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ABSTRACT (153 words) 

Although many taxa show a latitudinal gradient in richness, the relationship between 

latitude and species richness is often asymmetrical between the northern and southern 

hemispheres. Here we examine the latitudinal pattern of species richness across 1003 

local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites 

being more diverse than northern hemisphere sites. Most of this asymmetry could be 

explained statistically by differences in contemporary climate. Local ant species richness 

was positively associated with temperature, but negatively (although weakly) associated 

with temperature range and precipitation. After contemporary climate was accounted for, 

a modest difference in diversity between hemispheres persisted, suggesting that factors 

other than contemporary climate contributed to the hemispherical asymmetry. The most 

parsimonious explanation for this remaining asymmetry is that greater climate change 

since the Eocene in the northern than in the southern hemisphere has led to more 

extinctions in the northern hemisphere with consequent effects on local ant species 

richness.   
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INTRODUCTION  

It is well documented that species richness varies with latitude (Willig et al. 2003; Currie 

et al. 2004b; Mittelbach et al. 2007). However, there is much debate as to the underlying 

causes of this variation (e.g., Willig et al. 2003, Dunn 2008). Broad-scale patterns of 

species richness are often correlated with contemporary climate (Gaston 1996; Hawkins 

et al. 2003; Brown et al. 2004; Hawkins et al. 2007). Yet other factors such as 

disturbance, history, climatic history, and geography can affect patterns of richness in 

addition to or independent of the effects of contemporary climate. If this is the case, then 

richness should differ among regions after differences in contemporary climate are 

accounted for. Conversely, richness should vary little among regions (Qian et al. 2005) 

and hemispheres (Chown et al. 2004) once contemporary climate is accounted for, if 

contemporary climate alone is a sufficient correlate of richness. 

Climate-richness relationships often vary between hemispheres (Gaston 1996; 

Chown et al. 2004), biogeographic regions (Ricklefs et al. 2004) and habitats (Hurlbert 

2004). Additionally, species richness can vary strongly between regions that have similar 

climates (Morton & Davidson 1988), a fact recognized at least since Darwin’s travels to 

Tierra del Fuego (in "Recapitulation" at the end of chapter six; Darwin 1845). Numerous 

taxa show hemispheric asymmetries in latitudinal diversity gradients: seed plants 

(Woodward 1987), trees (Burns 2007), deep-sea benthos (Rex et al. 1993), mammals 

(Gaston et al. 1995), termites (Eggleton et al. 1994), birds (Blackburn & Gaston 1996), 

spiders (Platnick 1991), and triatomids (Rodriguero & Gorla 2004).Yet, the generality 
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and causes for such asymmetries remain scarcely better studied than they were in 1845 

(Chown et al. 2004).  

Numerous historical explanations for differences in richness between the southern 

and northern hemispheres can be envisioned. Specific regions, such as Australia in the 

southern hemisphere, may be more diverse than expected due to historical idiosyncrasies, 

such as the presence of rapidly diversifying lineages. The northern hemisphere could also 

be less diverse than the southern hemisphere because of differences in recent glacial 

history (Hawkins & Porter 2003; Svenning & Skov 2005; Montoya et al. 2007). 

Alternatively, climate change since the origin of particular clades may have been less in 

the southern than in the northern hemisphere (Wilf et al. 2005), leading to reduced rates 

of extinction in the southern hemisphere (Rohde 1999). Finally, contemporary climatic 

conditions, to the extent that they are also asymmetric, might account for the hemispheric 

asymmetry in richness (Chown et al. 2004). Darwin, for example, attributed the greater 

diversity of life forms in the southern hemisphere to the more “equable climate” (Darwin 

1845). Few studies to date have considered which combination of historical and 

contemporary factors best accounts for hemispheric asymmetries in diversity. 

