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ABSTRACT

Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma
flows whose radiative opacity can significantly affect flow structure and behavior. We describe
a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation
closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magne-
tohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD
simulation of super-Eddington accretion (about 20 times Eddington) onto a rapidly rotating
BH (dimensionless spin j = 0.9375) shows sustained non-axisymmemtric disk turbulence,
a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative
output consistently near the Eddington rate. The total accretion efficiency is of order 20%, the
large-scale electromagnetic jet efficiency is of order 10%, and the total radiative efficiency that
reaches large distances remains low at only order 1%. However, the radiation jet and the elec-
tromagnetic jet both emerge from a geometrically beamed polar region, with super-Eddington
isotropic equivalent luminosities. Such simulations with HARMRAD can enlighten the role
of BH spin vs. disks in launching jets, help determine the origin of spectral and temporal
states in x-ray binaries, help understand how tidal disruption events (TDEs) work, provide
an accurate horizon-scale flow structure for M87 and other active galactic nuclei (AGN), and
isolate whether AGN feedback is driven by radiation or by an electromagnetic, thermal, or
kinetic wind/jet. For example, the low radiative efficiency and weak BH spin-down rate from
our simulation suggest that BH growth over cosmological times to billions of solar masses
by redshifts of z ∼ 6–8 is achievable even with rapidly rotating BHs and ten solar mass BH
seeds.

Key words: accretion, accretion discs, black hole physics, hydrodynamics, (magnetohydro-
dynamics) MHD, methods: numerical, gravitation

1 INTRODUCTION

Modern black hole (BH) accretion theory has identified radiative
cooling and transport as having a significant effect on accretion
disk states and temporal behaviors. Without radiation, equations
like the test field limit of the general relativistic (GR) magnetohy-
drodynamic (MHD) equations can be solved to obtain a single solu-
tion that applies to arbitrary black hole mass M and mass accretion
rate Ṁ0 because only two physical constants, the speed of light c
and gravitational constant (times mass) GM, appear independently.
Introduction of a radiative scale via the electron scattering Thom-

? E-mail: jcm@umd.edu (JCM)

son cross section σT (giving scattering opacity κes = σT/mp, with
Planck’s constant per electron mass, ~/me and proton mass mp) and
radiation constant (arad, with ~ appearing alone) forces Ṁ0 and M
to be specific physical values. Then, a useful scale that measures
the importance of radiative effects in accretion disks is the Edding-
ton luminosity, as due to a radial balance between a radiative force
Frad = LσT /(4πcr2) and gravity Fgrav ≈ GMmp/r2 for radiative
luminosity L, radius r. The Eddington luminosity is given by

LEdd =
4πGMc
κes

≈ 1.3 × 1046 M
108 M�

erg s−1, (1)

which can be used to normalize quantities like the mass accretion
rate (Ṁ0c2) and L. As done for this paper’s abstract, one can also
choose to normalize Ṁ0 by ṀEdd = (1/ηNT)LEdd/c2, where ηNT is
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2 J. C. McKinney, A. Tchekhovskoy, A. Sadowski, R. Narayan

the nominal accretion efficiency for the Novikov-Thorne thin disk
solution (Novikov & Thorne 1973) (commonly, a fixed ηNT = 0.1
is used, but we include the spin dependence).

At very low accretion rates, L/LEdd � 10−2, e.g., Sgr A∗

the super-massive BH (SMBH) at our Galactic Center (Narayan,
Yi & Mahadevan 1995), the plasma becomes a radiatively ineffi-
cient accretion flow (RIAF) with some dissipated energy advect-
ing into the BH and the rest ejected into a wind. These flows
could be advection-dominated accretion flows (ADAFs) (Ichimaru
1977; Narayan & Yi 1994, 1995; Abramowicz et al. 1996, 1995;
Popham & Gammie 1998), convection-dominated accretion flows
(CDAFs) (Narayan et al. 2000; Quataert & Gruzinov 2000), and
advection-dominated inflow-outflow solutions (ADIOSs) (Bland-
ford & Begelman 1999; Begelman 2012). Such flows are optically
thin and geometrically thick (disk height (H) to cylindrical radius
(R) ratio of |H/R| ∼ 0.5–0.9). Analytical and semi-analytical mod-
els agree well with the primary spectral features of, e.g., SgrA*
(Yuan et al. 2003). Still, modern GRMHD simulations with physi-
cal cooling suggest that accretion rate of Sgr A* is actually near the
limit of the regime where radiative cooling may be important (Dibi
et al. 2012), while systems like M87 that are normally associated
with low luminosity systems may have important radiative cooling
(Mościbrodzka et al. 2011; Dibi et al. 2012).

RIAFs have been studied with various GRMHD codes (with
no radiative transfer) (e.g., De Villiers et al. 2003; Gammie et al.
2003; Anninos et al. 2005; Del Zanna et al. 2007), and these
simulations seek to find thermodynamically and dynamically self-
consistent solutions and to determine what free parameters (such
as net magnetic flux) set the results (Narayan et al. 2012; McKin-
ney et al. 2012; Tchekhovskoy & McKinney 2012). Some effects of
radiation have been included by performing radiative transfer dur-
ing post-processing to produce observables (e.g. Schnittman et al.
2006; Shcherbakov et al. 2010), which is valid when the radiation
has no dynamical importance. In a few cases, physically-motivated
local cooling has been included (e.g., Fragile & Meier 2009; Dibi
et al. 2012), which is permissable if the gas is quite optically thin.
Simulations, however, have not been performed in a way that self-
consistently determines the thermodynamic structure of the disk,
which would be controlled by significant cooling or regulated by
turbulent dissipation and winds. Instead, simulations with various
initial conditions lead to evolved disk states of various disk thick-
nesses, such as |H/R| ∼ 0.1–0.15 (Hawley & Krolik 2001; De Vil-
liers et al. 2003; Beckwith et al. 2008b,a, 2009) and |H/R| ∼ 0.2
(Hawley & Balbus 2002; Machida et al. 2000; Martı́ & Müller
2003; McKinney & Gammie 2004; Fragile et al. 2007; McKinney
& Blandford 2009) and |H/R| ∼ 0.3–0.4 (Igumenshchev et al. 2003;
Penna et al. 2010), as well as radiatively efficient, geometrically
thick flows with |H/R| ∼ 0.6–1.0 (Stone & Pringle 2001; Hawley
et al. 2001; Igumenshchev & Narayan 2002; Pen et al. 2003; Pang
et al. 2011; McKinney et al. 2012).

For higher accretion rates, 10−2 . L/LEdd . 0.3, the disk
cools efficiently, and the inner accretion disk can collapse into an
optically thick geometrically thin accretion disk (Shakura & Sun-
yaev 1973; Novikov & Thorne 1973; Thorne 1974; Esin et al. 1997,
1998; Martı́ & Müller 2003; McClintock & Remillard 2006; Done
et al. 2007). In this regime, it remains uncertain whether such a
radiation-dominated disk is stable (Lightman & Eardley 1974; Pi-
ran 1978; Hirose et al. 2009; Jiang et al. 2013). Example systems
include transient black hole binaries (BHBs) that approach near-
Eddington accretion rates near the peak of their outbursts (Mc-
Clintock & Remillard 2006; Remillard & McClintock 2006; Done,
Gierliński & Kubota 2007), during which they produce a thermal

black-body-like spectrum consistent with standard α-disk theory
(Shakura & Sunyaev 1973; Noble et al. 2011a; Frank et al. 2002)
that allows one to measure black hole spins (McClintock et al.
2011; Straub et al. 2011). However, typical α-disk models assume
an averaged vertical structure with limited treatment of the radia-
tion. Simulations have only so-far included an ad hoc cooling func-
tion that leads to |H/R| ∼ 0.05–0.1 (Shafee et al. 2008; Reynolds
& Fabian 2008; Reynolds & Miller 2009; Noble et al. 2009; Penna
et al. 2010; Noble et al. 2010; Sorathia et al. 2010; Noble et al.
2011b; Beckwith et al. 2011).

Near and beyond the Eddington luminosity limit, L & 0.3LEdd,
the accretion flow become geometrically thick and optically thick,
and in this regime the photons can advect or remain trapped within
the flow. The “slim disk” model treats this regime (Abramowicz
et al. 1988; Sa̧dowski 2009) (but for issues see Ohsuga et al. 2002)
and additional physics such as thermal conduction has been added
to such models (Ghasemnezhad et al. 2013), but it does not include
multi-dimensional effects or magnetic fields. Super-Eddington ac-
cretion may help explain ultra-luminous X-ray sources as highly
super-Eddington stellar-mass BHs (Watarai et al. 2001; Watarai
et al. 2005), without requiring intermediate mass BHs (as required
if accretion were limited to Eddington rates) (Miller & Colbert
2004). Also, a few black hole x-ray binaries spend significant peri-
ods of time with L & LEdd (e.g., SS433, Margon et al. 1979; Mar-
gon 1984; Takeuchi et al. 2010; GRS1915+105, Fender & Belloni
2004). In addition, tidal disruption events (TDEs) require such high
accretion rates with geometrically-thick accretion disks (Cough-
lin & Begelman 2013) and strong magnetic fields (Bloom et al.
2011; Burrows et al. 2011; Levan et al. 2011; Zauderer et al. 2011;
Tchekhovskoy et al. 2013).

This important regime may determine SMBH mass growth in
the Universe from z ∼ 10–20 to z ∼ 6–8 leading to black holes
with masses of 109 M� (Collin et al. 2002; Barth et al. 2003; Willott
et al. 2005; Fan et al. 2006; Willott et al. 2010; Mortlock et al. 2011;
Kawakatu & Ohsuga 2011; Fabian 2012) and control the evolution
of black hole mass and spin (Gammie et al. 2004; Volonteri et al.
2005; Berti & Volonteri 2008) as well as set the degree of active
galactic nuclei (AGN) feedback (Di Matteo et al. 2005; Springel
et al. 2005).

On the one hand, often it is assumed that mass accretion
is limited by Eddington, since otherwise radiation blows off a
massive wind and prevents accretion (see discussion in Takeuchi
et al. 2009). Then one expects the mass accretion rate to be lim-
ited to Eddington (Ṁ0 . ṀEdd), the luminosity to be limited to
Eddington (L 6 LEdd), and the radiative efficiency (ηrad) to be
rougly given by Novikov-Thorne values, which vary from ηrad ∼

0.057, 0.065, 0.082, 0.26 for a/M = 0, 0.2, 0.5, 0.99, respectively.
Then, the disk luminosity is given by L = ηrad Ṁ0c2. The black hole
mass grows from Mi due to the residual mass not converted to en-
ergy, so giving Ṁ = (1−ηrad)Ṁ0. Thus, Ṁ 6 (M/tEdd)(1−ηrad)/ηrad

where tEdd ≡ κc/(4πG) ≈ 4.5 × 108yr. Hence,

M
Mi

< exp
[

t
tEdd

(1/ηrad − 1)
]
, (2)

which is exponentially sensitive to efficiency (and hence expo-
nentially sensitive to black hole spin). Over t ∼ 0.8Gyr (roughly
z ∼ 20 to z ∼ 6), Eddington-limited accretion with a/M ≈ 0.99
leads to M/Mi . 142, a severe restriction to growth. One requires
a/M . 0.5 and seeds of Mi ≈ 10M� to reach M & 4 × 109 M�, as
needed to produce quasars at z ∼ 6–8.

On the other hand, photon-trapping can allow for super-
Eddington mass accretion rates (Ohsuga & Mineshige 2007), such

c© 2013 RAS, MNRAS 000, 1–36



3D GRMHD Simulations of Super-Eddington Accretion 3

that only L might be limited to near Eddington values. So one
should split the efficiency due to radiation and accretion, given by
ηacc, such that Ṁ = (1 − ηacc)Ṁ0. Then

M
Mi

< exp
[

t
tEdd

(1 − ηacc)/ηrad

]
. (3)

In this case, if a/M = 1 such that ηacc ≈ 0.43, then for (e.g.)
Ṁ0c2 ∼ 9LEdd one expects ηrad ∼ 0.43/9 ≈ 0.05. In this case,
one can easily have a/M ≈ 1 and seeds of Mi ≈ 10M� and reach
M ∼ 1010 M�, as could be required by the most massive quasars
at redshifts of z ∼ 6–8. So even mild modifications to accretion
rates and luminosities can exponentially affect the growth of black
holes. This highlights the importance of including general relativity
(to properly account for spin that controls both efficiencies), radi-
ation (that at least determines the radiative efficiency), as well as
magnetic fields (that control the spin down ; Gammie et al. 2004).
So to understand the accretion physics in such systems, radiation
GRMHD models (that self-consistently couple gas, radiation and
magnetic fields) are crucial.

In order to study such a complex and sensitive interaction
between GR, radiation, and magnetic fields, modern black hole
(BH) accretion disk theory has relied upon several approximations,
which often involve approximate closure schemes (e.g. magneto-
hydrodynamics (MHD), flux-limited radiative diffusion) to cap-
ture unresolved spatial, unresolved temporal scales and unresolved
physical processes. Such closure schemes can be more efficient
than evolving distribution functions or individual particles/rays,
and such methods have been successful in the study of radiative
disks.

The flux-limited diffusion approximation is a closure that only
allows isotropic emission relative to the fluid frame, which over-
constrains disk emission in the highly radiative regions near the BH
for the disk surface where the optical depth is order unity. This for-
malism has been included as an explicit scheme in some codes (Far-
ris et al. 2008; Zanotti et al. 2011; Fragile et al. 2012), but implicit-
explicit Runge-Kutta (Pareschi & Russo 2005) or fully implicit type
numerical schemes are required to maintain stability for all opti-
cal depths (e.g. Roedig et al. 2012). Using a flux-limited diffusion
approximation, small patches of radiatively efficient thin accretion
disks have been simulated using the local shearing box approxi-
mation (Turner et al. 2003; Krolik et al. 2007; Blaes et al. 2007,
2011; Hirose et al. 2009a,b). Also, using a non-relativistic code and
flux-limited diffusion, super-Eddington accretion flows have been
simulated and their spectra computed (Ohsuga et al. 2003; Ohsuga
et al. 2005; Ohsuga 2006; Ohsuga et al. 2009; Ohsuga & Mineshige
2011; Kawashima et al. 2012; Mineshige et al. 2012; Takeuchi et al.
2013; Yang et al. 2013).

To model a radiative disk around a rotating black hole self-
consistently, the closure method should be able to handle both the
optically thick (disk interior) and optically thin (corona-jet) limits
in full GR including rotating black holes. One might treat the radi-
ation more accurately than flux-limited diffusion using the “instant
light” approximation (Hayes & Norman 2003; Giacomazzo & Rez-
zolla 2006; Jiang et al. 2012; Davis et al. 2012; Jiang et al. 2013),
but currently such schemes do not allow relativistic radiative fluxes
that are natural near the black hole (Jiang et al. 2012; Davis et al.
2012; Jiang et al. 2013).

In the work described here, we have implemented the so-
called M1 closure scheme (Levermore 1984; Dubroca & Feugeas
1999; Giacomazzo & Rezzolla 2006; Sa̧dowski et al. 2013c; Taka-
hashi & Ohsuga 2013), which is similar to other schemes that use a
truncated moment formalism (Shibata & Sekiguchi 2012). M1 clo-

sure allows a limited treatment of anisotropic radiation and works
well at all optical depths. Using the Koral code, the M1 method
has been shown to work well to handle axisymmetric GR hydro-
dynamic (HD) flows around black holes (Sa̧dowski et al. 2013c)
as well as axisymmetric GRMHD flows around rotating black
holes (Sa̧dowski et al. 2013a). We have implemented M1 into the
GRMHD code HARM (Gammie et al. 2003), leading to the code
we call HARMRAD, that adds to the Koral feature set the ad-
ditional abilities to handle full 3D in spherical polar coordinates,
higher-order reconstruction for both gas and radiation, and efficient
parallel computation using distributed nodes on supercomputers.

The structure of the paper is as follows: The equations solved
are presented in §2 for the gas fluid and in §3 for the radiation,
numerical methods are presented in §4, and radiative tests of the
method are presented in §5. Results for our fiducial 3D GRMHD
model of a super-Eddington accretion flow around a rotating black
hole are presented in §6. We summarize our method and results in
§7.

2 GOVERNING MHD EQUATIONS

We solve the GRMHD equations for a radiative magnetized fluid
in the test-field limit for the fluid in an arbitrary stationary space-
time. Internal coordinates xα ≡ (t, x(1), x(2), x(3)) on a uniform grid
map to arbitrary set of coordinates (Cartesian, spherical polar, etc.),
e.g., for spherical polar coordinates: rα ≡ (t, r, θ, φ). We write ten-
sors in an orthonormal basis gas-fluid frame using “widehats” as R̂
that just means the components of R have been transformed to the
gas fluid frame in an orthonormal basis (i.e. for vectors, û ≡ uµ̂).
We write radiation fluid frame quantities as ū. Quasi-orthonormal
vectors are denoted as uµ ≈

√
|gµµ|uµ. When necessary to distin-

guish from orthonormal versions, contravariant (covariant) vectors
are denoted as uµ (uµ), while higher-ranked coordinate basis tensors
have no underbar. We work with Heaviside-Lorentz units, often set
c = GM = 1 when no explicit units are given, and let the horizon
radius be rH.

Mass conservation is given by

∇µ(ρ0uµ) = 0, (4)

where ρ0 is the rest-mass density, uµ is the contravariant 4-velocity,
and ρ = ρ0ut is the lab-frame mass density.

Energy-momentum conservation is given by

∇µT µ
ν = Gν, (5)

where Gν is an external 4-force and the stress energy tensor T µ
ν

includes both matter (MA) and electromagnetic (EM) terms:

T MAµ
ν = (ρ0 + egas + pgas)uµuν + pgasδ

µ
ν ,

T EMµ

ν = b2uµuν + pbδ
µ
ν − bµbν,

T µ
ν = T MAµ

ν + T EMµ

ν . (6)

The MA term can be decomposed into a particle (PA) term: T PAµ
ν =

ρ0uνu
µ and an enthalpy (EN) term. The MA term can be reduced to

a free thermo-kinetic energy (MAKE) term, which is composed of
free particle (PAKE) and enthalpy (EN) terms:

T MAKEµ
ν = T MAµ

ν − ρ0uµη
ν
/α, (7)

T PAKEµ
ν = (uν − ην/α)ρ0uµ,

T ENµ
ν = (egas + pgas)uµuν + pgasδ

µ
ν ,

such that T MAKEµ
ν = T PAKEµ

ν + T ENµ
ν . Here, egas is the internal energy

c© 2013 RAS, MNRAS 000, 1–36



4 J. C. McKinney, A. Tchekhovskoy, A. Sadowski, R. Narayan

density and pgas = (Γ−1)egas is the ideal gas pressure with adiabatic
index Γ. The contravariant fluid-frame magnetic 4-field is given by
bµ, which is related to the lab-frame 3-field via bµ = Bνhµν/ut where
hµν = uµuν + δ

µ
ν is a projection tensor, and δµν is the Kronecker delta

function. The magnetic energy density (ub) and pressure (pb) are
ub = pb = bµbµ/2 = b2/2. The total pressure is ptot = pgas + pb, and
plasma β ≡ pgas/pb. The 4-velocity of a zero angular momentum
observer (ZAMO) is η

µ
= {−α, 0, 0, 0} where α = 1/

√
−gtt is the

lapse. The 4-velocity relative to this ZAMO is ũµ = uµ − γηµ where
γ = −uαη

α
.

A corresponding entropy conservation equation (that can be
used instead of the energy equation) is given by the evolution of
the specific gas entropy sgas,s as determined by the comoving time-
rate of change Dsgas,s/Dt ≡ ∂τsgas,s. Using baryon conservation one
obtains

∇µ(ρ0uµsgas,s) = ρ0
Dsgas,s

Dt
= ρ0

∂sgas,s

∂τ
= GS (8)

where the entropy density is given by S ≡ ρ0 sgas,s, and where the
right-hand-side (GS ) corresponds to a source or sink of entropy. To
obtain machine accurate entropy conservation, the specific entropy
must be per unit volume. For example, for an ideal gas the specific
entropy constant K = P/ργ0 is constant at constant specific entropy,
but using such an entropy tracer only leads to entropy conservation
truncation error. Using instead sgas,s = log(Pn/ρn+1

0 ) with n = 1/(γ−
1), such that the entropy density is sg = ρ0 sgas,s, leads to entropy
conservation at machine round-off error.

Magnetic flux conservation is given by the induction equation

∂t(
√
−gBi) = −∂ j[

√
−g(Biv j − B jvi)], (9)

where g = Det(gµν) is the metric’s determinant, and the lab-frame
3-velocity is vi = ui/ut. No explicit viscosity or resistivity are in-
cluded, but we use the energy conserving HARM scheme so all
dissipation is captured (Gammie et al. 2003; McKinney 2006).

Apart from any physical source term giving a non-zero Gµ, the
energy-momentum conservation equations are only otherwise mod-
ified due to so-called numerical density floors that keep the numer-
ical code stable as described in detail in Appendix A of McKinney
et al. (2012). The injected densities are tracked and removed from
all calculations.

3 GOVERNING RADIATIVE TRANSFER EQUATIONS

For a radiation stress-energy tensor Rµ
ν , total energy-momentum

conservation (∇ · (T + R) = 0) for the MHD fluid and radiation
can be written using the 4-force density Gν as

T µ
ν ;µ = Gν, (10)

Rµ
ν ;µ = −Gν,

The radiation stress-energy tensor can be obtained from its
simple form in an orthonormal frame where it is comprised of var-
ious moments of the specific intensity Iν, as discussed in Sa̧dowski
et al. (2013c). E.g., in an orthonormal fluid frame it takes the fol-
lowing form,

R̂ =

[
Ê F̂ i

F̂ j P̂i j

]
, (11)

where, for frequency ν and solid angle Ω, the orthonormal fluid-

frame quantities

Ê =

∫
Îν dν dΩ, (12)

F̂ i =

∫
Îν dν dΩ Ni, (13)

P̂i j =

∫
Îν dν dΩ Ni Nj (14)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and N i is a unit vector in direction xi.

The radiation stress-energy tensor allows one to obtain the ra-
diation 4-force, Gµ as given by (Mihalas & Mihalas 1984),

Gµ =

∫
(κν,totIν − ην) dν dΩ Ni, (15)

which in the orthonormal fluid frame becomes

Ĝ =

[
κabsÊ − λ
κtotF̂ i

]
, (16)

where the gas-fluid frame energy density emission rate of the gas
is given by λ, and for a given absorption opacity, Kirchhoff’s law
gives that λ = κabs4πB̂ for B̂gas = aradT 4

gas/(4π). Here, B̂gas =

σradT 4
gas/π is the integrated Planck function corresponding to the

gas temperature Tgas, σrad is the Stefan-Boltzmann constant, κν,tot

and ην denote the frequency-dependent opacity and emissivity co-
efficients, respectively, while κabs and κsca are the frequency inte-
grated absorption and scattering opacity coefficients, respectively,
and the total opacity is given by κtot = κabs + κsca.

