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ABSTRACT

The S3 symmetry corresponding to permuting the positions of the quarks within a baryon allows

us to study the 70-plet of L = 1 baryons without an explicit choice for the spatial part of the

quark wave functions: given a set of operators with definite transformation properties under the

spin-flavor group SU(3)×SU(2) and under this S3, the masses of the baryons can be expressed in

terms of a small number of unknown parameters which are fit to the observed L = 1 baryon mass

spectrum. This approach is applied to study both the quark model and chiral constituent quark

model. The latter theory leads to a set of mass perturbations which more satisfactorily fits the

observed L = 1 baryon mass spectrum (though we can say nothing, within our approach, about

the physical reasonableness of the parameters in the fit). Predictions for the mixing angles and the

unobserved baryon masses are given for both models as well as a discussion of specific baryons.
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1. Introduction

The non-relativistic quark model has been used extensively to study the L = 1 baryons [1]–[2].

In this model, the observed mass spectrum of the baryons is generated by a two body Coulombic

potential [3], produced by a gluon exchange between two quarks. The quark model leads to a

definite form for the SU(3) × SU(2) spin-flavor breaking interactions but not for the ground state

quark wave functions. What is typically done is to use harmonic oscillator wave functions for the

spatial wave functions. The picture that then emerges for the baryon masses is surprisingly good

given the simplicity of the model; nevertheless, it has several serious shortcomings, most notoriously

its inability to explain the lightness of the Λ(1405). Extensions of the quark model, such as the

inclusion of relativistic effects [4] although leading to a better agreement with the entire spectrum

of light mesons and baryons, do not seem to improve much upon quark model’s description of the

L = 1 baryons.

Another model has recently emerged to explain the observed baryon spectrum [5]. Its assump-

tion is that the correct effective theory within a baryon is not that of constituent quarks exchanging

gluons but rather that of the quasiparticles, constituent quarks and Goldstone bosons, appropriate

for energies below the scale of chiral symmetry breaking. The low energy quark potential in this

theory, which we refer to as the chiral quark model , is also a two body Coulombic potential with

an important difference—the inclusion of flavor matrics at the quark-Goldstone boson vertices. We

shall here check the claim that the different flavor structure of the chiral quark model leads to a

better fit with the observed L = 1 spectrum.

The new ingredient in our study of the L = 1 bosons is the use of the permutation group S3

to organize the spatial behavior of the quarks and their interactions. Physically, this symmetry

corresponds to the fact that the confining potential should treat the light quarks equivalently

and should be invariant under permutations of the positions of the three quarks. It allows us to

circumvent choosing a definite form for the quarks’ spatial wave functions using group theory to

keep track of our ignorance of this spatial behavior. What distinguishes one model from another is

the SU(3)× SU(2) spin-flavor and S3 transformation properties of the operators that produce the

mass splittings among the L = 1 baryons. We begin therefore with a description of this symmetry,

how the baryons transform under it and how it fits with the standard SU(3) × SU(2) spin-flavor

structure of the baryons and then proceed to determine how the standard mass splitting operators

transform under S3 in each of the models.

Our approach has a potential disadvantage, in addition to its obvious advantages. Because

we have not made dynamical assumptions about the wave functions, but only used symmetry,

we cannot say within our approach whether the parameters of the fits we obtain are physically

reasonable. Thus our results should not be interpreted, by themselves, as evidence in favor of

the chiral quark model picture over the non-relativistic quark model. However, we believe it is

worth noting that difficulties for the non-relativistic quark model persist even in this very general

approach.
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2. S3 and the L = 1 Baryons.

The L = 1 negative parity baryons form a seventy dimensional representation of the spin-

flavor group SU(6). This 70-plet breaks into the representations 48, 28, 210, 21 under separate

spin and flavor transformations; here the notation 2S+1F indicates a multiplet that forms an F

dimensional representation of the SU(3) flavor group with spin S. Among the interactions that we

shall consider are spin-orbit couplings between quarks so that the baryonic states will be written,

and are measured, in terms of the total angular momentum, J = L + S. The baryonic states are

then represented by linear superpostions of spatial, flavor, spin, and orbital angular momentum

wave functions for the three contituent quarks. The construction of these states for the SU(3) ×
SU(2) spin-flavor part is straightforward in the non-relativistic limit, but the spatial wave functions

requires a specific dynamical model. Some of the earlier studies of the L = 1 baryons used harmonic

oscillator wave functions for the spatial wave functions in terms of the relative positions of the quarks

([1] and [2]). One of the disadvantages of this approach is that if a poor agreement is found for a

model with the observed baryon spectrum, it is not immediately clear whether that failure lies in

the model itself or in the specific choice of the spatial wave functions.

Fortunately, the spatial interactions of the quarks possess a symmetry that allows us to escape

the choice of a specific dynamical model for the spatial wave functions. The quark interactions

should be invariant under any permutation of the positions of the quarks. This symmetry then

implies that the spatial wave functions should form a representation of the group S3. We shall find

that the S3 group theory is sufficiently powerful to reduce our ignorance of the spatial behavior

to a small set of constants. The baryonic matrix elements will be linear combinations of these

S3 constants whose coefficients depend upon the spin-flavor assignments of the quark interactions

and are completely determined by the SU(3)× SU(2) group theory. One of the advantages of this

approach is that it treats different models on the same footing.

The baryonic wave functions that we used are those used in [6] in which each of the three-quark

states has only one of the quarks in an orbitally excited (L = 1) state, |1,m〉. For example, the

|∆++; 1
2
; 3

2
, 3

2
〉 (|∆++;S;J,MJ 〉) state would thus be

|∆++; 1
2
; 3

2
, 3

2
〉 = −

√
2

6
uuu

{

ψ1
11(~r1, ~r2, ~r3) (| ↑↓↑〉 + | ↑↑↓〉 − 2| ↓↑↑〉)

+ ψ2
11(~r1, ~r2, ~r3) (| ↑↑↓〉 + | ↓↑↑〉 − 2| ↑↓↑〉) (2.1)

+ ψ3
11(~r1, ~r2, ~r3) (| ↓↑↑〉 + | ↑↓↑〉 − 2| ↑↑↓〉)

}

.

