SC H 0 I—A R S H I P AT H A RVA R D Office for Scholarly Communication

DASH.HARVARD.EDU

DIGITAL ACCESS 10
HARVARD LIBRARY

Accuracy, Transparency, and Incentives:
Contrasting Criteria for Evaluating Growth Models.

Citation

Ho, Andrew D. 2012. Accuracy, Transparency, and Incentives: Contrasting Criteria for Evaluating
Growth Models. Paper presented at the conference on Value Added Modeling and Growth
Modeling with Particular Application to Teacher and School Effectiveness. College Park, MD:
Maryland Assessment Research Center for Education Success.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27471536

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:27471536
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Accuracy,%20Transparency,%20and%20Incentives:%20Contrasting%20Criteria%20for%20Evaluating%20Growth%20Models.&community=1/3345927&collection=1/3345928&owningCollection1/3345928&harvardAuthors=cc1f5e5485dda529635e88bc60ce8e15&department
https://dash.harvard.edu/pages/accessibility
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models. Paper presented at the conference on Value Added Modeling and Growth Modeling with
Particular Application to Teacher and School Effectiveness. College Park, MD: Maryland Assessment
Research Center for Education Success

The scope and complexity of modern educational accountability models make validation efforts
extremely difficult. Interpretations and uses of model results are often multitudinous, underspecified,
and subject to change over time. Targets of interpretation are less individual scores than aggregations
and adjustments of these scores, processed through a series of often ad hoc compositing procedures
and policy judgments. The models that determine school “Adequate Yearly Progress” or teacher ratings
may use statistical models but ultimately depend on a series of other decisions and support a range of
uses and interpretations. They are better described as accountability models or policy models.
Evaluating these models requires criteria beyond statistical bias and precision and should begin by
clarifying model function and purpose.

The current state of the art of validation theory is well described by Kane’s 2006 and 2013 expositions.
However, there remains a practical disconnect between validity theory, which benefits from well-
defined scores and clear statements about score use and interpretation, and accountability models in
education policy. In policy, there is arguably a benefit to poorly defined terms like “proficiency” and
“college readiness.” In this landscape, clear definitions and well specified theories of action may work
against consensus by providing footholds for disagreement. Ambiguity is particularly useful in U.S.
federal educational policy, to allow states and local districts the flexibility to which they are historically
accustomed under the 10" amendment of the constitution. Although regulatory bodies can enforce
specification of theories of action through, for example, guidelines and requests for proposals, the
incentives behind policy formation do not naturally result in the raw materials necessary for Kane's
“Interpretation/Use Arguments” (2013, p. 14). Much of the ambiguity arises from poor specification of
what “scores” in accountability models ultimately are, let alone the interpretations and uses that they
support.

This is no less true when it comes to “growth.” At the announcement of the Growth Model Pilot
Program (GMPP) in 2005, Secretary Margaret Spellings never defined what “growth” meant (U.S.
Department of Education, 2005). The announcement insisted only that models adhere to seven “bright
line principles,” such as “ensure that all students are proficient by 2014,” and that the model “must
track student progress.” Subsequent guidelines from the peer review panel similarly left latitude for
growth definition and model specification (U.S. Department of Education, 2006). The guidelines at the
announcement of the Race to the Top competition seemed to be more explicit, and defined growth as



“the change in achievement data for an individual student between two or more points in time” (U.S.
Department of Education, 2009, p. 59742). However, it then continued, “a State may also include other
measures that are rigorous and comparable across classrooms,” along with its motivations, “to allow
States the flexibility to develop data and assessment systems” (p. 59742). This left space for GMPP
models to continue and effectively took no position on the definition of “growth.”

As the final report of the GMPP described (Hoffer, et al., 2011), states took a variety of approaches to
operationalizing growth. Models have continued to proliferate in the Race to the Top era. In the first
part of this chapter, | review four prototypical models and demonstrate that these models
operationalize growth using related but fundamentally distinguishable approaches. In the second part
of this chapter, | articulate three contrasting criteria: predictive accuracy, transparency, and incentives,
and | contrast the models on these dimensions. The key observation that this chapter supports is that
models that excel at certain criteria are substandard at others. This reinforces the need to explicate
desired theories of action and criteria early, and select models, metrics, and reporting principles that
align with these. A secondary observation is that the functional unit of analysis is less a model than a
metric, where an important factor is the level of aggregation at which it functions. A feature of a metric
at one level of aggregation may be a flaw at another level of aggregation. Although validation of growth
metrics is not the purpose of this chapter, | hope to provide the raw materials for validation by clearly
articulating models and metrics and identifying criteria along which they contrast.

Contrasting Foundations Underlying Growth Models

The proliferation of growth models in a policy space constructed deliberately to allow for flexibility has
led to confusion among terms and definitions. Here, | follow the general framework and nomenclature
provided by Castellano and Ho’s A Practitioner’s Guide to Growth Models (2013a), with some liberties
taken for simplicity of exposition. In their guide, Castellano and Ho attempt to be explicit about each
growth model and include its aliases and statistical foundations. In addition, they articulate the primary
interpretations that the model supports and the levels of aggregation at which they are supported.

Table 1, below, shows a simplified version of their framework adapted to suit this exposition. | will
describe column headings and then discuss each growth model in turn.