Using covariance (or boosting from the lab-frame to fluid or-
thonormal frame), the covariant 4-force is then

Gµ = −(κabsRµ
αuα + λuµ) − κes(Rµ

αuα + Rα
βuαuβuµ). (17)

The corresponding entropy source term is obtained from

Tgas
dsgas,s

dτ
=

dqgas

dτ
(18)

such that in covariant form one has

(ρ0 sgas,suµ);µ = −
1

Tgas
Gµuµ ≡ GS (19)

that specifies Eq. (8) in the presence of a radiation 4-force.

3.1 Closure scheme

To close the above set of equations we need a prescription to com-
pute the second moments of the angular radiation intensity distri-
bution. Specifically, we need Rµν only knowing the radiative energy
density and fluxes in some frame (e.g. Rtt and Rti in the lab-frame).

The simplest approach is the Eddington approximation, which
assumes a nearly isotropic radiation field in the gas fluid frame,
which in the gas fluid frame is given by

P̂i j =
1
3

Êδi j. (20)

However, the radiation is only isotropic in the optically thick limit,
so this closure does not handle optically thin flows.

To handle general optical depths, we use the M1 closure (Lev-
ermore 1984), which assumes the radiation satisfies the Eddington
closure in an independent radiation frame within which radiation
fluxes vanish. Thus, in the radiation frame, R̄tt = Ē, R̄ii = Ē/3, and
all other components of R̄ are zero. In the radiation rest frame, the
radiation stress tensor can be written as

R̄µν =
4
3

Ē ūµradūνrad +
1
3

Ē gµν, (21)

c© 2013 RAS, MNRAS 000, 1–36



3D GRMHD Simulations of Super-Eddington Accretion 5

where ūµrad is the radiation frame’s 4-velocity. Using general covari-
ance (or boosting into the lab-frame), the covariant expression is

Rµν =
4
3

Ē uµraduνrad +
1
3

Ē gµν, (22)

The quantity Ē = uµraduνradRµν is the radiation energy density as mea-
sured in the radiation rest frame.

For an orthonormal Cartesian basis, the above formulation
reduces to the standard formulae (Levermore 1984; Dubroca &
Feugeas 1999; Giacomazzo & Rezzolla 2006). For instance, the
radiation pressure tensor P̂i j in the fluid frame has the form,

P̂i j =

(
1 − ξ

2
δi j +

3ξ − 1
2

f i f j

| f |2

)
Ê, (23)

where f i = F̂ i/Ê is the reduced radiative flux and ξ is the Eddington
factor given by (Levermore 1984),

ξ =
3 + 4 f i fi

5 + 2
√

4 − 3 f i fi

. (24)

In the extreme “optically thick limit”, F̂ i ≈ 0, and then f i = 0,
f i fi = 0 and ξ = 1/3, which gives the expected Eddington approx-
imation,

P̂i j
τ�1 =

 1/3 0 0
0 1/3 0
0 0 1/3

 Ê. (25)

In the opposite extreme “optically thin limit”, F̂1 = Ê, i.e., a uni-
directional radiation field directed along the x-axis, we have f i =

δi
1, f i fi = 1 and ξ = 1/3, which gives

P̂i j
τ�1 =

 1 0 0
0 0 0
0 0 0

 Ê, (26)

which gives the expected intensity distribution of a Dirac δ-function
parallel to the flux vector.

The M1 closure scheme thus handles both optical depth ex-
tremes well, and smoothly and stably interpolates between these
extreme optical depths. However, because M1 treats the radiation
as isotropic in a single frame, it cannot handle general anisotropic
intensity distributions. So, at locations where multiple radiation flu-
ids interact, M1 isotropizes the radiation in an averaged radiation
frame. M1 is expected to be an ok approximation for expanding
radiation fields like from accretion disks, but a convergent radi-
ation field will lead to “photon collisions” even in optically thin
regions. In any case, M1 closure will provide a superior treatment
of radiation in the optically thin regions near and above the disk
photosphere, as compared to the Eddington approximation or flux-
limited diffusion.

4 NUMERICAL METHODS: HARMRAD

The core of HARMRAD is built upon HARM. The GRMHD
code HARM is based upon a conservative shock-capturing Go-
dunov scheme with 3rd order (2nd or 4th order choosable) Runge-
Kutta time-stepping, Courant factor 0.5, LAXF (HLL choosable,
but less stable for highly magnetized flows) fluxes, simplified
wave speeds, PPM-type interpolation for primitive quantities (P =

{ρ0, egas, ũi, Bi}), a staggered magnetic field representation, and any
regular grid warping (Gammie et al. 2003; Noble et al. 2006;
Tchekhovskoy et al. 2007). Treatment of the numerical density
floors, 3D polar axis, conserved to primitive inversion attempts and

reductions to simpler equations, and connection coefficients (Γλνκ)
is provided in the appendix in McKinney et al. (2012). As with
HARM, HARMRAD is based upon a hybrid OpenMP - MPI frame-
work use ROMIO for parallel I/O operating at up to order 32,000
cores on Kraken at > 70% efficiency. Double precision floats are
used for all tests, although long double precision (including for all
needed transcendental functions) can be used to test precision is-
sues.

The internal code units set scales for length of L̃ = GM/c2,
time T̄ = L̄/c, velocity V̄ = L̄/T̄ , ρ̄ = 1 for mass density in cgs
units (i.e. grams) for a fiducial arbitrary choice of M = 10M�,
M̄ = ρ̄L̄3, Ē = M̄V̄2, Ū = ρ̄V̄2, and gas temperature T̄gas = mbc2/kb

for baryon mass mb and Boltzmann’s constant kb. This gives an
opacity scaling of κ̄ = L̄2/M̄, and a radiation constant scaling of
ārad = Ū/T̄ 4

gas. We sometimes report mass fluxes, energy fluxes,
time, density, magnetic field, etc. as per unit Eddington to sim-
plify these scalings for the reader, and these are obtained by simply
rescaling ṀEdd by only c, G, and M.

The MHD and radiation conservation laws are evolved using
a method of lines using a Runge Kutta approach. We consider a set
of q = 13 quantities:

(i) primitive: Pq = {ρ0, egas, ũµgas, B
i, Ē, ũµrad, egas}.

(ii) conserved: Uq =
√
−g{ρ0ut, ρ0ut

gas + T t
t,T t

i, Bi,Rt
ν, S ut},

(iii) fluxes: Fq =
√
−g{ρ0u j,T j

ν, Biv j − B jvi,R j
ν, S u j},

(iv) geometry: SMq =
√
−g{0,T κ

λΓ
λ
νκ, 0, 0, 0,Rκ

λΓ
λ
νκ, 0},

(v) GAS-RAD 4-force: SRq =
√
−g{0,Gν, 0, 0, 0,−Gν,GS },

Each Uq, Fq, SMq, SRq can be obtained in closed form as func-
tions of Pq. Magnetic field primitives/conserved/source quantities
sit at cell faces, while magnetic field fluxes (EMFs) sit at the cor-
ners of each 2D plane that passes through the cell center. All non-
magnetic primitives/conserved/source quantities sit at cell centers,
while non-magnetic fluxes sit at cell faces.

4.1 Implicit-Explicit Runge-Kutta

For large 4-forces relative to the conserved quantities (e.g. for large
optical depths), the radiative 4-force Gν become stiff, making ex-
plicit integration practically impractical (e.g., Zanotti et al. 2011).
To generally handle the 4-force in all regimes, we treat the 4-force
term using an implicit-explicit (IMEX) Runge-Kutta (RK) scheme
to evolve the equations forward in time on each full timestep of size
dt. For intermediate or full steps, let the explicit-only (X) terms and
IMEX (M) terms be written as

Xi
q ≡ ∆ jF

i j
q/dx j + SMi

q, (27)

Mi
q ≡ SRi

q, (28)

where the first equation comes from a Riemann solver with j
summed over all spatial dimensions. For any q, let U i be the value
of U, such that Xi ≡ X(U i) and Mi ≡ M(U i). Then, IMEX RK
schemes take the form (Pareschi & Russo 2005)

U i = Un + dt
i−1∑
j=1

ãi jX j + dt
ν∑

j=1

ai j M j (29)

Un+1 = Un + dt
ν∑

i=1

ω̃iXi + dt
ν∑

i=1

ωi Mi, (30)

where U i are the auxiliary intermediate values of the IMEX Runge-
Kutta scheme and Un+1 is the final full step solution. The matrices
Ã = (ãi j) and A = (ai j) are ν × ν matrices (for a ν-stage IMEX
scheme), such that the resulting scheme is explicit in F (i.e. ãi j = 0
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for j > i) and implicit in M. An IMEX Runge-Kutta scheme is
characterized by these two matrices and the coefficient vectors ω̃i

and ωi. Since simplicity and efficiency in solving the implicit part
at each step is important, we consider diagonally implicit Runge-
Kutta (DIRK) schemes (i.e. ai j = 0 for j > i) for stiff terms.

We use a set of IMEX coefficients that generates so-called
strongly stable preserving (SSP) (formally known as total vari-
ational diminishing (TVD)) schemes (Pareschi & Russo 2000,
2005), such that the total variation in Uq always diminishes. We
also restrict ourselves to schemes that are asymptotically preserv-
ing (AP), such that in the infinitely stiff limit the RK method pre-
serves higher-order accuracy and becomes an explicit RK method
for the non-radiative GRMHD equations – as desired. For effi-
ciency, we also restrict ourselves to diagonally implicit Runge-
Kutta (DIRK) schemes with (i.e. ai j = 0 for j > i) for the stiff
terms that reduces the number of calculations required. Several ap-
plications of the IMEX method demonstrate its accuracy and ro-
bustness (Palenzuela et al. 2009; Kumar 2011; Roedig et al. 2012;
Takahashi et al. 2013; Takahashi & Ohsuga 2013). Improvements
in IMEX schemes beyond our implementation are discussed else-
where (Boscarino & Russo 2009; Boscarino 2011; Boscarino &
Russo 2013; Trenchea 2014).

The IMEX scheme can be written many ways, and here we ex-
pand the form for implementation into HARMRAD. The 2nd order
IMEX scheme has 2 explicit stages (given in square brackets) and
2 implicit stages and one final result for Un+1, given by (IMEX2)

U0 = [Un] + γdtM0 (31)

U1 = [
3γ − 1
γ

Un +
1 − 2γ
γ

U0 + dtF0] + γdtM1 (32)

Un+1 = [
1
2

Un +
1
2

U1 +
dt
2

F1 + dtγM0 + dt
1 − γ

2
M1], (33)

where γ = 1 − 1/
√

2. The steps are written so explicit steps only
need use the immediately prior U i or Un to avoid needing to store
intermediate F i, while one should progressively store each Mi as
computed so available for any substep.

Similarly, another 2nd order IMEX scheme has 3 explicit
stages and 3 implicit stages, given by (IMEX2B)

U0 = [Un] +
dt
4

M0 (34)

U1 = [Un +
dt
2

F0] +
dt
4

M1 (35)

U2 = [U1 +
dt
2

F1 +
dt
3

M0 +
dt
12

M1] +
dt
3

M2 (36)

Un+1 = [
1
3

Un +
2
3

U2 +
dt
3

F2 +
dt
9

(M0 + M1 + M2)], (37)

which again is written to avoid storing intermediate F i.

Likewise, the 3rd order IMEX scheme has 3 explicit stages, 4

implicit stages, given by (IMEX3)

U0 = [Un] + αdtM0 (38)

U1 = [2Un − U0] + αdtM1 (39)

U2 = [Un + dtF1 + (1 − α)dtM1] + αdtM2 (40)

U3 = [
3
4

Un +
1
4

U2 +
dt
4

F2 + βdtM0 (41)

+
(−1 + α + 4η)dt

4
M1 +

(2 − 5α − 4(β + η))dt
4

M2]

+ αdtM3

Un+1 = [
1
3

Un +
2
3

U3 +
2dt
3

F3 +
−2βdt

3
M0 (42)

+
(1 − 4η)dt

6
M1 +

(−1 + 4α + 4(β + η))dt
6

M2

+
4(1 − α)dt

6
M3],

which again is written to avoid storing intermediate F i. Here
α ≈ 0.24169426078821, β ≈ 0.06042356519705, and η ≈

0.12915286960590 (Pareschi & Russo 2005).
For equal implicit and explicit stages as well as equal coef-

ficients for either implicit or explicit terms, one obtains the stan-
dard mid-point non-TVD 2nd order RK (RK2M), TVD 2nd order
RK (RK2), TVD 3rd order RK (RK3), and 4th order non-TVD
RK (RK4) methods (Shu & Osher 1988), where then the implicit
and explicit substeps use the exact same timestep coefficients for
substeps and final solution. This leads to the implicit terms being
treated to 2nd order in time and 1st order in space for optically thick
fast waves.

In this paper, for simplicity and for historial reasons, we only
consider such simplified IMEX Runge-Kutta methods. In particu-
lar, we use the RK3 method with the same stages and coefficients
for both explicit and implicit terms. The full higher-order IMEX2,
IMEX2B, and IMEX3 will be considered for other applications be-
yond the scope of this paper.

4.2 HARMRAD Algorithm

During each sub-step of the Runge-Kutta time integration, the code
carries out the following steps in the given order:

(i) Pq on the evolved domain are mapped into ghost cells how-
ever boundary conditions required.

(ii) Pq at cell centers is used to compute Uq at cell centers.
(iii) SMq geometry sources are computed at cell centers.
(iv) Pq is interpolated from cell centers to faces in each direction

in each dimension giving PL, PR at each face in each dimension.
(v) For each L and R, Fq is computed at faces from Pq at faces

of cube in three-dimensions
(vi) For each L and R, vw wavespeeds (v+ for positive direction,

v− for negative direction) are computed at faces for each Pq.
(vii) Using Fq,Uq, v+, v− at each face, Godunov flux is com-

puted using the 2-state HLL solution:

Fq =
vminFq,R + vmaxFq,L − vminvmax(Uq,R − Uq,L)

vmin + vmax
, (43)

where vmin = −min(0, v−,R, v−,L), vmax = max(0, v+,R, v+,L), or
LAXF solution:

Fq =
1
2

(Fq,R + Fq,L − vtot(Uq,R − Uq,L)), (44)

where vtot = max(vmin, vmax).
(viii) Bi, v j at cell faces are interpolated to cell centers and to

the corner of each 2D plane passing through the cell center.
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(ix) Godunov EMF flux is computed using 4-state Riemann
LAXF/HLL solution using Bi, v j at corners (Del Zanna et al. 2007).

(x) Uq,i is set for both cell centered and staggered Uq’s.
(xi) Magnetic field primitives Pi+1

q are obtained, so implicit
solver uses the final magnetic field as guess.

(xii) IMEX solution is found based upon explicit Un
q , Xi and

IMEX radiation source term Mi that converges to give Uq,(i+1) and
Pq,(i+1). For each step, MHD and RAD inversions from conserved
to primitive quantities are performed.

(xiii) Backup methods are employed if implicit solver fails.

4.3 Primitive Spatial Reconstruction

As in HARM, PPM interpolation (with no contact steepener, but
with shock flattener) (Colella & Woodward 1984) is used to recon-
struct primitive quantities at different spatial locations. For spher-
ical polar coordinates, for the radial and φ directions, we interpo-
late
√
−gũi

gas,
√
−gũi

rad, and
√
−gBi, and otherwise we interpolate

Pq. The PPM reconstruction’s monotonized slopes use the mono-
tonized central (MC) limiter. The PPM flattener (with shock param-
eter SP0=0.75 as in the Flash code; Fryxell et al. 2000) is applied
separately on GAS and RAD quantities, but each GAS and RAD
flattener is formed as a linear interpolation based upon the opti-
cal depth τ, so that by τ = 1/2, each GAS and RAD use a single
flattener value set as the maximum of the GAS and RAD flattener
values. The PPM flattener for the GAS quantities uses the specific
mass flux

√
−gui

gas and gas pressure, and the RAD quantities use
√
−gui

rad and radiation pressure. The pressures used in the flattener
are linearly interpolated for each GAS and RAD to become a to-
tal GAS+RAD pressure in the limit that τ = 1/2. On Runge-Kutta
sub-steps, the maximum flattener value over any prior sub-steps is
used for the current sub-step.

4.4 Characteristic wavespeeds

Godunov schemes, like the LAXF scheme, require knowledge
of the maximal characteristic wave speeds of the system (vw in
Eq. 44). The wave speed calculation can be quite approximate, be-
cause the value only enters as a numerical grid dissipation that im-
proves the stability of the method in handling discontinuities. Each
GAS and RAD fluxes are computed separately, which preserves
stability while avoids excessive artificial numerical viscosity when
the characteristic wavespeeds are not separated.

The GAS’s fast magnetosonic characteristics are computed as
in HARM (see the approximate dispersion in section 3.2 of Gam-
mie et al. 2003), which solves for the lab-frame characteristic 3-
velocity (vw,gas) in terms of the covariant quantities such as the met-
ric, gas-fluid 4-velocity, and gas-fluid frame magnetosonic speed
cms. For GAS quantities, the wavespeeds are computed at faces for
the left and right states before forming the 2-state Riemann solu-
tion, while for the magnetic field fluxes (EMFs) the wave speeds
are interpolated from those face values to the EMF location before
forming the 4-state Riemann solution.

For the M1-closure scheme, the radiation characteristic moves
at a uniform value of crad in the radiation frame, so we simply
use the HARM method to obtain the lab-frame velocity vw,rad from
crad by replacing the gas-fluid 4-velocity with the radiation-fluid 4-
velocity. We do not solve for the Jacobian’s eigenvalues as done in
Koral (see section 3.2 in Sa̧dowski et al. 2013c).

To determine crad, we consider the optically thin and thick lim-
its to determine how this wavespeed is used to compute the flux us-
ing the Godunov scheme. In the optically thin limit, crad = ±1/

√
3.

In the limit of large optical depths, we follow the Koral code by
using the effective wave speed rather than the actual wave speed.
The radiative energy density, when decoupled from gas (e.g., for
κabs � 1 but κtot � 1), has a diffusion coefficient D given by (see
Section 5.4)

D =
1

3κtot
. (45)

In this limit the distribution of radiative energy density should re-
main stationary (∂/∂t → 0). On the other hand, the optically thin
value of crad is near the speed of light (Giacomazzo & Rezzolla
2006). If such large wave speeds are incorporated into a numerical
scheme they will result in large, unphysical, numerical diffusion. To
limit this effect, we modify the radiative wave speeds in the fluid
frame according to

ai
R → min

(
ai

R,
4

3τi

)
, (46)

ai
L → max

(
ai

L,−
4

3τi

)
,

where ai
R and ai

L are the maximal right- and left-going radiative
wave speeds in the fluid frame in the direction i, and τi = κtotdxi is
the total optical depth of a given cell in that direction, where dxi is
the orthonormal cell size in each direction.

The smaller the characteristic wave speed in Eq. (44), the
weaker the numerical diffusion. This choice of the wave speed lim-
iter (Eq. 46) is motivated by the fact that, for a diffusion equation of
the form y,t = Dy,xx, the maximum allowed time step for an explicit
numerical solver is

∆t =
(∆x)2

4D
. (47)

This expression, combined with Eq. (45), gives

∆x
∆t

=
4

3κtot∆x
=

4
3τ
, (48)

which is the limiter introduced in Eq. (46). Essentially, we set vw,rad

to the velocity of diffusion in the optically thick limit.
For each Runge-Kutta timestep, in each direction, the timestep

is to dti = dxi/v
i
w for vi

w as the larger of vi
gas and vi

rad, where
vw,gas and vw,rad were obtained as effectively located at cell cen-
ters by taking the maximum of characteristic speed at the left
or right of each cell face. These characteristic speeds were con-
structed as lab-frame internal HARM coordinate basis 3-velocities
using the above-mentioned HARM dispersion relation to convert
cgas, crad to vw,gas, vw,rad. The dxi are the uniform (constant) grid in-
ternal cell sizes in each dimension. The overall timestep is set as
dt = 1/(1/dt1 + 1/dt2 + 1/dt3).

4.5 MHD Inversion of Conserved to Primitive Quantities

The gas MHD inversion involves taking known conserved quan-
tities Uq and obtaining primitive quantities Pq. Our method uses
a single non-linear equation as a function of one MHD variable
plus the MHD conserved quantities in order to obtain a solution to
gas primitives Pn+1

q (Un+1
q ) for the explicit case (Noble et al. 2006;

Mignone & McKinney 2007; Sa̧dowski et al. 2013c) or steps within
the implicit solver.

First, we calculate p(ρ0, egas) = p(ρ0, χgas) where χgas = egas +

pgas (e.g. ideal gas of pgas = (Γ − 1) egas), w = ρ0+egas+pgas, ZAMO

relative Lorentz factor γgas =

√
1 + gi jũi

gasũ
j
gas, ZAMO relative 4-

velocity ũµgas = uµgas − γgasη
µ, ṽµgas = ũµgas/γgas such that γ2

gas = 1/(1−
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ṽ2
gas), ZAMO field Bµ = ηµ

∗

Fµν
= αBµ for HARM magnetic field

variable Bµ, fluid-frame field bµ = hµνBν/γ, with projection tensor
hµν = δ

µ
ν +uµgasuνgas, and new variable W ≡ wγ2

gas or W ′ = W −D =

D(γgas − 1) + χgasγ
2
gas. The Bis are both primitive and conserved

variables.
The ZAMO mass density is given by

D = γgasρ0, (49)

and

b2 =
1
γ2

gas

[
B2 +

(
Bµuµgas

)2
]

(50)

and

nµbµ = −uµgasB
µ. (51)

Using ηµBµ = 0, then

Qµ ≡ −ηνT ν
µ = γgas

(
w + b2

)
uµgas −

(
pgas + b2/2

)
nµ + (ηνbν)bµ

= (W + B2)ṽµgas − (ṽνgasB
ν)Bµ (52)

− (−W + pgas − (1/2)B2(1 + ṽ2
gas) + (1/2)(ṽνgasB

ν)2)ηµ.

