname{arcsec} \times \operatorname{arcsec})$ |
| 3CR 210   | AO230     | 1.42  | 1200    | $1.66 \times 1.62$                                     |
| 3CR 256   | AM224     | 4.76  | 180     | $1.72 \times 1.35$                                     |
| 3CR 267   | AL330     | 8.44  | 1620    | $0.81 \times 0.74$                                     |
| 3CR 277.1 | AV231     | 22.46 | 360     | $0.097 \times 0.080$                                   |
| 3CR 437   | AV164     | 4.86  | 1500    | $1.22 \times 1.17$                                     |
| 3CR 470   | AL330     | 8.46  | 1780    | $1.54 \times 1.27$                                     |

**Notes.** Col. (1): the 3CR name. Col. (2): the identification number of the observer program, as reported in the header of the raw u,v data downloaded from the VLA archive (see https://archive.nrao.edu/archive/nraodashelpj.html for more details). Col. (3): the frequency at which the radio observations were performed. Col. (4): the total exposure in seconds. Col. (5): the half-power beam width (HPBW) of the reduced radio images.

### 4.2. X-Ray Observations

The data reduction was performed following the standard procedure described in the *Chandra* Interactive Analysis of Observations (CIAO) threads,<sup>12</sup> using CIAO v4.6 and the *Chandra* Calibration Database (CALDB) version 4.6.2. Level 2 event files were generated using the *acis\_process\_events* task, and events were filtered for grades 0, 2, 3, 4, and 6. Light curves were also extracted for every data set, thus confirming the absence of high background intervals. Astrometric registration was achieved by aligning the nuclear X-ray position with that of the radio (see, e.g., Massaro et al. 2010, 2011).

Three different flux maps were created in the energy ranges 0.5-1 keV (soft), 1-2 keV (medium), and 2-7 keV (hard). Flux maps, as implemented in CIAO, are corrected for exposure time and effective area, and our implementation used monochromatic exposure maps. Each band is assigned a nominal energy; in our case, the nominal energies are 0.75, 1.4, and 4 keV for the soft, medium, and hard bands, respectively, and the exposure maps are constructed for these nominal values. Since the natural units of X-ray flux maps are counts  $s^{-1}$  cm<sup>-2</sup>, we converted them to cgs units by multiplying each event by the nominal energy of its band, thereby assuming that every event in the band has the same energy. However, when we perform our photometry, we make the necessary correction to recover the observed erg  $\text{cm}^{-2} \text{ s}^{-1}$ . The use of the "nominal energy" is only to obtain the correct units. The total energy for any particular region is recovered by applying a correction factor of E (average)/E (nominal) to the photometric measurement. To derive E(average), the actual values were measured with the CIAO tool dmstat. This correction ranged from a few percent to 15%.

To measure the observed fluxes for the nuclear emission, as well as for any feature, a region of size and shape appropriate to the observed X-ray emission was chosen. Two background regions, each with the same shape and size, were chosen so as to avoid emission from other parts of the source and to sample both sides of jet features or two areas close to hotspots. The flux in any particular band for any particular region was measured using funtools<sup>13</sup> (see also Massaro et al. 2011).

A  $1\sigma$  error is calculated based on the usual  $\sqrt{\text{number-of-counts}}$  in the source and background regions. The fluxes reported here are not corrected for Galactic absorption. X-ray fluxes measured for the cores are reported in Table 4, while those for the radio jet knots and hotspots detected are given in Table 5.

At the focal point, the *Chandra* mirrors produce an image of a point source with an FWHM of the order of 0".7. Since the native ACIS pixel size is 0".492, the data are undersampled. To recover the resolution inherent in the telescope, we normally regrid our images with binning factors of 1/2, 1/4, or 1/8 of the native ACIS pixel size. The choice of binning factor was dictated by the angular size of the radio source and by the number of counts in source components. The fact that the telescope dithers during each observation, together with the fact that real numbers rather than integers are used throughout for event location, permits us to achieve adequate Nyquist sampling of the point-spread function (PSF). For sources of large angular extent, 1/2 or no regridding was used (see also Massaro et al. 2012, 2013, for more details).

### 5. RESULTS

X-ray emission was clearly detected for 85 out of 93 nuclei in our sample. For 3CR 441, we did not perform X-ray photometry since the number of counts measured within a circular region of 2" centered on the radio position is consistent with the background. For an additional four sources, namely, 3CR 99, 3CR 220.3, 3CR 256, and 3CR 368, we measured too few X-ray counts to define a discrete nucleus in the *Chandra* image. In the three sources 3CR 28, 3CR 288, and 3CR 310, we could not measure the X-ray flux because the extended emission from the cluster washes out the discrete nuclear emission. For all of the other sources, the nuclear X-ray fluxes in the three bands (see Section 4.2), together with their X-ray luminosities, are reported in Table 4.

A detailed spectral analysis for the bright cores is beyond the scope of this paper since a large fraction of the sources were extensively analyzed in the literature. As in our previous investigations, in Table 4, we also report an "extended emission" parameter computed as the ratio of the net counts in the r = 2'' circle to the net counts in the r = 10'' circular region surrounding the core of each 3CR source (i.e., Ext. Ratio "Extent Ratio"). Values significantly less than 0.9 indicate the presence of extended emission around the nuclear component (e.g., Massaro et al. 2010, 2013).

We detected and report here the X-ray emission of 8 radio jet knots in 7 sources and 17 hotspots in 13 objects; no emission arising from lobes was found. To the best of our knowledge, two of our jet knot detections (3CR 78 and 3CR 245) and all of the hotspots had not previously been reported in the literature.

X-ray fluxes for radio jet knots and hotspots found in the 3CR sample are reported in Table 5, where the classification of each component is also provided. The significance of all detections is above  $5\sigma$ , with the exception of the northern hotspot in 3CR 470 (i.e., n14.4), which corresponds to a ~1 $\sigma$  detection. These significances have been computed assuming a Poisson distribution for the background as in Massaro et al. (2013).

In our sample, there are also 15 sources, members of galaxy clusters, for which extended X-ray emission is clearly visible, all previously known as cluster-related X-ray sources. For each galaxy cluster in our sample, we present the basic parameters in

<sup>&</sup>lt;sup>12</sup> http://cxc.harvard.edu/ciao/guides/index.html

<sup>&</sup>lt;sup>13</sup> http://www.cfa.harvard.edu/john/funtools

Table 4X-Ray Emission from Radio Cores

| 3CR                       | Net Counts            | Ext. Ratio                 | $F_{0.5-1 \text{ keV}}^{a}$ | $F_{1-2 \text{ keV}}^{a}$       | $F_{2-7 \text{ keV}}^{a}$       | $F_{0.5-7 \text{ keV}}^{a}$    | L <sub>X</sub>                 |
|---------------------------|-----------------------|----------------------------|-----------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Name                      |                       |                            | (cgs)                       | (cgs)                           | (cgs)                           | (cgs)                          | $(10^{44} \text{ erg s}^{-1})$ |
| 2.0                       | 839 (29)              | 0.34 (0.02)                | 77.79 (7.04)                | 125.34 (6.16)                   | 291.05 (17.06)                  | 494.18 (19.45)                 | 31.07 (1.22)                   |
| 13.0                      | 14 (4)                | 0.50 (0.18)                | 0.79 (0.4)                  | 0.88(0.4)                       | 3.02 (1.51)                     | 4.69 (1.61)                    | 0.57 (0.2)                     |
| 14.0                      | 228 (15)              | 0.94 (0.09)                | 59.38 (8.38)                | 129.09 (12.48)                  | 314.41 (37.58)                  | 502.88 (40.47)                 | 75.48 (6.07)                   |
| 22.0                      | 64 (8)                | 0.83 (0.14)                | 0.0(0.0)                    | 4.82 (1.64)                     | 95.56 (13.0)                    | 100.38 (13.11)                 | 4.9 (0.64)                     |
| 35.0                      | 12(3)                 | 0.61 (0.24)                | 0.0(0.0)                    | 1.14 (0.47)                     | 2.93 (1.19)                     | 4.07 (1.28)                    | 0.0005 (0.0002)                |
| 40.0                      | 2443 (49)             | 0.54(0.02)                 | 80.69 (2.21)                | 35.59 (1.45)                    | 95.95 (4.95)<br>216.20 (20.50)  | 212.24 (5.61)                  | 0.00146 (0.00004)              |
| 45.0<br>48.0 <sup>b</sup> | 102 (15)<br>5814 (76) | 0.98(0.11)                 | 42.9(0.78)                  | 87.82 (10.28)<br>808 37 (17.05) | 210.29(30.39)<br>1514 14(46.08) | 347.0(32.97)<br>3021.51(51.09) | 32.17(4.90)<br>15.0 (0.25)     |
| 40.0                      | 156(12)               | 0.96(0.02)                 | 0.31(0.7)                   | 23 32 (3 33)                    | 162 79 (15 66)                  | 186.42 (16.03)                 | 3.28(0.23)                     |
| 49.0<br>65.0              | 130(12)<br>196(14)    | 0.90(0.11)<br>0.05(0.02)   | 0.51(0.7)<br>0.89(0.4)      | 1346(16)                        | 77 54 (7 09)                    | 91.9 (7.28)                    | 7.91 (0.63)                    |
| 68.1                      | 41 (6)                | 0.9 (0.19)                 | 4.85 (2.42)                 | 18.1 (4.84)                     | 115.99 (24.18)                  | 138.93 (24.78)                 | 13.6 (2.43)                    |
| 68.2                      | 9 (3)                 | 0.28 (0.12)                | 0.21 (0.21)                 | 0.37 (0.26)                     | 5.08 (2.07)                     | 5.66 (2.1)                     | 1.01 (0.37)                    |
| 75.0                      | 219 (15)              | 0.79 (0.07)                | 23.62 (2.87)                | 14.86 (1.73)                    | 57.96 (6.81)                    | 96.44 (7.59)                   | 0.0013 (0.0001)                |
| 78.0 <sup>b</sup>         | 20856 (144)           | 0.92 (0.01)                | 432.13 (5.1)                | 647.73 (6.62)                   | 1004.17 (15.55)                 | 2084.03 (17.65)                | 0.0396 (0.0003)                |
| 88.0                      | 659 (26)              | 0.6                        | 3.23 (0.61) (0.03)          | 18.44 (1.24)                    | 109.08 (5.59)                   | 130.75 (5.76)                  | 0.0029 (0.0001)                |
| 98.0                      | 1245 (35)             | 0.93 (0.04)                | 6.06 (1.24)                 | 9.53 (1.19)                     | 682.98 (20.18)                  | 698.57 (20.26)                 | 0.0153 (0.0004)                |
| 129.1                     | 14 (4)                | 0.22 (0.06)                | 0.87 (0.87)                 | 4.45 (1.51)                     | 0.7 (2.27)                      | 6.03 (2.86)                    | 7.02e-5 (3.33e-5)              |
| 136.1                     | 6 (2)                 | 0.17 (0.17)                | 0.53 (0.53)                 | 0.54 (0.38)                     | 5.57 (3.22)                     | 6.64 (3.28)                    | $0.0007 \ (0.0003)$            |
| 138.0 <sup>b</sup>        | 385 (20)              | 0.96 (0.07)                | 116.59 (16.7)               | 330.91 (25.32)                  | 1232.66 (96.62)                 | 1680.17 (101.27)               | 48.56 (2.93)                   |
| 147.0                     | 150 (12)              | 0.99 (0.11)                | 44.12 (10.7)                | 160.22 (17.8)                   | 341.21 (47.89)                  | 545.54 (52.2)                  | 6.99 (0.67)                    |
| 172.0                     | 26 (5)                | 0.70 (0.18)                | 0.0 (0.0)                   | 1.81 (0.91)                     | 43.38 (9.09)                    | 45.19 (9.13)                   | 0.51 (0.1)                     |
| 175.0 <sup>0</sup>        | 355 (19)              | 0.95 (0.07)                | 160.43 (19.35)              | 308.97 (24.35)                  | 831.95 (75.32)                  | 1301.35 (81.49)                | 38.73 (2.43)                   |
| 175.1                     | 86 (9)                | 0.89 (0.13)                | 4.91 (1.55)                 | 16.32 (2.56)                    | 43.87 (7.66)                    | 65.1 (8.23)                    | 3.04 (0.38)                    |
| 181.0                     | 166 (13)              | 0.96(0.10)                 | 55.43 (7.86)                | 91.52 (10.51)                   | 181.96 (29.52)                  | 328.91 (32.3)                  | 42.39 (4.16)                   |
| 184.0                     | 38 (6)                | 0.75(0.16)                 | 0.72(0.32)                  | $0.86\ (0.38)$                  | 21.92(4.07)                     | 23.5(4.1)                      | 1.33(0.23)                     |
| 190.0                     | 105(13)               | 0.96(0.10)                 | 49.91 (7.72)                | 96./3 (10.62)<br>57.12 (2.17)   | 150.5(24.1)<br>121.57(0.04)     | 297.14(27.44)                  | 26.74(2.47)                    |
| 191.0                     | (15(27))              | 0.95(0.05)<br>0.72(0.15)   | 52.00(2.25)<br>1.77(0.72)   | 37.13(3.17)<br>3.15(1.12)       | 121.57 (9.04)<br>52.72 (0.82)   | 211.37 (9.84)                  | 04.02(3.01)                    |
| 192.0                     | 40 (7)<br>87 (9)      | 0.72(0.13)                 | 1.77(0.72)<br>10.4(5.2)     | 87 35 (13 75)                   | 297.91(45.97)                   | 395.67 (48.26)                 | 16.1 (1.96)                    |
| 200.0                     | 202(14)               | 0.90(0.13)<br>0.81(0.08)   | 10.4(5.2)<br>11.55(1.36)    | 19.61(2.1)                      | 32.8(5.19)                      | 63 97 (5 76)                   | 0.54(0.05)                     |
| 200.0 <sup>b</sup>        | 343(19)               | 0.01 (0.00)<br>0.96 (0.07) | 114.07 (11.21)              | 190.04 (14.9)                   | 301 77 (35 56)                  | 605.89 (40.15)                 | 45 36 (3.01)                   |
| 205.0 <sup>b</sup>        | 969 (31               | 0.95(0.04)                 | 83.36 (5.42)                | 160.57 (7.62)                   | 381.82 (22.71)                  | 625.75 (24.56)                 | 104.63 (4.11)                  |
| 208.0                     | 260 (16)              | 0.98 (0.09)                | 81.55 (9.68)                | 135.04 (12.54)                  | 314.41 (36.8)                   | 531.0 (40.06)                  | 39.57 (2.99)                   |
| 210.0                     | 28 (5)                | 0.31 (0.08)                | 0.07 (0.16)                 | 1.7 (0.54)                      | 15.04 (3.67)                    | 16.82 (3.72)                   | 1.43 (0.32)                    |
| 215.0 <sup>b</sup>        | 11445 (107)           | 0.96 (0.01)                | 306.26 (5.02)               | 480.6 (6.97)                    | 1140.72 (21.07)                 | 1927.58 (22.75)                | 12.51 (0.15)                   |
| 216.0 <sup>b</sup>        | 244 (16)              | 0.97 (0.09)                | 134.19 (17.93)              | 203.98 (19.72)                  | 553.56 (62.16)                  | 891.73 (67.63)                 | 18.94 (1.44)                   |
| 220.1                     | 1072 (33)             | 0.79 (0.03)                | 49.97 (2.44)                | 70.94 (3.55)                    | 162.57 (10.71)                  | 283.48 (11.55)                 | 4.98 (0.2)                     |
| 226.0                     | 54 (7)                | 0.83 (0.15)                | 0.63 (0.63)                 | 4.33 (1.46)                     | 64.42 (9.97)                    | 69.38 (10.09)                  | 2.41 (0.35)                    |
| 228.0                     | 338 (18)              | 0.93 (0.07)                | 19.88 (1.9)                 | 34.71 (2.88)                    | 79.68 (8.92)                    | 134.28 (9.57)                  | 1.77 (0.13)                    |
| 241.0                     | 146 (12)              | 1.00 (0.12)                | 1.75 (0.58)                 | 13.25 (1.61)                    | 48.95 (5.89)                    | 63.96(6.14)                    | 12.19 (1.17)                   |
| 245.0                     | 1835 (43)             | 0.94 (0.03)                | 154.08 (6.21)               | 264.18 (9.48)                   | 608.4 (29.24)                   | 1026.67 (31.37)                | 63.31 (1.93)                   |
| 249.1                     | 4367 (66)             | 0.96 (0.02)                | 252.12 (8.42)               | 322.33 (7.58)                   | 1041.37 (25.72)                 | 1615.82 (28.11)                | 5.44 (0.09)                    |
| 252.0                     | 86 (9)                | 0.64 (0.09)                | 0.19(0.19)                  | 4.25 (0.94)                     | 51.24 (6.52)                    | 55.67 (6.59)                   | 4.08 (0.48)                    |
| 263.1                     | 430 (21)              | 0.96(0.07)                 | 52.7(5.0)                   | /0.61 (5.15)                    | 180.43 (15.76)                  | 303.74(17.32)                  | 10.77(0.61)                    |
| 200.0                     | 19 (4)<br>166 (12)    | 1.07(0.42)                 | 0.5(0.29)                   | 0.81 (0.41)                     | 9.29 (2.08)                     | 10.01 (2.73)<br>02.52 (7.07)   | 1.12(0.29)                     |
| 207.0                     | 100(13)               | 0.89(0.10)                 | 0.88(0.4)                   | 10.0(1.41)<br>1.21(0.88)        | 60.37(0.31)                     | 92.33 (1.91)<br>61.08 (0.36)   | 7.37(0.03)                     |
| 208.1                     | 308(20)               | 0.94(0.20)                 | 1.3(0.3)                    | 1.21 (0.88)                     | 117.52(6.54)                    | 123 4 (6 58)                   | 0.63(0.03)                     |
| 268.4                     | 282(17)               | 0.98(0.08)                 | 78 15 (9 55)                | 145.82(12.99)                   | 375 22 (40 28)                  | 599 19 (43 39)                 | 79.76 (5.78)                   |
| 270.1 <sup>b</sup>        | 691 (26)              | 0.94(0.05)                 | 69.18 (4.89)                | 120.54(6.72)                    | 219.62 (17.11)                  | 409.34 (19.02)                 | 66.79 (3.1)                    |
| 277.1                     | 2287 (48)             | 0.95 (0.03)                | 167.79 (5.7)                | 225.01 (7.37)                   | 468.66 (21.27)                  | 861.45 (23.22)                 | 3.1 (0.08)                     |
| 277.3                     | 229 (15)              | 0.81 (0.07)                | 1.38 (0.5)                  | 4.28 (0.83)                     | 140.84 (10.18)                  | 146.5 (10.22)                  | 0.028 (0.002)                  |
| 285.0                     | 457 (21)              | 0.87 (0.06)                | 0.34 (0.2)                  | 1.44 (0.38)                     | 216.95 (10.38)                  | 218.73 (10.39)                 | 0.036 (0.002)                  |
| 286.0                     | 117 (11)              | 0.96 (0.12)                | 87.64 (14.08)               | 100.04 (13.74)                  | 158.45 (31.69)                  | 346.14 (37.3)                  | 13.21 (1.42)                   |
| 287.0                     | 3424 (59)             | 0.97 (0.02)                | 95.29 (2.62)                | 129.05 (3.45)                   | 245.11 (9.29)                   | 469.45 (10.25)                 | 30.81 (0.67)                   |
| 289.0                     | 52 (7)                | 0.75 (0.13)                | 0.0(0.0)                    | 3.01 (1.37)                     | 78.49 (11.63)                   | 81.5 (11.71)                   | 4.3 (0.62)                     |
| 298.0 <sup>b</sup>        | 9993 (100)            | 0.97 (0.01)                | 493.95 (8.59)               | 821.4 (12.42)                   | $1660.05\ (34.61)$              | 2975.41 (37.76)                | 424.2 (5.38)                   |
| 299.0                     | 81 (9)                | 0.77 (0.12)                | 0.9 (0.28)                  | 0.53 (0.22)                     | 30.86 (3.81)                    | 32.29 (3.82)                   | 0.16(0.02)                     |
| 309.1 <sup>b</sup>        | 5254 (72)             | 0.97 (0.02)                | 259.9 (6.33)                | 423.95 (9.19)                   | 1145.75 (30.3)                  | 1829.6 (32.29)                 | 81.67 (1.44)                   |
| 318.0                     | 256 (16)              | 0.96 (0.08)                | 23.6 (2.87)                 | 43.99 (4.0)                     | 89.4 (11.0)                     | 156.99 (12.05)                 | 4.43 (0.34)                    |
| 318.1                     | 106 (10)              | $0.071 \ (0.004)$          | 2.79 (0.99)                 | 4.82 (1.09)                     | 3.97 (2.37)                     | 11.57 (2.79)                   | $0.0006 \ (0.0002)$            |