Table 1. Growth models, their statistical foundations, and the growth metrics they support.

e . Growth Description Growth Prediction
Model Statistical Foundation
Student Level School Level Student Level School Level
) . . ) Difference: Current Score ) Percentage of . Percentage On
Gain-Based Trajectory, Slope, Difference, Gain ) Gain Score . Trajectory Model
Minus Past Score Acceptable Gains Track
Categorical. Value of Catego Averaged Values of Projected Average Projected
Categorical Value Table, Transition Matrix _g . gory e (Proj ( & !
Changes in Categories. Change Category Changes Category) Category)
Student Growth  Colorado Model, Betebenner Model, Quantile Regression. Student Growth Median Student Student Growth Percentage On
Percentile Percentile Performance Index Conditional Status. Percentile Growth Percentile Projection Track
o Regression Model, Residual Model, Regression. Residual, R o Percentage On
Projection Average Residual Projection Model

Multilevel Model, Hierarchical Model Conditional Status. "Residual Gain" Track



The first column of Table 1 highlights the model names as | will refer to them in this chapter. The gain-
based model is an intuitive and largely straightforward model that requires a vertical scale. The
categorical model is a flexible framework that considers student status in a small number (usually 4 to 9)
of categories and operationalizes growth in terms of transitions between categories (Hill, et al., 2006).
The Student Growth Percentile (SGP; Betebenner, 2009) model expresses growth in terms of percentile
ranks using quantile regression. Finally, the projection model uses regression-based methods to define
growth and make predictions.

The second and third columns list aliases and statistical foundations of the models, respectively. Aliases
are essential given the rapid proliferation and casual use of terms relating to growth. The categorical
model is also known as a value table or a transition matrix model. The projection model is often
confused with the trajectory model, as the metaphors of projection (like a movie projector) and
trajectories (like a ball through the air) are similar. However, the two are fundamentally different,
practically and statistically. The statistical foundations of the gain-based model are intuitive change
scores. The categorical model uses changes in categories, and SGPs and projection models use
conditional status: the observed status of students compared to their expected scores conditional upon
past scores.

The final four columns list the interpretations that the models support and the level of aggregation at
which the interpretations are supported. Table 1 shows that a given model can support two different
primary interpretations, growth description and growth prediction. This contrasts with Castellano and
Ho (2013a), who describe the gain-score and trajectory metrics, for example, as separate models
entirely. Growth description refers to inferences about growth up to and including the most recent
data. Growth prediction refers to inferences that rely on prediction, using past growth data, about
some future time point. Table 1 also shows that the metrics support interpretations at different levels
of aggregation. Here, we focus only on the student level and the school level as illustrations. As | note
in the introduction to this chapter, the rules of aggregation must be clearly specified before beginning a
validation effort. Simply distinguishing between two levels of aggregation is hardly sufficient to
represent the complex decisions that go into, for example, Adequate Yearly Progress calculations, but it
does begin to capture the reality that different “scores” function at different levels and have different
implications.

The metrics listed are examples and are not meant to be exclusive or exhaustive. For example, “percent
acceptable growth” is rarely used in practice, and the metrics listed under growth prediction for the
categorical model are listed in parentheses to emphasize that they are largely theoretical. Part of the
challenge of validation is that new metrics can be created from the same raw data on the whims of any
analyst at any time. These metrics can imply or inform different uses, adding new columns and new
rows to Table 1 far faster than validation efforts can follow. Nonetheless, the metrics listed in Table 1
are good examples to illustrate the thesis of this chapter, that growth metrics differ, and that these
differences interact with criteria such that some metrics are good for some things, and other metrics are
good for others. In the next subsections, | briefly review each growth model and some of the metrics
that they support.



The Gain-Based Model

The first and arguably most intuitive growth model is the one seemingly defined in the Race to the Top
guidance as, “the change in achievement data for an individual student between two or more points in
time” (U.S. Department of Education, 2009, p. 59742). The aliases listed in Table 1 are generally
synonymous with this idea, that there is a trajectory that each student has over time that can be
described as a slope or a gain. The statistical foundation is the simple difference between a current year
or otherwise recent score and a past year or otherwise past score. Extensions are straightforward and
include estimating trajectories over more than two points in time or allowing for nonlinear trajectories,
in the tradition of longitudinal data analysis (e.g., Singer & Willett, 2003). However, as a matter of
policy, models are generally kept fairly simple.

Gain-based models can support both growth description and growth prediction, for both students and
schools. A commonsense metric for student-level growth is the gain score, the simple mathematical
difference between current and past scores. Gains can be compared to “acceptable gains” by some
standard setting procedure, and a school level metric could be the percentage of acceptable gains.
Although gain scores are intuitive, they become problematic in that they rely on vertical scaling
decisions, whereby expected gains may differ in magnitude across grades. Although average gains may
be an accurate representation of the amount of learning in each grade on an absolute scale, this may be
more attributable to the typical developmental trajectories of children than to schools. Straight
comparisons of gains on developmental vertical scales are thus inappropriate for comparing the amount
of growth for which schools may be responsible.

Typically, averaging across grades is only done after setting different standards within grades, asin a
“percentage of acceptable gains” metric. However, vertical scales may also be problematic even with
these adjustments, as higher scoring students may differ in expected gains over lower scoring students
within any grade. This motivates many of the subsequent models, particularly those that use
conditional status. In spite of these issues, gain-based models are linked closely to intuitive definitions
of growth, and, as | argue later in this chapter, their transparency is an asset.

An alternative approach to setting standards for acceptable growth is to make predictions about the
future and rely on standards set at that future time point. The trajectory model is a gain-based
approach to making predictions about growth to a future time point. The most straightforward
approach is to assume that the past gain extends into the future at an identical rate. If a student scored
a 10 last year and a 15 this year, then the trajectory model suggests that the student will score a 20 the
next year and a 25 the year following. | introduce some informal notation here, where X, refers to a
student score X at some grade g. This allows representation of a student gain score from grade 6 to
grade 7 as: X; — Xg. In the manner of growth prediction, if one is interested in the predicted score at
grade 8, the trajectory model estimate of this future status follows:

)’(\éraj = X7 + (X7 - Xﬁ) = _X6 + 2X7 (1)



To determine whether this past growth is adequate, we may compare this student’s predicted future

score to some benchmark cut score, Xg¢yyp- If Xémj > Xgcur, then we may say that this student is “on
track.” A natural accounting of the school level growth is the simple percentage of students who are on
track. An alternative approach, not listed in Table 1, is the average predicted future score. This
contains no more information than the average gain score and suffers from the same dangers of vertical
scaling as those mentioned earlier.

