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Abstract Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS)

complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and

cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify

QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal

mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in

patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly,

abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1

expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate

MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-

expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the

first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a

central role for QIL1 in stable MICOS complex formation.

DOI: 10.7554/eLife.17163.001

Introduction
A diverse collection of mitochondrial diseases have been linked to mutations that affect either mito-

chondrial or nuclear genomes, and alter respiratory chain function, mitochondrial fission/fusion

cycles, or mitochondrial quality control (Vafai and Mootha, 2012). A central feature of mitochondrial

disease is the pleotropic nature of phenotypes, with some diseases eliciting highly tissue-specific
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effects and others affecting multiple organ systems. The basis of this pleiotropy is poorly under-

stood, but could reflect differences in mitochondrial structure and concomitant links with respiratory

chain activity within individual tissues (Vafai and Mootha, 2012).

Proper organization of the respiratory chain and other mitochondrial protein complexes within

the mitochondrial inner membrane (MIM) relies on the formation of MIM invaginations referred to as

cristae. These laminar structures with highly curved distal membrane arrangement are formed

through the mitochondrial contact site (MICOS) complex, a cristae junction scaffold that is thought

to both maintain close proximity of cristae membranes near the ’boundary’ MIM as well as form con-

nections between the cristae junction and the mitochondrial outer membrane (MOM)

(Pfanner et al., 2014; van der Laan et al., 2016). MICOS is composed of several subunits located

on the MIM and mitochondrial intermembrane space, including MIC25, MIC60, MIC10, MIC26,

MIC27, MIC19, and this core complex has been shown to interact with SAM50, MTX1, and MTX2 on

the MOM, presumably helping to position cristae structures in proximity to the MOM. Our recent

proteomic analysis of the MICOS complex identified a previously unstudied single-pass transmem-

brane protein – C19ORF70/QIL1 – as a component of MICOS localized in the MIM (Guarani et al.,

2015). Depletion of QIL1 by RNAi in tissue culture cell lines resulted in: (1) loss of cristae junction

structures accompanied by the formation of MIMs with characteristic ’swirl’ structures, (2) MICOS

complex disassembly, (3) loss of MIC10, MIC26 and MIC27 protein levels, (4) failure to assemble into

a MIC60-MIC19-MIC25 sub-complex, and (5) decreased mitochondrial respiration (Guarani et al.,

2015). RNAi of the Drosophila QIL1 ortholog in muscle and nervous tissue lead to a similar mito-

chondrial phenotype in vivo (Guarani et al., 2015). Thus, QIL1 is required for assembly and mainte-

nance of the MICOS complex and mitochondrial architecture. This mechanism of MICOS assembly

and the role of QIL1 have recently been verified (Zerbes et al., 2016; Anand et al., 2016).

Building upon our recent discovery and mechanistic analysis of QIL1, we now report recessive

non-functional alleles of QIL1 in two sibling patients with early onset fatal mitochondrial encephalop-

athy and recurrent liver disease. Molecular and cell biological studies revealed dramatic defects in

mitochondrial organization in fibroblasts and muscle tissue derived from these patients that are asso-

ciated with disassembly of the MICOS complex. MICOS assembly and mitochondrial architecture

phenotypes in patient fibroblasts could be fully rescued by re-introduction of QIL1, but not other

MICOS subunits, consistent with QIL1 mutation underlying the phenotypes observed. These data

reveal a critical role for the MICOS core complex in mitochondrial health and disease.

Results

Clinical presentation of patients deficient in QIL1
This study identified two patients from non-consanguineous parents with defects in the QIL1 gene.

Both patients (patient 1, female and patient 2, male) were born after an uneventful pregnancy with

normal birth parameters, although patient 1 had a smaller than the average head circumference

(10th percentile). At 16 hr of life, patient 1 was admitted to the neonatal intensive care unit, display-

ing an array of abnormalities (Figure 1A–C, Supplementary file 1A), including hypothermia, lactic

acidosis, hypoglycemia, and signs of liver failure. Plasma amino acids showed elevation of tyrosine

and methionine concentration and urine organic acids revealed the presence of 3-methylglutaconic

acid associated with lactic acid and Krebs cycle intermediates (malate and fumarate). After 48 hr of

symptomatic treatment, including a protein and lipid-free infusion of glucose (13.5 g/kg/day) with

electrolytes, the child fully recovered both clinically and biologically. During the next 6 months, neu-

rodevelopment and growth were normal except for the incidence of acquired microcephaly from the

age of 4 months (-2 SD at 4 months of age). At the age of 6 months, in the course of a benign febrile

upper respiratory infection, she exhibited neurological deterioration with hypotonia, hyperlactacide-

mia with high lactate to pyruvate ratio, and evidence of mild liver disease without overt liver failure

