
Cache-Fair Thread Scheduling for Multicore
Processors

Citation
Fedorova, Alexandra, Margo Seltzer, and Michael D. Smith. 2006. Cache-Fair Thread Scheduling
for Multicore Processors. Harvard Computer Science Group Technical Report TR-17-06.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25686821

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25686821
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Cache-Fair%20Thread%20Scheduling%20for%20Multicore%20Processors&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8afb2f6af2bb35905a4f50aba361ab9d&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Cache-Fair Thread Scheduling for

Multicore Processors

Alexandra Fedorova, Margo Seltzer
and Michael D. Smith

TR-17-06

Computer Science Group

Harvard University
Cambridge, Massachusetts

Cache-Fair Thread Scheduling for Multicore Processors

Alexandra Fedorova†‡, Margo Seltzer† and Michael D. Smith†
†Harvard University, ‡Sun Microsystems

ABSTRACT
 We present a new operating system scheduling
algorithm for multicore processors. Our algorithm
reduces the effects of unequal CPU cache sharing that
occur on these processors and cause unfair CPU
sharing, priority inversion, and inadequate CPU
accounting. We describe the implementation of our
algorithm in the Solaris operating system and
demonstrate that it produces fairer schedules enabling
better priority enforcement and improved performance
stability for applications. With conventional
scheduling algorithms, application performance on
multicore processors varies by up to 36% depending
on the runtime characteristics of concurrent processes.
We reduce this variability by up to a factor of seven.

1. INTRODUCTION

In the recent years, the hardware industry has
moved from discussion to full-scale production of
multicore processors – processors that have multiple
processing cores inside them [18]. Multiple processing
cores enable multiple application threads to run
simultaneously on a single processor. Multicore
technology, with its promise of improved power
efficiency and increased hardware utilization, has been
embraced by the industry: AMD, Fujitsu, IBM, Intel
and Sun Microsystems are shipping multicore systems
and have announced plans to release future models [1-
6].

Conventional CPU schedulers make assumptions
that do not apply on multicore processors: they assume
that the CPU is a single, indivisible resource and that if
threads are granted equal time slices, those threads will
share the CPU equally. On multicore processors,
concurrently running threads, or co-runners, often
share a single second-level (L2) cache, and cache
allocation is controlled by the hardware [1-4]. Cache
sharing depends solely on the cache needs of the co-
runner(s), and unfair cache sharing occurs often (see
Figure 1). A thread’s cache occupancy affects its cache
miss rate, and, as a result, impacts the rate at which the
thread retires instructions. Therefore, a thread’s CPU
performance significantly varies depending on its co-
runner. This co-runner-dependent performance
variability can create the following problems:

(1) Unfair CPU sharing: Conventional schedulers

ensure that equal-priority threads get equal shares of
the CPU. On multicore processors a thread’s share of
the CPU, and thus its forward progress, is dependent
both upon its time slice and the cache behavior of its
co-runners. Kim et al showed that a SPEC CPU2000
[12] benchmark gzip runs 42% slower with a co-runner
art, than with apsi, even though gzip executes the same
number of cycles in both cases [7].

(2) Poor priority enforcement: A priority-based
scheduler on a conventional processor ensures that
elevating a job’s priority results in greater forward
progress for this job. On a multicore processor, if the
high-priority job is scheduled with ‘bad’ co-runners, it
will experience inferior rather than superior
performance.

(3) Inadequate CPU accounting: On grid-like systems
where users are charged for CPU hours [37]
conventional scheduling ensures that processes are
billed proportionally to the amount of computation
accomplished by a job. On multicore processors, the
amount of computation performed in a CPU hour
varies depending on the co-runners (we observed
variability of up to 36%, and other studies reported
similar numbers [7,16]), so charging for CPU hours is
not appropriate.

Clearly then, co-runner-dependent performance
variability requires that we rethink fair sharing and

���������

L2 cache

�	��
���

CORE 0 CORE 1

�	��
��

���������

L2 cache

CORE

���������

L2 cache

CORE

�	��
��� �	��
��

Figure 1. Conventional processor (left) and multicore processor
(right). Cache coloring shows the thread’s working set. Each
thread’s working set is large enough to populate the entire L2
cache, as shown on the left. However, when the threads become
co-runners on a multicore processor (right), the cache is not
equally allocated among the threads.