It is also worth noting that this expression of acceptable growth, “if the predicted score meets or
exceeds the future standard,” is equivalent to an alternative, seemingly different expression, “if the
growth exceeds that needed to reach the standard.” For this latter criterion to be met, the difference
between grade 6 and the cut score at grade 8, or Xg.,,; — X5, must be halved by grade 7 to be on track,

Xgcur—X. . . : . otraj
X7 2 =%—=2 1+ X,. This is an entirely equivalent expression to RTY > Xgeue.
The Categorical Model

The categorical model, also known as the value table or the transition matrix model, divides each within-
grade score scale into a smaller number of ordered categories (Hill, et al., 2006). Table 2 shows
Delaware’s value table for the 2009-2010 academic year (Delaware Department of Education, 2010). A
student who scores in Level 1A in Year 1 but Level 2A in Year 2 receives a growth score of 225, as shown,
and the average across students in the school represents the school-level score. The model relies more
than others on the selection of cut scores, where transitions between categories function as student
growth data. Logically, the cut scores between Level 1B and Level 2A must have some basis for
equivalence.

Table 2. An example of a categorical model from Delaware’s 2009-2010 school year.

Year 2

Level
Year 1 Level Level Level Level
Level 1A 1B 2A 2B Proficient

Level 1A 0 150 225 250 300
Level 1B 0 0 175 225 300
Level 2A 0 0 0 200 300
Level 2B 0 0 0 0 300
Proficient 0 0 0 0 300

http://www.doe.k12.de.us/aab/accountability/Accountability Files/School Acct 2009-2010.pdf




The categorical model is flexible in the sense that values for particular transitions between categories
can be adjusted to user specifications. As Hill, et al. (2006), demonstrate, careful selection of values for
particular transitions can result in a pre-growth-era status model, where only proficiency is counted, or
something that seems more gain-based, where the gain is quantified as the number of levels that are
gained or lost. The cost of this flexibility is the loss of information that comes with categorization, where
the model cannot distinguish between the very highest and the very lowest scores in any given category.
Although this may seem inappropriate for comparing growth for individual students, at the aggregate
level, the errors due to coarse categorization are diminished, particularly as the numbers of categories
increases. However, at a certain number of categories, judgments that support differing values become
more difficult to distinguish and justify, and the model becomes likely to reduce to something similar to
a gain-based model, with a number of categories approaching the number of score points.

The categorical model technically provides growth descriptions. However, the values that are selected
for the categorical model may be motivated by inferences about whether a particular transition
between categories is sufficient to warrant an “on track” designation for students making that
transition. To the extent that these inferences inform the choice and interpretation of values, the
function of a categorical model is one of growth prediction, as well as growth description. In the case of
some growth models, like lowa’s model under its Growth Model Pilot (Hoffer, et al., 2011), this took the
form of values like those in Table 2, except any nonzero value was simply a 1. This was based in part on
the argument that a gain in categories established students as on track to proficient. In this way, the
categorical model can support both growth descriptions and growth prediction. | evaluate models on
the basis of predictive accuracy in the second half of this chapter.

The Student Growth Percentile Model

Betebenner (2009) introduced the Student Growth Percentile (SGP) metric as a normative approach to
describing student growth. The SGP metric uses nonlinear quantile regression to support conditional
status interpretations, where the current status of a student is referenced to expected percentiles given
the score history of students. Although the name of the metric seems to indicate a percentile rank of
growth scores as measured by gains, the statistical foundation is one of conditional status, where a
student’s current status is considered in light of expectations given past scores.

Castellano and Ho (2013b) review the SGP estimation procedure in detail. Fitting the statistical model
can be time consuming for large datasets and uses an open-source R library (Betebenner, 2013). The
SGP is calculated by first estimating 100 nonlinear quantile regression manifolds, for quantiles from .005
to .995, where the outcome variable is the “current” score and the predictor variables are all prior year
scores. Castellano and Ho (2013b) demonstrate that this is practically similar to a straightforward linear
regression model of current year scores on past year scores, where the SGP corollary is the percentile
rank of residuals. In the case of SGPs, the nonlinear manifolds may cross, particularly at the extreme
score ranges. The SGP package implements an “uncrossing” procedure to prevent nonmonotonicity,
where higher scores might receive lower SGPs even conditional on past scores. After uncrossing, any
student with a observed score that is located between, for example, the .325 and the .335 quantile



manifolds receives an SGP of 33. The school-level SGP metric used most often in practice is the median
SGP, which Betebenner (2008) has argued for on the basis of the ordinal nature of percentile ranks.

The SGP package also contains an option for growth prediction, in the form of Student Growth
Projections (Betebenner, 2013). These are an intriguing hybrid of a trajectory model and a regression
model. The projections are often displayed in a fan-shape spreading out from a student’s current status
(Betebenner. 2009), where higher portions of the fan correspond to the predicted score if a student
earned a high SGP, and lower portions of the fan correspond to the predicted score if a student earned a
low SGP. The scores that support these fan-shape displays are estimated from a previous or older
cohort that has data relevant to the grade over which a prediction is made. For example, the data that
supports a prediction for a 6™ grader to her 7™ grade year could arise from a previous cohort of 6™
graders who now have 7'" grade scores. Without these “reference cohorts,” empirical predictions
cannot be estimated.

Although Student Growth Projections support visual displays, they are also used to make specific
predictions in practice (Betebenner, 2013). In order to be “on track,” students are assumed to maintain
their current SGP over time. This is an explicit prediction of future status and growth. If a student’s
future score exceeds some cutoff such as “proficiency,” then the student is determined to be on track.
Equivalently, if the student’s SGP exceeds the minimum SGP that must be maintained to reach the
future cutoff, then the student is on track. The logic of the equivalence of these two statements
parallels the analogous equivalence demonstrated in the section about trajectory models. Importantly,
as | will demonstrate, the assumption that students maintain their current SGP over time, rather than
maintain a more neutral SGP of 50, is an appeal to intuition more than statistics.