(Supplementary file 1A). Liver ultrasound disclosed hyperechogenicity of the liver with two hypoe-

chogenic nodules in the VI and VII segments. Heart ultrasound disclosed mild hypertrophy with nor-

mal heart function and brain MRI showed cerebellar atrophy with optic atrophy (Figure 1A–C) and a

moderate lactate peak on brain MR spectroscopy (not shown). Plasma amino acids showed elevation

of methionine consistent with liver disease and urine organic acids showed persistent urinary excre-

tion of 3-methylglutaconic acid (Supplementary file 1A). After three days of symptomatic treatment,
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Figure 1. Clinical presentation of patients deficient in QIL1. (A–C) Brain MRI of patients 1 (A–C, 2 years of age) and 2 (D–F, 1 year of age). T1-weighted

sagittal views show cerebellar atrophy of the vermis and the brainstem (A,D). T2-weighted (B, patient 1) and FLAIR (E, patient 2) coronal views show

cerebellar hemisphere atrophy. T2-weighted coronal views (C,F) show optic atrophy (arrow, patient 1). (G) Oxygen consumption by patients’ and control

skin fibroblasts was measured as reported elsewhere (El-Khoury et al., 2013; Rustin et al., 1994). Cellular respiration was first measured using intact

Figure 1 continued on next page
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there was a partial improvement of neurological functions, but persistence of poor eye contact and

truncal hypotonia, disappearance of biological abnormalities except for mild hyperlactacidemia (2.5

to 3.5 mM). Bilateral and severe sensorineural deafness was confirmed by auditory evoked poten-

tials. Severe bilateral neurovisual impairment was confirmed by evoked visual potentials, which

showed barely detectable responses. Eye fundoscopy and elecroretinogram was normal. The child

died before the age of 3 after slow progression of her neurological disease.

Patient 2, as with his sister, exhibited transient clinical and biological deterioration with hypother-

mia, lactic acidosis, hypoglycemia and liver dysfunction (Supplementary file 1A) within the first few

hours after birth. Comparable biochemical abnormalities were observed with high plasma methio-

nine and tyrosine and 3-methylglutaconic aciduria (Supplementary file 1A). Heart ultrasound was

normal. At 6 months of age, investigations disclosed developmental delay, poor eye contact con-

trasting with normal fundoscopy, electroretinogram and visual evoked potentials, liver disease with

mild elevation of liver enzymes, hyperlactacidemia and persistent urinary excretion of 3-methylgluta-

conic acid (Supplementary file 1A). At one year of age, he exhibited global hypotonia, delayed

developmental milestones, normal growth for height, but weight was at �1.5 SD (0 SD at birth),

acquired microcephaly (0 SD at birth, �2.5 SD at 1 year of age) and persistent elevation of liver

enzymes (Supplementary file 1A) with ultrasound evidence of hyperechogenic nodular lesions in

segments II and III. Acoustic otoemissions showed normal responses. As with patient 1, brain MRI

showed cerebellar and optic atrophy (Figure 1D–F) with a moderate lactate peak on MR spectros-

copy (not shown). Patient 2 died at the age of 20 months in the course of a febrile infection.

Taken together, these clinical findings are suggestive of neonatal onset mitochondrial encepha-

lopathy with recurrent bouts of liver disease.

Analysis of respiratory chain function in patient skeletal muscle and
fibroblasts
Given the clinical findings, we examined respiratory chain function in skeletal muscle tissue and in

cultured skin fibroblasts. Fibroblasts from both patients displayed mild complex IV (cytochrome c

oxidase) deficiency when normalized to citrate synthase activity, but apparently normal overall respi-

ration (Figure 1G, Supplementary file 1B). Compared with control fibroblasts, patient fibroblasts

displayed reduced cell number 7 days after glucose withdrawal (Figure 1H), a characteristic often

observed in mitochondrial disease and indicative of a limited capacity for mitochondria to respond

to the metabolic challenge resulting from glycolysis limitation (Lee et al., 2014; Robinson et al.,

1992; van den Heuvel et al., 2004). Finally, mitochondrial respiratory chain dysfunction was shown

in the skeletal muscle biopsy of patient 1, which presented with deficiencies across all respiratory

chain complexes (Supplementary file 1C). Differences in respiratory chain function in fibroblasts and

muscle tissue may reflect adaptation of fibroblasts to in vitro culture conditions and/or tissue specific

phenotypes. Sequence and quantification of mitochondrial DNA extracted from skeletal muscle

were normal (Patient 1: 4500 copies/cell (n = 3); Control range: 1700–6000 copies/cell [15 infants]).

Identification of mutations in QIL1
In order to search for mutations present in these patients, whole exome sequencing was performed.

We identified a homozygous mutation (c.30-1G>A) in C19orf70 (QIL1) in both patients (Figure 2A),

and this mutation was confirmed by Sanger sequencing of PCR products from patient DNA

extracted from fibroblasts. Parents were found to be heterozygous at this locus (Figure 2A,B),

Figure 1 continued

fibroblasts. It was essentially abolished upon addition of a limited amount of digitonin (Dig) which caused the leakage of endogenous respiratory

substrates in the assay medium. Oxygen consumption resumed upon subsequent addition of 10 mM succinate (Succ) to the digitonin-permeabilized

fibroblast. This oxidation decreased in the presence of oligomycin (oligo) (a mitochondrial ATPase inhibitor) while adding an uncoupling agent (m-

ClCCP) allowed a maximal rate of oxidation and to calculate a respiratory chain control (RCR) value (rate in the presence of uncoupler versus rate in the

presence of the ATPase inhibitor). Malonate (Malo) (a specific succinate dehydrogenase inhibitor) addition essentially abolished oxygen uptake linked

to succinate oxidation. Adding glycerol-3 phosphate (G3P) allowed the oxygen uptake to resume, this latter being fully inhibited by the addition of

cyanide (KCN). The values along the traces are nmol/min/mg protein. (H) Control (black bars) or patient (blue or red bars) fibroblasts were cultured in

the presence and absence of glucose for 7 days and cell number determined after 4 and 7 days (n = 3).