Using ηµB
µ = 0 and S ≡ QµB

µ = vµgasB
µW, ηµṽ

µ
gas = 0, and

Bt = ṽt
gas = 0, then the ZAMO energy density is given by

− E = ηµQµ = −W + pgas − B
2

1 + ṽ2
gas

2
+

S 2

2W2

= −W + pgas − B
2

1 + ṽ2
gas

2
+

(ṽk
gasBk)2

2
. (53)

such that

Qµ = (W + B2)ṽµgas + Eηµ − (ṽνgasB
ν)Bµ. (54)

As discussed in Mignone & McKinney (2007), one can avoid
catastrophic cancellation issues in Eq. (53) by using

W ′ =
Dũ2

gas

1 + γgas
+ χgasγ

2
gas (55)

instead of using W = W ′ + D, where χgas ≡ ρ0εgas + pgas and
εgas = (ρ0 + egas)/ρ0. Catastrophic cancellations for non-relativistic
velocities can be avoided by replacing γgas − 1 in any expression
with ũ2

gas/(γgas + 1).
Next, using jµν = δ

µ
ν + ηµην, compute the ZAMO momentum

Q̃ν ≡ jνµQµ = Qν + ην(−E) = (W + B2)ṽνgas − (ṽµgasB
µ)Bν, (56)

and, since uµgasBµ/γgas = ũµBµ/γgas = ṽµgasB
µ = (QµB

µ)/W =

(Q̃µB
µ)/W, one can solve Eq. (56) for

ṽi
gas =

1
W + B2

Q̃i +

(
QµB

µ
)
Bi

W

 (57)

Also, one can obtain

Q̃2 = ṽ2
gas

(
B2 + W

)2
−

(
QµB

µ
)2 (
B2 + 2W

) 1
W2 . (58)

that can be solved for

ṽ2
gas =

Q̃2W2 +
(
QµB

µ
)2 (
B2 + 2W

)
(
B2 + W

)2 W2
. (59)

A one dimensional inversion scheme is derived by regarding
Eq. (53) as a single nonlinear equation in the only unknown W (or
W ′). Then one uses Eq. (57) to obtain ṽi

gas, then compute γgas, then
obtain ρ0 from the definition of D, then compute pgas from the def-
inition of W. More details are provided in Mignone & McKinney
(2007).

4.6 RAD Inversion of Conserved to Primitive Quantities

The radiative inversion is based upon the ZAMO frame, as com-
pared to the lab-frame in Koral. For the radiative inversion using
the M1 closure, one can solve for the radiation Pn+1

q (Un+1
q ) analyti-

cally when given the radiative conserved quantities Un+1
q .

First, we let prad(erad) = erad/3 (as for an ideal gas with Γ =

4/3), γrad =

√
1 + gi jũi

radũ j
rad, ũµrad = uµrad − γradη

µ, ṽµrad = ũµrad/γrad,
and vµrad = uµrad/γrad, so that ṽ2

rad = v2
rad + 2γrad − 1, and Wrad ≡

4pradγ
2
rad. For M1’s Rµ

ν = prad(4uµraduνrad + δ
µ
ν ), then

Uµ = −Rν
µην = αRt

µ (60)

= prad(4γraduµrad − ηµ) = Wradṽµrad − (−Wrad + prad)ηµ,

and

− Erad = −Rν
µηνη

µ = Uµη
µ = αRt

µη
µ (61)

= −prad(4γ2
rad − 1) = −Wrad + prad,

so that prad = −Erad + Wrad and

Uµ = Wradṽµrad + Eradηµ, (62)

and

Ũµ = jµνU
ν = (δµν + ηµην)Uν = Uµ + ηµ(−Erad) (63)

= Wrad(vµrad − η
µ) = Wradṽ

µ

rad,

such that

U2 = W2
radv

2
rad − p2

rad + 2pradWrad (64)

and

Ũ2 = W2
radṽ

2
rad. (65)

One could solve Eq. (61) for Wrad using an iterative approach.
After obtaining a sufficiently accurate Wrad, one obtains the prim-
itives from ṽµrad from Eq. (63), then compute γrad, then obtain prad

from the definition of Wrad.
The M1 radiation inversion can be treated analytically

(Sa̧dowski et al. 2013c), where we solve these equations differently
than in Koral. First, one has

Erad = prad(4γ2
rad − 1) (66)

and

Ũµ = 4pradγ
2
radṽ

µ

rad. (67)

Solving these equations for prad and ṽµrad (via ṽ2
rad or γ2

rad) gives

prad =
Erad

4γ2
rad − 1

(68)

and

ṽµrad =
Ũµ(4γ2

rad − 1)

4Eradγ
2
rad

=
Ũµ

4pradγ
2
rad

(69)

where the correct root to choose is

γ2
rad =

2 − y +
√

4 − 3y
4(1 − y)

, (70)

where

y ≡
Ũ2

E2
rad

, (71)

which is only allowed to range from y = 0 to y = 1 for γrad = 1 to
∞, respectively.
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Note that Q̃µ+ Ũµ and E + Erad are constant, so any instance of
Erad or Ũµ can be replaced by the total value minus the MHD value.
So, any occurrence of γrad can be written in terms of quantities only
dependent upon MHD variables, and so prad (and so Wrad) and ṽµrad
can be similarly written. One needs to have some means to ensure
that 0 6 y 6 1 and prad > 0.

We have three approaches to limiting the radiation when
Erad 6 0 or 0 < y & 1. The “BASIC” limiter forces Ē = 10−300

and ũi = 0 when Erad 6 0, ũi
rad = 0 when 0 > y > −εm for ma-

chine precision εm, and if y > ymax then relative 4-velocities are
rescaled to ensure y = ymax corresponding to a γmax via Eq. (70).
The “TYPE1” and “TYPE2” limiters are similar, except if y > ymax,
then Uabs = (1/2)(

√
|Ũ2|+ |Erad|+ 10−150) and ũi = γŨ i/Uabs is first

set, and then this is rescaled to give the desired γrad,max. If “TYPE2”
or if “TYPE1” with an original y > 1 − 100εm, then we solve for
Erad = 10−150 +

√
Ũ2/ymax then obtain prad and Ē as usual. If using

“TYPE1”, then we check whether this Ē is larger than the original
estimate, and if so we use the smaller value. In summary, the “BA-
SIC” limiter is the most conservative for an actual solution to use
during the evolution since it helps avoids run-away energy gains.
However, for a smooth Newton stepping, “TYPE2” is best since it
avoids drop-outs to small Ē that would cause the Newton stepping
difficulties and failure to recover the Newton stepping.

4.7 Implicit radiative source terms

To find an implicit solution (i.e. when Eq. (29) has U i on the left-
hand side and Mi on the right hand side for the same i in the IMEX
scheme), we use a 4D Newton scheme on a subset of the equa-
tions of motion. This is possible because of the constraint provided
by total energy-energy momentum conservation between the gas
and fluid in a given cell. We avoid a fully implicit scheme (e.g.,
Krumholz et al. 2007; Jiang et al. 2012), which would require us
to use a more expensive 8D Newton scheme (to include geome-
try source terms and expensive multi-cell Riemann flux differences
and spatial interpolations within the Newton solver).

We numerically solve one of the following two equations

T t
ν,(i+1) − T t

ν,(i) = ∆t Gν,(i+1), (72)

Rt
ν,(i+1) − Rt

ν,(i) = −∆t Gν,(i+1), (73)

where for the IMEX scheme, i corresponds to all explicit contri-
butions (i.e. initial+flux+geometry+explicit radiation), while i + 1
contains all implicit contributions (i.e. implicit radiation). When
solving the first equation, we find updates to Rµν via the constraint
that T t

µ,(i+1) = T t
µ,(i) − ∆Rt

µ,(i) with ∆Rt
µ,(i) = (Rt

µ,(i+1) − Rt
µ,(i)). When

solving the second equation, we find updates to T µν via the con-
straint that Rt

µ,(i+1) = Rt
µ,(i) − ∆T t

µ,(i) with ∆T t
µ,(i) = (T t

µ,(i+1) − T t
µ,(i)).

In cases when the energy-momentum conservation gives no
solution or egas < 0, then we replace the energy equation

T t
t,(i+1) − T t

t,(i) = ∆t Gt,(i+1), (74)

with the entropy equation

[S ut](i+1) − [S ut](i) = ∆t GS ,(i+1), (75)

while if also the entropy has no solution, we ignore energy and
entropy conservation (cold MHD limit).

Note that ρ0ut
gas is constant for the implicit equations, so its

addition to T t
t does not modify changes in Rt

t when computing ∆Rt
t

or modify the value of Gµ.

4.8 Implicit Solver Methods

We use a Newton method to solve these energy/entropy/cold MHD
equations and estimate the Jacobian matrix numerically.

When the gas dominates the radiation or visa versa, then the
finite machine precision in the dominant fluid component can lead
to arbitrarily large numerical changes in the sub-dominant fluid
component. E.g., when |Rt

t | � |ρ0ut
gas + T t

t | or egas � Ê and un-
der other conditions, one should iterate the sub-dominant gas-fluid
quantities. Further, one can choose to iterate conserved quantities
or primitive quantities in the implicit solver. HARMRAD obtains
the best solution out of iterating one of four sets of quantities: Rt

µ,
T t
µ, egas, ũi

gas, or Ē, ũi
rad.

For each of the four sets of iterated quantities one requires
different steps to be taken to determine the error function that enters
into the Newton method.

For the method based upon iterating Rt
µ (called URAD), the

steps are:

• Set ∆T t
µ = −∆Rt

µ.
• Compute Gs using prior primitives (Pn) to compute Gµ and

Tgas.
• Perform an inversion from conserved quantities (latest solu-

tion for T t
µ,(i+1),R

t
µ,(i+1)) to gas+radiation primitives (latest solution

for Pi+1)
• Recompute all conserved quantities from Pi+1 for consistency

(in case of inversion failure/modification of solution).

This method requires an expensive Newton-inside-Newton calcu-
lation as well as a numerical Jacobian that itself requires 4 MHD
inversions per overall Newton step. That numerical Jacobian is
computed with a one-sided difference with a fixed difference size,
which is prone to arbitrarily large errors (see numerical recipes). A
centered difference would be more accurate, but then 8 MHD in-
versions would be required per Newton step. Also, this method is
unable to obtain an accurate entropy source term (although it will
eventually converge), and iterating Rt

µ can directly lead to out-of-
bounds values leading to no solution for the inversion to radiation
primitives.

For a method based upon iterating T t
µ (called UMHD), the

steps are:

• Set ∆Rt
µ = −∆T t

µ.
• Compute Gs using prior primitives (Pn) to compute Gµ, uµ,

and Tgas.
• Perform an inversion from conserved quantities (latest solu-

tion for T t
µ,(i+1),R

t
µ,(i+1)) to gas+radiation primitives (latest solution

for Pi+1)
• Recompute all conserved quantities for consistency.

This method is unable to obtain an accurate entropy source term
(although it will eventually converge), and iterating T t

µ can directly
lead to out-of-bounds values leading to no solution for the inversion
to gas primitives.

For a method based upon iterating S ut,T t
i (called ENTROPY-

UMHD), the steps are:

• Invert S ut,T t
i to gas primitives (latest gas variables in Pi+1)

• Recompute full T t
µ.

• Set ∆Rt
µ = −∆T t

µ.
• Invert Rt

µ to radiation primitives (latest radiation variables in
Pi+1).
• Recompute Rt

µ for consistency.

This method obtains an accurate entropy source for each implicit
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step, but like the UMHD method, it iterating T t
i can directly lead to

out-of-bounds values leading to no solution for the inversion to gas
primitives.

For a method based upon iterating the radiation primitives
(Ē, ũµrad) (called PRAD), the steps are:

• Compute Rt
µ from radiation Pi+1.

• Estimate GS using prior primitives (Pn) to compute Gµ, uµ,
and Tgas.
• Set ∆T t

µ = −∆Rt
µ.

• Invert T t
µ to gas primitives (latest gas variables in Pi+1).

• Recompute T t
µ for consistency.

This method estimates GS and is slow as the UMHD method, but
it at least does not iterate out of bounds like the URAD method.
However, it cannot be used when the gas is very sub-dominant due
to machine precision issues.

For a method based upon iterating the gas primitives (egas, ũµgas)
(called PMHD), the steps are:

• Obtain ρ0 = U1/ut from the newly updated Pi+1.
• Compute S ut,T t

µ from gas Pi+1.
• Set ∆Rt

µ = −∆T t
µ.

• Invert Rt
µ to radiation primitives (latest radiation variables in

Pi+1).
• Recompute Rt

µ for consistency.

This method has none of the flaws mentioned in the previous meth-
ods and is fast because the radiation inversion is analytic and sim-
ple. Its only flaw is that it cannot be used when the radiation is very
sub-dominant due to machine precision issues.

Now, after one (or all) of these methods are used, we have
consistent values for Uq and Pq from which we can compute an
error function required by the Newton method. So, the next steps
are:

• Compute 4-force Gµ,(i+1)(Pq,(i+1)).
• Compute the error function for each type of variable as Eq =

(Uq,(i+1) − Uq,(i))Fq + dtS qFq.
• Compute the normalized error eq, by dividing by sum of ab-

solute value of any signed terms that appear in Eq and all its sub-
expressions. For each gas and radiation terms, spatial norms are
merged in an orthonormal basis to form a single spatial norm for
all dimensions.

For the q conserved/primitive quantities, a similar set of extra fac-
tors Fq = {1, 1, 1, 1, 1, 1,Tgas} multiply the overall error function.
The temperature is factored into the entropy equation using F13

in order to generate a more regular/linear functional behavior near
roots to make it easier to find the solution, as found experimentally
using HARMRAD and test code in Mathematica using both an ana-
lytical and numerical Jacobian. Also, for this entropy term with the
Tgas factor, we include in the norm the energy norm, which helps
normalize the error in TgasdS .

The “total normalized error” is computed as

eT = (1/4)
∑

q

eq, (76)

which is computed over all quantities to produce an error indepen-
dent of the method or iterated quantities used as well as to account
for the error in the un-iterated quantities that could be large despite
small iterated quantities in different regimes. The “iterated normal-
ized error” is computed from iterated quantities as

eI = (1/4)
∑

qk

eqk , (77)

over only those q’s that were iterated (qk’s). E.g., k = 2, 3, 4, 5 in
Uk for the UMHD method, k = 9, 10, 11, 12 in Uk for the URAD
method, and the same k’s in Pk for each of the PMHD and PRAD
methods, respectively. For the energy methods, entropy is ignored
in the error. For entropy methods, energy is ignored. For cold MHD
methods, both energy and entropy errors are ignored. This gener-
ates the appropriate total and iterated error for each method.

Once the solution for Uq,(i+1) is obtained, the implicit radiation
source term is given by

SRq,(i+1) =
1

dti
(Uq,(i+1) − Uq,(i)) (78)

for each implicit Runge-Kutta sub-step of size dti. This then pro-
vides all terms required for the radiation GRMHD method to com-
plete a single Runge-Kutta sub-step.

4.9 4D Newton-Raphson Scheme

The implicit solver involves computing the (k+1)-th approximation
to a set of iterated dependent variables x using a Newton-Raphson
method. For the various methods, the iterated quantities are one
of the q = 1–13 quantities in the list of quantities given by
Ũq = Uq/

√
−g = {ρ0ut, ρ0ut

gas + T t
t,T t

i, Bi,Rt
ν, S ut}. For the

energy-based or entropy-based URAD,UMHD,PRAD,PMHD
methods, we iterate {Ũ9,10,11,12, Ũ2,3,4,5, P9,10,11,12, P2,3,4,5}, re-
spectively. The cold MHD based method simply uses a
reduced 3D method with iterated quantities from one of
{Ũ10,11,12, Ũ3,4,5, P10,11,12, P3,4,5}. The error function is indepen-
dent from the iterated quantities, and for each energy-based
URAD,UMHD,PRAD,PMHD methods, the error function quanti-
ties are one of {Ũ9,10,11,12, Ũ2,3,4,5, Ũ9,10,11,12, Ũ2,3,4,5}, respectively,
while for each entropy-based URAD,UMHD,PRAD,PMHD
methods, the error function quantities are one of
{Ũ13,10,11,12, Ũ13,3,4,5, Ũ13,10,11,12, Ũ13,3,4,5}, respectively, while for the
cold MHD based URAD,UMHD,PRAD,PMHD methods, the error
function quantities are one of {Ũ10,11,12, Ũ3,4,5, Ũ10,11,12, Ũ3,4,5},
respectively. Then, the Newton update is obtained via

x(k+1) = x(k) − DE(x) ·
(
∂E(x)
∂x

)−1

|x=x(k) . (79)

for damping factor D.
The Newton step requires computation of the Jacobian ∂E/∂x,

which is simply obtained as a finite difference of the error func-
tion away from a reference value of x from the latest estimate
of Pi+1 or Ui+1. A one-sided finite difference (using reference
and an offset) is used for URAD,PRAD due the expense of
the error function requiring the 1D MHD inversion, while the
UMHD,ENTROPYUMHD,PMHD methods use a two-sided finite
difference (using two offsets away from the reference value) if the
“stages” approach (see below) is used. A fixed normalized error
offset of 10−8 is used, until eI from Eq. (77) drops below 10−9 in
which case a normalized error offset of 10−10 is used. If the Ja-
cobian calculation hits a conserved to primitive inversion failure,
larger or smaller offsets are attempted until no inversion problem
occurs up until a normalized error offset of 0.3. Any MHD inver-
sions for the Jacobian are computed with a tolerance of 10−2 times
the Jacobian difference used, since any more accuracy is wasted in
the finite difference. Any RAD inversions for the Jacobian use the
TYPE2 limiter on the inversion, which avoids both offsets giving
the same f (and so singular inversion) when otherwise the BASIC
or TYPE1 limiters would lead to Ē → 0 as the solution.
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4.10 Quickly Choosing Optimal Implicit Solution

In total there are 6 Newton methods for each energy and entropy
based methods, while there is a single cold MHD method. Arbi-
trary use of all these approaches would be costly, so one needs to
estimate which is optimal to use to get the smallest error in the
shortest time.

First, we consider quantities: (1) energy gas vs. radiation val-
ues of Uq,i, (2) energy gas vs. radiation values of ∆rUq = (Uq,i −

Un
q)/(|Uq,i| + |Un

q |), and (3) egas vs. Ê. If any of the radiation ver-
sions of these quantities have absolute magnitudes smaller than
10εm, then we assume the radiation is in an “extreme radiation
sub-dominant regime” that the numerical machine precision er-
rors in gas conserved quantity calculations will ruin the ability to
find an implicit solution. Hence, in this situation, we first try the
URAD/PRAD methods. Otherwise, we use no other pre-conditions
to control the order of the method attempted, and in particular we
otherwise first use the fastest PMHD method as described next.

To optimize performance, a “normal” Newton method for a
maximum of 20 steps is attempted first using the fast energy-based
PMHD method as the first attempted iterate/error choice, then the
URAD method is attempted if the PMHD solution is unacceptable,
then the PRAD method is attempted if the URAD solution is un-
acceptable. Newton steps are undamped (D = 1), although damp-
ing has been found to help seek errors closer to machine precision
and to avoid cycle behaviors, at greater computational cost. For the
PRAD,URAD methods, the total number of MHD inversion steps
is also monitored and not allowed to go beyond 20 × 6 total steps
to avoid excessive steps.

Then, the PMHD, URAD, PRAD methods are attempted using
a “stage” approach that takes (stage 1) one momentum-only New-
ton step, then (stage 1) converges using energy-only Newton step-
ping, then (stage 3) seeks the full 4D solution for a maximum of 40
steps. For this “staged” approach, the Newton steps are damped by
a factor of D = 1/2 for the first momentum step, D = 1/2 for the
first energy step, and D = 1/4 for the first full 4D step. This avoids
large changes when transitioning to using a different set of equa-
tions to step. The “staged” approach is avoided if the radiation is
not in the “extreme radiation sub-dominant regime,” described al-
ready. The total number of MHD inversion steps is limited to 40×6
total steps to avoid excessive steps.

The guess for the Newton method, for any attempted method,
is set as the solution from the previous attempt with the smallest
error (eT ) as long as that previous attempt gave a solution with
eT < 10−4. If no prior guess exist or have eT < 10−4, then the
prior primitives Pn are used as the guess. For the PRAD method,
that simple guess is modified by first finding P from Uq,i given in
Eq. (29) that describes some “optically thin” limit for the primitive
solution as if there were no source term. Then, the optical depth
τ is computed from Pn, and if τ < 2/3, then that “optically thin
limit” primitive is set as the guess. Otherwise, the prior primitive
Pn corresponding to Un

q is used. For the PMHD method, similarly,
P is obtained from an MHD inversion of Uq,i (using MHD inversion
tolerance of 10−9) and used if τ < 2/3, otherwise Pn is used. For the
PMHD method, the “stage” guess for egas is further modified as an
inversion from the conserved entropy S ut per unit conserved mass
ρ0ut

gas to give a specific entropy sgas that together with the previous
density ρ0 is used to obtain an estimate of egas. This helps avoid
issues with stepping when the initial guess for egas is too small and
leads to a guess for the 4-force that is large.

For the first step and after each step, the error is computed
using the TYPE2 limiter when computing the radiation inversion. If

the limiter was activated because the radiation energy was negative,
then the error excludes the energy term (or entropy term for the
entropy-based methods) in the error function. The TYPE2 limiter
then ensures the radiation momentum is unchanged, so momentum
can continue to be monitored. If this leads to an inversion error, then
the step is backed-up half-way until it succeeds for 20 attempts.

Then, we perform pre-step checks. We check if the error is al-
ready small, and if so break before computing the Jacobian or step.
We also check to see (for steps beyond the 5th full 4D type step)
that the error is dropping fast enough (dropping by 0.5) compared
to the average of 3 steps starting from 5 steps to 2 steps ago. Each
of the total and iterated errors must satisfy this requirement or the
iterations are stopped to save computational expense when no im-
provements are being made in the error. Another pre-step check is
to see if the error is repeatedly rising, by checking whether the error
has risen (instead of dropped) 5 times starting after the 5th full 4D
type step. Once the error has risen that many times, the iterations
are dropped to avoid computational expense.

The Newton step is then taken for either U or P using Eq. (79).
Then we perform post-step checks. If egas < 0 for

PMHD,UMHD methods or Ē < 0 for URAD,PRAD methods, then
each egas or Ē are set to 0.5 of their absolute magnitudes. This helps
do a one-sided bisection down to small values. If this modification
occurs 2 times for the “staged” momentum steps or “staged” energy
steps for the energy-based method or 4 times for the “staged” mo-
mentum steps or “staged” energy steps for the entropy-based meth-
ods, then the prior value is held and the next “stage” in the stages
approach is attempted. Another post-step check is we count to see
if egas < 0 for the URAD,PRAD methods more than 3 times. In that
case, we assume another method or the entropy-based method are
more appropriate and stop the iterations.