Student-level growth prediction can take on many reporting forms, from the fan-shaped graph
mentioned earlier to a simple dichotomous judgment about whether a student is on track. However,
the direct implication of the student-level Student Growth Projection metric, free from the vagaries of
standard setting in future grades, is captured by the actual predicted score in the future, assuming the
current SGP is maintained. A school-level metric could be constructed by averaging predicted scores,
although differing score scales across grades would likely make this problematic. A simpler school-level
metric is the percentage of students who are on track: an average of the dichotomous student-level
judgments. Again, many alternative aggregation schemes exist in the expanding universe of
accountability models, such as the “adequate growth” designation in Colorado (Colorado Department of
Education, 2009).

The Projection Model

The projection model uses more conventional regression techniques to describe and predict growth.
The “projection” descriptor most often refers to the purpose of growth prediction, and Castellano and
Ho (2013a) describe the model as serving this purpose in their guide. However, the regression-based
statistical foundation lends itself well to growth description, also, particularly in the form of residuals or,
as they are occasionally described (sometimes with due criticism, e.g., Rogosa, 1995), “residual gain



scores.” The student-level score is the simple difference between a student’s observed score and her
expected score given past scores. For a seventh grader with one prior-grade score from grade 6, this
can be expressed simply as e; = X; — X,, where X, = by + bgX¢. The regression parameter estimates,
by and bg, can be estimated by simple ordinary least squares, although a variety of alternative models
and estimation procedures are available to suit the particular features of the data.

A practical feature of the projection model is that it does not require a vertical scale or any argument for
a common scale across grades. As an expression of a deviation from an empirical expectation, the scale
of the residual is the scale of the outcome variable, that is, the scale of the current-grade score. An
alternative approach proposed by Castellano and Ho (2013b) involves taking the percentile rank of a
student’s residual in the distribution of all residuals. As they note, this Percentile Rank of Residuals
(PRR) metric is nearly indistinguishable from SGPs in many real data scenarios.

For a school-level metric, a school-level average of residuals would be one approach, although this
would be problematic when scales are not comparable across grades. This problem could be addressed
in part by standardizing current-grade scores prior to regression, although an average across grades
would nonetheless make the implicit assumption that standard deviation units are substantively equal
across grades. Multilevel models are another possibility, where the school level metric could be a fixed
or random intercept, although cross-grade comparisons remain complicated.

A simpler approach to a school-level regression-based metric involves taking a percentage of acceptable
residuals, in the same way that a percentage of acceptable gains can be calculated for gain-based
models. This requires cut scores articulated across grades, and, arguably, the assumption that cut
scores are well articulated across grades is nearly as unrealistic as the argument that scales are
comparable across grades. However, an exhaustive critique of all possible metrics is less the purpose of
this chapter than acknowledging the proliferating number of metrics and the contrasting criteria on
which they may be evaluated.

The projection model is particularly useful and is arguably even designed for optimizing prediction. For
this purpose, as with Student Growth Projections, a reference cohort is needed that either uses a past
cohort or an older cohort with the relevant grade-level data. For the purpose of predicting a future
grade 8 score, for example, the projection model estimate takes the following form,

X" = b + biXe + biX, (2)

Here, the b statistics have asterisks to denote that they are estimated not from the current cohort,
which likely does not yet have grade 8 scores from which to estimate these parameters. Instead, these
parameters are estimated from data from a past or older reference cohort. In contrast with Equation 1,
which has no constant and fixed coefficients of -1 and 2, respectively, the coefficients for projection
models are generally positive, with coefficients of larger magnitudes linked to proximal grades where
partial correlations are higher. The weights of the projection model are empirically derived, whereas
the trajectory model represents more of an aspirational, theoretically driven prediction.



The individual-level growth prediction is XP"%/. As with previous metrics, this predicted score can be
compared with a cut score, X,,¢, and an “on track” designation may be assigned when XP7%/ > X ... A
possible school-level metric is then the percentage of students who are on track. Importantly, the
growth description and growth prediction functions are more fundamentally distinct here than in the
gain-based, categorical, and SGP models. Although residual metrics and predicted scores use the same
underlying regression machinery, the scores for the residual metric are clearly residual-based, focusing
not on the predicted current score but the discrepancy between the observed score and this
expectation. In contrast, the growth prediction machinery focuses solely on the expected future score,
and in fact has no observed future score from which to frame departures from this expectation.

The distinction between growth description and growth prediction is less clear under the SGP approach,
where the two concepts are linked conceptually. By assuming SGPs are maintained into the future, the
Student Growth Projections continue to be driven by residuals. As | will demonstrate in the remainder
of this chapter, this intuitively appealing consistency comes at the cost of predictive accuracy.

Contrasting Criteria for Evaluating Growth Models

In the second half of this paper, | contrast criteria for evaluating growth models. | focus on three in
particular, predictive accuracy, transparency, and incentives. The first criterion, predictive accuracy, is
largely applicable to growth metrics from the right side of Table 1. For students, this includes the
trajectory model, student growth projections, and the prediction-oriented projection model. Predictive
accuracy is a criterion that lends itself well to quantification. For continuous outcomes, a
straightforward criterion is the root mean square deviation, RMSD, for example, for a grade 8 score,

RMSD = \/E ((xs — %s)°) (3)

This is estimable as the square root of the average squared deviation between observed and predicted
scores. The RMSD is interpretable as the expected magnitude of the discrepancy between observed and
predicted future scores. However, in the context of school evaluation and accountability, | argue that it
would be shortsighted to select a model based on predictive accuracy alone. As a point of reference, it
is trivial to assert that a dataset that allowed for perfect prediction would be not only unrealistic but
undesirable in the context of education. If knowing past scores allowed for extremely precise
predictions of distal future scores, that would be a damning testament either to the relevance of all
intervening activity between present and future or the relevance of the outcome measure itself. At
best, one would wish for a data structure that allowed for precise prediction in the absence of a
treatment but enabled policy models that would degrade that prediction over time, as, presumably, the
effect of the policy model had some impact.