|                    |             |              |                                                         | (Continued)                                    |                                                |                                                         |                                    |
|--------------------|-------------|--------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------------------|
| 3CR<br>Name        | Net Counts  | Ext. Ratio   | $\frac{F_{0.5-1 \text{ keV}}^{\text{a}}}{(\text{cgs})}$ | $\frac{F_{1-2 \text{ keV}}^{a}}{(\text{cgs})}$ | $\frac{F_{2-7 \text{ keV}}^{a}}{(\text{cgs})}$ | $\frac{F_{0.5-7 \text{ keV}}^{\text{a}}}{(\text{cgs})}$ | $L_X (10^{44} \text{ erg s}^{-1})$ |
| 324.0              | 40 (6)      | 0.61 (0.14)  | 0.64 (0.18)                                             | 0.92 (0.27)                                    | 5.48 (1.49)                                    | 7.05 (1.52)                                             | 0.65 (0.14)                        |
| 325.0              | 365 (19)    | 0.86 (0.06)  | 2.6 (0.57)                                              | 19.23 (1.58)                                   | 93.96 (6.8)                                    | 115.79 (7.01)                                           | 4.56 (0.28)                        |
| 334.0 <sup>b</sup> | 7178 (85)   | 0.96 (0.02)  | 203.45 (3.98)                                           | 292.96 (5.48)                                  | 684.21 (16.74)                                 | 1180.62 (18.06)                                         | 15.81 (0.24)                       |
| 336.0 <sup>b</sup> | 191 (14)    | 0.95 (0.10)  | 98.63 (15.04)                                           | 184.79 (19.01)                                 | 343.29 (47.61)                                 | 626.71 (53.42)                                          | 29.78 (2.54)                       |
| 337.0              | 9 (3)       | 0.53 (0.23)  | 0.0(0.0)                                                | 1.1 (0.79)                                     | 11.33 (4.28)                                   | 12.43 (4.35)                                            | 0.23 (0.08)                        |
| 338.0              | 246 (16)    | 0.092(0.005) | 16.48 (2.67)                                            | 13.33 (2.08)                                   | 12.17 (3.91)                                   | 41.97 (5.17)                                            | 0.0009 (0.0001)                    |
| 340.0              | 86 (9)      | 0.92 (0.14)  | 1.46 (0.86)                                             | 11.56 (2.32)                                   | 84.78 (11.25)                                  | 97.8 (11.52)                                            | 2.98 (0.35)                        |
| 343.0              | 18 (4)      | 0.76 (0.25)  | 2.88 (1.18)                                             | 2.46 (1.02)                                    | 6.61 (2.96)                                    | 11.95 (3.34)                                            | 0.67 (0.19)                        |
| 343.1              | 47 (7)      | 1.04 (0.22)  | 3.02 (1.23)                                             | 9.88 (2.06)                                    | 25.2 (6.15)                                    | 38.09 (6.6)                                             | 1.07 (0.19)                        |
| 352.0              | 129 (11)    | 0.88 (0.11)  | 2.57 (1.31)                                             | 22.66 (3.21)                                   | 95.99 (11.47)                                  | 121.22 (11.98)                                          | 4.05 (0.4)                         |
| 356.0              | 24 (5)      | 0.38 (0.09)  | 0.35 (0.33)                                             | 0.73 (0.43)                                    | 13.24 (3.12)                                   | 14.32 (3.17)                                            | 0.99 (0.22)                        |
| 382.0 <sup>b</sup> | 14052 (119) | 0.86 (0.01)  | 72.82 (1.91)                                            | 174.65 (3.14)                                  | 2363.24 (24.23)                                | 2610.71 (24.5)                                          | 0.215 (0.002)                      |
| 388.0              | 271 (16)    | 0.28 (0.02)  | 20.53 (2.4)                                             | 19.15 (1.82)                                   | 19.28 (3.63)                                   | 58.96 (4.71)                                            | 0.013 (0.001)                      |
| 401.0              | 229 (15)    | 0.34 (0.02)  | 9.48 (1.12)                                             | 12.35 (1.44)                                   | 26.96 (3.96)                                   | 48.79 (4.36)                                            | 0.06 (0.01)                        |
| 427.1              | 18 (4)      | 0.22 (0.05)  | 0.24 (0.16)                                             | 0.24 (0.24)                                    | 4.85 (1.56)                                    | 5.33 (1.59)                                             | 0.08(0.02)                         |
| 432.0              | 730 (27)    | 0.93 (0.05)  | 34.32 (2.33)                                            | 57.96 (3.23)                                   | 120.42 (8.81)                                  | 212.7 (9.67)                                            | 53.29 (2.42)                       |
| 433.0 <sup>b</sup> | 2724 (52)   | 0.92 (0.02)  | 2.69 (0.55)                                             | 13.24 (1.25)                                   | 1139.84 (22.48)                                | 1155.78 (22.52)                                         | 0.32 (0.01)                        |
| 437.0              | 7 (3)       | 0.43 (0.19)  | 0.2 (0.2)                                               | 0.37 (0.26)                                    | 4.1 (2.09)                                     | 4.67 (2.12)                                             | 0.71 (0.32)                        |
| 438.0              | 162 (13)    | 0.1 (0.01)   | 1.2 (0.38)                                              | 3.62 (0.62)                                    | 14.83 (2.22)                                   | 19.65 (2.34)                                            | 0.06 (0.01)                        |
| 442.0              | 181 (13)    | 0.58 (0.06)  | 3.08 (0.99)                                             | 13.86 (1.53)                                   | 41.91 (4.58)                                   | 58.85 (4.93)                                            | 0.00096 (8e-5)                     |
| 449.0              | 558 (24)    | 0.54 (0.03)  | 12.81 (0.97)                                            | 13.41 (0.95)                                   | 31.81 (2.77)                                   | 58.02 (3.08)                                            | 0.0004 (2e-5)                      |
| 455.0              | 150 (12)    | 0.96 (0.11)  | 13.61 (2.62)                                            | 29.18 (3.39)                                   | 64.09 (9.16)                                   | 106.88 (10.11)                                          | 1.35 (0.13)                        |
| 469.1              | 77 (9)      | 0.72 (0.11)  | 0.32 (0.23)                                             | 2.66 (0.78)                                    | 47.29 (6.02)                                   | 50.27 (6.07)                                            | 5.95 (0.72)                        |
| 470.0              | 54 (7)      | 0.76 (0.14)  | 0.0~(0.0)                                               | 1.46 (0.61)                                    | 35.08 (5.06)                                   | 36.54 (5.1)                                             | 7.36 (1.03)                        |

Table 4

Notes. Col. (1): the 3CR name. Col. (2): the net counts. The  $1\sigma$  uncertainties, reported in parentheses, are computed assuming a Poisson distribution. Col. (3): the Ext. Ratio defined as the ratio of the net counts in the r = 2'' circle to the net counts in the r = 10'' circular region surrounding the core of each 3CR source. The  $1\sigma$  uncertainties, reported in parentheses, are computed assuming a Poisson distribution. Col. (4): measured X-ray flux between 0.5 and 1 keV. Col. (5): measured X-ray flux between 1 and 2 keV. Col. (6): measured X-ray flux between 2 and 7 keV. Col. (7): measured X-ray flux between 0.5 and 7 keV. Col. (8): X-ray luminosity in the range 0.5–7 keV, with the  $1\sigma$  uncertainties given in parentheses.

<sup>a</sup> Fluxes are given in units of  $10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup>, and  $1\sigma$  uncertainties are given in parentheses. The uncertainties on the flux measurements were computed as described in Section 4.2.

<sup>b</sup> Sources having count rates above the threshold of 0.1 counts per frame for which the X-ray flux measurements is affected by pileup (see Massaro et al. 2013, and references therein for additional details).

Table 6: the associated 3CR radio source, the alternative X-ray or optical name if it was a known galaxy cluster, the size of the X-ray emission estimated as the radius of a circular region surrounding its emission, both in arcseconds and in kiloparsecs, together with the number of counts within the same area. A dedicated analysis of the 3CR sources in galaxy clusters, listed in the *Chandra* snapshot survey, will be presented in a future paper.

All of the X-ray images for the selected sample are presented in Appendix A.

### 6. SUMMARY AND CONCLUSIONS

We have described the combined radio–X-ray analyses of 93 3CR radio sources for which *Chandra* observations, requested by others for many different reasons, were already present in the archive. The main objectives of the present analysis are (1) to present a uniform X-ray and radio database for the 3CR catalog; (2) to search for possible detections of X-ray emission from radio jet knots, hotspots, and lobes; and (3) to look for new galaxy cluster detections surrounding the 3CR radio sources.

In order to perform the radio–X-ray comparison, we reduced archival radio observations for six sources. We focused on the comparison between the radio and X-ray emission from extended components such as radio jet knots, hotspots, and lobes. We discovered 2 new radio jet knots and 17 hotspots emitting in the X-ray. Flux maps for all of the X-ray observations were constructed, and we provided photometric results for all of the extended components detected.

All of the radio knots and hotspots have been classified on the basis of the radio morphology of their parent source, adopting the definition suggested by Leahy et al. (1997) for the hotspots, i.e., brightness peaks that are neither the core nor a part of the jet, usually lying where the jet terminates, and considering all other discrete brightness enhancements as jet knots.

The following conventions for labeling the extended structures detected in the X-rays were adopted. We indicated with the letter "k" the jet knots and with "h" the hotspots; then, the name of each component is a combination of one letter (indicating the cardinal direction of the radio feature with respect to the nucleus) and one number (indicating the distance from the core in arcsec) as described in Massaro et al. (2011). We also reported the presence of 15 X-ray galaxy clusters

|       |          |      |       | Tabl     | e 5        |        |       |     |          |    |
|-------|----------|------|-------|----------|------------|--------|-------|-----|----------|----|
| X-Ray | Emission | from | Radio | Extended | Structures | (i.e., | Knots | and | Hotspots | ;) |

| 3CR<br>Name | Component          | Class | Counts     | $F_{0.5-1 \text{ keV}}^{a}$ | $F_{1-2 \text{ keV}}^{a}$ | $F_{2-7 \text{ keV}}^{a}$ | $F_{0.5-7 \text{ keV}}^{a}$ | $L_X$ (10 <sup>42</sup> erg s <sup>-1</sup> ) |
|-------------|--------------------|-------|------------|-----------------------------|---------------------------|---------------------------|-----------------------------|-----------------------------------------------|
| 13.0        | n16.5              | h     | 5 (0 375)  | 0.58 (0.34)                 | 0.16 (0.16)               | 0.76 (0.76)               | 1.5 (0.85)                  | 18 27 (10 35)                                 |
| 65.0        | e6.6               | h     | 4(0.375)   | 0.23(0.23)                  | 0.0(0.0)                  | 1.01(1.01)                | 1.3(0.05)<br>1 24 (1 04)    | 10.68 (8.95)                                  |
| 65.0        | w6.7               | h     | 7(0.25)    | 0.25 (0.23)<br>0.46 (0.27)  | 0.4 (0.29)                | 0.72 (0.72)               | 1.24(1.04)<br>1 58 (0.82)   | 13.6(7.06)                                    |
| 68.2        | n11.5              | h     | 5(0.25)    | 0.40(0.27)                  | 1.02(0.46)                | 0.0(0.0)                  | 1.02(0.46)                  | 18 21 (8 21)                                  |
| 78.0        | e1.6               | k     | 1001 (406) | 15.58(1.29)                 | 22.46 (1.61)              | 39 19 (3 84)              | 77 22 (4 36)                | 0.15(0.01)                                    |
| 88.0        | e109               | k     | 33 (6 75)  | 0.71 (0.26)                 | 0.77 (0.25)               | 0.72(1.02)                | 22(1.08)                    | 0.005(0.01)                                   |
| 181.0       | e4 5               | h     | 3 (0.125)  | 1.21(1.21)                  | 0.94(0.94)                | 27(27)                    | 4 86 (3 11)                 | 62.64(40.08)                                  |
| 191.0       | s1.9 <sup>b</sup>  | k     | 18(0.125)  | 1.21(1.21)<br>1.01(0.42)    | 0.86(0.44)                | 3.19(1.6)                 | 5.07 (1.71)                 | 154 99 (52 28)                                |
| 200.0       | s9.3 <sup>b</sup>  | k     | 6 (0.125)  | 0.0(0.0)                    | 0.30(0.11)                | 1.49(1.49)                | 2.19(1.54)                  | 184(13)                                       |
| 210.0       | s7.6               | h     | 5 (0.125)  | 0.28(0.2)                   | 0.28(0.28)                | 0.65(0.65)                | 1.21 (0.74)                 | 10.26 (6.28)                                  |
| 215.0       | e2.6 <sup>b</sup>  | k     | 26 (0.25)  | 0.20(0.2)<br>0.31(0.28)     | 0.14(0.36)                | 1.06(1.12)                | 1.21(0.11)<br>1.5(1.21)     | 0.97 (0.79)                                   |
| 228.0       | n24.8              | h     | 6 (0.125)  | 0.0(0.0)                    | 1.03(0.46)                | 0.59(0.59)                | 1.62(0.75)                  | 2.14(0.99)                                    |
| 228.0       | s21.4              | h     | 16(0.125)  | 1.35(0.48)                  | 2.25(0.8)                 | 0.0(0.0)                  | 3.6(0.93)                   | 4 76 (1 23)                                   |
| 245.0       | $w1.5^{b}$         | k     | 26(0.125)  | 1.98(0.76)                  | 0.76(1.07)                | 1.16(2.32)                | 3.9 (2.66)                  | 24.05(16.4)                                   |
| 268.1       | w25                | h     | 25(0.125)  | 0.71(0.5)                   | 5.95 (1.49)               | 11.08(4.19)               | 17.74 (4.47)                | 95 13 (23 97)                                 |
| 299.0       | e2.7               | h     | 22(0.375)  | 0.94(0.28)                  | 1.0(0.32)                 | 0.45 (0.45)               | 2.39(0.62)                  | 1.19 (0.31)                                   |
| 324.0       | e5.8               | h     | 9 (0.5)    | 0.18(0.1)                   | 0.23(0.12)                | 0.42(0.42)                | 0.84(0.45)                  | 7.7 (4.13)                                    |
| 325.0       | e6 8               | h     | 10(0.375)  | 0.34(0.19)                  | 0.34(0.25)                | 0.95(0.68)                | 1.63(0.75)                  | 6.43 (2.96)                                   |
| 325.0       | w9.2               | h     | 7 (0.125)  | 0.1(0.1)                    | 0.21(0.21)                | 1.73 (0.86)               | 2.03(0.89)                  | 8.0 (3.51)                                    |
| 334.0       | s2.7 <sup>b</sup>  | k     | 30 (0.625) | 10(0.32)                    | 0.94(0.4)                 | 0.25(0.81)                | 2.19(0.95)                  | 2.93(1.27)                                    |
| 334.0       | s17.5 <sup>b</sup> | k     | 26 (5.75)  | 0.76(0.27)                  | 1.1(0.37)                 | 1.99(1.82)                | 3.85(1.87)                  | 5.15 (2.5)                                    |
| 437.0       | n19                | h     | 12(0.625)  | 0.48(0.28)                  | 0.74(0.37)                | 3.32(1.66)                | 4 54 (1.72)                 | 69 43 (26 3)                                  |
| 437.0       | \$17               | h     | 7 (0.5)    | 0.32(0.23)                  | 0.22(0.22)                | 1.28(1.19)                | 1.83(1.24)                  | 27.98 (18.96)                                 |
| 470.0       | n14 4              | h     | 1(0.75)    | 0.0(0.0)                    | 0.0(0.0)                  | 0.29 (0.66)               | 0.29 (0.66)                 | 5 84 (13 29)                                  |
| 470.0       | s9.4               | h     | 10 (0.625) | 0.76 (0.38)                 | 0.33 (0.24)               | 2.0 (1.42)                | 3.1 (1.49)                  | 62.43 (30.01)                                 |

Notes. Col. (1): the 3CR name. Col. (2): the component name chosen according to the definition reported in Section 4.2. Col. (3): the component class: "h"= hotspot; "k"= knot. Col. (4): the number of counts column gives the total counts in the photometric circle, together with the average of the eight background regions, in parentheses; both for the 0.5–7 keV band. Col. (5): measured X-ray flux between 0.5 and 1 keV. Col. (6): measured X-ray flux between 1 and 2 keV. Col. (7): measured X-ray flux between 2 and 7 keV. Col. (8): measured X-ray flux between 0.5 and 7 keV. Col. (9): X-ray luminosity in the range 0.5–7 keV, with the 1 $\sigma$ uncertainties given in parentheses.

<sup>a</sup> Source components for which the X-ray emission was already reported in the literature.

