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The biomechanics and evolution of impact resistance in human walking and running 

Abstract  

 How do humans generate and resist repetitive impact forces beneath the heel during walking 

and heel strike running? Due to the evolution of long day ranges and larger body sizes in the hominin 

lineage modern human hunter-gatherers must resist millions of high magnitude impact forces per foot 

per year. As such, impact forces may have been a selective pressure on many aspects of human 

morphology, including skeletal structure. This thesis therefore examines how humans generate impact 

forces under a variety of conditions and how variation in skeletal structure influences impact resistance. 

 This thesis includes four studies that can be separated into two parts. In the first part, I test two 

models of how variation in the stiffness and height of footwear affect the generation of impact peaks 

during walking and heel strike running. The first model predicts that variation in the stiffness of 

footwear introduces tradeoffs between three crucial impact force related variables: impact loading rate, 

vertical impulse and effective mass. The prediction of the second model is that higher heels have the 

same effects on impact forces as do footwear of lower stiffness. These hypotheses were tested using 3D 

motion data and force data in human walkers and runners wearing a variety of footwear. Experimental 

results show that soft footwear introduces tradeoffs between impact loading rate, vertical impulse and 

effective mass, and that high heeled shoes influence impact duration, loading rate and vertical impulse 

in predictable ways.  

 In the second part of this thesis, I document variation in hominoid skeletal structure and 

experimentally test how this variation affects function during impact forces.  In particular, I examine 

trabecular bone volume fraction in the calcaneus of gorillas, chimpanzees and several H. sapiens 
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populations that vary widely in geologic age and subsistence strategy. I then develop and test a model of 

how variation in trabecular bone volume fraction affects several mechanical properties of trabecular 

bone tissue, including the stiffness, strength and energy dissipation. The comparative data indicates that 

trabecular bone volume fraction in the human calcaneus has declined after the Pleistocene. The 

experimental data shows that larger trabecular bone volume fraction results in increased stiffness and 

strength but reduced energy dissipation of trabecular bone tissue. A final examination of the 

comparative data relative to the experimental data suggests that the human calcaneus resists impacts 

by being stiff strong rather than by dissipating mechanical energy. 

 The results of this thesis suggest that way in which impacts are both generated and resisted has 

changed in recent human history, as modern footwear alters impact loading rate and vertical impulse 

and decline in trabecular bone volume fraction negatively influence trabecular bone strength. These 

results also have implications for how bones evolve to resist impacts, suggesting that bone structures 

than favor stiffness and strength are favored to cope with impacts. Finally, the results of this thesis are 

important for understanding the etiology of osteoarthritis, and musculoskeletal disease that has been 

linked to both repetitive impact forces during human locomotion and to variation in trabecular bone 

volume fraction. 
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Chapter 1 – An Introduction 

Why impacts?  

How do humans generate and resist repetitive impact forces beneath the ground during walking 

and heel strike running? Ever since the evolution of obligate bipedalism in the hominin lineage, the 

human skeleton has been exposed to millions of impact forces beneath the heel per year. Our closest 

living relatives, chimpanzees, also heel strike but do so irregularly and often without visible peaks in 

vertical ground reaction force, suggesting that highly repetitive impact peaks beneath the heel bone 

(calcaneus) evolved in the hominin line. Impact forces to the heel are likely to have been a selective 

pressure on human skeletal morphology, particularly the calcaneus, and trabecular bone tissue is often 

hypothesized to act as a ‘shock absorber’ of impact forces (Radin et al. 1972; Latimer and Lovejoy 1989; 

Currey 2002; Latimer 2005). Despite the potential role that impact forces may have played in shaping 

the trabecular architecture of the calcaneus, many questions remain about the generation and variation 

in impact forces as well as how patterns of variation in trabecular tissue reflect impact resistance. This 

thesis investigates how humans generate impacts under a variety of conditions relevant to ancient and 

modern times, and studies how variations in calcaneal trabecular bone structure resist repetitive impact 

forces.   

Thesis summary  

This thesis includes four studies that can be separated into two parts. The first part (chapters 2 

and 3) investigates the generation and variation in impact forces beneath the heel during walking and 

heel strike running. Chapter 2 considers how walking and heel strike running impacts vary in response to 

variation in interface stiffness. Chapter 3 tests a model of how heel strike running impacts vary with 

changes in both heel height and heel-ground interface elastic modulus (the size-independent measure 

of stiffness). The second part of this thesis (chapters 4 and 5) investigates the patterns of variation in 

trabecular bone volume fraction (BVF) of the calcaneus and how this variation affects the mechanical 
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properties of trabecular tissue. Chapter 4 investigates patterns of variation in calcaneal trabecular BVF 

of gorillas, chimpanzees and several human populations as well as BVF variation in the C2 vertebrae of 

H. sapiens. Chapter 5 studies how energy dissipation varies with trabecular BVF, tests a model that 

predicts that BVF mediates a trade-off between energy dissipation and the mechanical properties elastic 

modulus, yield strength and work-to-failure, and finally compares the patterns of variation found in 

Chapter 4 to the experimental data to understand how human calcaneal trabecular tissue resists 

impacts.  

Part I 

 In Chapter 2, I investigate the effects of variation in heel-ground interface elastic modulus on 

walking and heel strike running impact peaks. During walking and heel strike running, an exchange of 

momentum occurs between the foot and the ground, generating high magnitude forces over a very brief 

period of time (the impact peak). Previous studies have shown that decreased elastic modulus interfaces 

lead to a longer duration of the impact peak and slower rates of loading (Light et al. 1980; Wakeling et 

al. 2003). However, these studies have not investigated how the exchange of momentum between the 

foot and the ground on interfaces of varying modulus influence aspects of the impact peak frequently 

implicated in musculo-skeletal injuries. Chapter 2 accordingly tests an impulse-momentum model of 

walking and heel strike running impact peaks that predicts that lower elastic modulus interfaces slow 

the exchange of momentum between the foot and the ground, resulting in reduced impact loading rates 

(𝐹′) but greater effective mass (𝑚𝑒𝑓𝑓) and larger vertical impulses on lower modulus interfaces. The 

model also predicts a trade-off between 𝐹′ and 𝑚𝑒𝑓𝑓, as well as a trade-off relationship between 𝐹′ and 

vertical impulse. My findings show that vertical impulse and 𝑚𝑒𝑓𝑓 increase in walkers and heel strike 

runners as interface modulus decreases. My results also indicate trade-off relationships between 𝐹′ and 

𝑚𝑒𝑓𝑓, and between 𝐹′ and vertical impulse. Given that both 𝐹′ and vertical impulse have been 

hypothesized to be related to various musculo-skeletal injuries, the trade-off between these two 
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variables suggests that impact peaks present a formidable challenge to the human skeleton regardless 

of the stiffness of the interface between the foot and the ground. 

 In Chapter 3, I examine the effects of both heel height and heel elastic modulus variation on 

heel strike running impact peaks. I develop a model that predicts that increasing heel height and 

decreasing heel elastic modulus should have similar effects on heel strike running impacts peaks, such as 

increasing the time duration of impact and reducing 𝐹′. The model also predicts that the effects of 

increasing heel height while simultaneously decreasing heel elastic modulus will be multiplied. My 

results confirm that increasing heel height results in increased impact duration and decreased 𝐹′. 

However, I find that the effects of heel height and heel elastic modulus variation on impact peaks are 

not multiplied; instead, the effect of heel elastic modulus on impact peaks depends on the height of the 

heel. In addition, I find that impact force magnitude is unaffected by the elastic modulus of the interface 

but decreases as heel height increases. I also find that the amount of knee flexion during the impact 

peak is a strong predictor of impact force magnitude, impact time duration, 𝐹′, vertical impulse and 

𝑚𝑒𝑓𝑓. These results suggest that variations in heel height influence the generation of the impact peak in 

predictable ways and that impact peak generation is affected by a complicated interaction between the 

elastic modulus of the interface and heel height. The results also imply that lower extremity kinematic 

play an important role in the generation of impact and that the human body can regulate impact force 

magnitudes when interface elastic modulus varies but not when heel height varies. 

Part II  

 In Chapter 4, I test the hypothesis that variations in mechanical loading due to physical activity 

are the primary cause of variation in BVF between populations. Mechanical loading stimulates 

trabecular bone growth, and thus bones that experience higher magnitudes or frequencies of 

mechanical loading are expected to have larger trabecular BVF (Simkin et al. 1987; Davee et al. 1990; Joo 

et al. 2003; Pontzer et al. 2006; Barak et al. 2011; Chirchir et al. 2015; Ryan and Shaw 2015). Thus, 
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individuals from populations that have more physically active lifestyles, such as hunter-gatherers, are 

expected to have larger trabecular BVF in any given bone than individuals from populations that live 

more sedentary lifestyles, such as industrialized Westerners. I test this hypothesis in the calcaneus, a 

bone in which the loads applied during locomotion are relatively well known, and in C2 vertebrae, a 

bone that may be relatively unaffected by variation in mechanical forces applied to the appendicular 

skeleton (Giddings et al. 2000; Gefen and Seliktar 2004). I examine calcanei from gorillas, chimpanzees, a 

Pleistocene H. sapiens population (Natufians – hunter-gatherers from the Levant) and three Holocene H. 

sapiens populations that vary widely in subsistence strategy: hunter-gatherers from Point Hope, Alaska 

(Point Hope), nomadic pastoralists from medieval Europe (Mistihalj) and modern industrialized 

Americans. I also examine C2 vertebrae from the Natufians, Point Hope and Mistihalj populations. I test 

three specific hypotheses relevant to the general hypothesis that variations in mechanical loading are 

the primary cause of variation in trabecular BVF. First, I predict that modern sedentary Americans 

should have lower calcaneal trabecular BVF than more active, non-industrial H. sapiens populations. 

Second, I predict that H. sapiens, particularly those from active, non-industrial populations, have greater 

calcaneal trabecular BVF than the comparatively sedentary African apes. Finally, I predict that trabecular 

BVF in C2 vertebrae should remain unchanged across human populations because this region of the 

skeleton experiences relatively low magnitudes of mechanical loading from normal physical activities. 

These hypotheses were not supported by the data. Instead, my results indicate that the Natufians have 

larger calcaneal BVF than any of the Holocene H. sapiens populations, and that modern Americans have 

calcaneal BVF values equivalent to non-industrial Holocene populations. In addition, I found that 

Natufian calcaneal BVF was equivalent to chimpanzees and gorillas, while calcaneal BVF in Holocene 

populations was lower than chimpanzees. Finally, I found that trabecular BVF in Natufian C2 vertebrae 

was greater than either of the Holocene populations tested.  These results suggest that trabecular BVF 

in the H. sapiens calcaneus and C2 vertebra has declined since the Pleistocene, and suggests a systemic 
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decline in trabecular BVF from Pleistocene to Holocene H. sapiens for reasons other than or in addition 

to variation in mechanical loading. 

 In Chapter 5, I test how variations in trabecular BVF affect the mechanical properties of 

trabecular tissue and use population-level data from Chapter 4 to test competing models of how the 

human calcaneus resist impacts during walking and heel strike running. Trabecular bone is often thought 

to act as a ‘shock-absorber’ during impact loads, but researchers have differing opinions on how 

trabecular bone is adapted structurally to resist impacts. Some researchers argue that trabecular bone is 

adapted to avoid fracture during impacts and thus would evolve increased trabecular BVF in order to 

increase stiffness, strength and toughness (Currey 2002). Other scholars argue that trabecular tissue is 

adapted to ‘cushion’ impact loads and as such would evolve lower trabecular BVF in order to increase 

energy absorption and dissipation under a given force (Latimer and Lovejoy 1989; Currey 2002; Goodwin 

and Horner 2004; Latimer 2005). In this chapter, I first develop a model that predicts that energy 

dissipation (𝑊𝑑) varies with the inverse of trabecular BVF squared under stress-controlled conditions. 

Second, I predict that tradeoffs, mediated by BVF, exist between 𝑊𝑑 and each of the following 

mechanical properties: elastic modulus (𝐸), yield strength (𝜎𝑦) and work-to-failure (𝑊𝑓). I also predict 

that the tradeoffs in these variables will identify a BVF that optimizes 𝑊𝑑 and each of 𝐸, 𝜎𝑦, and 𝑊𝑓. 

Finally, I use the experimental data to develop tradeoff models and compare the population-level data 

from Chapter 4 to understand how the human calcaneus resists impacts. I test these predictions in 

stress-controlled cyclic mechanical testing of human calcaneal trabecular tissue. The experimental data 

indicate that 𝑊𝑑 varies with the inverse of BVF squared. The data also support the hypothesis that 

tradeoffs mediated by BVF exist between 𝑊𝑑 and 𝐸, 𝜎𝑦, and 𝑊𝑓 , and that a BVF of 0.15 optimizes 𝑊𝑑 

and each of 𝐸, 𝜎𝑦, and 𝑊𝑓. Finally, I find that the optimum BVF is greater than 2 standard deviations 

below the average calcaneal tuberosity BVF of Pleistocene H. sapiens (0.26), and falls within 1 standard 

deviation of the average Holocene calcaneal tuberosity BVF (0.18). These findings suggest that 
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trabecular tissue of low BVF dissipates more energy under a given load. The findings also imply that 

Pleistocene H. sapiens calcaneal trabecular bone resisted impacts by being stiff, strong and tough rather 

than by dissipating impact energy.  

 Finally, Chapter 6 summarizes the results and major conclusions from Chapters 2 through 5. I 

then discuss some of the broader implications of the data. First, I discuss competing models of how 

bone tissue resists impacts and how the results from Chapter 5 test these models. Second, I discuss how 

data from Chapters 2 through 5 suggest that the generation and resistance of impact forces during 

walking and heel strike running are different in industrialized modern H. sapiens compared to those 

from hunter-gatherer and subsistence farming economies. Finally, I discuss the relevance of Chapters 2 

through 5 to the etiology of osteoarthritis, a disease of articular cartilage degeneration that is thought to 

be caused in part by high bone density and repetitive impact forces (Radin et al. 1991; Hardcastle et al. 

2015).  
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Chapter 2 – Tradeoffs between impact loading rate, vertical impulse and effective mass for 

walkers and heel strike runners wearing footwear of varying stiffness 

Introduction 

The human foot is subjected to repeated impact forces during walking and heel strike running, 

evident as visible impact peaks in vertical ground reaction forces. Impact peaks are caused by the 

inertial change in some portion of the body over a brief period of time, usually during the first 10 to 50 

ms of stance. The generation and attenuation of impact forces have been the focus of much research 

because their potential role in the etiology of various repetitive stress injuries is unclear and intensely 

debated (Folman et al. 1986; Collins and Whittle 1989; Nigg 2001; Gill and O'Connor 2003; Gill and 

O'Connor 2003; Milner et al. 2006; Wen 2007; Pohl et al. 2009; Nigg 2010; Daoud et al. 2012). In 

addition, how footwear affects the generation of impact forces has been heavily investigated because of 

the perceived role of footwear in mitigating discomfort and preventing injuries that may result from 

impact peaks (Hume et al. 2008; Nigg 2010). 

During the impact phase of stance, defined as the time period from the onset to the zenith of 

the impact peak, the impulse of the net external force changes the momentum of some portion of the 

body: 

Equation 1: ∫ (𝐹𝑧 − 𝑚𝑒𝑓𝑓𝑔)𝑑𝑡 =  𝑚𝑒𝑓𝑓(𝑣𝑓 − 𝑣𝑖)
𝑡𝑓

𝑡𝑖
 

where 𝑡𝑖 and 𝑡𝑓 are the beginning and end times of the impact phase, 𝐹𝑧 is the vertical ground reaction 

force, 𝑚𝑒𝑓𝑓 is the effective mass, 𝑔 is acceleration due to gravity, and 𝑣𝑖 and 𝑣𝑓 are the vertical 

velocities of 𝑚𝑒𝑓𝑓 at 𝑡𝑖 and 𝑡𝑓, respectively.  We define 𝑚𝑒𝑓𝑓 as the portion of the body’s mass that 

decelerates to zero during the period of the impact peak; 𝑚𝑒𝑓𝑓 therefore may contain mass from the 

foot, shank, thigh or other body segments (Dempster and Gaughran 1967; Bobbert et al. 1991; Chi and 

Schmitt 2005; Lieberman et al. 2010; Shorten and Mientjes 2011). We define the impact peak as the first 
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peak in vertical ground reaction force, and it thus contains the summation of both high and low 

frequency ground reaction forces. (Shorten and Mientjes 2011).   

 While the frequency components of the vertical ground reaction force are important for 

understanding how the body generates impact peaks, the purpose of this study is to understand how 

impact peak magnitude (𝐹𝑚𝑎𝑥), impact loading rate (𝐹′), and vertical impulse, variables that have been 

implicated in the etiology of various musculo-skeletal injuries, are influenced by footwear heel stiffness. 

Extensive experimental and modeling studies of the effects of footwear heel stiffness on 𝐹𝑚𝑎𝑥 and 𝐹′ 

have shown that softer footwear heels decrease 𝐹′ largely due to increases in the time duration of 

impact (∆𝑡) rather than changes in 𝐹𝑚𝑎𝑥 (Light et al. 1980; Lafortune et al. 1996; Wakeling et al. 2003).  

Experimental results concerning 𝐹𝑚𝑎𝑥 are largely inconclusive, with studies finding that less stiff 

footwear heels can increase, decrease or have no influence on 𝐹𝑚𝑎𝑥 (Clarke et al. 1983; Nigg et al. 1987; 

Lafortune and Hennig 1992; Hennig et al. 1993; Wakeling et al. 2003). Modeling studies predict that 

footwear heel stiffness should decrease 𝐹𝑚𝑎𝑥 and that muscle activity in the lower limb can modulate 

𝐹𝑚𝑎𝑥 (Nigg and Liu 1999; Zadpoor et al. 2007; Zadpoor and Nikooyan 2010). Vertical impulse and 𝑚𝑒𝑓𝑓 

have been studied in the context of kinematic variation (Chi and Schmitt 2005; Lieberman et al. 2010), 

but have yet to be studied in the context of variations in footwear heel stiffness. 

We can use the impulse-momentum model (equation 1) to investigate how footwear heel 

stiffness influences 𝐹𝑚𝑎𝑥, 𝐹′, 𝑚𝑒𝑓𝑓 and vertical impulse by solving equation 1 for 𝑚𝑒𝑓𝑓: 

Equation 2: 𝑚𝑒𝑓𝑓 =
∫ 𝐹𝑧

𝑡𝑓

𝑡𝑖
𝑑𝑡

∆𝑣+𝑔∆𝑡
 

Previous experiments using this impulse-momentum model on barefoot individuals have found that 

𝑚𝑒𝑓𝑓 varies with gait pattern, kinematics and joint stiffness, and that 𝑚𝑒𝑓𝑓 averages 6.3% of body mass 

during walking heel strikes and ranges between 2 and 10% of body mass during heel strike running (Chi 
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and Schmitt 2005; Lieberman et al. 2010). 𝑚𝑒𝑓𝑓 is also expected to change with footwear heel stiffness 

because a less stiff interface between the foot and ground slows the exchange of momentum between 

the body and the ground. Decreasing the stiffness of footwear heels while holding all other variables 

constant increases ∆𝑡 (Figure 2.1) (Light et al. 1980; Nigg et al. 1987; Lafortune et al. 1996; Whittle 1999; 

Shorten and Mientjes 2011), which will result in a greater portion of the body coming to a stop during 

the period of the impact peak.  Thus, less stiff footwear heels will result in larger 𝑚𝑒𝑓𝑓 within a given 

gait pattern.  In turn, a larger vertical impulse will result from the increase in 𝑚𝑒𝑓𝑓 in less stiff footwear 

(Figure 2.1). 

 

Figure 2.1: Vertical ground reaction force of a barefoot heel strike runner on a hard surface (A) and corresponding 
vertical impact peak emphasized (B). Frames C and D are a vertical ground reaction force for a heel strike runner in 
soft footwear (C) with the corresponding vertical impact peak emphasized (D). The impact in the less stiff footwear 
increases Δ𝑡, leading to larger 𝑚𝑒𝑓𝑓 . A larger 𝑚𝑒𝑓𝑓  will in turn create a larger vertical impulse (the integral of force 

over Δ𝑡) in the less stiff footwear. 
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The impulse-momentum model makes additional predictions.  If less stiff footwear heels 

decrease 𝐹′ as reported elsewhere and increase 𝑚𝑒𝑓𝑓 as predicted by the model, then there should be a 

tradeoff between 𝐹′ and 𝑚𝑒𝑓𝑓 in walkers and heel strike runners wearing footwear of varying stiffness. 

Similarly, if less stiff footwear decreases 𝐹′ and increases vertical impulse as predicted by the model, 

then there should be also be a tradeoff between these variables in walkers and runners wearing 

footwear of varying stiffness. The objective of this study is to test these predictions in human walkers 

and runners wearing footwear of varying stiffness. 

Material and Methods 

Subjects  

Twenty-two healthy adult subjects (13 female – average (SD) body mass (kg): 59.2 (6.63), height 

(cm): 165 (7.99); 9 male – body mass (kg) 78.9 (7.64), height (cm) 181 (6.93)) between the ages of 19 

and 37 participated in this study, which was approved by the Institutional Review Board of Harvard 

University. Subjects gave their informed consent to participate and the experiments were conducted at 

the Skeletal Biology and Biomechanics Lab of the Department of Human Evolutionary Biology at Harvard 

University. 

Criteria for subject inclusion in the data analysis were that the subject was able to wear minimal 

footwear comfortably and was able to heel strike in both walking and running for the full 30 second trial 

duration on all footpads  (forefoot strikes were not included in the study because they generate no 

measureable impact peak (Lieberman et al. 2010)). Subjects were asked to heel strike in all walking and 

running trials, regardless of their natural strike pattern. Of the 22 subjects enrolled in the study, 19 were 

used for data analysis. In the running analysis, two subjects were removed because they were 

uncomfortable heel striking for the full trial duration. In walking, one subject was removed because of 

data collection problems and another was removed because heel strikes were not apparent in one of 
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the trials. An additional subject was removed from walking and running analyses because of discomfort 

in the minimal footwear. 

Experimental design and measurements 

Subjects walked and ran in minimal footwear (model: M116 Sprint, Vibram USA, Concord MA, 

USA) and on two different experimental footpads (Figure 2.2; ‘hard pad’: rubber, Product No. RB4000, 

On Deck Sports, Brockton, MA, USA. Thickness - 0.25 inches, elastic modulus – 5.64 MPa; ‘soft pad’: 

foam, Product No. 150553488-32, Future Foam, Council Bluffs, IA, USA. Thickness – 0.5 inches, elastic 

modulus 0.095 MPa) cut specifically for each subject and attached to the bottom of the minimal 

footwear using duct tape. Elastic modulus of the pads was measured between 25 N and 25% strain, and 

calculated as ∆𝑠𝑡𝑟𝑒𝑠𝑠
∆𝑠𝑡𝑟𝑎𝑖𝑛⁄ . Footpads were chosen to decrease the interface stiffness between the 

foot and the ground – the ‘hard’ pad was less stiff than the control condition, and the ‘soft’ pad less stiff 

than the ‘hard’ pad. The order in which these conditions were performed was randomized across 

subjects. Subjects walked and ran at Froude numbers of 0.28 and 1.2, respectively (actual forward 

velocities: 1.48 m/s to 1.68 m/s for walking; 3.06 m/s to 3.48 m/s for running). Froude number was 

controlled to ensure dynamic similarity between subjects that varied in leg length (Alexander 2003). 

Before data collection, each subject practiced walking and running on the treadmill at the prescribed 

Froude number and their preferred step frequency in walking and running was recorded. Each subjects’ 

preferred step frequency was played back via electronic metronome during each trial, and subjects were 

instructed to keep to this step frequency to the best of their ability to avoid complications with changes 

in support mechanics with changes in footpad stiffness (Kerdok et al. 2002).  

 We measured ground reaction forces and lower limb kinematics during the period of the impact 

peak. The impact peak was defined as the first peak in vertical force.  A treadmill instrumented with a 

force-plate (BERTEC, Columbus, Ohio, USA) recorded ground reaction force data at 2 kHz. Kinetic data 

were low-pass filtered at 100 Hz prior to data analysis. The impact peak was considered to begin when 
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the vertical ground reaction force value exceeded 3 standard deviations above treadmill noise and 

ended at 𝐹𝑚𝑎𝑥. Lower limb kinematic data were collected at 1,000 HZ with an eight camera Oqus system 

(QUALYSIS, Gothenburg, Sweden). Markers (12.7 cm in diameter) were placed on the skin over the 

anterior superior iliac spine (ASIS), greater trochanter, medical and lateral femoral condyles, medial and 

lateral malleoli, the calcaneal tuberosity, and the distal joints of the 5th and 2nd metatarsals.   

 

Figure 2.2: Schematic of the control, hard footpad and soft footpad conditions run in this experiment. 
Footpads were attached to the bottom of minimal footwear using duct tape. 

 

We measured 𝐹𝑚𝑎𝑥, ∆𝑡, impact velocity (∆𝑣) in the vertical direction, as well as knee and ankle 

angles in the sagittal plane. We considered only the vertical components of the kinetic and kinematic 

variables because over 90% of the total ground reaction force during the impact phase of gait is due to 

the vertical force (Cavanagh 1990).  ∆𝑣 was calculated as the change in lateral malleolus position divided 

by the change in time for the four frames immediately prior to the beginning of the impact peak. Knee 

and ankle angles were measured at the beginning of the impact peak and at 𝐹𝑚𝑎𝑥.  Knee angle was 

measured between the greater trochanter, lateral femoral condyle and lateral malleolus markers, and 

ankle angle was measured between the lateral femoral condyle, lateral malleolus and 5th metatarsal 

markers. Heel strikes were verified by comparing the plantar foot angle (the angle made between the 

treadmill horizontal and a line formed between the posterior calcaneus and 5th metatarsal markers) 

during locomotion to the plantar foot angle made during a standing trial. 
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We calculated 𝐹′, 𝑚𝑒𝑓𝑓 and vertical impulse during the period of the impact peak. 𝐹′ was 

calculated as 𝐹𝑚𝑎𝑥 divided by ∆𝑡. Vertical impulse was calculated as the integral of the impact peak over 

∆𝑡.  𝑚𝑒𝑓𝑓 was calculated using equation 2 above. Only the vertical components of force and velocity 

were used to calculate 𝑚𝑒𝑓𝑓. In running, we calculated lower extremity stiffness, which was defined as 

𝐹𝑚𝑎𝑥 divided by the vertical displacement of the greater trochanter. 

Data analyses 

Individual steps were removed from the analysis when 𝐹𝑚𝑎𝑥 was 3 standard deviations from the 

average 𝐹𝑚𝑎𝑥 for the given subject and condition. We then analyzed 25 steps from the right leg per 

subject per condition. Averages for all variables were taken from these 25 steps and used in all 

subsequent analyses.    

Regression and ANOVA analyses were performed in MATLAB (v. 2011a, Mathworks, Inc.) and 

JMP Pro 10.  We used one-way ANOVA to test how the experimental footpads affected kinematic and 

kinetic variables, and walking and running trials were considered separately. Bonferroni corrections 

were used to correct p-values for multiple comparison tests. In all cases that required multiple 

comparisons, a comparison between each of the three conditions (control, hard pad, soft pad) were 

made.  We used mixed models to test relationships between 𝐹′ and vertical impulse and 𝐹′ and 𝑚𝑒𝑓𝑓 in 

order to control for the random effect that each subject contributed to the results. Briefly, a mixed 

model is a statistical model that uses both fixed (𝐹′, vertical impulse and 𝑚𝑒𝑓𝑓) and random (subject) 

effects and controls for repeated sampling of subjects. Each subject that participated in this study had 

their own unique response to the three experimental conditions and the mixed model accounts for the 

repeated sampling within-subject. 𝑅2 and p-values  for 𝐹′ versus vertical impulse and for 𝐹′ vesrus 𝑚𝑒𝑓𝑓 

represent 𝑅2 and p-values for the mixed model. For all statistical analyses, significance was assigned to 

p-values < 0.05. 
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Results 

Effect of footpad stiffness on measured and calculated variables 

In both walking and running, 𝐹′ was significantly different between conditions (Figure 2.3A, 2.3D; 

Table 2.1; walking: F(2,54)=18.12, p=9.5E-7; running F(2,54)=15.33, p=5.3E-6). 𝐹′ was 19% and 29% 

greater in the control condition than on the hard pad for walking and running, respectively (walking: 

p=2.7E-7; running: 3.4E-6). 𝐹′ was 20% and 24% greater on the hard pad than on the soft pad for 

walking and running respectively (walking: p=0.0001; running: p=0.0002). 