Arguably, then, the point is not to have a model that makes predictions that end up being true, but a
model that provides accurate information about what will happen if no intervention is taken, and a



model that encourages interventions that result in this prediction being, ideally, biased in the negative
direction. Nonetheless, it is desirable, all else equal, to have a model that affords accurate predictions,
as this will best inform users about how to render model predictions inaccurate in the negative
direction. From this perspective, | introduce the RMSD as a criterion, but not the sole criterion from
which to evaluate models, and | evaluate models along this criterion in the next section.

The second criterion, transparency, is far less amenable to quantification. | hesitate to label any of these
models as inherently transparent or lacking in transparency, as clear explanations and reporting to key
constituents can increase transparency. One might imagine a transparency criterion that asks target
constituents whether they can replicate the model results themselves. Another facet of transparency is
the ability of users to explain the growth metric to others. As students, parents, teachers, and
administrators are increasingly invested in and affected by assessment results, their ability to replicate
and interpret the results, or feel that they could, is essential. Whereas a statistical model that leads to a
research finding may be a black box to the vast majority of the public, an accountability model will be
less effective if it is perceived as opaque.

The third criterion concerns the incentive structures that the model and metric support. One might
evaluate the incentives of a model by asking, is the model likely to lead to desired responses by
constituents? This said, incentives are less a property of a particular model as much as a property of a
particular metric. As noted in the introduction, the increasingly complex and layered design of
accountability metrics can alter the incentive structure beyond what any underlying model may initially
establish. For simplicity, however, | will address the incentives of particular models and metrics, in
general, to establish lines of contrast between models of interest, acknowledging that alternative
downstream manipulations of metrics may alter incentive structures. | will also reflect on interactions
between the second and third criteria, where transparency generally works to enhance the impact of
the underlying incentive structure, whether those incentives are desired or not.

Predictive Accuracy

In their final report of the GMPP, Hoffer, et al. (2011) used real data analyses to compare the predictive
accuracy of three of the four models in Table 1, excepting SGPs. They found consistent rankings, where
the projection model had the highest predictive accuracy, and the trajectory and transition models were
a somewhat distant second and third, respectively. In this section, | provide some theoretical results
that frame the findings and anticipate magnitudes of differences more generally.

First, for convenience, | consider a generic correlation matrix, R, for cross-grade scores, with a common

between-grade correlation of . The matrix requires at least three grades, a current grade, a past grade,
and a future grade to which scores are predicted. Note that this functions as the data from a reference

cohort, as no current students have future scores from which to estimate projection models.



This is a caricature of a real correlation or covariance matrix, and there are three practical concerns
about its generalizability. First, the correlation matrix does not reflect the general and unsurprising
finding that correlations between proximal grades are higher than correlations between distal grades.
Second, the correlation matrix does not reflect the general finding that correlations between higher
grades tend to be higher than those between lower grades (see Castellano & Ho, 2013b, for examples).
Third, by using a correlation matrix instead of a covariance matrix, the variance of scores within grades
is constrained to be equal. Although this is a fairly common feature of many across-grade scales, many
developmental score scales display dramatic increases in variability toward higher grade levels. This
does not affect the practical results for regression-based models but has implications for the accuracy of
the trajectory model. Nonetheless, the benefits of this artificial representation is a clean demonstration
of the relative predictive accuracy of models.

For example, for the projection model, we can use r to refer to the correlation, and k to the number of
total scores that students have from which they may make predictions. The correlation matrix for
grades 6 (past grade), 7 (current grade), and 8 (projected grade) is the matrix R with dimensions 3 X 3,
and here k = 2 available scores. For a current grade (g — 1) to some future grade, g, one year into the
future, the estimated projection equation, following Equation 2, is, Xgmj =by+byg_1Xg_1+ -+

bgy_ X4k No asterisks are necessary here, assuming that the correlation matrix for the target sample
matches that from the reference sample. From basic regression principles, we can derive the RMSD for
the projection model as follows:

kr?

RMSD,oi = [1——F——
proj 1+ (k—1)r

Similarly, we can derive the RMSD for the trajectory model, under the assumption that an “average
gain” model is used, where the difference score is calculated from by subtracting the earliest grade
score from the current grade score. This is equal to the average of consecutive gains from year to year.
For example, if a student’s score trajectory when k = 3 is 5, 10, 25, then averaging the two gain scores,
(5+ 15)/2 = 10, is equivalent to taking the current grade score, subtracting the earliest grade score,
and averaging by the number of years, (25 — 5)/2 = 10. The predicted score, following Equation 1, is

otraj Xg-1—Xg—k . . . .
thus, Xgm] =Xg1 + g;{—lg. Under these assumptions, and using the same correlation matrix, R,

we can derive the RMSD for the trajectory model as follows:

k
RMSDtTaj = 2(1 - T') (1 + m)



Figure 1 shows the root mean square deviations over nonnegative correlations for k = 2 ... 5 available
scores. Itis clear that the predictions of the trajectory model are dramatically worse than those of the
projection model. For illustrative magnitudes of grade-to-grade correlations, from 0.6 to 0.8 (see
Castellano and Ho, 2013b, for examples), the RMSDs for projection models are from 0.5 to 0.75
standard deviation units. The trajectory model RMSDs are 1.5 to 2.0 times as large, and this is the same
factor by which confidence intervals would be larger. In absolute magnitude, the trajectory model
RMSDs range from around 0.75 to 1.5 standard deviations in magnitude. This is a considerable amount
of additional predictive error.