DOI: 10.7554/eLife.17163.002
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consistent with autosomal recessive transmission. Consistent with a G>A mutation in the 5’ splice-

donor sequence in exon 2, the QIL1 mRNA contained exon 1 fused to exon 3 (Figure 2C–F), which

produced a frame-shift at Ser10 in the annotated QIL1 cDNA (NM_205767.2) leading directly into an

alternative reading frame encoded by exon 3 and a premature stop codon (Figure 2C). Given that
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Figure 2. Identification of mutations in QIL1. (A) Chromatogram depicting a homozygous mutation (c.30-1G>A) in C19orf70 (QIL1). (B) Pedigree

showing autosomal recessive transmission. (C) Schematic illustration of the location of the mutation within the QIL1 transcript and the predicted

consequences on splicing and the respective coding sequences. TM (red), indicates the position of a transmembrane domain in QIL1. (D) Ethidium

bromide stained agarose gel of RT–PCR QIL1 products from controls and patients 1 and 2. (E–F) Sequence analysis of control (E) and patient 1 (F) QIL1

cDNAs.
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the encoded putative protein contains only 9 residues from QIL1 and lacks the transmembrane

domain primarily derived from exon 2, we conclude that the encoded protein corresponds to a func-

tionally null allele (Figure 2C).

Patient fibroblasts lacking QIL1 display defects in MICOS assembly and
cristae structure
We next examined QIL1 expression and the abundance of MICOS complex proteins in control and

patient-derived fibroblasts. Consistent with production of an altered QIL1 protein, we failed to

detect a band at ~11 kDa corresponding to QIL1 in patient fibroblasts, but this protein was abun-

dant in control fibroblasts based on immunoblotting of whole-cell extracts (Figure 3A). Previously

we demonstrated that depletion of QIL1 leads to a reduction in the abundance of several MICOS

complex subunits (Guarani et al., 2015). We therefore probed immunoblots with antibodies against

six additional MICOS subunits. The abundance of all six proteins was reduced in both patient cell

lines, with MIC10, MIC26 and MIC27 being affected to the largest extent (Figure 3A,B). Importantly,

while QIL1 mRNA was greatly reduced in both patient cell lines relative to controls, the levels of

mRNA for MIC10, MIC26, and MIC27 were largely unaffected in patient cell lines (Figure 3C). Thus,

loss of MICOS subunits appears to occur through post-transcriptional mechanisms.

Since RNAi-induced QIL1 depletion had been shown to induce mitochondrial cristae abnormali-

ties (Guarani et al., 2015), electron microscopy studies were performed both in patient fibroblasts

and in patient 1 skeletal muscle biopsy. We observed severe cristae morphology abnormalities in

the vast majority of mitochondria in fibroblasts, with >92% of mitochondria displaying loss of cristae

structures and the appearance of characteristic ’swirl’ structures similar to those previously seen

upon depletion of MICOS subunits (Figure 3D) (Alkhaja et al., 2012; Guarani et al., 2015;

John et al., 2005; Weber et al., 2013). While the majority of mitochondria in control fibroblasts

were tubular in structure, mitochondria in patient fibroblasts were enlarged and swollen, round or

elongated, consistent with a dramatic loss in architecture. Similarly, mitochondria in skeletal muscle

from patient 1 were also swollen and filled with inner membranes displaying ’swirl’ structures

(Figure 3E).

Introduction of QIL1 into patient fibroblasts rescues mitochondrial
cristae morphology
In order to confirm the causative role of QIL1 loss in mitochondrial defects in patient fibroblasts, we

stably expressed the QIL1 open reading frame (NM_205767.2) tagged on its C-terminus with an HA-

FLAG tag using a lentivirus in fibroblasts from patients 1 and 2, and examined mitochondrial struc-

tures by electron microscopy after at least 7 days in culture (Figure 4A–B). The level of QIL1-HA-

FLAG at ~15 kDa was comparable to that of endogenous QIL1 in cells stably expressing ectopic

QIL1 based on immunoblotting with anti-QIL1. As noted previously (Guarani et al., 2015), ectopic

expression of QIL1-HA-FLAG led to a reduction in the abundance of endogenous QIL1 consistent

with homeostatic control (Figure 4B). Importantly, QIL1 expression converted abnormal mitochon-

dria in patient cells into tubular structures with intact cristae junctions in 70–80% of cells as assessed

by electron microscopy (Figure 4A–B). We found that QIL1 overexpression resulted in altered cristae

morphology in ~30% control neonatal fibroblasts, with mitochondria displaying hyper-branched cris-

tae, which were also termed abnormal (Figure 4A, data not shown). Since cells express varying levels

of ectopic QIL1, higher QIL1 levels in a subset of cells could be associated with hyper-branched cris-

tae. Moreover, QIL1 expressing cells displayed increased levels of MIC10 and MIC60, consistent

with rescue of the biochemical defects in MICOS complex assembly (Figure 4B).