Vertical impulse was 28% and 35% greater in the soft pad than in the hard pad for walking and 

running, respectively (Figure 2.3B, 2.3E; Table 2.1; walking: p=3.4E-8, running: p=6.7E-8). Vertical 

impulse was 20% and 21% greater on the hard pad then in the minimally shod condition during walking 

and running, respectively (Figure 2.3B, 2.3E; walking: p=2.6E-6, running: p=0.01).  𝐹𝑚𝑎𝑥 was not 

significantly different between conditions (Table 2.1; walking: F(2,54)=0.67, p=0.52, running: 

F(2,54)=0.21, p=0.81). ∆𝑡 was significantly different between conditions (Table 2.1; walking: 

F(2,54)=35.6, =1.4E-10; running F(2,54)=33.9, p=2.9E-10). ∆𝑡 was 13% and 26% longer in the soft pad 

than in the hard pad for walking and running, respectively (Table 2.1; walking: p=2E-8; running: p=8.6E-

8). ∆𝑡 was 21% and 24% longer in the hard pad than in the control condition for walking and running, 

respectively (Table 2.1; walking: p=1E-6; running: p=0.0001). 

During both walking and running, 𝑚𝑒𝑓𝑓 (measured in %BW) differed significantly between 

conditions (Figure 2.3C, 2.3F; Table 2.1; walking: F(2,54)=12.08, p=4.6E-5; running: F(2,54)=15.52, 

p=4.7E-6). During walking, 𝑚𝑒𝑓𝑓 averaged 6.0%, 7.0% and 8.1% of body weight in the control, hard 

footpad and soft footpad conditions, respectively. During running, 𝑚𝑒𝑓𝑓 averaged 6.8%, 8.2% and 10.3% 

of body weight in the control, hard footpad and soft footpad conditions, respectively. ∆𝑣 was not 

significantly different between groups (Table 2.1; walking: F(2,54)=1.68, p=0.2, running F(2,54)=.77, 
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p=0.47).  Lower extremity stiffness was significantly different between conditions during running (Table 

2.1; F(2,51)=9.75, p=0.0003).  Lower extremity stiffness was 30% greater in the hard pad than in the soft 

pad, and 39% greater in the control condition than in the hard pad. 

During walking, no difference was found between conditions for the ankle angle at the beginning of 

the impact peak (Table 2.2; F(2,51)=0.06, p=0.93) or for the change in ankle angle during the impact 

peak (Table 2.2; F(2,51)=2.07, p=0.14).  Also in walking no difference was found between conditions for 

the knee angle at the beginning of the impact peak (Table 2.2; F(2,48)=0, p=0.99) or for the change in 

knee angle during the duration of impact peak (Table 2.2; F(2,48)=2.16, p=0.13). 

In running, there was no difference between conditions for the ankle angle at the beginning of the 

impact peak (Table 2.2; F(2,51)=0.27, p=.77) or the change in in ankle angle during the impact peak 

(Table 2.2; F(2,51)=2.07, p=0.14).  There was no difference between conditions in knee angle at the 

beginning of the impact peak (Table 2.2; F(2,48)=0.02, p=0.98), but knee flexion angle during the 

duration of the impact peak was significantly different between conditions (Table 2.2; F(2,48)=13.42, 

p=2.3 E-5). Subjects had 31% more knee angle flexion when wearing the soft footpad than the hard pad 

(p=1.5E-6), and 21% more knee angle flexion when wearing the hard pad than in the control condition 

(p=0.008). 

𝐹′ vs vertical impulse and 𝐹′ vs. 𝑚𝑒𝑓𝑓 

𝐹′ varied inversely with vertical impulse in both walking and running (Figure 2.4A, 2.4B; Table 2.3; 

walking: 𝑅2 = 0.77, p < 0.0001; running: 𝑅2 = 0.61, p < 0.0001). 𝐹′ also varied inversely with 𝑚𝑒𝑓𝑓 in 

both walking and running (Figure 2.4C, 2.4D; Table 2.3; walking: 𝑅2 = 0.77, p < 0.0001; running: 𝑅2 = 

0.67, p < 0.0001).   
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Figure 2.3: A through C: Impact loading rate, vertical impulse and effective foot mass for all three conditions in 
walking. D through F: Impact loading rate, vertical impulse and effective foot mass for all three conditions in 
running. Error bars represent standard error. In each case, control was significantly different the hard condition 
and the hard condition significantly different from the soft condition (see text and Table 2.1 for details). 
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Table 2.1: The mean and standard deviation of impact kinetic variables (𝐹𝑚𝑎𝑥, 𝐹′, vertical impulse, 𝑚𝑒𝑓𝑓  , Δ𝑡, Δ𝑣, 

and lower extremity stiffness) for all conditions in both walking and running. P-values are recorded from ANOVA 

tests between conditions. See text for Bonferroni corrections for multiple comparisons. 
 WALKING RUNNING 
 Mean (SD) p-value Mean (SD) p-value 

 Control Hard Soft  Control Hard Soft  

𝐹𝑚𝑎𝑥(BW) 
0.80 

(0.11) 
0.76 

(0.11) 
0.77 

(0.08) 
0.52 

1.66 
(0.29) 

1.60 
(0.31) 

1.65 
(0.23) 

0.81 

𝐹′ (BW/s) 
44.6 

(8.21) 
37.4 

(7.63) 
31.1 

(4.27) 
9.5E-7 

149 
(37.4) 

116 
(34.0) 

93.4 
(19.6) 

5.3E-6 

Vertical 
impulse 

(BW*ms) 

4.4  
(0.6) 

5.3  
(0.7) 

6.8  
(0.9) 

2.6E-13 
6.2  

(0.9) 
7.5  

(1.9) 
10.2  
(2.2) 

1.8E-8 

𝑚𝑒𝑓𝑓  

(%BW) 

6.0  
(1.2) 

7.0 
(1.2) 

8.1  
(1.4) 

4.6E-5 
6.8 

(1.4) 
8.2  

(2.0) 
10.3  
(2.4) 

4.7E-6 

∆𝑡 (ms) 
17.9  
(2.2) 

20.4  
(2.7) 

24.6  
(2.4) 

1.4E-10 
11.4  
(1.5) 

14.4  
(2.9) 

17.9  
(2.5) 

2.9E-10 

∆𝑣 (m/s) 
0.56 

(0.09) 
0.56  

(0.07) 
0.60 

(0.08) 
0.19 

0.80 
(0.11) 

0.77 
(0.09) 

0.81 
(0.10) 

0.47 

Lower 
extremity 
stiffness 
(BW/m) 

N/A 
255  

(112) 
183 

(66.6) 
141 

(41.3) 
3.0E-4 

 
 
 
Table 2.2: The mean and standard deviation of kinematic variables during impact (ankle angle approach, ankle 
plantarflexion, knee angle approach, knee flexion) for all conditions in both walking and running. 
P-values are recorded from ANOVA statistical tests. See text for Bonferroni corrections for multiple comparisons. 

 WALKING RUNNING 
 Mean (SD) p-value Mean (SD) p-value 

 Control Hard Soft  Control Hard Soft  

Ankle Angle 
Approach 

(deg) 

103 
(3.6) 

103 
(3.9) 

103  
(3.7) 

0.93 
97.2 
(3.8) 

96.8 
(4.4) 

97.9 
(4.8) 

0.77 

Ankle 
Plantarflexion 

(deg) 

2.65 
(1.0) 

3.03 
(1.1) 

3.41 
(1.3) 

0.14 
3.36 
(1.1) 

3.85 
(1.8) 

3.56 
(2.6) 

0.14 

Knee Angle 
Approach 

(deg) 

163 
(5.1) 

163 
(5.1) 

163  
(5.2) 

0.99 
156 
(3.7) 

156 
(3.9) 

155 
(3.5) 

0.98 

Knee Flexion 
(deg) 

2.88 
(0.7) 

2.81 
(0.9) 

3.4  
(1.0) 

0.13 
2.79 
(0.8) 

3.37 
(1.0) 

4.42 
(1.1) 

2.3E-5 
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Figure 2.4: Repeated measures regression of impact loading rate versus vertical impulse in walking (A) and running 
(B). Repeated measures regression of impact loading rate versus effective foot mass in walking (C) and running (D). 
Error bars represent standard error. Strong correlations and significant relationships were found for each 
relationship (see text and Table 2.3 for details). 
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Table 2.3: Correlation coefficients and p-values for the relationships between 𝐹′ and vertical impulse as well as for 
𝐹′ and 𝑚𝑒𝑓𝑓  for both walking and running. 

 WALKING RUNNING 

𝐹′ vs. vertical impulse 𝑅2=-0.77; p<0.0001 𝑅2=-0.61; p<0.0001 

𝐹′ vs. 𝑚𝑒𝑓𝑓  𝑅2=-0.77; p<0.0001 𝑅2=-0.67; p<0.0001 

 

 

Discussion 

In this study, we investigated how variations in footwear heel stiffness influenced several 

aspects of walking and heel strike running impact peaks (including 𝐹𝑚𝑎𝑥, 𝐹′ and vertical impulse) that 

have been implicated in the etiology of various repetitive stress injuries.  Our study used impulse-

momentum mechanics, which models impact events as the exchange of momentum that occurs 

between the ground and some portion of the body (𝑚𝑒𝑓𝑓) over a brief period of time (∆𝑡).  It is 

important to note that the impact peak (as defined above) does not occur instantaneously, and that 

several portions of the body including the foot, the shank, the thigh and other body segments may 

contribute to 𝑚𝑒𝑓𝑓.  This means that the impact peaks we examined in this study were composed of 

both low and high frequency forces (Shorten and Mientjes 2011).  However, the focus of this study was 

not to examine how footwear influences high and low frequency components of the impact peak, nor 

was it to investigate contributions of different parts of the body to the total 𝑚𝑒𝑓𝑓. Rather, our focus was 

on 𝐹′, 𝐹𝑚𝑎𝑥 and vertical impulse, variables that are often cited as risk factors for several musculo-

skeletal injuries (Voloshin et al. 1981; Folman et al. 1986; Collins and Whittle 1989; Gill and O'Connor 

2003; Davis et al. 2004; Milner et al. 2006; Wen 2007).     

The prediction that both vertical impulse and 𝑚𝑒𝑓𝑓 would increase in walkers and heel strike 

runners wearing less stiff footwear was supported by experimental data.  Our data also supported the 

predictions that tradeoff relationships exist between 𝐹′ and vertical impulse as well as between 𝐹′ and 
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𝑚𝑒𝑓𝑓.  In sum, less stiff footwear heels decrease 𝐹′ while increasing 𝑚𝑒𝑓𝑓 and the vertical impulse of the 

ground reaction force during the impact phase of walking and heel strike running.  

𝑚𝑒𝑓𝑓 was influenced solely by changes in ∆𝑡 in the different conditions, and not by changes in 

𝐹𝑚𝑎𝑥, ∆𝑣 or sagittal plane knee and ankle kinematics at the beginning of the impact peak.  Knee flexion 

during ∆𝑡 for running significantly increased in the softer footpads, likely indicating reduced knee joint 

stiffness. However, the changes were minimal and unlikely to have had a profound effect on running 

𝑚𝑒𝑓𝑓 values because walking 𝑚𝑒𝑓𝑓 changed with condition despite no change in knee or ankle angles 

during the period of the impact peak (Table 2.1; Table 2.2). 

Our calculation of 𝑚𝑒𝑓𝑓 uses a measure of instantaneous velocity of the lower extremity at 

impact which we obtained by averaging the displacement of the lateral malleolus over 4 ms prior to 

impact. Measuring impact velocity at the foot may over- or under-estimate the velocity of the portion of 

the body that stops during impact. However, any discrepancies that this might cause in absolute values 

of 𝑚𝑒𝑓𝑓 would be consistent across conditions and would likely have no effect on the differences in 

𝑚𝑒𝑓𝑓 we found between conditions. Moreover, our results from control conditions are consistent with 

previously published data. We found 𝑚𝑒𝑓𝑓 to average 6.0% BW (SD +/-1.2) in the walking control 

condition, which is in agreement with the value of 6.3% BW found by Chi and Schmidt (2005) for 

barefoot walkers.  We found 𝑚𝑒𝑓𝑓 during running to average 6.8% BW (SD +/- 1.4) in the control 

condition, which is greater than the average of 5.3% BW found by Chi and Schmidt (2005) but identical 

to the value found by Lieberman et al. 2010 for barefoot heel strike runners. One potential reason for 

the discrepancy between our data and Chi and Schmidt 2005 in heel strike running 𝑚𝑒𝑓𝑓 is that our 

runners had a forward speed between 3.06 and 3.42 m/s, while runners in Chi and Schmidt 2005 

averaged 2.65 (SD +/- 0.44) m/s. 𝐹𝑚𝑎𝑥 tends to increase as forward speed increases (Nigg et al. 1987), 

which is likely indicative of larger 𝑚𝑒𝑓𝑓 at faster running speeds.  Although the hypothesis that 𝑚𝑒𝑓𝑓 
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increases with running speed has not been tested, this would explain why this study and Lieberman 

2010 (running speeds between 4 and 6 m/s) found greater 𝑚𝑒𝑓𝑓 than Chi and Schmidt 2005.    

This study has several limitations.  Instrumented treadmills may influence walking and running 

kinematics, kinetics and muscle activation compared to embedded force plates (Nigg et al. 1995; Wank 

et al. 1998).  In addition, our definition that the impact peak begins when the vertical force reaches 3 

standard deviations above treadmill noise (this averaged 25 N across subjects) likely influences the 

values of ∆𝑡, ∆𝑣, 𝐹′, 𝑚𝑒𝑓𝑓 and the vertical impulse.  For example, increasing the threshold for the 

beginning of the impact peak would decrease both ∆𝑡 and ∆𝑣.  Despite these methodological 

limitations, our values for  𝐹𝑚𝑎𝑥, ∆𝑣, ∆𝑡 and  𝑚𝑒𝑓𝑓 are comparable to other studies that have used 

embedded force plates or that have slightly different definitions for the beginning of impact (Gill and 

O'Connor 2003; Chi and Schmitt 2005; Lieberman et al. 2010), suggesting our methodology does not 

confound our results. 

Further, 𝐹′ in previous studies has been measured using smaller force intervals (e.g. from 200N 

to 90% of 𝐹𝑚𝑎𝑥 (Williams et al. 2000; Lieberman et al. 2010)). The method of calculating 𝐹′ in this study 

includes the toe and peak regions of the impact peak, where the rate of change of force is not constant.  

We measured 𝐹′ using this method because 𝐹𝑚𝑎𝑥 during walking often reached no greater than 400 N 

for some individuals. We would have had low temporal and spatial resolution for measuring 𝐹′ and foot 

motion had we chosen a smaller force interval. 

An additional limitation of this study is that the footpads necessarily added mass to the subjects’ 

feet.  While an ideal experiment would have used experimental footpads of equal mass, we think it is 

unlikely that the observed changes in 𝑚𝑒𝑓𝑓 were due to the actual mass added by the footpads or 

differences in mass between the footpads. The hard and soft footpads had an average mass of 0.12 kg 

and 0.024 kg across subjects, respectfully. The change in 𝑚𝑒𝑓𝑓 from the hard pad to the control 
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condition was 0.97% and 1.4% of body weight in walking and running, respectively. These percentages 

are equivalent to 0.63 kg and 0.91 in a 65 kg individual, respectively, which are much greater than the 

mass of the hard pad alone.  Further, the soft pad condition resulted in greater 𝑚𝑒𝑓𝑓 than the hard pad 

despite having lower mass than the hard pad.  Therefore, it is improbable that the mass of the footpads 

had more than a negligible effect on changes in 𝑚𝑒𝑓𝑓 observed in this study.  

This study was designed to test predictions about how impact kinetics change as a result of 

variations in footwear heel stiffness.  An important implication is that the tradeoff relationship between 

𝐹′ and vertical impulse in the experimental footwear used in this study likely also exists for walkers and 

runners using any kind of footwear. Because both 𝐹′ and vertical impulse have been hypothesized to be 

risk factors for some repetitive stress injuries, walking or heel strike running in less stiff footwear heels 

may decrease injury risk from impact loading rates but increase injury risk from larger vertical impulses. 

This hypothetical trade-off has yet to be tested, but merits further investigation in order to better 

understand the effects of different types of footwear heels. Future work in this area should consider 

how common shoe materials influence 𝐹′ and vertical impulse, as well as investigate the relationship 

between specific repetitive stress injuries and elevated values of 𝐹′ and vertical impulse.  A related 

question is whether larger vertical impulses due to extended impact time durations (as found in this 

study) have the same effect on skeletal tissues as large vertical impulses due to elevated 𝐹𝑚𝑎𝑥.  

An important follow-up question deriving from these results is how muscles modulate the way 

impact forces are generated and dampened. Lower limb muscle activity changes around the time of 

impact when individuals walk and run in footwear of varying stiffness (Wakeling and Nigg 2001; 

Wakeling et al. 2002; Wakeling et al. 2003).  These changes may occur in order to modulate 𝐹𝑚𝑎𝑥 or to 

reduce vibrations of soft tissues (Wakeling et al. 2003; Zadpoor and Nikooyan 2010). It is unknown, 

however, how these changes in muscular activity influence the vertical impulse and 𝑚𝑒𝑓𝑓. Also, models 
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that use muscle activity to explain experimental findings concerning impact kinetics would benefit from 

incorporating changes in 𝑚𝑒𝑓𝑓 and lower extremity stiffness documented here (Zadpoor and Nikooyan 

2010). Changes in muscle activity also function to increase damping when heel striking in less stiff 

footwear (Wakeling et al. 2003), but it remains unclear how changes in muscle activation influence 𝑚𝑒𝑓𝑓 

or the vertical impulse. 
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Chapter 3 – Effects of height and elastic modulus of footwear heels on heel strike running 

impact peaks 

Introduction 

Impact peaks in vertical ground reaction force during heel strike running are caused by an 

inertial change in some portion of the lower extremity over the first 10-50 ms of stance. Impact peaks 

have received considerable attention because of their potential but debated role in the onset and 

progression of some musculoskeletal injuries (Folman et al. 1986; Collins and Whittle 1989; Nigg 2001; 

Gill and O'Connor 2003; Davis et al. 2004; Milner et al. 2006; Wen 2007; Pohl et al. 2009; Nigg 2010; 

Daoud et al. 2012; Addison and Lieberman 2015). Consequently, the ways in which footwear influences 

impact peaks has been the focus of much research because of the roles that aspects of footwear, 

especially the heel, play in terms of enhancing comfort and possibly preventing or mitigating impact 

peak-related injuries (Wakeling et al. 2002; Hume et al. 2008; Nigg 2010). Many of these studies have 

focused on how the elasticity of the shoe’s heel influences variables that have been implicated in 

musculoskeletal injuries, especially the magnitude of the impact peak (𝐹𝑚𝑎𝑥) and its rate of loading (𝐹′) 

(McKenzie et al. 1985; Davis et al. 2004; Milner et al. 2006; Zadpoor and Nikooyan 2010; Zadpoor and 

Nikooyan 2011; van der Worp et al. 2015).When the impact peak is defined as the first peak in vertical 

ground reaction force containing all frequency components, studies find that interfaces with a lower 

elastic modulus (𝐸 – the size-corrected stiffness of a material) lead to impact peaks with decreased 𝐹′ 

caused by greater impact duration (∆𝑡), while the magnitude of the impact peak (𝐹𝑚𝑎𝑥) remains mostly 

unaffected (Light et al. 1980; Clarke et al. 1983; Nigg et al. 1987; Nigg et al. 1988; Lafortune and Hennig 

1992; Hennig et al. 1993; Addison and Lieberman 2015). These studies also find heel materials with 

lower E lead to larger effective mass and increased vertical impulse (Addison and Lieberman 2015). 

Mass-spring-damper models of heel strike running impacts confirm that reducing the interface between 

the foot and the ground increases ∆𝑡 and decreases 𝐹′, and suggest that variations in 𝐹𝑚𝑎𝑥 are 
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regulated primarily by changes in lower limb muscular activity (Nigg and Liu 1999; Zadpoor et al. 2007; 

Zadpoor and Nikooyan 2010).  

Although variations in 𝐸 of the heel are an important source of variation in the generation of 

impact peaks, modern footwear also varies in the height of the heel, which is likely to have additional 

important effects on impact peaks during heel strikes. Studies that have investigated the influence of 

heel height on walking find that it alters plantar pressure distributions, lower extremity kinematics, 

impact force magnitudes, and accelerations of lower limb segments (Snow and Williams 1994; Voloshin 

and Loy 1994; Esenyel et al. 2003; Hong et al. 2005). The few studies that have examined the effects of 

heel height variation on running find that higher heels reduce peak ankle plantarflexion moment but 

have no effect on foot pronation across the stance phase (Clarke et al. 1983; Reinschmidt and Nigg 

1995). Knowledge of how heel height specifically affects heel strike running impact peaks comes 

primarily from comparisons of the relatively extreme conditions of individuals who are barefoot, 

minimally shod, or in conventional running shoes with cushioned, elevated heels. These studies indicate 

that runners in conventional and minimal shoes tend to have a higher incidence of heel strike gaits than 

barefoot runners, and that barefoot and minimalist shoe runners tend to land with more plantarflexed 

ankles than conventionally shod runners  (Squadrone and Gallozzi 2009; Lieberman et al. 2010; Bonacci 

et al. 2013; Larson 2014), However, because of the focus on extreme experimental conditions, we know 

little about the effects of variation in heel height on impact peak kinetics during heel strike running. 

Moreover, despite the fact that modern footwear varies widely in both the elastic modulus and height 

of the heel material, there are no data on how variations in both heel height and heel 𝐸 interact to 

influence heel strike running impact peaks. 

Here we explore how both E and heel height affect the stiffness of the heel-ground interface by 

using a simple model derived from solid mechanics. The stiffness (𝑘) of any object under compression, 

including a footwear heel, is equal to 𝐸 times the cross-sectional area (𝐴) divided by the length. In the 
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context of footwear heels, the stiffness of the heel material between the foot and the ground (𝑘ℎ𝑒𝑒𝑙) is 

equal to the elastic modulus of the material that comprises the interface (𝐸ℎ𝑒𝑒𝑙) times 𝐴 divided by the 

vertical length (or height) of the heel: 

Equation 1: 𝑘ℎ𝑒𝑒𝑙 =
𝐸ℎ𝑒𝑒𝑙𝐴

𝐻𝑒𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
 

Equation 1 indicates that 𝑘ℎ𝑒𝑒𝑙 is directly influenced by 𝐸ℎ𝑒𝑒𝑙  and inversely affected by heel height. In 

other words, decreasing 𝐸ℎ𝑒𝑒𝑙  and increasing heel height have the same effect: decreasing the value of 

𝑘ℎ𝑒𝑒𝑙.  

It is therefore possible to use findings from studies that experimentally alter foot-ground 

interface stiffness by varying 𝐸 to predict how heel strike running impact peaks will be influenced by 

variations in heel height. As mentioned above, several studies have found that decreasing the elastic 

modulus of the foot-ground interface results in increases to ∆𝑡, decreases in 𝐹′, and increased vertical 

impulse and effective mass (Light et al. 1980; Hennig et al. 1993; Wakeling et al. 2003; Addison and 

Lieberman 2015). Equation 1 suggests that increasing heel height will also have the same effects 

because higher heels, like materials with lower 𝐸, reduce the stiffness of the interface. In addition, 

modeling studies of heel strike running have shown that lower limb muscle activity regulates impact 

force magnitudes, rendering 𝐹𝑚𝑎𝑥 independent of variations in foot-ground interface stiffness (Zadpoor 

and Nikooyan 2010). We therefore hypothesize that reducing foot-ground stiffness by increasing heel 

height will result in heel strike running impact peaks that have longer ∆𝑡, slower 𝐹′, increased effective 

mass, and increased vertical impulse for a given individual. We also hypothesize that 𝐹𝑚𝑎𝑥 will be 

unaffected by variations in heel height for a given individual. 

Equation 1 further indicates that the effects of heel height and 𝐸 on interface stiffness are 

multiplied. Practically speaking, simultaneously increasing the height of a running shoe’s heel while 

decreasing 𝐸 of the heel will both act to decrease foot-ground interface stiffness, amplifying their 
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effects on impact peaks. Specifically, we hypothesize that the highest footwear heels made of materials 

with the lowest 𝐸will result in the longest ∆𝑡, the slowest 𝐹′, the largest vertical impulse and the 

greatest effective mass for a given individual. We hypothesize that 𝐹𝑚𝑎𝑥 within an individual will remain 

unaffected by variation in heel height or elastic modulus. 

This study therefore tests two main hypotheses about how variation in footwear heel 

construction affects heel strike running impact peaks within individuals. First, we hypothesize that 

increasing heel height will have similar effects on heel strike running impact peaks as reducing interface 

modulus. That is, a given individual heel strike running in high heeled footwear will generate impact 

peaks that have longer ∆𝑡, slower 𝐹′, increased vertical impulse and greater effective mass. Second, the 

effects of heel height and 𝐸ℎ𝑒𝑒𝑙  will be multiplied such that individuals will generate impact peaks with 

the longest ∆𝑡, slowest 𝐹′, largest vertical impulse and greatest effective mass when wearing footwear 

with the highest heels that are made of materials with the lowest 𝐸. Additionally, we hypothesize that 

𝐹𝑚𝑎𝑥 will remain unaffected by heel height or 𝐸 within an individual.  

Methods 

Subjects 

Fifteen healthy adult males between the ages of 19 and 26 (body mass (kg): 68.7 (+/- 4.9), height 

(cm) 176.3 (+/- 6.1)) participated in this study, which was approved by the Institutional Review Board of 

Harvard University. We used only males with a shoe size of 10M (American) in order to limit the number 

of experimental shoes constructed for this study (see below). Participants gave their informed consent 

and the experiments were conducted at the Skeletal Biology and Biomechanics Lab of the Department 

of Human Evolutionary Biology at Harvard University.  
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Mechanical testing of heel materials 

 We used 3 different materials that encompass the stiffness range of commercially available shoe 

materials. Each material was cut into squares with edge lengths of 25.4 mm and thickness of 6 mm and 

mechanically tested under compression to measure E. Compression testing was performed using an 

Instron model 4201 (Instron, Norwood, MA, USA) at a rate of 10 mm/min and data were collected at 

1kHz. Stress (change in force divided by area) and strain (change in length divided by original length) 

were calculated from the raw data. 𝐸 was measured between 0 and .5 strain (50% strain) and calculated 

as the slope of the best-fit least-squares regression line of the raw data (the slopes of stress vs. strain 

from 0 to 50% were approximately linear for each material; see Appendix 2). The measured E of the 

materials from smallest to largest was 1.6 MPa (soft), 32 MPa (medium) and 45 MPa (hard). 

Footwear construction 

In order to create footwear that varied in both heel height and elastic modulus, an experienced, 

professional cobbler (Felix Shoe Repair, Cambridge, MA, USA) was hired to add heels to the bottom of 

zero-drop minimal shoes with a 5.5 mm stack height that lacked any elevation or added cushioning 

(make: Merrell (Rockford, Michigan, USA), model: Vapor Glove, shoe size M10 (American)). We used the 

three materials described above that differed in 𝐸 combined with three different heel heights to create 

9 different sets of footwear. The lowest heel height condition (6mm) was made so that the varying 

elastic modulus material (6 mm height) was attached directly to the bottom of the heel region of the 

minimal shoes. The medium heel height condition (14 mm) was created by gluing a stiff heel riser 8 mm 

thick directly to the bottom of the heel region of the shoes, and then gluing the materials that varied in 

elastic modulus (6 mm height) to the bottom of the heel riser. The highest heel height condition (20 

mm) was designed in the same manner as the medium height condition, but a 14 mm thick heel riser 

was used (Figure 3.1).  
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Figure 3.1: Construction of experimental footwear. In the 6 mm height condition, the materials of varying elastic 
modulus were glued directly to the bottom of the heel region of minimal footwear. In the 14 and 20 mm height 
conditions, stiff heel risers (8 and 14 mm in height, respectively) were glued in between the bottom of the minimal 
footwear and the materials of varying elastic modulus.  

 

Experimental design and measurements 

Participants ran in each of the 9 footwear conditions described above. The order of footwear 

condition was randomized across subjects. Participants ran at a Froude number of 1.25 (actual forward 

velocities ranged from 3.20 to 3.43 m/s) in order to ensure dynamic similarity between participants that 

varied in leg length (Alexander 2003). Prior to data collection, each subject practiced running on the 

treadmill in minimal footwear at the prescribed Froude number and their preferred step frequency was 

recorded. Each subjects’ preferred step frequency was played back via an electronic metronome during 

each trial and subjects were instructed to keep to this step frequency to the best of their ability to avoid 

complications with changes in support mechanics when the foot-ground interface stiffness is altered 

(Kerdok et al. 2002). 

Ground reaction forces and lower limb kinematics were measured during the period of the 

impact peak. The impact peak was defined as the first peak in vertical force containing all frequency 

components. A treadmill instrumented with a force-plate (BERTEC, Columbus, Ohio, USA) recorded 
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ground reaction force data at 2 kHz. Kinetic data were low-pass filtered at 100 Hz prior to data analysis. 