For each attempt, the iterations are stopped and Newton
method aborted if any of the following occurs:

(i) the “total normalized error” eT from Eq. (76), falls below a
tolerance of tol = 10−12 for the PMHD,UMHD methods or tol =

10−9 for the URAD,PRAD methods.
(ii) the residual

∣∣∣x(k+1)/x(k) − 1
∣∣∣ falls below 10εm.

(iii) a maximum number of Newton steps is hit (chosen inde-
pendently for each method given each of their performance issues).

In any case, for a given attempt, a final error is computed based
on the last step, and the best solution (with the smallest total error)
is used as the solution. Lastly, when using the PMHD, UMHD, or
ENTROPYUMHD methods, if that best solution used the TYPE2
limiter and encountered a negative radiation energy density, then
the radiative inversion is recomputed using the BASIC limiter. This
ensures that while we chose the best solution possible, the actual
solution used reduces the radiation primitives to Ē ∼ 0 to avoid
run-away energy gains.

In any case, if the attempted tolerance is not met, an error of
eT < 10−9 is considered acceptable regardless of the attempted er-
ror and no further attempts at using other methods are made. An
error of eT > 10−9 is considered not quite acceptable, in which case
the next method in line is attempted to seek a smaller error. The
solution with the lowest error over all steps and methods used is
taken as the energy-based solution.

4.11 Backup solvers/solutions when Implicit Energy solver
Fails

If the energy-based method fails to obtain the required error or if
the energy-based solution gives egas < 0, then the entropy-based
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methods are attempted in the same sequence as the energy-based
methods (the ENTROPYUMHD method is currently not used). As
with the energy-based method, the entropy solution with the lowest
error over all steps and methods used is taken as the entropy-based
solution.

If the entropy method fails and the energy method gives egas <

0 or if both energy and entropy methods fail, then we consider using
the cold MHD equations. Let tt

µ = T t
µ + ρ0ut

gas, then the cold MHD
solver is only attempted if egas < 0.1ρ0|uiui|, and |tt

t t
tt | < 0.1|tt

i t
ti|,

and |Rt
tR

tt | < 0.1|Rt
iR

ti|. Only the PMHD method is used. The final
value of egas is spatially averaged over neighbors that had good en-
ergy or entropy inversions, or averaged over all bad neighbors if no
good neighbors exist.

The stages, entropy, and especially cold backup methods are
used rarely, but they help avoid lack of inversion.

No solution is considered to be when the total error is eT >

10−7, as experimenting shows that beginning around 10−4 or so,
such a large error can imply a static solution with no changes when
evolution should occur. When none of energy, entropy, or cold
MHD methods meet this tolerance, then diffusive back-up methods
are used. In this very rare case where none of these find an accept-
able solution, then the radiative source term is temporarily updated
explicitly using backup inversion methods as in HARM for the gas
quantities, but then the full set of primitives is spatially averaged
over neighbors that had a good inversion. If no good neighbors ex-
ist for a point, then averages are performed over all neighbors, but
this happens in none of the tests considered in this paper. Note that
using static values (rather than averages) as a final backup method
can lead to catastrophic evolution because then (e.g.) the induction
equation (that must evolve the magnetic field in order to preserve
the solenoidal constraint) is an simple differential equation for a
constant vi that gives an exponentially growing B j.

In cases where a solution is acceptable but has too small
ρ0, egas, we use the numerical floor approach described in McK-
inney et al. (2012). The only constraint on Ē is that it is forced to
be positive by setting it to 10−150 if it was non-positive.

In our experimentation with explicit sub-cycling as an alterna-
tive/backup to the implicit inversion, some conditions to use sub-
cycle methods were experimented with, but nothing was found to
be generally applicable in all regimes. So sub-cycling was com-
pletely abandoned in favor of the implicit method.

5 TEST PROBLEMS

We consider several radiative tests to ensure the numerical method
is accurate, robust, and fast. Our goal is not to have exceptionally
sharp discontinuities or noise-less solutions by tweaking the nu-
merical method used for each test, but rather our goal is to use
a high-resolution interpolation scheme and ensure the noise or is-
sues are manageable so we understand how the code would operate
when used to study general problems involving magnetized accre-
tion flows around black holes. So we accept some noise and study
under what extreme situations that noise appears.

Non-radiative tests were performed in Gammie et al. (2003)
and so are not considered in this paper. Most of the radiative tests
are based on test problems from Sa̧dowski et al. (2013c,a). We ex-
tend this set by considering a larger physical parameter space in
linear wave convergence tests (section 5.1), MHD radiative Bondi
flow (section 5.11), and for the first time present a fully 3D radia-
tion GRMHD simulation of a disk-jet accretion system.

We used fixed numerical parameters for all tests and the fidu-

cial 3D simulation in section 6, but all tests use LAXF except the
double shadow test (see section 5.7) uses HLL (we discuss the
minor LAXF issues with this test). We use a maximum radiative
Lorentz factor of γrad,max = 100 (or twice larger than the injected
beam’s value for tests that inject higher γrad), 3rd order Runge-
Kutta method (RK3), LAXF flux, PPM reconstruction, and Courant
factor C = 0.49999. Note that using a lower-order reconstruction
like MINM or MC leads to more diffusion and does not stress the
method as much as using PPM, while PPM can lead to some ad-
ditional grid-scale artifacts. Also, we use a 3rd order Runge-Kutta
with C ∼ 1/2 in order to more generally handle cases where the gas
temperature is low, giving a relatively low internal energy density
compared to the kinetic or magnetic energies. None of these tests
exhibit any implicit solver failures.

5.1 Radiation modified MHD linear waves in 1D Cartesian
Minkowski

First, we test the accuracy with which our numerical scheme prop-
agates linear MHD waves in the presence of radiation. As waves
propagate through the gas, their interactions with the photon field
feed back into the gas and modify the nature of the perturbations
themselves relative to the non-radiative case. Making sure that this
interaction is correctly captured in the numerical scheme and that
the numerical solution converges to the analytical solution at the
expected order is a stringent test of the numerical method. We will
consider sound, slow, and fast waves. We do not consider Alfvén
waves because they are less affected by radiative effects (Jiang et al.
2012).

For each of the tests, we initialize a single eigenmode, of form

qi = Re
[
qi

a + δqiei(ωt−kx)
]
, (80)

with eigenvectors δqi given in Table 1 and computed using the
method described in Sa̧dowski et al. (2013a). Here Re (. . . ) indi-
cates the real part of a variable. The ambient background medium
is uniform, of density ρa = 1 and sound speed cs,a = 0.1. This
corresponds to gas internal energy, egas,a = ρ[Γ(Γ − 1)c−2

s,a − Γ]−1 =

0.009137055837563452, and the thermal pressure of the ambient
gas, pgas,a = (Γ − 1)egas, where we choose Γ = 5/3. The ambient
medium is at rest (vx

a = vy
a = 0), and the radiation flux in the fluid

frame vanishes F̂ x
a = F̂y

a = 0. For sound waves we set all magnetic
field components to zero, whereas for slow and fast waves, we set
Bx

a = By
a = B0 = 0.10075854437197568 (see Table 1 and Sa̧dowski

et al. 2013a).
We carry out the simulations on a 1D domain, 0 6 x 6 1, how-

ever, we allow for velocities and magnetic fields in the y−direction.
We use periodic boundary conditions in the x-direction. We con-
sider a wavenumber k = 2π such that one wavelength fits in the
domain. We set the absorption opacity to zero, κabs = 0. We vary
the scattering opacity given by the optical depth of the domain,
κes = τ, and set the radiation pressure via a dimensionless parame-
ter, P = prad,a/pgas,a (see Table 1).

After one period of the wave, i.e., P = 2π/Re (ω), the nu-
merical solution, ρ j

0(t = P), deviates from the analytic solution,
ρ

j
0,A(t = P), which is given by eq. (80). We measure this deviation

using L1 norm:

L1 = N−1
∑

j

∣∣∣ρ j
0 − ρ

j
0,A

∣∣∣ , (81)

where the summation is carried out over all of the N grid cells.
Figure 1 shows convergence of our scheme in four panels, with
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Figure 1. Spatial convergence rate of the radiation modified MHD linear waves. Similar to Table 1, the four panels in this table show eigenmodes of linear
waves: top row of panels [panels (a) and (b)] shows gas-dominated and bottom row of panels [panels (c) and (d)] radiation-dominated systems; left column
of panels [panels (a) and (c)] shows optically-thin and right column of panels [panels (b) and (d)] optically-thick systems. Numerical results for sound waves
are shown with green circles, fast waves with blue triangles, and slow waves with red inverted triangles. The black dotted lines show quadratic and linear
convergence. Summarizing, the code converges at the expected rate, although PPM leads to some non-monotonic convergence that does not occur with MINM
or MC limiters.

each panel demonstrating the convergence of the eigenmodes given
in the corresponding panel in Table 1. As seen in Fig. 1(a),(c), in
the optically-thin case, τ = 0.1, the numerical solution converges
to the analytic solution at 2nd order, as expected. (Note that PPM
leads to some non-monotonic convergence that does not occur with
MINM or MC limiters.) As is clear from Fig. 1(b), higher optical
depth simulations converge at 2nd order at low and moderate reso-
lutions and switch over to 1st order convergence at high resolutions.
Thus, the radiation component of the code, which is treated im-
plicitly and converges at 1st order, affects the overall convergence
rate at τ � 1. As expected, Fig. 1(d) demonstrates that radiation-
dominated optically-thick case converges at first order.

5.2 HD Radiative Shocks in 1D Cartesian Minkowski

For our next test, we set up a number of radiative shock tube prob-
lems as described in Farris et al. (2008) and Roedig et al. (2012).
The system begins with gas in two different states (left and right),
separated by a membrane. The membrane is removed at t = 0 and
the system is allowed to evolve. The left- and right-states of all
the tests except test No. 5 are set up in such a way that the shock
asymptotically becomes stationary (see Appendix C of Farris et al.
2008).

Table 2 lists the parameters describing the initial states of
seven test problems that we have simulated. The scattering opac-
ity in all the tests is set to zero, so κtot = κabs. The value of the
radiative constant σrad = aradc/4 in code units is given in the ta-
ble. All the tests were solved on a grid of 800 uniformly spaced
points and evolved till t = 300 for all tests except No. 5 that is run
till t = 13. The M1 closure was used, while prior work used the
Eddington approximation, but this only leads to minor differences
right at the shock in the fluid-frame radiative fluxes.

Fig. 2 shows the numerical solution for radiative shock tube
problem No. 1, which corresponds to a non-relativistic strong
shock. This plot can be compared to the corresponding figures and
analytical solutions provided elsewhere (Farris et al. 2008; Zanotti
et al. 2011; Fragile et al. 2012). The agreement is good, except for
a slight smoothing of the numerical profiles at the position of the
shock (see the bottom panel). Also, the shock shows some oscilla-
tions that lead to a mild bump to the right of the shock in rest-mass
density by the end of the simulation. Lower-order MINM and even
DONOR cell reconstruction, any other Runge-Kutta method, and
both LAXF and HLL lead to the same/similar bump, so PPM or
RK3 or LAXF/HLL are not the origin of the bump.

Fig. 3 shows results for radiative shock tube test No. 2, which
corresponds to a mildly relativistic strong shock. Again, the agree-
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Table 1. Eigenmodes of linear waves. Top row, panels (a) and (b), shows gas-dominated and bottom row, panels (c) and (d), radiation-dominated sys-
tems; left column, panels (a) and (c), shows optically-thin and right column, panels (b) and (d), optically-thick systems. Other parameters: ρa = 1,
egas,a = 0.009137055837563452, ux

a = uy
a = 0, F̂x

a = F̂y
a = 0, Bx

a = By
a = B0, κabs = 0, k = 2π, Γ = 5/3, and P ≡ prad,a/pgas,a, κes = τ as given in the Table.

Here we choose B0 = 0 for sound waves and B0 = 0.10075854437197568 for fast and slow waves. Perturbations are of the form qi = Re [qi
a + δqiei(ωt−kx)].

(a) Optically-thin, gas-dominated (τ = 0.1, P = 0.1)

so
un

d
w

av
e

δρ0 1e-06 + 0 i
δegas 1.51556529080798e-08 + 7.69692971953054e-10 i
δux 9.97992249118626e-08 + 2.55207217592872e-09 i
δuy 0 + 0 i
δBy 0 + 0 i
δÊ 1.33147769911346e-13 + 3.6001746512389e-11 i
δF̂x -2.52471264862269e-10 + 7.40040781015203e-11 i
δF̂y 0 + 0 i
ω 0.627057023634126 + 0.0160351423986572 i

fa
st

w
av

e

δρ0 1e-06 + 0 i
δegas 1.5198360895975e-08 + 4.81575290993662e-10 i
δux 1.60251314293283e-07 + 7.2383120050772e-10 i
δuy -9.79544263084857e-08 + 9.83678950177998e-10 i
δBy 1.62343664101617e-07− 8.96662164240542e-10 i
δÊ 1.48421181882934e-12 + 6.06322316295508e-11 i
δF̂x -3.95432710842345e-10 + 8.51051304663626e-11 i
δF̂y 2.36679521545993e-10 + 2.11182386936598e-11 i
ω 1.00688870342377 + 0.00454796556390826 i

sl
ow

w
av

e

δρ0 1e-06 + 0 i
δegas 1.50174235106495e-08 + 1.22298943455801e-09 i
δux 6.15332754996702e-08 + 1.83139801648519e-09 i
δuy 9.89772118301622e-08 + 6.54185791061938e-09 i
δBy -6.14882091832378e-08− 5.88315338295397e-09 i
δÊ 1.9170283012363e-13 + 2.18721458210053e-11 i
δF̂x -1.65180532693438e-10 + 7.1752041819694e-11 i
δF̂y -2.23678888272661e-10− 7.43141463935117e-11 i
ω 0.386624972522161 + 0.0115070131087776 i

(c) Optically-thin, radiation-dominated (τ = 0.1, P = 10)

so
un

d
w

av
e

δρ0 1e-06 + 0 i
δegas 9.14134312414906e-09 + 3.83221342644378e-10 i
δux 7.74804632510917e-08 + 3.58319335378836e-09 i
δuy 0 + 0 i
δBy 0 + 0 i
δÊ -1.52193074553572e-10 + 9.38040606030636e-10 i
δF̂x -1.93666448665796e-08− 7.93046885686635e-10 i
δF̂y 0 + 0 i
ω 0.486824108292728 + 0.0225138678333065 i

fa
st

w
av

e

δρ0 1e-06 + 0 i
δegas 9.20593402786723e-09 + 7.43788681605899e-10 i
δux 1.51647542124337e-07 + 2.92430743208669e-09 i
δuy -1.11471565905267e-07 + 6.59617536694267e-10 i
δBy 1.74787152941627e-07− 1.8658034881622e-09 i
δÊ -4.70212889643857e-10 + 1.98234059740446e-09 i
δF̂x -3.79422297680303e-08− 3.18097469382448e-10 i
δF̂y 2.69349129873962e-08 + 2.6704669357673e-09 i
ω 0.952829608545529 + 0.0183739654909631 i

sl
ow

w
av

e

δρ0 1e-06 + 0 i
δegas 9.13449746980553e-09 + 2.48194479126941e-10 i
δux 5.01905313372291e-08 + 2.38661835159163e-09 i
δuy 6.76529059165483e-08 + 3.82639444942364e-09 i
δBy -3.51141271790158e-08− 1.22066297927614e-09 i
δÊ -7.35475223430181e-11 + 6.00744732838449e-10 i
δF̂x -1.25407400097346e-08− 5.53621772791961e-10 i
δF̂y -1.48948162136833e-08− 5.73105396778065e-09 i
ω 0.315356409057614 + 0.0149955653605657 i

(b) Optically-thick, gas-dominated (τ = 10, P = 0.1)

so
un

d
w

av
e

δρ0 1e-06 + 0 i
δegas 1.1797669003418e-08 + 3.04292104805925e-09 i
δux 9.29098565575498e-08 + 1.44382411133922e-08 i
δuy 0 + 0 i
δBy 0 + 0 i
δÊ 1.98197717210158e-09 + 2.2064547519989e-09 i
δF̂x -4.36777061885618e-10 + 4.31621443724302e-10 i
δF̂y 0 + 0 i
ω 0.58376984561456 + 0.0907181444251821 i

fa
st

w
av

e

δρ0 1e-06 + 0 i
δegas 1.31055121995324e-08 + 2.26907894858283e-09 i
δux 1.59214919060003e-07 + 4.26730946717188e-09 i
δuy -9.86565964237949e-08 + 6.11642411231371e-09 i
δBy 1.63044500663243e-07− 5.5401556994765e-09 i
δÊ 2.95346370713069e-09 + 1.59680781762658e-09 i
δF̂x -2.7219589023768e-10 + 6.08653555066593e-10 i
δF̂y 3.23862842131416e-12 + 2.38270732468968e-11 i
ω 1.0003768401216 + 0.0268122961453227 i

sl
ow

w
av

e

δρ0 1e-06 + 0 i
δegas 1.03536412109072e-08 + 2.54899319130145e-09 i
δux 5.51070747399867e-08 + 6.81771795916397e-09 i
δuy 7.68347744278899e-08 + 1.80695857270459e-08 i
δBy -4.16352105336264e-08− 1.54220614899084e-08 i
δÊ 9.0589203896316e-10 + 1.85948699094183e-09 i
δF̂x -3.83040910798238e-10 + 1.9926795423209e-10 i
δF̂y 2.11405825132413e-12− 6.39415393177625e-12 i
ω 0.346247962327932 + 0.0428369853095135 i

(d) Optically-thick, radiation-dominated (τ = 10, P = 10)

so
un

d
w

av
e

δρ0 1e-06 + 0 i
δegas 1.17069780348943e-08 + 1.88153271018629e-09 i
δux 2.66250797919881e-07 + 6.33514446524509e-08 i
δuy 0 + 0 i
δBy 0 + 0 i
δÊ 2.05419184448571e-07 + 1.49858618430197e-07 i
δF̂x -2.07308153187279e-08 + 3.77555645793647e-08 i
δF̂y 0 + 0 i
ω 1.67290310151504 + 0.39804886622888 i

fa
st

w
av

e

δρ0 1e-06 + 0 i
δegas 1.17305399804545e-08 + 1.71290104013922e-09 i
δux 2.78499110985032e-07 + 5.23803931682287e-08 i
δuy -2.81093153546097e-08 + 6.25587500197671e-09 i
δBy 1.10169648551894e-07− 4.0333708502353e-09 i
δÊ 2.07294118408597e-07 + 1.36363627261037e-07 i
δF̂x -1.83330848150565e-08 + 3.63663817465466e-08 i
δF̂y 2.67581446787218e-10 + 1.242717958826e-09 i
ω 1.74986152220373 + 0.329115716738904 i

sl
ow

w
av

e

δρ0 1e-06 + 0 i
δegas 9.46188670634028e-09 + 1.21375747602521e-09 i
δux 8.34268734887456e-08 + 1.20828776295457e-08 i
δuy 1.1363325579508e-07 + 2.72697239558014e-07 i
δBy -8.03822945939874e-08− 3.03114251603687e-07 i
δÊ 2.59666249422664e-08 + 9.67891091325844e-08 i
δF̂x -1.98262867256072e-08 + 5.47609651018276e-09 i
δF̂y 3.6607454416002e-09− 1.14749752402299e-09 i
ω 0.524186505728416 + 0.0759189591904107 i
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Table 2. Radiative shock tubes

Test Left state: Right state:
No. Γ σrad κabs/ρ0 ρ0 pgas ux Ê ρ0 pgas ux Ê

1 5/3 3.085 · 109 0.4 1.0 3.0 × 10−5 0.015 1.0 × 10−8 2.4 1.61 × 10−4 6.25 × 10−3 2.51 × 10−7

2 5/3 1.953 · 104 0.2 1.0 4.0 × 10−3 0.25 2.0 × 10−5 3.11 4.512 × 10−2 8.04 × 10−2 3.46 × 10−3

3a 2 3.858 · 10−8 0.3 1.0 6.0 × 101 10.0 2.0 8.0 2.34 × 103 1.25 1.14 × 103

3b 2 3.858 · 10−8 25.0 1.0 6.0 × 101 10.0 2.0 8.0 2.34 × 103 1.25 1.14 × 103

4a 5/3 3.470 · 107 0.08 1.0 6.0 × 10−3 0.69 0.18 3.65 3.59 × 10−2 0.189 1.3
4b 5/3 3.470 · 107 0.7 1.0 6.0 × 10−3 0.69 0.18 3.65 3.59 × 10−2 0.189 1.3
5 2 3.858 · 10−8 1000.0 1.0 6.0 × 101 1.25 2.0 1.0 6.0 × 101 1.10 2.0

Figure 2. Results obtained for radiative shock tube test No. 1. From top
to bottom, the panels show the profiles rest-mass density (ρ0), gas internal
energy density (egas), gas 3-velocity (ux

gas/u
t
gas), lab-frame radiative energy

density (−Rt
t), and radiation 3-velocity (ux

rad/u
t
rad). The profiles match the

analytical solution, except for a slight bump in density near the shock.

ment between the numerical and semi-analytical (Farris et al. 2008)
profiles is good.

Fig. 4 shows results corresponding to radiative shock tube
tests No. 3a and 3b. These are strongly relativistic shocks with
upstream ux = 10. Test No. 3a corresponds to shock tube test 3
of Farris et al. (2008), while test 3b is the optically thick version
of the same test which was proposed and solved by Roedig et al.
(2012). These two tests verify that the code is able to resolve a
highly relativistic wave in two very different optical depth limits.
In both cases, the numerical solution reaches a steady state and
closely follows the corresponding semi-analytical solution as pre-
sented in (Farris et al. 2008; Sa̧dowski et al. 2013c). The acceptable
and normal amount of mild oscillations near the shock appear be-
cause we use the high-order PPM reconstruction and the flattener
is only moderately efficient at reducing the order of spatial interpo-
lation near shocks.

Fig. 5 shows results for radiative shock tube tests No. 4a and

Figure 3. Same as Fig. 2 but for radiative shock tube test No. 2. The profiles
match the analytical solution.

4b. These tests correspond to radiation pressure dominated mildly
relativistic waves. Test 4b is the optically thick version of test 4a
that was proposed by Roedig et al. (2012). In both tests, the nu-
merical solution reaches a stationary state and agrees well with the
semi-analytical solution. The opacity coefficient κabs in tests 3b and
4b are the maximum values that the scheme by Roedig et al. (2012)
could handle while remaining stable. The algorithm implemented
in harmrad has no such limitation.