Additionally, most studies of latitudinal gradients in species richness (and large-

scale patterns of richness more generally) have relied on data generated from the overlap 

of species ranges or interpolated richness between localities rather than actual site 

estimates of richness (Jetz & Rahbek 2002; Hawkins et al. 2003) or lists of regional flora 

(Kreft & Jetz 2007). Large-grain interpolated richness sets the maximum species pool for 

local assemblages, but does not necessarily reflect measured richness at local scales 

relevant to ecological processes and conservation goals. For example, hemispheric 
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asymmetries present at large-grains might disappear at the local grains, where 

interspecific interactions and climate act to filter the regional species pool. However, few 

global analyses have investigated whether, and how consistently, contemporary climatic 

factors influence spatial patterns of richness within local communities (Gentry 1988; 

Currie et al. 2004a; Pautasso & Gaston 2005; Burns 2007). To our knowledge, there are 

no published studies of whether there is a latitudinal asymmetry in local richness of 

animals, though it was at just such a local scale that the pattern was first suggested 

(Darwin 1845). 

Here we use data from 1003 local ant communities collected over six continents 

and a broad spectrum of habitat types and climatic conditions to examine latitudinal 

asymmetry in local ant richness. We examine the effect of several climatic variables 

(temperature, precipitation and temperature range), and hemisphere (north-south) on local 

ant species richness. We also consider three kinds of “history” and their potential 

influence on gradients in ant diversity: regional history, disturbance history, and climate 

change history (the net difference between Eocene and modern climates). For regional 

history, we first consider one of the few a priori predictions for which regions might be 

more diverse than expected on the basis of climate. It has been suggested that unique 

conditions and idiosyncrasies of arid Australia have led to exceptional species richness 

there (Andersen 2007), and this might result in higher southern hemisphere richness 

overall. For disturbance history, we examine whether disturbance by one kind of historic 

climate change, glaciation, has influenced global patterns of diversity. Finally, we 

consider whether one aspect of climatic stability, the change in climate between the 

Eocene (when most ant genera evolved) and today, may account in part for contemporary 
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richness patterns. Greater change in climate since the Eocene diversification could have 

led, for example, to larger numbers of extinctions for a given climate and hence lower 

contemporary richness. Our results suggest that contemporary climate and changes in 

climate since the Eocene may together account for much of the hemispheric asymmetry 

in the richness of ants in local assemblages.  

MATERIALS AND METHODS 

Compiling the global database 

As part of a larger project (Dunn et al. 2007), we compiled species richness data 

from local ant communities from as many sites as possible. Most of our samples consist 

of primary data collected in the authors’ own field work. In addition, we exhaustively 

searched Web of Science, Formis (http://www.ars.usda.gov/saa/cmave/ifahi/formis) and 

GoogleScholar for published data sets (web search on January 31, 2006). All studies 

included in this analysis met the following criteria: (i) the ground-foraging ant 

community was sampled using standardized (though not identical) field methods, (ii) the 

area sampled was ! 1 ha, (iii) the sampling was not trophically or taxonomically limited 

(e.g., the study was not focused only on seed harvesting ants), (iv) sampling occurred on 

mainland habitats, not islands, and (v) study sites were minimally disturbed natural 

habitat. To minimize bias due to differences in sampling protocols among studies, we 

included only studies that employed more than 15 samples within a site and used either 

pitfall and/or litter sampling. If the same site was sampled multiple times, we averaged 

the data across sample dates to obtain a single species richness value for that site. We 

repeated the analyses using the maximum estimate of species richness for sites with 

http://www.ars.usda.gov/saa/cmave/ifahi/formis
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multiple samples, and the results were not qualitatively different. Therefore, we report 

results using only the average number of species per site. Because we were interested in 

characterizing local communities, we excluded studies that provided only regional 

species lists for large areas or politically defined regions (e.g., the ants of Colorado). 

Because species density is sensitive to both the number of individuals and the number of 

samples collected, sampling differences potentially contribute to variation in species 

counts among sites. We controlled for sample number in two ways. First, we included Z-

transformed sample number as a potential predictor variable in all regression models. 

Sites might be expected to be measured as more diverse if they were better sampled. Such 

bias would be more problematic if it were systematic with regard to the environmental 

variables considered. In a stepwise regression, however, with sample number as the 

dependent variable and temperature, precipitation, temperature range and hemisphere as 

independent variables, only precipitation was correlated with sample number and weakly 

at that (p < 0.001, R2 = 0.045). Second, we included a categorical variable that denoted 

whether the sample was from pitfall traps or leaf litter. Finally, we repeated the analyses 

on a subsample of sites with large sample sizes (n > 50 samples). Qualitative results were 

the same for all of these various subsets of the data, so we report only the results using 

the sample number and type (leaf-litter vs pitfall trap) as predictor variables. As an 

additional safeguard for the effect of sampling differences among the studies, we tested 

the correlation between local area sampled and local species richness. However, these 

two variables were poorly correlated in the studies with information on sample area (n = 

550, R2 = 0.02, p = 0.08), so we did not include sample area in subsequent analyses.  