The notation ψa
ℓm(~r1, ~r2, ~r3) represents a three-quark spatial wave function for which the ath quark

is in the |ℓ,m〉 orbitally excited state and the other two lie in the ground state. Note that this

spatial wave function could also have been written solely in terms of the relative coordinates, ~ri−~rj .
The three positions of the quarks have been included to emphasize that this function depends upon

the center of mass coordinate. We shall assume that this dependence cancels when the terms are
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summed so that the final baryonic state only depends on the quarks’ relative coordinates†. This

assumption is certainly true for a wide class of quark potential models including those of [1]–[5].

This observation is important for understanding the S3 transformation properties of the terms on

each side of this equation.

2.1. S3.

Since the permutation group S3 plays an important role in this analysis of the L = 1 baryons,

we review its basic properties at the same time establishing our notation. The group has three

irreducible representations: the trivial representation S which corresponds to the completely sym-

metric Young tableau , a one dimensional representation A that maps reflections to −1 and

corresponds to the tableau and the two dimensional representation M corresponding to .

The character table for the conjugacy classes of S3—the identity e, the three reflections r and the

two cyclic permutations c—is

e r c

S

A

M

1

1

2

1

-1

0

1

1

-1

Table 1. Character Table for S3.

and from this table we can derive the following rules for the tensor products of the irreducible

representations:

S ⊗ S = S S ⊗A = A S ⊗M = M

A⊗A = S A⊗M = M (2.2)

M ⊗M = S ⊕A⊕M.

Any three objects that may be permuted among each other form a three dimensional, defining

representation of S3. The positions of the three quarks, {~r1, ~r2, ~r3}, for example, form a 3 of S3.

This representation is not irreducible and can be separated into the center of mass coordinate,

~R =
1√
3

(~r1 + ~r2 + ~r3) ,

† In [1] and [2] these coordinates are usually written ~ρ = (~r1 − ~r2)/
√

2 and ~λ = (~r1 + ~r2 − 2~r3)/
√

6. ~ri

is the position of the ith quark.
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and a pair of coordinates for the internal motion,

(
~r+
~r−

)

=

(
1√
6

(~r1 + ~r2 − 2~r3)
1√
2

(~r1 − ~r2)

)

.

This basis explicitly realizes the decomposition, 3 = S ⊕M .

The three-quark wave functions in equation (2.1) transform as 3 = S⊕M since they depend on

all three positions. The L = 1 baryons, however, transform as a two-dimensional M representation,

both under the S3 which corresponds to the spin-flavor group SU(6) as well as the S3 referring to

the spatial wave functions. This representation for the L = 1 baryons, combined with those for

the mass splitting operators introduced in the next section, are the only information we require of

the spatial behavior of the quarks. The S3 group theory is sufficiently restrictive to allow all the

baryon matrix elements of mass operators to be reduced to expressions involving a small number

of undetermined constants.

3. Mass Operators.

The definitions of the ground state baryon wave functions are essentially the same for any

non-relativistic quark model. Only in the spatial wave functions might one model differ from

another—but what is important for our approach is only the S3 transformation properties, not

the details of the spatial dependence. The lowest order differences among models appear in the

perturbations to the ground state functions. The two theories we compare here—the quark model

and the chiral quark model—have a similar set of operators which differ in the appearance of flavor

matrices in the interactions of the latter theory.

Our problem is to solve for the masses of the L = 1 baryons in the non-relativistic limit,

H |Ψ〉 = E |Ψ〉. The Hamiltonian, H = H0 + V , is assumed to be the sum of an SU(6) symmetric

confining term H0 which does not distinguish the masses of the 70-plet and a perturbative potential

V that depends on the model being studied. The first model that we study, both as an illustration

of the method and a benchmark against which to compare other models, is the constituent quark

model ([3] and [1]). In this model the perturbative potential arises from the first-order term in the

expansion of a two-body Coulombic interaction between pairs of quarks,†

V = Vss + Vso + Vq. (3.1)

Traditionally[3], these interactions are of the form

Vss =
∑

i<j

16παs

9

1

mimj
~si · ~sj δ(~rij), (3.2)

† Sometimes ([1] and [4]) the spin-spin and the quadrupole operator are grouped together and called

the hyperfine interaction, Vhyp = Vss + Vq.
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a spin-spin interaction,

Vso =
∑

i<j

αs

3r3ij

[
1

m2
i

(~rij × ~pi) · ~si −
1

m2
j

(~rij × ~pj) · ~sj

+
2

mimj
(~rij × ~pi) · ~sj −

2

mimj
(~rij × ~pj) · ~si

]

, (3.3)

a spin-orbit coupling, and

Vq =
∑

i<j

2αs

3r3ij

1

mimj

[
3

r2ij
(~rij · ~si)(~rij · ~sj) − (~si · ~sj)

]

, (3.4)

a quadrupole (or tensor) interaction. Here, ~rij ≡ ~ri −~rj and rij ≡ |~rij | where ~ri, ~pi, ~si, and mi are

the position, momentum, spin, and mass of the ith quark. As with the quark wave functions, our

treatment is independent of the radial dependences of these potentials. The only important feature

of these operators is their spin, orbital angular momentum, and flavor structure. Therefore, our

analysis applies equally well to any set of hyperfine and spin-orbit interactions of the form

Vss =
∑

i<j

f0(rij)
1

mimj
~si · ~sj

Vso =
∑

i<j

f1(rij)