<sup>b</sup> Fluxes are given in units of  $10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup>, and  $1\sigma$  uncertainties are given in parentheses. The uncertainties on the flux measurements were computed as described in Section 4.2.

| Table 6       X-Ray Galaxy Clusters |                          |         |          |       |        |  |  |  |  |
|-------------------------------------|--------------------------|---------|----------|-------|--------|--|--|--|--|
| 3CR                                 | Other                    | z       | R        | R     | Total  |  |  |  |  |
| Name                                | Name                     |         | (arcsec) | (kpc) | Counts |  |  |  |  |
| 28.0                                | Abell 115                | 0.195   | 200      | 632   | 31450  |  |  |  |  |
| 40.0                                | Abell 194                | 0.0181  | 170      | 60    | 23855  |  |  |  |  |
| 75.0                                | Abell 400                | 0.023   | 500      | 228   | 57400  |  |  |  |  |
| 88.0                                | 1RXS J032755.0+023403    | 0.0302  | 120      | 70    | 6610   |  |  |  |  |
| 220.1                               | 1RXS J093245.5+790636    | 0.61    | 25       | 166   | 1722   |  |  |  |  |
| 288.0                               | 1RXS J133849.3+385110    | 0.246   | 60       | 680   | 5324   |  |  |  |  |
| 310.0                               | SDSS J150457.12+260058.4 | 0.0538  | 180      | 183   | 28309  |  |  |  |  |
| 318.1                               | Abell 2063B              | 0.0453  | 500      | 433   | 272770 |  |  |  |  |
| 338.0                               | Abell 2199               | 0.03035 | 500      | 296   | 504360 |  |  |  |  |
| 388.0                               | 1RXS J184402.1+453332    | 0.0917  | 240      | 400   | 15416  |  |  |  |  |
| 401.0                               | 1RXS J194024.4+604136    | 0.055   | 90       | 292   | 3200   |  |  |  |  |
| 427.1                               |                          | 0.572   | 40       | 257   | 467    |  |  |  |  |
| 438.0                               | 1RXS J215553.4+380021    | 0.290   | 210      | 894   | 66288  |  |  |  |  |
| 442.0                               | 1RXS J221451.0+135040    | 0.0263  | 300      | 155   | 15506  |  |  |  |  |
| 449.0                               |                          | 0.017   | 240      | 81    | 42378  |  |  |  |  |

Note. Col. (1): the 3CR name. Col. (2): alternative name. Col. (3): the source redshift. Col. (4): radius in arcseconds. Col. (5): radius in kiloparsecs. Col. (6): the net counts.