Climatic variables 
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We selected two climatic variables for regression analysis that are consistently correlated 

with species richness in numerous studies: mean annual temperature and annual 

precipitation. These correlations are strong for ants (Kaspari et al. 2000; Majer et al. 

2001; Kaspari et al. 2004; Sanders et al. 2007) as well as for many other taxa (Hawkins 

et al. 2003), and are important elements of the temperature-dependent kinetics theory 

(Rohde 1992), species energy theory (Kaspari et al. 2000), and limitations imposed by 

water balance (Hawkins et al. 2003). Although there are biological reasons why different 

temperature variables might affect ant communities differently (minimum temperatures 

might influence mortality and extinction, for example), both minimum and maximum 

temperatures are well correlated with mean temperatures (r2 min = 0.78, r2 max = 0.62). 

As such, we chose mean annual temperature because it is the measure of temperature 

most often considered. In addition, we considered a measure of temperature variability 

within the year, temperature range (max temp – min temp), which is correlated with mean 

temperature (r2 = 0.35) and is a measure of the range of temperatures experienced by 

organisms at a site through the year. Temperature variability, and in particular 

temperature range, has long been thought to be important in understanding differences 

among hemispheres (Darwin 1845), both with regard to diversity and with regard to 

attributes of ecological communities more generally (Ting et al. 2008). We initially used 

the interaction of annual precipitation and mean annual temperature as a third predictor 

variable. However, this interaction was never significant in any model and so is not 

further considered.  Contemporary environmental variables (Table 1) are from the 

WorldClim database (Hijmans et al. 2004) at a spatial resolution of 1 km and were 

extracted using ArcGIS (ESRI 2006). A resolution of 1 km means that our environmental 
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data integrate the conditions specifically at the site at which ants were sampled and the 

surrounding environment. The magnitudes of the environmental variables, sample 

number and diversity estimates were standardized by Z-score transformation [Z(xi)=(xi-

mean(x))/sd(x)].  

In addition to contemporary climate, we considered the glacial history of sites and 

temperature change since the Eocene. On the basis of models of the distribution of 

glaciers during the last glacial maximum, sites were coded as either glaciated or non-

glaciated (data from Ehlers & Gibbard 2004). Globally averaged mean annual 

temperatures in the Eocene were, on average, as much as 10oC warmer than 

contemporary temperatures (Zachos et al. 2001). We used data from Greenwood and 

Wing (1998) on differences between contemporary and Eocene temperatures.  

Analyses 

We used general linear models with three continuous variables (temperature and 

precipitation and temperature range) and one categorical variable, hemisphere (northern 

or southern) to compare two initial regression models. Those two models were: (1) 

climate variables only; and (2) climate variables and hemisphere. Because the northern 

and southern hemisphere differed even once climate was accounted for statistically, we 

then explored three aspects of history that might explain such differences. First, we 

repeated our analyses, but with Australia considered separately (model 3) to understand 

whether the southern hemisphere was more diverse simply because Australia is more 

diverse, in essence testing for a specific effect of regional history. Second, we considered 

a disturbance history model (model 4) in which whether or not a site was glaciated during 
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the glacial maximum was included as a categorical variable. General linear models were 

fit with JMP software (SAS, 2008). Model fit was evaluated with Akaike’s Information 

Criterion (AIC) scores, where AIC is calculated as: AIC ! n ln SSE
n" #$ 2p . Low AIC 

scores indicate better fit. The absolute value of the AIC score is not important, but AIC 

differences reflect the relative support for different models (Burnham & Andersen 2002).  