[
1

m2
i

(~rij × ~pi) · ~si −
1

m2
j

(~rij × ~pj) · ~sj

+
2

mimj
(~rij × ~pi) · ~sj −

2

mimj
(~rij × ~pj) · ~si

]

(3.5)

Vq =
∑

i<j

f2(rij)
1

mimj

[

3(r̂ij · ~si)(r̂ij · ~sj) − (~si · ~sj)

]

,

where the fa(rij) are arbitrary functions of the distances between the interacting quarks. Note

that we have included a factor of two in the 1/mimj terms of the spin-orbit potential, Vso, to

match the non-relativistic limit for the potential. We have retained this factor here (and later

in equation (3.6)) since when SU(3) breaking effects, such as a heavier constituent mass for the

strange quark, are included in Vso, the fits depend upon the choice of this factor. In the limit that

the spin-dependent interactions are taken to be SU(3)-symmetric, this dependence disappears and

the factors of two can be replaced by an arbitrary coefficient without affecting our results.

The second model we study is motivated by a recent proposal by Glozman and his collaborators

[5]. The idea is that as the typical momentum of a quarks within a baryon is below the scale of

chiral symmetry breaking, the correct dynamical degrees of freedom are those of the constituent

quarks which couple to Goldstone boson fields of the broken symmetry group, SU(3)L×SU(3)R →
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SU(3)V . This model, the chiral quark model, modifies the low-energy Coulombic potential since

the constituent quark-Goldstone boson vertices carry additional SU(3) flavor matrices, λa
i :
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Figure 1. The constitent quark-Goldstone
boson vertex of the chiral quark model.
λa is a Gell-Mann flavor matrix.

This vertex produces perturbative potentials of the same form as in the quark model except for the

inclusion of a flavor factor, ~λi · ~λj ≡∑8

a=1 λ
a
i λ

a
j :

Vss =
∑

i<j

g0(rij)

{
1

mimj
, ~λi · ~λj

}

~si · ~sj

Vso =
∑

i<j

g1(rij)

[{
1

m2
i

, ~λi · ~λj

}

(~rij × ~pi) · ~si −
{

1

m2
j

, ~λi · ~λj

}

(~rij × ~pj) · ~sj

+

{
2

mimj
, ~λi · ~λj

}

(~rij × ~pi) · ~sj −
{

2

mimj
, ~λi · ~λj

}

(~rij × ~pj) · ~si

]

(3.6)

Vq =
∑

i<j

g2(rij)

{
1

mimj
, ~λi · ~λj

} [

3(r̂ij · ~si)(r̂ij · ~sj) − (~si · ~sj)

]

,

where we have written the arbitrary functions as ga(rij) to emphasize that they need not be the

same as those in the quark model. The anticommutators ensure that the operators are Hermitian.

3.1. S3 Transformation Properties of the Mass Operators.

The fact that the states and the potentials in equations (3.5) and (3.6) transform as definite

representations of S3 allows us to constrain greatly the number of unknown parameters in the

theory. We therefore first present a method for counting the number of independent constants

before writing them in a more concrete form: as matrix elements of specific operators between

three-quark states. Both pieces of the hyperfine interaction, the spin-spin and the quadrupole

operators, transform as three dimensional representations of S3; both are manifestly symmetric

under exchanging the interacting quarks. In terms of the irreducible representations of S3, we saw

that the 3 could be decomposed as

3 = S ⊕M, (3.7)
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that is, both the spin-spin operator and the quadrupole operator have a piece transforming as

the trivial representation and a piece transforming as the two-dimensional representation. The

matrix elements 〈70 |Vss |70〉 or 〈70 |Vq |70〉, which produce the perturbations to the baryon

mass spectrum, contain the following tensor product of S3 representations:

M ⊗ (S ⊕M) ⊗M = S ⊕ S
︸ ︷︷ ︸

trivial

⊕A⊕A⊕M ⊕M ⊕M ⊕M. (3.8)

The trivial representation appears twice in the matrix element. From the Wigner-Eckart theorem,

we can conclude that the matrix elements of Vss and Vq are each completely determined up to two

unknown constants. In specific models, these constants correspond physically to spatial integrals.

The spin-orbit term, Vso, is slightly more complicated. It transforms as a six dimensional

fundamental representation of S3. The decomposition of the 6 into its irreducible components is

6 = S ⊕A⊕M ⊕M. (3.9)

Counting the number of unknown constants, we learn that the matrix elements of Vso between 70

states,

〈70 |Vso |70〉 →M ⊗ 6 ⊗M = S ⊕ S ⊕ S ⊕ S
︸ ︷︷ ︸

trivial

⊕A⊕A⊕A⊕A⊕
8 copies

︷ ︸︸ ︷

M ⊕ · · · ⊕M, (3.10)

depend upon four undetermined constants since the trivial representation appears four times.

It is helpful to have a specific form for these independent integrals which can be calculated for a

particular model for the quark wave functions. The spin-orbit operator being the most complicated,

we begin with it. It can be written in the form†

Vso =
∑

i<j

[
1

m2
i

~Lij · ~si +
2

mimj

~Lji · ~si +
2

mimj

~Lij · ~sj +
1

m2
j

~Lji · ~sj

]

(3.11)

where

~Lij ≡ f1(rij)
[

~Li − (~rj × ~pi)
]

(3.12)

~Li being the orbital angular momentum of the ith quark. In the non-relativistic limit, the spin

and the flavor structures are completely calculable—what is relevant for the S3 group theory is

the spatially dependent operator ~Lij . In the matrix element 〈70 |Vso |70〉 appear sums of matrix

elements of this operator between L = 1 three-quark states,

〈ψa
1m(~r1, ~r2, ~r3) | ~L12 |ψb

1m′(~r1, ~r2, ~r3)〉 = Mab 〈1,m | ~L | 1,m′〉. (3.13)

† When the masses of the quarks are equal in Vso, the factors of two for the 1/mimj terms can be

replaced by an arbitrary coefficient without altering the results that follow. The expression in the chiral

quark model is analogous.