| Т     | able 7     |
|-------|------------|
| Image | Parameters |

| Name         (Hab)                                                     | 3CR                | Radio Freq. | HPBW                                 | Low-contour-level  | Factor Increase | NRAO Project Code | Binning Factor | FWHM-smoothing    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------------------------------|--------------------|-----------------|-------------------|----------------|-------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name               | (GHz)       | $(radio)$ - $(arcsec \times arcsec)$ | (radio)-(mJy/beam) | (radio)         |                   | (X-rays)       | (X-rays)-(arcsec) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 <sup>a</sup>     | 1.5         | $1.2 \times 1.4$                     | 6.4                | 4               | AH0171-(NVAS)     | 1/4            | 0.72              |
| 140       8.5       0.23       3.0       4       AL0280-(NVAS)       1.8       0.51         220       8.5       0.23       0.125       4       AL720-(NUD)       1.8       0.65         280       1.4       1.10       0.25       4       AL720-(NUS)       1       4.0         400       1.6       2.3 × 12       4.0       4       AH002-(NVAS)       1.8       0.51         430       8.3       0.21       6.0       4       AM020-(NVAS)       1.8       0.51         480       4.3       0.25 × 0.47       1.25       4       AW022-(NVAS)       1.8       0.56         631       1.1       1.28 × 1.13       4.0       2       PEL(-NNAS)       1.4       0.56         64       4.8 × 3.8       0.25       4       AP050-(NVAS)       1.4       0.72         750       4.6       4.8 × 3.8       0.25       2       AP050-(NVAS)       1.4       1.0         98.0       8.3       0.0       0.25       2       AP050-(NVAS)       1.4       1.0         98.0       4.8       0.45 × 0.39       1.0       4       AP050-(NVAS)       1.4       1.0         91.0                                                                                                                                                                                                                                                       | 13.0               | 4.9         | 0.37                                 | 1.0                | 2               | AC0200-(NVAS)     | 1/8            | 0.51              |
| 22.0         8.5         0.25         0.125         4         AP30-[MH]         1/8         0.51           35.0         1.5         17 × 14         4.0         2         AW0057-(NVAS)         1         4.0           43.0         8.3         0.23         6.0         4         AN002-(NVAS)         1/8         0.51           43.0         4.8         0.92 × 0.47         1.2.5         4         AN0027-(NVAS)         1/8         0.36           65.0         1.5         1.2.8 × 1.13         4.0         4         NET-(ND3)         1/8         0.36           66.1         1.4         1.4.6 × 1.33         2.0         2         AW0452-(NVAS)         1/4         1.0           65.2         4.9         0.32 × 0.39         1.0         2         AW054-(NVAS)         1/4         1.0           73.0         4.6         4.6 × 3.3         0.25         2         AW074-(NVAS)         1/4         0.7           73.0         4.8         0.45 × 0.39         0.0         2         AW074-(NVAS)         1/4         0.7           73.0         4.8         0.45 × 0.39         0.0         1.2         AW074-(NVAS)         1/4         0.6           12.1<                                                                                                                                              | 14.0               | 8.5         | 0.23                                 | 3.0                | 4               | AL0280-(NVAS)     | 1/8            | 0.51              |
| 28.0         1.4         1.10         0.25         4         AL222-(NPD)         1/8         0.65           350         1.5         T7 r 14         4.0         2         AW0087-(NVAS)         1         4.0           400         1.6         23 x 12         4.0         4         AW0087-(NVAS)         1/8         0.51           48.0         4.8         0.92 x 0.17         1.2.5         4         AW027-(NVAS)         1/8         0.36           65.0         1.5         1.2.8 x 1.13         4.0         2         PREL_(NVAS)         1/4         1.0           68.1         1.4         4.6 x 1.33         2.0         2         AW0462-(NVAS)         1/4         1.0           68.2         4.9         0.53 x 0.39         1.0         2         AV066-[NVAS)         1/4         1.0           75.0         4.6         4.6 x 3.8         0.25         2         APB07-(NVAS)         1/4         1.0           81.0         4.3 x 3.9         2.0         2         APB07-(NVAS)         1/4         1.0           92.0         4.8         0.45 x 0.39         1.0         4         AB007-(NVAS)         1/4         1.0           92.1         1.4 <td>22.0</td> <td>8.5</td> <td>0.25</td> <td>0.125</td> <td>4</td> <td>AP380-(MJH)</td> <td>1/8</td> <td>0.51</td>                               | 22.0               | 8.5         | 0.25                                 | 0.125              | 4               | AP380-(MJH)       | 1/8            | 0.51              |
| 350       1.5       17       x14       4.0       2       AW007-(NVAS)       1       4.0         4400       1.6       2.3       1.2       4.0       4.00027-(NVAS)       1/8       0.51         450       4.8       0.59       0.41       4.0       4.00027-(NVAS)       1/8       0.36         650       1.5       1.2.8       1.13       4.0       2       AW027-(NVAS)       1/4       0.51         661       1.4       1.4 (4.6 x 1.33       2.0       2       AW0462-(NVAS)       1/4       0.72         750       4.6       4.5 x 3.8       0.25       4       Ab076-(NVAS)       1/4       0.72         750       4.5       4.3 x 3.9       2.0       2       Ab077-(NVAS)       1/4       5.0         98.0       8.3       2.0       0.25       2       PBR_1-(NVAS)       1/4       1.0         99.0       4.8       0.45       0.12       1.0       4       A503-(NVAS)       1/4       1.0         120.1       4.8       0.27       1.0       4       AL0142-(NVAS)       1/8       0.36         121.0       8.4       0.27       1.0       4       AL0142-(NVAS)       1/                                                                                                                                                                                                                                       | 28.0               | 1.4         | 1.10                                 | 0.25               | 4               | AL272-(NED)       | 1/8            | 0.65              |
| 400         1.6         23         8.0         4.0         8.0         9.0         2.8         0.0           45.0         4.8         0.99         0.47         12.5         4         AM022-(NVAS)         1/8         0.51           45.0         4.9         0.41         4.0         4         AW0227-(NVAS)         1/8         0.51           65.1         1.5         1.28         1.13         4.0         2         PERL-(NVAS)         1/4         0.72           75.0         4.6         4.6 × 1.33         2.0         2         AW0432-(NVAS)         1/4         0.72           75.0         4.6         4.6 × 3.8         0.25         2         PERL-(NVAS)         1/4         1.0           75.0         4.6         4.6 × 3.8         0.25         2         AP007-(NVAS)         1/4         1.0           98.0         8.3         2.0         0.25         2         AP007-(NVAS)         1/4         1.0           120.1         4.8         1.25         0.125         4         AP303-(NVAS)         1/4         0.0           121.1         4.9         0.37         1.0         4         AK032-(NVAS)         1/8         0.36                                                                                                                                                                | 35.0               | 1.5         | $17 \times 14$                       | 4.0                | 2               | AW0087–(NVAS)     | 1              | 4.0               |
| 430         8.3         0.23         6.0         4         AD026-(NYAS)         1/8         0.51           480         4.8         0.59 v0.47         12.5         4         AD022-(NYAS)         1/8         0.36           650         1.5         0.38 v1.13         4.0         2         AW0227-(NYAS)         1/8         0.36           661         1.4         1.64 v1.33         2.0         2         AW016-(NYAS)         1/4         0.72           750         1.6         4.3 v3.9         2.0         2         AB0376-(NYAS)         1/8         0.51           880         4.9         4.4 x 4.2         1.0         2         AB0376-(NYAS)         1/4         50           99.0         4.8         0.45 v0.39         1.0         4         AS02-(NYAS)         1/4         1.0           138.0         4.9         0.42         1.0         4         AL0142-(NYAS)         1/8         0.31           147.0         8.4         0.27         1.92         4         AL0142-(NYAS)         1/8         0.35           120.1         4.8         0.45         0.35         1.2         4         AL0142-(NYAS)         1/8         0.35           <                                                                                                                                                   | 40.0               | 1.6         | $23 \times 12$                       | 4.0                | 4               | AB0022-(NVAS)     | 2              | 8.0               |
| 48.0       4.8       0.59 × 0.47       1.2.5       4       NN0227-(NVAS)       1/8       0.36         65.0       1.5       1.28 × 1.13       4.0       2       PERL-(NVAS)       1/4       0.10         65.1       1.4       1.44 × 1.33       2.0       2       AV0164-(NVAS)       1/4       0.72         68.1       1.5       4.3 × 3.3       0.25       4       AU005-(NVAS)       1/4       0.72         75.0       4.6       4.6 × 3.3       0.25       2       AP0076-(NVAS)       1/8       0.51         78.0       1.5       4.3 × 3.30       2.0       2       AP0077-(NVAS)       1/4       5.0         98.0       8.3       2.0       0.25       2       AP0077-(NVAS)       1/4       5.0         129.1       4.8       0.45 × 0.39       1.0       4       AS00-(NVAS)       1/4       1.0         121.1       4.8       0.42       1.0       4       AS00-(NVAS)       1/4       0.2         123.1       4.9       0.42       1.0       4       AS00-(CCC)       1/8       0.35         123.1       4.9       0.35       1.2       4       AP036-(NVAS)       1/4       0.72                                                                                                                                                                                                                                | 43.0               | 8.3         | 0.23                                 | 6.0                | 4               | AJ0206–(NVAS)     | 1/8            | 0.51              |
| 49.04.90.414.04NEF-(NED)1/80.3665.01.5L28 × 1.132.02PRL-(NVAS)1/41.066.11.41.4 ± 1.4 × 1.332.02AV0164-(NVAS)1/41.075.04.64.6 × 3.80.254AR0061-(NVAS)1/80.7275.04.64.6 × 3.80.254AR007-(NVAS)1/80.5188.04.94.4 × 4.21.02AR007-(NVAS)1/41.099.04.80.45 × 0.391.04AS302-(NVAS)1/41.0156.11.63.32.02PFOL-(NVAS)1/40.51157.08.40.421.04AL042-(NVAS)1/80.51167.08.40.271/9.24AR007-(CCL)1/80.56172.08.50.590.154AP042-(NVAS)1/40.72175.08.50.581.24AR003-(NVAS)1/80.56175.14.90.351.24AR003-(NVAS)1/80.56184.08.50.56 × 0.2016.04AR003-(NVAS)1/80.56184.08.50.250.1254AR003-(NVAS)1/80.56191.04.70.300.34AK180-(CCL)1/80.56191.04.70.300.54AR003-(NVAS)1/80.56192.08.5 <td>48.0</td> <td>4.8</td> <td><math>0.59 \times 0.47</math></td> <td>12.5</td> <td>4</td> <td>AW0227–(NVAS)</td> <td>1/8</td> <td>0.36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.0               | 4.8         | $0.59 \times 0.47$                   | 12.5               | 4               | AW0227–(NVAS)     | 1/8            | 0.36              |
| 650         1.5         1.28 × 1.13         4.0         2         PERL-(NVAS)         1.4         0.14           681         1.4         1.44 × 1.33         2.0         2         AV0164-(NVAS)         1.4         0.72           682         4.9         0.53 × 0.39         1.0         2         AV0164-(NVAS)         1.4         0.72           78.0         4.5         4.3 × 3.3         2.0         2         AB0376-(NVAS)         1.4         0.72           98.0         4.3         0.45 × 0.39         1.0         2         AP0077-(NVAS)         1.4         5.0           129.1         4.8         0.45 × 0.39         1.0         4         AS02-(NVAS)         1.4         1.0           136.1         1.6         3.3         2.0         2         AT229-(NVAS)         1.4         1.0           147.0         8.4         0.27         1.92         4         AK603-(CVAS)         1.8         0.51           147.0         8.4         0.27         1.92         4         AF604-(NVAS)         1.8         0.36           17.0         8.5         0.36         1.0         4         AF063-(NVAS)         1.8         0.36           17.0                                                                                                                                                      | 49.0               | 4.9         | 0.41                                 | 4.0                | 4               | NEFF-(NED)        | 1/8            | 0.36              |
| 68.1       1.4       1.46 $\times$ 1.33       2.0       2       AV0482-(NVAS)       1.4       1.0         75.0       4.6       4.6 $\times$ 3.8       0.25       4       AE0061-(NVAS)       1.8       0.51         78.0       1.5       4.3 $\times$ 3.9       2.0       2       AP0077-(NVAS)       1.4       0.40         98.0       8.3       2.0       0.25       2       PEGL-(NED)       1       4.0         99.0       4.8       0.45 $\times$ 0.39       1.0       4       AS302-(NVAS)       1.4       5.0         136.1       1.6       3.3       2.0       2       PCOL_(NVAS)       1.8       0.51         138.0       4.9       0.42       1.0       4       AC402-(NVAS)       1.4       0.72         172.0       8.5       0.75       1.0       4       AC403-(NVAS)       1.4       0.72         175.0       8.5       0.75       1.0       4       AP4052-(NVAS)       1.4       0.72         175.1       4.9       0.35       1.2       4       AP4052-(NVAS)       1.8       0.36         181.0       4.9       0.35       0.25       4       AP4040-(NVAS)       1.8       0.36      <                                                                                                                                                                                                                | 65.0               | 1.5         | $1.28 \times 1.13$                   | 4.0                | 2               | PERL-(NVAS)       | 1/8            | 0.51              |
| 68.2         4.9         0.53 x 0.39         1.0         2         AV0164_(NVAS)         1.4         0.72           75.0         4.6         4.6 x 3.8         0.25         4         AB0061_(NVAS)         1.8         0.51           78.0         4.9         4.4 x 4.2         1.0         2         AP0077_(NVAS)         1.2         1.4           98.0         8.3         2.0         0.25         2         AP027_(NVAS)         1.4         4.0           129.1         4.8         0.52 × 0.125         2         AP020_(NVAS)         1.4         4.0           129.1         4.8         0.25         0.125         2         AP02_(NVAS)         1.8         0.51           120.1         4.8         0.27         1.92         4         AR403_(CCC)         1.8         0.56           172.0         8.5         0.78 × 0.61         0.5         4         AP1642_(NVAS)         1.4         0.72           173.1         4.9         0.37         1.0         4         AP1652_(NVAS)         1.8         0.36           181.0         4.5         0.36 × 0.20         1.6.0         4         AP0005_(NVAS)         1.8         0.36           190.0 <td< td=""><td>68.1</td><td>1.4</td><td><math>1.46 \times 1.33</math></td><td>2.0</td><td>2</td><td>AW0482–(NVAS)</td><td>1/4</td><td>1.0</td></td<> | 68.1               | 1.4         | $1.46 \times 1.33$                   | 2.0                | 2               | AW0482–(NVAS)     | 1/4            | 1.0               |
| 75.0       4.6       4.6 $4.5 \times 3.8$ 0.25       4       ALD061-[NVAS)       1       1.7         88.0       4.9       4.4 $4.42$ 1.0       2       AP0077-[NVAS)       1/2       1.4         98.0       8.3       2.0       0.25       2       PERL-NED)       1       4.0         99.0       4.8       0.45 $\times$ 0.39       1.0       4       AS302-[NVAS)       1/4       5.0         129.1       4.8       1.25       0.125       2       AP004-[NVAS)       1/8       0.51         136.0       4.9       0.42       1.0       4       AL0142-[NVAS)       1/8       0.51         137.0       8.3       0.39       0.125       4       AR407-[CCC)       1/8       0.66         172.0       8.5       0.36 (N2 × 0.61       0.5       4       AH632-[NVAS)       1/8       0.36         181.0       4.9       0.37       1.0       4       AH632-[NVAS)       1/8       0.36         184.0       8.5       0.26 (N2 × 0.61       0.5       4       AR180-[CCC)       1/8       0.36         190.0       8.5       0.26 (N2 × 0.63       1.2       4       AR180-[MH1]       1/8       0.                                                                                                                                                                                                                        | 68.2               | 4.9         | $0.53 \times 0.39$                   | 1.0                | 2               | AV0164-(NVAS)     | 1/4            | 0.72              |
| 78.0°       1.5       4.3 x 3.9       2.0       2       AB0376-[NVAS]       1/8       0.51         98.0       8.3       2.0       0.25       2       PERL-(NDS)       1       4.0         99.0       4.8       0.45 x 0.39       1.0       4       AS02-(NVAS)       1.4       1.0         129.1       4.8       1.25       0.125       2       POLO-(NVAS)       1       3.5         136.0       4.9       0.42       1.0       4       AL042-(NVAS)       1.8       0.51         147.0       8.4       0.27       19.2       4       AL042-(NVAS)       1.4       0.72         175.0       8.5       0.78 x 0.61       0.5       4       AL603-(CCC)       1.8       0.36         172.0       8.5       0.78 x 0.61       0.5       4       AL603-(NVAS)       1.4       0.72         175.1       4.9       0.35       1.2       4       AL603-(NVAS)       1.8       0.36         181.0       4.9       0.37       1.0       4       AL603-(NVAS)       1.8       0.36         191.0       4.7       0.30       0.3       4       AL603-(NVAS)       1.8       0.36         <                                                                                                                                                                                                                                           | 75.0               | 4.6         | $4.6 \times 3.8$                     | 0.25               | 4               | AE0061-(NVAS)     | 1              | 1.7               |
| 88.0       4.9       4.4 x.4.2       1.0       2       APR077-(NVAS)       1/2       1.4         99.0       4.8       0.45 x 0.39       1.0       4       AS302-(NVAS)       1/4       5.0         136.1       1.6       3.3       2.0       2       APR27-(NVAS)       1       3.5         188.0       4.9       0.42       1.0       4       AR403-(CCC)       1.8       0.5         147.0       8.4       0.27       1.9.2       4       AR403-(CCC)       1.8       0.5         172.0       8.5       0.90       0.125       4       AP861-[MIH]       1.4       0.72         173.1       4.9       0.37       1.0       4       AP851-[NTM]       1.8       0.36         184.0       8.5       0.36 x 0.20       16.0       4       AR403-(NXAS)       1.8       0.36         191.0       4.7       0.30       0.3       4       AR180-(CCC)       1.8       0.36         191.0       4.7       0.30       0.25       4       AP814-(NTB)       1.8       0.36         191.0       4.7       0.30       0.5       4       AP831-(MTH)       1.8       0.36         192.                                                                                                                                                                                                                                               | 78.0 <sup>b</sup>  | 1.5         | $4.3 \times 3.9$                     | 2.0                | 2               | AB0376-(NVAS)     | 1/8            | 0.51              |
| 98.0       8.3       2.0       0.25       2       PERL-(NED)       1       4.0         129.1       4.8       1.25       0.125       2       PAT29-(NVAS)       1/4       1.0         136.1       1.6       3.3       2.0       2       PODL-(NVAS)       1.8       0.51         138.0       4.9       0.42       1.0       4       AL0142-(NVAS)       1.8       0.36         172.0       8.5       0.90       0.125       4       AF403-(CCC)       1.8       0.36         175.1       4.9       0.37       1.2       4       AF403-(NVAS)       1.4       0.72         175.1       4.9       0.37       1.0       4       AH0452-(NVAS)       1.8       0.36         181.0       4.9       0.37       1.0       4       AH032-(NVAS)       1.8       0.36         190.0       8.5       0.20       4.0       2       AO0165-(NVAS)       1.8       0.36         191.0       4.7       0.30       0.3       4       AR180-(CCC)       1.8       0.36         192.0       8.2       0.80       0.125       4       AP331-(MIH)       1.8       0.36         192.0                                                                                                                                                                                                                                                          | 88.0               | 4.9         | $4.4 \times 4.2$                     | 1.0                | 2               | AP0077-(NVAS)     | 1/2            | 1.4               |
| 99.0         4.8         0.45         0.39         1.0         4         AS302-(NVAS)         1.4         5.0           136.1         1.6         3.3         2.0         2         POOL-(NVAS)         1         3.5           138.0         4.9         0.42         1.0         4         ALD142-(NVAS)         1.8         0.51           147.0         8.4         0.27         19.2         4         AR403-(CCC)         1.8         0.36           172.0         8.5         0.90         0.125         4         AP30-(NHH)         1.4         0.72           175.1         4.9         0.35         1.2         4         AP30-(NHH)         1.8         0.36           181.0         4.9         0.37         1.0         4         AH52-(NVAS)         1.8         0.36           190.0         8.5         0.20         16.0         4         AK100-(CCC)         1.8         0.36           191.0         4.7         0.30         0.3         4         AK100-(NVAS)         1.8         0.36           192.0         8.2         0.25         0.125         4         AP31-(MH)         1.8         0.36           192.0         8.3                                                                                                                                                                     | 98.0               | 8.3         | 2.0                                  | 0.25               | 2               | PERL-(NED)        | 1              | 4.0               |
| 129.14.81.250.1252PAT220-(NVAS)1/41.0136.11.63.32.02PODL-(NVAS)13.5138.04.90.421.04ALD142-(NVAS)1/80.36172.08.50.900.1254AP361-(MIH)1/40.72175.08.50.78 × 0.610.54AP461-(MIH)1/80.36181.04.90.371.24AP380-(MIH)1/80.36184.08.50.26 × 0.201.6.04AK0403-(NVAS)1/80.36190.08.50.204.02AO0165-(NVAS)1/80.36191.04.70.300.34AK180-(CCC)1/80.36192.08.20.800.1254AP816-(MIH)1/80.36204.08.30.78 × 0.650.54AP816-(MIH)1/80.36205.08.30.222.04AW0390-(NVAS)1/80.36206.08.40.250.1254AL230-(CCC)1/80.36208.08.40.250.1254AL230-(NH)1/80.36208.08.40.250.1254AL230-(NH)1/80.36208.08.40.70 × 0.431.02AM038-(NVAS)1/80.36208.08.40.70 × 0.431.02AM038-(NVAS)1/80.36208.18.5 <td>99.0</td> <td>4.8</td> <td><math>0.45 \times 0.39</math></td> <td>1.0</td> <td>4</td> <td>AS302-(NVAS)</td> <td>1/4</td> <td>5.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.0               | 4.8         | $0.45 \times 0.39$                   | 1.0                | 4               | AS302-(NVAS)      | 1/4            | 5.0               |
| 136.1       1.6       3.3       2.0       2       PODL_(NAS)       1       3.5         147.0       8.4       0.27       19.2       4       AL0142_(NVAS)       1/8       0.36         172.0       8.5       0.90       0.125       4       AP361_(OCC)       1/8       0.36         173.0       8.5       0.78 × 0.61       0.5       4       AP462_(NVAS)       1/4       0.72         173.1       4.9       0.35       1.2       4       AP380_(MUH)       1/8       0.36         181.0       4.9       0.35       1.2       4       AP380_(NUH)       1/8       0.36         184.0       8.5       0.36 × 0.20       1.60       4       AR095_(NVAS)       1/8       0.36         190.0       8.5       0.20       4.0       2       A00105_(NVAS)       1/8       0.36         192.0       8.2       0.80       0.125       4       AR180_(CCC)       1/8       0.36         204.0       8.3       0.22       0.5       4       AP034_(NVAS)       1/8       0.51         204.0       8.3       0.25       0.125       4       AP034_(NVAS)       1/8       0.36 <td< td=""><td>129.1</td><td>4.8</td><td>1.25</td><td>0.125</td><td>2</td><td>AT229-(NVAS)</td><td>1/4</td><td>1.0</td></td<>                                                                                                                         | 129.1              | 4.8         | 1.25                                 | 0.125              | 2               | AT229-(NVAS)      | 1/4            | 1.0               |
| 138.0       4.9       0.42       1.0       4       AL012(-NNAS)       1/8       0.51         147.0       8.4       0.27       19.2       4       AK403-(-CC)       1/8       0.36         172.0       8.5       0.78 × 0.61       0.5       4       AP361-(MH)       1/4       0.72         175.1       4.9       0.37       1.0       4       AH952-(NNAS)       1/8       0.36         181.0       4.9       0.37       1.0       4       AH6032-(NNAS)       1/8       0.36         190.0       8.5       0.20       4.0       2       A0005-(NNAS)       1/8       0.36         191.0       4.7       0.30       0.3       4       AK103-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       APE31-(MH)       1/8       0.36         204.0       8.3       0.78 × 0.65       0.5       4       AP331-(MH)       1/8       0.36         205.0       8.3       0.25       0.125       4       AP231-(MH)       1/8       0.36         205.0       8.3       0.25       0.125       4       AP331-(MH)       1/8       0.36         215                                                                                                                                                                                                                                               | 136.1              | 1.6         | 3.3                                  | 2.0                | 2               | POOL-(NVAS)       | 1              | 3.5               |
| 147.0       8.4       0.27       19.2       4       AK40-CCC)       1/8       0.36         172.0       8.5       0.90       0.125       4       AP661-MIH)       1/4       0.72         175.1       4.9       0.35       1.2       4       AP80-MIH)       1/8       0.36         181.0       4.9       0.35       1.2       4       AP80-MIH)       1/8       0.36         184.0       8.5       0.36 x 0.20       16.0       4       AK180-(CCC)       1/8       0.36         191.0       4.7       0.30       0.3       4       AK180-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       AK180-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       AK180-(CCC)       1/8       0.36         204.0       8.3       0.25       0.125       4       AK0240-(NVAS)       1/8       0.36         205.0       8.3       0.22       2.0       4       AW0240-(NVAS)       1/8       0.36         205.0       8.3       0.25       0.12       4       AL200-(CC)       1/8       0.36         210.0                                                                                                                                                                                                                                                    | 138.0              | 4.9         | 0.42                                 | 1.0                | 4               | AL0142-(NVAS)     | 1/8            | 0.51              |
| $  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147.0              | 8.4         | 0.27                                 | 19.2               | 4               | AK403-(CCC)       | 1/8            | 0.36              |
| 175.0       8.5       0.78 × 0.61       0.5       4       AH0452-(NVAS)       1/4       0.72         175.1       4.9       0.35       1.2       4       AP380-(MHH)       1/8       0.36         181.0       4.9       0.37       1.0       4       AH0552-(NVAS)       1/8       0.36         184.0       8.5       0.36 v 0.20       16.0       4       AK00105-(NVAS)       1/8       0.36         191.0       4.7       0.30       0.3       4       AK180-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       APS16-(MH)       1/8       0.36         200.0       8.5       0.25       0.125       4       AP313-(NUH)       1/8       0.36         204.0       8.3       0.78 × 0.65       0.5       4       AW0349-(NVAS)       1/8       0.36         205.0       8.3       0.22       0.125       4       AW0349-(NVAS)       1/8       0.36         210.0       1.4       1.6       6.4       4       A0230-(TW)       1/4       1.3         215.0 <sup>4</sup> 4.9       0.37       0.1       4       AP330-(MH)       1/8       0.36 <t< td=""><td>172.0</td><td>8.5</td><td>0.90</td><td>0.125</td><td>4</td><td>AP361-(MJH)</td><td>1/4</td><td>0.72</td></t<>                                                                                                           | 172.0              | 8.5         | 0.90                                 | 0.125              | 4               | AP361-(MJH)       | 1/4            | 0.72              |
| 175.1       4.9       0.35       1.2       4       AP830-(MIH)       1/8       0.36         181.0       4.9       0.37       1.0       4       AH0552-(NVAS)       1/8       0.36         194.0       8.5       0.30 × 0.20       1.6.0       4       AK0403-(NVAS)       1/8       0.36         190.0       8.5       0.20       4.0       2       AO105-(NVAS)       1/8       0.36         192.0       8.2       0.80       0.125       4       ARS16-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       AP31-(MIH)       1/8       0.36         204.0       8.3       0.78 × 0.65       0.5       4       AP31-(MIH)       1/8       0.36         205.0       8.3       0.22       2.0       4       AP230-(NVAS)       1/8       0.36         205.0       8.3       0.22       0.125       4       AP230-(NVAS)       1/8       0.36         216.0       8.4       0.25       0.125       4       AP230-(MIH)       1/8       0.36         215.0       4.9       0.37       0.1       4       BRD-(MIH)       1/8       0.36         <                                                                                                                                                                                                                                           | 175.0              | 8.5         | $0.78 \times 0.61$                   | 0.5                | 4               | AH0452-(NVAS)     | 1/4            | 0.72              |
| 181.0       4.9       0.37       1.0       4       AH052-(NVAS)       1/8       0.36         184.0       8.5       0.36 × 0.20       16.0       4       AK0403-(NVAS)       1/8       0.36         191.0       4.7       0.30       0.3       4       AK0403-(NVAS)       1/8       0.36         192.0       8.2       0.80       0.125       4       PERL-(NED)       1/2       1.4         196.0       4.9       0.35       0.5       4       AP31-(MIH)       1/8       0.36         200.0       8.5       0.25       0.125       4       AP331-(MIH)       1/8       0.36         204.0       8.3       0.78 × 0.65       0.5       4       AP331-(NIH)       1/8       0.36         204.0       8.3       0.22       2.0       4       AP330-(NVAS)       1/8       0.36         210.0       1.4       1.6       6.4       4       AD230-(TW)       1/4       1.3         215.0       1.9       0.37       0.1       4       AP380-(MIH)       1/8       0.36         220.1       8.4       0.70 × 0.43       1.0       2       AM384-(NVAS)       1/8       0.36         <                                                                                                                                                                                                                                           | 175.1              | 4.9         | 0.35                                 | 1.2                | 4               | AP380-(MJH)       | 1/8            | 0.36              |
| 1840       8.5       0.36 × 0.20       16.0       4       AK0403-(NVAS)       1/8       0.36         1900       8.5       0.20       4.0       2       AO0105-(NVAS)       1/8       0.36         191.0       4.7       0.30       0.3       4       AK180-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       APS16-(MH)       1/2       1.4         196.0       4.9       0.35       0.5       4       APS16-(MH)       1/8       0.36         200.0       8.5       0.25       0.125       4       AP331-(MH)       1/8       0.36         204.0       8.3       0.78 × 0.65       0.5       4       AP033-(MNAS)       1/8       0.36         205.0       8.3       0.22       2.0       4       AP033-(MNAS)       1/8       0.36         210.0       1.4       1.6       6.4       4       A230-(CCC)       1/8       0.36         210.0       8.4       0.25       0.1       4       AP380-(MH)       1/8       0.36         220.1       8.4       0.70 × 0.43       1.0       2       AM0384-(NVAS)       1/8       0.51 <td< td=""><td>181.0</td><td>4.9</td><td>0.37</td><td>1.0</td><td>4</td><td>AH0552-(NVAS)</td><td>1/8</td><td>0.36</td></td<>                                                                                                                         | 181.0              | 4.9         | 0.37                                 | 1.0                | 4               | AH0552-(NVAS)     | 1/8            | 0.36              |
| 1900         8.5         0.20         4.0         2         AO0105-(NVAS)         1/8         0.36           191.0         4.7         0.30         0.3         4         AK180-(CCC)         1/8         0.36           192.0         8.2         0.80         0.125         4         PERL-(NED)         1/2         1.4           196.0         4.9         0.35         0.5         4         AB516-(MIH)         1/8         0.65           2000         8.5         0.25         0.125         4         AW0330-(NVAS)         1/8         0.65           204.0         8.3         0.78 × 0.65         0.5         4         AW0330-(NVAS)         1/8         0.36           205.0         8.3         0.22         2.0         4         AL260-(CCC)         1/8         0.36           210.0         1.4         1.6         6.4         4         AO230-(TW)         1/4         1.3           216.0         8.2         0.25         0.1         4         AP380-(MIH)         1/8         0.36           220.1         8.4         0.70 × 0.43         1.0         2         AP380-(MIH)         1/8         0.51           226.0         8.5                                                                                                                                                                 | 184.0              | 8.5         | $0.36 \times 0.20$                   | 16.0               | 4               | AK0403-(NVAS)     | 1/8            | 0.36              |
| 191.0       4.7       0.30       0.3       4       AK180-(CCC)       1/8       0.36         192.0       8.2       0.80       0.125       4       AB516-(M)H       1/8       0.36         196.0       4.9       0.35       0.5       4       AB516-(M)H       1/8       0.36         200.0       8.5       0.25       0.125       4       AW0330-(NVAS)       1/8       0.51         205.0       8.3       0.22       2.0       4       AW0330-(NVAS)       1/8       0.36         208.0       8.4       0.25       0.125       4       AU280-(CCC)       1/8       0.36         210.0       1.4       1.6       6.4       4       AQ230-(TW)       1/4       1.3         215.0       4.9       0.37       0.1       4       BRID-(MIH)       1/8       0.36         210.1       8.4       0.70 × 0.43       1.0       2       AM0384-(NVAS)       1/8       0.51         228.0       8.5       0.23       0.125       4       AP380-(M)H       1/8       0.51         241.0       8.4       0.70 × 0.43       1.0       2       AM0384-(NVAS)       1/8       0.51         2                                                                                                                                                                                                                                               | 190.0              | 8.5         | 0.20                                 | 4.0                | 2               | AO0105-(NVAS)     | 1/8            | 0.36              |
| 192.08.20.800.1254PERL-(NED)1/21.4196.04.90.350.54AB516-(MJH)1/80.36204.08.30.78 × 0.650.1254AW0249-(NVAS)1/80.51205.08.30.222.04AW0330-(NVAS)1/80.36208.08.40.250.1254AL280-(CCC)1/80.36210.01.41.66.44AO230-(TW)1/41.3215.0°4.90.370.14BRD-(MJH)1/80.36210.08.40.250.14AP380-(MJH)1/80.36210.08.40.0250.14AP380-(MJH)1/80.36220.3°8.40.70 x 0.431.02AM0384-(NVAS)1/80.36220.48.50.200.1254AP380-(MJH)1/80.36245.08.50.200.1254AP331-(MJH)1/80.36245.04.90.250.54AB244-(CCC)1/80.36245.04.90.350.254AB244-(CCC)1/80.36252.04.91.00.54AP330-(MH)1/80.36254.04.81.7 x 1.40.44AB244-(CCC)1/80.36266.08.40.300.44AR230-(TW)1/80.36266.08.40.300.4 <td>191.0</td> <td>4.7</td> <td>0.30</td> <td>0.3</td> <td>4</td> <td>AK180-(CCC)</td> <td>1/8</td> <td>0.36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 191.0              | 4.7         | 0.30                                 | 0.3                | 4               | AK180-(CCC)       | 1/8            | 0.36              |
| 196.0       4.9       0.35       0.5       4       AB516-(MIH)       1/8       0.36         200.0       8.5       0.25       0.125       4       AP331-(MIH)       1/8       0.65         204.0       8.3       0.78 × 0.65       0.5       4       AW030-(NVAS)       1/8       0.51         205.0       8.3       0.22       2.0       4       AW0330-(NVAS)       1/8       0.36         208.0       8.4       0.25       0.125       4       AL280-(CCC)       1/8       0.36         210.0       1.4       1.6       6.4       4       A0230-(TW)       1/4       1.3         215.0°       4.9       0.37       0.1       4       BRD-(MIH)       1/8       0.36         220.1       8.4       0.25       0.1       4       AP380-(MIH)       1/8       0.51         228.0       8.5       0.23       0.125       4       AP331-(MIH)       1/8       0.51         241.0       8.4       0.70 × 0.43       1.0       2       AM0384-(NVAS)       1/8       0.51         241.0       8.4       0.20       1.2       4       AP31-(MIH)       1/8       0.36         252.                                                                                                                                                                                                                                               | 192.0              | 8.2         | 0.80                                 | 0.125              | 4               | PERL-(NED)        | 1/2            | 1.4               |
| 2000         8.5         0.25         0.125         4         AP31-(MIH)         1/8         0.65           204.0         8.3         0.78 × 0.65         0.5         4         AW0249-(NVAS)         1/8         0.36           205.0         8.3         0.22         2.0         4         AW0330-(NVAS)         1/8         0.36           208.0         8.4         0.25         0.125         4         AL280-(CCC)         1/8         0.36           210.0         1.4         1.6         6.4         4         AC30-(TW)         1/4         1.3           215.0°         4.9         0.37         0.1         4         BRID-(MIH)         1/8         0.36           220.1         8.4         0.25         0.1         4         AP380-(MIH)         1/8         0.36           220.3"         8.5         0.20         0.125         4         AP380-(MIH)         1/8         0.51           228.0         8.5         0.23         0.125         4         AP31-(MIH)         1/8         0.36           245.0         4.9         0.25         0.5         4         AB24-(CCC)         1/8         0.36           245.0         4.9         <                                                                                                                                                            | 196.0              | 4.9         | 0.35                                 | 0.5                | 4               | AB516-(MJH)       | 1/8            | 0.36              |
| 204.0 $8.3$ $0.78 \times 0.65$ $0.5$ 4AW0249-(NVAS) $1/8$ $0.51$ 205.0 $8.3$ $0.22$ $2.0$ 4AW0330-(NVAS) $1/8$ $0.36$ 208.0 $8.4$ $0.25$ $0.125$ 4 $AL280-(CCC)$ $1/8$ $0.36$ 210.0 $1.4$ $1.6$ $6.4$ 4 $AO230-(TW)$ $1/4$ $1.3$ 215.0° $4.9$ $0.37$ $0.1$ 4 $BRID-(MIH)$ $1/8$ $0.36$ 210.0 $8.4$ $0.25$ $0.1$ 4 $AP380-(MIH)$ $1/8$ $0.36$ 220.1 $8.4$ $0.25$ $0.1$ 4 $AP380-(MIH)$ $1/8$ $0.51$ 226.0 $8.5$ $0.20$ $0.125$ 4 $AP380-(MIH)$ $1/8$ $0.51$ 228.0 $8.5$ $0.20$ $0.125$ 4 $AP331-(MIH)$ $1/8$ $0.51$ 241.0 $8.4$ $0.20$ $1.2$ 4 $AO149-(NVAS)$ $1/8$ $0.36$ 245.0 $4.9$ $0.35$ $0.1$ 4 $BRD-(MIH)$ $1/8$ $0.36$ 245.0 $4.9$ $0.35$ $0.5$ 4 $AD142-(NVAS)$ $1/4$ $1.0$ 256.0 $4.9$ $1.0$ $0.55$ 4 $AB244-(CCC)$ $1/8$ $0.36$ 266.0 $8.4$ $0.30$ $0.4$ 4 $AK033-(CCC)$ $1/8$ $0.36$ 266.0 $8.4$ $0.30$ $0.4$ 4 $AK4024-(NVAS)$ $1/4$ $1.0$ 266.1 $4.8$ $0.36$ $4.8$ $0.36$ $6.8$ $0.36$ $6.8$ <td< td=""><td>200.0</td><td>8.5</td><td>0.25</td><td>0.125</td><td>4</td><td>AP331-(MJH)</td><td>1/8</td><td>0.65</td></td<>                                                                                                                                                                                                                                                                                    | 200.0              | 8.5         | 0.25                                 | 0.125              | 4               | AP331-(MJH)       | 1/8            | 0.65              |
| 205.0         8.3         0.22         2.0         4         AW0330-(NVAS)         1/8         0.36           208.0         8.4         0.25         0.125         4         AL280-(CCC)         1/8         0.36           210.0         1.4         1.6         6.4         4         AO230-(TW)         1/4         1.3           215.0°         4.9         0.37         0.1         4         BRID-(MIH)         1/8         0.36           220.1         8.4         0.25         0.1         4         AP380-(MIH)         1/8         0.36           220.3'd         8.4         0.70 × 0.43         1.0         2         AM0384-(NVAS)         1/8         0.51           226.0         8.5         0.20         0.125         4         AP380-(MIH)         1/8         0.51           228.0         8.5         0.23         0.125         4         AP331-(MIH)         1/8         0.36           241.0         8.4         0.20         1.2         4         AA0149-(NVAS)         1/8         0.36           252.0         4.9         1.0         0.5         4         AB24+(CCC)         1/8         0.51           266.0         8.4                                                                                                                                                                  | 204.0              | 8.3         | $0.78 \times 0.65$                   | 0.5                | 4               | AW0249-(NVAS)     | 1/8            | 0.51              |
| 208.0         8.4         0.25         0.125         4         AL280-(CCC)         1/8         0.36           210.0         1.4         1.6         6.4         4         AO230-(TW)         1/4         1.3           215.0°         4.9         0.37         0.1         4         BRD-(MIH)         1/8         0.36           216.0         8.2         0.25         4.8         4         AG357-(MIH)         1/8         0.36           220.3"         8.4         0.70 × 0.43         1.0         2         AM038-(NVAS)         1/8         0.51           226.0         8.5         0.20         0.125         4         AP330-(MIH)         1/8         0.51           228.0         8.5         0.23         0.125         4         AP331-(MIH)         1/8         0.36           241.0         8.4         0.20         1.2         4         AA0149-(NVAS)         1/8         0.36           245.0         4.9         0.35         0.1         4         BRD-(MIH)         1/8         0.36           245.0         4.9         1.0         0.5         4         AD44-(CCC)         1/8         0.51           256.0         8.4                                                                                                                                                                         | 205.0              | 8.3         | 0.22                                 | 2.0                | 4               | AW0330-(NVAS)     | 1/8            | 0.36              |
| 210.01.41.66.44AO230-(TW)1/41.3215.0°4.90.370.14BRD-(MJH)1/80.36216.08.20.254.84AG357-(MH)1/80.36220.18.40.250.14AP380-(MJH)1/80.36220.3°8.40.70 × 0.431.02AM0384-(NVAS)1/80.51228.08.50.200.1254AP381-(MH)1/80.51241.08.40.201.24AA0149-(NVAS)1/80.36245.04.90.250.54AB244-(CCC)1/80.36245.04.90.350.14BRD-(MJH)1/80.36252.04.91.00.54AF021-(NVAS)1/41.0255.04.81.7 × 1.40.44AM244-(TW)1/41.0266.08.40.300.44AR243-(CCC)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.18.50.250.264 <td< td=""><td>208.0</td><td>8.4</td><td>0.25</td><td>0.125</td><td>4</td><td>AL280-(CCC)</td><td>1/8</td><td>0.36</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208.0              | 8.4         | 0.25                                 | 0.125              | 4               | AL280-(CCC)       | 1/8            | 0.36              |
| $215.0^{\circ}$ $4.9$ $0.37$ $0.1$ $4$ BRID-(MIH) $1/8$ $0.36$ $216.0$ $8.2$ $0.25$ $4.8$ $4$ AG357-(MIH) $1/8$ $0.36$ $220.1^{\circ}$ $8.4$ $0.70 \times 0.43$ $1.0$ $2$ AM0384-(NVAS) $1/8$ $0.51$ $226.0$ $8.5$ $0.20$ $0.125$ $4$ AP380-(MIH) $1/8$ $0.51$ $228.0$ $8.5$ $0.23$ $0.125$ $4$ AP381-(MIH) $1/8$ $0.51$ $241.0$ $8.4$ $0.20$ $1.2$ $4$ AP344-(CCC) $1/8$ $0.36$ $249.1$ $4.9$ $0.35$ $0.5$ $4$ AP244-(CCC) $1/8$ $0.36$ $249.1$ $4.9$ $0.35$ $0.1$ $4$ BRID-(MIH) $1/8$ $0.36$ $252.0$ $4.9$ $1.0$ $0.5$ $4$ AP244-(CCC) $1/8$ $0.36$ $252.0$ $4.9$ $1.0$ $0.5$ $4$ AP0213-(NVAS) $1/4$ $1.0$ $256.0$ $4.8$ $1.7 \times 1.4$ $0.4$ $4$ AK03-(CCC) $1/8$ $0.36$ $266.0$ $8.4$ $0.30$ $0.4$ $4$ AR403-(CCC) $1/8$ $0.36$ $266.0$ $8.4$ $0.30$ $0.4$ $4$ AR403-(CCC) $1/8$ $0.36$ $266.1$ $8.5$ $0.25$ $0.25$ $4$ AP380-(MIH) $1/8$ $0.36$ $268.3$ $5.0$ $0.06$ $1.2$ $4$ AP380-(MIH) $1/8$ $0.36$ $268.4$ $8.3$ $0.72 \times 0.58$ $2.0$ $4$ </td <td>210.0</td> <td>1.4</td> <td>1.6</td> <td>6.4</td> <td>4</td> <td>AO230-(TW)</td> <td>1/4</td> <td>1.3</td>                                                                                                                                                                                                                                            | 210.0              | 1.4         | 1.6                                  | 6.4                | 4               | AO230-(TW)        | 1/4            | 1.3               |
| 216.0 $8.2$ $0.25$ $4.8$ $4$ $AG357-(MIH)$ $1/8$ $0.36$ 220.1 $8.4$ $0.25$ $0.1$ $4$ $AP380-(MIH)$ $1/8$ $0.36$ 220.3' $8.4$ $0.70 \times 0.43$ $1.0$ $2$ $AM0384-(NVAS)$ $1/8$ $0.51$ 226.0 $8.5$ $0.20$ $0.125$ $4$ $AP380-(MIH)$ $1/8$ $0.51$ 228.0 $8.5$ $0.23$ $0.125$ $4$ $AP331-(MIH)$ $1/8$ $0.36$ 241.0 $8.4$ $0.20$ $1.2$ $4$ $AA0149-(NVAS)$ $1/8$ $0.36$ 245.0 $4.9$ $0.25$ $0.5$ $4$ $AB24-(CCC)$ $1/8$ $0.36$ 249.1 $4.9$ $0.35$ $0.1$ $4$ $BR1D-(MIH)$ $1/8$ $0.36$ 252.0 $4.9$ $1.0$ $0.5$ $4$ $AP244-(CCC)$ $1/8$ $0.36$ 252.0 $4.9$ $1.0$ $0.5$ $4$ $AR244-(TW)$ $1/4$ $1.0$ 256.0 $4.8$ $1.7 \times 1.4$ $0.4$ $4$ $AM244-(TW)$ $1/4$ $1.0$ 266.0 $8.4$ $0.30$ $0.4$ $4$ $AR244-(TW)$ $1/4$ $1.0$ 266.0 $8.4$ $0.30$ $0.25$ $4$ $AF0213-(NVAS)$ $1/4$ $0.51$ 267.6 $8.4$ $0.35$ $0.25$ $0.25$ $4$ $AR403-(CCC)$ $1/8$ $0.51$ 266.0 $8.4$ $0.35$ $0.25$ $0.25$ $4$ $AR403-(CCC)$ $1/8$ $0.51$ 268.1 $8.5$ $0.25$ $0.25$                                                                                                                                                                                                                                                                                                                                                                                  | 215.0 <sup>c</sup> | 4.9         | 0.37                                 | 0.1                | 4               | BRID-(MJH)        | 1/8            | 0.36              |
| 220.1 $8.4$ $0.25$ $0.1$ $4$ AP380-(MJH) $1/8$ $0.36$ 220.3 <sup>d</sup> $8.4$ $0.70 \times 0.43$ $1.0$ $2$ AM0384-(NVAS) $1/8$ $0.51$ 226.0 $8.5$ $0.20$ $0.125$ $4$ AP380-(MJH) $1/8$ $0.51$ 241.0 $8.4$ $0.20$ $1.2$ $4$ AA0149-(NVAS) $1/8$ $0.36$ 245.0 $4.9$ $0.25$ $0.5$ $4$ AB244-(CCC) $1/8$ $0.36$ 249.1 $4.9$ $0.35$ $0.1$ $4$ BRID-(MJH) $1/8$ $0.36$ 252.0 $4.9$ $1.0$ $0.5$ $4$ AB244-(CCC) $1/8$ $0.36$ 252.0 $4.9$ $1.0$ $0.5$ $4$ ABC13-(NVAS) $1/4$ $1.0$ 263.1 $4.9$ $0.35$ $0.25$ $4$ AP244-(TW) $1/4$ $1.0$ 263.1 $4.9$ $0.35$ $0.25$ $4$ DREH-(MJH) $1/8$ $0.36$ 266.0 $8.4$ $0.30$ $0.4$ $4$ AK403-(CCC) $1/8$ $0.51$ 267.° $8.4$ $0.85 \times 0.74$ $0.125$ $4$ AP380-(MJH) $1/8$ $0.51$ 268.1 $8.5$ $0.25$ $0.25$ $4$ AP380-(MJH) $1/8$ $0.51$ 268.3 $5.0$ $0.06$ $1.2$ $4$ MERLIN2-(MJH) $1/16$ $0.33$ 268.4 $8.3$ $0.72 \times 0.58$ $2.0$ $4$ AW0249-(NVAS) $1/8$ $0.36$ 270.1 $4.9$ $0.36$ $4.8$ $4$ AB052-(NVAS)                                                                                                                                                                                                                                                                                                                                                                             | 216.0              | 8.2         | 0.25                                 | 4.8                | 4               | AG357-(MJH)       | 1/8            | 0.36              |
| $220.3^d$ $8.4$ $0.70 \times 0.43$ $1.0$ $2$ AM0384-(NVAS) $1/8$ $0.51$ $226.0$ $8.5$ $0.20$ $0.125$ $4$ AP380-(MIH) $1/8$ $0.51$ $228.0$ $8.5$ $0.23$ $0.125$ $4$ AP331-(MIH) $1/8$ $0.51$ $241.0$ $8.4$ $0.20$ $1.2$ $4$ AP0149-(NVAS) $1/8$ $0.36$ $245.0$ $4.9$ $0.25$ $0.5$ $4$ AB244-(CCC) $1/8$ $0.36$ $249.1$ $4.9$ $0.35$ $0.1$ $4$ BRID-(MIH) $1/8$ $0.36$ $252.0$ $4.9$ $1.0$ $0.5$ $4$ AF0213-(NVAS) $1/4$ $1.0$ $256.0$ $4.8$ $1.7 \times 1.4$ $0.4$ $4$ AM24-(TW) $1/4$ $1.0$ $266.0$ $4.8$ $0.35$ $0.25$ $4$ DREH-(MIH) $1/8$ $0.36$ $266.0$ $8.4$ $0.30$ $0.4$ $4$ AK403-(CCC) $1/8$ $0.51$ $267^{\circ}$ $8.4$ $0.85 \times 0.74$ $0.125$ $4$ AB230-(MIH) $1/8$ $0.36$ $268.1$ $8.5$ $0.25$ $0.25$ $4$ AP380-(MIH) $1/8$ $0.36$ $268.3$ $5.0$ $0.06$ $1.2$ $4$ AP380-(MIH) $1/8$ $0.36$ $277.1$ $22.5$ $0.09$ $1.0$ $4$ AP0249-(NVAS) $1/8$ $0.36$ $277.3$ $4.9$ $0.37$ $1.0$ $2$ CORD-(NVAS) $1/8$ $0.36$ $277.3$ $4.9$ $0.37$ $1.0$ $2$                                                                                                                                                                                                                                                                                                                                                                 | 220.1              | 8.4         | 0.25                                 | 0.1                | 4               | AP380-(MJH)       | 1/8            | 0.36              |
| 226.0 $8.5$ $0.20$ $0.125$ $4$ $AP380-(MJH)$ $1/8$ $0.51$ 228.0 $8.5$ $0.23$ $0.125$ $4$ $AP331-(MJH)$ $1/8$ $0.51$ 241.0 $8.4$ $0.20$ $1.2$ $4$ $AA0149-(NVAS)$ $1/8$ $0.36$ 245.0 $4.9$ $0.25$ $0.5$ $4$ $AB244-(CCC)$ $1/8$ $0.36$ 249.1 $4.9$ $0.35$ $0.1$ $4$ $BRD-(MJH)$ $1/8$ $0.36$ 252.0 $4.9$ $1.0$ $0.5$ $4$ $AF0213-(NVAS)$ $1/4$ $1.0$ 266.0 $4.8$ $1.7 \times 1.4$ $0.4$ $4$ $AM244-(TW)$ $1/4$ $1.0$ 263.1 $4.9$ $0.35$ $0.25$ $4$ $DREH-(MJH)$ $1/8$ $0.36$ 266.0 $8.4$ $0.30$ $0.4$ $4$ $AK330-(TW)$ $1/8$ $0.51$ $265^{c^{\circ}}$ $8.4$ $0.85 \times 0.74$ $0.125$ $4$ $AL330-(TW)$ $1/8$ $0.36$ $268.1$ $8.5$ $0.25$ $0.25$ $4$ $AP380-(MJH)$ $1/8$ $0.36$ $268.4$ $8.3$ $0.72 \times 0.58$ $2.0$ $4$ $AP380-(MJH)$ $1/8$ $0.36$ $270.1$ $4.9$ $0.36$ $4.8$ $4$ $AB0522-(NVAS)$ $1/8$ $0.51$ $277.3$ $4.9$ $0.37$ $1.0$ $2$ $CORD-(NVAS)$ $1/8$ $0.36$ $277.3$ $4.9$ $0.37$ $1.0$ $2$ $CORD-(NVAS)$ $1/4$ $0.72$ $286.0$ $8.0$ $0.28 \times 0.23$                                                                                                                                                                                                                                                                                                                                                      | 220.3 <sup>d</sup> | 8.4         | $0.70 \times 0.43$                   | 1.0                | 2               | AM0384-(NVAS)     | 1/8            | 0.51              |
| 228.08.50.230.1254AP331-(MJH)1/80.51241.08.40.201.24AA0149-(NVAS)1/80.36245.04.90.250.54AB244-(CCC)1/80.36249.14.90.350.14BRID-(MJH)1/80.36252.04.91.00.54AF0213-(NVAS)1/41.0266.04.81.7 × 1.40.44AQ244-(TW)1/41.0263.14.90.350.254DREH-(MJH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254MERLIN2-(MJH)1/160.33268.18.50.250.254AB0522-(NVAS)1/80.36268.35.00.061.24AR0522-(NVAS)1/80.36277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0377-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0377-(NVAS)1/40.72286.08.0 <td< td=""><td>226.0</td><td>8.5</td><td>0.20</td><td>0.125</td><td>4</td><td>AP380-(MJH)</td><td>1/8</td><td>0.51</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 226.0              | 8.5         | 0.20                                 | 0.125              | 4               | AP380-(MJH)       | 1/8            | 0.51              |
| 241.08.40.201.24AA0149-(NVAS)1/80.36245.04.90.250.54AB244-(CCC)1/80.36249.14.90.350.14BRID-(MIH)1/80.36252.04.91.00.54AF0213-(NVAS)1/41.0256.04.81.7 × 1.40.44AM244-(TW)1/41.0263.14.90.350.254DREH-(MIH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MIH)1/80.36268.35.00.061.24AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.36277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/80.36285.01.51.20.34AC037-(NVAS)1/80.36285.01.51.20.34AC037-(NVAS)1/80.36285.01.51.20.34AC037-(NVAS)1/40.72286.08.00.28 × 0.234.8 <td< td=""><td>228.0</td><td>8.5</td><td>0.23</td><td>0.125</td><td>4</td><td>AP331-(MJH)</td><td>1/8</td><td>0.51</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 228.0              | 8.5         | 0.23                                 | 0.125              | 4               | AP331-(MJH)       | 1/8            | 0.51              |
| 245.04.90.250.54AB244-(CCC)1/80.36249.14.90.350.14BRID-(MJH)1/80.36252.04.91.00.54AF0213-(NVAS)1/41.0256.04.81.7 × 1.40.44AM244-(TW)1/41.0263.14.90.350.254DREH-(MJH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267e*8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/160.18287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.660.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 241.0              | 8.4         | 0.20                                 | 1.2                | 4               | AA0149-(NVAS)     | 1/8            | 0.36              |
| 249.14.90.350.14BRID-(MJH)1/80.36252.04.91.00.54AF0213-(NVAS)1/41.0256.04.81.7 × 1.40.44AM244-(TW)1/41.0263.14.90.350.254DREH-(MJH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.36268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.34.90.371.02CORD-(NVAS)1/80.36277.34.90.371.02CORD-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245.0              | 4.9         | 0.25                                 | 0.5                | 4               | AB244-(CCC)       | 1/8            | 0.36              |
| 252.04.91.00.54AF0213-(NVAS)1/41.0256.04.8 $1.7 \times 1.4$ 0.44AM244-(TW)1/41.0263.14.90.350.254DREH-(MJH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 $\times$ 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.51268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 $\times$ 0.582.04AB0522-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.32.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 $\times$ 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 249.1              | 4.9         | 0.35                                 | 0.1                | 4               | BRID-(MJH)        | 1/8            | 0.36              |
| 256.04.8 $1.7 \times 1.4$ 0.44AM244-(TW) $1/4$ 1.0263.14.90.350.254DREH-(MJH) $1/8$ 0.36266.08.40.300.44AK403-(CCC) $1/8$ 0.51267°8.40.85 × 0.740.1254AL330-(TW) $1/8$ 0.36268.18.50.250.254AP380-(MJH) $1/8$ 0.51268.35.00.061.24MERLIN2-(MJH) $1/16$ 0.33268.48.30.72 × 0.582.04AW0249-(NVAS) $1/8$ 0.36270.14.90.364.84AB0522-(NVAS) $1/8$ 0.36277.34.90.371.02CORD-(NVAS) $1/8$ 0.36285.01.51.20.34AV0127-(NVAS) $1/4$ 0.72286.08.00.28 × 0.234.84AG0357-(NVAS) $1/8$ 0.36287.08.50.2410.04AK0276-(NVAS) $1/16$ 0.18288.04.90.60.54ED-(NED) $1/4$ 1.3289.05.00.060.44MERLIN2-(MJH) $1/8$ 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 252.0              | 4.9         | 1.0                                  | 0.5                | 4               | AF0213-(NVAS)     | 1/4            | 1.0               |
| 263.14.90.350.254DREH-(MJH)1/80.36266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.51268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 256.0              | 4.8         | $1.7 \times 1.4$                     | 0.4                | 4               | AM244–(TW)        | 1/4            | 1.0               |
| 266.08.40.300.44AK403-(CCC)1/80.51267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.51268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 263.1              | 4.9         | 0.35                                 | 0.25               | 4               | DREH-(MJH)        | 1/8            | 0.36              |
| 267°8.40.85 × 0.740.1254AL330-(TW)1/80.36268.18.50.250.254AP380-(MJH)1/80.51268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 266.0              | 8.4         | 0.30                                 | 0.4                | 4               | AK403-(CCC)       | 1/8            | 0.51              |
| 268.18.50.250.254AP380-(MJH)1/80.51268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 267 <sup>e</sup>   | 8.4         | $0.85 \times 0.74$                   | 0.125              | 4               | AL330-(TW)        | 1/8            | 0.36              |
| 268.35.00.061.24MERLIN2-(MJH)1/160.33268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 268.1              | 8.5         | 0.25                                 | 0.25               | 4               | AP380-(MJH)       | 1/8            | 0.51              |
| 268.48.30.72 × 0.582.04AW0249-(NVAS)1/80.36270.14.90.364.84AB0522-(NVAS)1/80.51277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 268.3              | 5.0         | 0.06                                 | 1.2                | 4               | MERLIN2-(MJH)     | 1/16           | 0.33              |
| 270.14.90.364.84AB0522-(NVAS)1/80.51277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 268.4              | 8.3         | $0.72 \times 0.58$                   | 2.0                | 4               | AW0249–(NVAS)     | 1/8            | 0.36              |
| 277.122.50.091.04AV231-(TW)1/80.36277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 270.1              | 4.9         | 0.36                                 | 4.8                | 4               | AB0522-(NVAS)     | 1/8            | 0.51              |
| 277.34.90.371.02CORD-(NVAS)1/80.36285.01.51.20.34AV0127-(NVAS)1/40.72286.08.00.28 × 0.234.84AG0357-(NVAS)1/80.36287.08.50.2410.04AK0276-(NVAS)1/160.18288.04.90.60.54ED-(NED)1/41.3289.05.00.060.44MERLIN2-(MJH)1/80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 277.1              | 22.5        | 0.09                                 | 1.0                | 4               | AV231-(TW)        | 1/8            | 0.36              |
| 285.0         1.5         1.2         0.3         4         AV0127-(NVAS)         1/4         0.72           286.0         8.0         0.28 × 0.23         4.8         4         AG0357-(NVAS)         1/8         0.36           287.0         8.5         0.24         10.0         4         AK0276-(NVAS)         1/16         0.18           288.0         4.9         0.6         0.5         4         ED-(NED)         1/4         1.3           289.0         5.0         0.06         0.4         4         MERLIN2-(MJH)         1/8         0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 277.3              | 4.9         | 0.37                                 | 1.0                | 2               | CORD-(NVAS)       | 1/8            | 0.36              |
| 286.0         8.0         0.28 × 0.23         4.8         4         AG0357-(NVAS)         1/8         0.36           287.0         8.5         0.24         10.0         4         AK0276-(NVAS)         1/16         0.18           288.0         4.9         0.6         0.5         4         ED-(NED)         1/4         1.3           289.0         5.0         0.06         0.4         4         MERLIN2-(MJH)         1/8         0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 285.0              | 1.5         | 1.2                                  | 0.3                | 4               | AV0127–(NVAS)     | 1/4            | 0.72              |
| 287.0         8.5         0.24         10.0         4         AK0276-(NVAS)         1/16         0.18           288.0         4.9         0.6         0.5         4         ED-(NED)         1/4         1.3           289.0         5.0         0.06         0.4         4         MERLIN2-(MJH)         1/8         0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 286.0              | 8.0         | $0.28 \times 0.23$                   | 4.8                | 4               | AG0357–(NVAS)     | 1/8            | 0.36              |
| 288.0         4.9         0.6         0.5         4         ED-(NED)         1/4         1.3           289.0         5.0         0.06         0.4         4         MERLIN2-(MJH)         1/8         0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 287.0              | 8.5         | 0.24                                 | 10.0               | 4               | AK0276–(NVAS)     | 1/16           | 0.18              |
| 289.0 5.0 0.06 0.4 4 MERLIN2-(MJH) 1/8 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 288.0              | 4.9         | 0.6                                  | 0.5                | 4               | ED-(NED)          | 1/4            | 1.3               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289.0              | 5.0         | 0.06                                 | 0.4                | 4               | MERLIN2-(MJH)     | 1/8            | 0.51              |