Figure 1. Theoretical root mean square deviations for prediction of a future grade score one year in the
future. Results shown for projection and trajectory models, by common intergrade correlations and the
number of available years of data for prediction.
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For categorical models, the predictive accuracy depends upon the number and location of cut scores as
well as the values in the value table. Values can be chosen that make the model more like a trajectory
model, or values may be chosen that make the model function more like a regression model (Hill, et al.,
2006). If values are chosen to match any particular model, however, one can be assured that the
predictive accuracy will be lower given the loss of information inherent in categorization. Hoffer, et al.
(2011), show that, in terms of correct classification rates, categorical models designed to match



trajectory models have lower correct classification rates, sometimes by one or two percentage points
but also by more than 10 percentage points depending on the subject and grade tested.

To estimate RMSDs for SGPs, consider the percentile rank of residual (PRR) analog to SGPs introduced by
Castellano and Ho (2013b). They show very high correlations with SGPs as well as higher RMSDs when
regression assumptions are met. In an ordinary regression context, we may extend the PRR framework
to mimic the Student Growth Projection framework. As described in the previous section, Student
Growth Projections are akin to making a prediction and then adding back the residual that corresponds
to the SGP. To understand the implications, we first acknowledge that residuals from a current
regression, say X, on Xg,and residuals from a future regression, say, Xg on X;and X, are uncorrelated
by design.

Next, by adding the residual in grade 8 that corresponds to the percentile rank of residuals in grade 7,
we add back the same amount of conditional variance in Grade 8 as the Grade 8 error variance itself.
This effectively doubles the prediction error, and we obtain the result,

RMSDyr = V2RMSD,y,.

When there is prediction one year into the future, the RMSD of student growth projections is at least
V2 =~ 1.414 times that of projection models if regression assumptions are met. In practice, with
prediction one year into the future, the predictive accuracy could be slightly worse if regression
assumptions are met, as the quantile regression splines will result in overfitting, or the accuracy could
be slightly better if regression assumptions are not met and the SGP model succeeds at capturing the
shape of the multivariate population distribution. If predictions are extended farther into the future, as
they are in practice, the predictive accuracy of projections will decline considerably, as residuals are

Ill

layered from one year to the next. In short, assuming a student retains residual “momentum” is
unrealistic one year into the future but is even less realistic across subsequent years. The predictive
accuracy of student growth projections thus predictably varies across students with different SGPs and
declines for students with noncentral SGPs (closer to 1 and 99) and for projections multiple years into

the future.
Transparency

Transparency is a slippery criterion that is not inherent to any metric but relies on the reporting of the
metric and clarity of the explanations of the appropriate uses that the metric supports. Earlier in this
section, | observed that transparency is difficult to quantify, and | imagined hypothetical approaches to
operationalize transparency such as asking constituents whether they can replicate model results or
teach others its tenets. | also argued that the impression that people have about a model may be more
important than whether or not they actually understand how the model works. The question may
arguably be about whether the actions that users take are defensible, not whether they can explain the
precise chain of reasoning that leads to this action. | begin this discussion of transparency with the



metric that highlights this contradiction, between transparency as a feeling about a metric and
transparency as an ability to understand a metric: SGPs.

| alluded to an initial argument against the transparency of SGPs in an earlier section. The metric
appears to suggest a percentile rank of scores, particularly those that might be operationalized by a
gain-based difference score or a slope estimated through a score trajectory over time. This percentile
rank of gain scores is not what the metric represents. It instead provides a location in the conditional
distribution of current scores given past scores. This is conditional status, as reflected in Table 1. A
second charge against the SGP metric may be levied on the basis of the complex statistical procedures
that support estimation. A routine that estimates 100 nonlinear quantile regression manifolds through a
multidimensional surface and then “uncrosses” crossing manifolds is difficult even for many trained
statisticians to follow.

On the other hand, these arguments have clear rebuttals. Arguably, a user who misinterprets an SGP as
the percentile rank of a gain score may also confound that interpretation with the interpretation that is
actually supported by the metric: Is the student performing better than expected given past scores? The
percentile rank of a gain score can be deeply problematic if absolute gain scores are not of interest.
Attribution of high percentile ranks to student, teacher, or school effort may be confounded by scaling
issues even more than conditional status metrics are. By this argument, users who make inferences
about absolute growth but desire information about expectation-referenced growth are being given the
information they desire even if they do not know that they desire it.

The complexity of the SGP model is also offset by a remarkable degree of accessibility via the statistical
program, R, which is free and whose libraries are open-source (Betebenner, 2013). This allows the
procedures to be used, evaluated, and expanded by anyone who has sufficient technical proficiency. In
addition, the SGP model comes packaged with a set of striking visual displays of information, some of
which are included in Betebenner’s 2009 article, and others of which are easily accessible in online score
reporting tools such as http://www.schoolview.org/. Although a user may not be able to articulate

precisely how an individual or aggregate-level SGP statistic should be interpreted or what its
implications may be in the face of error, the smooth reporting interface and complete accessibility of its
procedures represents a form of transparency that rivals and exceeds many other statistical metrics that
function in accountability models.

The categorical model rates highly on the transparency criterion. By providing users clear tables with
explicit values, Hill, et al. (2006), demonstrate that interpretations about what sorts of improvements
are needed, and for which students, are straightforward. The notable threat to transparency is the
defensibility of the standard setting process by which cut scores are set and the setting of values
associated with particular transitions. If cut scores are not articulated to carry the same meaning across
grades and over time, interpretations about the kinds of progress needed will be flawed. Castellano and
Ho (2013a) describe the process of setting cut scores and values in a categorical model as that of
defining an “implicit vertical scale,” where the cut scores and values interact to effectively assign a
weight to transitions along a particular region of a vertical scale. Even if no vertical scale actually exists,



the weights and cut scores create an effective scaling that has implications similar to that of a vertical
scale.