 2

timeslicing for multicore processors. To achieve fair
sharing on these processors, L2 cache allocation must
be considered. This problem is actually more difficult
than fair sharing in a shared-memory multiprocessor,
where a thread’s performance similarly depends on
how much of the shared memory it gets [25]. The
fundamental difference is that the operating system can
observe and control multiprocessor memory allocation
while L2 cache allocation is completely opaque to the
operating system.

We present a new scheduling algorithm, the
cache-fair algorithm, that addresses unequal cache
allocation and reduces co-runner-dependent
performance variability. This algorithm redistributes
CPU time to threads to account for unequal cache
sharing: if a thread’s performance decreases due to
unequal cache sharing it gets more time, and vice
versa. The challenge in implementing this algorithm is
determining how a thread’s performance is affected by
unequal cache sharing using limited information from
the hardware. Our solution uses runtime statistics and
analytical models and does not require new hardware
structures or operating system control over cache
allocation.

We implemented our algorithm as an extension to
the Solaris™ 10 operating system and evaluated it on a
full-system hardware simulator [11] of the
UltraSPARC® T1 [4]. We demonstrate that our
algorithm significantly reduces co-runner-dependent
performance variability: by at least a factor of two and
by as much a factor of seven in the cases where the
variability is significant. Co-runner-dependent
performance is the result of unequal cache sharing, and
by eliminating it, we address the problems caused by
unequal cache sharing:

(1) Unfair CPU sharing: With our algorithm, an
application achieves predictable forward progress
regardless of its co-runners. The effects of unfair cache
sharing are negated.

(2) Poor priority enforcement: Our algorithm ensures
that a thread makes predictable forward progress
regardless of its co-runner. Therefore, elevating a
thread’s priority results in greater forward progress,
and vice versa, just like on conventional processors.
Priorities are properly enforced.

(3) Inaccurate CPU accounting: Our algorithm reduces
dependency of a thread’s performance on its co-runner.
Charging for CPU hours is appropriate, because the
amount of work accomplished by a thread is
proportional to the CPU hours paid for by the customer
and is not affected by the co-runner.

 Multicore processors offer advantages of power
efficiency, improved hardware utilization and reduced
cost due to component duplication [2,4,5,17]. The
exploding popularity of these processors suggests that
they will become the dominant CPU type. The
performance effects of unequal L2 cache sharing will
increase in the future: Unequal cache sharing affects
the cache miss rate, an increased cache miss rate
causes more memory accesses, and the cost of memory
access in terms of processor cycles grows at the rate of
50% per year [38]. Therefore, it is critical to address
this problem now, so we can enjoy the benefits of
multicore processors without losing good systems
properties developed through years of research and
practice.

The rest of the paper is organized as follows: In
Section 2 we describe the algorithm; in Section 3 we
describe the analytical models used in our algorithm; in
Section 4 we describe our implementation; and in
Section 5 we evaluate it. We discuss related work and
alternative solutions in Section 6, and conclude in
Section 7.

2. ALGORITHMIC OVERVIEW

Our scheduling algorithm reduces co-runner-
dependent performance variability, diminishing the
effect of unfair cache allocation. We reduce co-runner-
dependent performance variability by redistributing
CPU time such that a thread runs as quickly as it would
with an equally shared cache, regardless of its co-
runners.

More specifically, we make the thread’s CPU
latency, i.e. the time to complete a logical unit of work
(such as 10 million instructions) equal to its CPU
latency under equal cache sharing. A thread’s CPU
latency is the product of its cycles per instruction (CPI)
(how efficiency it uses the CPU cycles it’ s given) and
its share of CPU time (how long it runs on the CPU).
Co-runner-dependence affects a thread’s CPI, because,
for example, a cache-starved thread incurs more
memory stalls, exhibiting a higher CPI. An OS
scheduler, on the other hand, influences the thread’s
CPU latency by adjusting its share of CPU time.