Fig. 6 corresponds to radiative shock tube test No. 5. This is
the only test that does not asymptote to a stationary solution. This
test was proposed and solved by Roedig et al. (2012) and represents
an optically thick flow with mildly relativistic velocities. The left-
and right-states are identical except that they have different veloci-
ties. As a result, two shock waves propagate in opposite directions.
This test does not have an analytical solution. However, by com-
paring our numerical solution with that presented in Roedig et al.
(2012), we confirm that our scheme performs well.
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Figure 4. Similar to Fig. 2 but showing results for radiative shock tube
tests No. 3a (solid) and No. 3b (dashed). The profiles match the analytical
solution.

Figure 5. Similar to Fig. 2 but showing results for radiative shock tube
tests No. 4a (solid) and No. 4b (dashed). The profiles match the analytical
solution.

Figure 6. Same as Fig. 2 but for radiative shock tube test No. 5. There is no
analytical solution available for this problem, but it agrees with prior work.

5.3 Optically Thin Radiative Pulse in 3D Cartesian
Minkowski

We now test the ability of our scheme to handle the evolution of a
radiation pulse in the optically thin limit. We set up a Gaussian dis-
tribution of radiative energy density at the center of a 3D Cartesian
coordinate system. The pulse radiative temperature is set according
to,

Trad =

( E
4σ

)1/4

= Ta

(
1 + 100e−(x2+y2+z2)/w2 )

, (82)

with Ta = 106, w = 5.0. The value of arad ≈ 8.77×10−12. We assume
zero absorption opacity (κabs = 0) and scattering opacity (κes =

0). The background fluid field has constant density ρ0 = 1 and
temperature T = Ta. We solve the problem in three dimensions on
a coarse Cartesian grid of 32x32x32 and 50x50x50 cells (showing
only the 50x50x50 result).

The initial pulse in radiative energy density is expected to
spread isotropically with the speed of light (optically thin medium)
and to decrease inversely proportionally to the square of radius (en-
ergy conservation). Such behavior is visible in Fig. 7 showing the
radiative energy distribution in the z = 0 plane (left panel) and its
cross-section along y = z = 0 (right panel). The orange circles in
the left panel show the expected size of the pulse. It is clear that
the propagation speed of the pulse is consistent. This problem was
solved on a relatively coarse Cartesian grid, and this results in de-
viations from the perfectly spherical shape. Also, the PPM scheme
uses a stencil size of ±4 cells, so one should have an initial radiative
distribution mostly within� 8 cells to avoid grid-induced artifacts.
The solution becomes more isotropic at larger resolution or when
using a spherical grid. The right panel in Fig. 7 shows the profiles
of the energy density along the x-axis, which follows the expected
rate of energy decrease with increasing distance from the center.
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Figure 7. Profiles of the lab-frame radiative energy density (−Rt
t) for the optically thin radiative pulse test described in section 5.3. The left panel shows the

distribution in the x − y plane at z = 0 at times t = 0 (red, 15 contours from 6.24 × 10−40 to 4.038 × 10−32), t = 15.21 (blue, 15 contours from 6.24 × 10−40 to
5.963×10−34), and t = 35.01 (cyan, 15 contours from 6.24×10−40 to 1.174×10−34) with lab-frame energy flux (−Ri

t) shown for t = 15.21 (green vectors) and
t = 35.01 (magenta vectors). The orange circles correspond to the initial pulse spreading at the speed of light from x = y = z = 0, and the centroid of the pulse
distribution matches well with this position for both evolved times. The right panel shows the same times at t = 0 (solid), t = 15.21 (dashed), and t = 35.01
(long-dashed) in the y = z = 0 line. The pulse should decay as 1/x2, which is shown as an orange line, and there is a reasonable match.

5.4 Optically Thick Radiative Pulse in 1D Cartesian
Minkowski

To test the optically thick limit we choose to set up a similar pulse
but this time planar instead of a point-like, i.e., according to,

Trad =

( E
4σ

)1/4

= Ta

(
1 + 100e−x2/w2 )

. (83)

This time we set the scattering opacity to κes = 103 and solve
the problem as one-dimensional on 100 grid points distributed uni-
formly between x = −50 and x = 50 with periodic boundary con-
ditions in y and z. The total optical depths per cell and per pulse
are therefore τ = 103 and τ = 104, respectively. The value of
arad ≈ 8.77× 10−12 in code units and the absorption opacity is zero.

In the optically thick limit the evolution of such a system is
described by a diffusion equation with diffusion coefficient D =

1/(3κtot). An initially Gaussian pulse of radiative internal energy
will diffusive as

− Rt
t(t) = A exp

(
−x2

4D(t + t0)

) (
t + t0

t0

)−n/2

, (84)

for n = 1 dimensions, t0 ≈ 4800 and A ≈ 5.49 × 10−32.
In Fig. 8 we plot profiles of the radiative energy at various mo-

ments and compare them to the analytical solution given by Eq. 84.
The numerical solution for the central two points diffuses slightly
faster due to the additional numerical dissipation introduced by the
scheme. At later times this difference becomes insignificant.

A code’s speed can be sensitive to this high optical depth case,
depending upon the way the initial guess is chosen in the implicit
solver as well as how the wavespeeds are determined. harmrad
only takes 200 steps with 2.6 average energy-based iterations using
the URAD scheme without stages, and despite the large timesteps,
the Newton method does not need to reject any implicit Newton
steps as could happen for large steps when conserved quantities
step out of bounds without a physical primitive inversion.

Figure 8. The radiative energy density for the optically thick pulse de-
scribed in section 5.4. The colored lines show times t = 0 (green), t =

2951.05 (orange), t = 9867.95 (blue), t = 29877.1 (purple), and t = 105

(red). Behind each solution is a black line for the analytical solution from
Eq. 84 (which overlaps at t = 0). The analytical and numerical solutions
agree very well in this diffusion regime at high optical depth.

5.5 Single Beam of Light in 2D Cartesian Minkowski

Fig. 9 show the results for an injected single beam of light with
a top-hat distribution. The gas and radiation are decoupled by ne-
glecting absorptions and scatterings (κabs = κtot = 0). The grid is
two-dimensional in the x − y plane with 31 points distributed uni-
formly from 0 to 1 in each dimension. All initial values for primi-
tive quantities are negligibly small. The ideal gas constant is set to
γ = 4/3. Outflow boundary conditions are used on all borders, ex-
cept the region covered by the beam from y = 0.4 to y = 0.6, where
we set the injected lab-frame radiation energy density to be 100
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times the ambient value, and we set the radiative 3-velocity to be to
be vx

rad = 0.99998 or γrad ≈ 500. The value of arad ≈ 1.18×1017, and
the maximum radiative gamma allowed is γrad = 1000. Note that
for γrad & 2000, the beam edge can appear mildly unstable with
PPM, but there is no significant disruption and the beam moves at
the correct speed. Higher γrad are achievable with MINM limiter at
the cost of resolution/accuracy in more general simulations.

5.6 Single Shadow in 2D Cartesian Minkowski

Here we test the ability of the M1 closure scheme, as incorporated
in harmrad, to resolve shadows. We set up a blob of dense, opti-
cally thick gas in flat space-time, surrounded by an optically thin
medium, and we illuminate this system.

We start with a single source of light imposed on the left
boundary. We solve the problem in two dimensions on a 100 × 50
grid, with the density blob distribution set to be

ρ0 = ρa + (ρb − ρa) e−
√

x2+y2/w2
, (85)

where ρa = 10−4, ρb = 103 and w = 0.22. The gas temperature is
adjusted so as to give constant pressure throughout the domain,

T = Ta
ρa

ρ0
, (86)

with γ = 1.4.
The initial radiative energy density is set to the local thermal

equilibrium value, and the initial velocities and radiative fluxes are
zero. We apply periodic boundary conditions at the top and bottom
and outflow boundary conditions at the right border of the domain.
At the left border we have the external source of light, which we
specify with EL = 4σT 4

L , F x = 0.99999EL, TL = 100Ta. All other
quantities are set to match the ambient gas. We assume κabs = κtot =

ρ0. The value of arad ≈ 351.37 in code units, and the maximum
radiative gamma allowed is γrad = 447.215.

Fig. 10 shows the results at t = 10. By this time, the initial
radiation wave has passed through the domain and the system has
reached a stationary state. The M1 closure is designed to keep flux
moving parallel to itself in optically thin regions for F ≈ E. As a
result, a strong shadow develops behind the optically thick blob.

Note that the beam is stable up to a choice of γrad & 2000 for
the beam injected. However, the radiation behind the blob has a few
lack of implicit inversion solutions beyond γrad ∼ 500, although
this only affects the radiative velocity where the radiative energy
density is negligible.

5.7 Double Shadow in 2D Cartesian Minkowski

We also consider a two-beam test problem similar to the one de-
scribed in Jiang et al. (2012). We set up similar initial conditions for
gas and radiation as in the single beam shadow test. This time, how-
ever, we set up a reflection symmetry at the lower boundary (y = 0)
and we impose an inclined (lab-frame F x

0 = 0.93E0, Fy
0 = −0.37E0

with γrad limited as stated) beam on the upper boundary and on
the part (y > 0.3) of the left boundary. As a result, the domain is
effectively lit by two self-crossing beams of light.

We plot the result of a numerical simulation in Fig. 11. In the
region near the left top, where the beams do not overlap, the di-
rection of the flux follows the imposed boundary condition. In the
region of the overlap the radiative energy density increases twice
(E = 2E0) while the flux becomes equivalent to the superposition
of the beam-intrinsic fluxes, i.e., it is purely horizontal and its x-
component equals F x = 2F x

0 = 1.86E0 = 0.93E. The clump of

optically thick gas is, therefore, effectively illuminated by a purely
horizontal beam. Unlike in the planar beam case, there are regions
of the partial shadow (penumbra) resulting from these perpendic-
ular photons allowed by the closure when F x < E. The region
of the total shadow (umbra) is therefore limited by the edges of
the penumbra and follows the expected shape (compare Fig. 11 in
Jiang et al. (2012)) to a good accuracy. The M1 closure, however,
produces an extra narrow horizontal shadow along the x-axis that
should not be present.

For Fig. 11 we set the beam’s γrad ≈ 22, because with PPM
any higher values lead to mild oscillations driven away from the
stationary inclined radiative edge into the rest of the beam. Even
at γrad ≈ 500 these oscillations are only at the 6 20% level and
are proportional to the beam’s (γrad)1/2, but it is visually obvious in
such plots. We plan to continue to improve PPM and HLL/LAXF
(designed for fluid shocks, not radiative jumps) to work better at
radiative discontinuities that are stationary and not aligned with the
grid. No such oscillations appear with MINM that is significantly
more diffusive for general applications. Much weaker oscillations
< 2% for γrad ≈ 2000) appear when using HLL, but for general ap-
plications (e.g. highly magnetized or nearly force-free flows near a
rotating black hole), we have found HLL to also be unstable (appar-
ently due to the conflict between the causal one-sided flux solution
and the acausal centered reconstruction stencil).

This test shows limits of the M1 closure approach but at the
same time stresses the fact that, in principle, it does not limit spe-
cific intensity to one particular direction (assuming only its sym-
metry with respect to the flux). It performs much better than the
Eddington approximation, but in the case of multiple sources of
light it must be used with caution.

5.8 Static Radiative Atmosphere in 1D Spherical Polar
Minkowski

An important aspect of radiation in accretion disks is momen-
tum transfer between radiation and gas, such as the balance ex-
pressed by the Eddington luminosity described in section 1. To
validate the treatment of gas-radiation momentum exchange, we
consider a static atmosphere which is in equilibrium under the ac-
tion of gravity, a gas pressure gradient, and the radiation force. We
take the optically thin limit and assume that gas-radiation inter-
actions occur only through a scattering coefficient, i.e., κabs = 0,
κtot = κes. We consider a polytropic atmosphere with equation of
state pgas = Kρ0

Γ.
An analytical solution can be obtained for this model problem.

For a polytropic equation of state and κabs = 0, there is no energy
equation, and the radial component of the momentum equation can
be used to find the solution. In the non-relativistic limit (r � 2),
assuming stationarity (∂t = 0) and zero velocity (vi = 0), the radial
momentum equation takes the form

1
ρ0

∂p
∂r

= −
1 − f

r2 , (87)

where

f = κesFinr2
in. (88)

Here Fin is the radiative flux imposed as a boundary condition at
the bottom of the atmosphere, r = rin, and f gives the ratio of the
radiative to gravitational (or geometrical) forces; f = 1 corresponds
to the Eddington limit, where the luminosity is LEdd = 4π/κes and
the radiative flux is Fin = FEdd = 1/κesr2

in. Since radiative energy
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Figure 9. Results for single beam of light in Minkowski for beam injected with γrad ≈ 500 in section 5.5. Left panel shows t = 0.5023 with 15 red contours
for −Rt

t from 0.3666 to 3.333 × 107 and Ri
t as magenta vectors scaled by 5 × 10−8 shown every other grid point. Orange vertical line indicating the light travel

distance since injection. Right panel shows t = 10 with 15 red contours for −Rt
t from 0.494 to 3.333× 107 and Ri

t as magenta vectors scaled by 5× 10−8 shown
every other grid point. The beam travels out as expected.

Figure 10. Results for shadow in Minkowski for beam injected with γrad ≈ 158 in section 5.6. Left panel shows t = 2.502 with 15 red contours for −Rt
t from

9× 10−25 to 2.5× 10−14 and Ri
t as magenta vectors scaled by 2× 1012 shown every 4th grid point. Orange vertical line indicating the light travel distance since

injection. Right panel shows t = 10 with 15 red contours for −Rt
t from 2.085 × 10−26 to 2.5 × 10−14 and Ri

t as magenta vectors scaled by 2 × 1012 shown every
4th grid point. In both panels the massive blob is shown as ρ0 with 15 cyan contours from 0.0001 to 557.4. The beam travels out as expected with no beam
instability or disruption. As required, the shadow is sharply defined with negligible radiative flux behind the blob of mass.

must be conserved, in the stationary state the flux must satisfy F =

Finr2
in/r

2 (non-relativistic limit).
The solution to Eq. (87) is

ρ0 = ρa ≡

[
(Γ − 1)

ΓK

(
C +

1 − f
r

)] 1
Γ−1

, (89)

where

C =
ΓK

(Γ − 1)
ρΓ−1

0,in −
1 − f

rin
, (90)

and ρ0,in is the assumed rest-mass density at r = rin. The entropy
constant K is calculated at the bottom of the atmosphere from the
assumed gas temperature Tin.

We set up a uniform spherical polar grid in Boyer-Lindquist
coordinates with only 40 points between r = 106 and 1.4×106 grav-
itational radii with θ spanning only 1 cell from 0.99π/2 to 1.01π/2.
We scaled all quantities to physical units assuming M = 1M�
and κes = 0.4ρ0 cm−1. At the innermost radius we set ρ0,in =

10−15 g cm−3 (optically thin atmosphere) and Tin = 106 K. All
the velocities were initially zero and the radiative energy density
E = Fin/0.99999. Initial values of the gas density and temperature
in the domain and in the ghost cells were assigned based on the
analytical solution. We ran four models corresponding to four lu-
minosities: 10−10, 0.1, 0.5 and 1.0 LEdd. Each model was run up to a
time t = 2 × 109 M, which is sufficient to reach relaxed steady state
for these optically thin atmospheres.

Fig. 12 shows the results. For the top panel, the higher the
luminosity, the flatter is the density profile, indicating the effect
of the outward force due to radiation. For the particular case of
the Eddington luminosity, the density should be perfectly constant,
reflecting the fact that the gravitational force is exactly balanced
by radiation and no pressure gradient in required. Even at this low
resolution, harmrad properly handles gas-radiation momentum ex-
change as shown by looking at the residuals in the 2nd panel, where
fractional deviations in the density are below . 2%. Much of the
error is because of the finite γrad ≈ 158 rather than v = c (i.e. a
smaller Fin/E ∼ 0.99 gives about 3 times larger errors), the PPM
reconstruction, what form of the primitives one interpolates (e.g.
interpolating more constant quantities leads to much lower error
for the Fin = 1.0FEdd case), and small relativistic corrections for
the non-relativistic solution.

The middle panel in Fig. 12 shows our results for the radial ra-
diative flux. Once again, the models behave very well and the agree-
ment with the analytical solution is excellent. Finally, the bottom
panel shows the residual radial velocities (vr/c). These are of the
order of 10−5 (they should be zero), and appear to be mostly driven
by slight inconsistencies near the boundaries for reasons similar to
the reasons given for the density deviations. Use of MINM or HLL
vs. LAXF or the entropy equations does not improve these errors,
but the errors do decrease with increasing resolution, but only to
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Figure 11. Results for double shadow test in Minkowski for beam injected with γrad ≈ 22 at an angle, which then reflects and interacts with the original beam
before casting a shadow due to the blob in section 5.7. Shows lab-frame −Rt

t at t = 20 as color (with legend), and lab-frame −Ri
t as vectors. White contours

show three logarithmic rest-mass contours from ρ0 = 100 to ρ0 = 650. The radiative intersection is sharply defined, but PPM with HLL (as shown) generates
slight oscillations that drives weak waves into the beam.

Figure 12. Results obtained with the static atmosphere test in section 5.8.
Numerically determined profiles and residuals between the numerical and
analytical solutions are plotted for the density (top panel), radial lab-frame
flux (middle panel), and radial velocity (bottom panel, residuals only). Col-
ors denote the Eddington ratio of the flux boundary condition Fin at the bot-
tom of the atmosphere: Fin = 10−10FEdd (red), 0.1FEdd (orange), 0.5FEdd
(magenta) and 1.0FEdd (green). Squares correspond to the numerical solu-
tions and lines show the analytical profiles (equation 87). There is agree-
ment at the percent level between the numerical and analytical solutions.

first order due the errors being introduced by the discontinuities at
the inner and outer boundaries.

5.9 Beam of light in 2D spherical polar for a/M = 0 Black
Hole

To test the performance of the code for radiation in strong grav-
itational field, we study propagation of a beam of light in the

Table 3. Model parameters for the light beam tests

Model rbeam rin rout

1 3.0 ± 0.1 2.6 3.5
2 6.0 ± 0.2 5.5 7.5
3 16.0 ± 0.5 14.5 20.5

Schwarzschild metric. The technical aspects of these results are
qualitatively similar for our (not shown) tests of beams in spher-
ical polar Minkowski, so we only consider the curved space-time
case.

We consider three models, in each of which a beam of light
is emitted in the azimuthal direction at a different radius. We de-
couple gas and radiation by neglecting absorptions and scatterings
(κabs = κtot = 0). We run the models on a two-dimensional grid with
only 30 points distributed uniformly in r between rin and rout (see
Table 3 for values) and only 60 points distributed uniformly in az-
imuthal angle φ between φ = 0 and π/2. Initially, we assign negligi-
bly small values for all primitive quantities, including the radiation
energy density and flux. We use outflow boundary conditions on
all borders except the region covered by the beam at the equatorial
plane (see the range of rbeam in Table 3), where we set the radiation
temperature to Tbeam = 1010 = 1000Ta and the lab-frame flux to
Fφ = 0.9999E. Here Ta is the initial gas and radiation temperature
of the ambient medium. We always stop the simulation when the
beam reaches the outer boundary and show that result. This corre-
sponds to t = 9, t = 8.5, t = 16.5 for Model 1,2,3, respectively.

The panels in Fig. 13 show the results for the three beam mod-
els. Consider the right panel, which corresponds to Model 3 (Ta-
ble 3) with the beam centered at rbeam = 16. At such a large radius
we do not expect significant bending of photon geodesics and this
is indeed the case — the beam is only slightly bent towards the BH.
We also expect the beam to be tightly confined, i.e., it should propa-
gate with a nearly constant width. However, the numerical solution
shows some artificial broadening (but much less than MINM used
in Koral ; Sa̧dowski et al. 2013c).

The middle panel in Fig. 13 shows Model 2, where the beam
is centered at the marginally stable orbit: rbeam = 6. At this radius,
photon geodesics are significantly deviated by gravity, resulting in
strong curvature in the beam. The numerical beam follows the cor-
rect trajectory.

Finally, the left panel in Fig. 13 shows Model 1, where the
center of the beam is exactly at the photon orbit: rbeam = 3. An az-
imuthally oriented ray at this radius is expected to orbit around the
BH at a constant r. This is seen clearly in the numerical solution.

c© 2013 RAS, MNRAS 000, 1–36



3D GRMHD Simulations of Super-Eddington Accretion 21

Some of the diffusion seen is due to the need to use Fφ = 0.9999E
with PPM, while some is physical broadening due to photons emit-
ted inside the r = 3 curve bending inwards while those emitted
outside r = 3 bend outward and head towards radial infinity.

A value of Fφ = 0.99999E (giving γrad ≈ 220) leads to some
disruptions of the beam when using PPM and LAXF. Using HLL
or decreasing Fφ improves stability. No such disruptions occur with
MINM even at Fφ = 0.99999E. Even with PPM and Fφ = 0.9999E
(giving γrad ≈ 70), some disruptions can eventually occur where
the incoming beam interacts with reflections (due to the simpli-
fied outflow boundary conditions) off the outer boundary where the
beam contacts. As our goal is to test the on-grid behavior (not ad-
vanced boundary conditions), we always stop the simulation when
the beam reaches the outer boundary. We plan to improve PPM’s
behavior to add a bit of diffusion to keep such beam’s more uni-
form, but the behavior non-uniformity shown is due to the beam
being roughly the size of the PPM stencil size and PPM can ex-
aggerate features on such unresolved scales. Note that use of HLL
does not improve the solution compared to the solution shown in
Fig. 13.

5.10 Radiative spherical (Bondi) accretion in 1D spherical
polar for a/M = 0 Black Hole

Our next test problem considers radiative spherical accretion onto
a non-rotating BH. This problem has been studied in the past by
Shapiro & Teukolsky (1983); Vitello (1984) and Nobili et al. (1991)
and more recently by Roedig et al. (2012) and Fragile et al. (2012).
We follow Fragile et al. (2012) in the setup of our simulations to
facilitate comparison with their results. As in their work, we con-
sider Thomson scattering and thermal bremsstrahlung, which give
the following opacity coefficients,

κabs = 1.7 × 10−25T−7/2m−2
p ρ0 cm−1, (91)

κtot = κabs + 0.4ρ0 cm−1, (92)

where ρ0 is in g cm−3 and mp is the mass of the proton. Our numer-
ical grid spans from rin to rout = 2 × 104 and is resolved by 512
grid points spaced logarithmically following r = R0 + exp(x(1)). We
assume a BH mass of 3M�. For the initial state, we choose the mass
accretion rate Ṁ0 (see Table 4 for values) and set the density profile
accordingly,

ρ0 = −
Ṁ0

4πr2ur , (93)

where the radial velocity ur is equal to its free fall value ur =

−
√

2/r. The gas temperature is given by

T = Tout

(
ρ0

ρ0,out

)Γ−1

, (94)

where Tout is the temperature at the outer radius and Γ is the adia-
batic index. The latter is calculated from the radiation to gas pres-
sure ratio fp = prad/pgas of the initial state (Table 4),

Γ = 1 +
1
3

(
2 + 2 fp

1 + 2 fp

)
. (95)

The radiative energy density is set to E = 3 fp pgas.
The numerical simulations are run in one (radial) dimension.