The trajectory model has a similar level of transparency to that of the categorical model, although its
transparency depends in part on a clearly anchored or otherwise well-defined vertical scale. It
operationalizes growth in an arguably intuitive fashion, where growth is measured along some vertical
scale, and time is on the horizontal axis. In contrast, the projection model, which | argue is less intuitive,
cannot be displayed graphically with time on the horizontal axis without some constraining assumptions.
In a projection model, time is only represented to the extent that correlations between proximal grades
are higher than correlations between distal grades. Although the metaphor of “projection” in a growth
model suggests and extension over time, the estimation is based on regression and thereby conditional
status.

Both the trajectory and the projection model can have their transparency enhanced by thoughtful
displays of information. For the trajectory model, the natural representation is one of scores over time.
For a projection model, the natural representation is an equation, with estimated weights, where users
are able to plug in scores to either get an expected current score. This expected score may be compared
to a current score, where the difference is a residual gain score. Or the expected score may be derived
from an equation that was estimated on reference data, for a prediction of future status.

Comparing these past two sections, it is clear that maximizing predictive accuracy, which can be done
with projection models for future status, may not be the path to maximizing transparency, whereas a
transition model or a trajectory model may be more transparent. In the next section, | discuss a third
criterion concerning the incentives that are set by growth models, for students or those associated with
their aggregated scores.

Incentives

Responses to incentives depend in part upon transparency. If a score report does not communicate
actionable differences among students or schools, users of model results will not know or care to
respond to model incentives. Assuming adequate transparency, however, the obvious incentive
supported by growth models is to maximize growth, however that growth is operationalized. This often
manifests in a presumably desired response, where higher scores are achieved in current years, over
and above past scores. However, there are alternative strategies for maximizing growth metrics that are
unlikely to be desired responses.

As a general example, the trajectory model in Equation 1 is maximized when either current grade scores
are high or when previous grade scores are low. A cynical approach to maximizing gain scores involves
artificially deflating initial scores for the first grade that is tested, an approach that | refer to as
“sandbagging,” after a similar term in sports, from golf handicapping to concussion tests, where early
performance is artificially deflated to make subsequent performance results seem high by comparison.
As Table 2 makes clear, sandbagging is possible for categorical models, as well, and can be visualized as



artificially moving up in any particular column, acquiring lower Year 1 levels for constant Year 2
performance, and earning higher scores as a result.

The extent to which sandbagging can influence subsequent gain scores varies across metrics. For gain-
based models, attempting to zero out initial test scores dramatically affects gain scores, thus
sandbagging is particularly useful. In contrast, sandbagging for categorical models is generally more
muted by simple virtue of the fact that there is no differentiation in the lowest scoring category. The
SGP metric is susceptible to more moderate sandbagging. Early in a student’s growth trajectory, an
initial low score can lower expectations to a degree approaching that of a gain-based model. However,
as SGPs pool expectations over multiple years of testing, a low initial score will get muted by subsequent
higher scores that will raise expectations and conditional quantiles. Given the close relationship
between residual gain scores and SGPs, their susceptibility to sandbagging is similar.

As | have emphasized, incentives are a function of a particular metric rather than a particular model.
When multiple overlapping policies incentivize multiple metrics, incentives for teachers may conflict
with incentives for students or schools. For example, in school-level Adequate Yearly Progress
calculations, students in their first grade in a school are not eligible for growth calculations, as they have
no prior-year scores. Although sandbagging would increase their subsequent gain scores, this cynical
action would end up classifying the student as nonproficient, which would count against the school in
the current year. The ideal strategy for maximizing future gain scores while avoiding nonproficiency in
the current year is to sandbag performance to the minimal score necessary for achieving proficiency, but
no lower.

At the teacher level, incentives may be similarly specific. For a residual gain or median SGP metric,
teachers are incentivized to have students with sandbagged scores from the prior year, regardless of
proficiency considerations, as these status classifications only have an impact on adequate yearly
progress designations at the school level. Sandbagging may be a viable and cynical strategy across
almost all growth metrics, but the precise incentives vary by degree across metrics, and the layering of
multiple metrics leads to different incentives functioning at different levels of aggregation.

As far as incentives for particular growth metrics, the projection model is the most unique. Compared to
gain-based models, where Equation 1, for example, includes a negative weight on the coefficient for
prior grades, projection models generally have positive weights. In Equation 2, for example, the slope
coefficients for the illustrative correlation matrix, R, are all positive and identical, at:

r

b= T —Dr

In this case, sandbagging is not effective, as any artificial deflation of performance will decrease the
predicted score. Regression coefficients estimated from real-world correlation matrices will certainly
have different regression weights and higher weights on proximal-grade variables, but weights on early
variables will not be negative. As a result, the incentive structure for projection models is unique.



This is not to suggest that the incentive structure of projection models is always preferable. As Hoffer,
et al. (2011) and Ho (2012) describe, projection models tend to create a kind of “inertial status” for
consistently low-scoring and consistently high-scoring students. For these students, a small number of
low or high scores results in prediction that is hard to influence with more recent grade data. As a
consequence, bizarre incentive structures can result, where, for example, a high-scoring student can
score a zero and still be predicted to be on track, or a low-scoring student finds it impossible to be
considered on track, even if she scores a perfect score. From the perspective of the projection model,
these cases are rare and unrealistic. However, if the purpose of the model is to incentivize growth for
individual students, the projection model has clear shortcomings.

Discussion

Table 3 reviews the past three sections and paints a rough picture of the four models evaluated along
the three criteria. As the table title notes and | have described, the evaluation of growth metrics hinges
on small details, thus the evaluations in Table 3 are made about each respective model in its most
typical form, as their results are most often reported. | fully concede that operationalization of a
particular model may change these rough, relative judgments. However, it is useful to have a baseline
for comparison of the models in their generic forms, and the past three sections have presented my
arguments for these evaluations.

Table 3. A rough overview of growth models evaluated along selected criteria. .