Quantitative proteomics demonstrates loss of MICOS assembly in
patient fibroblasts
We previously demonstrated that QIL1 depletion leads to the formation of a MIC60-MIC19-MIC25

sub-complex and failure of MIC10, MIC26 and MIC27 to incorporate into the MICOS complex,

resulting in defective MICOS maturation (Guarani et al., 2015). To examine the status of

MICOS complex assembly in patient fibroblasts, we initially employed blue-native gel electrophore-

sis. As expected, control fibroblasts contained a major MICOS complex at ~700 kDa as assessed

using anti-MIC10 or anti-MIC60 antibodies (Figure 5A–B). However, in patient fibroblasts lacking
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Figure 3 continued on next page
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QIL1, MIC10 and MIC60 were lost from the ~700 kDa complex, with MIC60 found a lower abun-

dance complex at ~500 kDa (Figure 5A,B,D). In contrast, ATP5A complexes representing Complex

V of the respiratory chain were unaffected in patient samples (Figure 5C).

In order to examine MICOS complex assembly more systematically, we performed quantitative

proteomics on native gel purified samples after stable isotope labeling by amino acids in culture

(SILAC) (Figure 5E). Control fibroblasts were grown in light media and patient 2 fibroblasts were

grown in heavy media (Lys-8), and cells mixed 1:1 prior to purification of mitochondria. Mitochon-

drial protein complexes were then subjected to native gel electrophoresis to separate complexes

based on mass, and gel slices from ~66 kDa to >1200 kDa subjected to mass spectrometry

(Figure 5E). We observed a marked reduction of all detected MICOS subunits at ~700 kDa

(Figure 5F; H:L ratio <1, green) in patient 2 fibroblasts. Thus, the abundance of the mature heteroo-

ligomeric complex (Harner et al., 2011; Ott et al., 2012) is greatly reduced. Concomitantly, we

observed an accumulation of MIC19 and MIC60 in a smaller ~500 kDa sub-complex in patient fibro-

blasts relative to control fibroblasts (Figure 5F; H:L ratio >1, red). These results are consistent with

previous proteomic studies of QIL1-depleted cells (Guarani et al., 2015) and indicate that loss of

QIL1 in patients leads to an overall reduction in mature MICOS and an increase in the abundance of

a sub-complex containing MIC19 and MIC60.

QIL1 expression in patient fibroblasts rescues MICOS assembly
In order to examine whether the absence of QIL1 was critical to the loss of the ~700 kDa MICOS

complex, we examined MICOS using blue-native gel analysis of patient fibroblasts rescued with

QIL1-HA-FLAG (Figure 5G–I). This resulted in the rescue of MICOS complex assembly as assessed

using anti-MIC10 on blue-native gels (Figure 5G) as well as rescue of MIC10 levels (Figure 5I). ATP

synthase as monitored by anti-ATP5A in blue-native gels and ATP5A protein levels were used as

controls (Figure 5H,I).

Absence of efficient rescue of MICOS assembly and cristae structure in
patient fibroblasts ectopically expressing other MICOS subunits
The phenotypes displayed by cells lacking QIL1 suggest a unique function for this protein in MICOS

complex integrity. To explore this question further, we individually and stably expressed C-terminally

HA-FLAG tagged QIL1, MIC60, MIC19, MIC27, and MIC10 using lentiviruses in fibroblasts from

patient 2, and examined mitochondrial morphology by electron microscopy (Figure 5—figure sup-

plement 1A–K) and MICOS assembly by blue-native gel analysis (Figure 5—figure supplement 1L–

N). QIL1-HA-FLAG rescued not only MIC60 and MIC10 (Figures 4B, 5I, Figure 5—figure supple-

ment 1N) but also MIC19 and MIC27 levels (Figure 5—figure supplement 1N), consistent with for-

mation of MICOS. Expression of MIC60 and MIC19 failed to rescue QIL1-deficiency by electron

microscopy (Figure 5—figure supplement 1F,G) or by blue-native gel analysis of MIC10 assembly

into MICOS (Figure 5—figure supplement 1L). In the case of MIC27 and MIC10 overexpression, we

observed very low abundance MIC10 at the position of the MICOS complex in blue-native gel analy-

sis, as well as additional low abundance complexes migrating at ~800 kDa and at much lower mass

(~100 kDa) (Figure 5—figure supplement 1L), suggesting an ability of overexpression of these pro-

teins (Figure 5—figure supplement 1N) to support low efficiency or possibly aberrant or alternative

assembly. Interestingly, ~30% of individual mitochondria in QIL1-defective fibroblasts overexpressing

MIC27 and MIC10 displayed mitochondria with evidence of cristae-like structures (Figure 5—figure

Figure 3 continued

fibroblasts and skin fibroblasts from patients 1 and 2 showing enlarged mitochondria with cristae membrane swirls and proliferation of inner

membranes in cells from both patients, as compared to normal mitochondria in control cells; some patients’ mitochondria contain electron dense

inclusions. Morphologically abnormal mitochondria are indicated by the arrowhead. Mitochondria with cristae junctions of normal morphology are

indicated with an asterisk. Quantification of abnormal mitochondria based on analysis of the indicated number of mitochondria by electron microscopy

is shown. (E) Electron microscopy analysis of skeletal muscle biopsy from patient 1 showing large round mitochondria (arrowhead), which can

sometimes reach the size of two sarcomeres. These large mitochondria show an important proliferation of membranes; some mitochondria contain

inclusions in the form of electron dense dots. For panels B and C, asterisks represent p values<0.05. Error bars (± SEM) show the mean of 3 or 4

biological replicates.