The impact peak was considered to begin when the vertical ground reaction force value exceed 50 N and 

ended at 𝐹𝑚𝑎𝑥. Lower limb kinematic data were collected at 1 kHz with an eight camera Oqus system 

(QUALYSIS, Gothenburg, Sweden) with a spatial resolution of 0.5 mm. Markers (12.7 mm in diameter) 

were placed on the skin of the right lower extremity over the anterior superior iliac spine (ASIS), greater 

trochanter, medial and lateral femoral condyles, medial and lateral malleoli. Three additional markers 

(also 12.7 mm diameter) were placed on the exterior of the footwear: two markers spanning the medial-

lateral distance of the toe box of the shoe and a single marker on the rear heel region of the shoe facing 

posteriorly. Kinematic data was collected only from the right leg, and all subsequent analyses were 

performed on data from only the right leg.  

We measured several kinetic variables of the impact peak that have been hypothesized to be 

related to the etiology of repetitive stress injuries, including 𝐹𝑚𝑎𝑥, 𝐹′ and vertical impulse (Voloshin et 

al. 1981; Collins and Whittle 1989; Davis et al. 2004; Milner et al. 2006; Zadpoor and Nikooyan 2011). 

We also measured ∆𝑡, impact velocity (∆𝑣) in the vertical direction and effective mass (𝑚𝑒𝑓𝑓). In 

addition, we measured sagittal plane hip, knee and ankle angles because these kinematic variables 

influence both 𝐹𝑚𝑎𝑥 and 𝐹′ (Lafortune et al. 1996; Derrick 2004). Only the vertical components of kinetic 

and kinematic variables were considered because over 90% of the total ground reaction force during the 

impact phase of running is due to the vertical force (Cavanagh 1990). We calculated 𝐹′ between 200 N 

and 90% of 𝐹𝑚𝑎𝑥 following the methods of previous studies (Williams et al. 2000; Lieberman et al. 2010). 

We measured instantaneous velocity of the foot (∆𝑣) by dividing the change in lateral malleolus position 

by the change in time for the four time frames (4 ms) prior to the beginning of the impact peak. We 

measured 𝑚𝑒𝑓𝑓 and vertical impulse during the period of the impact peak using previously published 

methods (Chi and Schmitt 2005; Lieberman et al. 2010). Briefly, vertical impulse was calculated as the 

integral of the impact peak over ∆𝑡, and 𝑚𝑒𝑓𝑓 was calculated as the vertical impulse divided by (∆𝑣 +
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𝑔∆𝑡), where 𝑣, 𝑔 and 𝑡 are velocity, the acceleration due to gravity and time, respectively. Knee and 

ankle angles were measured at the beginning of the impact peak and at 𝐹𝑚𝑎𝑥. Knee angle was measured 

between the greater trochanter, lateral femoral condyle and lateral malleolus markers, and ankle angle 

was measured between the lateral femoral condyle, lateral malleolus and the most lateral marker on 

the shoe toe-box. Ankle contact angle and knee contact angle were measured as the ankle and knee 

angle at the onset of impact, respectively. Ankle plantarflexion was measured as the ankle angle at 𝐹𝑚𝑎𝑥 

minus ankle contact angle, and knee flexion was measured as the knee angle at 𝐹𝑚𝑎𝑥 minus knee 

contact angle.  

Data analysis 

 Individual steps were removed from the analysis when 𝐹𝑚𝑎𝑥 was three standard deviations from 

the average 𝐹𝑚𝑎𝑥 for the given subject and condition. We then analyzed 25 steps from the right leg per 

subject per condition. Averages for all variables were taken from these 25 steps and used in all 

subsequent analyses.  

 Our study tested how footwear heel height and elastic modulus influenced heel strike running 

impact peaks within participants and required repeated sampling of participants. We therefore used 

general linear mixed models (GLMM) to test how heel height and elastic modulus affected kinetic 

aspects of the impact peak for a given participant. Briefly, GLMMs use both fixed effects (effects that are 

directly manipulated in the experiment) and random effects (effects that are randomly selected from a 

population) as predictors while accounting for the auto-correlation that results from repeated measures 

of participants (McCulloch and Searle 2001). The GLMM thus models the correlation of outcome 

measures within participants for the 9 experimental conditions used in this study. Heel height and 𝐸 

were considered fixed effects in the GLMMs because we directly altered these variables in the 

experiment. Participants were random effects because each individual was randomly selected from the 

population.  
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 Our first hypothesis was that increasing heel height would have the same effects on heel strike 

running impacts as decreasing the elastic modulus of the heel material.  We tested this hypothesis using 

two different GLMMs. The first GLMM considers the effects of heel height and elastic modulus on 

impact peak kinetic variables. A second GLMM was used to further assess the influence of lower 

extremity kinematics, and thus considers the effects of heel height, elastic modulus of the heel, and of 

lower extremity kinematics on the impact peak kinetic variables. The first GLMM equation used to test 

this hypothesis took the following form: 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝛽1𝐻𝑒𝑒𝑙 𝐻𝑒𝑖𝑔ℎ𝑡 +  𝛽2𝐻𝑒𝑒𝑙 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 + 𝛽3 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑍𝑈+ ∈ 

The kinetic variables examined were 𝐹𝑚𝑎𝑥, ∆𝑡, 𝐹′, vertical impulse and 𝑚𝑒𝑓𝑓. 𝛽𝑖 is the fixed-

effect coefficient of the 𝑖th predictor, Z is the matrix for the random grouping variable, U is the vector of 

random effects (participants), and ∈ is the residual model error. Interaction refers to the interaction 

between heel height and the elastic modulus of the heel.  

The second GLMM equation used to test this hypothesis was:  

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

=  𝛽1𝐻𝑒𝑒𝑙 𝐻𝑒𝑖𝑔ℎ𝑡 + 𝛽2𝐻𝑒𝑒𝑙 𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 +  𝛽3 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

+ 𝛽4 𝐴𝑛𝑘𝑙𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑛𝑔𝑙𝑒 +  𝛽5  𝐴𝑛𝑘𝑙𝑒 𝑃𝑙𝑎𝑛𝑡𝑎𝑟𝑓𝑙𝑒𝑥𝑖𝑜𝑛 + 𝛽6 𝐾𝑛𝑒𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑛𝑔𝑙𝑒

+ 𝛽7 𝐾𝑛𝑒𝑒 𝐹𝑙𝑒𝑥𝑖𝑜𝑛 + 𝑍𝑈+ ∈ 

The kinetic variables tested in this equation are the same as above. Ankle contact angle, ankle 

plantarflexion, knee contact angle and knee flexion were continuous variables and measured as 

described above.  

 Our second hypothesis was that individuals would generate impact peaks with the longest ∆𝑡, 

slowest 𝐹′, largest vertical impulse and greatest 𝑚𝑒𝑓𝑓 when wearing footwear that had the highest 

heels made of materials with the lowest 𝐸. This hypothesis requires that we test for the effects of each 

experimental footwear condition within each participant. The GLMM equation used to test this 

hypothesis took the following form: 
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𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝛽1𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑍𝑈+ ∈ 

 

The kinetic variables examined were 𝐹𝑚𝑎𝑥, ∆𝑡, 𝐹′, vertical impulse and 𝑚𝑒𝑓𝑓. Footwear 

condition refers to the 9 different footwear conditions used in the experiment: 6mm heel height with 

soft, medium and hard elastic modulus, 14mm heel height with soft, medium and hard elastic modulus, 

and 20mm heel height with soft, medium and hard elastic modulus.  

All kinetic outcome variables and kinematic predictor variables were log-transformed and then 

converted to Z-scores prior to examination via GLMMs. The GLMMs report statistical results (F-ratio, p-

value) for fixed effects. For the first hypothesis, the fixed effects were heel height, heel elastic modulus 

the interaction between height and elastic modulus, ankle contact angle, ankle plantarflexion, knee 

contact angle and knee plantarflexion. For the second hypothesis, the fixed effect was the footwear 

condition. The GLMMs also report parameter estimates (coefficients, standard error, t-ratio and p-value) 

for each experimental condition relative to a baseline condition. For the first hypothesis, the baseline 

conditions were the 6mm heel height (for the height conditions) and the hard elastic modulus condition 

(for the elastic modulus conditions) and t-ratios and p-values are reported relative to these conditions 

for both GLMMs (Table 3.1, Table 3.2). For the second hypothesis, the baseline condition for the GLMM 

was the 20mm height-soft elastic modulus condition and t-ratios and p-values are reported relative to 

this condition (Table 3.3). For all statistical tests, significance was assigned to p-values < 0.05.  

Results 

Effects of heel height and elastic modulus on impact kinetics 

In the first GLMM, we considered the effects of heel height and elastic modulus on 𝐹𝑚𝑎𝑥, ∆𝑡, 𝐹′, 

vertical impulse and 𝑚𝑒𝑓𝑓. This section reports the results of that model. The model results are also 

found in Table 3.1.  
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Table 3.1: Effects of footwear condition on impact peak kinetic variables  

Kinetic Variable Model Effect 
Coefficient 
estimate 

Std. Error F-ratio t-value p-value 

𝐹𝑚𝑎𝑥  (BW) 

Heel Height   77.0  <0.0001 

14 mm 0.162 0.0471  -3.43 0.0008 

20 mm -0.567 0.0471  -12.04 <0.0001 

Elastic Modulus   2.80  0.07 

Medium 0.0117 0.0471  0.25 0.80 

Soft 0.09 0.0471  1.91 0.058 

Interactions   3.2  0.015 

14* soft -0.1 0.0666  -1.51 0.14 

14*medium 0.176 0.0666  2.65 0.009 

20*soft 0.174 0.0666  2.61 0.01 

20*medium -0.0935 0.0666  -1.4 0.163 

∆𝑡 (s) 

Heel Height   30.1  <0.0001 

14 mm 0.00503 0.612  0.08 0.93 

20 mm 0.409 0.612  6.68 <0.0001 

Elastic Modulus   4.92  0.009 

Medium -0.159 0.612  -2.61 0.01 

Soft -0.0127 0.612  -0.21 0.83 

Interactions   2.04  0.09 

14* soft -0.0179 0.0866  -0.21 0.83 

14*medium -0.102 0.0866  -1.18 0.24 

20*soft -0.151 0.0866  -1.75 0.084 

20*medium 0.207 0.0866  2.39 0.0185 

𝐹′ (BW/s) 

Heel Height   77.2  <0.0001 

14 mm 0.296 0.0531  -5.56 <0.0001 

20 mm -0.659 0.0531  -12.4 <0.0001 

Elastic Modulus   5.98  0.003 

Medium 0.156 0.0531  2.9 0.005 

Soft 0.00966 0.0531  0.18 0.86 

Interactions   11.6  <0.0001 

14* soft -0.149 0.0752  -1.98 0.0502 

14*medium 0.376 0.0752  5 <0.0001 

20*soft 0.370 0.0752  4.93 <0.0001 

20*medium -0.301 0.0752  -4.01 0.0001 

Vertical Impulse 
(BW*ms) 

Heel Height   20.9  <0.0001 

14 mm -0.454 0.0765  -5.93 <0.0001 

20 mm 0.399 0.0765  5.21 <0.0001 

Elastic Modulus   6.02  0.003 

Medium -0.230 0.0765  -3 0.003 

Soft 0.230 0.0765  3 0.003 

Interactions   7.63  <0.0001 

14* soft 0.00389 0.108  0.04 0.97 

14*medium -0.222 0.108  -2.05 0.04 

20*soft -0.471 0.108  -4.35 <0.0001 

20*medium 0.345 0.108  3.18 0.002 
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Table 3.1 (Continued): Effects of footwear condition on impact peak kinetic variables  

𝑚𝑒𝑓𝑓  (%BW) 

Heel Height   10.6  <0.0001 

14 mm -0.342 0.0774  -4.42 <0.0001 

20 mm 0.257 0.0774  3.32 0.001 

Elastic Modulus   4.34  0.02 

Medium -0.124 0.0774  -1.60 0.11 

Soft 0.228 0.0774  2.94 0.004 

Interactions   5.76  0.0003 

14* soft -0.0488 0.109  -0.45 0.66 

14*medium -0.228 0.109  2.08 0.04 

20*soft -0.351 0.109  -3.21 0.002 

20*medium 0.327 0.109  2.98 0.004 

 

𝐹𝑚𝑎𝑥 was significantly influenced by heel height (F=77.0, p<0.001; Table 3.1). Both the 14mm 

(p=0.0008) and 20mm (<0.0001) conditions resulted in lower 𝐹𝑚𝑎𝑥 than the 6mm condition (Figure 

3.2A). 𝐹𝑚𝑎𝑥 was not influenced by elastic modulus of the heel (F=2.80, p=0.07). The interaction between 

height and elastic modulus on 𝐹𝑚𝑎𝑥 was statistically significant (F=3.2, p=0.015). In particular, there 

were significant interactions between the 14mm height condition and the medium elastic modulus 

condition (p=0.009) and between the 20mm height condition and the soft elastic modulus condition 

(p=0.01). 

∆𝑡 was significantly influenced by both heel height (F=30.1, p<0.0001) and 𝐸 (F=4.92, p=0.009; 

Table 3.1). The 20mm height condition resulted in longer ∆𝑡 than the 6mm condition (p<0.0001), while 

the 14mm condition was not significantly different from the 6mm condition (p=0.93; Figure 3.2B). 

Among heel elastic modulus conditions, the medium condition resulted in significantly shorter ∆𝑡 than 

the hard condition (p=0.01). The soft condition was not significantly different from the hard condition 

(p=0.83). The interaction between heel height and elastic modulus on ∆𝑡 was not significant (F=2.04, 

p=0.09).  

𝐹′ was significantly affected by heel height (F=77.2, p<0.0001; Figure 3.2C), 𝐸 (F=5.98, p=0.003) 

and the interaction between height and 𝐸 (F=11.6, p<0.0001; Table 3.1). 𝐹′ was significantly lower in the 

20mm and 14mm conditions than in the 6mm condition (p<0.0001, and p<0.0001, respectively). Within 
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𝐸 conditions, 𝐹′ was greater in the medium condition than the hard condition (p=0.005), but the soft 

condition was not significantly different from the hard condition (p=0.86). The 14mm condition 

interacted with the medium 𝐸 condition (p<0.0001) and the 20mm condition had significant interactions 

with the soft and medium conditions (p<0.0001, and p=0.0001, respectively).  

The vertical impulse of the impact peak was affected by heel height (F=20.9, p<0.0001; Figure 

3.2D), 𝐸 (F=6.02, p=0.003) and the interaction between height and 𝐸 (F=7.6, p<0.0001; Table 3.1).  

Among height conditions, the 14 mm condition resulted in a lower vertical impulse than the 6mm 

condition (p<0.0001) and the 20mm condition led to a greater vertical impulse than the 6mm condition 

(p<0.0001). Within elastic modulus conditions, vertical impulse in the hard condition was greater than 

the medium condition (p=0.003) and less than the soft condition (p=0.003). There was a significant 

interaction between the 14mm height condition and the medium 𝐸 condition (p=0.04), and the 20mm 

height condition had significant interactions with the soft (p<0.0001) and medium (p=0.002) 𝐸 

conditions. 

𝑚𝑒𝑓𝑓 was significantly influenced by heel height (F = 10.6, p<0.0001; Figure 3.2E, Table 3.1)), 

with the 6mm condition leading to greater 𝑚𝑒𝑓𝑓 than the 14mm condition (p<0.0001) but lower 𝑚𝑒𝑓𝑓 

than the 20mm condition (p=0.001). 𝑚𝑒𝑓𝑓 was significantly influenced by elastic modulus condition 

(F=4.34, p=0.02, Table 3.1). The hard and medium condition were not significantly different from each 

other (p=0.110), but 𝑚𝑒𝑓𝑓 was greater in the soft condition than the hard condition (p=0.004). The 

interactions between heel height and elastic modulus had significant effects on 𝑚𝑒𝑓𝑓 (F=5.76, p=0.0003, 

Table 3.1). The 14mm condition interacted with the medium elastic modulus condition (p=0.04), and the 

20mm height condition had significant interactions with both the soft (p=0.002) and medium (p=0.004) 

elastic modulus conditions.  
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Figure 3.2: 𝐹𝑚𝑎𝑥  (A), ∆𝑡 (B), 𝐹′ (C), vertical impulse (D) and 𝑚𝑒𝑓𝑓  (E) results for each of the heel height conditions 

studied. Each subject is represented by a unique symbol and dashed lines connect participants between 
conditions.  
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Table 3.2: Effects of footwear condition and lower extremity kinematics on impact peak kinetic variables 

Kinetic Variable Model Effect 
Coefficient 
estimate 

Std. Error F-ratio t-value p-value 

𝐹𝑚𝑎𝑥  (BW) 

Heel Height   37.8  <0.0001 

14 mm 0.146 0.457  -3.19 0.0018 

20 mm -0.466 0.0534  -8.68 <0.0001 

Elastic Modulus   2.16  0.12 

Medium -0.0526 0.0484  -1.09 0.28 

Soft 0.0934 0.0450  2.07 0.0404 

Interactions   2.39  0.06 

14* soft -0.0687 0.064  -1.07 0.29 

14*medium 0.108 0.0656  1.66 0.10 

20*soft 0.129 0.0646  2.01 0.0474 

20*medium -0.0104 0.066  -0.16 0.87 

Ankle contact 
angle 

-0.115 0.106 1.17 -1.08 0.28 

Ankle 
plantarflexion 

-0.163 0.0748 4.75 -2.18 0.0313 

Knee contact 
angle 

0.00214 0.0736 0.0009 0.03 0.98 

Knee flexion -0.179 0.0539 11.0 -3.32 0.001 

∆𝑡 (s) 

Heel Height   9.92  0.0001 

14 mm 0.0201 0.0475  0.42 0.67 

20 mm 0.204 0.0544  3.76 0.0003 

Elastic Modulus   0.144  .87 

Medium -0.018 0.0501  -0.36 0.72 

Soft -0.00826 0.0469  -0.18 0.86 

Interactions   1.20  0.32 

14* soft -0.0679 0.0666  -1.02 0.31 

14*medium 0.0408 0.682  0.06 0.55 

20*soft -0.0749 0.0672  -1.11 0.27 

20*medium 0.0202 0.0686  0.29 0.77 

Ankle contact 
angle 

0.206 0.0926 4.96 2.23 0.03 

Ankle 
plantarflexion 

0.190 0.0742 6.58 2.57 0.01 

Knee contact 
angle 

0.0315 0.0717 0.193 0.44 0.66 

Knee flexion 0.5002 0.0549 82.9 9.11 <0.0001 
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Table 3.2 (Continued): Effects of footwear condition and lower extremity kinematics on impact peak kinetic 
variables 

𝐹′ (BW/s) 

Heel Height   54.8  <0.0001 

14 mm 0.278 0.0463  -6.02 <0.0001 

20 mm -0.557 0.0538  -10.3 <0.0001 

Elastic Modulus   0.954  0.39 

Medium 0.0538 0.0489  1.10 0.27 

Soft 0.0103 0.0456  0.23 0.82 

Interactions   11.2  <0.0001 

14* soft -0.121 0.0648  -1.87 0.0640 

14*medium 0.287 0.0665  4.32 <0.0001 

20*soft 0.324 0.0654  4.95 <0.0001 

20*medium -0.179 0.0669  -2.68 0.009 

Ankle contact 
angle 

-0.00354 0.101 0.0012 -0.03 0.972 

Ankle 
plantarflexion 

-0.0965 0.0747 1.67 -1.29 0.199 

Knee contact 
angle 

0.0426 0.0731 0.340 0.58 0.56 

Knee flexion -0.373 0.0543 47.1 -6.86 <0.0001 

Vertical Impulse 
(BW*ms) 

Heel Height   19.9  <0.0001 

14 mm -0.435 0.0689  -6.30 <0.0001 

20 mm 0.237 0.0794  2.99 0.003 

Elastic Modulus   5.82  0.004 

Medium -0.102 0.0727  -1.40 .16 

Soft 0.231 0.0679  3.40 0.0009 

Interactions   7.32  <0.0001 

14* soft -0.0391 0.0966  -0.40 0.69 

14*medium -0.0982 0.0989  -0.99 0.32 

20*soft -0.406 0.0975  -4.16 <0.0001 

20*medium 0.185 0.0996  1.86 0.066 

Ankle contact 
angle 

0.0929 0.1407 0.436 0.66 0.512 

Ankle 
plantarflexion 

0.175 0.109 2.58 1.61 0.11 

Knee contact 
angle 

0.0120 0.106 0.0129 0.11 0.91 

Knee flexion 0.435 0.0801 29.4 5.42 <0.0001 
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Table 3.2 (Continued): Effects of footwear condition and lower extremity kinematics on impact peak kinetic 
variables 

𝑚𝑒𝑓𝑓  (%BW) 

Heel Height   9.45  0.0002 

14 mm -0.0275 0.00643  -4.27 <0.0001 

20 mm 0.00912 0.00734  1.24 .21 

Elastic Modulus   5.29  0.0064 

Medium -0.00203 0.00677  -0.30 0.76 

Soft 0.0190 0.00635  3.00 0.003 

Interactions   4.54  0.002 

14* soft -0.00843 0.00902  -0.93 0.35 

14*medium -0.0112 0.00923  -1.21 0.23 

20*soft -0.0240 0.0091  -2.64 0.01 

20*medium 0.0160 0.00929  1.72 0.088 

Ankle contact 
angle 

0.0190 0.0121 2.44 1.56 0.13 

Ankle 
plantarflexion 

0.0199 0.00993 4.0 2.00 0.05 

Knee contact 
angle 

-0.0117 0.00957 1.49 -1.22 0.22 

Knee flexion 0.0312 0.00739 17.7 4.21 <0.0001 

 

Effects of heel height, elastic modulus and lower extremity kinematics on impact kinetics 

In the second GLMM, we considered the effects of heel height and elastic modulus on 𝐹𝑚𝑎𝑥, ∆𝑡, 

𝐹′, vertical impulse and 𝑚𝑒𝑓𝑓. This section and Table 3.2 report the results of the second GLMM. 

𝐹𝑚𝑎𝑥 was significantly influenced by heel height (F=37.8, p<0.0001), ankle plantarflexion during 

impact (F=4.75, p=0.03) and knee flexion during impact (F=11.0, p=0.001) (Table 3.2). Both the 14mm 

and 20mm heel height conditions resulted in lower 𝐹𝑚𝑎𝑥 than the 6mm condition (p=0.002 and 

p<0.0001, respectively). Increased ankle plantarflexion was associated with lower 𝐹𝑚𝑎𝑥, as was greater 

knee flexion during the impact (Figure 3.3A).  

 ∆𝑡 was significantly influenced by heel height (F=9.92, p=0.0001; Table 3.2), with the 20mm 

condition leading to longer ∆𝑡 than the 6mm condition (p=0.0003). ∆𝑡 was also significantly affected by 

ankle contact angle (F=4.96, p=0.03), ankle plantarflexion during the impact (F=6.58, p=0.01) and knee 

flexion during the impact (F=82.9, p<0.0001). Increased knee flexion was associated with longer ∆𝑡 

within subjects (Figure 3.3B).  
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Figure 3.3: 𝐹𝑚𝑎𝑥  (A), ∆𝑡 (B), 𝐹′ (C), vertical impulse (D) and 𝑚𝑒𝑓𝑓  (E) versus knee flexion during the impact peak. 

Large, black lines represent the best-fit trend across all participants as fitted by least-squares regression. Grey 
dotted lines represent the best-fit trends for individual participants as fitted by least squares regression.  

 Heel height (F=54.8, p<0.0001), the interaction between heel height and 𝐸 (F=11.2, p<0.0001), 

and knee flexion during impact (F=47.1, p<0.0001) all had significant effects on 𝐹′ (Table 3.2). The 14mm 

and 20mm heel height conditions resulted in slower 𝐹′ than the 6mm height condition (p<0.0001 and 
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p<0.0001, respectively; Figure 3.2C). There were significant interactions between the 14mm height and 

medium elastic modulus condition (p<0.0001), the 20mm height and the soft elastic modulus condition 

(p<0.0001) and the 20mm height and medium elastic modulus condition (p=0.009). Increased knee 

flexion during the impact was correlated with decreased 𝐹′ (Figure 3.3C) within subjects. 

 Vertical impulse was significantly influenced by heel height (F=19.9, p<0.0001), elastic modulus 

of the heel (F=5.82, p=0.004), the interaction between heel height and elastic modulus (F=7.32, 

p<0.0001) and knee flexion during the impact (F=29.4, p<0.0001; Table 3.2). The 6mm heel height 

condition led to greater vertical impulse than the 14mm condition (p<0.0001) but lower vertical impulse 

than the 20mm condition (p=0.003, Figure 3.2D). Among elastic modulus condition, the soft condition 

led to greater vertical impulse than the hard condition (p=0.0009). There was a significant interaction 

between the 20mm height condition and the soft elastic modulus condition (p<0.0001). Finally, 

increased knee flexion was associated with greater vertical impulse within individuals (p<0.0001, Figure 

3.3D). 

 𝑚𝑒𝑓𝑓 within individuals was significantly affected by heel height (F=9.45, p=0.0002), elastic 

modulus (F=5.29, p=0.006), the interaction between heel height and elastic modulus (F=4.54, p=0.002), 

and knee flexion (F=17.7, p<0.0001; Table 3.2). The effect of ankle plantarflexion on 𝑚𝑒𝑓𝑓 trended 

towards statistical significance (F=4.0, p=0.05). Among heel height conditions, the 14mm condition 

resulted in lower 𝑚𝑒𝑓𝑓 than the 6mm condition (p<0.0001) and among elastic modulus conditions the 

soft condition led to greater 𝑚𝑒𝑓𝑓 than the hard condition (p=0.003). There was a significant interaction 

between the 20mm height and soft elastic modulus conditions (p=0.01).  Within individuals, increased 

knee flexion during the impact was correlated with greater 𝑚𝑒𝑓𝑓 (p<0.0001, Figure 3.3E).    
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Figure 3.4: 𝐹𝑚𝑎𝑥  (A), ∆𝑡 (B), 𝐹′ (C), vertical impulse (D) and 𝑚𝑒𝑓𝑓  (E) in each experimental condition. The hard, 

medium and soft elastic modulus conditions are represented by H, M and S, respectively. Solid vertical lines 
separate the heel height conditions (from left to right: 6mm, 14mm and 20mm). Each participant is represented by 
a unique symbol and dashed lines connect participants between conditions. 
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Effects of individual footwear conditions on impact kinetics 

The second hypothesis of this study predicted that individuals would generate impacts with the 

greatest ∆𝑡, slowest 𝐹′, largest vertical impulse and greatest 𝑚𝑒𝑓𝑓 in footwear with the highest heels 

made of materials with the lowest 𝐸, while  𝐹𝑚𝑎𝑥 would remain unaffected. We tested this hypothesis 

using a GLMM that considered the effects of each of the 9 footwear conditions. The results of this 

GLMM are reported below and in Table 3.3.  

 𝐹𝑚𝑎𝑥 within individuals was significantly influenced by shoe condition (F=21.6, p<0.0001; Figure 

3.4A, Table 3.3). The 20mm-soft condition resulted in significantly lower 𝐹𝑚𝑎𝑥 than either the 6mm-

hard, 6mm-medium or 6mm-soft conditions (p<0.0001, p=0.0006, and p<0.0001, respectively). The 

20mm-soft condition also had lower 𝐹𝑚𝑎𝑥 than the 14mm-medium condition (p=0.0003). However, the 

20mm-soft condition resulted in greater 𝐹𝑚𝑎𝑥 than the 20mm-hard and 20mm-medium conditions 

(p<0.0001 and p<0.0001, respectively).  

 Footwear condition had a significant effect on ∆𝑡 (F=9.77, p<0.0001; Figure 3.4B, Table 3.3). The 

20mm-soft condition resulted in significantly greater ∆𝑡 compared to the 6mm-hard, medium and soft 

conditions (p=0.01, p<0.0001 and p=0.04, respectively) and greater ∆𝑡 compared to the 14mm-hard and 

medium conditions (p=0.02 and p=0.04, respectively). The 20mm-soft condition led to smaller ∆𝑡 when 

compared to the 20mm-hard and 20mm-medium conditions (p<0.0001 and p=0.0003, respectively).  

 𝐹′ was significantly affected by footwear condition (F=26.6, p<0.0001; Figure 3.4C, Table 3.3). 