| 3CR<br>Name | Radio Freq.<br>(GHz) | HPBW<br>(radio)-(arcsec × arcsec) | Low-contour-level (radio)-(mJy/beam) | Factor Increase<br>(radio) | NRAO Project Code | Binning Factor<br>(X-rays) | FWHM-smoothing<br>(X-rays)-(arcsec) |
|-------------|----------------------|-----------------------------------|--------------------------------------|----------------------------|-------------------|----------------------------|-------------------------------------|
| 298.0       | 8.3                  | 0.25                              | 10.0                                 | 4                          | AJ0206–(NVAS)     | 1/16                       | 0.18                                |
| 299.0       | 1.5                  | 0.13                              | 1.0                                  | 4                          | MERLIN2-(NED)     | 1/8                        | 0.36                                |
| 309.1       | 14.9                 | $0.17 \times 0.11$                | 4.0                                  | 4                          | TESTT-(NVAS)      | 1/8                        | 0.36                                |
| 310.0       | 1.5                  | $15 \times 12$                    | 10.0                                 | 2                          | AB0182-(NVAS)     | 1                          | 7.5                                 |
| 318.0       | 8.5                  | 0.22                              | 20.0                                 | 2                          | AA0149-(NVAS)     | 1/8                        | 0.51                                |
| 318.1       | 1.4                  | $4.7 \times 4.4$                  | 0.3                                  | 4                          | FOMA-(NVAS)       | 1/2                        | 2.0                                 |
| 324.0       | 4.9                  | 0.38                              | 0.125                                | 4                          | AF186-(CCC)       | 1/8                        | 0.36                                |
| 325.0       | 4.9                  | 0.35                              | 0.5                                  | 4                          | AF213-(MJH)       | 1/8                        | 0.51                                |
| 334.0       | 4.9                  | 0.35                              | 0.125                                | 4                          | BRID-(MJH)        | 1/8                        | 0.51                                |
| 336.0       | 4.9                  | 0.35                              | 0.1                                  | 4                          | AB454–(MJH)       | 1/4                        | 0.72                                |
| 337.0       | 4.9                  | 0.40                              | 0.25                                 | 4                          | AP114-(MJH)       | 1/4                        | 1.0                                 |
| 338.0       | 4.9                  | 1.0                               | 0.1                                  | 2                          | AG269-(NED)       | 1/4                        | 0.72                                |
| 340.0       | 4.9                  | 0.40                              | 0.125                                | 4                          | AP380-(MJH)       | 1/4                        | 1.0                                 |
| 343.0       | 4.9                  | 0.42                              | 19.2                                 | 4                          | AB0922-(NVAS)     | 1/4                        | 0.72                                |
| 343.1       | 1.5                  | 1.3                               | 32.0                                 | 4                          | AM0178-(NVAS)     | 1/8                        | 0.51                                |
| 352.0       | 4.7                  | 0.35                              | 0.25                                 | 4                          | AG247–(MJH)       | 1/8                        | 0.36                                |
| 356.0       | 4.9                  | $0.45 \times 0.38$                | 0.75                                 | 4                          | AF0186-(NVAS)     | 1/4                        | 0.72                                |
| 368.0       | 8.5                  | 0.2                               | 0.3                                  | 4                          | AL0322-(NVAS)     | 1/4                        | 0.72                                |
| 382.0       | 8.4                  | 0.75                              | 0.125                                | 4                          | PERL-(NED)        | 1/4                        | 0.72                                |
| 388.0       | 4.9                  | $0.47 \times 0.36$                | 0.25                                 | 4                          | AC0149-(NVAS)     | 1/8                        | 0.94                                |
| 401.0       | 8.4                  | 0.27                              | 0.1                                  | 4                          | AP315-(MJH)       | 1/8                        | 0.51                                |
| (401b)      | 8.4                  | 0.27                              | 0.1                                  | 4                          | AP315-(MJH)       | 1/2                        | 3.8                                 |
| 427.1       | 8.5                  | 0.25                              | 0.1                                  | 4                          | AP331-(MJH)       | 1/4                        | 0.72                                |
| (427.1b)    | 8.5                  | 0.25                              | 0.1                                  | 4                          | AP331-(MJH)       | 1/2                        | 3.8                                 |
| 432.0       | 4.9                  | 0.40                              | 2.0                                  | 2                          | AB0454-(NVAS)     | 1/8                        | 0.51                                |
| 433.0       | 8.5                  | 0.25                              | 0.1                                  | 2                          | AB534–(MJH)       | 1/4                        | 0.72                                |
| 437.0       | 4.9                  | 1.2                               | 4.0                                  | 4                          | AV164-(TW)        | 1/4                        | 1.0                                 |
| 438.0       | 8.4                  | 0.23                              | 0.125                                | 4                          | AP315-(NED)       | 1/4                        | 1.3                                 |
| 441.0       | 4.9                  | 0.35                              | 0.25                                 | 4                          | AF213-(MJH)       | 1/8                        | 0.51                                |
| 442.0       | 1.4                  | 7.5                               | 0.5                                  | 2                          | PEGG-(NED)        | 2                          | 5.8                                 |
| 449.0       | 1.5                  | 4.0                               | 0.125                                | 4                          | AK319-(CCC)       | 2                          | 8.1                                 |
| (Insert)    | 1.7                  | 1.2                               | 0.25                                 | 4                          | PERL-(NVAS)       | 1/2                        | 1.4                                 |
| 455.0       | 4.9                  | 0.40                              | 0.5                                  | 4                          | AP331–(MJH)       | 1/8                        | 0.51                                |
| 469.1       | 4.9                  | $1.7 \times 1.1$                  | 2.0                                  | 4                          | AR0123-(NVAS)     | 1/4                        | 0.72                                |
| 470.0       | 8.4                  | $1.5 \times 1.3$                  | 2.0                                  | 4                          | AL330-(TW)        | 1/4                        | 0.72                                |