DOI: 10.7554/eLife.17163.004
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Figure 4. Ectopic QIL1 expression rescues mitochondrial morphological defects in patients’ fibroblasts. (A) Electron micrographs of control neonatal

skin fibroblasts and skin fibroblasts from patients 1 and 2 showing the rescue of mitochondria cristae morphology and shape upon ectopic QIL1-HA-

Flag expression. Morphologically abnormal mitochondria are indicated by the arrowhead. Mitochondria with cristae junctions of normal morphology

are indicated with an asterisk. Quantification of abnormal mitochondria based on analysis of the indicated number of mitochondria by electron

Figure 4 continued on next page
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supplement 1H,J), while the majority of mitochondria in these cells contained swirl like inner mem-

brane structures typical of disruption of MICOS (Figure 5—figure supplement 1I,K). These data

suggest a weak ability of MIC27 and MIC10 overexpression to support cristae formation indepen-

dently of QIL1 (see Discussion).

Discussion
We report herein QIL1 deficiency in 2 siblings who exhibited early onset severe mitochondrial dis-

ease. QIL1 deficiency was associated with transient neonatal deterioration with hypoglycemia, hyper-

lactacidemia and liver disease. In the first months of life, acute decompensations occurred with liver

disease and hyperlactacidemia. This was associated with neurological disease, including develop-

mental delay with cerebellar atrophy, eye disease with optic atrophy and sensorineural deafness.

Liver disease also included liver nodules with high a-fetoprotein as observed in other mitochondrial

disease such as TRMU gene mutations (Gaignard et al., 2013).

Liver associated with central nervous system dysfunction is often involved in mitochondrial dis-

ease especially those involving defects of mitochondrial DNA maintenance caused by nuclear gene

mutations i.e. mitochondrial DNA depletion syndromes (resulting from POLG, DGUOK or MPV17

mutations for instance (Al-Hussaini et al., 2014; Naviaux and Nguyen, 2004). QIL1 deficiency in

patient fibroblasts did not affect mitochondrial DNA abundance, but resulted in severely disorga-

nized mitochondrial cristae. In principle, the deletion of exon 2, which encoded the single-pass trans-

membrane domain apparently involved in QIL1 tethering to the MIM (Figure 2), would be expected

to greatly reduce the efficiency of MICOS assembly (Guarani et al., 2015; Zerbes et al., 2016).

Given the presence of a premature stop codon in the mRNA for the QIL1 mutant, it is likely that the

mRNA is degraded through non-sense mediated decay. We also detected generalized mitochondrial

respiratory chain deficiencies in skeletal muscle from patient 1 consistent with a reduced mitochon-

drial respiration previously reported upon QIL1 RNAi mediated knockdown in human cell lines

(Guarani et al., 2015). However, we detected only a mild complex IV (cytochrome c oxidase) defi-

ciency in skin fibroblasts grown in culture. Interestingly, contrary to what was observed in RNAi-

induced QIL1 depletion in HeLa cells (Guarani et al., 2015), there was no effect of QIL1 deficiency

on fibroblasts’ basal respiration in agreement with the limited defect affecting complex IV and the

normal respiratory chain enzyme activities in these cells. Differences in mitochondrial activities

observed between muscle biopsies and skin fibroblasts from patients are commonly observed in

mitochondrial disorders (Haas et al., 2008; Thorburn and Smeitink, 2001; van den Heuvel et al.,

2004). It has been reported that nearly 50% of the children with a respiratory chain defect in muscle

display normal enzyme activities in cultured skin fibroblasts (Thorburn, 2000) and respiratory chain

defects are often not expressed in fibroblasts even in some well-recognized oxidative phosphoryla-

tion deficiencies (Robinson et al., 1990).

Nevertheless, patients’ fibroblasts exhibited high sensitivity to glucose deprivation, suggesting an

inability to utilize the alternative mitochondrial energetic route to cope with glucose deprivation, in

line with previous observations from other mitochondrial diseases (Robinson et al., 1992). Interest-

ingly, an increase in cristae density has been reported upon general nutrient or glucose deprivation

(Gomes et al., 2011; Rossignol et al., 2004), indicating an important link between mitochondrial

architecture and nutrient utilization. It has been proposed that mitochondrial cristae architecture

may control nutrient utilization via different mechanisms, including electron transport chain function,

nutrient import and access (Stanley et al., 2014). Thus, differences between mitochondrial respira-

tion defects observed in muscle and fibroblasts may not only reflect the pleiotropic nature of pheno-

types of mitochondrial diseases, often eliciting highly tissue-specific effects (Vafai and Mootha,

2012), but also be related to cell-specific metabolic requirements and different mitochondrial path-

ways. Alternatively, skin fibroblasts may have possibly developed adaptive mechanisms over time to

permit normal basal respiration under culture conditions. Nevertheless, QIL1 mutation in patient

Figure 4 continued

microscopy is shown. (B) Immunoblot analysis of MICOS subunits MIC10 and MIC60 in control versus patients’ skin fibroblasts with or without

overexpression of C-terminally HA-Flag tagged QIL1 demonstrating the rescue of the abundance of MICOS subunits upon ectopic QIL1 expression.