The 20mm-soft condition had significantly slower 𝐹′ than 6mm-hard, 6mm-medium and 14mm-medium 

conditions (p<0.0001, p<0.0001 and p<0.0001, respectively). However, the 20mm-soft condition had 

significantly greater 𝐹′ than the 20mm-hard and 20mm-medium conditions (p<0.0001 and p<0.0001, 

respectively).  
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Table 3.3: Effects of each experimental conditions on impact peak kinetic variables 

Kinetic Variable Model Effect 
Coefficient 
estimate 

Std. Error F-ratio t-ratio p-value 

𝐹𝑚𝑎𝑥  (BW) 

All Conditions   21.6  <0.0001 

6mm*Hard 0.459 0.094  4.88 <0.0001 

6mm*Medium 0.334 0.094  3.55 0.0006 

6mm*Soft 0.422 0.094  4.49 <0.0001 

14mm*Hard -0.016 0.094  -0.17 0.86 

14mm*Medium 0.349 0.094  3.71 0.0003 

14mm*Soft 0.151 0.094  1.61 0.11 

20mm*Hard -0.748 0.094  -7.95 <0.0001 

20mm*Medium -0.648 0.094  -6.89 <0.0001 

∆𝑡 (s) 

All Conditions   9.77  <0.0001 

6mm*Hard -0.306 0.122  -2.50 0.01 

6mm*Medium -0.678 0.122  -5.54 <0.0001 

6mm*Soft -0.257 0.122  -2.10 0.04 

14mm*Hard 0.298 0.122  2.43 0.02 

14mm*Medium -0.257 0.122  -2.10 0.04 

14mm*Soft -0.0256 0.122  -0.21 0.83 

20mm*Hard -0.525 0.122  4.29 <0.0001 

20mm*Medium 0.456 0.122  3.72 0.0003 

𝐹′ (BW/s) 

All Conditions   26.6  <0.0001 

6mm*Hard 0.495 0.106  4.66 <0.0001 

6mm*Medium 0.443 0.106  4.17 <0.0001 

6mm*Soft 0.152 0.106  1.43 0.16 

14mm*Hard -0.0949 0.106  -0.89 0.38 

14mm*Medium 0.825 0.106  7.76 <0.0001 

14mm*Soft 0.157 0.106  1.47 0.14 

20mm*Hard -0.892 0.106  -8.39 <0.0001 

20mm*Medium -0.806 0.106  -7.58 <0.0001 

Vertical Impulse 
(BW*ms) 

All Conditions   10.6  <0.0001 

6mm*Hard -0.289 0.153  -1.89 0.06 

6mm*Medium -0.298 0.153  -1.95 0.05 

6mm*Soft 0.752 0.153  4.91 <0.0001 

14mm*Hard -0.236 0.153  -1.54 0.12 

14mm*Medium -0.906 0.153  -5.91 <0.0001 

14mm*Soft -0.220 0.153  -1.44 0.15 

20mm*Hard 0.526 0.153  3.43 0.0008 

20mm*Medium 0.514 0.153  3.36 0.001 

𝑚𝑒𝑓𝑓  (%BW) 

All Conditions   6.6  <0.0001 

6mm*Hard -0.319 0.154  -2.06 0.0415 

6mm*Medium -0.138 0.154  -0.89 0.37 

6mm*Soft 0.713 0.154  4.60 <0.0001 

14mm*Hard -0.169 0.154  -1.09 0.28 

14mm*Medium -0.694 0.154  -4.48 <0.0001 

14mm*Soft -0.163 0.154  -1.05 0.29 

20mm*Hard 0.178 0.154  1.15 0.25 

20mm*Medium 0.459 0.154  2.97 0.0037 
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Vertical impulse was significantly affected by footwear condition (F=10.6, p<0.0001, Figure 3.4D, 

Table 3.3). The vertical impulse of the 20mm-soft condition was significantly greater than only the 

14mm-medium condition (p<0.0001). The 6mm-soft, 20mm-hard and 20mm-medium conditions each 

resulted in significantly greater vertical impulse than the 20mm-soft condition (p<0.0001, p=0.0008 and 

p=0.001, respectively).  

 Footwear condition had a significant effect on 𝑚𝑒𝑓𝑓 (F=6.6, p<0.0001; Figure 3.4E, Table 3.3).  

𝑚𝑒𝑓𝑓 was greater in the 20mm-soft condition than in the 6mm-hard and 14mm-medium conditions 

(p=0.04 and p<0.0001, respectively). However, the 20mm-soft condition resulted in significantly lower 

𝑚𝑒𝑓𝑓 than the 6mm-soft and 20-mm medium conditions (p<0.0001 and p=0.004, respectively).  

Discussion 

This study investigated how variations in heel height affect several kinetic aspects of heel strike 

running impact peaks and how impact peaks are influenced by simultaneous changes in height and 𝐸 of 

the heel using a within-participant study design. Our first hypothesis was that increasing heel height 

would lead to longer ∆𝑡, slower 𝐹′, increased 𝑚𝑒𝑓𝑓, and increased vertical impulse for a given individual, 

but that 𝐹𝑚𝑎𝑥 would remain unaffected. Our results provide at minimum partial support for these 

hypotheses except for 𝐹𝑚𝑎𝑥. The 20mm height condition (the highest heel used in this study) resulted in 

individuals generating impact peaks with greater ∆𝑡, vertical impulse and 𝑚𝑒𝑓𝑓 than in the 6mm 

condition (the lowest heel used in this study). However, the 14mm height condition resulted in 

significantly lower vertical impulse and 𝑚𝑒𝑓𝑓 than the 6mm condition, suggesting a complicated 

relationship between heel height and these kinetic variables. 𝐹𝑚𝑎𝑥 significantly decreased with 

increasing heel height, with both the 14mm and 20mm height conditions leading to lower 𝐹𝑚𝑎𝑥 than the 

6mm condition.  
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We also hypothesized that individuals would generate impact peaks with the longest ∆𝑡, slowest 

𝐹′, greatest 𝑚𝑒𝑓𝑓, and largest vertical impulse in the highest footwear heels made of materials with the 

lowest 𝐸 (the 20mm height-soft elastic modulus condition), but that 𝐹𝑚𝑎𝑥 would remain unaffected. 

These hypotheses were not supported by our data. Instead, we found that  𝐹𝑚𝑎𝑥 was significantly 

affected by footwear condition and that significant interactions occurred between heel height and 𝐸 for 

several variables. We found that the 20mm-hard and 20mm-medium conditions had greater ∆𝑡 and 

vertical impulse than the 20mm-soft condition, and that the 20mm-medium and 6mm-soft condition 

resulted in greater 𝑚𝑒𝑓𝑓 than the 20mm-soft condition. Greater values of 𝐹′ were observed in the 

20mm-hard and 20mm-medium conditions than in the 20mm-soft condition.   

This study has several limitations. Instrumented treadmills, like the one used in this study, may 

influence kinematics, kinetics and muscle activation relative to over-ground studies using embedded 

force plates (Nigg et al. 1995; Wank et al. 1998). In addition, measuring the start of the impact peak 

when the vertical force exceeds 50 N likely has a small influence on the values of ∆𝑡, ∆𝑣, 𝐹′, 𝑚𝑒𝑓𝑓 and 

the vertical impulse. However, our values of ∆𝑡 and 𝐹′ are comparable to other studies that have used 

embedded force plates or have used different definitions of the beginning of the impact peak (Gill and 

O'Connor 2003; Chi and Schmitt 2005; Lieberman et al. 2010). In addition, the values of 𝑚𝑒𝑓𝑓 measured 

in this study (an average of 9.46 %BW across all shoe conditions) are large compared to values found for 

barefoot runners (5.3 to 6.8 %BW), but comparable to heel strike runners wearing experimental 

footwear (8.2 to 10.3 %BW) (Chi and Schmitt 2005; Lieberman et al. 2010; Addison and Lieberman 

2015). These findings therefore suggest that our methodology does not confound the results. A final 

limitation is that we did not measure muscle activity in this study. Experimental conditions may have 

altered participants’ lower limb muscle activity patterns therefore influencing kinetic and kinematic 

variables. Future research into the influence of heel height and 𝐸 on impact peaks should include EMG 

measurements to quantify lower extremity muscle activation patterns. 
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Despite these limitations, the results from this study demonstrate the importance of heel height 

and lower extremity kinematics, particularly knee flexion, on the generation of heel strike running 

impact peaks. Heel height significantly influenced each kinetic variable measured in this study, even 

when lower extremity kinematics were accounted for (Figure 3.2A-E, Table 3.2). This was not true for 

the elastic modulus of the heel. Heel elastic modulus had no effect on 𝐹𝑚𝑎𝑥,  and had significant effects 

on ∆𝑡 and 𝐹′ only when lower extremity kinematics were not included in the GLMM (Table 3.1 and 

Table 3.2). Of the lower extremity kinematic variables measured, knee flexion during the impact had 

strong effects on 𝐹𝑚𝑎𝑥 ∆𝑡, 𝐹′, vertical impulse, 𝑚𝑒𝑓𝑓. Notwithstanding the interactions between heel 

height and 𝐸, increased knee flexion during impact was correlated with lower 𝐹𝑚𝑎𝑥 and 𝐹′ and greater  

∆𝑡, vertical impulse and 𝑚𝑒𝑓𝑓 within individuals (Figure 3.3A-E). These results suggest that heel height 

and knee flexion during the impact play a crucial role in the generation of impact peaks, perhaps more-

so than the elastic modulus of the heel material. This implication is important because most prior 

studies on heel strike running impact peaks have considered solely the effects of elastic modulus of the 

substrate or footwear (Light et al. 1980; Clarke et al. 1983; Nigg et al. 1987; Nigg et al. 1988; Lafortune 

and Hennig 1992; Hennig et al. 1993; Addison and Lieberman 2015). Clearly, other factors such as heel 

height and knee flexion are relevant and influential, and more research is necessary to consider the 

effects of these variables.  

The statistical interactions between heel height and heel elastic modulus on impact kinetics 

have potentially important implications for hypotheses about the relationship between variations in 

shoe construction and the generation of heel strike running impact peaks. We hypothesized that the 

effects of increasing heel height on impact peaks would be multiplied by lower 𝐸, such that individuals 

would generate impact peaks with the lowest 𝐹′, greatest vertical impulse and largest 𝑚𝑒𝑓𝑓 in footwear 

with the highest heels made of materials with the lowest 𝐸. However, we found that 𝐸 had significant 

but complicated effects on several aspects of the impact peak that differ in interesting ways with prior 
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findings. For instance, several studies have found that 𝐹′declines as interface modulus decreases 

(Lafortune et al. 1996; Wakeling et al. 2003; Addison and Lieberman 2015). Our results are consistent 

with these findings when we consider 𝐸 variation in the 6mm height condition only: 𝐹′ tended to 

decline from the hard to the medium to the soft condition (Figure 3.4C; GLMM equation (6mm height 

only): 𝐹′ = 𝛽1𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 + 𝑍𝑈 + 𝜖: F=4.28, p=0.02). However, within the 20mm height 

condition, 𝐹′ increased from the soft to medium to hard condition (Figure 3.4C; GLMM equation (20mm 

height only): 𝐹′ = 𝛽1𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 + 𝑍𝑈 + 𝜖: F=14.6, p<0.0001). In other words, while higher heels 

led to lower 𝐹′ overall (Figure 3.2C), decreasing heel 𝐸 led to higher loading rates within the 20mm 

height condition. This finding suggests that additional research is necessary to uncover the mechanism 

behind the interactions between heel height and heel modulus during heel strike running. 

The results presented here raise the hypothesis that human lower limb musculature is adapted 

to regulate 𝐹𝑚𝑎𝑥 in response to variation in 𝐸, but not to variation in heel height. Similar to prior studies, 

we found that 𝐹𝑚𝑎𝑥 did not change in response to variations in 𝐸 (Clarke et al. 1983; Nigg et al. 1988; 

Wakeling et al. 2003; Kersting and Bruggemann 2006; Addison and Lieberman 2015). One hypothesized 

reason for the insensitivity of 𝐹𝑚𝑎𝑥 across interfaces of varying stiffness (either due to changes in heel 

height or changes in 𝐸) is that the lower extremity musculature alters activity patterns to regulate 𝐹𝑚𝑎𝑥 

(Zadpoor and Nikooyan 2010). However, we found that 𝐹𝑚𝑎𝑥 decreased as heel height increased. If 

increased heel height reduces the stiffness of the heel-ground interface, as our model suggests, then our 

finding that 𝐹𝑚𝑎𝑥 declines in higher heeled footwear is consistent with results from modeling studies 

that show that 𝐹𝑚𝑎𝑥 declines in less stiff footwear when lower extremity muscle activity is not 

accounted for (Zadpoor et al 2007). Therefore, our findings suggest that lower extremity muscles 

regulate  𝐹𝑚𝑎𝑥 when heel elastic modulus varies but have a relatively reduced capacity to regulate 𝐹𝑚𝑎𝑥 

when heel height varies. While we did not measure muscle activity in this study, the result that 𝐹𝑚𝑎𝑥 is 

sensitive to heel height but not 𝐸 indicates that lower limb muscles may respond differently to 



55 
 

variations in 𝐸 than they do to variations in heel height (Wakeling et al. 2002). The finding that 𝐹𝑚𝑎𝑥 is 

unregulated across heel heights may be rooted in human evolutionary history. Although humans have 

had hundreds of thousands, possibly millions of years to adapt to running on natural surfaces that vary 

in elastic modulus, humans began running in footwear with elevated, cushioned heels only recently. To 

test this hypothesis future work should investigate how activity patterns of the lower extremity muscles 

vary in response to heel height versus heel 𝐸 in heel strike runners. 
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Chapter 4 – Patterns of variation in trabecular bone volume fraction in the calcaneus and C2 

vertebra of Gorilla gorilla, Pan troglodytes and Homo sapiens 

Introduction 

Many of the postcranial skeletal differences among humans and between H. sapiens, other 

hominins and hominoids reflect differences in locomotion and other behaviors. One well-documented 

type of skeletal variation concerns cortical bone robusticity in Homo (Lovejoy and Trinkaus 1980; Ruff et 

al. 1993; Cowgill 2010). A second but less studied type of skeletal variation concerns trabecular bone 

volume fraction (BVF), a structural variable that is strongly linked to trabecular bone stiffness and 

strength (Carter and Hayes 1977, Rice et al. 1988). Several studies of BVF in joints of the appendicular 

skeleton find lower trabecular BVF among Holocene H. sapiens compared to Pleistocene Homo and 

extant hominoids (Griffin et al. 2010; Scherf et al. 2013; Tsegai et al. 2013; Chirchir et al. 2015; Ryan and 

Shaw 2015). Since many lines of evidence suggest that increased mechanical loading, either in terms of 

magnitude, rate or number of loading events, increases trabecular BVF (Simkin et al. 1987; Davee et al. 

1990; Joo et al. 2003; Pontzer et al. 2006; Barak et al. 2011), it is reasonable to hypothesize that reduced 

levels of mechanical loading caused by more sedentary lifestyles explain the trend towards lower 

trabecular BVF in modern humans (Chirchir et al. 2015; Ryan and Shaw 2015). 

One limitation to the inference that decreased mechanical loading is the primary cause of lower 

trabecular BVF in recent H. sapiens is that the trabecular structures so far examined mostly come from 

bones and joints in which mechanical loading is complex and highly variable (Brand et al. 1982; Hodge et 

al. 1986; Li et al. 1999; Boutroy et al. 2008). It is therefore difficult to assess the extent to which these 

joints experienced decreased mechanical loading. This study focuses on trabecular structure in the 

human calcaneus to test whether variations in mechanical loading have affected trabecular BVF in H. 

sapiens because the mechanical loading regimes of this bone are simpler and better understood than 

most of the rest of the human skeleton (Giddings et al. 2000; Gefen and Seliktar 2004). The human 
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calcaneus primarily deals with two types of forces: impact forces generated at foot strike during walking 

and heel strike running, and bending forces generated during the propulsive parts of stance. These 

forces differ not only between humans but also between humans and other hominoids in terms of 

magnitude and repetitiveness. The calcaneus is the first bone in the human body to experience impact 

forces during walking and heel strike running, generating forces anywhere from 0.6 to 1.0 body weights 

(BW) during walking and from 1.0 to 3.0 BW during heel strike running (Nigg et al. 1995; Whittle 1999). 

Impact forces at the human heel also occur at very high loading rates, especially during barefoot heel 

strike running (400-500 BW/second) (Lieberman et al. 2010). Chimpanzee heel strikes, on the other 

hand, do not always produce measureable impact peaks, particularly during quadrupedal locomotion 

(Pontzer et al. 2014). Another difference is daily travel distances and physical activity levels. Modern 

human hunter-gatherers and farmers have higher daily physical activity levels than industrialized 

humans, and modern human hunter-gatherers typically walk between 9 and 15 kilometers per day, 

while humans in industrialized societies walk 4 to 8 km/day and chimpanzees walk only 1.5 to 3 km/day 

(Pontzer and Wrangham 2004; Marlowe 2005; Bassett et al. 2010; Pontzer et al. 2012). These 

differences likely expose the calcaneus of non-industrial humans to millions more impact and bending 

forces per year compared to industrialized humans or hominoids. Available evidence suggests that 

humans have lower calcaneal trabecular BVF than other apes; however these studies are based only on 

relatively sedentary H. sapiens populations, raising the possibility that trabecular BVF in the modern 

human calcaneus may have also declined relative to earlier H. sapiens (Latimer and Lovejoy 1989; Maga 

et al. 2006; Zeininger 2013). In sum, the evidence suggests that humans in general experience greater 

mechanical loading of the calcaneus than apes and that non-industrial H. sapiens experience greater 

mechanical loading of the calcaneus than industrialized H. sapiens.  

Another limitation to the available BVF data is that BVF is typically measured in regions of 

appendicular bones such as the femoral head that experience mechanical stimulus from locomotor 
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forces, as opposed to bones of the axial skeleton that experience locomotor forces less directly (CITE). It 

is therefore difficult to assess to what extent declines in BVF are due to variation in mechanical loading 

or caused by some other more systemic phenomena. This study also examines BVF in C2 vertebrae, a 

bone less likely to be influenced by variation in mechanical loading. While physical activity can have 

systemic effects on cortical bone robusticity, evidence suggests that applied forces can have localized 

effects on both cortical and trabecular bone tissue (Lieberman 1996; Adami et al. 1999; Haapasalo et al. 

2000; Bogenschutz et al. 2011). Reports on cortical robusticity have noted declines in femoral robusticity 

but not humeral robusticity in Holocene H. sapiens, presumably because of the greater locomotor 

demand placed on the human lower extremity relative to the upper limb (Ruff et al. 1993). Further, 

greater applied forces to the dominant arm likely explains bi-lateral asymmetry in humeral cortical 

robusticity of tennis players (Haapasalo et al. 2000). These findings suggest that if lack of mechanical 

stimulus due to increased sedentism is the cause of declines in trabecular BVF in recent H. sapiens, then 

the effects should be localized to regions of the skeleton that most directly experience mechanical 

stimulus from locomotion, such as the calcaneus, and bones such as C2 vertebrae that experience less 

locomotor loading should be relatively unaffected.  

Another important concern is the question of whether decreases in trabecular BVF among 

recent H. sapiens populations are caused by lower mechanical stimuli from more sedentary lifestyles. 

Available data is mixed in regard to this interpretation. Ryan and Shaw (2015) found that Holocene 

foragers (5,000-7,000 years BP) have greater femoral head BVF than presumably less active 

agriculturalists (700-900 years BP). On the other hand, Chirchir et al (2015) found lower BVF in the 

appendicular joints of Holocene H. sapiens compared to Pleistocene Homo and found no appendicular 

joint BVF differences between modern industrialized Americans and presumably more active Native 

American farmers. The results from Chirchir et al (2015) are consistent with trends from long-bone 

diaphyses that show the largest decreases in femoral cortical robusticity occur between Pleistocene and 
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Holocene H. sapiens, compared to relatively smaller differences among Holocene populations (Ruff et al. 

1993). Trabecular bone is influenced by factors other than mechanical loading, and while it is unclear 

how variations in genes, diet and hormones have interacted with mechanical loading to affect H. sapiens 

trabecular BVF, there is evidence for a major, widespread systemic decline in trabecular BVF in H. 

sapiens sometime after the Pleistocene regardless of the presumed activity levels of the populations 

(Bouxsein et al. 2004; Wiren et al. 2012; Devlin et al. 2013; Chirchir et al. 2015). A finer-scale 

investigation of several H. sapiens populations that vary in geologic time and activity level is necessary 

to establish more carefully these patterns of variation and test whether declines in physical activity may 

be the cause of low trabecular BVF in recent H. sapiens and whether the patterns are systemic.  

This study accordingly uses structural data obtained from micro CT scans in apes and several 

human populations to test whether variations in mechanical loading influenced trabecular BVF. We 

examine BVF in the calcaneus of several H. sapiens populations and African apes, and in C2 vertebrae of 

three H. sapiens populations. We test three specific hypotheses relevant to the general hypothesis that 

variations in mechanical loading are a primary cause of the patterns of variation observed in H. sapiens 

trabecular BVF. First, we predict that modern sedentary Americans should have lower calcaneal 

trabecular BVF than more active, non-industrial H. sapiens populations. Second, we predict that H. 

sapiens, particularly those from non-industrial populations, have greater calcaneal trabecular BVF than 

African apes. Finally, if variations in BVF are primarily a result of direct mechanical loading then we 

predict that trabecular BVF in C2 vertebrae should be unchanged across human populations. 

Alternatively, if systemic declines in BVF occurred after the Pleistocene then we should observe a 

decline in both calcaneal and C2 vertebral trabecular BVF.  
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Materials and Methods 

Materials 

Sample populations 

The calcanei sample consists of Gorilla gorilla, Pan troglodytes and Pleistocene and Holocene H. 

sapiens, while the C2 sample consists of one Pleistocene and two Holocene H. sapiens populations. The 

wild-collected gorilla (n=10) and chimpanzee (n=7) calcanei sample includes adult males and females 

obtained from the Museum of Comparative Zoology, Harvard University. The Pleistocene human sample 

is comprised of adult males and females from the Natufian culture (calcanei n=10; C2 n=10), a 

population of semi-sedentary hunter-gatherers in the Levant from between 15 to 12 Kya (Unger-

Hamilton 1989; Lieberman 1993).The Natufian samples were obtained from the Peabody Museum, 

Harvard University.  In addition, we examined three Holocene H. sapiens populations. The Point Hope 

sample is composed of adult males and females (calcanei n=19; C2 n=19) from the Ipiutak and Tiagara 

cultures located in present-day Point Hope, Alaska. The Ipiutak culture lasted from roughly 2100 to 1500 

BP, while the Tiagara culture lasted from roughly 800 to 300 years BP. Ipiutak and Tiagara individuals 

were Inuit hunter-gatherers that subsisted in large part on walrus, seal and caribou (Larsen and Rainey 

1948). The Point Hope sample was obtained from the American Museum of Natural History, New York.  

A second Holocene human sample is from the site of Mistihalj dated from 1400 to 1475 AD and located 

on the border between modern-day Bosnia-Herzegovina and Montenegro; these individuals are 

associated with the Vlakh ethnic group, a population indigenous to the Balkans that have traditionally 

been nomadic pastoralists (Alexeeva et al. 2003). The Mistihalj sample, which includes adult males and 

females (calcanei n=15; C2 n=12) was obtained from the Peabody Museum, Harvard University.  Finally, 

we used a calcanei sample (10 males and 10 females) of contemporary American cadavers obtained 

from MedCure (www.medcure.org; Portland, OR), an anatomical gifts program. The modern American 
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sample did not include C2 vertebrae. All modern American individuals were free from metabolic bone 

diseases and had died between June 2013 and July 2014.   

Methods 

Micro-CT scanning  

All specimens were scanned individually using an X-Tek micro-CT scanner, model HMXST225 at 

the Center for Nanoscale Systems at Harvard University. All calcanei and C2 vertebrae were scanned 

with a source energy of 75 kV at a current of 130 microA. For calcanei, scan resolution was 39, 45 and 46 

microns for the chimpanzee, human and gorilla calcanei, respectively.  Scan resolution was 45 microns 

for human C2 vertebrae. Calcanei were mounted in the microCT scanner with the long axis of the bone 

placed vertically, and C2 vertebrae were mounted so that the cranial-caudal axis was positioned 

vertically. All calcanei and C2 vertebrae scans were collected with 3142 projections, with 1 frame per 

projection.  3D volumes were reconstructed from the raw data using CT PRO software (Nikon Metrology 

Inc.).   

Image Processing 

Reconstructed volumes were initially processed in VGStudioMax v2.2 software (Volume 

Graphics, Heidelberg, Germany). Two 3D cubic volumes of interest (VOIs) were created: one in the 

calcaneal tuberosity and the other beneath the posterior articular facet (PAF) in the calcaneus.  The 

edge-length of the tuberosity VOI and the PAF VOI were scaled to 1/7th and 1/10th of total bone length, 

respectively (tuberosity VOI edge length range across all species: 6.88 – 12.74 mm; PAF VOI edge length 

range across all species: 4.82-8.92mm). These dimensions were chosen because they were the largest 

that could reliably fit within the gorilla calcanei. The posterior surface of the tuberosity VOI was 

positioned at 15% of bone length anterior to the posterior aspect of the calcaneal tuberosity, and then 

placed as close to the center of the coronal plane cross-section as possible (Figure 4.1A). The superior 

surface of the calcaneal PAF VOI was positioned at 5% of bone length inferior to the surface of the PAF, 
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and then positioned as close to the center of the coronal plane cross-section as possible (Figure 4.1A). 

Edge length of 3D cubic VOIs in the C2 vertebrae were scaled to 25% of vertebral body height (C2 VOI 

edge length across all human populations: 4.01 to 6.30mm). The inferior surface of C2 VOs were 

positioned at 20% of vertebral body height superior to the caudal surface of the vertebral body, and 

then positioned towards the posterior of the vertebral body to avoid areas of disrupted trabecular 

architecture due to blood and nervous supply, and then finally positioned as close to the center of the 

coronal plane cross-section as possible (Figure 4.1B). VOIs were then saved as stacks of 16-bit RGB color 

TIFF images.   

 

Figure 4.1: VOIs created for each bone in the A) Calcaneal PAF and calcaneal tuberosity and in the B) C2 vertebral 

body 
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ImageJ software was used for the remainder of image processing. 16-bit RGB color TIFF image 

stacks were converted to 8-bit images for compatibility with Image J’s thresholding algorithm and the 

proper length scale was set for each VOI. Pixel resolution was 21.7, 25.6 and 22.2 pixels per mm for 

gorilla, chimpanzees and human image stacks. A modified half-maximum height method was used to set 

the threshold for bone versus air pixels (Spoor et al. 1993; Fajardo et al. 2002).  First, a line 10 pixels in 

length was drawn across a random bone-air interface in a random image slice in the VOI TIFF stack.  The 

grey-scale values along this line were recorded and the maximum and minimum grey values were 

averaged. This process was performed a total of 10 times per VOI. Then, the 10 averages from the 

maximum and minimum grey values were themselves averaged, and this value was set as the threshold 

to differentiate bone from air pixels. 

Thresholding samples from the Natufian population was more difficult because of post-mortem 

alteration of the trabecular tissue that could affect the quantification of trabecular structure, including 

the presence of high-density mineral inclusions, the possible deposition of material onto the surface of 

trabeculae and the overlap in density values between the bone and the depositional material (Ryan and 

Ketcham 2002). To deal with these potential sources of error, we created two threshold values for each 

Natufian tuberosity VOI. One threshold calculation counted the depositional material as bone, while a 

second threshold calculation removed these inclusions from the bone material. We then determined 

trabecular BVF in the tuberosity of the Natufians using these two different threshold methods and 

compared the BVF values. On average, there was less than 1% difference in trabecular BVF values 

between the two thresholding methods. This value was deemed insignificant and thus the thresholding 

calculation that counted mineral inclusions as bone was used to process and analyze all VOIs.    

The BoneJ plugin for ImageJ was used to calculate the BVF, trabecular thickness (Tb.Th), 

trabecular separation (Tb.Sp), DA, structure model index (SMI) and connectivity density (ConnD) of all 

VOIs (Doube et al. 2010). Trabecular BVF was determined by a voxel-based algorithm that counts bone 
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and non-bone voxels in a TIFF image stack.  BoneJ calculates Tb.Th. and Tb.Sp. using an algorithm that 

defines thickness at a point as the diameter of the largest sphere that fits within the structure and which 

contains the point. DA is calculated using the mean intercept length (MIL) method (Harrigan and Mann 

1984; Odgaard 1997). Briefly, the MIL method builds an ellipsoid with an orientation and dimensions 

that correspond to the orientations of trabeculae in a sample.  DA is calculated as 1-(length of the 

shortest axis of the ellipsoid/length of the longest axis of the ellipsoid). Thus, DA values range from 0 to 

1, with larger values indicate greater anisotropy. BoneJ uses a method developed by Hildebrand and 

Ruegsegger (1997) to calculate SMI, which is a measure of the rod versus plate-like geometry of 

trabecular structures. Briefly, this method uses the change in trabecular surface area per change in 

volume to estimate the value of SMI. Perfectly plate-shaped trabeculae have an SMI value of 0, while 

perfectly rod-shaped trabecular have a value of 3 (Hildebrand and Ruegsegger 1997). Finally, 

connectivity is estimate of the number of connected trabeculae in a volume, and BoneJ calculates 

ConnD as the number of connected trabeculae divided by the volume of the sample.  Larger numbers 

indicated larger connectivity densities. A detailed list of BVF, Tb.Th., Tb.Sp., DA, SMI and ConnD for each 

VOI is provided in the appendix. 