Finally, we used a general linear model (GLM) to consider differences between 

spatial patterns of temperature today and during the Eocene. In the GLM, mean annual 

temperature was the dependent variable, and era (contemporary vs Eocene), hemisphere 

and their interaction were the independent variables. While the ideal approach would be 

to include some measure of climate change through time at each of our sites in our GLM 

models, present data do not permit such an analysis, nor are they ever likely to. Latitudes 

covered both by our database and Greenwood and Wing (1998) and considered in this 

study were 22 to 45 degrees in the southern hemisphere and 36 to 51 degrees in the 

northern hemisphere. 

We did not use spatial regressions for two reasons. First, it remains difficult to interpret 

with certainty which models to use and how to interpret the coefficients generated by the 

models (Bini et al., In press). Second, such models work best for approximately gridded 

data, and the data analyzed here are from clusters of sites within continents. Using 

standard spatial statistics for these data is difficult because of the huge distances between 

some sites that occur in different continents.  

 

RESULTS 
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Global Patterns 

Species richness of ground-foraging ants per site varied from 0 to 184 species (Figure 1). 

Ant species richness decreased with increasing latitude in both the northern hemisphere 

(R2 = 0.35, P< 0.0001, Est. = -0.04) and the southern hemisphere, though only very 

weakly in the latter (R2 = 0.09, P< 0.0001, Est. = 0.02; Figure 1, Figure 2c). Dunn et al. 

(in press) found similar patterns when they examined generic data compiled at the 

regional grain for different political regions (reproduced in Figure 2d). Temperature and 

precipitation were both greater in the southern than in northern hemisphere for the same 

latitude across the sampled sites (Figure 2a). Temperature range showed a more complex 

pattern of variation with latitude (Figure 2b). 

The Models 

Model 1: Climatic correlates — Ant species richness was positively correlated with 

temperature, and negatively correlated with precipitation and temperature range (Table 

1). In all models, ant species richness increased with sample number and was higher for 

samples from leaf-litter than from pitfall traps, as has also been found in local 

comparisons of the two methods (Fisher 1996). Together, climate and sampling 

differences among sites accounted for 49% of variation in ant species richness. 

Model 2: Climatic correlates + Hemisphere — Hemisphere accounted for an additional 

3% variation left unexplained by mean annual temperature, precipitation and temperature 

range, with the southern hemisphere being more diverse than the northern hemisphere 

overall (Table 1; Figure 3a). AIC values were lower for the model that included both 
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climatic correlates and hemisphere than for the model that did not include hemisphere as 

a factor.  

Model 3: Climatic correlates + Hemisphere + Australia — When the southern 

hemisphere was divided into two regions, Australia and elsewhere (Africa + South 

America), results were similar to those when southern hemisphere regions were pooled. 

Both southern hemisphere regions (Australia and non-Australia) were more diverse than 

the northern hemisphere. AIC values for the model that divided the southern hemisphere 

into Australian and non-Australian sites were slightly lower than for the model in which 

the world was divided simply into the northern and southern hemisphere. However, 

treating Australia separately accounted for no additional variation in ant species richness 

(Table 1). 

Model 4: Climatic correlates + Glacial history — The glacial history of sites (whether or 

not they had been glaciated during the most recent glacial maximum), explained no more 

variation than did a model which including only contemporary climate and had a higher 

AIC score (Table 1).  

Contemporary and Eocene temperatures — If hemispheric asymmetries in diversity were 

explained in part by hemispheric asymmetries in climate change since the Eocene (when 

much of ant diversification occurred), the southern hemisphere needs to have experienced 

less net change in climate since the Eocene than has the northern hemisphere.  For the 

sites considered, the difference between Eocene and contemporary temperatures is much 

more pronounced in the northern than in the southern hemisphere (Figure 3b). In our 

model (with hemisphere, era and their interaction as independent variables), era (P = 
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0.019), hemisphere (P < 0.0001) and their interaction (P = 0.009) were all significantly 

associated with mean annual temperature (whole model; R2 = 0.51, SS = 302.7). The 

decrease in temperature (from Eocene to today) was greater in the northern than in the 

southern hemisphere, as would be expected if climate-change induced extinctions were to 

responsible for the differences in diversity between the two hemispheres.  