The primitive quantities at the outer boundary are fixed at their ini-
tial values, as described above. At the inner boundary we apply
outflow boundary conditions. We could apply special extrapolating
and interpolating radial dependencies, but we avoid changing the

Table 4. Model parameters and results for radiative spherical accretion tests

Measured
Model Ṁ0c2/LEdd Tout[K] fp =

prad
pgas

L/LEdd

E1T6 1.0 106 1.2 × 10−4 2.8 × 10−8

E10T5 10.0 105 1.2 × 10−7 1.3 × 10−6

E10T6 10.0 106 1.2 × 10−4 3.4 × 10−6

E10T7 10.0 107 1.2 × 10−1 7.5 × 10−6

E100T6 100.0 106 1.2 × 10−4 1.0 × 10−4

Model names and parameters after Fragile et al. (2012).

boundary conditions to keep the results applicable to more general
simulations. Table 4 lists the parameter values we used correspond-
ing to five models. The first model, E1T6, is characterized by the
lowest mass accretion rate and is designed to highlight the ability of
our scheme to handle optically thin media. The other four models
are identical to simulations described in Fragile et al. (2012).

For all models, we choose a grid such that r = R0 + exp(x1)
for some uniform grid x1. We can set, e.g., rin = 1.9 for Kerr-Schild
coordinates, while rin = 2.5 also works for Boyer-Lindquist coor-
dinates. We show results for Kerr-Schild coordinates using Kerr-
Schild coordinates with rin = 2.5 and R0 = 2.2 for all models ex-
cept E10T5 where we choose rin = 1.9 and R0 = 1.85 in order to
place more cells near the BH to ensure the energy equation evolve
remains accurate for egas despite the small Tgas. The models are run
till t = 3.13 × 104, t = 1.674 × 104, t = 1.21 × 105, t = 1.485 × 105,
and t = 1.351 × 105 for the models E1T6, E10T5, E10T6, E10T7,
and E100T6, respectively.

Fig. 14 shows the numerical solutions obtained with harmrad.
The top panel presents profiles of density, which follow the initial
profile (equation 93) throughout the simulation.

The 2nd panel of Fig. 14 shows the gas temperature. For all but
the coldest model, E10T5, the temperature follows equation (94).
In the case of model E10T5, the gas is hotter than the analytical
result. This is because of gas-radiation coupling which heats up the
gas as it approaches the BH (the analytical solution assumes that
there is no interaction). Some models show mild oscillations in the
temperature (or egas), which is due to the large dynamic range in
radius when using PPM and the energy equation due to the differ-
ences between point and average quantities due to the non-linearity
of the energy equation. The noise in egas is especially pronounced in
model E10T5. A higher-order scheme like WHAM (Tchekhovskoy
et al. 2007) or a scheme that interpolates conserved quantities (e.g.
MP5 in Koral) can improve the temperature behavior. Also, use
of the entropy equations in harmrad avoids all such oscillations,
and the entropy equations need much lower resolution to achieve
the same accuracy as the energy equation. Also, the noise in tem-
perature (or egas) with the energy equation is less as one increases
resolution or focuses resolution toward the BH by using R0 closer
to Rin. Note that lowering the implicit solver tolerance (say always
requiring eT < 10−13) for the energy method does not avoid the
noise.

The 3rd and 4th panels in Fig. 14 show radial profiles of the
fluid-frame radiative energy density and fluid frame radial energy
flux for the five models. Both quantities follow roughly an r−2 scal-
ing, reflecting the fact that in steady-state (barring redshift factors)
the luminosity is equal to 4πFr2 and should be conserved. The
glitches at large radius are due to the finite run time of those par-
ticular models, as the radiative variables are still evolving towards
equilibrium.

Because the flux in these models is non-negligible compared
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Figure 13. Results for Model 1 (left panel), Model 2 (middle), Model 3 (right), involving light beams propagating near a Schwarzschild BH (see Table 3 for
model details) described in section 5.9. The BH is at r = 0 (i.e., x = y = 0) with horizon r = 2. The beams are introduced via a boundary condition on the
x-axis. The beams initially move vertically, i.e., in the azimuthal direction, in the lab-frame. Contours indicates the lab-frame radiation energy density. The
beams travel as expected in curved space-time.

Figure 14. Numerical results obtained with harmrad for five models of
spherical Bondi accretion with radiation. Parameters of the models are given
in Table 4. The panels show density (top), gas temperature (2nd), fluid-
frame radiative energy density (3rd), and fluid-frame radiative radial flux
(bottom). Lines correspond to models E1T6 (red), E10T5 (orange), E10T6
(magenta), E10T7 (green), and E100T6 (blue). The results show that the
code handles well both optically-thin and optically-thick regions for a large
radial dynamic range in curved space-time.

to the energy density (e.g., F ≈ 0.9E for the E10 family of mod-
els), the Eddington closure scheme does not work very well, es-
pecially at low optical depth. For instance, Fragile et al. (2012)
used Eddington closure and obtained unphysical noise or breaks
in their profiles of radiative quantities (see their Figure 5) in all
models with Ṁ0 < 300LEdd. This just reflects the fact that their clo-

sure cannot handle optically thin media. Our algorithm uses the M1
closure scheme and has no problems with either optically thick or
thin regimes. To emphasize this point, we have solved an additional
model, E1T6, in which the accretion rate is an order of magnitude
lower than the smallest rate considered by Fragile et al. (2012).
harmrad works fine for this model, and can, in fact, handle even
more extreme configurations, both at lower and higher accretion
rates.

For direct comparison of our results with those reported in
Fragile et al. (2012), we have calculated for all our models the lu-
minosities,

L = 4πFr2, (96)

emerging at radius r = 7700 (which is within 10% of the value at
r ∼ 1360.

Fig. 15 shows model E10T7 for different radial resolutions
(64, 128, 256, 512) to show convergence behavior. The energy
equations fail for 32 cells for such a large radial dynamic range,
where clearly visible oscillations appear with 64 cells. The error is
dominated by the temperature, which converges to 2nd order. E.g.,
for the first radial cell, the relative differences in gas temperature
between models are 0.2466, 1.194, and 5.125 for 256, 128, and
64, respectively, which is a drop by a factor of 4 for each increase
in resolution by a factor of 2. Use of the entropy equation instead
of the energy equation reduces the temperature error substantially,
with the same convergence rate at that lower error.

5.11 MHD Radiative Bondi Flow in 2D spherical polar with
a/M = 0 BH

Our next test involves the same radiative Bondi problem as in
section (5.10) for model E10T7, but now we include a strong
monopolar magnetic field with vector potential component Aφ ∝

(1 − cos(θ)). We choose b2/egas ≈ 812 (giving b2/ρ0 ≈ 4.9) at the
horizon at r = 2M. The flow is along the magnetic field, so all mag-
netic forces cancel exactly. This is a difficult test, however, because
numerically the magnetic terms cancel only to truncation error, and
the small value of egas has to be recovered from the total energy
equation dominated by truncation errors in the magnetic field. This
causes problems at high magnetic field strengths, unless one uses
the entropy evolution equation that involves lower-order velocity
terms. For entropy evolution, we get highly accurate results even if
we choose b2/egas ∼ 105 and even higher, at relatively lower reso-
lutions.
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Figure 15. Convergence test for 1D radiative Bondi test (similar quantities
plotted as in Fig. (14)). Here we only consider model E10T7 with radial
resolutions of 64 (solid red), 128 (solid cyan), 256 (solid orange), and 512
(dotted black) (as used in Fig. (14, where this model is shown as green
lines in that other figure)). Model with resolution 512 is directly plotted for
reference (dotted black), while remaining models at lower resolutions are
plotted as an absolute difference away from the 512 resolution model in
order to show the relative error. Shows convergence to correct solution to
2nd order, with most sensitive dependence in temperature.

We now also solve the problem in Kerr-Schild coordinates
in full 2D spherical polar coordinates with resolution Nr × Nθ =

512 × 16 with angular span from θ = 0 to π and using Rin = 1.9,
Rout = 2 × 104, and R0 = 1.88 chosen to allow the energy evo-
lution method to accurately evolve this scenario. This appears to
simply be a one-dimensional test, but for HARM it is actually two
dimensional. Although the pressure is independent of the Boyer-
Lindquist coordinate θ, the θ acceleration does not vanish iden-
tically due to round-off error. This is because pressure enters the
momentum equations through a flux (−∂θ(p sin θ) in the Newtonian
limit) and a source term (p cos θ in the Newtonian limit). Analyt-
ically these terms cancel; numerically they produce an accelera-
tion that is of order the truncation error for the original HARM
(Gammie et al. 2003) and round-off error for HARM. This test also
exercises many terms in the code because in Kerr-Schild coordi-
nates only three of the ten independent components of the metric
are zero.

Fig. 16 shows the model E10T7 in 2D and with the magnetic
field. We show resolutions: high (512×16), medium (256×16), and
low (128 × 16). While the outer radius is 2 × 104, we only evolved
for a finite time and so only show out to r ∼ 300rg.

All resolutions do well, except for a radial resolution of 128
for which the temperature starts to deviate at smaller radii. For even
smaller radial resolutions of 64 and 32, the implicit solver fails.

Figure 16. Convergence test for model E10T7 for a relativistically strong
radial magnetic field with spherical Bondi accretion with radiation in 2D
(until here, our Bondi tests were in 1D). The panels show density (top),
gas temperature (2nd), fluid-frame radiative energy density (3rd), fluid-
frame radiative radial flux (4th), and b2/(ρ0c2) (bottom). The 512 resolution
model is plotted directly (dotted black) for reference, while the 256 model
(orange) and 128 model (red) are plotted as the differences from the 512
model to show convergence. The models have 16 angular cells, and all are
shown in the difference. This results show that the code handles well the
case of 2D relativistically strong magnetic fields in radiative flows, the an-
gular direction introduces no anisotropy, and the solution converges to 2nd
order in the temperature that dominates the error.

This occurs because of the energy equation’s limits over such a
large dynamic range. An evolution with the entropy equations has
no such limits on resolution and the temperature behaves accurately
even at low resolutions. Over the span in equilibrium, the simula-
tions converge to at least 2nd order in space in temperature, the
quantity that dominates the error. E.g., for any of the first several
radial cells, the relative errors are 0.04264 and 0.319 for the 256
and 128 models, respectively.

6 FIDUCIAL FULLY 3D GR RADIATIVE MHD DISK
MODEL

As a test of the scheme to handle astrophysically realistic situa-
tions, we consider magnetized radiative accretion onto a rotating
black hole. This model with black hole mass of M = 10M� and
a/M = 0.9375 has nominal thin disk efficiency ηNT ≈ 17.91%,
so that ṀEdd ≈ 7.8 × 1018g/s (see Eq. 1). Then rescaling ṀEdd

by only c, G, and M, we normalize other quantities by letting
ρEdd ≈ 1.2 × 10−4g, uEdd ≈ 1.07 × 1017erg, and bEdd ≈ 3.2 × 108G.

We use the same numerical parameters as all prior tests given
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in section 5. The implicit solver takes an average of 3.0 iterations
per complete solution (including all unused attempts), where 99.8%
are from the PMHD method, 0.2% are from the URAD method,
and 0.002% are from the PRAD method. Among all used solu-
tions, 99.7% come from the energy-momentum equations, 0.3%
come from the entropy-momentum equations, 0% come from the
cold MHD equations, and 0.0004% have no solution such that dif-
fusive backups are used. Nearly 100% of those unacceptable solu-
tions occur inside the horizon near the polar axis. As compared to
an otherwise identical non-radiative simulation, this simulation is
about 2-3 times slower per core, while it operates at slightly higher
parallel efficiency because there are more per-core operations be-
tween any cross-core Message Passing Interface (MPI) operations.

6.1 Initial Mass Distribution: Polish doughnut and
Atmosphere

We set up analytical equilibrium torii (Polish doughnuts,
Abramowicz et al. 1978) in the Kerr (a/M = 0.9375) metric as
initial conditions. For the analytical model, we assume a constant
specific angular momentum, ` = −uφ/ut = constant. From the con-
dition uµuµ = −1, it follows that

u−2
t = −gtt + 2`gtφ − `2gφφ. (97)

We choose the specific internal energy at the inner edge of the torus,
ut,in, which determines the radius of the inner edge of the torus, and
we then calculate the fluid enthalpy, h = ρ0+egas+pgas (e.g., Hawley
et al. 1984),

h =
ut,in

ut
. (98)

Using an equation of state p = κ1ρ
Γ (where the constant κ1 deter-

mines the entropy of the torus gas), we obtain

ρ0 =

[
(h − 1)
κ1

(Γ − 1)
Γ

]1/(Γ−1)

, (99)

u = ρ0
(h − 1)

Γ
. (100)

We set the initial velocity to vr = vθ = 0, vφ = uφ/ut within the
doughnut, and set the gas to the ZAMO velocity outside. We choose
Γ = 5/3, where Γ = 4/3 may lead to somewhat different results
(McKinney & Gammie 2004; Mignone & McKinney 2007). The
specific angular momentum is set to be ` = 4.5, ut,in = 0.9999999,
corresponding to a torus inner radius rin ≈ 8.5 and pressure maxi-
mum at rmax ≈ 18rg. We set ρ0 = ρmax = 1 at the maximum rest-
mass density. To seed the magneto-rotational instability (MRI), egas

is perturbed by a factor 1 + FR(E − 0.5), where FR = 0.1 and E
is a random number from 0 to 1. The torus is surrounded by an
atmosphere with ρ0 = 10−4(r/rg)−2, egas = 10−6(r/rg)−5/2, ũi = 0,
and Bi = 0. The density can consistently drop to zero in the jet that
emerges, so we use a numerical density floor that ensures a maxi-
mum of b2/ρ0 = 200, maximum of b2/egas = 105, and maximum of
egas/ρ0 = 1010.

6.2 Initial Magnetic Field

We consider an initial poloidal field geometry that does not lead
to magnetic flux saturation near the BH, so a magnetically arrested
disk (MAD) or magnetically choked accretion flow (MCAF) does
not form. A single set of field loop of a single polarity are inserted.

For this poloidal field geometry, the φ-component of the magnetic
vector potential is

Aφ ∝ f1 f2, (101)

f1 = |q|p|r sin (θ)|ν,

q = ug/ug,max − fc,

f2 = sin (log (r/S )/T ),

where f1 has p = 1 and ν = 2, q has fc = 0.2, ugas,max is the
maximum egas, q = 0 is set if q < 0, and f2 has S = 0.5rin and
T = 0.28 for the flipping field and f2 = 1 for the non-flipping field.

The magnetic field strength is set via the plasma β =

pgas/pb ∼ (2/Γ)(cs/va)2 where v2
a = b2/(ρ0 + egas + pgas + b2) gives

the Alfvén speed va. Our model has βmin, the smallest value of β
(within the resolved disk region, e.g., r ∼ 1000rg � Rout) of βmin ≈

100. An alternative measure is βrat−of−maxes ≡ pgas,max/pb,max ≈ 240,
where pgas,max is the maximum thermal pressure on the domain and
pb,max is the maximum magnetic pressure on the domain. Another
alternative is βrat−of−avg ≡ pgas,avg/pb,avg = 〈pgas〉/〈pb〉 ≈ 3800.
These β are computed with condition b2/ρ0 < 1. Our choices for β
ensure that S d,MRI > 1 so the MRI operates, while we push close to
S d,MRI ∼ 1.

6.3 Initial Radiation

The initial solution solves for the hydrostatic equilibrium torus with
Γ = 4/3 (which is the correct value for a radiation pressure dom-
inated disk). This pressure is then assumed to be the actual total
pressure ptot, which is then distributed between gas and radiation
so as to satisfy local thermal equilibrium (LTE, Ê = aradT 4) based
upon a single temperature satisfying

ptot = pgas + prad = kBρ0T +
1
3

aradT 4. (102)

Once this initial state has been set, we reset Γ = 5/3 for a nonrela-
tivistic gas. Because the gas is very optically thick, the initial state
holds hydro-radiation-static equilibrium to good accuracy.

The radiative fluxes in each direction i are set as based upon
the flux-limited diffusion approximation

Fi = −
c
κtot

dprad

dxi , (103)

where the orthonormal gas-fluid frame radiation fluxes are limited
to |F| < 0.7Ê.

6.4 Numerical Grid

The uniform spatial coordinates x(i) have resolution Nr × Nθ × Nφ

active grid cells and 4 boundary cells for each of the 6 boundaries
in 3D. The radial grid of Nr = 256 cells spans from Rin to Rout with
mapping

r(x(1)) = R0 + exp f [x(1)] (104)

where R0 = 0.2 is chosen in this paper. For x(1) < xbreak

f [x(1)] = n0 x(1), (105)

where xbreak = log(rbreak − R0)/n0 (with n0 = 1), and otherwise

f [x(1)] = n0 x(1) + c2(x(1) − xbreak)n2 , (106)

where c2 = 1, and n2 = 10. The x(1) grid ranges from x(1)
s =

(log(Rin−R0))/n0 to x(1)
f , which is x(1)

f = (log(Rout−R0))/n0 if Rout <

rbreak and otherwise determined iteratively from Rout = r[x(1)
f ]. The
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value of Rin = 1.1 ≈ 0.816rH is chosen so that there are 6 active
grid cells inside the outer horizon, while Rin is outside the inner
horizon. So the boundary cells only connect to stencils (each ±4
cells) that are inside the horizon, which avoids causal connection
between the inner boundary and the flow outside the horizon. We
set Rout = 104rg and rbreak = 5 × 102rg. The radius rbreak is where
the grid changes from exponential to hyper-exponential, which al-
lows the grid to focus on the dynamics at small radii while avoiding
numerical reflections off the outer grid. Radial boundaries use ab-
sorbing conditions.

The θ-grid of Nθ = 128 cells spans from 0 to π with mapping

θ(x(2)) = Θ2 + W(Θ1 − Θ2) (107)

where x(2) ranges from 0 to 1 (i.e. no polar cut-out ; but see Ap-
pendix 4). The first grid mapping function is given by

Θ1 = T0S 2 + T2S 0, (108)

T2 = (π/2)(1 + arctan (h2(x(m2) − (1/2)))/ arctan (h2/2)),

h2 = h3 + ((r − rs j3)/r0 j3)n j1 ,

T0 = πx(2) + ((1 − h0)/2) sin (2πx(2)),

h0 = 2 − Q j(r/r1 j)−n j2((1/2)+(1/π) arctan (r/r0 j−rs j/r0 j)),

S 2 = (1/2) − (1/π) arctan ((r − rs)/r0),

S 0 = (1/2) + (1/π) arctan ((r − rs)/r0),

where rs = 40 and r0 = 20. For h2, we set h3 = 0.3, r0 j3 = 20,
rs j3 = 0, and n j1 = 1 so the jet is resolved with grid lines following
θ j ∝ r−n j1 . For h0, we set r1 j = 2.8, n j2 = 1, r0 j = 15, rs j = 40, and
Q j = 1.3. We set x(m2) = x(2) unless x(2) > 1 then x(m2) = 2− x(2) and
unless x(2) < 0 then x(m2) = −x(2). Θ1 focuses on the disk at small
radii and the jet at large radii. The second mapping function is

Θ2 = (π/2)(hθ(2x(2) − 1) + (1 − hθ)(2x(2) − 1)nθ + 1), (109)

where nθ = 5 and hθ = 0.15. Θ2 focuses on the thin inflow near the
horizon in poloidal field models, while it also avoids small φ polar
cells that would limit the time step. The interpolation factor is

W = (1/2) + (1/π)(arctan ((r − rs j2)/r0 j2)), (110)

where rs j2 = 5 and r0 j2 = 2. The polar axis boundary condition is
transmissive as described in Appendix 4.

The φ-grid of Nφ = 64 cells spans from 0 to 2π with mapping
φ(x(3)) = 2πx(3). Many of our simulations have x(3) vary from 0 to
1 such that ∆φ = 2π. This is a fully 3D (no assumed symmetries)
domain. Periodic boundary conditions are used in the φ-direction.

We choose a resolution Nr × Nθ × Nφ that has a grid aspect
ratio of 1:1:1 for most of the inner-radial domain. This allows the φ
dimension to be treated equally to the r − θ dimensions. The aspect
ratio (as volume-averaged within |θ − π/2| 6 [θd]t) is given as Ar

for radius r. We measure ArH ≈ 1.1 : 1 : 8, A12 ≈ 1 : 1 : 3, and
A14 ≈ 1 : 2 : 3, where rH is the horizon. There are about 14 vertical
cells resolving the disk at the horizon where the disk thins-out.

6.5 Resolving the MRI and Turbulence

The MRI is a linear instability with fastest growing wavelength of

λx,MRI ≈ 2π
|vx,A|

|Ωrot|
, (111)

for x = θ, φ, where |vx,A| =
√

bxb
x/ε is the x-directed Alfvén speed,

ε ≡ b2 + ρ0 + egas + pgas, and rΩrot = vrot. λMRI is accurate for
Ωrot ∝ r−5/2 to r−1. Ωrot, vA are separately angle-volume-averaged
at each r, t.

The MRI is resolved for grid cells per wavelength (Eq. (111)),

Qx,MRI ≡
λx,MRI

∆x
, (112)

of Qx,MRI > 6, for x = θ, φ, where ∆r ≈ dx(1)(dr/dx(1)), ∆θ ≈

rdx(2)(dθ/dx(2)), and ∆φ ≈ r sin θdx(3)(dφ/dx(3)). Volume-averaging
is done as with S d,MRI, except vx,A/∆x and |Ωrot| are separately θ, φ-
volume-averaged before forming Qx,MRI. The t = 0 values and time-
averaged values are measured at same radii as S d,MRI, and we find
Qθ,MRI ≈ 8 and S d,MRI ≈ 2 near the pressure maximum.

The MRI suppression factor corresponds to the number of
MRI wavelengths across the full disk:

S d,MRI ≡
2rθd

λθ,MRI
. (113)

Wavelengths λ < 0.5λθ,MRI are stable, so the linear MRI is sup-
pressed for S d,MRI < 1/2 when no unstable wavelengths fit within
the full disk (Balbus & Hawley 1998; Pessah & Psaltis 2005).
S d,MRI (or S d,weak,MRI) uses averaging weight w = (b2ρ)1/2 (or
w = ρ), condition β > 1, and excludes regions where density floors
are activated. Weight w = (b2ρ)1/2 is preferred, because much mass
flows in current sheets where the magnetic field vanishes and yet
the MRI is irrelevant. When computing the averaged S d,MRI, vA and
|Ωrot| are separately θ, φ-volume-averaged within ±0.2r for each t, r.
The averaged S d,MRI is at most 30% smaller than S d,weak,MRI.