7



where ~L is the total orbital angular momentum of the three-quark state. The matrix elements for

other choices of i and j for ~Lij are similarly defined but are simply a permutation of the entries

of the elements of Mab. The matrix Mab is a 3 × 3 Hermitian matrix of spatial integrals differing

only as to which of initial or final the quarks is excited. We know from the Wigner-Eckart theorem

that the matrix elements of the 70-plet baryons cannot depend separately upon all of the elements

of the matrix M, but only upon four linear combinations; these combinations are

SO1 ≡ M11 + M22 −M12 −M21

SO2 ≡ M11 −M22 −M13 + M23 −M31 + M32

SO3 ≡ M11 + M22 + 4M33 + M12 + M21 − 2M13 − 2M23 − 2M31 − 2M32

SO4 ≡ (M12 −M21) − (M13 −M31) + (M23 −M32).

The matrix M being Hermitian, SO4 must be purely imaginary or zero.

Time reversal provides an additional constraint which imposes SO4 ≡ 0. Under time reversal,

we assume that the three quark wave functions transform in the usual way: that

Θψa
ℓm(~r1, ~r2, ~r3) = (−1)ℓ+m ψa

ℓm(~r1, ~r2, ~r3), (3.14)

where Θ represents the time reversal operator, and that ~Lij transforms as Θ ~LijΘ
−1 = − ~Lij. It

follows that Mab = Mba is a symmetric matrix. Since Mab = (Mba)∗, Mab is therefore a real

symmetric matrix and the linear combination SO4 must vanish. Thus, for both the quark model

and the chiral quark model, the spin-orbit matrix elements of the barons are completely determined

by only three constants SO1, SO2 and SO3, which can be calculated in a specific model.

We describe the hyperfine interactions more briefly. As we know in advance from the S3 group

theory that there are only two independent constants in either case, we shall define fewer three

quark matrix elements than was done for the spin-orbit operator. Let us define the spatial integrals

〈ψ1
1m(~r1, ~r2, ~r3) | f0(r12) |ψ1

1m′(~r1, ~r2, ~r3)〉 = A1 δmm′

〈ψ1
1m(~r1, ~r2, ~r3) | f0(r12) |ψ2

1m′(~r1, ~r2, ~r3)〉 = A2 δmm′ (3.15)

〈ψ3
1m(~r1, ~r2, ~r3) | f0(r12) |ψ3

1m′(~r1, ~r2, ~r3)〉 = A3 δmm′

for the spin-spin operator. Then only the following linear combinations appear in the matrix

elements for the baryons:

D+ = A1 + A2 + 2A3

D− = A1 −A2. (3.16)

8



A sufficient basis of spatial integrals for writing all of the baryon matrix elements of the quadrupole

operator is provided simply by

〈ψ1
1m(~r1, ~r2, ~r3) |Qαβ |ψ1

1m′(~r1, ~r2, ~r3)〉 = Q1 〈1,m |LαLβ − 1
3
δαβL2 | 1,m′〉

〈ψ1
1m(~r1, ~r2, ~r3) |Qαβ |ψ2

1m′(~r1, ~r2, ~r3)〉 = Q2 〈1,m |LαLβ − 1
3
δαβL2 | 1,m′〉. (3.17)

where

Qαβ ≡ f2(r12)
(

3 r̂α
12r̂

β
12 − δαβ

)

(3.18)

Neither of these cases is further constrained by time-reversal symmetry other than to say that the

above constants are all real.

It is now possible to express the masses of the L = 1 baryons in terms of the seven unknown

spatial integrals (D±, SO1,2,3, Q1,2) and the common 70-plet zero-order mass 〈70 |H0 |70〉 ≡M0.

We further shall explicitly break SU(3), while keeping isospin symmetry, by giving the strange

quark a larger mass, ms > mu = md. These masses correspond to the constituent masses so that

the strange-up mass difference can be assumed to be small,

δm ≡ ms −mu

mu
≪ 1. (3.19)

Since SU(3) is only weakly broken, we shall work only to first order in δm ≈ 0.27–0.29. The mass

factors appear explicitly in the 1/mi coefficients of the perturbative potentials.

We should here pause to remark on the power of the S3 argument. The group theory allows

us to calculate the perturbations to a model with a specific spin, orbital angular momentum and

flavor structure but with other details left arbitrary. This feature allows us to test the plausibility

of a model’s ability to explain the observed L = 1 baryon spectrum by adjusting the independent

constants to fit these masses. If the model fails to fit the data to a reasonable confidence level, then

regardless of the dynamical model for the quark wave functions used, it will still fail adequately to

generate the observed L = 1 mass splittings. The converse, however, is not true. Even should a

model fit the data well, realistic choices for the quark wave functions may not achieve the best fit

attainable in the full parameter space.

As an example, the mass perturbation to the |∆; 1
2
;J = 3

2
〉 states in the quark model is

∆m∆,3/2 = M0 +
1

2
D1 −

9

2
D2 + SO2 + SO3 (3.20)

while for the chiral quark model, the perturbation becomes

∆m∆,3/2 = M0 +
2

3
D1 − 6D2 +

4

3
SO2 +

4

3
SO3. (3.21)

The calculation of these matrix elements, as well as those for the rest of the baryons was ac-

complished with the Maple symbolic manipulation program. The mass splitting operators will in

general mix baryons which have equivalent total angular momentum, isospin and strangeness.
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4. The Comparison with Experiment.

Among the baryons observed to date, eighteen have been reliably identified with the L = 1

baryons [7]. Our program then is to obtain the best possible fit with the nine unknown quantities—

the seven spatial integrals for the interactions, a parameter for the SU(3) breaking, and zero-order

baryon mass—to the masses of these eighteen baryons. Fits were made for each of the two models.