Statistical analyses 

MicroCT scanning revealed damaged trabeculae in a small number of specimens. One Natufian 

sample and two Mistihalj samples had damaged trabeculae in the tuberosity region and were not 

included in the statistical analysis. In addition, one Natufian sample had a tuberosity BVF 2 standard 

deviations greater than the mean and was not included in statistical analyses. Thus, analyses on the 

tuberosity were performed with eight Natufian samples and 13 Mistihalj samples, while analyses on the 

PAF were performed with the full sample sizes (Natufian n=10; Mistihalj n=15). 

One-way ANOVA was used to compare trabecular bone variables between groups, with 

statistical significance set to p < 0.05.  For tests on trabecular BVF we tested for differences in species 
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level means (pooling all human populations) as well as population level means (splitting human 

populations) in the two calcaneal VOIs.  For the remainder of the trabecular structural variables we 

tested only for population level differences. When ANOVA tests indicated significance, we tested for 

differences between two particular groups using the Tukey-HSD method to account for multiple 

comparisons. Statistical analyses were performed in JMP v. 11 software (SAS, North Carolina, USA). 

Results 

Trabecular BVF 

Calcaneal Tuberosity VOI 

One-way ANOVA revealed significant differences between populations in calcaneal tuberosity 

trabecular BVF (Figure 4.2; F(5,75)=9.32, p<0.0001). Tukey-HSD tests showed significant differences in 

BVF between chimpanzees (average BVF=0.259 +/- 0.04) and each Holocene human population and 

between Natufians (average BVF=0.255 +/- 0.05) and each Holocene population. Chimpanzees had 38%, 

48% and 48% greater trabecular BVF than Point Hope, Mistihalj and Americans, respectively, but were 

not statistically different from Natufians. BVF was 36%, 46% and 46% greater in Natufians than in Point 

Hope, Mistihalj and Americans, respectively. There were no differences in trabecular BVF between the 

three Holocene H. sapiens populations (Table 4.1, Table 4.2). 

Calcaneal PAF VOI 

One-way ANOVA showed significant differences between populations in trabecular BVF in the 

calcaneal PAF (Figure 4.3; F(5,78)=11.3, p<0.0001). Multiple comparison tests showed significant 

differences in BVF between chimpanzees (average BVF=0.523 +/- 0.06) and each Holocene human 

population and between Natufians (average BVF=0.573 +/- 0.07) and each Holocene human population. 

Chimpanzees had 33%, 17% and 26% greater trabecular BVF than Point Hope, Mistihalj and Americans, 

respectively, but were not significantly different from Natufians. Natufians had 37%, 21% and 29% 

greater trabecular BVF than Point Hope, Mistihalj and Americans, respectively. There were no significant 
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differences between the three Holocene H. sapiens populations. In addition, BVF was 25% and 18% 

greater in gorillas than in Point Hope and Americans, respectively (Table 4.3, Table 4.4). 

 

Figure 4.2: Trabecular BVF in the calcaneal tuberosity. Height of bars represent average BVF for the populations 

and error bars represent standard error. 

 

C2 vertebrae VOI 

One-way ANOVA showed significant differences between human populations in trabecular BVF 

(Figure 4.4; F(2,27)=12.1, p<0.0001). Trabecular BVF was significantly greater in the Natufian population 

than the Point Hope and Mistihalj populations by 53% and 25%, respectively. Trabecular BVF was 23% 

greater in Mistihalj than in Point Hope (p=0.056) (Table 4.5, Table 4.6). 

 

 

 

 

 

 



71 
 

Table 4.1: Calcaneal tuberosity - summary statistics (Average +/- SD) 

Species N BVF      

Gorilla 10 
.21  

(0.05) 
     

Chimpanzee 7 
.26  

(0.04) 
     

H. sapiens 60 
.19  

(0.06) 
     

Population N BVF Tb.Th Tb.Sp DA SMI Conn.D 

Gorilla 10 
0.21 

(0.05) 
0.27 

(0.06) 
1.01 

(0.26) 
0.58 

(0.09) 
1.64 

(0.34) 
2.39  

(1.34) 

Chimpanzee 7 
0.26 

(0.04) 
0.23 

(0.04) 
0.71 

(0.06) 
0.63 

(0.04) 
1.11 

(0.50) 
4.14  

(1.39) 

Natufian 8 
0.26 

(0.05) 
0.27 

(0.02) 
0.76 

(0.13) 
0.64 

(0.04) 
1.36 

(0.53) 
3.14  

(0.81) 

Point Hope 19 
0.19 

(0.04) 
0.20 

(0.02) 
0.76 

(0.14) 
0.71 

(0.07) 
2.21 

(0.50) 
4.52  

(2.09) 

Mistihalj 13 
0.18 

(0.05) 
0.18 

(0.03) 
0.70 

(0.09) 
0.64 

(0.07) 
2.62 

(0.67) 
6.15  

(1.69) 

American 20 
0.18 

(0.06) 
0.20 

(0.03) 
0.72 

(0.14) 
0.70 

(0.06) 
2.51 

(0.59) 
4.69  

(1.78) 
 

Other structural variables 

Calcaneal Tuberosity VOI 

There were several significant differences in other trabecular structural variables between 

populations in the tuberosity VOI. The most noteworthy trends are that the Holocene H. sapiens 

populations generally had the lowest Tb.Th values and the highest SMI values, indicating thinner, rod-

shaped trabeculae. In addition, gorillas had larger Tb.Sp. values than either chimpanzees or any of the H. 

sapiens populations (Table 4.1, Table 4.2). 

Calcaneal PAF VOI 

Trends in other structural variables observed in the tuberosity were also evident in the calcaneal 

PAF. Tb.Th. was generally lower in the Holocene H. sapiens populations than in either Natufians or 

gorillas, and Holocene H. sapiens had the largest SMI values. Gorillas also tended toward greater Tb.Sp. 

than other populations. Two other noteworthy trends appeared in the calcaneal PAF VOI: DA values 
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were larger in all human populations than in chimpanzees, and ConnD values in gorillas and Natufians 

were less than chimpanzees or any of the Holocene H. sapiens populations (Table 4.3, Table 4.4). 

C2 body VOI 

Tb.Th was greater and SMI lower in the Natufians when compared to either Point Hope or 

Mistihalj. The Point Hope population tended to have the largest Tb.Sp values. Finally, the Mistihalj group 

showed greater ConnD than either the Point Hope or Natufian populations (Table 4.5, Table 4.6). 

 

Table 4.2: Calcaneal tuberosity - Tukey HSD Test p-values for multiple comparisons (significant differences are in 

bold and italics) 

Species Comparison BVF      

Gorilla v. Chimpanzee 0.13      

Gorilla v. H. sapiens 0.58      

Chimpanzee v. H. 
sapiens 

0.004      

Population 
Comparison BVF Tb.Th Tb.Sp DA SMI Conn.D 

Gorilla v. Chimpazee 0.27 0.17 0.0014 0.47 0.38 0.30 

Gorilla v. Natufian 0.32 0.99 0.01 0.55 0.89 0.94 

Gorilla v. Point Hope 0.89 0.0002 0.0009 0.24 0.10 0.024 

Gorilla v. Mistihalj 0.59 <0.0001 <0.0001 0.28 0.0007 <0.0001 

Gorilla v. American 0.51 <0.0001 <0.0001 0.0004 0.001 0.01 

Chimpanzee v. Natufian 0.99 0.09 0.98 0.99 0.95 0.86 

Chimpanzee v. Point 
Hope 

0.02 0.72 0.96 0.24 0.0003 0.99 

Chimpanzee v. Mistihalj 0.005 0.12 0.99 0.99 <0.0001 0.13 

Chimpanzee v. 
American 

0.002 0.50 0.99 0.41 <0.0001 0.98 

Natufian v. Point Hope 0.02 0.0001 0.99 0.13 0.006 0.40 

Natufian v. Mistihalj 0.006 <0.0001 0.92 0.99 <0.0001 0.003 

Natufian v. American 0.002 <0.0001 0.98 0.25 <0.0001 0.27 

Point Hope v. Mistihalj 0.98 0.60 0.81 0.09 0.29 0.09 

Point Hope v. American 0.97 0.99 0.93 0.99 0.51 0.99 

Mistihalj v. American 0.99 0.83 0.99 0.20 0.99 0.16 
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Figure 4.3: Trabecular BVF values in the calcaneal PAF. Height of bars represent average BVF for the populations 

and error bars represent standard error. 

 

Table 4.3: Calcaneal PAF - summary statistics (Average +/- SD) 

Species N BVF      

Gorilla 10 
0.49  

(0.08) 
     

Chimpanzee 7 
0.52  

(0.07) 
     

H. sapiens 64 
0.43  

(0.08) 
     

Population N BVF Tb.Th Tb.Sp DA SMI Conn.D 

Gorilla 10 
0.49  

(0.08) 
0.50  

(0.12) 
0.79  

(0.15) 
0.70  

(0.08) 
-0.96  
(0.9) 

1.16  
(0.45) 

Chimpanzee 7 
0.52  

(0.07) 
0.39  

(0.07) 
0.60 

(0.10) 
0.53  

(0.07) 
-0.96  
(0.9) 

3.59  
(1.70) 

Natufian 10 
0.54  

(0.07) 
0.53  

(0.08) 
0.68  

(0.10) 
0.79  

(0.04) 
-0.89 
(0.54) 

1.14  
(0.39) 

Point Hope 19 
0.39 

 (0.05) 
0.35 

(0.05) 
0.68  

(0.07) 
0.82  

(0.03) 
0.24 

 (0.87) 
2.59  

(0.75) 

Mistihalj 15 
0.45  

(0.07) 
0.38  

(0.06) 
0.60  

(0.07) 
0.69  

(0.10) 
0.46  

(0.56) 
3.91 

 (1.13) 

American 20 
0.42 

(0.062) 
0.35  

(0.05) 
0.60  

(0.10) 
0.75  

(0.06) 
0.43  

(0.51) 
3.72  

(1.35) 
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Table 4.4: Calcaneal PAF - Tukey HSD Test p-values for multiple comparisons (significant differences are in bold and 

italics) 

Species Comparison BVF      

Gorilla v. Chimpanzee 0.82      

Gorilla v. H. sapiens 0.10      

Chimpanzee v H. 
sapiens 

0.038      

Population 
Comparison 

BVF Tb.Th Tb.Sp DA SMI Conn.D 

Gorilla v. Chimpazee 0.98 0.018 0.0013 <0.0001 0.99 0.0002 

Gorilla v. Natufian 0.65 0.90 0.11 0.025 0.99 0.99 

Gorilla v. Point Hope 0.004 <0.0001 0.052 0.0002 <0.0001 0.01 

Gorilla v. Mistihalj 0.67 0.0008 <0.0001 0.99 0.0008 <0.0001 

Gorilla v. American 0.052 <0.0001 <0.0001 0.37 <0.0001 <0.0001 

Chimpanzee v. Natufian 0.98 0.0008 0.48 <0.0001 0.99 0.0001 

Chimpanzee v. Point 
Hope 

0.0013 0.82 0.34 <0.0001 0.0003 0.28 

Chimpanzee v. Mistihalj 0.30 0.99 0.99 <0.0001 0.004 0.98 

Chimpanzee v. 
American 

0.015 0.86 0.99 <0.0001 0.0002 0.99 

Natufian v. Point Hope <0.0001 <0.0001 0.99 0.91 <0.0001 0.009 

Natufian v. Mistihalj 0.026 <0.0001 0.31 0.008 0.002 <0.0001 

Natufian v. American 0.0002 <0.0001 0.32 0.54 <0.0001 <0.0001 

Point Hope v. Mistihalj 0.14 0.81 0.13 <0.0001 0.97 0.007 

Point Hope v. American 0.88 0.99 0.12 0.019 0.99 0.016 

Mistihalj v. American 0.66 0.86 0.99 0.18 0.93 0.99 

  

Discussion 

 This study investigated whether variations in mechanical loading account for recent declines in 

trabecular BVF by examining trabecular structure in the calcaneus and C2 vertebrae of different human 

populations as well as in two species of great apes. We predicted that if declines in mechanical stimulus 

to bone from more sedentary lifestyles precipitated declines in trabecular BVF, then calcaneal trabecular 

BVF should be lower in modern Americans than earlier H. sapiens populations who were presumably 

more active. We also predicted that calcaneal trabecular BVF would be greater in hunter-gatherer H. 

sapiens than African apes. Finally, we predicted that trabecular BVF in C2 vertebrae would be 

unchanged across human populations. These hypotheses were not supported by the comparative data. 
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Instead, the results suggest that trabecular BVF declined systemically in H. sapiens after the Pleistocene.  

The Pleistocene Natufians showed greater calcaneal trabecular BVF in the calcaneus than any of the 

three Holocene human populations. Natufians also had greater BVF in C2 vertebrae than Point Hope or 

Mistihalj. Moreover, there were no significant differences in calcaneal BVF among the three Holocene 

human populations.   

 

Figure 4.4: Trabecular BVF in C2 vertebrae. Height of bars represent average BVF for the populations and error 

bars represent standard error. 

 Before considering the meaning of these results, it is worth noting several limitations of this 

study. One potential drawback is that we lack data on physical activity levels of the human populations 

studied. We presumed due to the complete lack of agriculture in Point Hope and the lack of plant 

domestication in Mistihalj that these populations had somewhat comparable physical activity levels to 

the Natufians and greater physical activity levels than the modern Americans studied. While levels of 

physical activity between the non-industrial Holocene groups and Natufians are unknown, several 

researchers have argued that both Point Hope and Misithalj populations had relatively high physical 

activity levels compared to other Holocene groups because of their high degree of femoral cortical bone 
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robusticity (Trinkaus 1976; Cowgill 2010). Thus, Point Hope and Mistihalj are ideal populations for 

examining variation in bone structure between Holocene groups and for testing if increases in physical 

inactivity in some Holocene H. sapiens populations resulted in lower trabecular BVF. 

Table 4.5: C2 - summary statistics (Average +/- SD) 

Population N BVF Tb.Th Tb.Sp DA SMI Conn.D 

Natufian 9 
0.36 

(0.09) 
0.36 

(0.08) 
0.80 

(0.09) 
0.27 

(0.12) 
1.10 

(0.53) 
2.84 

(1.29) 

Point Hope 19 
0.23 

(0.05) 
0.27 

(0.04) 
0.94 

(0.19) 
0.33 

(0.10) 
1.76 

(0.35) 
3.63 

(1.25) 

Mistihalj 12 
0.29 

(0.06) 
0.24 

(0.03) 
0.67 

(0.09) 
0.21 

(0.07) 
1.52 

(0.40) 
6.95 

(1.77) 

 

 Although age and sex influence trabecular bone structural variables, this study did not analyze 

the effects of these variables due to study design and constraints with sample populations. For instance, 

several calcanei from the Natufian population had no or few associated skeletal elements, making it 

difficult to estimate age or sex for these individuals. We used only adult specimens (as judged by closure 

of femoral epiphyses for specimens, and by calcaneal epiphyses when other skeletal elements were not 

available), and attempted to balance sex ratios within populations. Despite these efforts, the Point Hope 

population was largely comprised of males (calcaneus: 15 males, 4 females, 1 unidentified, C2: 14 males, 

4 females, 2 unidentified) and the American sample was likely biologically older (average age 57 years) 

than the other samples due to age-related constraints on availability of cadaver specimens. If variations 

in physical activity were the primary cause of variations in BVF, the bias towards males in the Point Hope 

sample would be expected to elevate the population-level BVF because evidence suggests hunter-gather 

males are more physically active than females (Marlowe 2005; Pontzer et al. 2012). Further, the bias 

towards older individuals in the American sample would be expected to decrease the BVF of this 

population because BVF declines with age. Despite biases in the Point Hope and American populations 

that would be expected to enhance BVF differences in these populations, we found no BVF differences 

between the Holocene populations. 
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Table 4.6: C2 body - Tukey HSD Test p-values for multiple comparisons (significant differences are in bold and 
italics) 

Comparison BVF Tb.Th Tb.Sp DA SMI Conn.D 

Natufian v. Point Hope <0.0001 <0.0001 0.06 0.28 0.001 0.37 

Natufian v. Mistihalj 0.048 <0.0001 0.12 0.41 0.07 <0.0001 

Point Hope v. Mistihalj 0.056 0.33 <0.0001 0.007 0.28 <0.0001 

 

Another concern is body size differences between species and populations and its potential 

effects on trabecular BVF values. While previous studies have found no correlation between femoral 

head diameter and trabecular BVF, we investigated the relationship between calcaneal size and 

trabecular BVF to further test whether body size may be confounding our results (Doube et al. 2011). 

Across all species in this study, trabecular BVF in the tuberosity was weakly inversely correlated with 

total calcaneus length in the anterior-posterior direction (r=-0.31, p = 0.0043, n=80). When only the 

human populations were considered, there was no relationship between tuberosity trabecular BVF and 

total calcaneus length (r=-0.01, p=0.93, n=60).  Further, there were no differences in total calcaneus 

length among the human populations (one-way ANOVA – F(3,56)=0.99, p=0.41). These data suggest that 

body size differences between human populations do not influence variations in calcaneal BVF.  

 Despite the above limitations, the results of this study add to prior findings by documenting 

trabecular structural variables (such as DA, Tb.Th., Tb.Sp., SMI and ConnD) that influence mechanical 

properties of trabecular tissue and vary with body size. Low BVF, low Tb.Th. and high SMI are linked to 

reduced stiffness and strength in trabecular tissue, and larger values of DA increase stiffness and 

strength of trabecular tissue along the axis of primary trabecular strut orientation (Carter and Hayes 

1977; Silva and Gibson 1997; Augat et al. 1998; Mittra et al. 2005). Our findings suggest that since the 

Holocene, Tb.Th generally declined and SMI increased, while DA has an inconsistent pattern of change. 

This result suggests that lower Tb.Th and higher SMI paralleled the declines in BVF since the Holocene. 

Both lower Tb.Th and greater SMI are associated with reduced trabecular bone stiffness and strength, 



78 
 

therefore suggesting that the combined mechanical effect of changes in BVF, Tb.Th and SMI is a 

reduction in stiffness and strength in calcaneal and C2 trabecular structures Holocene compared to 

Pleistocene H. sapiens (Carter and Hayes 1977; Rice et al. 1988; Silva and Gibson 1997; Mittra et al. 

2005). Further, gorillas have the smallest ConnD and largest Tb.Sp. of the populations examined in our 

study, which is consistent with prior results indicating that Tb.Sp increases and ConnD decreases with 

increasing body size in mammals (Doube et al. 2011). These findings suggest that variations in Tb.Sp and 

ConnD amongst closely related taxa reflect differences in body size, while differences in BVF, Tb.Th. and 

SMI are a functional signal of trabecular tissue stiffness and strength. 

 The results from this study add to our understanding of the mechanism and timing of the 

declines in trabecular BVF in H. sapiens. For one, we studied trabecular structure in the calcaneus, a 

bone in which the mechanical loading regime is better understood than other bones in human skeleton 

and is thus better suited to testing hypotheses relating mechanical stimulus to BVF (Giddings et al. 2000; 

Gefen and Seliktar 2004). The human calcaneus experiences impact forces at the moment of heel-

ground contact and then large bending forces during the push-off phase of gait. Reductions in daily 

travel ranges and physical activity levels, as seen between modern human societies, would undoubtedly 

reduce the mechanical stimulus to the calcaneus (Pontzer et al. 2009; Bassett et al. 2010; Hallal et al. 

2012; Pontzer et al. 2012). However, there were no differences in calcaneal BVF between the Arctic 

hunter-gatherers of Point Hope and modern Americans. Rather, a drastic decline in calcaneal BVF was 

observed between the Pleistocene Natufians and the Holocene H. sapiens populations.  

 Additionally, our study adds to our understanding of variation in trabecular BVF in H. sapiens by 

examining trabecular structure in C2 vertebrae, a bone likely to be less affected by the forces generated 

by locomotion. Even so, we found significant declines in BVF in C2 vertebrae between the Natufians and 

the Holocene H. sapiens populations. Moreover, the magnitude of the decline in C2 BVF (25% between 

Natufians and Mistihalj, 53% between Natufians and Point Hope) was comparable to the declines 
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observed in the calcaneus (21% between Natufians and Mistihalj in the PAF and 61% between Natufians 

and Point Hope in the tuberosity). The finding that BVF declines in C2 followed the same pattern as the 

calcaneus despite lower locomotor forces suggests a systemic decline in BVF that may be unrelated to 

variations in physical activity levels.   

 Finally, our study advances knowledge of variation in H. sapiens trabecular BVF by examining 

populations that vary widely in time, geographic location and subsistence strategy. We examined 

Pleistocene and Holocene hunter-gatherers (Natufians and Point Hope, respectively), nomadic 

pastoralists (Mistihalj) and modern Americans, making this the largest comparative study on H. sapiens 

trabecular BVF to date. Altogether, the evidence from this study points to a systemic decline in H. 

sapiens BVF sometime after the Pleistocene, which is consistent with prior findings (Chirchir et al. 2015; 

Ryan and Shaw 2015). We also find no differences in BVF among Holocene H. sapiens populations 

despite varying subsistence strategies. While declines in physical activity after the Pleistocene may have 

played a role in the observed decline in BVF, the lack of association between presumed physical activity 

level and calcaneal BVF in Holocene populations suggests that phenomena other than or in addition to 

variations in physical activity are responsible for declines in trabecular BVF. For instance, environmental 

factors such as nutrition, hormones and infectious disease prevalence are known to influence skeletal 

morphology and thus could have played a role in shaping BVF in Holocene populations (New et al. 2000; 

Eshed et al. 2010; Wiren et al. 2012; Devlin et al. 2013). It is also possible that selection, perhaps 

through pleiotropic effects, worked to reduce BVF in Holocene H. sapiens (Trut et al. 2006). Regardless 

of the proximate and ultimate causes of variation in trabecular BVF, our results are consistent with prior 

findings and provide strong evidence for a systemic decline in H. sapiens trabecular BVF after the 

Pleistocene. Future work should examine other H. sapiens populations to further document the patterns 

of variation in BVF and should investigate the environmental and genetic influences that have shaped 

the modern human skeleton. 
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Chapter 5 – Testing hypotheses about bony resistance to impact forces in human calcaneal 

trabecular bone 

Introduction 

The human calcaneus (the heel bone) must resist millions of impact forces per year due to 

repetitive heel-ground impacts during walking and heel strike running, and trabecular bone tissue is 

thought to play an important role in resisting impact forces (Radin et al. 1972; Currey 2002; Dong et al. 

2004; Passi and Gefen 2005). However, opinions differ about how variations in trabecular BVF in humans 

and between humans and other species function to resist impacts. Some researchers argue that 

increased elastic modulus, strength and toughness via larger trabecular BVF are adaptations to resist 

impacts (Currey 2002), while others suggest that lower trabecular BVF is an adaptation for dissipating 

energies and shielding cartilage from damage (Radin et al 1972; Goodwin and Horner 2004; Latimer 

2005). How variations in trabecular bone structure resist impacts may also be relevant to the etiology of 

diseases such as osteoarthritis (OA) that have been linked to both high trabecular BVF and to repetitive 

impact forces (Radin et al. 1972).  

 Differing opinions about how trabecular tissue would be shaped to resist impact forces can be 

summarized with two competing hypotheses. One hypothesis is that trabecular structures with greater 

BVF are better adapted to resist impact forces because larger BVF increases the elastic modulus (𝐸), 

yield strength (𝜎𝑦) and work-to-failure (𝑊𝑓 - the energy absorbed before trabecular tissue fracture, 

Figure 5.1A) of trabecular tissue (Currey 2002). If so, then trabecular structures with larger BVF improve 

bone resistance to impacts because they are stiffer, stronger and absorb more energy before fracture. 

An alternative hypothesis is that structures with lower BVF are better adapted to resist impact forces 

because they dissipate more mechanical energy (Latimer 2005). When an external force is applied 

cyclically, the energy dissipated upon unloading and is measured as the area between the loading and 

unloading curves (Figure 5.1B). Compared to 𝐸, 𝜎𝑦 and 𝑊𝑓, relatively little is known about energy 
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dissipation in trabecular tissue. Early reports suggested that energy dissipation in trabecular tissue was 

so small as to be unmeasurable more recent studies have shown that energy dissipation decreases with 

the rate of applied strains (Pugh et al. 1973; Dong et al. 2004). Efforts to relate variations in trabecular 

structure to energy dissipation have yielded partly contradictory conclusions. Linde et al (1989) found a 

weak inverse correlation between trabecular tissue apparent density (a function of trabecular BVF and 

the density of the trabecular bone material) and the fraction of energy dissipated in trabecular samples 

from the human proximal tibia under cyclic loading to 0.6% strain. In contrast, Lambers et al (2013) 

found no relationship between human vertebral trabecular BVF and the total amount of energy 

dissipated under cyclic compression to 0.35% strain. Toyras et al (2002) found that in bovine trabecular 

bone under stress-controlled cyclic compression (strains less than 0.2%) the fraction of energy 

dissipated increased in samples of lower bone mineral density as measured by DXA. While these 

investigations have provided valuable information about energy dissipation in trabecular tissue, these 

studies used different measurements of energy dissipation (fraction vs. total amount of energy 

dissipated) under experimental conditions that varied widely in terms of applied strains and stresses, 

making it difficult to draw general conclusions about the relationship between trabecular BVF and 

energy dissipation (Linde et al. 1989; Toyras et al. 2002; Lambers et al. 2013).  

One way to think about how trabecular bone dissipates energy is to begin with the premise that 

energy dissipation in trabecular tissue is primarily caused by microdamage (Fantner et al. 2005; Lambers 

et al. 2013). Microdamage in trabecular tissue increases with strain magnitude (𝜀), and in turn, energy 

dissipation per unit volume (𝑊𝑑) is positively correlated with strain magnitude (Lambers et al. 2013): 

Equation 1: 𝜀~𝑊𝑑 

Using classic solid mechanics, strain is equal to the stress (𝜎) applied to trabecular tissue divided by the 

elastic modulus (𝐸):  
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Equation 2: 𝜀 =
𝜎

𝐸
 

Studies find that 𝐸 of human trabecular tissue is proportional to BVF squared (Rice et al. 1988; Keaveny 

et al. 2001). Substituting this relationship and equation 1 into equation 2 yields: 

Equation 3: 𝑊𝑑~
𝜎

𝐵𝑉𝐹2 

 

Figure 5.1: Materials testing measurements. A: Work-to-failure (𝑊𝑓) was measured as the area beneath the stress-

strain curve from 0 strain to the strain at which the stress is maximized. Yield stress (𝜎𝑦) was measured using the 

0.2% offset method and is generally less than the maximum stress. B: Energy dissipation (𝑊𝑑) was measured as the 
area between the loading and unloading curves during cyclic loading.  

 

Equation 3 indicates an inverse relationship between energy dissipation and BVF - trabecular 

structures with lower BVF will dissipate more energy when stress across specimens is constant. 

Specifically, we hypothesize that 𝑊𝑑 in trabecular bone tissue will scale with the inverse of BVF squared 

under stress-controlled conditions. 
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The positive relationships between BVF and 𝐸, 𝜎𝑦 and 𝑊𝑓 (𝐸, 𝜎𝑦 and 𝑊𝑓 will be collectively 

termed the ‘bone strength variables’) and the inverse relationship between 𝑊𝑑 and BVF suggest that 

there is a trade-off between the bone strength variables and 𝑊𝑑 as mediated by BVF. In practical terms, 

decreasing BVF will increase energy dissipation at the expense of each of the bone strength variables. 

Thus, we hypothesize that trabecular BVF mediates a trade-off between the bone strength variables and 

𝑊𝑑.  

Further, the hypothesized trade-off between the bone strength variables and 𝑊𝑑 may help 

explain how the human calcaneus evolved to resist repetitive impacts from walking and heel strike 

running. Modern human hunter-gatherers from tropical environments walk on average between 9 and 

15 km/day and it is thought that humans used to run regularly to hunt, thus exposing the human 

calcaneus to millions of impact forces per year (Marlowe 2005, Bramble and Lieberman 2004). Scholars 

have interpreted the relatively lower calcaneal BVF values in modern humans compared to apes as 

beneficial for dissipating energy from impacts (Latimer and Lovejoy 1989; Latimer 2005). Other lines of 

evidence, however, show that human calcaneal trabecular BVF was greater in the Pleistocene, perhaps 

indicating larger 𝐸, 𝜎𝑦 and 𝑊𝑓 relative to modern humans (Addison et al., in prep). Alternatively, human 

calcaneal trabecular BVF may be shaped to optimize 𝑊𝑑 and one or more of the bone strength variables. 