 Table 7

 (Continued)

**Notes.** Col. (1): the 3CR name. Col. (2): the binning factor of the X-ray image (see Section 4.2 for more details). Col. (3): the FWHM of the smoothing kernel chosen for the X-ray image. Col. (4): the value of the lowest contour level of the radio map overlaid to the X-ray image. Col. (5): the factor increase of the radio contours. Col. (6): the radio frequency of the radio map used for the comparison with the X-ray image. Col. (7): the half-power beam width (HPBW) of the reduced radio images. Single numbers are reported for circular beam. Col. (8): the identification number of the observer program, as reported in the header of the raw u,v data downloaded from the VLA archive (see https://archive.nrao.edu/archive/nraodashelpj.html for more details).

<sup>a</sup> 3CR 2 is 7".9 off axis, so we did not register the X-ray image. The source appears to be extended in the X-rays ( $\sim 8''$ ), but since it is so far off axis, the apparent size is consistent with the *Chandra* point-spread function.

<sup>b</sup> The white contours at the nucleus are from a Merlin observation, performed at 1.4 GHz on 1998 May 5, showing the small-scale jet. The X-ray images come from a 1/8 subarray observation, and the width of the subarray is smaller than the size of the radio source. The readout streak is evident and lies, unfortunately, along the direction of the jet and the primary axis of the radio emission.

<sup>c</sup> The prominent readout streak goes right through the jet segment superposed on the *E* lobe.

<sup>d</sup> This is a radio galaxy lying at z = 0.685, which is lensing a submillimeter galaxy at z = 2.221 (Haas et al. 2014).

<sup>e</sup> There may be a wcs problem with the coordinates of the radio image of the order of 1", and so the R.A./decl. labels could be slightly off.

associated with the selected 3CR source, all already known in the X-rays.

In the appendices, we present X-ray images with radio contours for all 93 sources analyzed in this paper (Appendix A) and give the *Chandra* status of the observations for all extragalactic 3CR sources (Appendix B).

We thank the anonymous referee for useful comments that led to improvements in the paper. We are grateful to M. Hardcastle and C. C. Cheung for providing several radio images of the 3CR sources, while the remaining ones were downloaded from the NVAS<sup>14</sup> (NRAO VLA Archive Survey), NED<sup>15</sup> (Nasa Extragalactic Database), and the DRAGN webpage.<sup>16</sup> This investigation is supported by the NASA grants GO1-12125A, GO2-13115X, and GO4-15097X. G.R.T acknowledges support by the European Community's Seventh