The actual fitting routine applied a Levenberg-Marquardt algorithm [8] which chose its initial

conditions randomly within this nine-dimensional parameter space. For those baryons within an

incompletely measured set with the same J , I, and strangeness, specifically the ΣJ=3/2, the ΣJ=1/2,

the ΛJ=3/2, and the ΞJ=3/2, all the possible assignments of elements of these sets to the measured

masses were sampled; those which produced the best fit to the mass spectrum are displayed in

this section. The values for the parameters for the two pictures of the low energy physics within a

baryon are shown in Table 2, with the χ2 for each of the fits:

Perturbation

(MeV)∗
Quark

Model

Chiral

Quark Model

D+

D−

SO1

SO2

SO3

Q1

Q2

δm

M0

χ2

196.9

-19.50

30.85

47.99

-90.50

12.63

7.762

0.269

1613

123.6

-87.78

-52.11

-1.106

15.93

17.40

-14.10

-15.38

0.286

1477

24.76

Table 2. Best-fit values of the S3 constants for

the quark model and chiral quark model. ∗All

of the parameters are in units of MeV except

δm which is dimensionless.

These values produce the mass spectra displayed in figure 2 for the quark model and in figure 3 for

the chiral quark model. In these figures, the baryons used to fit the experimentally observed masses

are shown in unbroken lines while the remaining baryons masses, shown in dashed lines, represent

predictions. The composition of the baryons in terms of spin-flavor multiplets is summarized in

tables 3 and 4.
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The eighteen baryons chosen for the fits are those listed in the Baryon Summary Table of [7]; we

should mention that the existence two other L = 1 states, the ΣJ=1/2(1620) and the ΣJ=3/2(1580),

has been fairly well established. As we shall see, the quark model is unable to fit the baryon

spectrum with a satisfactory χ2 even with the omission of these two baryons. But as the chiral

quark model successfully fit the baryons listed in the Baryon Summary Table, we have included

these two in table 4. Although they were not included in the fitting routine, each baryon has a

‘predicted’ state within 20–40 MeV so that we do not expect that our conclusions, nor the χ2 of

the fit, would alter greatly had they been included in the fitting procedure.

4.1. The Quark Model.

The standard quark model fares rather poorly with a best χ2 value of 123.6 for only eighteen

fit parameters. The masses of the Λ(1405) [J = 1
2
] and the Λ(1520) [J = 3

2
] baryons have been

been measured to within ±4 MeV and ±1 MeV respectively and tend to drive the fit parameters to

produce a precise fit for these states—at the expense of others. An accurate fit of the Λ’s tends to

produce a poor fit for the decuplet states, most glaringly, giving a predicted mass of 1884 MeV for

the ∆(1620). More generally, the quark model predicts higher masses for decuplet states with lower

total angular momentum in contrast with the general trend for the ℓ = 1 baryons, in particular the

observed reversed ordering of the J = 1
2

and J = 3
2

∆ masses. The original study of the 70-plet

baryons by Isgur and Karl [1] succeeded in obtaining a better fit for the decuplet states but only

at the expense of a predicted mass of 1490 MeV for the Λ(1405) and a consequently poorer χ2. It

seems difficult for the constituent quark model to account for both the lightness of the Λ states and

the decuplet mass spectrum. This failure is often described in terms of the size of the spin-orbit

coupling: a weak coupling is needed to fit the majority of the baryons but a strong coupling is

required to generate the observed Λ(1520)–Λ(1405) mass splitting [9].

4.2. The Chiral Quark Model.

The chiral quark model is able to reconcile successfully these two features and produce an

acceptable fit for the detected baryon spectrum: a χ2 of only 24.76. Its worst failure among the

observed baryons is that the model does not generate a sufficient splitting in the J = 3
2
N states,

only about 20 MeV compared with an experimental splitting of almost 200 MeV. At present, the

large experimental error in the N(1700) allows a “good” fit to be achieved but it may be difficult

to accommodate the actual splitting as more precise data are obtained.

As mentioned, the quark model analysis of Isgur and Karl [1] found that, aside from large

Λ(1520)–Λ(1405) mass splitting, the splitting among the baryon multiplets required an extremely

small spin-orbit contribution to the masses. The difficultly in justifying this small spin-orbit cou-

pling has been called the “spin-orbit puzzle.” In the chiral quark model, while the spin-spin

interactions dominate with a strength roughly five times that of the other terms, the spin-orbit
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interactions are comparable to the quadrupole interactions, with only two of the three independent

integrals responsible for essentially all of the spin-orbit contribution. Thus the spin-orbit puzzle

does not seem to occur in the chiral quark model.

4.3. The Λ(1405).

The low mass of the Λ(1405) has marked it as something of a conundrum among the L = 1

baryons. At one extreme, it would seem reasonable to regard it as a K̄N bound state since its mass

lies 30 MeV below the K̄N threshold. Alternatively, the non-relativistic quark model treats the

Λ(1405) as an ordinary L = 1 baryon composed of some mixture of SU(3) singlet and octet states.

Traditionally, the quark model [1] predicts that the Λ(1405) mainly is composed of the singlet state

with a small admixture of the octet states and such a behavior is seen in the best-fit results for the

quark model (gluon exchange):

Λ(1405)qm = −0.9998 |21; 1
2
; 1

2
〉 + 0.0082 |28; 1

2
; 1

2
〉 + 0.0178 |48; 3

2
; 1

2
〉. (4.1)

The chiral quark model (Goldstone boson exchange) gives a similar result for the composition of

the Λ(1405) except that the spin-1
2

contribution is slightly enhanced:

Λ(1405)χqm = −0.9775 |21; 1
2
; 1

2
〉 − 0.2071 |28; 1

2
; 1

2
〉 − 0.0395 |48; 3

2
; 1

2
〉. (4.2)

Since the chiral quark model succeeds in fitting the observed baryon masses well, it is instructive to

probe the model further by comparing the consequences of this predicted composition with some

of the other phenomenological properties of this baryon.