 

DISCUSSION 

Although the latitudinal gradient in species richness is among the best-known and most-

studied patterns in ecology, large-scale comparisons of local communities remain scarce 

(Willig et al. 2003; Hillebrand 2004). For ground-foraging ants, we found that there is a 

latitudinal gradient in local species richness for the globe as a whole. That latitudinal 

gradient is not, however, symmetrical about the equator. We found higher species 

richness in the southern compared with northern hemisphere, and the latitudinal gradient 

was far weaker in the southern hemisphere.  

Contemporary climate, together with one measure of sampling effort, accounts 

statistically for approximately half of the variation in the number of ant species in local 

communities. Hemispherical asymmetry in species richness could therefore be due 

simply to hemispheric differences in contemporary climate. Yet even when we removed 

the effects of contemporary climate and sampling effort on local ant species richness, 

local ant species richness was still higher in the southern hemisphere than the northern 

hemisphere.  
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If species richness is primarily influenced by recent or contemporary climate then 

higher ant species richness should be expected in the southern hemisphere, depending on 

the relative importance of different environmental variables. Temperature and 

precipitation, for example, are both higher in the southern hemisphere as is within-year 

temperature range. Our environmental model (in which hemisphere was excluded as a 

variable) predicted higher species richness in the southern hemisphere, largely as a 

consequence of the higher temperatures of the southern hemisphere for a given latitude. 

Ants are typically thermophilic and so the hemispheric asymmetry in temperature should 

lead to hemispheric asymmetry in species richness. Temperature likely influences ant 

diversity in a number of ways. Low minimum temperatures may influence rates of ant 

mortality and ultimately extinction rates. High maximum and mean temperatures may 

allow ants to forage more and harvest more energy and in doing so reduce extinction 

rates (Sanders et al. 2007). While contemporary temperature and other climate variables 

could not have driven historic patterns of ant diversification, species ranges may have 

shifted so that the current patterns integrate the historical effects of temperature on 

diversification.  

We expected a priori that the relationship between temperature and species 

richness would be positive in both the northern and southern hemispheres – an 

expectation supported by our findings. Indeed our environmental model (in which 

hemisphere was excluded as a variable) predicted higher species richness in the southern 

hemisphere, largely as a consequence of the higher temperatures of the southern 

hemisphere for a given latitude. This finding reconciles well with the observation that for 

a given latitude, northern hemisphere lineages of a range of insect taxa are more likely to 
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have adaptations for avoiding long periods of cold, whereas southern hemisphere species 

are more likely to have adaptations for tolerating short periods of cold (Chown et al. 

2004; Sinclair & Chown 2005). In essence Darwin’s model in which the higher diversity 

of the southern hemisphere was associated with its more favorable climate (Darwin 1845) 

was supported by our results.  

Just which climate variables were correlated with richness and the direction of 

that correlation, however, differed for ants relative to other, better-studied taxa. In 

particular, precipitation was negatively (albeit weakly) correlated with ant richness. A 

negative relationship between species richness and precipitation is uncommon in studies 

of species richness, particularly in the southern hemisphere, where it is thought that water 

is the most limiting climatic variable (Hawkins et al. 2003). In contrast to birds (Davies 

et al. 2007), amphibians (Buckley & Jetz 2007), or plants (Kreft & Jetz 2007), species 

richness of ground-foraging ants is relatively higher in the dry, hot regions of the world. 

What allows ants to be diverse where even other thermophilic taxa are not is an 

important, but unresolved, question. 

It may be that overall species richness of ants (ground foraging and arboreal) is 

positively correlated with precipitation. For example, in Australia canopy ant species 

richness is highest in the wettest habitats (Majer et al. 2001), where ground-foraging ant 

species richness is quite low (Shattuck 1999). The same could be true elsewhere, but 

Australia is the only region where the correlates of canopy ant diversity have been 

considered. Interestingly, one of the observations that initially led Darwin to notice the 

hemispheric asymmetry was the greater prevalence and diversity of canopy plants in the 

southern than in the northern hemisphere for a given latitude (Darwin 1845). Whether the 
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same might be true of ants and other canopy insects deserves study. Similarly, while our 

data on ground-foraging ant communities are extensive, regions remain poorly sampled, 

including much of Africa and northern Asia. Samples from such areas would be very 

useful in better understanding the correlates and even the causes of patterns in ant 

diversity.  