However, with several outstanding hypotheses and little data, it is clear that in order to understand how 

the human calcaneus evolved to resist repetitive impacts we must compare structural data from human 

calcaneal trabecular bone to actual mechanical data on the relationships between trabecular BVF and 

the mechanical variables 𝑊𝑑, 𝐸, 𝜎𝑦 and 𝑊𝑓. 

This study therefore tests the following hypotheses. First, 𝑊𝑑 is predicted to scale with the 

inverse of trabecular BVF squared under stress-controlled conditions. Second, we predict tradeoffs 

between 𝑊𝑑 and each of the bone strength variables, mediated by BVF. We test these hypotheses in 
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trabecular tissue samples taken from human calcanei loaded in cyclic compression. We then compare 

previously collected data on human calcaneal BVF from several populations to the experimental data in 

order to explore how variations in calcaneal BVF resist repetitive impact forces. Specifically, we 

hypothesize that if human calcanei resist impacts by one or more of the bone strength variables, then 

human calcaneal trabecular tissue will have relatively greater 𝐸, 𝜎𝑦 and 𝑊𝑓 compared to 𝑊𝑑 when 

experimental data is converted to a normalized scale. Alternatively, if human calcanei resist impacts by 

dissipating mechanical energy, then human calcaneal trabecular tissue will have relatively greater 𝑊𝑑 

than any of the bone strength variables. Finally, if human calcaneal trabecular tissue is shaped to 

optimize 𝑊𝑑 and one or more of the bone strength variables, then human calcaneal trabecular BVF will 

have equivalent relative values of 𝑊𝑑 and the bone strength variables.  

Methods 

Sample Preparation 

Human cadaver calcanei were obtained from an anatomical gifts program (MedCure, Portland, 

Oregon, USA). The sample consisted of 13 donors with no medical history of metabolic bone disease or 

cancer (Female: 7 donors, average age=57.1; Male: 6 donors, average age=57.2). All calcanei were first 

microCT scanned at the Center for Nanoscale Systems at Harvard University using an XTEK micro-CT 

scanner, model HMXST225 (Nikon Metrology) at a resolution of 45 microns with a tungsten target and a 

source energy of 75 kV and current of 130 microA. Scans revealed no evidence of bone damage or 

pathologies, and showed that the primary orientation of trabeculae was aligned with the long axis of the 

calcaneal tuberosity.    

We followed the general procedure outlined in prior studies to obtain trabecular bone cores 

from cadaver calcanei and perform mechanical tests (Keaveny et al. 1997). Subsequent to microCT 

scanning, two cuts 35 mm apart were made perpendicular to the long axis of the calcaneal tuberosity 
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using an Isomet low-speed saw with a diamond tipped blade (Beuhler, Lake Bluff, IL, USA), leaving a slab 

of trabecular bone from which cylindrical cores were extracted. Cores of trabecular bone were removed 

using a 7.6 mm diameter diamond tipped coring bit (Starlite Industries, Bryn Mawr, PA, USA). Specimens 

were kept hydrated during coring and subsequently wrapped in saline-soaked gauze and stored 

individually in air-tight containers at -20 C. A total of 29 trabecular cores were used for mechanical 

testing, with between 1 and 3 cores from each donor.  

Prior to mechanical testing, specimens were again microCT scanned using the same parameters 

described above. 3D volumes of trabecular cores were reconstructed from the raw data using CT PRO 

software (Nikon Metrology). Reconstructed volumes were initially processed in VGStudioMax v2.2 

software (Volume Graphics, Heidelberg, Germany). 3D cylindrical volumes of interest encompassing the 

entire bone core were created and exported as stacks of 16-bit TIFF images. 16-bit images were 

converted to 8-bit images in ImageJ software (image resolution was 22.2 pixels per mm), and we used a 

modified half-maximum height method to separate bone versus non-bone pixels (Fajardo et al. 2002). 

Briefly, a line 10 pixels in length was drawn across a random bone to non-bone interface in a random 

image slice in the TIFF stack. The grey-scale values along this line were recorded and the maximum and 

minimum grey values were averaged. This process was repeated 10 times per cylindrical core. The 10 

averages from the maximum and minimum greyscale values were then averaged to compute a 

threshold used to differentiate bone versus non-bone pixels. The BoneJ plugin for ImageJ was used to 

calculate trabecular BVF (Doube et al. 2010). 

Specimens were wrapped in saline-soaked gauze and stored at -20 C after micro-CT scanning. 

Prior to the day of testing, specimen ends were mounted in brass endcaps with adhesive (Locktite 401) 

following the method described by Keaveny et al 1997. Specimens measured an average (SD) of 15.0 +/- 

0.28 mm between the endcaps. The effective length of the each specimen was calculated as the 

exposed length plus half of the total length minus the exposed length (Keaveny et al. 1997). The average 
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(SD) effective length (in mm) of the specimens was 23.4 +/- 0.7. Following mounting, specimens were re-

wrapped in saline soaked gauze and allowed to thaw at room temperature overnight. 

Mechanical Testing 

Specimens were tested in cyclic compression using an Instron model 8511 (8800 controller). 

Specimens were gripped at the endcaps and a two-axis positioning table was used to align the 

specimens vertically. An extensometer (Instron model 2620-826) was attached to the endcaps using 

elastic bands. All testing was performed at room temperature. All specimens were first preconditioned 

by loading for 10 cycles in position control. A set strain across all specimens was not achieved during the 

preconditioning cycles due to varying specimen lengths and equipment limitations (see Appendix A), so 

the lowest strain reached by all specimens (0.154%) was used to calculate elastic modulus. The 

compressive modulus (𝐸) of each specimen was measured by taking the slope of the best linear fit of 

the tenth loading cycle from 0.0% to 0.154% 𝜀.  

Next, 28 of the original 29 specimens were loaded in cyclic compression in position control 

mode for 10 cycles with lower and upper load limits (30 N and 0 N, respectively; 1 specimen failed below 

30 N and thus was not used) imposed on the test so that the motion of the machine actuator reversed 

direction when a load limit was breached (see Appendix B). The rate of displacement of the crosshead 

was set to 0.022 mm/s. This methodology effectively created a cyclic, stress-controlled experiment but 

at similar strain rate across specimens, and was chosen because previous research has indicated that 

mechanical properties of trabecular bone are sensitive to strain rate (Carter and Hayes 1977; Linde et al. 

1991; Dong et al. 2004). Finally, 6 specimens (other specimens were lost due to operator error) were 

loaded in compression to failure at a crosshead displacement rate of 0.022 mm/s.  

We used the raw stress and strain data from the cyclic and failure tests to calculate 𝑊𝑑, 𝑊𝑓 and 

𝜎𝑦. We first measured the energy absorbed during the loading cycle, 𝑊𝑎, by calculating the area 
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beneath the loading curve and calculated 𝑊𝑑 by subtracting the area beneath the unloading curve from 

the area beneath the loading curve. In both stress and strain controlled protocols, 𝑊𝑑 and 𝑊𝑎 from the 

first five loading-unloading cycles were averaged to obtain mean values for each specimen. For the 

failure tests, 𝜎𝑦 was calculated using the 0.2% offset method and 𝑊𝑓 was calculated as the area beneath 

the stress-strain curve from 0% 𝜀 to the failure strain, which was defined as the strain at which stress 

was maximized (Linde et al. 1989).  

Comparative trabecular morphology 

 We collected trabecular bone structural data from the calcaneus using microCT scanning from 4 

human populations spanning the Pleistocene and Holocene geological periods, including hunter-

gatherers from the Levant dated to 12,000 years ago (Natufian, n=10; Pleistocene), Inuit hunter-

gatherers from Alaska (Point Hope, n=19; Holocene), medieval European pastoralists from modern-day 

Serbia (Mistihalj, n=15; Holocene) and a modern Americans (n=20; Holocene). The samples from the 

American population were the same samples used in the materials testing described above; for more 

details on the archaeological populations, see Addison et al (in prep). All bones were scanned at 45 

microns. We examined cubic volumes of interest (VOIs) in the calcaneal tuberosity and used a process 

identical to the one described above to threshold VOIs and determine trabecular BVF. Because the 

Natufian population had greater calcaneal BVF than the other populations and there were no significant 

differences in calcaneal BVF between Point Hope, Mistihalj or modern Americans, we separated the 

populations into “Pleistocene” (consisting only of Natufians) and “Holocene” (consisting of Point Hope, 

Mistihalj and Americans) groups, denoting the geologic age of the populations.  

Data Analyses 

JMP v11 software was used to perform least-squares regression analyses between trabecular 

BVF and 𝐸, 𝜎𝑦, 𝑊𝑑, 𝑊𝑎 and 𝑊𝑓. The specimen that failed below 30 N was used in the 𝜎𝑦 and 𝑊𝑓 
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analyses because the rates of crosshead displacement during the stress-controlled test and the failure 

test were the same, giving a total of 7 specimens for the 𝜎𝑦 and 𝑊𝑓 analyses. In addition, we analyzed 

the relationships between strain and 𝑊𝑑 and between 𝑊𝑎 and 𝑊𝑑 using log base 10 transformations to 

account for potential heteroscedasticity. Further, we analyzed the relationship between BVF and 𝑊𝑑 for 

specimens that experienced strains equal to or less than 0.2% to understand how energy dissipation 

relates to BVF for strains in the physiologic range (see Appendix C). We used ANOVA to compare 

calcaneal BVF between Pleistocene and Holocene H. sapiens. Relationships between variables were 

considered significant at p-values < 0.05.  Finally, we performed bootstrapping analyses on the BVF vs. 

𝜎𝑦 and BVF vs. 𝑊𝑓 relationships to understand how the limited sample size influenced the confidence of 

the result (see Appendix D).  

Tradeoff models 

We tested the hypothesized tradeoff models by normalizing the experimentally obtained values 

of 𝑊𝑑 and the bone strength variables from 0 to 100 (%). We then regressed the normalized 𝐸, 𝜎𝑦, 𝑊𝑓, 

and 𝑊𝑑 values against BVF and created tradeoff plots comparing normalized 𝑊𝑑 to each of the 

normalized bone strength variables. Because the bone strength variables were hypothesized to increase 

with BVF while 𝑊𝑑 was predicted to decrease with BVF, the intersection of the regression lines would 

identify the BVF value that optimized 𝑊𝑑 and either 𝐸, 𝜎𝑦 or 𝑊𝑓. Next, we compared Pleistocene and 

Holocene H. sapiens calcaneal BVF population means to the optimum points on each tradeoff model. 

Finally, we performed bootstrapping analyses on the scaled values of 𝐸, 𝜎𝑦 and 𝑊𝑓 to calculate 

confidence intervals (see Appendix D). 

Results   

The trabecular cores used for 𝐸 and 𝑊𝑑 analyses had a greater than 4-fold range in trabecular 

BVF (range: 0.08 to 0.38; average=0.204, standard deviation=0.073), while the samples used for 𝜎𝑦 and 
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𝑊𝑓 analyses had a 3.5 fold range (range: 0.08 to 0.28; average=0.204, standard deviation = 0.064). 

Trabecular BVF was a strong predictor of 𝐸 (𝑟 = 0.91, p < 0.0001), 𝜎𝑦 (𝑟 = 0.91, p =0.001) and 𝑊𝑓 (𝑟 = 

0.84, p=0.0035) (Table 5.1). 

Table 5.1: Relationships between trabecular BVF and elastic modulus, yield stress and work-to-failure  

Independent variable Dependent variable Equation r p-value 

BVF 𝐸 (MPa) 𝑦 = 17568𝑥2.14 0.91 p < 0.0001 

BVF 𝜎𝑦 (MPa) 𝑦 = 159.6𝑥2.43 0.95 p = 0.001 

BVF 𝑊𝑓 (Pa) 𝑦 = 866597𝑥2.14 0.92 p =0.0035 

 

Stress Control tests 

 Trabecular BVF was a significant predictor of 𝑊𝑑 (𝑟 = -0.80 p < 0.0001; Figure 5.2A; Table 5.2) 

and 𝑊𝑎 (𝑟 = -.90, p < 0.0001; Figure 5.2B; Table 5.2). Log(𝑊𝑑) was also correlated with log(𝜀) (𝑟 = 0.94, p 

< 0.0001; Figure 5.2C; Table 5.2) and log(𝑊𝑎) (r = 0.95, p < 0.0001; Figure 5.2D; Table 5.2). See Appendix 

C for regression relationships between BVF and 𝑊𝑑 for strains less than 0.2%.   

Table 5.2: Regression relationships for the stress controlled test 

Independent variable Dependent variable Equation r p-value 

BVF 𝑊𝑑  (Pa) 𝑦 = 1.73𝑥−2.11 -0.80 p < 0.0001 

BVF 𝑊𝑎  (Pa) 𝑦 = 21.65𝑥−1.92 -0.90 p < 0.0001 

Log(𝜀(%)) Log(𝑊𝑑  (Pa)) 𝑦 = 1.1𝑥 + 0.49 0.94 p < 0.0001 

Log(𝑊𝑎  (Pa)) Log(𝑊𝑑  (Pa)) 𝑦 = 1.16𝑥 − 1.40 0.95 p < 0.0001 

 

Comparative Trabecular Morphology 

Pleistocene H. sapiens calcaneal BVF (average: 0.26, SD: 0.05) was significantly greater than 

Holocene H. sapiens (average: 0.18, SD: 0.05; F(1,58)=16.5, p=0.0001).  
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Figure 5.2: Regression results between variables. A: Trabecular BVF versus 𝑊𝑑, B: Trabecular BVF versus 𝑊𝑎, C: 
𝑙𝑜𝑔10(strain) versus 𝑙𝑜𝑔10 (𝑊𝑑), D: 𝑙𝑜𝑔10(𝑊𝑎) versus 𝑙𝑜𝑔10(𝑊𝑑).   

 

Tradeoff models 

 The tradeoff models using the best-fit regression equations of BVF vs. normalized 𝑊𝑑 and each 

of the bone strength variables plotted in Figure 5.3A-C indicate that a BVF of 0.15 optimizes  𝑊𝑑 and 

each of the bone strength variables.  

Figure 5.4A-C plots the best-fit regression equations of BVF vs. normalized 𝑊𝑑 and each of the 

bone strength variables (the raw data points have been removed for clarity), and the mean calcaneal 

BVF of the Holocene and Pleistocene populations. The Holocene and Pleistocene population mean BVF 

(0.18 and 0.26, respectively) are 20% and 73% greater than the optimum BVF (0.15). The optimum BVF 
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falls within one standard deviation (0.05) of the mean Holocene BVF and falls outside of two standard 

deviations (0.05) of the mean Pleistocene BVF. 

Discussion 

We predicted that 𝑊𝑑 would scale with the inverse of BVF squared and that there would be a 

tradeoff between 𝑊𝑑 and each of the bone strength variables mediated by BVF. Both hypotheses were 

supported by the experimental data. We found that lower BVF values correlated significantly with 

greater 𝑊𝑑. We also correctly predicted a trade-off between 𝑊𝑑 and the bone strength variables 

mediated by BVF:  specimens with larger BVF had greater 𝐸, 𝜎𝑦 and 𝑊𝑓 but lower 𝑊𝑑 under stress 

controlled conditions (Figure 5.3). The tradeoff model indicated that a BVF of 0.15 optimized 𝑊𝑑 and 

each of the bone strength variables. 

Next, we evaluated Pleistocene and Holocene calcaneal trabecular BVF population means in the 

context of the tradeoff models to test hypotheses about how calcaneal trabecular tissue resists impacts. 

Average calcaneal BVF values in Pleistocene and Holocene H. sapiens were greater than the optimum 

BVF of 0.15, indicating that trabecular tissue from the human calcaneus has proportionally greater 𝐸, 𝜎𝑦 

and 𝑊𝑓 than 𝑊𝑑, thus supporting the hypothesis that human calcaneal trabecular tissue resists impacts 

by being stiff, strong and absorbing energy before fracture, particularly for the Pleistocene samples 

(Figure 5.4).  

This study has several limitations. The strain rate of the cyclic waveform used in this study was 

slightly variable because of varying specimen lengths and equipment limitations, and both 𝐸 and 𝜎𝑦 are 

sensitive to strain rate (Carter and Hayes 1977; Linde et al. 1991). However, the variability in strain rate 

(940 +/- 27.2 
𝜇𝜀

𝑠
) is small compared to studies that have investigated the phenomena and there was no 

relationship between strain rate and 𝑊𝑑 (𝑟 = 0.14, p=0.50) (Carter and Hayes 1977). Further, the strain 

rate of the cyclic waveform used in this study is an order of magnitude slower than physiologically 
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Figure 5.3: Tradeoff models with raw data points shown. The BVF that optimizes 𝑊𝑑  with 𝐸, 𝜎𝑦 or 𝑊𝑓 is circled. A: 

Tradeoff model of 𝑊𝑑  and 𝐸, B: Tradeoff model of 𝑊𝑑  and 𝜎𝑦, C: Tradeoff model of 𝑊𝑑  and 𝑊𝑓.  

relevant impact strain rates (roughly 10,000 𝜇𝜀̇; measured in the human tibia) (Burr et al. 1996) due to 

constraints of experimental equipment. Previous studies have shown that 𝐸, 𝜎𝑦 and 𝑊𝑓 would be 
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greater had we used a faster strain rate (Carter and Hayes 1977; Linde et al. 1991). It is unclear how 

higher strain rates would affect 𝑊𝑑; however it is likely that 𝑊𝑑 would decrease with strain rate because 

the fraction of energy dissipated is inversely related to strain rate (Dong et al. 2004). Thus we should 

view the 𝑊𝑑 values as an upper bound on energy dissipation and the values of 𝐸, 𝜎𝑦 and 𝑊𝑓 as lower 

bounds on elastic modulus, yield strength and work-to-failure, respectively, for trabecular tissue under 

impact loading. In addition, other aspects of trabecular architecture, such as anisotropy or structure 

model index, influence 𝐸, 𝜎𝑦 and 𝑊𝑓 and likely 𝑊𝑑 as well (Ulrich et al. 1999; Mittra et al. 2005). We 

considered the effects of BVF only in this study because most prior hypotheses concerning impacts and 

trabecular structure focus on variations in BVF (Latimer and Lovejoy 1989; Currey 2002; Latimer 2005). 

The strong relationships between BVF and 𝐸, 𝜎𝑦, 𝑊𝑓 and 𝑊𝑑 suggest that our regression analyses were 

not confounded by lack of inclusion of other trabecular structural variables in our regression models. 

Future work should investigate the relative contribution of other aspects of trabecular structure to 𝑊𝑓 

and 𝑊𝑑. 

An additional limitation is that we used prior observations and inferences about trabecular 

microdamage to predict that 𝑊𝑑 would vary with 𝐵𝑉𝐹−2, but we did not quantify microdamage in the 

samples. Therefore we cannot be certain whether microdamage is the cause of variations in 𝑊𝑑 values 

observed here. Microdamage has been shown to increase rapidly when strains outside the physiologic 

range are imposed (Moore and Gibson 2002; Nagaraja et al. 2005). Evidence that 𝑊𝑑 is more strongly 

associated with strain when specimens loaded outside the physiologic strain range are considered (see 

Figure 5.2 and Appendix C) suggests that microdamage is involved in energy dissipation.   

Results from this study suggest that the primary function of human calcaneal trabecular tissue 

under impact forces is to be stiff, strong and tough rather than to dissipate mechanical energy because 

the average calcaneal BVF values for both human groups indicate a large 𝐸, 𝜎𝑦 and 𝑊𝑓 relative to 𝑊𝑑.  
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Figure 5.4: Tradeoff models with average Pleistocene and Holocene calcaneal tuberosity BVF indicated as dashed 
lines. A: Tradeoff model of 𝑊𝑑  and 𝐸, B: Tradeoff model of 𝑊𝑑  and 𝜎𝑦, C: Tradeoff model of 𝑊𝑑  and 𝑊𝑓. 

This result is especially true if we consider only the Pleistocene group, which is likely more 

representative of the ancestral condition of trabecular BVF because of their geological age and 
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subsistence strategies (Unger-Hamilton 1989; Lieberman 1993). This finding has important implications 

for how the human musculo-skeletal system resists impacts from walking and heel-strike running. 

Impact energy not dissipated by the calcaneus is transferred through the lower extremity, thus placing 

increased emphasis on other mechanisms to dissipate energy, notably eccentric muscle contractions or 

passive damping in cartilage. Available data suggest that energy dissipation in young bovine cartilage 

under shear varies depending on the depth from the cartilage surface, and that human ankle muscles 

dissipate energy on the order of 0.5 J/kg from drop-heights of 30 cm (Zhang et al. 2000; Buckley et al. 

2013). However, varying study goals and experimental conditions obscure the relative contributions of 

bone, cartilage and muscles to dissipating energy from heel strike impacts, and additional research is 

necessary to uncover how these tissues work in concert to dissipate impact energies.   

The results from this study may be relevant to the incidence and prevalence of OA. One 

longstanding hypothesis is that subchondral trabecular bone of elevated BVF contributes to the 

incidence of OA because high-BVF trabecular tissue has an increased elastic modulus and reduced 

capacity to absorb and dissipate mechanical energies (Radin et al. 1972). In turn, the surrounding 

cartilage deteriorates under excessive shear stresses (Radin et al. 1972). Under this hypothesis, we 

might expect OA incidence (controlled for biological age) to be greater in Pleistocene vs. Holocene H. 

sapiens because evidence suggests systemically higher trabecular BVF in Pleistocene populations 

(Chirchir et al. 2015; Addison et al, in prep). However, this prediction is complicated by a number of 

factors. First, there is contradictory evidence as to whether the elastic modulus of subchondral 

trabecular bone influences the stresses in articular cartilage (Brown et al. 1984; Burgin and Aspden 

2008). Second, paleopathological studies on OA incidence suffer from limitations such as lack of strict 

controls for biological age and anatomical location, as well as using proxies for OA incidence (such as the 

presence of osteophytes) or pitting eburnation. Unsurprisingly, then, some studies find OA incidence is 

greater in forager populations than in either agriculturalists or industrial populations (Jurmain 1977; 
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Jurmain 1980; Larsen 1981), while others find greater incidence in agriculturalists (Goodman et al. 1984; 

Bridges 1992). Finally, the use of soft, heeled footwear in modern human populations alters the 

mechanical energy associated with heel strike impacts, complicating any direct relationships between 

trabecular BVF, energy dissipation and OA prevalence between modern humans and their ancestors 

(Addison and Lieberman 2015). These findings, of course, say nothing about other putative causes of OA 

such as biological age, inflammation and ‘abnormal’ mechanical forces (Anderson and Loeser 2010; 

Berenbaum 2013; Felson 2013). Clearly, more research is required in order to establish patterns of OA 

incidence in H. sapiens populations and to understand the interplay between biological and 

environment risk factors in the etiology of the disease. 
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Chapter 6 - Discussion 

 In this chapter I first summarize the major results and conclusions from Chapters 2 through 5. I 

then discuss the broader implications of the study findings by specifically addressing their relevance to 

theories of impact resistance in bone tissue, the generation and resistance of impact forces in 

Pleistocene vs. Holocene H. sapiens and the etiology of osteoarthritis.  

Chapter Summaries 

Chapter 2 examined how variation in foot-ground interface stiffness affects the generation of 

walking and heel strike running impact forces. I focused on variables such as impact loading rate and 

vertical impulse that have been implicated in the etiology of various repetitive stress injuries. I tested 

the hypotheses that less stiff interfaces result in lower impact loading rates but greater vertical 

impulses, and that there is a tradeoff between impact loading rate and vertical impulse for walkers and 

heel strike runners. Both of these hypotheses were supported by the experimental data. I concluded 

that footwear which reduces the stiffness of the heel-ground interface may decrease impact loading 

rates at the expense of greater vertical impulses, and therefore walking or heel strike running in less stiff 

footwear may decrease injury risk from impact loading rates but increase injury risk from larger vertical 

impulses. 

I studied how variation in the height and the elastic modulus of shoe heels affected heel strike 

running impact peaks in Chapter 3. I tested the hypothesis that increased heel height would increase the 

duration of impact, the vertical impulse and the effective mass of the foot while decreasing impact 

loading rates in heel strike runners. I also hypothesized that the effects of high heels and low elastic 

modulus heels would multiply such that the highest heels made of the least stiff material would lead to 

impact peaks with the longest impact durations, vertical impulses and effective masses, but the slowest 

impact loading rates. The final hypothesis was that the impact force magnitude would remain 
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unaffected by heel height. The results showed that higher heels lengthened the duration of impact and 

slowed impact loading rates, but also led to decreased impact force magnitude. Contrary to our second 

hypothesis, we found complex interactions between heel height and heel elastic modulus on the 

generation of impact forces. The results indicate that heel height alters heel strike running impact forces 

in predictable ways, but suggest that the effects of elastic modulus on impact peaks cannot be 

determined without accounting for heel height. Results also show that knee flexion during the impact 

peak is a strong predictor of impact force magnitude, impact time duration, 𝐹′, vertical impulse and 

𝑚𝑒𝑓𝑓. 

Chapter 4 investigated variation in trabecular BVF in the calcaneus and in C2 vertebrae among 

several H. sapiens populations, chimpanzees and gorillas. I tested the hypothesis that variations in 

mechanical loading due to physical activity are a primary cause of the patterns of variation observed in 

trabecular BVF. I found that Pleistocene H. sapiens had calcaneal trabecular BVF indistinguishable from 

both chimpanzees and gorillas, and that Pleistocene H. sapiens had greater calcaneal BVF than any 

Holocene H. sapiens population. Further, there were no differences in calcaneal BVF between the 

Holocene H. sapiens populations despite widely varying subsistence strategies. I also found that C2 

vertebrae trabecular BVF was greater in Pleistocene than Holocene H. sapiens. I concluded that H. 

sapiens trabecular BVF declined systemically sometime after the Pleistocene and that phenomena other 

than or in addition to variation in mechanical loading from physical activity are related to the decline.  

Chapter 5 considered how variation in H. sapiens calcaneal trabecular BVF affects the 

mechanical function of trabecular tissue. I hypothesized that energy dissipation would vary with the 

inverse of BVF squared under stress controlled conditions. I also hypothesized that trabecular BVF 

mediates a tradeoff between energy dissipation and each of three mechanical properties:  elastic 

modulus, yield strength and work to failure. I then used the experimental results and the tradeoffs 

between mechanical properties to understand how variations in calcaneal trabecular bone in H. sapiens 
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resists impact forces. The results indicate that energy dissipation scales with the inverse of BVF squared 

under stress controlled conditions, and that increasing BVF results in larger elastic modulus, yield 

strength and work to failure at the expense of energy dissipation. The tradeoff models indicated a BVF 

of 0.15 optimized energy dissipation and each of elastic modulus, yield strength and work-to-failure. 

Calcaneal trabecular bone of Pleistocene H. sapiens (average BVF: 0.26) thus had a relatively greater 

values of elastic modulus, yield strength and toughness, while calcaneal trabecular bone from Holocene 

H. sapiens (average BVF: 0.18) was closer to the optimum point of the mechanical variables. These 

findings suggest that BVF in the calcaneus of H. sapiens originally favored mechanical properties such as 

stiffness, strength and toughness in order to resist repetitive impacts to the heel. 

Implications 

Addressing theories of impact resistance in trabecular bone 

 One of the major motivations for this thesis was to evaluate differing models of how bone tissue 

resists repetitive impact forces. Several researchers have advanced an idea that I call the ‘bone energy 

dissipation hypothesis’ (Latimer and Lovejoy 1989; Currey 2002; Goodwin and Horner 2004; Latimer 

2005). Under this model, bone tissue is adapted to resist impacts by absorbing and dissipating 

mechanical energy. Because these mechanical properties would be especially useful in cases where 

impacts affect joints because the subchondral trabecular bone may shield articular cartilage from 

excessive loads, researchers have hypothesized that energy absorption and dissipation would increase 

as the volume fraction of bone (BVF) decreased (Radin et al. 1972; Latimer 2005). Thus, the bone energy 

dissipation hypothesis predicts that trabecular tissue of low BVF would be favored to resist impact 

forces. The other hypothesis, which I call the ‘bone strength hypothesis’, predicts that mechanical 

properties such as a high elastic modulus, yield strength and work-to-failure would be favorable for 

resisting impacts (Currey 2002).  With larger values of elastic modulus, yield strength and work-to-

failure, bone tissue would be stronger and tougher and thus increase its resistance to fracture. Elastic 
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modulus, yield strength and work to failure all increase as trabecular BVF increases, and thus the 

strength hypothesis predicts that trabecular tissue of high BVF would be favored to resist impacts (Rice 

et al. 1988; Linde et al. 1989).  Note that these two models have competing predictions about how 

trabecular tissue would be shaped structurally to resist impacts: the bone energy dissipation hypothesis 

suggests that lower BVF would be favored, while the bone strength hypothesis suggests that greater BVF 

would be favored. 