DOI: 10.7554/eLife.17163.005
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Figure 5. Patients’ mitochondria display MICOS assembly defects. (A–C) Blue native electrophoresis followed by immunoblot analysis of MIC60, MIC10

and ATP5A in control neonatal and patients’ mitochondria from skin fibroblasts. In Panel D, mitochondrial extracts were subjected to SDS-PAGE and

immunoblotting with the indicated antibodies. (E,F) Cells from control neonatal fibroblasts were labeled with light lysine (K0) while fibroblasts obtained
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fibroblasts had a major impact on the abundance of other MICOS subunits, on MICOS assembly,

and on the mitochondrial ultrastructure. A proposed model is shown in Figure 5J, wherein loss of

QIL1 leads to loss of cristae structure and reduced levels of MIC60, MIC19, MIC25, MIC10, MIC26,

and MIC27, with MIC10, MIC26 and MIC27 being affected to the largest extent (Figure 3A-

B, Figure 5I and Figure 5—figure supplement 1N). Residual MIC60 and MIC19 could be found in

an ~500 kDa complex in blue-native gels using quantitative proteomics (Figure 5F,J), suggesting

that this sub-complex of MICOS does not require QIL1 for assembly (Guarani et al., 2015). Interest-

ingly, overexpression of MIC10 and MIC27 in QIL1-defective fibroblasts resulted in a fraction of

mitochondria containing cristae like structures, with very low levels of MICOS complex assembly

observed by blue-native gels. The ability of MIC10 and MIC27 overexpression to promote cristae

formation with low efficiency may relate to the ability of MIC10 to form large oligomers and promote

membrane curvature independently of other MICOS subunits (Barbot et al., 2015; Bohnert et al.,

2015) and MIC27 to bind cardiolipin which also promotes curvature (Weber et al., 2013). Interest-

ingly, we observed that MIC27 expression increased MIC10 levels, and it is possible that the ability

of MIC27 to support complex formation with low efficiency may reflect stabilization of MIC10 (Fig-

ure 5—figure supplement 1L,N). These findings are in line with previous observations by Koob et al

who reported that MIC27 expression positively correlated with the levels of MIC10, and proposed

that MIC26 and MIC27 modulate MIC10 levels (Koob et al., 2015). Zerbes at al also reported that

MIC27 promotes the stability of the MIC10 oligomers (Zerbes et al., 2016). Further studies are

needed to address the underlying mechanism. Additionally, we note that fibroblasts from patients

have highly enlarged mitochondrial structures, suggesting loss of appropriate mitochondrial fission-

fusion cycles, and the absence of mitophagic destruction of damaged mitochondria. Similar defects

in fusion-fission cycles and development of swollen mitochondria has been observed in cells lacking

the MICOS subunit MIC60, suggesting that the observed phenotype is a general property of disrup-

tion of cristae structures (Li et al., 2016).

An additional interesting feature of both patients examined here is persistent urinary excretion of

3-methylglutaconic acid that might also be ascribed to mitochondrial cristae disassembly

(Supplementary file 1A). 3-methylglutaconic aciduria is observed in other mitochondrial diseases,

but most specifically in a new category of nuclear-encoded mitochondrial-related diseases, namely

genetic defects of phospholipid biosynthesis, remodeling and metabolism (Garcia-Cazorla et al.,

2015; Lu and Claypool, 2015; Mayr, 2015; Wortmann et al., 2013, 2015).

In conclusion, this report demonstrates that primary defects in mitochondrial inner membrane

cristae architecture as observed with QIL1 deficiency causes severe mitochondrial disease in human

clinically indistinguishable from primary oxidative phosphorylation respiratory chain disease. This is

also the first report of early onset fatal mitochondrial encephalopathy in patients with mutations in a

core MICOS complex subunit. CHCHD10 haploinsufficiency, found in a family with neurodegenera-

tive disorders and mitochondrial respiratory chain defects also demonstrates impaired MICOS com-

plex stability, cristae formation and mitochondrial genome organization (Genin et al., 2015).

Figure 5 continued

and native protein complexes were separated in a blue native gel. Gel bands from >1 MDa to ~66 kDa were excised and subjected to mass

spectrometry analysis. Heavy: Light ratios were calculated for the sum of all peptides quantified for each MICOS subunit and represented in a heatmap

where ratios below 1 are represented in green and ratios above 1 are represented in red. (G,H) Blue-native gel analysis of MIC10 and ATP5A containing

complexes from neonatal control fibroblasts or fibroblasts from patients 1 and 2 with or without rescue by stable expression of QIL1-HA-FLAG. Panel G,

anti-MIC10. Panel H, anti-ATP5A. (I) Mitochondrial lysates from panels G–H were examined by SDS-PAGE and immunoblotting using the indicated

antibodies. (J) Schematic representation of the effect of QIL1 loss on MICOS assembly in patients’ fibroblasts. In the mature MICOS complex in control

cells, multiple transmembrane components of MICOS (MIC60, MIC10, MIC26, MIC27 and QIL1) associate with MIC25 and MIC19 to promote the

formation of cristae membrane structures. In the mitochondria of patient cells lacking QIL1, the abundance of MIC10, MIC26, and MIC27 is greatly

reduced, leading to loss of the MICOS complex and the absence of normal cristae structures within mitochondria. Blue-native gel analysis of MICOS

from QIL1-deficient cells revealed a ~500 kDa complex containing reduced levels of MIC60 and MIC19, which appears to be unable to maintain cristae

structure morphology within mitochondria.