Nathan Isgur [10] has recently proposed that the Λ(1405) can be studied in heavy quark

effective theory limit. In this picture, the Λ(1405) is a uds quark bound state where the strange

quark mass is taken to be heavy compared to the up and the down quark masses. Singling out the

s quark breaks the SU(3) flavor symmetry and its spin and orbital angular momentum completely

determine that of the Λ(1405). The ud quarks form an inert S = 0, L = 0 pair. Such a state no

longer can be described in terms of pure SU(3) states; however it does contain equal amounts of

the singlet and spin 1
2

octet states. Such a composition contrasts with that emerging in either the

quark model or the chiral quark model. In both cases, the Λ(1405) remains essentially a singlet

state although the chiral quark model does match the heavy quark theory’s predictions marginally

better:

〈Λ(1405)χqm |Λ(1405)HQET 〉 = 0.6079 (4.3)

compared to an overlap of

〈Λ(1405)qm |Λ(1405)HQET 〉 = 0.5089 (4.4)

for the quark model.
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4.4. Mixing Angles from L = 1 Decays.

The decays of the 70 states into 56 states provide another estimate of the observed baryons’

compositions in terms of SU(3)×SU(2) eigenstates. While fits to the decay amplitudes have been

performed for the quark model [11], they do not include estimates for the mixing angles; however,

the mixing angles have been extracted for the SU(6)W model [12], which has the same algebraic

structure for the decays as the standard quark model SU(6). A comparison of the compositions

of the states fit to 70 decays [12] with those of the two models fit here to the mass spectrum are

shown in Table 8. In this table we have only included the states from mixed J-multiplets that have

been completely observed—the N states and the three ΛJ=1/2 states.

Quark Model Chiral Quark Model

decays〈NJ=1/2 |NJ=1/2〉qm = −.98
decays〈NJ=3/2 |NJ=3/2〉qm = −.87

decays〈Λ(1405) |Λ(1405)〉qm = −.84
decays〈Λ(1670) |Λ(1670)〉qm = −.63
decays〈Λ(1800) |Λ(1800)〉qm = −.70

decays〈NJ=1/2 |NJ=1/2〉χqm = −1.00

decays〈NJ=3/2 |NJ=3/2〉χqm = −.94
decays〈Λ(1405) |Λ(1405)〉χqm = −.94
decays〈Λ(1670) |Λ(1670)〉χqm = −.42
decays〈Λ(1800) |Λ(1800)〉χqm = −.48

Table 8. A comparison of the compositions of the baryons obtained from the SU(6)W

model fit to 70 → 56 + · · · decays [12] with those obtained in our fits for both the quark

model (qm) and the chiral quark model (χqm).

Both models agree extremely well with the decay estimates for the N state compositions, but they

begin to disagree for the Λ states. The decays of the L = 1 baryons suggest that the Λ(1405) and the

Λ(1520) are principally singlet states, which is in accord with our fits. However, the Λ(1800) in the

chiral quark model is predominantly an S = 3
2

octet state whereas the fits to the decay amplitudes

suggest it is principally an S = 1
2

octet state. While not conclusive, these disagreements suggest

it may be a challenge for the chiral quark model to fit simultaneously the mass spectrum and the

observed decay amplitudes.

4.5. SU(3) Symmetric Perturbations.

In evaluating the matrix elements of the mass operators of equations (3.5) and (3.6), we

explicitly broke flavor symmetry by giving the strange quark a heavier mass. We shall now examine

what happens to the fits when SU(3) is preserved in these spin operators. The rationale for taking

this limit is that if both the spin splitting and the flavor breaking effects are small, terms that

simulaneously break SU(3) and SU(2) can be regarded as higher order effects.

The results for the fits to the L = 1 baryon spectrum due to an explicit SU(3) breaking term

plus flavor-symmetric versions of the operators in equations (3.5) and (3.6) are shown in figures 4
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and 5. The mixing angles are included in tables 6 and 7 while table 5 displays the best fit values

of the S3 constants in units of MeV (except for the dimensionless SU(3) breaking parameter).

Surprisingly, the χ2 improves for the quark model fit, from 123 to 79, although the general pattern

remains as before. Some of the assignments of the states being fit, among the ΣJ=1/2, ΣJ=3/2

and ΛJ=3/2 states, have changed. The ordering of the multiplets of decuplet remains unaltered.

One feature that figure 4 does not convey is that many other arrangments of the baryons in the

incompletely observed multiplets also lead to a better fit than that of figure 2, the best fit obtained

for the SU(3)-breaking spin operators.

The value of χ2 for the chiral quark model predictably worsened when SU(3) was imposed

on the spin-splitting operators. The pattern of masses otherwise did not change significantly.

Comparing the the masses in the SU(3) symmetric and the SU(3)-broken limits (tables 7 and

4) provides an estimate for the theoretical errors associated with our fits—most of the fit baryon

masses agreed to within 10–20 MeV. Most of the sizes of the fit parameters did not differ much

between the two fits with the exception of the quadrupole interaction which is substantially smaller

in the SU(3) symmetric limit.

5. Conclusion.

The S3 permutation group provides a new tool for the study of the physics within baryons.

In addition to freeing us from a specific choice for the quark-quark potential, this approach allows

a comparison of theories differing in the flavor structure of their interactions. When applied to

the traditional quark model and the more recent chiral quark model, our approach places the two

theories on an equal footing with a one-to-one mapping of the unknown S3 parameters between the

two theories. The results of this comparison were somewhat surprising—the chiral quark model

shows a clearly better fit with the observed L = 1 baryon spectrum.