6.6 Modes and Correlation Lengths

The flow structure is studied via the discrete Fourier transform of
dq (related to quantity Q) along x = r, θ, φ giving amplitude ap for
p = n, l,m, respectively. The averaged amplitude is〈∣∣∣ap

∣∣∣〉 ≡ 〈∣∣∣Fp (dq)
∣∣∣〉 ≡ ∫

not x

∣∣∣∣∣∣∣
N−1∑
k=0

dq e
−2πipk

N−1

∣∣∣∣∣∣∣ , (114)

computed at r = rH, 4rg, 8rg, 30rg. The x is one of r, θ, φ and “not
x” are others (e.g. θ, φ for x = r). The dq is (generally) a function
of x on a uniform grid indexed by k of N cells that span: δr equal
to 0.75r around r for x = r, π for x = θ, and 2π for x = φ. The N is
chosen so all structure from the original grid is resolved, while the
span covered allows many modes to be resolved.

For all x, dq ≡
√
−gdx(1)dx(2)dx(3)δQ/qN . For x = r, θ, we

let qN =
∫

not x

√
−gdx(1)dx(2)dx(3)〈[Q]t〉, 〈[Q]t〉 as the time-φ aver-

aged Q, and δQ = Q − 〈[Q]t〉. Using dq removes gradients with
r, θ so the Fourier transform acts on something closer to periodic
with constant amplitude (see also Beckwith et al. 2011). For x = φ,
we let qN = 1 and δQ = Q because the equations of motion are
φ-ignorable. For x = θ, φ, the radial integral is computed within
±0.1r. For x = r, θ, the φ integral is over all 2π. For x = r, φ, the
θ integral is over all π. For all x cases, the θ range of values uses
the “fdc” or “jet” conditions (respectively called “Disk” and “Jet”,
where these conditional regions are defined via φ-averaged quanti-
ties at each time. Notice we average the mode’s absolute amplitude,
because the amplitude of 〈δQ〉 de-resolves power (e.g. m = 1 out
of phase at different θ gives 〈δQ〉 → 0 and am → 0) and is found to
underestimate small-scale structure.

We also compute the correlation length: λx,cor = xcor − x0,
where x0 = 0 for x = θ, φ and x0 is the inner radius of the above
given radial span for x = r, where ncor = δr/λr,cor, lcor = π/λθ,cor,
and mcor = (2π)/λφ,cor. The Wiener-Khinchin theorem for the auto-
correlation gives

exp(−1) =
F −1

x=xcor
[〈|ap>0|〉

2]
F −1

x=x0
[|〈ap>0|〉

2]
, (115)
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where F −1[〈|ap>0|〉
2] is the inverse discrete Fourier transform of

〈|ap|〉
2 but with 〈a0〉 reset to 0 (i.e. mean value is excluded).
Turbulence is resolved for grid cells per correlation length

(Eq. (115)),

Qp,cor ≡
λx,cor

∆x
, (116)

of Qp,cor > 6, for x = r, θ, φ and p = n, l,m, respectively. Oth-
erwise, modes are numerically damped on a dynamical timescale
(even Q = 5 would not indicate the mode is marginally resolved,
because numerical noise can keep Q ≈ 5 at increasing resolution
until finally the mode is actually resolved – finally leading to an
increasing Q > 6 with increasing resolution ; as seen by Shiokawa
et al. 2012). Reported Qp,cor take 1/∆x as the number of grid cells
covering the span of λx,cor as centered on: middle of x(1) within the
used radial span for x = r, θ = π/2 for x = θ for the “Disk” and
θ = 0 for x = θ for the “Jet”, and anywhere for x = φ. For ∆φ < 2π,
Qφ,MRI,Qm,cor � Nφ is required to avoid truncating the mode.

6.7 Diagnostics

Diagnostics are computed from snapshots produced every ∼ 4rg/c.
For quantities Q, averages over space (〈Q〉) and time ([Q]t) are per-
formed directly on Q (e.g. on vφ rather than on any intermediate
values). Any flux ratio vs. time with numerator FN and denomi-
nator FD (FD often being mass or magnetic flux) is computed as
R(t) = 〈FN(t)〉/[〈FD〉]t. Time-averages are then computed as [R]t.

6.7.1 Fluxes and Averages vs. Radius

For flux density Fd, the flux integral is

F(r) ≡
∫

dA23Fd, (117)

where dA23 =
√
−gdx(2)dx(3) (dAθφ is the spherical polar version).

For example, Fd = ρ0u(1) gives F = Ṁ0, the rest-mass accretion
rate. For weight w, the average of Q is

Qw(r) ≡ 〈Q〉w ≡

∫
dAθφwQ∫
dAθφw

, (118)

All θ, φ angles are integrated over.

6.7.2 Fluxes and Averages vs. θ

The flux angular distribution, at any given radius, is

F(θ) =

∫ π/2−|θ−π/2|

θ′=0
dAθ′φFd +

∫ π

θ′=π/2+|θ−π/2|
dAθ′φFd, (119)

which just integrates up from both poles towards the equator, is
symmetric about the equator, and gives the total flux value at θ =

π/2. The average of Q vs. θ using weight w is given by

Qw(θ) =

∫
dAθφwQ∫
dAθφw

. (120)

All φ-angles are integrated over.

6.7.3 Disk Thickness Measurements

The disk’s geometric half-angular thickness is given by

θd ≡

(〈
(θ − θ0)2

〉
ρ

)1/2
, (121)

where we integrate over all θ for each r, φ, and θ0 ≡ π/2 +

〈(θ − π/2)〉ρ is also integrated over all θ for each r, φ, and the fi-
nal θd(r) is from φ-averaging with no additional weight or

√
−g

factor. This way of forming θd(r) works for slightly tilted thin disks
or disordered thick disks. For a Gaussian distribution in density,
this satisfies ρ/(ρ[θ = 0]) ∼ exp(−θ2/(2(θd)2)). For sound speed
cs =

√
Γpgas/(ρ0 + egas + pgas), the thermal half-angular thickness

is

θt
w ≡ arctan

(
〈cs〉w

〈vrot〉w

)
, (122)

where v2
rot = v2

φ + v2
θ . For a thin hydrostatic non-relativistic Ke-

plerian (i.e. vrot = |vK| with vK ≈ R/(a + R3/2)) Gaussian disk,
θd = cs/vrot for cs and vrot at the disk plane. Also, θt

ρ ≈ 0.93θd for
Γ = 4/3. Ram pressure forces (Beskin & Tchekhovskoy 2005) and
magnetic forces (Cao 2011) can cause θd � θt. Note that ADAFs
have θt & 1 (Narayan & Yi 1994).

6.7.4 BH, Disk, Jet, Magnetized Wind, and Entire Wind

Many quantities (Q) vs. r or vs. θ or vs. φ are considered for various
weights and conditions. We define the superscript “f” (full flow)
case as applies for weight w = 1 with no conditions, “fdc” (full
flow except avoids highly magnetized jet where numerical floors
are activated), “dc” (disk plus corona but no jet) case as applies
for w = 1 with condition b2/ρ0 < 1, “dcden” (density-weighted
average) with w = ρ and no conditions, “θd” (within 1 disk half-
angular thickness) case with w = 1 and condition of |θ − θ0| < θd,
“eq” (within 3 cells around the equator) case with w = 1, and “jet”
or “j” case (jet only) with w = 1 and the condition that density
floors are activated (see Appendix 4). For quantities vs. θ or vs. φ,
we radially average within ±0.1r at radius r.

Fluxes, described in the next section, have integrals computed
for a variety of (somewhat arbitrary) conditions. The subscript
“BH” or “H” is for all angles on the horizon. The subscript “j” or
“jet” is for the “jet” with condition b2/ρ0 > 1. When the jet is mea-
sured at a single radius, we use r = 50rg (except the MB09Q model
that uses r = 30rg due to its limited radial range). The subscript
“mw” is for the “magnetized wind” with conditions b2/ρ0 < 1 and
β < 2 for all fluxes, except for the rest-mass flux that also has
−(ρ0 + egas + pgas)ut/ρ0 > 1 (i.e. thermo-kinetically unbound). The
“w” or “wind” subscript is for the “entire wind” with the condi-
tion of b2/ρ0 < 1 that includes all of the flow except the jet. The
subscript is “in” (“out”) for the condition ur < 0 (ur > 0).

6.7.5 Fluxes of Mass, Energy, and Angular Momentum

The gas rest-mass flux, specific energy flux, and specific angular
momentum flux are respectively given by

Ṁ0 =

∣∣∣∣∣∫ ρ0urdAθφ

∣∣∣∣∣ , (123)

e ≡
Ė

[Ṁ0]t
= −

∫
(T r

t + Rr
t )dAθφ

[Ṁ0]t
, (124)

 ≡
J̇

[Ṁ0]t
=

∫
(T r

φ + Rr
φ)dAθφ

[Ṁ0]t
, (125)
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as computed in Table 6.12.
The net flow efficiency is given by

η =
Ė − Ṁ0

[Ṁ0]t
=

ĖEM(r) + ĖMAKE(r) + ĖRAD(r)
[ṀH]t

. (126)

Positive values correspond to an extraction of positive energy from
the system at some radius. One can break-up the efficiency into
contributions from each PAKE, EM, and RAD components to give
ηPAKE, ηEM and ηRAD as measured at various locations (horizon, jet,
etc.) or radii. These η’s are computed in Table 6.12.

The BH’s dimensionless spin-up parameter is

s ≡
d(a/M)

dt
M

[Ṁ0]t
= −  − 2

a
M

(1 − η), (127)

(computed in Table 6.12). All θ and φ angles are integrated over.
The BH is in “spin equilibrium” for s = 0 (Gammie et al. 2004).

6.7.6 Magnetic Flux

The radial magnetic flux vs. θ at any radius is

Ψr(r, θ) =

∫
dAθφBr. (128)

The signed value of the maximum absolute value over all θ angles
(smaxaθ) of the magnetic flux is

Ψt(r) ≡ smaxaθΨr, (129)

and ΨtH ≡ Ψt(r = rH) is the horizon’s magnetic flux. The half-
hemisphere horizon flux is

ΨH ≡ Ψr(r = rH), (130)

as integrated from θ = π/2 to π (negative compared to the integral
from θ = 0 to π/2). The θ magnetic flux vs. radius at angle θ is

Ψθ(r, θ) =

∫ r

rH

√
−gdx(1)dx(3)Bx(2)

, (131)

where the vertical magnetic flux threading the equator is

Ψeq(r) ≡ Ψθ(r, θ = π/2). (132)

The total magnetic flux along the equator is

Ψ(r) ≡ ΨH + Ψeq(r). (133)

For all forms of Ψ, all φ-angles are integrated over.
The magnetic flux can be normalized in various ways (as com-

puted in Table 6.12). Normalization by the initial flux at r0 gives
Ψ(r)/Ψ(r0). One type of field geometry we will use has multiple
field loops of alternating polarity as a function of radius. So an-
other normalization is by the initial i-th extrema vs. radius, which
gives Ψ/Ψi that picks up the extrema in the magnetic flux over each
field loop. Normalization by the initial value of an extrema gives
Ψ/Ψi(t = 0). We also need to form a measure that indicates how
much flux is available to the BH. So we consider the normalization
by the flux in the disk that is immediately available to the horizon
of the same polarity. This measure is given by ΨH/Ψa, where Ψa is
the value where Ψ(r) goes through its first extremum of the same
sign of magnetic flux (i.e. out to the radius with the same polarity of
dipolar-like field) as on the horizon. If the horizon value is itself an
extremum, then ΨH/Ψa = 1 implying that the region immediately
beyond the horizon only has opposite polarity field.

The absolute magnetic flux (Φ) is computed similarly to Ψ,
except one 1) inserts absolute values around the field (e.g. Br and
Bθ in the integrals); 2) puts absolute values around the integral ;

and 3) divides by 2 so that a dipolar field has |Ψt| = Φ. For exam-
ple, Φr(r, θ) = (1/2)

∣∣∣∫ dAθφ|Br |
∣∣∣. The quantity Φ/Ψt (computed in

Table 6.12, and which is the only flux ratio directly time-averaged
as [Φ/Ψt]t) is roughly the vector spherical harmonic multipole l of
the φ-component of the magnetic vector potential:

Aφ =

∫ θ

θ′=0

√
−gBrdθ′ (134)

as integrated over all φ. For example, for l = {1 . . . 8} one gets
|Φ/Ψt| = 1, 2, 2.6, 3.5, 4, 5.6, 5.7, and 6.7.

The Gammie (1999) model normalization gives

Υ ≈ 0.7
Φr√
[Ṁ0]t

, (135)

which accounts for Φr being in Heaviside-Lorentz units (Penna
et al. 2010). Compared to Gaussian units version of φH ≡

ΦH/
√

Ṁ0r2
gc defined in Tchekhovskoy et al. (2011), Υ ≈ 0.2φH.

ΥH and Υ j are normalized by ṀH, Υin by Ṁin, and Υmw and Υw

respectively by Ṁmw and Ṁw. Υ is computed in Table 6.12.
The field line rotation frequency with respect to the BH spin

(z) axis is computed various ways. We consider Ωa
F ≡ Ftr/Frφ, Ωb

F ≡

Ftθ/Fθφ, Ωc
F ≡ |v

φ| + sign[ur](vp/Bp)|Bφ| with vp =

√
v2

r + v2
θ and

Bp =

√
B2

r + B2
θ , and

ΩF ≡ Ωd
F ≡ vφ − Bφ

(
vr Br + vθBθ

B2
r + B2

θ

)
. (136)

We also consider Ωe
F = [|Ftθ |]t/[|Fθφ|]t. These ΩF are normalized by

the BH rotation angular frequency ΩH = a/(2MrH).

6.7.7 Inflow Equilibrium and α Viscosity

Inflow equilibrium is defined as when the flow is in a complete
quasi-steady-state and the accretion fluxes are constant (apart from
noise) vs. radius and time. The inflow equilibrium timescale is

tie = N
∫ rie

ri

dr
(
−1

[〈vr〉ρ]t

)
, (137)

for N inflow times from r = rie and ri = 12rg to focus on the
more self-similar flow. tie is used in Table 6.12, where rdcden

i = ri,
rdcden

f = rie with N = 1, and rdcden
o uses rie with N = 3.

Viscous theory gives a GR α-viscosity estimate for vr of
vvisc ∼ −Gα(θd)2|vrot| (Page & Thorne 1974; Penna et al. 2010),
with GR correction G (. 1.5 for r & 58rg) and (not the lapse)

α = αPA + αEN + αM1 + αM2, (138)

αPA ≈
ρ0δur(δuφ

√
gφφ)

ptot
,

αM2 ≈ −
br(bφ

√
gφφ)

ptot
,

αmag ≈ −
br(bφ

√
gφφ)

pb
,

αeff ≡
vr

vvisc/α
,

αeff2 ≡ αeff(|vrot|/|vK|), and (small) αEN ≈ (egas +

pgas)δur(δuφ
√

gφφ)/ptot and αM1 ≈ b2δur(δuφ
√

gφφ)/ptot. Here, δu
is the deviation of the velocity from its average (taken over all φ
and over the time-averaging period). The α (e.g. in Table 6.12)
is averaged as follows. The numerator and denominator are
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separately volume averaged in θ, φ for each r. Weight w = 1 with
condition b2/ρ0 < 1 gives αa for the disk+corona, while w = ρ

gives αb for the heavy disk. Notice αM2 = αmag/(1 + βmag) for some
β denoted βmag, and sin(2θb) = αmag for tilt angle θb (Sorathia et al.
2012). These α’s are accurate for |v| � c as true for r & 2rg in
our models, while αeff is accurate far outside the inner-most stable
circular orbit (ISCO).

6.7.8 Optical Depth

The optical depth of the flow is computed in two ways. One way is
as the optical depth away from the polar axis:

τa ≈

∫ θ

0
γκtot
√

gθθ dθ′, (139)

which assumes the flow is mostly radial, relativistic, and the region
near the polar axis is often optically thin at the radius this is com-
puted. Another way we compute the optical depth is radially:

τb ≈

∫ r

r0

κtot
√

grr/(2γ) dr′, (140)

which assumes the flow is mostly radial, relativistic, and the region
at large distance is optically thin or has no additional structure that
would affect the optical depth. The flow’s radiative photosphere is
then defined as either τa = 1 or τb = 1.

The luminosity of the accretion system is computed as the ra-
diative flux emerging from some chosen radius via

Lrad =

∫
dAθφRr

t , (141)

where we only include those angles where the gas is optically thin
(i.e. only that gas that has τa < 1).

6.8 Initial and Evolved Disk Structure

Fig. 17 and Fig. 18 show color plots of ρ0 and field line contours
(contours of Aφ integrated over φ, so is axially symmetric) for the
initial and quasi-steady-state evolved solution, respectively. The
initial solution consists of a radially extended thick torus within
which a single weak field loop (of single poloidal polarity) is em-
bedded. The disk is geometrically thick with θd ∼ 0.4.

The evolved solution, shown in Fig. 18, show the simulation
when the region within r ∼ 14rg has become quasi-steady. The
inner part of the poloidal field loop has accreted onto the black
hole. A plot of the radiation energy density closely follows that for
the rest-mass density.

Fig. 19 shows a 3D rendering of the flow’s three main struc-
tural elements (hot radiation-dominated component, hot gas, and
relativistic magnetized jet).

6.9 Overall Time Dependence

Fig. 20 shows a typical snapshot for the rest-mass density, field
lines, and fluxes (Ṁ0, Υ, and η) on the BH, through r = 50rg in the
jet, and at r = 50rg in the magnetized wind. The BH’s magnetic flux
dominates the mass influx with ΥH ≈ 3 during the quasi-steady-
state period. Because Υ & 1, one expects the Blandford-Znajek
(BZ) effect to be activated, and the energy extraction efficiency is
moderate at η ∼ 20%. Much of the energy extracted from the BH
reaches the jet at large radii (i.e. ηj ∼ 0.3ηH).

Fig. 21 shows various quantities vs. time. All quantities are in

Figure 17. The fiducial model’s initial (t = 0) state consists of a weakly
magnetized geometrically thick torus around a spinning (a/M = 0.9375)
BH. ρ0 is shown as color with legend. Black lines show Aφ (integrated over
all φ) composed of a single set of field line loops with a single polarity.

Figure 18. The evolved (t ≈ 5600rg/c) state of the fiducial model (other-
wise similar to Fig. 17) consists of strongly magnetized gas near the BH
that launches a jet.

a quasi-steady-state for t & 3000rg/c. The mass ejected in the cir-
culating wind (Ṁw,o dominates the magnetized wind (Ṁmw,o) and
jet (Ṁj) at large radii (ro = 50rg here); see §6.7.4 for definitions
of various outflow components. The MAKE term most often domi-
nates the EM term in ηH and H. The RAD term is always negative,
indicating absorption of positive energy radiation into the BH. The
flow has a moderate average total efficiency of ηH ∼ 20%. Note that
the MAKE term is composed of a particle term (i.e. ηPAKE = 1 + ut)
and an enthalpy term (i.e. ηEN = ut(egas + pgas)/ρ0).
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Figure 20. Evolved snapshot (see Supporting Information and this link for the movie) of the fiducial model at t ≈ 5600rg/c showing log of rest-mass density
in color (see legend on right) in both the z − x plane at y = 0 (top-left panel) and y − x plane at z = 0 (top-right panel). Black lines trace field lines, where
thicker black lines show where field is lightly mass-loaded. In the top-left panel, the thick red line corresponds to where b2/ρ0 = 1, while the thick cyan line
corresponds to where the optical depth (away from the polar axis) reaches unity (i.e. τa = 1 as given by Eq. (139)). The bottom panel has 3 subpanels. The
top subpanel shows Ṁ0 through the BH (ṀH), out in the jet (Ṁj, at r = 50rg), and radiative luminosity (Lrad,o, from optically thin region at r = 50rg) with
legend. All quantities have been normalized by the Eddington luminosity (LEdd), where in addition all mass fluxes are normalized by the time-averaged value
of ṀH/LEdd ≈ 135 so that all quantities can be shown on a single panel. The middle subpanel shows Υ for similar conditions. The bottom subpanel shows the
efficiency (η) for similar conditions, where ηrad,o corresponds to the radiative efficiency from the radiation escaping out of the optically thin regions at large
radii, while ηrad,H is for the radiation that ends up trapped and absorbed by the black hole (so it is negative). Horizontal solid lines of the same colors show the
averages over the averaging period, while square/triangle/circle tickers are placed at the given time and values. In summary, for super-Eddington accretion at
Ṁc2/LEdd ∼ 100, the total BH efficiency is moderate at η ∼ 20%, while the radiative efficiency is quite low at ηrad,o ∼ 1%.

The α-viscosity parameter holds steady at about αb ∼ 0.5.
Υ ∼ 3 in the pure inflow (ur < 0 only) available at large radii. The
value is similar to that on the black hole. This can be understood
by looking at the value of rΨa ∼ rH by t ∼ 3000, which shows
that most of the magnetic flux that is available is already on the
horizon. This is also evident by looking at ΨH(t)/Ψa(t) (i.e. ratio of
time-dependent fluxes) corresponding to [the flux on the hole] per
unit [flux on the hole plus available of the same polarity just beyond
the hole]. ΨH(t)/Ψa(t) ∼ 1 is reached by t ∼ 3000, after which there
is no more magnetic flux available to feed the black hole or disk.
Finally, |ΨtH(t)/ΦH(t)| ∼ 1, which shows that the horizon’s field is
dipolar (l ≈ 1).

6.10 Time-Averaged Radial (r) Dependence

Fig. 22 shows the time-averaged densities, 3-velocities, and comov-
ing 4-fields vs. radius using a density-weighted average to focus on
heavy disk material. The solution is in inflow equilibrium (3 in-
flow times; see section 6.7.7) only out to r ∼ 14rg. Beyond the BH,
the rest-mass density is quite flat as expected for a flow supported
by radiation pressure at super-Eddington accretion rates. The rota-
tional velocity is very close to Keplerian.

The GR viscosity estimate for vr denoted vvisc (see above
Eq. (138)) overestimates the simulation vr when using the α-
viscosity with total pressure, where a better match is obtained using
only magnetic pressure. If we set α(θd)2 → 0.003 at all radii, then
|vvisc| ≈ |vr | outside the ISCO and inside the inflow equilibrium
region.