<sup>&</sup>lt;sup>14</sup> http://archive.nrao.edu/nvas/

<sup>15</sup> http://ned.ipac.caltech.edu/

<sup>&</sup>lt;sup>16</sup> http://www.jb.man.ac.uk/atlas/

 Table 8

 The Current Status of the 3CR Chandra Observations

Table 8 (Continued)

| 3CR   | Class | z        | $D_{\rm L}$ | Cluster   | X-Ray     | Chandra | 3CR   | Class      | z           | $D_{ m L}$         | Cluster | X-Ray     | Chandra |
|-------|-------|----------|-------------|-----------|-----------|---------|-------|------------|-------------|--------------------|---------|-----------|---------|
| Name  |       |          | (Mpc)       | Flag      | Detection | Flag    | Name  |            |             | (Mpc)              | Flag    | Detection | Flag    |
| 2.0   | QSR   | 1.037367 | 7252.26     | no        |           | yes     | 107.0 | FRII       | 0.785       | 5124.51            | no      |           | yes     |
| 6.1   | FRII  | 0.8404   | 5577.63     | no        | h         | yes     | 109.0 | FRII       | 0.3056      | 1643.78            | no      | h, l      | yes     |
| 9.0   | QSR   | 2.019922 | 16632.24    | no        | k, l      | yes     | 111.0 | FRII       | 0.0485      | 221.87             | no      | k, h      | yes     |
| 11.1  | UND   | ?        | •••         | no        | •••       | no      | 114.0 | FRII       | 0.815       | 5368.77            | no      |           | yes     |
| 13.0  | FRII  | 1.351    | 10088.93    | no        | h         | yes     | 119.0 | FRII       | 1.023       | 7127.0             | no      |           | no      |
| 14.0  | QSR   | 1.469    | 11200.31    | no        |           | yes     | 123.0 | FRII       | 0.2177      | 1114.8             | yes     | k         | yes     |
| 14.1  | UND   | ?        |             | no        |           | no      | 124.0 | FRII       | 1.083       | 7653.06            | no      |           | no      |
| 15.0  | FRI   | 0.073384 | 341.93      | no        | k, l      | yes     | 125.0 | UND        | ?           |                    | no      |           | no      |
| 16.0  | FRII  | 0.405    | 2288.92     | no        | h, l      | yes     | 129.0 | FRI        | 0.0208      | 93.2               | yes     | k, xcl    | yes     |
| 17.0  | QSR   | 0.219685 | 1126.33     | no        | k         | yes     | 129.1 | FRI        | 0.0222      | 99.56              | no      |           | ves     |
| 18.0  | FRII  | 0.188    | 945.54      | no        |           | yes     | 130.0 | FRI        | 0.109       | 520.76             | no      |           | ves     |
| 19.0  | FRII  | 0.482    | 2819.56     | yes       | h         | yes     | 131.0 | UND        | ?           |                    | no      |           | no      |
| 20.0  | FRII  | 0.174    | 867.55      | no        |           | yes     | 132.0 | FRII       | 0.214       | 1093.4             | ves     |           | ves     |
| 21.1  | UND   | ?        |             | no        |           | no      | 133.0 | FRII       | 0.2775      | 1470.27            | no      |           | ves     |
| 22.0  | FRII  | 0.936    | 6378.57     | no        |           | yes     | 134.0 | UND        | ?           |                    | no      |           | no      |
| 27.0  | FRII  | 0.184    | 923.17      | no        |           | no      | 135.0 | FRI        | 0 12738     | 616 21             | ves     |           | ves     |
| 28.0  | FRI   | 0.195275 | 986.54      | yes       | xcl       | yes     | 136.1 | FRI        | 0.064       | 296.2              | no      |           | ves     |
| 29.0  | FRI   | 0.045031 | 205.48      | yes       | k         | yes     | 137.0 | UND        | 2           | 290.2              | no      |           | ycs     |
| 31.0  | FRI   | 0.017005 | 75.94       | yes       | k         | yes     | 138.0 | OSP        | 0 759       | 4915.0             | no      |           | ves     |
| 33.0  | FRII  | 0.0597   | 275.49      | no        | h         | ves     | 130.0 | EDII       | 0.757       | 4715.0             | no      |           | yes     |
| 33.1  | FRII  | 0.180992 | 906.44      | no        |           | ves     | 139.2 |            | 2           |                    | no      |           | no      |
| 33.2  | UND   | ?        | •••         | no        |           | no      | 141.0 | EDII       | 2<br>0.4061 | 2206.2             | no      |           | IIO     |
| 34.0  | FRI   | 0.69     | 4368.53     | no        |           | ves     | 142.1 |            | 0.4001      | 2290.3             | 110     |           | yes     |
| 35.0  | FRI   | 0.067013 | 310.8       | no        |           | ves     | 147.0 | UND        | 0.343       | 52/1.65            | no      |           | yes     |
| 36.0  | OSR   | 1 301    | 9624.8      | no        |           | no      | 152.0 |            | ,<br>0.07(0 | 1466.50            | по      |           | по      |
| 40.0  | FRI   | 0.018    | 80.46       | ves       | xcl       | ves     | 153.0 | FKII       | 0.2769      | 1400.39            | yes     |           | yes     |
| 41.0  | FRI   | 0.795    | 5205.64     | no        |           | ves     | 154.0 | QSK        | 0.58        | 3529.84            | no      | •••       | yes     |
| 42.0  | FRI   | 0.395007 | 2203.04     | no        |           | ves     | 158.0 | UND        | ?           |                    | no      | •••       | no      |
| 42.0  | OSB   | 1.450    | 11105 41    | no        |           | yes     | 165.0 | FRII       | 0.2957      | 1582.19            | no      |           | yes     |
| 43.0  | COL   | 0.66     | 4125.92     | IIO       |           | yes     | 166.0 | FRII       | 0.2449      | 1274.04            | no      |           | yes     |
| 44.0  |       | 0.00     | 4133.63     | yes       |           | yes     | 169.1 | FRII       | 0.633       | 3928.69            | no      | ••••      | yes     |
| 40.0  |       | 0.4375   | 2308.42     | yes       |           | yes     | 171.0 | FRII       | 0.2384      | 1235.67            | no      | •••       | yes     |
| 47.0  | QSK   | 0.425    | 2424.27     | no        | n, 1      | yes     | 172.0 | FRII       | 0.5191      | 3084.06            | no      | •••       | yes     |
| 48.0  | QSK   | 0.367    | 2036.73     | no        | •••       | yes     | 173.0 | QSR        | 1.035       | 7231.55            | no      |           | no      |
| 49.0  | FRII  | 0.621    | 3837.6      | no        |           | yes     | 173.1 | FRII       | 0.2921      | 1559.87            | yes     | h, l      | yes     |
| 52.0  | FRII  | 0.29     | 1546.9      | yes       | h         | yes     | 175.0 | QSR        | 0.77        | 5003.31            | no      |           | yes     |
| 54.0  | FRII  | 0.8274   | 5470.44     | no        |           | yes     | 175.1 | FRII       | 0.92        | 6242.98            | no      |           | yes     |
| 55.0  | FRII  | 0.7348   | 4721.63     | no        |           | yes     | 180.0 | FRII       | 0.22        | 1128.16            | no      |           | yes     |
| 63.0  | FRII  | 0.175    | 873.1       | no        |           | yes     | 181.0 | QSR        | 1.382       | 10378.89           | no      | h         | yes     |
| 61.1  | FRII  | 0.18781  | 944.47      | no        | h         | yes     | 184.0 | FRII       | 0.994       | 6875.53            | no      |           | yes     |
| 65.0  | FRII  | 1.176    | 8483.18     | no        | h         | yes     | 184.1 | FRII       | 0.1182      | 568.34             | yes     |           | yes     |
| 66.0A | BL    | ?        | •••         | yes       |           | yes     | 186.0 | QSR        | 1.068634    | 7526.33            | yes     | xcl       | yes     |
| 66.0B | FRI   | 0.021258 | 95.28       | yes       | k         | yes     | 187.0 | FRII       | 0.465       | 2700.19            | no      | 1         | yes     |
| 67.0  | FRII  | 0.3102   | 1672.55     | no        |           | yes     | 190.0 | QSR        | 1.195649    | 8660.73            | no      |           | yes     |
| 68.1  | QSR   | 1.238    | 9045.91     | no        |           | yes     | 191.0 | QSR        | 1.956       | 15984.33           | no      | k, l      | yes     |
| 68.2  | FRII  | 1.575    | 12216.2     | no        | h         | yes     | 192.0 | FRII       | 0.059709    | 275.53             | yes     |           | yes     |
| 69.0  | FRII  | 0.458    | 2651.47     | no        |           | no      | 194.0 | FRII       | 1.184       | 8555.38            | no      |           | no      |
| 71.0  | Sy    | 0.003793 | 16.72       | no        |           | yes     | 196.0 | OSR        | 0.871       | 5831.32            | no      |           | ves     |
| 75.0  | FRI   | 0.023153 | 103.9       | yes       | xcl       | yes     | 196.1 | FRII       | 0.198       | 1002.01            | no      |           | ves     |
| 76.1  | FRII  | 0.032489 | 146.82      | no        |           | yes     | 197.1 | FRII       | 0.128009    | 619.51             | ves     |           | ves     |
| 78.0  | FRI   | 0.028653 | 129.09      | no        | k         | yes     | 198.0 | FRII       | 0.081474    | 381.9              | ves     |           | ves     |
| 79.0  | FRII  | 0.255900 | 1339.62     | yes       |           | yes     | 200.0 | FRI        | 0.458       | 2651.47            | ves     | k 1       | ves     |
| 83.1  | FRI   | 0.025137 | 112.95      | yes       | k, xcl    | yes     | 204.0 | OSR        | 1 112       | 7909 99            | no      |           | ves     |
| 84.0  | FRI   | 0.017559 | 78.45       | yes       | xcl       | yes     | 201.0 | OSR        | 1 534       | 11821 39           | no      |           | ves     |
| 86.0  | FRII  | ?        |             | no        |           | no      | 203.0 | OSB<br>OSB | 0.6808      | 4206.04            | no      | k 1       | yes     |
| 88.0  | FRI   | 0.030221 | 136.32      | ves       | k, xcl    | ves     | 207.0 | Odb<br>Cov | 1 111510    | 7005 63            | no      | ĸ, i      | yes     |
| 89.0  | FRI   | 0.1386   | 675.57      | ves       | xcl       | ves     | 200.0 | Q2V<br>V2V | 1.02        | 7100.00            | 110     |           | yes     |
| 91.0  | UND   | ?        |             | no        |           | no      | 200.1 | USK<br>EDH | 1.02        | 1100.98<br>8420.05 | 10      | <br>h     | 110     |
| 93.0  | OSR   | 0.35712  | 1972.32     | no        |           | ves     | 210.0 |            | 1.109       | 0420.00            | 110     | П<br>Ь    | yes     |
| 93.1  | FRII  | 0 243    | 1262.81     | Vec       |           | ves     | 212.0 | USK<br>EDI | 1.048       | / 343.18           | 110     | n<br>1    | yes     |
| 98.0  | FRII  | 0.030454 | 137.4       | ,03<br>no |           | ves     | 213.1 | FKI<br>OCD | 0.19392     | 9/8.8/             | yes     | n<br>1- 1 | yes     |
| 99.0  | Sv    | 0 476    | 2431.07     | Vec       |           | ves     | 215.0 | QSR        | 0.4121      | 2556.74            | no      | к, 1      | yes     |
| 103.0 | EB11  | 0.33     | 1707 71     | ,03<br>no |           | ves     | 217.0 | FKII       | 0.89/5      | 6053.2             | no      |           | yes     |
| 105.0 | EBII  | 0.00     | 410 33      | no        | k h       | yes     | 216.0 | QSR        | 0.669915    | 4212.31            | no      | •••       | yes     |
| 105.0 | i Kii | 0.007    | T17.55      | 10        | к, п      | y 0.0   |       |            |             |                    |         |           |         |

Table 8(Continued)

Chandra

Flag

yes yes yes yes yes

yes

yes yes no yes yes yes no yes yes yes no yes yes yes yes yes

yes yes yes yes yes yes yes no yes yes yes yes yes no yes yes

Table 8 (Continued)

|                | (Continued) |          |                         |                 |                    |                        |             |            |          |                         |                 |                    |
|----------------|-------------|----------|-------------------------|-----------------|--------------------|------------------------|-------------|------------|----------|-------------------------|-----------------|--------------------|
| 3CR<br>Name    | Class       | z        | D <sub>L</sub><br>(Mpc) | Cluster<br>Flag | X-Ray<br>Detection | <i>Chandra</i><br>Flag | 3CR<br>Name | Class      | z        | D <sub>L</sub><br>(Mpc) | Cluster<br>Flag | X-Ray<br>Detection |
| 219.0          | FRII        | 0.174732 | 871.61                  | yes             | k, l               | yes                    | 288.0       | FRI        | 0.246    | 1280.56                 | yes             | xcl                |
| 220.1          | FRII        | 0.61     | 3754.31                 | yes             | xcl                | yes                    | 288.1       | QSR        | 0.96296  | 6608.61                 | no              |                    |
| 220.2          | QSR         | 1.157429 | 8316.07                 | no              |                    | no                     | 289.0       | FRII       | 0.9674   | 6646.6                  | no              |                    |
| 220.3          | FRII        | 0.68     | 4290.73                 | no              |                    | yes                    | 292.0       | FRII       | 0.71     | 4525.37                 | no              | •••                |
| 222.0          | FRI         | 1.339    | 9977.24                 | no              |                    | no                     | 293.0       | FRI        | 0.045034 | 205.5                   | no              |                    |
| 223.0          | FRII        | 0.13673  | 665.6                   | yes             |                    | yes                    | 293.1       | FRII       | 0.709    | 4517.5                  | no              | •••                |
| 223.1          | FRII        | 0.107474 | 512.94                  | no              | •••                | yes                    | 294.0       | FRII       | 1.779    | 14212.84                | yes             | h, xcl             |
| 225.0A         | FRII        | 1.565    | 12119.69                | no              |                    | yes                    | 295.0       | FRII       | 0.4641   | 2693.92                 | yes             | h, xcl             |
| 225.0B         | FRII        | 0.58     | 3529.84                 | no              |                    | yes                    | 296.0       | FRI        | 0.024704 | 110.97                  | no              | k                  |
| 226.0          | FKII        | 0.81//   | 5390.92                 | no              | <br>1              | yes                    | 297.0       | QSR        | 1.4061   | 10605.23                | no              |                    |
| 227.0          | FKII        | 0.086272 | 405.71                  | no              | n<br>1-            | yes                    | 298.0       | QSK<br>EDH | 1.438120 | 10907.49                | no              | L                  |
| 228.0          | FKII        | 0.5524   | 3325.95                 | no              | n                  | yes                    | 299.0       | FKII       | 0.367    | 2036.73                 | yes             | n                  |
| 230.0          | FKII        | 1.48/    | 113/1./                 | no              | •••                | no                     | 300.0       | FKII       | 0.27     | 1424.56                 | no              | •••                |
| 231.0          | FKI         | 0.000677 | 2.97                    | no              | <br>1              | yes                    | 300.1       | FKII       | 1.15885  | 8328.80                 | no              |                    |
| 234.0          | FKII        | 0.184925 | 928.33                  | no              | n                  | yes                    | 303.0       | FKI        | 0.141186 | 689.35                  | yes             | K                  |
| 236.0          | FKII        | 0.1005   | 4//.44                  | no              | •••                | yes                    | 303.1       | FKI        | 0.2704   | 1426.99                 | no              | •••                |
| 237.0          | FKII        | 0.8//    | 5881.45                 | no              | •••                | yes                    | 305.0       | FRII       | 0.041639 | 189.56                  | no              |                    |
| 238.0          | FRII        | 1.405    | 10594.89                | no              |                    | no                     | 305.1       | FRII       | 1.132    | 8088.23                 | no              |                    |
| 239.0          | FKII        | 1./81    | 14232.66                | no              | •••                | no                     | 306.1       | FKII       | 0.441    | 2533.89                 | yes             |                    |
| 241.0          | FKII        | 1.617    | 12622.99                | no              | •••                | yes                    | 309.1       | QSK        | 0.905    | 6116.25                 | no              |                    |
| 244.1          | FKII        | 0.428    | 2444.69                 | yes             |                    | yes                    | 310.0       | FRI        | 0.0538   | 247.11                  | yes             | xcl                |
| 245.0          | QSR         | 1.02/8/2 | /169.36                 | no              | K                  | yes                    | 314.1       | FRI        | 0.1197   | 576.16                  | yes             |                    |
| 247.0          | FRII        | 0.7489   | 4834.0                  | yes             | •••                | yes                    | 313.0       | FRII       | 0.461000 | 2672.37                 | yes             | h, xcl             |
| 249.0          | QSR         | 1.554    | 12013.69                | no              | •••                | no                     | 315.0       | FRI        | 0.1083   | 517.17                  | yes             |                    |
| 249.1          | QSK<br>EDH  | 0.3115   | 1680.71                 | no              |                    | yes                    | 317.0       | FRI        | 0.034457 | 155.96                  | yes             | xcl                |
| 250.0          | FKII        | 2<br>1 1 |                         | no              |                    | по                     | 318.0       | FRII       | 1.574    | 12206.53                | yes             |                    |
| 252.0          | FKII        | 1.1      | /803.57                 | no              | <br>L              | yes                    | 318.1       | FRI        | 0.045311 | 206.8                   | yes             | xcl                |
| 254.0          | QSK         | 0.730019 | 4/30.12                 | no              | n                  | yes                    | 319.0       | FRII       | 0.192    | 968.03                  | yes             |                    |
| 255.0          | QSK<br>EDH  | 1.355    | 10120.27                | no              |                    | no                     | 320.0       | FRII       | 0.342    | 18/4.59                 | yes             | xcl                |
| 250.0          | FKII        | 1.819    | 14010.18                | no              | •••                | yes                    | 321.0       | FRII       | 0.0961   | 455.08                  | no              | h                  |
| 257.0          | QSK<br>EDI  | 2.4/4    | 21340.07                | no              | •••                | no                     | 322.0       | FRII       | 1.681    | 13247.25                | no              | •••                |
| 258.0          |             | 0.103    | 010.05<br>4028.06       | yes             | <br>h              | yes                    | 323.0       | FKII       | 0.679    | 4282.93                 | no              | •••                |
| 205.0          | QSK<br>EDH  | 0.040    | 4028.00                 | no              | п                  | yes                    | 323.1       | QSK        | 0.2643   | 1390.12                 | yes             |                    |
| 205.1          |             | 0.824    | 07.27                   | no              | 1-                 | yes                    | 324.0       | FKII       | 1.2063   | 8/5/.25                 | yes             | n                  |
| 265.0          |             | 0.021/18 | 5226.02                 | yes             | K<br>h l           | yes                    | 325.0       | FKII       | 1.135    | 8115.00                 | no              | n                  |
| 205.0          |             | 1.275    | 0384.00                 | no              | 11, 1              | yes                    | 326.0       | FKII       | 0.0895   | 421.83                  | no              | •••                |
| 200.0          |             | 1.275    | 9364.99                 | no              | •••                | yes                    | 320.1       | FKII       | 1.825    | 14009.88                | no              | <br>L              |
| 267.0          | FDII        | 0.07     | 6668 80                 | no              | <br>h              | yes                    | 327.0       | FKII       | 0.1048   | 499.28                  | yes             | n<br>1r            |
| 200.1          |             | 0.97     | 2004 12                 | IIO             | li<br>b            | yes                    | 327.1       | FKI<br>EDH | 0.462    | 2079.32                 | no              | K<br>L             |
| 200.2          |             | 0.302    | 2004.12                 | yes             | 11                 | yes                    | 330.0       | FKII       | 0.55     | 3308.30                 | yes             | n                  |
| 200.5          |             | 1 402200 | 10568 50                | no              |                    | yes                    | 332.0       | FKII       | 0.151019 | 742.01                  | yes             | 1- 1               |
| 200.4          | EDI         | 0.007278 | 22.62                   | IIO             | <br>1z             | yes                    | 334.0       | QSK        | 0.5551   | 3345.78                 | no              | К, І               |
| 270.0          | OSP         | 1 528432 | 11767.04                | yes             | K                  | yes                    | 227.0       | QSK<br>EDH | 0.920342 | 0298.23                 | IIO             |                    |
| 270.1          | EDII        | 0.044    | 6446.64                 | no              |                    | yes                    | 228.0       |            | 0.055    | 126.04                  | yes             | <br>               |
| 272.0          | FDI         | 0.944    | 14.04                   | NAC             | <br>k              | yes                    | 240.0       |            | 0.050554 | 130.94                  | yes             | XCI                |
| 272.1          | OSP         | 0.158330 | 781 73                  | yes             | K<br>k             | yes                    | 241.0       |            | 0.7734   | 3040.9                  | 110             | <br>1-             |
| 273.0          | EDI         | 0.136339 | 18 80                   | IIO             | K<br>k vol         | yes                    | 341.0       | FKII       | 0.448    | 2582.00                 | no              | K                  |
| 274.0          |             | 0.004283 | 2402.01                 | yes             | к, хсі             | yes                    | 343.0       | QSK<br>EDH | 0.988    | 0823.74                 | no              | •••                |
| 275.0          |             | 0.422    | 2403.91                 | no              |                    | yes                    | 343.1       | FKII       | 0.75     | 4842.79                 | no              |                    |
| 275.0          |             | 0.46     | 2803.31                 | yes             | <br>Ir h 1         | yes                    | 345.0       | QSK        | 0.5928   | 3625.15                 | no              | K 1                |
| 273.1          | QSK<br>EDI  | 0.3331   | 3343.78                 | no              | к, п, 1            | yes                    | 346.0       | FKI        | 0.162012 | 801.73                  | yes             | K                  |
| 277.0          |             | 0.414    | 2349.39                 | no              |                    | yes                    | 348.0       | FKI        | 0.155    | /63.55                  | yes             | xci                |
| 277.1          | QSK<br>EDH  | 0.31978  | 1/52.99                 | no              |                    | yes                    | 349.0       | FKII       | 0.205    | 1041.79                 | no              | n                  |
| 211.2          |             | 0.700    | 49/1.15                 | no              |                    | yes                    | 351.0       | FKII       | 0.3/194  | 2069.13                 | no              | n                  |
| 211.3          | ГКШ<br>Ери  | 0.002    | 401.05                  | no              | <br> - L 1         | yes                    | 352.0       | FKII       | 0.8067   | 5300.91                 | no              |                    |
| 200.0<br>200.1 | L KII       | 0.990    | 12110.9                 | yes             | к, п, I<br>1       | yes                    | 353.0       | FKII       | 0.030421 | 137.25                  | no              | K                  |
| 200.1          | QSK<br>EDU  | 1.00/003 | 12/2 (9                 | no              | 1                  | no                     | 356.0       | FKII       | 1.079    | /61/.8                  | no              |                    |
| 204.U          | гкII<br>гри | 0.239/34 | 1243.08                 | yes             |                    | yes                    | 357.0       | FKII       | 0.166148 | 824.31                  | yes             |                    |
| 283.U          | FKII        | 0.0794   | 5/1.64                  | no              |                    | yes                    | 368.0       | FRII       | 1.131    | 8079.29                 | no              | 1                  |
| 280.0          | QSR         | 0.849934 | 5050.31                 | no              |                    | yes                    | 371.0       | BL         | 0.051    | 233.74                  | no              | k                  |
| 287.0          | QSK<br>EDH  | 1.055    | /400.56                 | no              |                    | yes                    | 379.1       | FRI        | 0.256    | 1340.22                 | no              |                    |
| 287.1          | FRII        | 0.215567 | 1102.45                 | no              | h                  | yes                    | 380.0       | QSR        | 0.692    | 4384.16                 | no              | k                  |