Since the chiral quark model provided a good fit and seems to be able to avoid the spin-orbit

problem, we should mention some of the challenges that it still faces. As stated earlier, the fitting

routine ranged over the entire available parameter space and it remains to show that the best-fit

set of parameters can be realized by a physical potential for the quark-quark interactions. It would

also be interesting to see whether this superiority over the traditional quark model fit persists when

we attempt to fit simultaneously the L = 0, the negative and positive parity L = 1, and lowest

excited states of the N = 2 band. This program was carried out by Capstick and Isgur [4] for a

relativized quark model with harmonic oscillator wave functions. Finally, if the model is to provide

a believable explanation of the low-energy physics within a baryon it must not only describe the

mass spectrum, but also accommodate the excited state decays.
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Figure 2. Masses of the L = 1 Baryons in the Quark Model; χ2 = 123.6432, Nfit = 18
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Figure 3. Masses of the L = 1 Baryons in the Chiral Quark Model; χ2 = 24.7568, Nfit = 18
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Table 3. Masses and Mixing Angles of the L = 1 Baryons in the Quark Model.

Baryon
Mass

(Exp)

Mass

(Fit)
48 28 210 21

N J = 1
2

1535+20
−15 1529 -0.3537 -0.9354 * *

1650+30
−10 1631 -0.9354 0.3537 * *

N J = 3
2

1520+10
−5 1520 -0.3283 -0.9446 * *

1700+50
−50 1752 -0.9446 0.3283 * *

N J = 5
2

1675+10
−5 1674 1.0000 * * *

∆ J = 1
2

1620+55
−5 1884 * * 1.0000 *

∆ J = 3
2

1700+70
−30 1757 * * 1.0000 *

Σ J = 1
2

1750+50
−20 1715 -0.1874 -0.9773 0.0988 *

** 1840 0.9819 -0.1892 -0.0094 *

** 1983 0.0279 0.0952 0.9951 *

Σ J = 3
2

1670+15
−5 1704 0.3113 0.9480 -0.0658 *

** 1876 0.0803 0.0428 0.9959 *

1940+10
−40 1908 0.9469 -0.3153 -0.0628 *

Σ J = 5
2

1775+5
−5 1781 1.0000 * * *

Λ J = 1
2

1407+4
−4 1418 0.01780 0.0082 * -0.9998

1670+10
−10 1649 0.6359 0.7716 * 0.01767

1800+50
−80 1717 0.7716 -0.6361 * 0.0085

Λ J = 3
2

1519.5+1
−1 1519 0.0503 0.2395 * -0.9696

1690+5
−5 1666 0.3513 0.9045 * 0.2416

** 1836 0.9349 -0.3528 * -0.0386

Λ J = 5
2

1830+0
−20 1834 1.0000 * * *

Ξ J = 1
2 ** 1806 0.7132 0.7010 * *

** 1860 -0.7010 0.7132 * *

Ξ J = 3
2

1823+5
−5 1819 -0.3514 -0.9362 * *

** 1955 -0.9362 0.3514 * *

Ξ J = 5
2 ** 1967 1.0000 * * *

Ξ∗ J = 1
2 ** 2076 * * 1.0000 *

Ξ∗ J = 3
2 ** 1995 * * 1.0000 *

Ω J = 1
2 ** 2172 * * 1.0000 *

Ω J = 3
2 ** 2113 * * 1.0000 *
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Table 4. Masses and Mixing Angles of the L = 1 Baryons in the Chiral Quark Model.

Baryon
Mass

(Exp)

Mass

(Fit)
48 28 210 21

N J = 1
2

1535+20
−15 1536 -0.4849 -0.8746 * *

1650+30
−10 1658 -0.8746 0.4849 * *

N J = 3
2

1520+10
−5 1512 0.4915 -0.8709 * *

1700+50
−50 1535 -0.8709 -0.4915 * *

N J = 5
2

1675+10
−5 1692 1.0000 * * *

∆ J = 1
2

1620+55
−5 1643 * * 1.0000 *

∆ J = 3
2

1700+70
−30 1776 * * 1.0000 *

Σ J = 1
2

(1620) 1648 -0.5882 -0.7248 -0.3588 *

** 1743 0.7688 -0.3636 -0.5260 *

1750+50
−20 1779 -0.2508 0.5853 -0.7711 *

Σ J = 3
2

(1580) 1621 0.9320 -0.3575 0.0604 *

1670+15
−5 1672 -0.3625 -0.9192 0.1538 *

1940+10
−40 1865 -0.0005 0.1652 0.9863 *

Σ J = 5
2

1775+5
−5 1772 1.0000 * * *

Λ J = 1
2

1407+4
−4 1408 -0.0395 -0.2071 * -0.9775

1670+10
−10 1671 0.3384 0.9177 * -0.2081

1800+50
−80 1784 0.9402 -0.3391 * 0.0339

Λ J = 3
2

1519.5+1
−1 1519 0.0243 0.4288 * -0.9031

** 1655 -0.0240 0.9033 * 0.4283

1690+5
−5 1693 0.9994 0.0113 * 0.0322

Λ J = 5
2

1830+0
−20 1811 1.0000 * * *

Ξ J = 1
2 ** 1788 -0.2884 -0.9575 * *

** 1891 -0.9575 0.2884 * *

Ξ J = 3
2 ** 1763 -0.0477 -0.9989 * *

1823+5
−5 1824 -0.9989 0.0477 * *

Ξ J = 5
2 ** 1911 1.0000 * * *

Ξ∗ J = 1
2 ** 1861 * * 1.0000 *

Ξ∗ J = 3
2 ** 1944 * * 1.0000 *

Ω J = 1
2 ** 1971 * * 1.0000 *

Ω J = 3
2 ** 2028 * * 1.0000 *
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Perturbation