 In Chapter 5 I tested several aspects of these competing hypotheses. First, I tested whether 

energy dissipation increased as trabecular BVF decreased in calcaneal trabecular bone under cyclic 

loading to a constant stress. This hypothesis was supported by the experimental data. I then tested 

whether there would be a tradeoff in terms of energy dissipation between BVF and the three ‘bone 

strength variables’ (elastic modulus, yield strength and work-to-failure) and hypothesized that there 

would be a BVF that optimized energy dissipation and each of the bone strength variables. These 

hypotheses were also supported by experimental data. I then compared population averages in 

calcaneal BVF from Chapter 4 to the tradeoff models to understand how the human calcaneus resists 

impacts. The tradeoff models showed that the average calcaneal BVF from the Pleistocene H. sapiens 

population (BVF=0.26) was 42% greater than the BVF that optimized each of the bone strength variables 

and energy dissipation (BVF=0.15) and that the optimal BVF fell 2 standard deviations below the average 

Pleistocene H. sapiens calcaneal BVF. The finding that the average BVF from Pleistocene H. sapiens was 

42% greater than the optimum BVF suggests that H. sapiens calcaneal trabecular bone originally favored 

large values of 𝐸, 𝜎𝑦 and 𝑊𝑓 to resist impacts during walking and heel strike running.  

Results from Chapter 5 have several implications for the bone energy dissipation and bone strength 

hypotheses. First, the results confirm the conjecture from the bone energy dissipation hypothesis that 

energy dissipation is increased in trabecular tissue with low BVF. The results also suggest that the energy 

dissipation strategy was not the favored strategy in the human calcaneus to resist repetitive impacts to 
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the heel despite the inverse relationship between BVF and energy dissipation. Rather, results suggest 

that the human calcaneus resists impacts by being stiff, strong and tough.  

The human calcaneus is an especially interesting location to find evidence in support of the bone 

strength hypothesis because the articular cartilage in the lower extremity is potentially at risk from the 

energies imparted by repetitive impacts at heel strike (Radin et al. 1972; Radin et al. 1991; Whittle 

1999). Impact energies from walking and heel strike running begin at the foot but propagate up the leg 

and through the axial skeleton, and some researchers have linked heel strike impacts with degenerative 

changes in joints and joint pain (Radin et al. 1973; Folman et al. 1986; Radin et al. 1991). Because 

articular cartilage may be at risk from repetitive heel strikes, one might expect to find evidence for an 

energy dissipation strategy or an optimized strategy in trabecular bone in order to dissipate energy and 

thus shield cartilage from being overloaded from impact forces. However, the evidence from this study 

suggests that a trabecular structure that increased stiffness, strength and toughness at the expense of 

energy dissipation was originally favored to resist impacts in the human calcaneus. 

Another important implication is that the tradeoff between energy dissipation and the bone 

strength variables found in human calcaneal trabecular bone likely also exists in trabecular tissue from 

other anatomical locations in both humans and other organisms. Thus the trade-off framework 

established in this thesis can be used to evaluate impact resistance in bones of other organisms such as 

beaks of woodpeckers and skulls of bighorn sheep. While several studies have attempted to correlate 

cranial shape to the ability to resist impact forces in head-butting animals, future work can use the 

trade-off model presented in this thesis as a means to investigate the role of trabecular tissue in 

resisting impact forces (Farke 2008; Snively and Theodor 2011).  
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Generating and resisting impacts: Yesterday and today 

The results from this study imply that the generation and resistance of impact forces during 

walking and heel strike running has changed during recent human evolution, and is different for modern 

industrialized H. sapiens than for hunter-gatherers or possibly even pre-industrial humans. To 

summarize briefly, the use of cushioned footwear worn by many people today decreases impact loading 

rates while increasing the vertical impulse and mechanical energy imparted to the body during impact. 

At the same time, the lower trabecular BVF in the Holocene H. sapiens calcaneus likely reduces 

trabecular tissue stiffness, strength and toughness while increasing energy dissipation during impacts.  

To explore these implications further, it is useful to remember that the results from Chapters 2 

and 3 indicate that the impact force itself has likely changed in modern industrialized humans compared 

to early H. sapiens because of footwear. The soft, compliant shoe heels frequently worn by 

industrialized humans alter the walking and running heel strike impact force in a manner that decreases 

impact loading rates while increasing the vertical impulse and mechanical energy (Addison and 

Lieberman 2015). In addition, the elevated heels of modern footwear act to decrease impact force 

magnitude and loading rate while increasing vertical impulse compared to minimal footwear. Thus, 

footwear commonly used by humans in industrial societies act to decrease impact loading rates and 

impact force magnitudes but result in larger impact energies applied to the skeleton at the heel. Larger 

impact energies at heel strike due to footwear may be relevant to the etiology of various 

musculoskeletal injuries such as osteoarthritis, which will be discussed below. 

In addition, the results from Chapter 4 indicate that trabecular BVF may have declined 

systemically sometime after the Pleistocene and those from Chapter 5 show how variation in BVF affects 

the mechanical properties of calcaneal trabecular bone. The average Holocene calcaneal tuberosity 

trabecular BVF (0.18) is 31% lower than the average Pleistocene calcaneal tuberosity trabecular BVF 

(0.26). The best-fit regression equations between trabecular BVF and elastic modulus, yield strength, 
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work-to-failure and energy dissipation can be used to estimate the degree to which the decline in 

calcaneal BVF from Pleistocene to Holocene affects its mechanical properties. The 31% decline in 

calcaneal BVF from Pleistocene to Holocene H. sapiens results in an estimated 54% decline in elastic 

modulus, a 59% decline in yield strength and a 55% decline in work-to-failure, while increasing energy 

dissipation under a given load by 54%. These results imply that the ways in which calcaneal trabecular 

bone resists heel strike impacts during walking and running has changed from Pleistocene to Holocene 

H. sapiens, with Pleistocene calcaneal trabecular bone being stiffer, stronger and tougher and Holocene 

calcaneal trabecular bone better able to dissipate the mechanical energy imparted by the impact.  

Osteoarthritis 

The results from this thesis are relevant to improving our understanding of the ultimate and 

proximate causes of osteoarthritis (OA). Although the causes of OA are complex and multifactorial 

involving both inflammatory, genetic and mechanical risk factors, the incidence of the disease is linked 

to high bone density (Berenbaum 2013; Felson 2013; Reynard and Loughlin 2013; Hardcastle et al. 

2015). In particular, high bone density (as assessed by single-photon absorptiometry and/or DXA; both 

measurement techniques calculate bone mineral density values that include contributions from both 

cortical and trabecular bone) has been associated with the incidence of radiographic OA, and repetitive 

impact forces leading to larger trabecular BVF (via bone remodeling) has been associated with cartilage 

degeneration and joint pain in the knee (Radin et al. 1973; Radin et al. 1991; Nevitt et al. 1995; Nevitt et 

al. 2010; Hardcastle et al. 2015). Because this thesis dealt explicitly with both trabecular bone density (in 

the form of BVF) and walking and heel strike running impacts, the data may be helpful in evaluating 

ongoing debates about the causes and progression of OA. 

Many studies have noted an association between high bone density and radiographic OA in 

modern H. sapiens, although the causality is still unknown (Peel et al. 1995; Sowers et al. 1999; Chaganti 

et al. 2010; Nevitt et al. 2010; Hardcastle et al. 2015). Among several hypotheses relating high bone 
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density to OA, one longstanding hypothesized mechanism is that subchondral trabecular bone tissue of 

elevated density (or larger BVF) has a larger elastic modulus, reducing its ability to absorb and dissipate 

energy imparted by mechanical forces (Radin et al. 1970; Radin et al. 1972). In turn, the surrounding 

cartilage degenerates under excessive shear stresses (Radin et al. 1972; Radin and Rose 1986). It is 

important to note that experimental evidence has both supported this hypothesis (Radin et al. 1973) 

and suggested that it is too simplistic because subchondral trabecular BVF doesn’t affect stresses in 

cartilage (Brown et al. 1984). Further, researchers have offered other mechanisms linking bone density 

to OA, including irregular joint shapes caused by variations in bone density and reactivation of 

endochondral ossification (Baker-LePain and Lane 2010; Burr and Gallant 2012). 

Under the hypothesis that elevated trabecular BVF is a risk factor for OA, one might predict that 

the incidence of OA would have decreased in Holocene compared to Pleistocene H. sapiens because of 

data that suggests systemic declines in trabecular BVF after the Pleistocene. However, available 

evidence is inconclusive on the incidence of OA among populations and how it has changed over time. 

Most studies that have tried to measure OA in past H. sapiens populations focus on how OA incidence 

differs between populations with varying subsistence strategies. The results of these studies are largely 

mixed; some studies find declines in OA incidence from foragers to agriculturalists, while others find the 

opposite pattern (Jurmain 1977; Jurmain 1980; Larsen 1981; Goodman et al. 1984; Bridges 1992). In 

terms of temporal trends in OA, Jurmain (1977) compared OA incidence in appendicular joints between 

pre-historic arctic hunter-gatherers, Holocene agriculturalists and modern industrial Americans, finding 

that the hunter-gatherers had the greatest incidence of OA followed by modern Americans and finally 

by agriculturalists. However, paleopathological studies of OA prevalence often suffer from limitations 

such as using proxies of the disease (such as presence of osteophytes, pitting or eburnation) for 

diagnosis and lack of specificity when controlling for biological age and anatomical location. Further, it is 

not clear if some of the skeletal proxies used to diagnose OA is human skeletons accurately predict 
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symptoms of the disease. More research is clearly needed to better establish the relationship between 

bone density and temporal trends in OA in H. sapiens.  

If repetitive impulsive forces contribute to the incidence of OA, one might predict that OA may 

be reduced in modern industrial populations because industrialized individuals are less physically active 

and thus experience fewer heel strike impacts. This conjecture, however, is complicated by the use of 

compliant footwear by modern industrialized H. sapiens. Modern footwear elevates the heel and 

introduces a compliant interface between the heel and the ground, which increases the vertical impulse 

and mechanical energy of the impact relative to minimalist footwear that mimics barefoot locomotion 

(Addison and Lieberman 2015). Larger values of mechanical energy at heel strike may increase the 

mechanical energy that joints of the lower extremity must resist, which in turn may lead to cartilage 

degeneration. Accordingly, one might expect that OA risk would increase in industrial shod populations. 

Further, runners are more likely to land on the heel when wearing any type of footwear than when 

barefoot (Larson 2014; Lieberman 2014; Lieberman et al. 2015). This suggests that modern shod humans 

may experience more frequent heel strike impacts during running than their ancestors. If the frequency 

of repetitive impulsive forces contribute to OA, then we might expect greater risk of OA in modern 

industrial populations relative to pre-historic unshod or minimally shod populations. However, as noted 

above, more research is necessary to establish temporal trends in OA incidence and its associations with 

subsistence strategy in H. sapiens.  

It is clear that even within the realms of bone density and impact forces there are several 

hypothesized mechanisms and confounding factors which might lead to differentials in OA incidence 

between H. sapiens populations. Of course, this says nothing about other putative factors that affect the 

etiology of OA such as age, genetic predisposition, injury, and either local or systemic inflammation 

(Anderson and Loeser 2010; Berenbaum 2013; Felson 2013; Reynard and Loughlin 2013). It is evident 

that more OA incidence data that controls for age and skeletal location from a broader range of 
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populations is necessary in order to establish relationships between OA and bone density and/or impact 

forces. In terms of the association between trabecular BVF and OA, one way forward would be to 

compare OA incidence in specific joints between H. sapiens populations that are likely to differ in 

trabecular BVF at the given joint (such as the populations used in this study). As for the role of impulsive 

forces in the etiology of OA, future studies should attempt to better understand what aspects of 

mechanical loading are risk factors for cartilage degeneration. For instance, what constitutes ‘abnormal’ 

mechanical loading and what (if any) aspects of the impact force during human walking and heel strike 

running are abnormal (Radin et al. 1991; Felson 2013)? Available evidence linking heel strike impacts to 

symptomatic or radiographic OA in H. sapiens is mixed (Folman et al. 1986; Lane et al. 1986; Panush et 

al. 1986; Eichner 1989; Radin et al. 1991) and future work should attempt to disentangle the relative 

contributions of impact force magnitude, rate, and environmental factors such as frequency of physical 

activity and use of modern footwear to the etiology of OA. 
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Appendix 1 – Supplementary Data for Chapter 2 

Mechanical Energy 

 While Chapter 2 focused on variables of the impact peak that have been implicated in repetitive 

stress injuries such as 𝐹𝑚𝑎𝑥, 𝐹′ and vertical impulse, it may also be important to consider the mechanical 

energy imparted to the body during the impact. Here, I include a brief analysis of how mechanical 

energy of the impact is altered by the experimental conditions.  

Experimental data confirmed the hypothesis that 𝑚𝑒𝑓𝑓 would increase in less stiff footwear. It is 

reasonable, then, to expect that the total mechanical energy of the impact would be greater in less stiff 

footwear because 𝑚𝑒𝑓𝑓 is greater. Following Chi and Schmidt (2005), the total mechanical energy of 

𝑚𝑒𝑓𝑓 immediately prior to impact is calculated as (Chi and Schmitt 2005): 

Mechanical Energy = 
1

2
𝑚𝑒𝑓𝑓𝑣𝑖

2 − 𝑚𝑒𝑓𝑓𝑔∆𝑧 

 

where ∆𝑧 is the change in vertical distance of the lateral malleolus marker during the impact peak.  

Results from ANOVA show that there were significant differences in mechanical energy of the 

impact between conditions in both walking and running (Walking: F(2,54) = 21.5, p < 0.0001; Running: 

F(2,54)=12.1, p < 0.0001). Appendix Table 1.1 shows the mean (SD) of the mechanical energy of the 

impact during walking and heel strike running. During walking, the mechanical energy increased by 

19.5% between the control and hard pad and by 37.2% between the hard pad and the soft pad (control 

vs. hard: p < 0.0001; hard v. soft: p < 0.0001). In heel strike running, the mechanical energy increased by 

20.8% and 38.8% between the control and hard pad and between the hard and soft pad, respectively 

(control vs. hard: p = 0.02; hard vs. soft: p < 0.0001) (Appendix Table 1.1, Appendix Figure 1.1). 
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Appendix Table 1.1: Mean (SD) of mechanical energy during the impact during walking and heel strike running for 
each experimental condition. P-values from ANOVA are shown.  

 WALKING RUNNING 

 
Mean (SD) p-value Mean (SD) p-value 

 
Control Hard Soft  Control Hard Soft  

Mechanical 
Energy (J) 

0.91 
(0.19) 

1.08 
(0.27) 

1.49 
(0.35) 

<0.0001 
1.84 

(0.46) 
2.22 

(0.83) 
3.08 

(1.00) 
<0.0001 

 

 

 

 

 

Appendix Figure 1.1: Mechanical energy of the impact in each condition during walking and running. Error bars 
represent standard error 
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Appendix 2 – Supplementary data for Chapter 3 

Measurement of elastic modulus for heel materials 

Elastic modulus for each of the three heel materials was measured in compression between 0 and 50% 

strain. The stress-strain curves in this range were reasonably linear and thus the Young’s modulus of 

each material was calculated as the slope of the best-fit least-squares regression line of the raw data. 

Appendix table 2.1: Regression equations and elastic moduli for heel materials 

Material Regression equation 𝑹𝟐 Elastic Modulus (MPa) 

Soft y=2.43x – 0.082 0.91 2.4 

Medium y=31.8x – 0.63 0.98 32 

Hard y=44.7x – 1.78 0.97 45 

   

 

Appendix Figure 2.1: Stress vs. strain relationship for the soft heel material. Black dots are the raw data and 

dashed grey line is the best-fit least-squares regression line. 

 

 

Appendix Figure 2.2: Stress vs. strain relationship for the medium heel material. Black dots are the raw data and 

dashed grey line is the best-fit least-squares regression line. 
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Appendix Figure 2.3: Stress vs. strain relationship for the hard heel material. Black dots are the raw data and 

dashed grey line is the best-fit least-squares regression line. 
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Appendix 3 – Supplementary Data for Chapter 4 

The biological age class, sex, trabecular BVF, Tb.Th, Tb.Sp., DA, SMI and ConnD for each 

specimen in the calcaneal tuberosity (Appendix Table 3.1), calcaneal PAF (Appendix table 3.2) and C2 

vertebra (Appendix Table 3.3) are provided in this appendix. 

Appendix Table 3.1: Detailed trabecular structure report for the calcaneal tuberosity VOI 

Sample ID 
Number 

Age or 
Age 

Class 
Sex BVF 

Tb.Th 
(mm) 

Tb.Sp. 
(mm) 

DA SMI 
ConnD 

(1/𝑚𝑚3) 

Gorilla         

MCZ 17684 Adult F 0.249 0.238 0.696 0.545 1.769 5.272 

MCZ 20038 Adult M 0.173 0.271 1.21 0.532 1.548 1.413 

MCZ 20039 Adult M 0.197 0.397 1.341 0.594 1.798 0.917 

MCZ 23160 Adult M 0.233 0.287 0.932 0.647 1.375 2.181 

MCZ 23162 Adult M 0.145 0.243 1.502 0.732 1.263 0.772 

MCZ 29047 Adult F 0.156 0.185 0.84 0.631 2.259 3.032 

MCZ 29048 Adult M 0.179 0.211 0.999 0.551 1.891 2.198 

MCZ 29049 Adult M 0.277 0.317 0.796 0.599 1.576 3.225 

MCZ 37264 Adult F 0.213 0.231 0.835 0.395 1.815 3.151 

MCZ 57482 Adult M 0.254 0.285 0.971 0.622 1.076 1.725 

Chimpanzee         

MCZ 23163 Adult M 0.299 0.276 0.752 0.642 0.674 2.814 

MCZ 20041 Adult M 0.308 0.289 0.778 0.68 0.56 2.349 

MCZ 48686 Adult M 0.258 0.224 0.777 0.625 0.781 2.985 

MCZ 19187 Adult M 0.275 0.235 0.672 0.626 1.225 4.562 

MCZ 26849 Adult F 0.233 0.184 0.66 0.665 1.398 5.214 

MCZ 26847 Adult F 0.183 0.173 0.687 0.581 2.018 5.478 

MCZ 15312 Adult U 0.258 0.198 0.633 0.683 1.11 5.593 

Natufian         

10256 Adult F 0.295 0.274 0.642 0.714 1.348 4.174 

10258 Adult M 0.186 0.282 1.04 0.633 1.896 1.774 

10267 Adult U 0.25 0.263 0.694 0.609 0.1747 3.637 

10282 Adult U 0.224 0.244 0.79 0.641 1.64 2.915 

10290 Adult F 0.264 0.284 0.762 0.639 1.51 2.991 

10292 Adult F 0.337 0.317 0.603 0.619 1.371 3.988 

10322 Adult U 0.224 0.247 0.773 0.599 1.729 3.298 

10323 Adult U 0.259 0.28 0.798 0.643 1.204 2.338 

Point Hope         

200 Adult F 0.206 0.185 0.594 0.729 2.307 6.486 

228 Adult M 0.177 0.22 0.816 0.743 2.312 3.512 

252 Adult M 0.173 0.187 0.694 0.728 2.485 4.739 

315 Adult U 0.186 0.192 0.694 0.692 2.25 4.676 

339 Adult M 0.216 0.219 0.818 0.82 1.328 2.429 

353 Adult M 0.121 0.18 0.885 0.626 2.958 3.628 

373 Adult M 0.158 0.212 0.903 0.727 2.259 2.954 
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Appendix Table 3.1 (Continued): Detailed trabecular structure report for the calcaneal 
tuberosity VOI 
380 Adult M 0.167 0.21 0.969 0.803 1.51 1.833 

392 Adult M 0.207 0.239 0.714 0.708 2.491 4.12 

397 Adult M 0.254 0.236 0.762 0.774 1.124 2.704 

431 Adult M 0.097 0.162 1.014 0.772 2.858 2.959 

446 Adult M 0.207 0.199 0.68 0.584 2.185 6.567 

462 Adult M 0.181 0.245 0.856 0.761 2.342 2.713 

464 Adult F 0.202 0.178 0.64 0.76 2.267 5.998 

480 Adult M 0.174 0.225 0.961 0.55 1.964 2.674 

481 Adult M 0.235 0.21 0.612 0.668 1.937 6.231 

504 Adult M 0.19 0.211 0.745 0.718 2.165 4.122 

510 Adult F 0.238 0.198 0.55 0.674 2.126 8.078 

540 Adult F 0.171 0.167 0.581 0.606 3.044 9.416 

Mistihalj         

9115 Adult M 0.131 0.164 0.78 0.707 2.751 4.327 

9121 Adult M 0.205 0.198 0.675 0.621 2.025 5.237 

9122 Adult F 0.134 0.155 0.654 0.592 3.259 7.186 

9123 Adult F 0.22 0.187 0.554 0.693 2.268 8.191 

9127 Adult M 0.131 0.146 0.714 0.615 3.244 7.708 

9130 Adult F 0.084 0.141 0.816 0.581 3.774 4.755 

9146 Adult F 0.266 0.248 0.664 0.617 1.745 5.582 

9148 Adult M 0.144 0.158 0.657 0.513 3.297 9.04 

9152 Adult M 0.144 0.179 0.846 0.66 2.587 3.894 

8983 Adult M 0.264 0.218 0.592 0.709 1.443 5.71 

9055 Adult F 0.207 0.2 0.616 0.765 2.274 6.336 

9094 Adult U 0.163 0.169 0.636 0.66 2.912 7.834 

9040 Adult F 0.179 0.23 0.83 0.633 2.537 4.211 

American         

1311321 63 M 0.134 0.186 0.767 0.715 2.849 3.625 

1311423 70 M 0.225 0.235 0.673 0.747 1.97 3.952 

1311432 63 M 0.208 0.215 0.722 0.699 1.808 3.782 

1308747 71 M 0.187 0.225 0.765 0.641 2.251 4.437 

1311042 28 M 0.211 0.243 0.721 0.692 2.161 3.641 

1311395 68 M 0.16 0.214 0.834 0.718 2.346 3.053 

1311434 56 M 0.113 0.219 1.022 0.756 2.727 1.624 

1304731 54 M 0.306 0.237 0.521 0.765 1.41 6.125 

1311296 55 M 0.195 0.207 0.605 0.665 2.513 6.012 

1311259 45 M 0.196 0.196 0.606 0.698 2.453 6.13 

1404187 68 F 0.275 0.195 0.492 0.785 1.586 7.628 

1407664 65 F 0.087 0.172 0.985 0.717 3.188 2.424 

1405461 60 F 0.186 0.182 0.608 0.762 2.447 6.056 

1405433 53 F 0.175 0.213 0.846 0.676 2.058 3.006 

1407768 64 F 0.157 0.183 0.684 0.529 3.064 5.991 

1406557 41 F 0.191 0.192 0.645 0.671 2.301 5.687 

1407672 66 F 0.141 0.174 0.662 0.75 2.987 4.995 

1407738 53 F 0.147 0.156 0.543 0.702 3.392 8.424 

1209562 44 F 0.113 0.171 0.775 0.628 3.213 3.903 

1406633 58 F 0.093 0.163 0.846 0.641 3.496 3.075 
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Appendix Table 3.2: Detailed trabecular structure report for the calcaneal PAF VOI 

Sample ID 
Number 

Age Sex BVF 
Tb.Th 
(mm). 

Tb.Sp. 
(mm) 

DA SMI ConnD 

Gorilla         

MCZ 17684 Adult F 0.452 0.374 0.647 0.528 1.551 1.453 

MCZ 20038 Adult M 0.484 0.493 0.82 0.63 0.664 1.055 

MCZ 20039 Adult M 0.532 0.737 1.081 0.711 0.213 0.393 

MCZ 23160 Adult M 0.535 0.557 0.691 0.795 0.262 0.963 

MCZ 23162 Adult M 0.494 0.517 0.983 0.634 0.46 1.066 

MCZ 29047 Adult F 0.298 0.296 0.879 0.772 2.83 1.44 

MCZ 29048 Adult M 0.595 0.566 0.621 0.708 0.433 0.813 

MCZ 29049 Adult M 0.531 0.513 0.754 0.757 0.272 1.222 

MCZ 37264 Adult F 0.515 0.493 0.68 0.767 0.807 1.108 

MCZ 57482 Adult M 0.479 0.434 0.73 0.65 0.928 2.089 

Chimpanzee         

MCZ 38019 Adult F 0.565 0.477 0.66 0.688 0.229 0.856 

MCZ 23163 Adult M 0.551 0.459 0.705 0.564 0.168 2.307 

MCZ 20041 Adult M 0.556 0.461 0.686 0.572 0.145 1.766 

MCZ 48686 Adult M 0.555 0.436 0.665 0.564 0.328 1.786 

MCZ 19187 Adult M 0.562 0.406 0.504 0.467 0.382 4.135 

MCZ 26849 Adult F 0.547 0.355 0.469 0.405 1.045 5.303 

MCZ 26847 Adult F 0.397 0.304 0.614 0.544 2.101 3.789 

MCZ 38018 Adult M 0.513 0.348 0.6 0.736 0.315 1.891 

MCZ 15312 Adult U 0.434 0.277 0.525 0.609 1.635 6.043 

MCZ 38020 Adult M 0.553 0.396 0.564 0.554 0.19 2.401 

Natufian         

10256 Adult F 0.58 0.49 0.568 0.77 0.31 1.865 

10267 Adult U 0.441 0.373 0.722 0.844 1.573 1.672 

10282 Adult U 0.407 0.435 0.896 0.841 1.723 1.016 

10289 Adult U 0.587 0.595 0.603 0.712 0.001 1.198 

10290 Adult F 0.545 0.608 0.738 0.743 0.637 0.707 

10292 Adult F 0.61 0.619 0.576 0.813 0.034 0.9 

10322 Adult U 0.524 0.496 0.63 0.788 1.61 1.129 

10323 Adult U 0.566 0.557 0.627 0.838 0.436 1.313 

10259 Adult M 0.517 0.532 0.75 0.772 0.861 0.722 

10258 Adult M 0.595 0.601 0.679 0.773 0.183 0.838 

Point Hope         

200 Adult F 0.398 0.321 0.605 0.784 2.414 4.099 

228 Adult M 0.392 0.407 0.718 0.754 0.719 2.527 

252 Adult M 0.425 0.355 0.67 0.825 1.934 2.124 

315 Adult U 0.441 0.358 0.61 0.815 1.833 2.655 

339 Adult M 0.397 0.341 0.682 0.893 2.294 2.006 

353 Adult M 0.408 0.333 0.664 0.785 2.045 2.602 

373 Adult M 0.349 0.314 0.754 0.848 2.729 1.974 

380 Adult M 0.43 0.378 0.709 0.822 1.898 1.508 

392 Adult M 0.489 0.469 0.669 0.798 1.177 2.007 

397 Adult M 0.408 0.371 0.702 0.822 2.198 1.867 

431 Adult M 0.256 0.26 0.823 0.856 3.185 2.984 

446 Adult M 0.408 0.341 0.641 0.782 2.24 2.498 

462 Adult M 0.394 0.381 0.697 0.819 1.916 2.314 
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Appendix Table 3.2 (Continued): Detailed trabecular structure report for the calcaneal 
PAF VOI 

464 Adult F 0.4 0.306 0.591 0.815 2.569 3.335 

480 Adult M 0.322 0.309 0.761 0.768 3.018 3.132 

481 Adult M 0.368 0.334 0.751 0.86 2.349 2.301 

504 Adult M 0.403 0.367 0.691 0.836 2.227 1.695 

510 Adult F 0.443 0.381 0.543 0.807 2.095 3.73 

540 Adult F 0.331 0.284 0.651 0.807 3.001 3.896 

Mistihalj         

9115 Adult M 0.368 0.308 0.588 0.791 2.16 3.889 

9121 Adult M 0.407 0.42 0.799 0.737 1.647 2.244 

9122 Adult F 0.402 0.335 0.606 0.61 1.767 4.757 

9123 Adult F 0.456 0.363 0.528 0.578 1.423 5.28 

9127 Adult M 0.426 0.34 0.53 0.77 1.649 4.801 

9130 Adult F 0.305 0.276 0.648 0.727 2.57 5.713 

9138 Adult M 0.411 0.339 0.639 0.41 1.336 4.711 

9146 Adult F 0.445 0.368 0.628 0.692 1.231 3.626 

9148 Adult M 0.52 0.41 0.538 0.752 0.733 3.806 

9152 Adult M 0.453 0.369 0.577 0.64 1.307 4.048 

8983 Adult M 0.548 0.458 0.538 0.783 0.264 2.404 

9055 Adult F 0.535 0.436 0.524 0.713 0.236 3.305 

9094 Adult U 0.365 0.322 0.626 0.692 2.141 4.986 

9053 Adult M 0.528 0.503 0.636 0.709 0.387 2.29 

9040 Adult F 0.513 0.417 0.57 0.78 0.548 2.834 

American         

1311321 63 M 0.413 0.339 0.609 0.789 1.914 2.91 

1311423 70 M 0.396 0.395 0.775 0.707 1.766 2.499 

1311324 63 M 0.379 0.35 0.639 0.804 2.004 2.583 

1308747 71 M 0.449 0.381 0.622 0.792 1.348 2.21 

1310042 28 M 0.459 0.423 0.608 0.791 1.285 3.091 

1311395 68 M 0.461 0.371 0.579 0.763 1.371 2.997 

1311434 56 M 0.34 0.357 0.749 0.761 2.509 2.796 

1304731 54 M 0.521 0.428 0.569 0.81 0.698 5 

1311496 55 M 0.411 0.366 0.619 0.785 1.444 2.801 

1311259 45 M 0.448 0.342 0.52 0.793 1.191 3.582 

1404187 68 F 0.47 0.346 0.474 0.606 1.652 5.673 

1407664 65 F 0.288 0.295 0.805 0.689 2.708 3.104 

1405461 60 F 0.424 0.309 0.504 0.755 1.955 4.946 

1405433 53 F 0.464 0.426 0.703 0.74 1.332 1.641 

1407768 64 F 0.471 0.394 0.58 0.729 1.252 2.646 

1406557 41 F 0.43 0.296 0.479 0.759 1.961 4.928 

1407672 66 F 0.329 0.286 0.598 0.763 2.555 4.559 

1407738 53 F 0.427 0.297 0.494 0.708 1.996 6.644 

1209562 44 F 0.444 0.348 0.531 0.636 1.777 4.815 

1407633 58 F 0.298 0.261 0.603 0.735 2.854 4.902 
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Appendix Table 3.3: Detailed trabecular structure report for the C2 body VOI 

Sample ID 
Number 

Age Sex BVF Tb.Th 
(mm). 