Fig. 23 shows the fluxes (see section 6.7.5) vs. radius as well
as the field line angular rotation frequency ΩF (using various def-
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Figure 19. Three-dimensional rendering (with clipping near middle, shown
as purple square) of three main structural elements of the flow from near
the black hole out to ±10rg in each direction of a Cartesian box for the
evolved (t ≈ 5600rg/c) state of the fiducial model. Figure shows the
radiation-dominated disk component (orange-red volume rendering), the
hot disk-corona gas component (green-cyan volume rendering) that comes
into equipartition with the radiation energy density outside the disk, and the
relativistic highly magnetized jet component (blue-purple volume rendering
with white magnetic field lines).

initions defined in section 6.7.6). These quantities are associated
with conserved quantities such that ratios of total fluxes would be
constant along flow-field lines in stationary ideal MHD. The total
fluxes are constant out to r ∼ 14rg, the inflow equilibrium radius
for this short duration simulations. Also shown are the components
(inflow, jet, magnetized wind, and entire wind) of the mass and en-
ergy flow. The mass inflow and outflow at large radii somewhat
follow power-laws after sufficient averaging over turbulent eddies.
The jet efficiency is order 10% and is constant at large radii.

Power-law fits over the outer-radial domain (including the re-
gion not actually in inflow equilibrium) for the mass flow rates are
Ṁ0 ∝ r1.7 for the inflow and entire wind, Ṁ0 ∝ r0.9 for the jet. A fit
of Ṁ0 ∝ r0.4 is shown for the magnetized wind, but the radial range
in equilibrium is not sufficient to check this fit.

The quantity Ṁw,unb,tavg is the true unbound wind computed
from time-φ-averaged versions of fluxes and the time-φ averaged
value of ut(ρ0 + egas + pgas)/ρ0 < −1, such that any circulation
is eliminated from the calculation (Narayan et al. 2012; Sa̧dowski
et al. 2013b). This includes both ingoing and outgoing flow (i.e.
we don’t choose the flow component based upon ur), so this gives
a conservative estimate of how much (if any) net unbound mass is
flowing out. This calculation works because most of the disk starts
(and remains) thermally bound. A fit of Ṁw,unb,tavg ∝ r1 is shown
for the true unbound wind, but the radial range in equilibrium is
not sufficient to check this fit.

The field line angular frequency ΩF ∼ ΩH/4 (as in BZ77’s
paraboloidal model) in the disk+corona+wind (i.e. “fdc” averag-
ing, for full flow except the highly-magnetized jet).

Fig. 24 shows the time-averages for the disk’s geometric half-
angular thickness (θd), the thermal half-thickness (θt, using the
density-weighted average), flow interface angular locations, reso-
lution of the MRI wavelength, and approximate α viscosity pa-

Figure 21. Quantities vs. time. Top Panel: Ṁout for magnetized wind
(Ṁmw,o, solid line, and mostly middle line), entire wind (Ṁw,o, short-
dashed line, and upper-most line), and jet (Ṁj, dotted line, and lowest
line). Next Panel: BH efficiency (ηH) for EM (solid line, mostly middle
line), MAKE (short-dashed line, mostly upper line) terms, RAD (long-
dashed line, lower line) terms. Next Panel: BH specific angular momen-
tum ( H) for EM (solid line, upper line), MAKE (short-dashed line, lower
line) terms, and RAD (long-dashed line, middle line) terms. Next Panel: θd

at r = {rH/rg, 5, 20, 100}rg with, respectively, lines: {solid, short-dashed,
dotted, long dashed} corresponding to the lowest to upper-most lines. Next
panel: αb at r = 10rg. Next Panel: Radiative luminosity at large distances
(Lrad,o, at r = 50rg from the optically thin region). Next Panel: rΨa for the
radius out to where there is the same magnetic polarity as on the hole (solid
line). Next panel: Magnetic flux on the BH per unit flux available in the flow
with the same polarity: ΨH(t)/Ψa(t). Bottom panel: ΨtH(t)/ΦH(t) ∼ 1/l, for
l mode of vector spherical harmonic multipole expansion of Aφ. In sum-
mary, the flow has reached a quasi-steady-state at late times. While the black
hole efficiency is order 20%, the radiation emitted at large radius from the
optically thin region only has an efficiency of order 1% and is of order the
Eddington luminosity.

c© 2013 RAS, MNRAS 000, 1–36



3D GRMHD Simulations of Super-Eddington Accretion 31

Figure 22. The time-angle-averaged densities, 3-velocities, and 4-field
strengths using a density-weighted average. Top panel shows rest-mass den-
sity (ρ0) as black solid line, internal energy density (egas) as black short-
dashed line, magnetic energy density (ub) as black dotted line, and radiation
energy density in the radiation frame (Ē) as long-dashed line. Middle panel
shows negative radial velocity (−vr) as black solid line, rotational veloc-
ity (vrot) as black short-dashed line, Keplerian rotational velocity (vK) as
blue short-dashed line, and α-viscosity theory radial velocity (vvisc) when
using pb in denominator for α = αb (blue solid line) and when choosing a
fixed α(θd)2 = 0.003 (blue dotted line). Bottom panel shows comoving 4-
field spatial components with r, θ, and φ components shows as solid, short-
dashed, and dotted black lines, respectively. The vertical red line marks the
ISCO. Vertical solid cyan lines show range from r = 12rg to 3 inflow times.
The short-dashed vertical cyan line marks a single inflow time. In summary,
the flow near the black hole has a flat rest-mass density profile, and the
magnetic energy density and radiation energy density dominate the internal
energy density. Also, the rotational velocity is very close to Keplerian.

rameter. The disk-corona and corona-jet interfaces trace the path
of the well-collimated jet out to large radii. The Qθ,MRI & 6 and
Qφ,MRI & 10 as required to marginally resolve the MRI (Sano et al.
2004). The value of S d,MRI ∼ 4, indicating that the magnetic field
has not reached the saturated state where a magnetically arrested
disk (MAD) or magnetically choked accretion flow (MCAF, that
occurs at high spin) would form.

6.11 Time-Averaged Angular (θ) Dependence

Fig. 25 is similar to Fig. 22 but for quantities vs. θ at four dif-
ferent radii. The time-averaged density is flatter than a Gaussian
distribution. The figure also shows that the total pressure is roughly
constant with angle as dominated by the radiation pressure.

Fig. 26 shows the horizon’s values of quantities related to the
BZ effect (Blandford & Znajek 1977). The simulation’s fluxes are
computed via Eq. (119). The “full BZ-type EM formula” referred
to in the figure uses the EM energy flux computed from equation 33
in McKinney & Gammie (2004), which only assumes stationarity
and axisymmetry (rather than also small spin in BZ77) and uses the
simulation’s ΩF(θ) and Br(θ) on the horizon. This figure shows that
most of the horizon is highly magnetized due to accretion occurring
through a magnetically compressed inflow.

Figure 23. The time-averaged angle-integrated fluxes. From top to bottom,
panels are: Total mass accretion rate (Ṁ0), inflow rate (Ṁin), jet outflow
rate (Ṁj), magnetized wind outflow rate (Ṁmw), entire wind outflow rate
(Ṁw), total specific energy accretion rate (Ė/ṀH), efficiency for the jet
(solid line) magnetized wind (short-dashed line) and wind (dotted line) and
true unbound wind (long-dashed line, lowest line), total specific angular
momentum accretion rate (  = J̇/ṀH), true unbound wind mass outflow
rate Ṁw,unb,tavg (solid line) and its power-law fit with power-law index 1.0
(short-dashed line), and field line angular rotation frequency per unit BH
angular frequency (ΩF/ΩH) for time-averaged versions of Ωd

F (solid line),
Ωc

F (short-dashed line), Ωe
F (dotted line), |Ωd

F | (long-dashed line), and |Ωc
F |

(dot-short-dashed line). These ΩF are averaged within the disk+corona part
of the flow. Power-law fits for mass inflow and outflow rates are shown
as short-dashed lines. In summary, inflow equilibrium is achieved out to
r ∼ 14rg, and there is a small true net mass outflow of unbound material.
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Figure 24. Other time-angle-averaged quantities. From top to bottom, pan-
els are: density half-angular thickness (θd , solid line) and thermal half-
angular thickness (θt , short-dashed line), disk-corona interface angle (θdc,
solid line) and corona-jet interface angle (θc j, short-dashed line), number of
cells per fastest growing MRI wavelength (Qθ,MRI, solid line ; Qθ,weak,MRI,
short-dashed line) with Qθ,MRI = 6 shown as dotted line above where the
vertical (θ) MRI is resolved, number of cells per fastest growing MRI wave-
length (Qφ,MRI, solid line ; Qφ,weak,MRI, short-dashed line) with Qφ,MRI = 6
shown as dotted line above where the azimuthal (φ) MRI is resolved, num-
ber of fastest growing MRI wavelengths across the full disk thickness
(S d,MRI, solid line ; S d,weak,MRI, short-dashed line) with S d,MRI = 1/2
shown as dotted line below where the MRI is suppressed, and viscosity
parameter (αb, solid line ; αb,eff , short-dashed line). In summary, the linear
MRI is active and numerically marginally resolved.

The agreement between the simulations and the BZ picture is
excellent for the highly magnetized regions, where roughly ΩF ∼

ΩH/2 near the disk-jet interface (here, ΩF is the time-average of
Eq. (136)). While the simulation is roughly consistent with BZ’s
paraboloidal solution, the equatorial ΩF is somewhat suppressed
due to the disk inflow, as expected (Gammie 1999). Also, near the
polar axes, ΩF is affected by ideal MHD effects and numerical floor
mass injection.

Figure 25. Similar quantities as in Fig. 22, except plotted vs. θ at
r = {rH/rg, 4, 8, 30}rg (respectively: solid, short-dashed, dotted, and long
dashed lines). If numerical density floors were activated at some space-time
point, then ρ0 = egas = 0 was set there. In summary, the disk is broader than
Gaussian and is supported by radiation pressure.

6.12 Space-Time Averaged Fluxes, Viscosities, Numerical
Quality Factors

Lastly, we show a summary of diagnostics computed as described
in section 6.7, and a similar set of diagnostics were computed in
McKinney et al. (2012) and can be compared. The diagnostics
were taken from time-averages computed between t = 4000M and
5596M for this model we identify as A0.94BpN100L20, which
identifies it as having spin (A) approximately a/M ≈ 0.94, a mag-
netic field (B) that is poloidal (p) and the field is normalized (N)
to have βmin ≈ 100 at t = 0, and the mass accretion rate per unit
Eddington (L) is of order Ṁ0/ṀEdd ∼ 20 (the Ṁ0/LEdd ∼ 100).
Quantities labelled i for “inner” are measured at r ∼ 10rg, while
quantities labelled o are measured at r ∼ 50rg. The mass inflow
(Ṁin,o) and total wind mass flow (Ṁmw,o) measurements at the outer
radius are not in equilibrium due to the short duration of the sim-
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Figure 26. Time-φ-averaged quantities and flux integrals on the horizon
as a function of θ. From top to bottom: 1) Field line rotational angular
frequency (ΩF/ΩH) for simulation (solid line), 1st-order-in-spin accurate
value for monopolar (short-dashed line) and paraboloidal (dot-long-dashed
line) BZ solutions ; 2) Rest-mass flux (ṀH) ; 3) Electromagnetic (EM, solid
line) and matter (MA, dot-short-dashed line, which rises at equator) effi-
ciency and radiation (RAD, dot-long-dashed line, which drops at equator)
efficiency (ηH), along with the full BZ-type EM formula without any renor-
malization (dotted line, which overlaps very well with solid line) ; 4) Elec-
tromagnetic (EM, solid line) and matter (MA, dot-short-dashed line, which
drops the most at equator) and radiation (RAD, dot-long-dashed line, which
drops the least at equator) specific angular momentum flux ( H = J̇H/ṀH),
along with the full BZ-type EM formula without any renormalization (dot-
ted line, which overlaps very well with solid line); 5) Gammie parame-
ter (ΥH) for the simulation (solid line), and the BZ model for the cases:
0th-order-in-spin accurate monopolar field (short-dashed line), 0th-order-
in-spin accurate paraboloidal field (dot-long-dashed line), and 2nd-order-
in-spin accurate monopolar field (long-dashed line). These BZ versions are
normalized so total magnetic flux is the same as in the simulation. Notice
how the 2nd-order-in-spin accurate monopolar BZ model fits the simula-
tion result quite well. For the last 3 panels, the divisor is (implicitly) ṀH
that has been fully angle-integrated to a single value. So, ηH, jH, and ΥH
show the angular dependence of ĖH, J̇H, and ΨH, respectively. In summary,
the agreement between the simulation and the BZ picture is excellent.

ulation, but we keep the measurements for comparison with tables
in McKinney et al. (2012).

For the rest-mass fluxes and ejection rates, the rest-mass fluxes
are normalized by ṀEdd, while the luminosity in the last column
is normalized by L̇Edd. These values show that the mass flow is
super-Eddington, while the radiative output at large distances (here
measured at r = 50rg in the optically thin region) is only near the
Eddington rate.

The wind quantities like Ṁmw,i (magnetized unbound wind at
r = 10rg), Ṁmw,o (magnetized unbound wind at r = 50rg), Ṁw,i

(total wind at r = 10rg), and Ṁw,o (total wind at r = 50rg) were
computed based upon measurements of fluxes at each instant hav-

ing ur > 0. However, the flow circulates and much of that motion
cancels-out.

So we also compute the quantities like Ṁw,unb,tavg,i (unbound
wind at r = 10rg) and Ṁw,unb,tavg,o (unbound wind at r = 50rg)
based upon first time-φ-averaging the fluxes, time-φ-averaging
ut(ρ0+egas+pgas)/ρ0 that is < −1 for an unbound flow, and only then
computing the spatial integral. This avoids including any short-
period circulations and measures the residual outflow from the ac-
cretion flow (Narayan et al. 2012; Sa̧dowski et al. 2013b). This in-
cludes both ingoing and outgoing flow (i.e. we don’t choose the
flow component based upon ur), so this gives a fairly conservative
estimate of how much (if any) net unbound mass is flowing out. Not
using ur > 0 as a restriction works because most of the disk starts
(and remains) thermally bound and so the disk does not contribute
to this measurement.

The true unbound wind at r ∼ 50rg is Ṁw,unb,tavg,o ∼ 0.1ṀEdd,
which is only about 1% of the mass that reaches the black hole.
This is probably an upper limit (see Narayan et al. 2012; Sa̧dowski
et al. 2013b).

The efficiency values show that the black hole has an effi-
ciency of about ηH ≈ 19%, which is quite similar to expected for
standard thin disk theory given by the Novikov-Thorne value of
ηNT ≈ 18%. Unlike the MCAF models in McKinney et al. (2012)
and MAD models in Tchekhovskoy et al. (2011, 2012a,b), these
models involve weak magnetic fields similar to many other models
published in the literature (McKinney & Blandford 2009). Interest-
ingly, in this simulation, the MA term dominates the EM term for
energy extraction from the BH, with the radiation absorbed con-
tributing to a significant decrement in efficiency. About half of the
EM energy extracted goes into the EM jet driven by the BZ mecha-
nism. The true unbound wind has an efficiency of ηw,unb,tavg,o ∼ 1%
by r ∼ 50rg, which is as efficient as the radiation (but this is proba-
bly an upper limit, see Narayan et al. 2012; Sa̧dowski et al. 2013b).

The spin-up rates show that the black hole is spinning down,
but only mildly so compared to the extreme spin down occurring in
MAD/MCAF simulations (McKinney et al. 2012). The spin-down
is dominated by the EM, MA, PA terms with negligible contribu-
tion by the radiation absorbed by the BH. The spin-down for the
spin chosen is comparable to those for weakly magnetized disks
(McKinney & Gammie 2004; Gammie et al. 2004), which have a
spin-equilibrium value of a/M ∼ 0.9. So we would expect a similar
spin-equilibrium for our models.

The α viscosities are order α ∼ 0.03, which is lower than those
in MADs/MCAFs where α ∼ 1. The quality factors show that our
simulation marginally resolves the turbulent structures in the disk
in all directions and for both the mass and field components. The
simulation marginally resolves the MRI with QMRI & 10. The field
has not reached the MAD/MCAF state as indicated by S d,MRI & 1
such that there are still about 4 full wavelengths that can fit verti-
cally inside the disk. This is also consistent with the relatively low
Υ ∼ 3. Even though the field is ordered and dipolar (|ΦH/ΨfH| ∼ 1),
it is relatively weak due to the limited available magnetic flux in
the initial conditions (as often used by many researchers).

7 SUMMARY

We have incorporated the M1 closure for radiation into the code
HARMRAD. Several radiative tests demonstrate the accuracy, ro-
bustness, and speed of the method in both the optically thin and
thick regimes in both unmagnetized and magnetized regimes.

We also performed a relatively low-resolution short-duration
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Table 5. Physical Diagnostics and Numerical Quality Measurements for model A0.94BpN100L20

Rest-Mass Accretion/Ejection Rates and Radiative Luminosity per unit Eddington

ṀH Ṁin,i − ṀH Ṁin,o − ṀH Ṁj Ṁmw,i Ṁmw,o Ṁw,i Ṁw,o Ṁw,unb,tavg,i Ṁw,unb,tavg,o Lrad,o

24 85 440 0.26 0.48 3.1 80 560 0.03 0.11 1.3

Percent Energy Efficiency: BH, Jet, Winds, Radiation, and NT

ηH ηEM
H ηMAKE

H ηPAKE
H ηEN

H ηRAD
H ηj ηEM

j ηMAKE
j ηmw,o ηw,o ηw,unb,tavg,o ηRAD

o ηNT

18.5 11 18 22.4 -4.42 -10.5 6.3 5.38 0.92 5.14 1.97 0.82 0.94 17.9

Spin-Up Parameter: BH, Jet, Winds, Radiation, and NT

sH sEM
H sMA

H sPA
H sEN

H sRAD
H sj sEM

j sMA
j smw,o sw,o sw,unb,tavg,o sRAD

o sNT

-0.162 -0.448 0.255 0.245 0.01 0.031 -2.17 -0.269 -1.91 -2.35 -26.8 -0.2 0.016 0.411

Viscosities, Grid Cells per Correlation lengths and MRI Wavelengths, MRI Wavelengths per full Disk Height, and Radii for MRI Suppression

αb,eff αb,eff2 αb αb,M2 αb,mag
Qn,cor,

{ρ0 ,b
2 }

Ql,cor,

{ρ0 ,b
2 }

Qm,cor,

{ρ0 ,b
2 }

Qθ,MRI,{i,o} Qφ,MRI,{i,o} S d,MRI,{i,o}
r{S d ,S d,weak }

MRI=1/2

0.029 0.029 0.42 0.28 0.28 21, 16 14, 10 8, 6 6, 6 12, 12 4, 4 -, -

Absolute Magnetic Flux per unit: Rest-Mass Fluxes, Initial Magnetic Fluxes, Available Magnetic Fluxes, and BH Magnetic Flux

ΥH Υin,i Υin,o Υj Υmw,i Υmw,o Υw,i Υw,o

∣∣∣∣ ΨH
Ψ1(t=0)

∣∣∣∣ ∣∣∣∣ ΨH
Ψ2(t=0)

∣∣∣∣ ∣∣∣∣ ΨH
Ψ3(t=0)

∣∣∣∣ ∣∣∣∣ ΨH
Ψa

∣∣∣∣ ∣∣∣∣ ΨH
Ψs

∣∣∣∣ ∣∣∣∣ ΦH
ΨfH

∣∣∣∣
3.2 0.47 0.91 2.1 4.3 3.4 1.1 1.7 0.72 0 0 0.96 0.96 1

fully 3D simulation of super-Eddington accretion onto a rotating
black hole with spin a = 0.9375 with Ṁ0 ∼ 100LEdd/c2 ∼ 20ṀEdd.
The magnetic field was chosen to be sub-MAD levels to focus
on the effects of radiative physics. The disk is essentially Kep-
lerian, with a substantial negative matter energy flux through the
horizon. There is no sign of the global Papaloizou-Pringle insta-
bility (Papaloizou & Pringle 1984), as likely due to turbulence
(Blaes 1987), but the magneto-rotational instability (Balbus &
Hawley 1998) drives turbulent accretion and winds. There is an
electromagnetically-driven jet in the polar regions, which we show
is powered by the Blandford-Znajek (BZ) mechanism. The radia-
tive luminosity is essentially near Eddington, but both the electro-
magnetic jet and radiative emission are geometrically beamed in
the polar regions, so the isotropic equivalent luminosity for the po-
lar regions is super-Eddington.

As applied to the cosmological growth of black holes, as dis-
cussed in the introduction and given by Eq. (3), the fiducial 3D
model with a/M = 0.9375 has a radiative efficiency of ηrad ≈ 1%
while the accretion efficiency remains high at ηacc ≈ 20% near
Novikov-Thorne values expected for an optically thick geometri-
cally thin disk. Over cosmological times, this allows growth from
M = 10M� to arbitrarily high M, which suggests that, even for
modestly super-Eddington rates of Ṁ0 ∼ 100LEdd/c2 ∼ 20ṀEdd, the
black hole spin does not limit black hole mass growth over cosmo-
logical times. In addition, while the spin-up parameter of s ≈ −0.16
shows the BH of spin a/M = 0.9375 will spin down, this rate is
similar to obtained in other comparable non-MAD GRMHD sim-
ulations (McKinney & Gammie 2004) for which the spin equilib-
rium is a/M ∼ 0.9. So we expect the black hole to remain rapidly
rotating during this super-Eddington accretion.

These simulations show that the GRRMHD code HARMRAD
is capable of accurately simulating optically thick or thin problems,
including accretion flows around rotating black holes. However,

the adopted M1 closure assumes the radiation is isotropic in a sin-
gle frame, which limits the ability of the closure to handle general
anisotropic radiation distributions. Also, our current M1 scheme is
based upon frequency integrated quantities. However, the M1 clo-
sure improves upon the flux-limited diffusion approximation. We
also include no Componization (Younsi & Wu 2013).

In addition, while the code is stable, accurate, and fast even
with our use of the high-resolution PPM scheme, in some cases
PPM exhibits non-uniform (due to random grid-scale oscillations)
convergence behavior as well as mild noise when the LAXF Rie-
mann solver is used at sharp discontinuities. We plan to continue
to improve PPM and the Riemann solve used to keep the high res-
olution of PPM while avoiding the oscillations and non-uniform
convergent behavior. We also plan to explore the full higher-order
IMEX methods provided in section 4.1, which are presented for
easy implementation into HARM/HARMRAD.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the on-
line version of this article: Movie file. Movie of the fiducial
model A0.94BpN100L20 showing the animated version of Fig. 20
(see caption alongside movie file for more detail) available at
http://www.youtube.com/watch?v=q2DeKxUHae4.
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