DOI: 10.7554/eLife.17163.006

The following figure supplement is available for figure 5:

Figure supplement 1. Analysis of QIL1-mutant fibroblasts ectopically expressing MICOS complex subunits.

DOI: 10.7554/eLife.17163.007
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Noticeably, alterations of different MICOS subunit protein levels and amino acid substitutions have

been associated with several conditions, such as diabetic cardiomyopathy, neurodegeneration and

cancer in cellular and animal model systems (Zerbes et al., 2012). Taken together, our results sug-

gest that QIL1 and other MICOS subunits represent potential candidates for mutations in patients

with unexplained early onset neurological deterioration with optic and cerebellar atrophy progress-

ing over time combined with liver disease and 3-methylglutaconic aciduria.

Materials and methods

Brain MRI
Each subject underwent 1.5T brain MRI (Philips Medical Systems, Best, The Netherlands). Three

sequences (T1 weighted images, T2, and FLAIR) were scanned by each MRI.

Cell culture
Skin fibroblast cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) with Glutamax and

4.5% Glucose, supplemented with 10% fetal calf serum (FBS), 200 mM Uridine and 2.5 mM Pyruvate

and maintained in a 5% CO2 incubator at 37˚C. Patients’ fibroblasts were obtained from skin biop-

sies of patients and signed informed consent for skin biopsy, fibroblasts storage, enzymatic and

molecular analyses was obtained from the parents. Cells were authenticated through an in-house

database system from the Biochemistry Department of Bicêtre Hospital (Le Kremlin-Bicêtre, France)

where the cells were also stored in liquid nitrogen. Fibroblasts tested negative for mycoplasma. Con-

trol fibroblasts were kindly provided by Robin Reed’s laboratory (Harvard Medical School)

(Yamazaki et al., 2012) or obtained from Invitrogen (human dermal fibroblasts; neonatal, Invitrogen

[C0045C]). Cells were cultivated in the presence and absence of glucose as reported elsewhere

(Schiff et al., 2011). On day zero when the experiment was initiated, cells were at 50% confluence.

After 4 or 7 days in culture in the presence or absence of glucose, cell density (cell number per cm2)

was estimated from representative photographs taken using phase-contrast an LSM 5 Exciter optic

microscope (Zeiss, Marly le Roi, France) (x40) by counting non-confluent adherent cells in three iden-

tical areas of T25 flasks for each condition.

Antibodies
Antibodies used in this work include: a-QIL1 (Sigma-Aldrich, St. Louis, MO; SAB1102836), a-

MINOS1 (MIC10) (Aviva, San Diego, CA; ARP44801-P050), a-CHCHD3 (MIC19) (Aviva; ARP57040-

P050), a-CHCHD6 (MIC25) (Proteintech, Rosemont, IL; 20639-1-AP), a-IMMT (MIC60)

(Abcam, Cambridge, MA; ab110329), a-APOOL (MIC27) (Aviva ; OAAF03292), a-APOO (MIC26)

(Novus Bio, Littleton, CO; NBP1-28870), a-ATP5A (Abcam; ab14748) and a-a-Tubulin (Cell Signaling

Technologies, Danvers MA; #2125).

Immunoblot analysis, RNA extraction, reverse transcription and qPCR
These procedures were performed as previously described (Guarani et al., 2015).

Electron microscopy analysis
Control adult skin fibroblasts, control neonatal skin fibroblasts or skin fibroblasts obtained from

patients 1 and 2 were cultured on Aclar coverslips, fixed with 1.25% paraformaldehyde, 2.5% glutar-

aldehyde, 0.03% picric acid followed by osmication and uranyl acetate staining, dehydration in alco-

hols and embedded in Taab 812 Resin (Marivac Ltd, Nova Scotia, Canada). Sections were cut with

Leica ultracut microtome, picked up on formvar/carbon coated copper slot grids, stained with 0.2%

Lead Citrate, and imaged under the Phillips Tecnai BioTwin Spirit transmission electron microscope.

Muscle electron microscopy studies were performed as previously described (Malfatti et al., 2014).