Distorted Incentives

Model Statistical Foundation Predictive Accuracy  Transparency — —
Growth Description Growth Prediction

Difference: Current Score Sandbagging - Sandbagging -

Gain-Based , Medium High . gg, & . gg &
Minus Past Score High Risk High Risk

Cat ical. Sandbagging - Sandbagging -

Categorical @ ?gorlca . Low High an aggm_g an agglng

Changes in Categories. Moderate Risk Moderate Risk

Student Growth tile R ion. Sandbagging - Sandbagging -
uden rf)w Quan | (.e egression Medium - Variable Debatable an agg!ng an agg!ng
Percentile Conditional Status. Lower Risk Lower Risk

Regression. Sandbagging -
Projection g High Medium geing Inertial Status

Conditional Status.

Lower Risk

Note: Evaluations are not inherent to the models themselves and can be mediated by additional decisions

| have alluded to small decisions that matter and review three in particular here. First, sandbagging in

all of its forms can be disincentivized by layering status models over growth models, although attention

to the level of aggregation at which each is consequential is crucial. Second, the low predictive accuracy

of categorical models can be increased by adjusting values assigned to transitions and increasing the

number of categories. At a certain point, however, this may decrease transparency and effectively

creates a coarsened projection model. Third, student growth projections may be altered to increase

predictive accuracy by selecting a central SGP, such as 50, to carry forward, instead of assuming current



SGPs will be maintained. This effectively functions as a projection model, as well, and raises the
qguestion of whether a more suitable predictive modeling framework would be preferable over nonlinear
guantile regression.

This chapter has contrasted three criteria—predictive accuracy, transparency, and incentives—and
demonstrated that growth models and metrics share particular and differing strengths and weaknesses
along these criteria. It is tempting to try to maximize all three criteria subject to some constraints, but,
as the previous paragraph demonstrates, there are clear tradeoffs. Predictive accuracy is the most
easily quantifiable criterion and is thus a compelling target. However, the incentive structures
associated with projection models are, in my opinion, pernicious. Although accuracy of future
predictions may be useful for targeting instructional resources, | do not find it defensible to use an
accurate prediction of, for example, low future status as a reason to effectively disqualify a low-scoring
student from earning an “on track” designation. If anything, there should be additional incentives to
teach these students. This, of course, is precisely what gain-based models do, and this is what opens
them up to the risk of sandbagging.

On the other hand, transparency is a criterion that may be increased without necessarily diminishing
accuracy or skewing incentives. The SGP package is in many ways a transparent score reporting
package, and this has made what is undeniably a complex statistical procedure seem straightforward
and attractive. Projection models should be similarly transparent and include clearly specified
equations. Trajectory models may also be accompanied by the visual trajectories of growth over time,
using not only linear specifications but regression-based procedures that set realistic expectations in the
light of vertical scales that may be tenuous. Certainly, any metric may be gamed, and transparency is
likely to increase the likelihood of both intended and unintended responses. Presumably, however, this
is preferable to a policy model whose impact is limited by its opacity.

We are at a point in history where state tests may come into increasing alignment under the so-called
Common Core. However, there is very little indication that accountability models will experience the
same alignment, and their complexity seems more likely to increase than decrease. As growth models
continue to proliferate, it becomes all the more important to have clear specification of not only the
statistical model but all of its related metrics, and all of their functions at all levels of aggregation. As |
have argued here, all of the small details matter. For each metric, | hope that this chapter has sketched
useful criteria and made some of the likely tradeoffs clear.
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Table 1. Growth models, their statistical foundations, and the growth metrics they support.

Growth Description

Growth Prediction

Model Aliases; Related Terms Statistical Foundation
Student Level School Level Student Level School Level
. . . . Difference: Current . Percentage of . Percentage On
Gain-Based T tory, Slope, Diff , G . Gain S . T tory Model
ain-Base rajectory, Slope, Difference, Gain Score Minus Past Score ain Score Acceptable Gains rajectory Mode Track
. . (Average
. . . Categorical. Value of Category  Averaged Values of (Projected .
Categorical Value Table, Transition Matrix ) . Projected
Changes in Categories. Change Category Changes Category)
Category)
Student Growth Colorado Model, Betebenner Model, Quantile Regression. Student Growth Median Student Student Growth Percentage On
Percentile Percentile Performance Index Conditional Status. Percentile Growth Percentile Projection Track
R ion Model, Residual Model R ion. Residual P tage O
Projection egression Model, Residual Model, egression esidual, Average Residual Projection Model ercentage On

Multilevel Model, Hierarchical Model

Conditional Status.

"Residual Gain"

Track



Table 2. An example of a categorical model from Delaware’s 2009-2010 school year.

Year 2

Level
Year 1 Level Level Level Level
Level 1A 1B 2A 2B Proficient
Level 1A 0 150 225 250 300
Level 1B 0 0 175 225 300
Level 2A 0 0 0 200 300
Level 2B 0 0 0 0 300
Proficient 0 0 0 0 300

http://www.doe.k12.de.us/aab/accountability/Accountability Files/School Acct 2009-2010.pdf




Table 3. A rough overview of growth models evaluated along selected criteria.

Predicti
Model Statistical Foundation redictive Transparency
Accuracy

Distorted Incentives

Growth
Description

Growth Prediction

Gain-Based lefere"nce: Current Score Medium High
Minus Past Score

. Categorical. .
Cat [ . . L High
aregorica Changes in Categories. ow 8
Student Growth Quantile Regression. _ _
M -V | D [
Percentile Conditional Status. edium - Variable ebatable
R ion.
Projection egression High Medium

Conditional Status.

Sandbagging -
High

Sandbagging -
Low

Sandbagging -
Medium

Sandbagging -
Medium

Note: Evaluations are not inherent to the models themselves and can be mediated by additional decisions.

Sandbagging - High

Sandbagging - Low

Sandbagging -
Medium

Inertial Status



Figure 1. Theoretical root mean square deviations for prediction of a future grade score one year in the future. Results shown for projection and
trajectory models, by common intergrade correlations and the number of available years of data for prediction.
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