Even when we removed the effects of contemporary climate and sampling effort 

on local ant species richness, local ant species richness was still higher in the southern 

hemisphere than the northern hemisphere. Such differences were echoed in other 

comparisons of sites across regions. For example, the richness of local litter-ant diversity 

in forests has been found to be lower in North America than in South America once 

temperature was accounted for (Kaspari et al. 2004).  

Several explanations have been proposed that might account for higher local ant 

species richness in the southern hemisphere independent of differences in temperature, 

precipitation, and temperature range. It has been suggested that local tree species richness 

is higher in the southern hemisphere in part due to higher tree density in the southern 

hemisphere (Burns 2007). Similarly, ant density might also help explain ant species 

richness as ant density and species richness are well correlated at a variety of sampling 

grains (Kaspari et al. 2003; Sanders et al. 2007). However, such a relationship begs the 

question of why ant, or tree, density might be higher in the southern hemisphere. 

Alternatively, other climatic or abiotic factors (including features such as soil nutrient 

concentrations; McGlynn et al. 2007) not considered could generate asymmetry in local 

ant richness if those conditions differ systematically between hemispheres. Yet our 

analysis included the three key variables (temperature, precipitation, and temperature 
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range) associated with hemispheric differences in species richness (Chown et al. 2004) 

and consistently correlated with ant species richness in many studies (Kaspari et al. 2000; 

Kaspari et al. 2003; Sanders et al. 2007). 

Perhaps the most interesting possibility is that differences between the southern 

and northern hemispheres are due to differences between recent climate histories (e.g., 

glaciations, differences between climates at the time of ant diversification and 

contemporary climates, or regional idiosyncrasies). Glacial cycles have had a much 

stronger influence in the northern hemisphere than in the southern hemisphere. For 

northern hemisphere trees (Montoya et al. 2007) and amphibians and reptiles (Araujo et 

al. 2008), recent studies have linked contemporary patterns of species richness to the time 

since sites were glaciated. In contrast, contemporary climate accounts for most of the 

variation in species richness of more vagile taxa such as birds and mammals (Hawkins & 

Porter 2003), as might be expected if these more vagile taxa are in better equilibrium with 

the current environment. Given that many ant lineages are likely to have poor dispersal 

abilities (Peeters & Ito 2001), it seems conceivable that glacial history or more generally, 

the severity of climatic cycles could account for some of the hemispheric asymmetry in 

ant species richness. However, whether or not a site was glaciated did not help explain its 

contemporary local ant diversity. Similarly, including another regional effect, whether or 

not a site was in Australia, as a variable did not explain additional variation in species 

richness, despite the unique geological history of Australia. Though other regions in the 

southern hemisphere might have histories as unique as Australia’s, the extremely high 

local ant diversity (Morton & Davidson 1988, Andersen 2007) has long been highlighted 

and represented a useful a priori hypothesis to test.  
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Alternatively, species richness might be influenced by the stability of climates in 

different regions, particularly between the Eocene, when ant diversification was 

apparently most rapid (Brady et al. 2006; Moreau et al. 2006), and the present day. In 

comparing Eocene climate data (Greenwood & Wing 1995) to the temperature data from 

the sites in our database, we found that while southern hemisphere temperatures are 

similar today to those during the Eocene, the northern hemisphere sites are much cooler. 

These results are reconcilable with the idea that the stability of the southern hemisphere 

sites has contributed to their greater diversity. 

When we re-plotted ant generic diversity (number of genera) from a recent study 

(Dunn et al. in press), where the sampling grain was political regions, generic diversity 

showed latitudinal asymmetries similar to those for local richness (if anything, more 

pronounced; Figure 2d), suggesting the asymmetry dates at least to the time of the 

radiation of ant genera. Because most of the new cladogenesis that occurred during the 

Eocene was in clades now regarded as genera, we might expect ant generic diversity to 

show the effects of historical climate more strongly than does ant species diversity. 

However, generic and species diversity of ants are often well-correlated in space (e.g., 

Dunn et al. in press, but see Andersen 1995), such that the effect of Eocene temperatures 

on radiation might influence diversity patterns at both taxonomic levels. For climatic 

stability (or lack thereof) to have contributed to the hemispheric asymmetry, the 

difference between contemporary and Eocene temperatures would need to be greater in 

the northern hemisphere than in the southern hemisphere.  