Table 8 (Continued)

| 3CR   | Class      | Ζ.            | Dr       | Cluster | X-Rav      | Chandra    |
|-------|------------|---------------|----------|---------|------------|------------|
| Name  |            | ~             | (Mpc)    | Flag    | Detection  | Flag       |
| 381.0 | EDII       | 0.1605        | 703 51   |         |            | <u>vec</u> |
| 382.0 | FDII       | 0.1005        | 795.51   | no      |            | yes        |
| 386.0 | FDI        | 0.05787       | 75 30    | no      |            | yes        |
| 388.0 | EDII       | 0.010885      | 13.39    | NAS     | vel        | yes        |
| 280.0 |            | 0.0917        | 432.00   | yes     | XCI        | yes        |
| 309.0 | UND        | 2             |          | no      |            | no         |
| 300.3 | FRI        | 0.0561        | 258 14   | no      | k h        | ves        |
| 390.5 |            | 0.0501        | 238.14   | no      | к, п       | yes        |
| 300 1 | FRI        | 2             |          | no      |            | no         |
| 401.0 | FRI        | 0.2011        | 1019 64  | Vec     | vel        | ves        |
| 402.0 | FDI        | 0.025048      | 116.67   | yes     | k          | yes        |
| 403.0 | EDII       | 0.025940      | 272.1    | no      | k h        | yes        |
| 403.0 | FDII       | 0.0554        | 272.1    | NAS     | к, п       | yes        |
| 405.0 | EDII       | 0.055075      | 259.01   | yes     | h vol      | yes        |
| 405.0 |            | 0.030073      | 238.01   | yes     | II, XCI    | yes        |
| 409.0 |            | :<br>0.2485   | 1205 4   | no      | •••        | IIO        |
| 410.0 |            | 0.2483        | 1295.4   | no      | •••        | yes        |
| 411.0 |            | 0.407         | 2/14.14  | 110     |            | yes        |
| 413.2 | OSP        | ؛<br>۱ 686    | 12206 15 | no      |            | 110        |
| 410.0 | EDI        | 0.126088      | 614 15   | no      | •••        | IIO        |
| 424.0 |            | 0.120988      | 2470.25  | yes     | <br>1 mal  | yes        |
| 427.1 |            | 0.372         | 5470.55  | yes     | 1,XCI      | yes        |
| 426.0 |            | 2<br>0.055545 | 255 47   | no      |            | no         |
| 430.0 |            | 0.055545      | 255.47   | yes     | •••        | yes        |
| 431.0 | OSP        | :<br>1 795    | 14272.26 | no      | •••        | IIO        |
| 432.0 | EDII       | 0.222         | 1746.00  | 110     | •••        | yes        |
| 434.0 |            | 0.322         | 1740.99  | yes     | •••        | yes        |
| 435.0 |            | 0.1010        | 465.01   | 110     | •••        | yes        |
| 435.0 |            | 0.471         | 1006.28  | 110     | <br>h      | yes        |
| 430.0 |            | 1.49          | 1090.28  | 110     | 11<br>b    | yes        |
| 437.0 |            | 1.48          | 1546.0   | no      | 11<br>v.al | yes        |
| 438.0 |            | 0.29          | 1540.9   | yes     | XCI        | yes        |
| 441.0 |            | 0.708         | 4309.05  | no      | <br>v al   | yes        |
| 442.0 |            | 0.0203        | 257.07   | yes     | XCI<br>h   | yes        |
| 445.0 |            | 0.033879      | 237.07   | yes     | 11<br>v.al | yes        |
| 449.0 |            | 0.017085      | 70.5     | yes     | XCI<br>h 1 | yes        |
| 452.0 |            | 1 757         | 12005.04 | 110     | 11, 1      | yes        |
| 454.0 | QSK<br>EDH | 1.737         | 13993.04 | no      |            | 110        |
| 454.1 |            | 1.641         | 14629.49 | yes     |            | 110        |
| 454.2 | OSP        | 2<br>0 850    | 5721.6   | no      | <br>12     | no         |
| 455.0 | QSK        | 0.839         | 2257.27  | 110     | K          | yes        |
| 455.0 | QSK<br>EDH | 0.343         | 1202.84  | 110     |            | yes        |
| 450.0 |            | 0.235         | 1203.84  | no      | <br>h      | yes        |
| 450.0 |            | 0.289         | 1340.74  | yes     | 1          | yes        |
| 439.0 |            | 0.22012       | 1120.05  | по      | 1          | yes        |
| 400.0 | FKII       | 0.208         | 1412.45  | yes     | <br>11     | yes        |
| 403.0 |            | 0.030221      | 130.32   | yes     | K, XCI     | yes        |
| 408.1 |            | /<br>1.226    | 0040.07  | no      | •••        | по         |
| 409.1 | FKII       | 1.550         | 9949.27  | по      |            | yes        |
| 470.0 | FKII       | 1.653         | 129/3.42 | no      | n          | yes        |

**Note.** Col. (1): the 3CR name. Col. (2): the radio-to-optical classification of the sources: FRI and FRII refer to the Fanaroff and Riley classification criterion for radio galaxies (Fanaroff & Riley 1974); QSR stands for quasars; Sy for Seyfert galaxies; and BL for BL Lac objects. We used the acronym UND for sources that are still unidentified, i.e., lacking an optical spectroscopic observation. Col. (3): redshift *z*. We also verified in the literature (e.g., NED and/or SIMBAD databases) whether new *z* values were reported after the release of the 3CR catalog. Col. (4): luminosity distance in Mpc. Cosmological parameters used to compute it are reported in Section 1. Col. (5): the "cluster flag" indicates if the source is known to be associated with a cataloged cluster of galaxies or if there is significantly extended X-ray emission around the host galaxy, i.e., on scales of 100 kpc or greater. Col. (6): in this column we report whether the source has

a radio component with an X-ray counterpart. We used the following labels: k = jet knot; h = hotspot; l = lobe. We also indicated xcl if there is a galaxy cluster detected in the X-rays. Col. (7): the "*Chandra* flag" indicates if the source was already observed by *Chandra*. Question marks in the redshift column (i.e., col. 3) indicate that no optical spectra are present in the literature at the best of our knowledge and thus no *z* estimate was found.



**Figure 1.** X-ray image corresponding to the Chandra observation (Table 2) with contours of radio brightness superposed. The image is re-binned to change the pixel size and is smoothed with a Gaussian function. The underlying color bar shows the X-ray brightness in units of counts per pixel. Radio contours are logarithmically spaced. All relevant parameters for each source are given in Table 7.

(The complete figure set (95 images) is available.)

Framework Programme (/FP7/2007-2013/) under grant agreement No. 229517. This work was also supported by contributions of the European Union, Valle D'Aosta Region, and the Italian Minister for Work and Welfare. The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. This research has made use of data obtained from the High-Energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center; the SIMBAD database operated at CDS, Strasbourg, France; and the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. TOPCAT<sup>17</sup> (Taylor 2005) was used for the preparation and manipulation of the tabular data and the images. SAOImage DS9 was used extensively in this work for the preparation and manipulation of the images. SAOImage DS9 was developed by the Smithsonian Astrophysical Observatory.

Facilities: VLA, MERLIN, CXO (ACIS).

<sup>&</sup>lt;sup>17</sup> http://www.star.bris.ac.uk/mbt/topcat/

### APPENDIX A IMAGES OF THE SOURCES

For all 93 3CR sources in our selected sample, radio morphologies are shown here as contours superposed on the re-gridded/smoothed X-ray events files. The FWHM of the Gaussian smoothing function and the binning factor are given in Table 7. X-ray event files were limited to the 0.5-7 keV band and re-binned to change the pixel size with a binning factor "f" (e.g., f = 1/4 produces pixels four times smaller than the native ACIS pixel of 0''.492). The labels on the color bar for each X-ray map are in units of counts/pixel. Also included in this table are the radio brightness of the lowest contour, the factor (usually 2 or 4) by which each subsequent contour exceeds the previous one, the frequency of the radio map, and the FWHM of the clean beam. The primary reason figures appear so different from each other is the wide range in angular size of the radio sources.

### APPENDIX B THE STATUS OF THE CHANDRA X-RAY 3CR **OBSERVATIONS**

Here we present the current status of the Chandra X-ray observations for the entire 3CR catalog, summarized in Table 8. For each 3CR source, we indicate the radio-to-optical classification indicating FRI and FRII radio galaxies, according to the Fanaroff & Riley criterion (Fanaroff & Riley 1974); quasars (i.e., QSRs); Seyfert galaxies (Sy); and BL Lac objects (BL). We indicate as "UND" those sources that, lacking optical spectroscopy, remain unidentified. Then, the most updated value of the redshift z is reported, together with the luminosity distance  $D_{\rm L}$  and we also used a "cluster flag" to label sources that belong to a known galaxy cluster. Regarding the X-ray analysis, we report X-ray detections of radio components adopting the following symbols: k = jet knot; h = hotspot; 1 = 1 lobe; and xcl for sources that belong to a galaxy cluster detected in the X-rays. Finally, the "Chandra flag" indicates if the source was already observed by Chandra.

#### REFERENCES

- Abdo, A. A., Ackermann, M., Ajello, M., et al. 2011, ApJ, 726, 43
- Balmaverde, B., Capetti, A., & Grandi, P. 2006, A&A, 451, 35
- Balmaverde, B., Capetti, A., Grandi, P., et al. 2012, A&A, 545A, 143
- Belsole, E., Worrall, D. M., Hardcastle, M. J., Birkinshaw, M., & Lawrence, C. R. 2004, MNRAS, 352, 924
- Belsole, E., Worrall, D. M., Hardcastle, M. J., & Croston, J. H. 2007, MNRAS, 381, 1109
- Bennett, A. S. 1962, MmRAS, 68, 163
- Blanton, E. L., Randall, S. W., Douglass, E. M., et al. 2009, ApJL, 697, L95
- Boschin, W. 2002, A&A, 396, 397
- Brinkman, A. C., Kaastra, J. S., van der Meer, et al. 2002, A&A, 396, 761
- Buttiglione, S., Capetti, A., Celotti, A., et al. 2009, A&A, 495, 1033
- Chiaberge, M., Capetti, A., & Celotti, A. 2000, A&A, 355, 873
- D'Abrusco, R., Massaro, F., Paggi, A., et al. 2013, ApJS, 206, 12
- Donato, D., Sambruna, R. M., & Gliozzi, M. 2004, ApJ, 617, 915
- Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, ApJS, 180, 306
- Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E., & Archer, S. 1959, MmRAS, 68, 37

- Erlund, M. C., Fabian, A. C., Blundell, Katherine, M., Celotti, A., Crawford, C. S., et al. 2006, MNRAS, 371, 29
- Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2003, MNRAS, 344, L43
- Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, P31
- Gambill, J. K., Sambruna, R. M., Chartas, G., et al. 2003, A&A, 401, 505
- Gilmour, R., Best, P., & Almaini, O. 2009, MNRAS, 392, 1509
- Gliozzi, M., Sambruna, R. M., Eracleous, M., & Yaqoob, T. 2007, ApJ, 664.88
- Griffiths, R. E., Ptak, A., Feigelson, E. D., et al. 2000, Sci, 290, 1325
- Haas, M., Leipski, C., Barthel, P., et al. 2014, ApJ, 790, 46
- Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2006, MNRAS, 370, 1893
- Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2009, MNRAS, 396, 1929
- Hardcastle, M. J., Harris, D. E., Worrall, D. M., & Birkinshaw, M. 2004, ApJ, 612, 729
- Hardcastle, M. J., Kraft, R. P., Worrall, D. M., et al. 2007, ApJ, 662, 166
- Harwood, J. J., & Hardcastle, M. J. 2012, MNRAS, 423, 1368
- Hiltner, P. R., & Roeser, H.-J. 2009, ApJS, 184, 398
- Ho, L. C., & Minjin, K. 2009, ApJS, 184, 398
- Hodges-Kluck, E. J., Reynolds, C. S., Cheung, C. C., & Miller, M. C. 2010, pJ, 710, 1205
- Hudson, D. S., Reiprich, T. H., Clarke, T. E., & Sarazin, C. L. 2006, A&A, 453, 433
- Isobe, N., Seta, H., Gandhi, P., & Tashiro, M. S. 2011, ApJ, 727, 82
- Kirkpatrick, C. C., McNamara, B. R., & Cavagnolo, K. W. 2011, ApJL, 731 L23
- Kraft, R. P., Azcona, J., Forman, W. R., et al. 2006, ApJ, 639, 753
- Kraft, R. P., Birkinshaw, M., Nulsen, P. E. J., et al. 2012, ApJ, 749, 19
- Krawczynski, H. 2002, ApJ, 569L, 27
- Lal, D. V., Kraft, R. P., Forman, W. R., et al. 2010, ApJ, 722, 1735
- Lal, D. V., Kraft, R. P., Randall, S. W., et al. 2013, ApJ, 764, 83
- Leahy, J. P., Black, A. R. S., Dennett-Thorpe, J., et al. 1997, MNRAS, 291, 20
- Mackay, C. D. 1971, MNRAS, 154, 209
- Massaro, F., Harris, D. E., & Cheung, C. C. 2011, ApJS, 197, 24
- Massaro, F., Harris, D. E., Chiaberge, M., et al. 2009, ApJ, 696, 980
- Massaro, F., Harris, D. E., Tremblay, G. R., et al. 2010, ApJ, 714, 589
- Massaro, F., Harris, D. E., Tremblay, G. R., et al. 2013, ApJS, 203, 31 Massaro, F., Tremblay, G. R., Harris, D. E., et al. 2012, ApJS, 206, 7
- Mazzotta, P., Kaastra, J. S., Paerels, F. B., et al. 2002, ApJL, 567, L37
- McCarthy, I. G., Balogh, M. L., Babul, A., Poole, G. B., & Horner, D. J. 2004, pJ, 613, 811
- Miller, B. P., & Brandt, W. N. 2009, ApJ, 695, 755
- Miller, B. P., Brandt, W. N., Schneider, D. P., et al. 2011, ApJ, 726, 20
- Nulsen, P. E. J., Hambrick, D. C., & McNamara, B. R. 2005, ApJL, 625. L9
- Nulsen, P. E. J., Li, Z., Forman, W. R., et al. 2013, ApJ, 775, 117
- Reynolds, C. S., Brenneman, L. W., & Stocke, J. T. 2005, MNRAS, 357, 381
- Salvati, M., Risaliti, G., Vron, P., & Woltjer, L. 2008, A&A, 478, 121
- Siemiginowska, A., Burke, D. J., Aldcroft, et al. 2010, ApJ, 722, 102
- Siemiginowska, A., LaMassa, S., Aldcroft, T. L., Bechtold, J., & Elvis, M. 2008, ApJ, 684, 811
- Smith, H. E., Smith, E. O., & Spinrad, H. 1976, PASP, 88, 621
- Smith, H. E., & Spinrad, H. 1980, PASP, 92, 553
- Spinrad, H., Marr, J., Aguilar, L., & Djorgovski, S. 1985, PASP, 97, 932
- Stockton, A., Fu, H., Henry, J. P., & Canalizo, G. 2006, ApJ, 638, 635
- Sun, M. 2009, ApJ, 704, 1586
- Taylor, M. B. 2005, in ASP Conf. Ser. 347, Astronomical Data Analysis Software and Systems XIV, ed. P. Shopbell, M. Britton, & R. Ebert (San Francisco, CA: ASP), 29
- Tremblay, G. R., Chiaberge, M., Sparks, W. B., et al. 2009, ApJS, 183, 278
- Vikhlinin, A., van Speybroeck, L., Markevitch, M., Forman, W. R., & Grego, L. 2002, ApJL, 578, L107
- Wilkes, B. J., Kuraszkiewicz, J., Haas, M., et al. 2013, ApJ, 773, 15
- Wilkes, B. J., Lal, D. V., Worrall, D. M., et al. 2012, ApJ, 745, 84
- Worrall, D. M., Birkinshaw, M., Kraft, R. P., & Hardcastle, M. J. 2007, ApJL, 658, L79
- Worrall, D. M., Hardcastle, M. J., Pearson, T. J., & Readhead, A. C. S. 2004, MNRAS, 347, 632