Quantitative proteomics of MICOS assembly
Mitochondrial proteomics was performed as previously described (Guarani et al., 2015). Neonatal

control skin fibroblasts or patient 2 skin fibroblasts were grown in light (K0) or heavy media (K8) and

an equal number of cells mixed, prior to purification of mitochondria. Mitochondria were lysed with

1% Digitonin and protein complexes fractionated by blue native-polyacrylamide gel electrophoresis
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(BN-PAGE). Gel bands were excised and proteins subjected to reduction, alkylation and trypsiniza-

tion. Tryptic peptides were analyzed using a Q Exactive mass spectrometer (Thermo Fisher Scientific,

San Jose, CA) coupled with a Famos Autosampler (LC Packings) and an Accela600 liquid chromatog-

raphy (LC) pump (Thermo Fisher Scientific). Peptides were separated on a 100 mm inner diameter

microcapillary column packed with ~0.25 cm of Magic C4 resin (5 mm, 100 Å, Michrom

Bioresources, Auburn, CA) followed by ~18 cm of Accucore C18 resin (2.6 mm, 150 Å, Thermo Fisher

Scientific). For each analysis, we loaded ~1 mg onto the column. Peptides were separated using a 90

gradient of 5 to 28% acetonitrile in 0.125% formic acid with a flow rate of ~300 nL/min. The scan

sequence began with an Orbitrap MS1 spectrum with the following parameters: resolution 70,000,

scan range 300�1500 Th, automatic gain control (AGC) target 1 � 106, maximum injection time 250

ms, and centroid spectrum data type. We selected the top twenty precursors for MS2 analysis which

consisted of HCD high-energy collision dissociation with the following parameters: resolution

17,500, AGC 1 � 105, maximum injection time 60 ms, isolation window 2 Th, normalized collision

energy (NCE) 25, and centroid spectrum data type. The underfill ratio was set at 9%, which corre-

sponds to a 1.5 � 105 intensity threshold. In addition, unassigned and singly charged species were

excluded from MS2 analysis and dynamic exclusion was set to automatic.

Mitochondrial respiratory chain activity measurement
Fibroblasts were trypsinized and centrifuged 5 min � 1500 g. The supernatant was discarded and

the pellet washed (5 min � 1500 g) with 1 mL PBS. The majority of the fresh pellet was used for oxy-

gen consumption measurement (El-Khoury et al., 2013; Rustin et al., 1994). A small aliquot of the

pellet was deep-frozen in 20–40 mL PBS solution and subsequently thawed using 1 mL of ice-cold

solution consisting of 0.25 M sucrose, 20 mM Tris (pH 7.2), 2 mM EGTA, 40 mM KCl and 1 mg/mL

BSA, 0.004% digitonin (w/v), and 10% Percoll (v/v) (medium A). After 7 min incubation at ice temper-

ature, cells were centrifuged (5 min � 2300 g), the supernatant discarded, and the pellet washed

(5 min � 2300 g) with 1 mL of medium A devoid of digitonin and Percoll. The final pellet was re-sus-

pended in 20–30 mL of this medium and used for spectrophotometrical enzyme assays.

Respiratory chain enzyme activities were spectrophotometrically measured using a Cary 50 UV–

visible spectrophotometer (Varian Inc, Les Ulis, France) (Bénit et al., 2006; Rustin et al., 1994).

Oxygen uptake and mitochondrial substrate oxidation
Oxygen uptake and substrate oxidation were measured using a microoptode consisting in an optic

fiber equipped with an oxygen sensitive fluorescent terminal sensor (FireSting O2; Bionef, Paris,

France) as reported previously (El-Khoury et al., 2013).

All chemicals were of the purest grade available from Sigma-Aldrich (St Quentin Fallavier, France).

Protein concentration was measured according to Bradford.

Respiratory chain enzyme activities were determined in skeletal muscle from patient 1 as previ-

ously reported (Medja et al., 2009).

Whole exome sequencing
Patients 1 and 2 DNA extracted from fibroblasts was sequenced by the IGBMC Microarray and

Sequencing platform (Strasbourg, France). Exon-capture was performed using the SureSelect XT2

Human all exon V5 enrichment System (Agilent, Santa Clara, CA) followed by Hiseq 2500 sequencing

(Illumina Inc) according to the manufacturer’s protocol. Image analysis and base calling were per-

formed using the Real-Time Analysis from Illumina. DNA sequences were aligned to the reference

genome Hg19 using BWA v0.6.1 (Li and Durbin, 2009). Aligned data were then refined with the use

of Picard v1.68 (http://picard.sourceforge.net/) to flag duplicate reads, GATK

v2.5.2 (DePristo et al., 2011) to perform local realignments and recalibrate base qualities, and Sam-

tools v0.1.18 (Li and Durbin, 2009) to filter out multi-mapped reads. Variant calling was done by

combining the results of 4 variant callers i.e GATK UnifiedGenotyper, GATK HaplotypeCaller, Sam-

tools v0.1.18 mpileup and Samtools 0.1.7 pileup. Variant quality scores were recalibrated using

GATK. Variants were annotated using SnpEff v2.0.5, GATK v2.5.2 and SnpSift v3.3c

(Cingolani et al., 2012a, 2012b). Finally, VaRank (Geoffroy et al., 2015) was used to rank discov-

ered variants, which were filtered on homozygous state in the two affected patients. Variants
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identified by exome sequencing were confirmed by Sanger sequencing (primers are available on

Supplementary file 2).

Reverse transcription (RT) reactions and cDNA sequencing
These procedures were performed using the QIAGEN OneStep RT-PCR Kit (Qiagen, Hilden, Ger-

many) following the manufacturer’s instructions and using 0.5 ml of RNA at 300 ng/ml (primers are

available on Supplementary file 2).

Mitochondrial DNA content
Mitochondrial DNA content was determined in skeletal muscle as described previously (Kim et al.,

2008).
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