To date, fossil data, although incomplete, also appear to indicate more extinctions 

from the northern than the southern hemisphere for ants. Many ant lineages once found in 
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northern hemisphere forests and grasslands are now restricted to the tropical reaches of 

the northern hemisphere (Pseudomyrmex and Tetraponera), or are extinct entirely from 

the northern hemisphere (Myrmeciinae;(Archibald & Greenwood 2005)). 

Anonychomyrma is known from Eocene Baltic and Belarus amber, but is now found only 

in Australia, Indonesia and Papua New Guinea. Podomyrma is known from Sicilian 

amber, but is now restricted to Australia and Papua New Guinea, including the coolest 

regions of Australia (Shattuck 1999). Pseudolasius is known from the Baltic Amber 

(Wheeler 1915), but is now found only in the tropics of the southern hemisphere. We are 

unable to find any counter examples of genera known from fossils in the southern 

hemisphere but now restricted to the northern hemisphere (indeed, comparatively few ant 

lineages are restricted to the northern hemisphere).  

In conclusion, our results highlight the strong correlation between contemporary 

climate and the number of species co-occurring in a local community. To a greater extent 

than for other taxa that have been studied to date, ground-foraging ants are diverse in hot, 

dry habitats, leading to a hemispheric asymmetry in their patterns of local richness. 

However, the southern hemisphere remains more diverse than the northern hemisphere 

even after contemporary climate is controlled for, and this can be accounted for by 

greater climatic stability, and therefore fewer extinctions, in the south compared with the 

north. In sum, though contemporary climate is often invoked as a primary driver of 

broad-scale patterns of diversity, our results suggest that historical climate and, in 

particular, changes in climate can no longer be overlooked.  
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Table 1. Regression models for local ant species richness for the (1) climate, (2) climate + hemisphere, (3) climate + hemisphere 
(Australia treated separately) and (4) climate + glacial history. The dependent variable in all cases is local ground-foraging ant species 
richness. In sample type, l = litter, p = pitfall. +/- indicates whether the coefficient is positive or negative. R2 and AIC values 
correspond to the values for each model. Bolded coefficients indicate significance. MAT = Mean annual temperature. Int. = intercept. 
In model 3, the two comparisons are for Australia vs the rest of the southern hemisphere (Au/S, not significant) and the rest of the 
southern hemisphere vs the northern hemisphere (N/S, p < 0.001). 

MODEL Int. MAT Precip. Temp. 
range 

Sample 
(N) 

Sample 
type (l, p) 

Hemi. Aus. Glacial  AIC R2 DF 

1) Climate 0.43 0.51 -0.13 -0.10 0.34 0.37    -719.2 0.49 990 

2) Climate + 
hemisphere 

0.47 0.41 -0.07 NS 0.35 -0.39 -0.21   -775.0 0.52 989 

3) Climate + 
hemisphere (Aus. 
separate) 

0.47 0.44 -0.066 NS 0.33 -0.36  0.05 
(Au/S) 

-0.30 
(N/S) 

 -778.3 0.52 989 

4) Climate + 
glacial history 

0.55 0.55 -0.16 -0.14 0.32 -0.38   0.15 -726.7 0.49 989 
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Figure 1. Species richness of sites considered in this study. Warmer colors and larger circles are more diverse. Each point indicates 
one site. Sites are divided into richness quintiles. Black line indicates the equator and hence divides the northern and southern 
hemispheres. 
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Figure 2. Annual precipitation and mean annual temperature (a), temperature range (b), local species richness of ants (c) and regional 
richness of ant genera (d) as a function of latitude. Patterns of generic richness are plotted for comparison. Generic richness estimates 
are modified from Dunn et al. (in press) and are derived from species and genus lists from countries and smaller political regions. 
They are presented for comparison only. Negative latitudes indicate the southern hemisphere.  

1 
2 
3 
4 

5 



Page 26 of 30 

Figure 3. Residuals of model 1 (climate variables only) plotted by hemisphere for all data (a) and average mean annual temperature 
fore the southern and northern hemispheres on the basis of the contemporary and Eocene data. Bars = standard error of the mean.  
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