(MeV)∗
Quark

Model

Chiral

Quark Model

D+

D−

SO1

SO2

SO3

Q1

Q2

δm

M0

χ2

123.9

-21.14

-14.32

-77.90

68.34

-18.20

-10.12

0.221

1585

79.24

-79.73

-57.05

0.744

16.24

20.38

2.699

-0.982

0.265

1445

33.23

Table 5. Best-fit values of the S3 constants for

the quark model and chiral quark model with

SU(3) symmetric spin operators. ∗All of the

parameters are in units of MeV except δm

which is dimensionless.
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Figure 4. Masses of the L = 1 Baryons in the Quark Model with SU(3) Symmetric

Interactions; χ2 = 79.2456, Nfit = 18
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Figure 5. Masses of the L = 1 Baryons in the Chiral Quark Model with SU(3) Symmetric

Interactions; χ2 = 33.2254, Nfit = 18
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Table 6. Masses and Mixing Angles of the L = 1 Baryons in the Quark Model with
SU(3) Symmetric Interactions.

Baryon
Mass

(Exp)

Mass

(Fit)
48 28 210 21

N J = 1
2

1535+20
−15 1522 -0.2404 -0.9707 * *

1650+30
−10 1647 -0.9707 0.2404 * *

N J = 3
2

1520+10
−5 1503 0.8903 0.4554 * *

1700+50
−50 1584 -0.4554 0.8903 * *

N J = 5
2

1675+10
−5 1671 1.0000 * * *

∆ J = 1
2

1620+55
−5 1761 * * 1.0000 *

∆ J = 3
2

1700+70
−30 1732 * * 1.0000 *

Σ J = 1
2 ** 1639 -0.2404 -0.9707 0.0000 *

1750+50
−20 1764 -0.9707 0.2404 0.0000 *

** 1878 0.0000 0.0000 1.0000 *

Σ J = 3
2 ** 1620 0.8903 0.4554 0.0000 *

1670+15
−5 1701 -0.4554 0.8903 0.9959 *

1940+10
−40 1849 0.0000 0.0000 1.0000 *

Σ J = 5
2

1775+5
−5 1788 1.0000 * * *

Λ J = 1
2

1407+4
−4 1414 0.0000 0.0000 * 1.0000

1670+10
−10 1639 -0.2404 -0.9707 * 0.0000

1800+50
−80 1763 -0.9707 0.2404 * 0.0000

Λ J = 3
2

1519.5+1
−1 1519 0.0000 0.0000 * 1.0000

** 1620 0.8903 0.4554 * 0.0000

1690+5
−5 1701 -0.4554 0.8903 * 0.0000

Λ J = 5
2

1830+0
−20 1788 1.0000 * * *

Ξ J = 1
2 ** 1756 -0.2404 -0.9707 * *

** 1880 -0.9707 0.2404 * *

Ξ J = 3
2 ** 1736 0.8903 0.4554 * *

1823+5
−5 1818 -0.4554 0.8903 * *

Ξ J = 5
2 ** 1904 1.0000 * * *

Ξ∗ J = 1
2 ** 1995 * * 1.0000 *

Ξ∗ J = 3
2 ** 1966 * * 1.0000 *

Ω J = 1
2 ** 2112 * * 1.0000 *

Ω J = 3
2 ** 2083 * * 1.0000 *
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Table 7. Masses and Mixing Angles of the L = 1 Baryons in the Chiral Quark Model
with SU(3) Symmetric Interactions.

Baryon
Mass

(Exp)

Mass

(Fit)
48 28 210 21

N J = 1
2

1535+20
−15 1540 0.6313 -0.7755 * *

1650+30
−10 1660 -0.7755 -0.6313 * *

N J = 3
2

1520+10
−5 1521 -0.1808 -0.9835 * *

1700+50
−50 1564 -0.9835 0.1808 * *

N J = 5
2

1675+10
−5 1661 1.0000 * * *

∆ J = 1
2

1620+55
−5 1636 * * 1.0000 *

∆ J = 3
2

1700+70
−30 1783 * * 1.0000 *

Σ J = 1
2

(1620) 1668 0.6313 -0.7755 0.0000 *

1750+50
−20 1764 0.0000 0.0000 1.0000 *

** 1788 -0.7755 -0.6313 0.0000 *

Σ J = 3
2

(1580) 1648 -0.1808 -0.9835 0.0000 *

1670+15
−5 1692 -0.9835 0.1808 0.0000 *

1940+10
−40 1911 0.0000 0.0000 1.0000 *

Σ J = 5
2

1775+5
−5 1788 1.0000 * * *

Λ J = 1
2

1407+4
−4 1407 0.0000 0.0000 * 1.0000

1670+10
−10 1668 0.6313 -0.7755 * 0.0000

1800+50
−80 1788 -0.7755 -0.6313 * 0.0000

Λ J = 3
2

1519.5+1
−1 1519 0.0000 0.0000 * 1.0000

** 1649 -0.1808 -0.9835 * 0.0000

1690+5
−5 1692 -0.9835 0.1808 * 0.0000

Λ J = 5
2

1830+0
−20 1788 1.0000 * * *

Ξ J = 1
2 ** 1795 0.6313 -0.7755 * *

** 1915 -0.7755 -0.6313 * *

Ξ J = 3
2 ** 1776 -0.1808 -0.9835 * *

1823+5
−5 1819 -0.9835 0.1808 * *

Ξ J = 5
2 ** 1916 1.0000 * * *

Ξ∗ J = 1
2 ** 1892 * * 1.0000 *

Ξ∗ J = 3
2 ** 2038 * * 1.0000 *

Ω J = 1
2 ** 2019 * * 1.0000 *

Ω J = 3
2 ** 2166 * * 1.0000 *
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