Tb.Sp. DA SMI ConnD 

Natufian         

10239 Adult U 0.376 0.318 0.679 0.163 0.821 3.954 

10252 Adult U 0.252 0.281 0.832 0.236 1.894 4.378 

10253 Adult F 0.356 0.381 0.827 0.15 1.144 2.57 

10256 Adult F 0.37 0.395 0.851 0.28 0.923 1.74 

10260 Adult M 0.517 0.521 0.719 0.325 0.031 1.042 

10315 Adult U 0.409 0.436 0.835 0.128 1.128 1.945 

10323 Adult U 0.306 0.293 0.739 0.271 1.53 4.875 

10351 Adult U 0.229 0.266 0.982 0.528 1.517 2.5 

10357-2 Adult U 0.382 0.368 0.741 0.318 0.921 2.537 

Point Hope         

200 Adult F 0.279 0.242 0.744 0.277 1.329 4.644 

228 Adult M 0.32 0.29 0.744 0.219 1.26 4.76 

315 Adult U 0.2 0.21 0.87 0.214 1.702 4.427 

339 Adult M 0.225 0.276 1.11 0.48 1.436 2.339 

353 Adult M 0.155 0.256 1.147 0.293 2.452 2.176 

373 Adult M 0.172 0.218 0.995 0.228 1.939 3 

380 Adult M 0.198 0.217 0.923 0.5 1.959 3.1 

392 Adult M 0.322 0.38 0.914 0.209 1.378 2.904 

397 Adult M 0.307 0.282 0.773 0.292 1.276 4.467 

431 Adult M 0.226 0.289 0.991 0.346 1.513 2.659 

446 Adult M 0.163 0.306 1.516 0.249 2.139 1.644 

462 Adult M 0.213 0.314 1.106 0.465 2.09 2.307 

464 Adult F 0.236 0.205 0.748 0.424 1.708 6.189 

480 Adult M 0.218 0.269 0.991 0.213 1.658 2.948 

481 Adult M 0.229 0.295 0.973 0.337 1.885 3.266 

491 Adult U 0.201 0.274 0.985 0.412 2.282 3.177 

504 Adult M 0.218 0.227 0.863 0.404 1.724 5.106 

510 Adult F 0.287 0.28 0.726 0.302 1.596 4.662 

540 Adult F 0.219 0.227 0.813 0.346 2.076 5.104 

Mistihalj         

8983 Adult M 0.352 0.268 0.598 0.147 1.015 7.039 

9040 Adult F 0.315 0.255 0.547 0.289 1.225 9.009 

9063 Adult F 0.196 0.203 0.801 0.23 2.125 5.365 

9064 Adult F 0.308 0.263 0.662 0.197 1.398 6.731 

9079 Adult M 0.274 0.248 0.672 0.201 1.688 6.456 

9094 Adult M 0.303 0.226 0.571 0.187 1.598 9.936 

9122 Adult F 0.27 0.207 0.674 0.12 1.401 6.701 

9123 Adult F 0.344 0.255 0.591 0.305 1.283 9.788 

9127 Adult M 0.266 0.217 0.667 0.297 1.663 6.946 

9138 Adult M 0.214 0.235 0.795 0.096 2.096 4.984 

9146 Adult F 0.371 0.296 0.633 0.23 0.863 5.646 

9152 Adult M 0.192 0.189 0.813 0.243 1.917 4.766 
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Appendix 4 – Supplementary data for Chapter 5 

Appendix 4A: Conditioning cycles 

A potential limitation of the conditioning cycles is that they were performed in position control 

mode rather than the more conventional strain control mode. Pilot data performed in strain control 

mode indicated that measured strains frequently overshot the prescribed strains, thus making strain 

control mode unreliable. Given that specimens had slightly different lengths, performing the 

conditioning cycles in position control mode means that each specimen likely underwent different 

strains and strain rates which may affect elastic modulus (𝐸) calculations. The purpose of this section is 

to address any limitations and/or biases in the data caused by using position control mode during the 

conditioning cycles.  

Specimen lengths and strain measurement 

During the conditioning cycles, each specimen was loaded in cyclic compression in position 

control to 0.05 mm at 0.5 Hz. Varying effective lengths amongst the specimens may result in slightly 

different strains and strain rates. The average (SD) effective length (in mm) of the specimens was 23.4 

(+/- 0.69). The average (SD) maximum strain (in percent) reached during the 10th conditioning cycle was 

0.22 (+/- 0.04%). The prediction would be that specimens with longer effective lengths would undergo 

less strain because a length change of 0.022 mm (the prescribed value of actuator displacement) is a 

smaller fraction of the total length of longer specimens. However, there was no relationship between 

effective specimen length and maximum strain reached on the 10th loading cycle (appendix figure 4.1; 

p=0.2). 
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Appendix Figure 4.1: Maximum strain reached during the 10th conditioning cycle versus effective specimen length 

 

Specimen structure and strain measurement 

Instead, the data showed an inverse correlation between BVF and the maximum strain reached 

on the 10th loading cycle (Appendix Figure 4.2; p<0.0001).  

 

Appendix Figure 4.2: Maximum strain reached during the 10th conditioning cycle versus trabecular BVF 

  

Because BVF is a major predictor of 𝐸, this result suggests that specimens with lower E (lower 

BVF) underwent greater strains during the conditioning cycles. The data also show an inverse correlation 

between strain rate and BVF (Appendix Figure 4.3): 

 

Appendix Figure 4.3: Strain rate during the 10th conditioning cycle versus trabecular BVF 
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This result indicates that specimens with lower BVF (and therefore lower 𝐸) underwent greater 

strain rates. 

Together, these results may have affected 𝐸 measurement. On the one hand, lower BVF 

specimens undergoing greater strains would likely lead to a relative underestimate of 𝐸 if the 𝐸 was 

measured between 0 and the maximum strain reached (see section below). This issue was mitigated by 

measuring 𝐸 from 0 to 0.154% strain for all specimens, which was the lowest strain reached by all 

specimens (see section below for further explanation and comparisons between methodologies for 

measuring 𝐸).  

On the other hand, increased strain rates on lower BVF specimens might lead to a relative over-

estimate of 𝐸 because 𝐸 measurements increase as strain rate increases (Carter and Hayes 1976; Linde 

et al. 1991). A relative over-estimate of 𝐸 for low BVF specimens would bias against finding a significant 

relationship between BVF and 𝐸. Despite this limitation, we found that BVF was a strong predictor of 𝐸. 

It is unclear why lower BVF specimens underwent relatively greater strains and strain rates 

during the conditioning cycles. One hypothesis is that the BVF (and thus 𝐸) of the specimen influenced 

the feedback response of the testing system, causing the actuator to overshoot the prescribed 

displacement on lower BVF specimens. 

Methods for measuring 𝐸 

The average (SD) maximum strain (in percent) reached during the 10th conditioning cycle was 

0.22 (+/- 0.04%). The lowest maximum strain reached by any given specimen during the 10th 

conditioning cycle was 0.154%. Because every specimen reached at least 0.154% strain, I measured 𝐸 

between 0 and 0.154% strain for each specimen. A plot of BVF vs. 𝐸 is reproduced below (Appendix 

Figure 4.4). 
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Appendix Figure 4.4: Elastic modulus (via the 0.154% strain method) versus trabecular BVF 

 

The 0.154% E calculations were compared to two other methodologies for calculating 𝐸. In the 

second method, 𝐸 was calculated between 0 and 0.2% strain (for specimens that reached .2% strain) 

and between 0 and the maximum strain for specimens that did not reach .2% strain.  In the third 

method, 𝐸 was calculated between 0 and the maximum strain reached by each specimen during the 10th 

loading cycle. A paired t-test was used to evaluate the differences in 𝐸 between the 0.154% method and 

the other methods, and the 0.154% modulus was regressed against each of the other 𝐸 calculations to 

examine the goodness-of-fit between the methods. Below is a table with the specimen ID numbers, the 

maximum strain reached on the 10th loading cycle, and modulus calculations for each of the three 

methods. 

A paired t-test between the 0.154% method and the 0.2% or less method showed that 𝐸 using 

the 0.154% method was significantly greater than the 0.2% or less method (p<0.001). A best-fit linear 

regression between the 0.154% 𝐸 values and the 0.2% or less 𝐸 indicates that the 0.154% values 

correspond nearly perfectly to the 0.2% or less values (Appendix Figure 4.5). 
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Appendix Table 4.1: Specimen ID, maximum strain and 3 different measurements of elastic modulus during the 10th 
conditioning cycle 

Specimen ID 
Max strain on 10th 

cycle 
0.154% elastic 

modulus 
0.2% or less 

elastic modulus 
Max strain elastic 

modulus 

1407664_3  0.003001892 40.451 39.603 37.764 

1407664_2  0.002366434 108.6 106.42 104.49 

1406633_2  0.002776906 215.56 212.24 206.1 

1311423_3  0.002741311 124.63 122.56 119.39 

1311434_3 0.002825649 123.12 120.19 114.65 

1311423_2  0.002413831 400.27 395.58 389.9 

1311432_3  0.00257978 204.62 201.67 198.03 

1209562_2  0.002323263 251.87 247.62 242.66 

1311434_2  0.002522617 416.8 409.71 401.95 

1407664_1  0.001917656 888.79 871.53 871.53 

1304731-3  0.002554338 347.97 346.06 344.2 

1407768_3  0.002323154 547.34 537.78 528.79 

1311259_2  0.00203024 609.11 596.32 593.2 

1304731-2  0.002252829 501.3 495.93 491.25 

1406633-1 0.001539323 1337.8 1337.8 1337.8 

1407768_2  0.002218074 526.53 519.07 512.71 

1404187_2  0.002073246 699.69 693.42 690.11 

1311296_2  0.002465855 390.16 387.56 384.68 

1311423_1  0.001741538 1327.2 1319.3 1319.3 

1405461-3 0.002307121 586.72 582.09 577.04 

1405461-2 0.002086265 744.93 741.51 740.36 

1406557_2 0.002358043 520.44 513.22 507.2 

1311434_1  0.001690034 1475.7 1461.1 1461.1 

1407768_1  0.001627302 1373.1 1353.8 1353.8 

1304731-1  0.001861803 1258.7 1240.1 1240.1 

1406557_1  0.002109469 829.64 809.98 800.93 

1311259_1  0.001544725 1659.8 1659.8 1659.8 

1404187_1 0.001758099 1502.2 1483.1 1483.1 

1209562_1  0.001826453 1528.9 1515.7 1515.7 

 

 

Appendix Figure 4.5: 0.2% or less elastic modulus versus 0.154% elastic modulus 
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A paired t-test between the 0.154% method and the max strain method shows that the 0.154% 

𝐸 values are significantly greater than the max strain values (p<0.0001). A best-fit linear regression 

between the 0.154% 𝐸 values and the max strain values shows a near perfect relationship between the 

variables (Appendix 4.6). 

 

Appendix Figure 4.6: Max strain elastic modulus versus 0.154% elastic modulus 

 

The conclusion for this analysis is that the method of measuring 𝐸 significantly changes the 

value of the 𝐸 measurement (specifically, increasing the strain at which the 𝐸 is measured decreases the 

value of the 𝐸), but the values between the methods are tightly correlated.  

Appendix 4B: Load cell and stress control testing 

A 2kN load cell (Honeywell 060-1507-04) and an Instron 8800 controller were used for 

mechanical testing. The specifications of the controller indicate that the accuracy of the force 

measurements is 0.002% of load cell capacity, which equates to 0.04 Newtons of a 2kN load cell. In 

addition, the controller has a 19-bit resolution, making the resolution of the measurements equal to 2 

kN divided by 2^19, or 0.004 Newtons. In other words, the accuracy and the resolution of the load 

measurements should be much lower than 1 N. 

However, a common rule of thumb is to avoid measuring loads less than 10% of load cell 

capacity. In this study, the load used in the stress controlled testing was 30 N, which is less than 10% of 
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the 2 kN load cell capacity. Therefore, we evaluated how the force measurements varied between 

specimens in order to understand any potential errors or sources of bias. 

The average (SD) maximum load (in Newtons) reached during the stress-controlled tests was 

32.25 (+/- 1.86). In a similar manner to the conditioning cycles, the BVF of the specimen influenced the 

maximum load level reached during the load control test. Specifically, the maximum load increased as 

BVF increased (Appendix Figure 4.7; p=0.0004): 

 

Appendix Figure 4.7: Maximum cyclic load during the stress controlled experiment versus trabecular BVF 

 

The relatively larger maximum cyclic loads on specimens with high BVF likely affected the energy 

dissipation (𝑊𝑑) values of these specimens because 𝑊𝑑 was measured between 0 N and the maximum 

stress for each specimen. There was a strong inverse relationship between BVF and energy absorbed 

during the loading cycle (Appendix Figure 4.8): 

 

Appendix Figure 4.8: Energy absorbed during the loading cycle versus trabecular BVF during the stress controlled 
experiment 
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And there was a strong relationship between energy absorbed during the loading cycle and 

energy dissipated (Appendix Figure 4.9; p<0.0001; I’ve included a second plot (Appendix Figure 4.10) 

with log-base-10 values of energy absorption and dissipation to remove potential heteroscedasticity): 

 

Appendix Figure 4.9: Energy dissipated versus energy absorbed in the stress controlled test 

 

Appendix Figure 4.10: log-log (base 10) plot of energy dissipation versus energy absorbed in the stress controlled 
test 

Therefore, the relatively larger loads applied to high BVF specimens indicates that these 

specimens likely had larger energy absorbed and energy dissipated values than they would have had if 

the maximum cyclic load was exactly constant across all specimens.  

This finding has implications for the regression relationship between 𝑊𝑑 and BVF. 𝑊𝑑 is 

predicted to scale with the inverse of BVF squared; in other words, larger BVF specimens should have 

smaller amounts of 𝑊𝑑 than specimens with smaller BVF. If, however, 𝑊𝑑 values for high BVF/elastic 

modulus specimens are artificially large, then there is a bias against the predicted inverse relationship 

between BVF and 𝑊𝑑 because the 𝑊𝑑 values of the high BVF specimens are greater than they would 

have been had maximum cyclic load been exactly constant across all specimens.  
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Despite the experimental bias against this prediction, there was a significant inverse relationship 

between BVF and 𝑊𝑑 such that 𝑊𝑑 scaled with BVF to the -2.11 power. This suggests that the effect of 

BVF on 𝑊𝑑 is quite strong under stress-controlled conditions. However, the experimental bias may 

obscure a more-accurate estimation of the power-law relationship between 𝑊𝑑 and BVF. Further tests 

where load is more tightly controlled will be necessary to determine whether the experimental bias in 

this study affected the relationship between BVF and 𝑊𝑑. 

As with the conditioning cycles, it is unclear why specimen structure affected the maximum load 

level reached during the load control cycles.  

Appendix 4C: BVF versus 𝑾𝒅 for specimens loaded to 0.2% strain or less 

Physiologic loading results in relatively low strains, often 0.2% or less (Burr et al. 1996). A 

subsample of our specimens (21 of the possible 28) that were loaded to strains of 0.2% and less were 

used to assess the relationship between BVF and 𝑊𝑑 under ‘physiologic’ strains. The average (SD) BVF of 

these specimens was 0.234 +/- 0.056. Trabecular BVF weakly but significantly predicted 𝑊𝑑 ((𝑅2 = 0.19 

p=0.04). BVF also predicted 𝑊𝑎 (𝑅2 = 0.53, p = 0.0001). Log(𝑊𝑑) and log(𝜀) were significantly correlated 

(𝑅2 = 0.66, p <0.0001), as were log(𝑊𝑑) and log(𝑊𝑎) (𝑅2 = 0.69, p < 0.0001). These results are similar 

to what was found for the entire sample, although the strength of the regression relationships are 

weaker than what was found for the entire sample.  

Appendix Table 4.2: Regression relationships for a subset of specimens loaded to 0.2% strain or less 

Independent 
variable 

Dependent 
variable 

Equation 𝑹𝟐 p-value 

BVF 𝑊𝑑  𝑦 = 8.83𝑥−0.945 0.19 0.04 

BVF 𝑊𝑎  𝑦 = 40.5𝑥−1.47 0.53 <0.0001 

𝜀 𝑊𝑑  𝑦 = 0.82𝑥 + 2.39 0.66 <0.0001 

𝑊𝑎  𝑊𝑑  𝑦 = 0.89𝑥 −  0.73 0.69 <0.0001 
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Appendix 4D: Bootstrap analysis of the BVF vs. 𝝈𝒚 and BVF vs. 𝑾𝒇 relationships 

Raw values 

Due to data collection errors, only 7 of the possible 29 specimens were loaded part their yield 

strength (𝜎𝑦) and failure points. Despite the relatively low number of samples for these measurements, 

there is a wide variation in BVF amongst them (0.07 to 0.28), and strong relationships between BVF and 

𝜎𝑦 (𝜎𝑦 = 159.6*BVF^2.43, R^2=0.90, p=0.001) and between BVF and work-to-failure (𝑊𝑓 = 

866597*BVF^2.14, R^2=0.84, p=0.0035).  

Because of the low sample size for these measurements, a bootstrapping analysis was used to 

establish the confidence intervals of the coefficient and power-law relationship between BVF and 𝜎𝑦 

and between BVF and 𝑊𝑓. Bootstrapping analysis works by randomly selecting and randomly replacing 

each value of the original dataset to create a new ‘bootstrap’ dataset, and then calculating the best-fit 

regression line for the ‘bootstrap’ dataset. This process was performed 10,000 times in JMP PRO v11 

(thus creating 10,000 ‘bootstrap’ samples and 10,000 regression equations) for both the BVF and 𝜎𝑦 and 

the BVF and 𝑊𝑓 relationships. The distributions of the power law and the coefficient from the 10,000 

regression relationships were then analyzed to establish 95% confidence intervals for each.  

The results of the bootstrapping analysis are as follows. For the BVF vs. 𝜎𝑦 relationship, the 95% 

CI for the power law is 1.77 – 2.75 and the 95% CI for the coefficient is 62.2 – 332.7. For the BVF vs.  𝑊𝑓 

relationship, the 95% CI for the power law is 1.67 – 2.59, and the 95% CI for the coefficient is 456342 – 

2006458.  

These results indicate two things. First, we can be reasonably assured that both 𝜎𝑦 and 𝑊𝑓 

increase as BVF increases because the 95% CI for the power law relationships are greater than 0. 

Second, the 95% CI for both power-law relationships include the value of 2, which is the predicted 
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power-law relationship for both BVF vs. 𝜎𝑦 and BVF vs. 𝑊𝑓. Thus the results, despite the limited sample 

size, support the predicted power-law relationships. 

Bootstrapping analysis was also performed on the BVF vs. E data in order to gain a relative 

comparison for how the small sample size in the 𝜎𝑦 and 𝑊𝑓 measurements affect the bootstrapping 

results. The results of the bootstrapping of BVF vs. 𝐸 show that the 95% CI of the power law is 1.80 – 

2.50, and that the 95% CI of the coefficient is 10027 – 32013. Appendix Table 4.3 provides a summary of 

the above bootstrapping results. Included in the table are calculations of the absolute range of the 95% 

CI (defined as 95% CI upper bound – 95% CI lower bound) and the relative range of the 95% CI (defined 

as the difference between the 95% CI upper and lower bounds divided by the 95% CI lower bound). 

Appendix Table 4.3: Comparison of bootstrapping results of the power law and coefficient for BVF vs. each of the 
bone strength variables 

 
Power Law Coefficient 

 
BVF vs. 𝐸 BVF vs. 𝜎𝑦 BVF vs. 𝑊𝑓 BVF vs. 𝐸 BVF vs. 𝜎𝑦 BVF vs. 𝑊𝑓 

Original 
estimate 

2.14 2.43 2.14 17568 159.6 866597 

95% CI lower 
bound 

1.80 1.77 1.67 10027 62.2 456342 

95% CI upper 
bound 

2.50 2.75 2.59 32013 332.7 2006458 

95% CI Range 0.7 0.98 0.92 21986 270.5 1550116 

95% CI 
relative range 

0.39 0.55 0.55 2.19 4.35 3.39 

 

The overall conclusion from this analysis is that the small number of data points in the 𝜎𝑦 and 

𝑊𝑓 analyses led to relatively larger 95% CI ranges for the power law and coefficient in both the BVF vs. 

𝜎𝑦 and BVF vs. 𝑊𝑓 relationships. 
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Scaled values and tradeoff models 

Further, it is important to assess the scaled values of 𝜎𝑦 and 𝑊𝑓 because these are the values 

used in the tradeoff models. Using a bootstrapping analysis similar to the one described above, the 95% 

CI of the power law and of the coefficient was calculated for both BVF vs. scaled 𝜎𝑦 and for BVF vs. 

scaled 𝑊𝑓. For BVF vs. scaled𝜎𝑦, the 95% CI of the power law was 1.79-2.73 and the 95% CI of the 

coefficient was 891.6 – 4502.2. For BVF vs. scaled 𝑊𝑓, the 95% CI of the power law was 1.64 – 2.62 and 

the 95% CI of the coefficient was 633.8 – 3016.3.  

Using the tradeoff models presented in the main text, the conclusion was that human 

Pleistocene calcanei resisted impacts by being stiff, strong and avoiding fracture. There may be 

hesitation to come to this conclusion because of the small sample size of the 𝜎𝑦 and 𝑊𝑓 measurements. 

The 95% CI’s from the BVF vs. scaled 𝑊𝑓 relationship can be used to investigate the scenarios under 

which the conclusions and interpretations of the data would change.  

Let’s say that the interpretation of the data would need to be reconsidered if the optimum BVF 

that maximized energy dissipation (𝑊𝑑) and 𝑊𝑓 simultaneously (the intersection point of the best fit 

regression lines) fell within 1SD of the mean BVF value of the Pleistocene calcaneal tuberosity. In this 

case we might change our interpretation to say that Pleistocene human calcaneal trabecular tissue may 

be optimized to resist failure and dissipate energy. The average BVF of the Pleistocene population was 

0.255 and the standard deviation was 0.046 making the 1 SD lower bound equal to 0.209. The original 

tradeoff model is reproduced below with the average and minus 1SD of the mean of the Pleistocene 

calcanei indicated on the graph (Appendix Figure 4.11):   
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Appendix Figure 4.11: Original tradeoff model of scaled 𝑊𝑓 and scaled 𝑊𝑑, with the Pleistocene BVF average and -

1 SD shown as dashed vertical lines. 

If a new regression of scaled 𝑊𝑓 is plotted using the upper bound of the 95% CI power law (2.61) 

and the lower bound of the 95% CI coefficient (633.8), the intersection of the 𝑊𝑓 and 𝑊𝑑  graphs 

approaches the lower 1 SD boundary of the Pleistocene BVF (0.209) (Appendix Figure 4.12): 

 

Appendix Figure 4.12: Scaled 𝑊𝑓 and scaled 𝑊𝑑  tradeoff model with the 𝑊𝑓 regression line altered to represent 

the upper 95% CI value of the power law and the lower 95% CI of the coefficient. The BVF value to optimizes both 
𝑊𝑑  and 𝑊𝑓 approaches -1 SD from the Pleistocene average BVF. 

The odds of this event occurring can be calculated. Using the 95% CI values, there is a 2.5% 

chance that the 𝑊𝑓 power law is 2.61 or higher, and a 2.5% chance that the 𝑊𝑓 coefficient is 633.8 or 

lower. Thus the odds of the intersection point of the 𝑊𝑑 and 𝑊𝑓 graphs approaching 0.209 (and thus the 

odds of our interpretation changing) is (2.5/100)*(2.5/100) = 0.000625, or 0.06%.  This result suggests 

that the odds of the interpretation changing are minimal despite a limited sample size for 𝑊𝑓 and 𝜎𝑦. 
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Scaled elastic modulus values as model for scaled 𝑊𝑓 values 

Another way to investigate the effects of a limited sample size of 𝜎𝑦 and 𝑊𝑓 is to use the elastic 

modulus (𝐸) data as a placeholder for 𝑊𝑓 values. Using 𝐸 data as a placeholder for 𝑊𝑓 data can provide 

insight into how an increased sample size may influence our results and interpretations. 

The best fit line between scaled 𝐸 and scaled 𝑊𝑓 is extremely strong and statistically significant 

(Appendix Figure 4.13; p<0.0001): 

 

Appendix Figure 4.13: Scaled E values vs. scaled 𝑊𝑓 values.  

 

Further, the 95% CI of the regression line is 0.93 – 1.35, and thus contains the value 1. Having 

the value 1 within the 95% CI means that we can reasonably assume that the scaled 𝐸 values are 

identical to the scaled 𝑊𝑓 values. Thus, scaled 𝐸 values can be used as a model for scaled 𝑊𝑓 values. The 

original tradeoff model between scaled 𝑊𝑑  and scaled 𝐸 is shown below with the Pleistocene average 

and -1 SD plotted as dashed vertical lines (Appendix Figure 4.14): 

 

Appendix Figure 4.14: Original tradeoff model of scaled E and scaled energy dissipation, with the Pleistocene BVF 
average and -1 SD shown as dashed vertical lines. 
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The confidence intervals of the scaled 𝐸 power law and coefficient can be used to obtain an 

estimate of how additional 𝑊𝑓 data points might change the results and interpretations of the tradeoff 

model. Using a bootstrap method similar to the one described above, the 95% CI of the scaled 𝐸 power 

law is (1.80 – 2.50) and the 95% CI of the coefficient is (607.8 – 1936.4).  

Now, a new regression line of scaled 𝐸 versus BVF is plotted using the upper bound of the 95% 

CI power law (2.50) and the upper bound of the 95% CI coefficient (607.8), the intersection of the scaled 

E and scaled 𝑊𝑑 graphs approaches the lower 1SD boundary of the Pleistocene BVF (0.209) (Appendix 

Figure 4.15):  

 

Appendix Figure 4.15: Scaled E and scaled 𝑊𝑑  tradeoff model with the E regression line altered to represent the 
upper 95% CI value of the power law and the lower 95% CI of the coefficient. The BVF value to optimizes both E 

and 𝑊𝑓 approaches -1 SD from the Pleistocene average BVF. Notice that Appendix Figure 4.12 and Appendix Figure 

4.15 are nearly identical because the 95% CI bounds of scaled E and scaled 𝑊𝑓 are similar. 

  

Similar to above, the odds of the intersection point of the scaled 𝑊𝑑 and scaled 𝐸 graphs 

approaching 0.209 (and, again, the odds of our interpretation changing) is (2.5/100)*(2.5/100) = 

0.000625, or 0.06%. This outcome is identical to what we found using the 95% CI of the scaled 𝑊𝑓 values 

despite the limited 𝑊𝑓 sample size. This exercise indicates that a larger 𝑊𝑓 and 𝜎𝑦 sample size will have 

a limited effect on the 95% CI and thus will be extremely unlikely to change the results or the 

interpretation of the tradeoff model. 
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