Figure 2a) illustrates co-runner dependency.
There are three threads (A though C) running on a
dual-core processor. Thread A is cache-starved when it
runs with Thread B and suffers worse performance
than when it runs with Thread C. In the figure, a box
corresponds to each thread. The height of the box
indicates the amount of cache allocated to the thread.
The width of the box indicates the CPU quantum
allocated to the thread. The area of the box is
proportional to the amount of work completed by the
thread. Thread boxes stacked on top of one another

 3

indicate co-runners.
Figure 2b) depicts the imaginary ideal scenario:

the cache is shared equally, as indicated by the equal
heights of all the boxes. Our goal is to complete the
same amount of work (the shaded area) in the same
time (the length along the X-axis) it takes in the ideal
scenario.

In Figure 2a) Thread A completes less work per
unit of time than it does in Figure 2b), because it does
not get an equal share of the cache when running with
Thread B. As a result, it takes longer to complete the
same amount of work; its latency is longer than its
latency under equal cache sharing.

Figure 2c) shows how the cache-fair algorithm
eliminates dependency of Thread A’s performance on
Thread B. By giving Thread A more CPU cycles, it
makes Thread A retain the same latency as under equal
cache sharing (Figure 2b). Note that the adjustment to
Thread A’s CPU quantum is temporary. Once the
thread catches up with its work, its quantum is restored
to its initial value.

Giving more CPU time to one thread takes away
time from another thread (or other threads in general),

and vice versa. Figure 2c) il lustrates that our algorithm
gives more time to Thread A at the expense of Thread
B. Our algorithm requires, therefore, that there are two
classes of threads in the system: the cache-fair class
and the best-effort class. In our example, Thread A is a
cache-fair thread, and Thread B is a best-effort thread.
The scheduler reduces co-runner-dependent
performance variability for threads in the cache-fair
class, but not for threads in the best-effort class. Our
algorithm, however, avoids imposing significant
performance penalties on best-effort threads.

The user specifies the job’s class in the same way
she specifies a job’s priority. We expect that user jobs
will be in the cache-fair class by default and that
background system jobs will fall into the best-effort
class. Because modern systems typically run dozens of
background threads (running a single-threaded “hello
world” program in Java requires nine threads!), the
requirement that best-effort threads exist in the system
is easily satisfied.

The cache-fair scheduling algorithm does not
establish a new CPU sharing policy but helps enforce
existing policies. For example, if the system is using a
fair-share policy, the cache-fair algorithm will make
the cache-fair threads run as quickly as they would if
the cache were shared equally, given the number of
CPU cycles they are entitled to under the fair-share
policy.

The key part of our algorithm is correctly
computing the adjustment to the thread's CPU
quantum. We follow a four-step process to compute the
adjustment:
1. Determine a thread’s fair L2 cache miss rate – a

miss rate that the thread would experience under
equal cache sharing. We designed a new efficient,
online analytical model to estimate this rate
(Section 3.1).

2. Compute the thread’s fair CPI rate – the cycles
per instruction under the fair cache miss rate. We
use an existing analytical model to perform this
computation (Section 3.2).

3. Estimate the fair number of instructions – the
number of instructions the thread would have
completed under the existing scheduling policy if
it ran at its fair CPI rate (divide the number of
cycles by the fair CPI). Then measure the actual
number of instructions completed.

4. Estimate how many CPU cycles to give or take
away to compensate for the difference between the
actual and the fair number of instructions. Adjust
the thread’s CPU quantum accordingly.

The algorithm works in two phases:

Thread A

Thread A CPU latency

c) Cache not shared equally: CACHE-FAIR scheduler

Thread
Bca

ch
e

al
lo

ca
tio

n

CPU time

Thread A
Thread A

a) Cache not shared equally: Conventional scheduler

Thread A CPU latency

Thread A

Thread B

Thread B

Thread C

ca
ch

e
al

lo
ca

tio
n

CPU time

Thread C
Thread B

ca
ch

e
al

lo
ca

tio
n

CPU time

b) IDEAL: Cache is shared equally

Thread A CPU latency

Thread A

Thread B

Thread B

Thread C

Thread A

Thread C

Thread B
Thread C

Thread A

Thread C

Figure 2. Thread A’s CPU latency when the cache is not
shared equally and a conventional scheduler is used (a), when
the cache is ideally shared equally and a conventional
scheduler is used (b), and when the cache is not shared equally
and the cache-fair scheduler is used (c). Thread A takes longer
to complete the shaded work in (a) than in (b) or (c).

 4

Reconnaissance phase: The scheduler computes the
fair L2 cache miss rate for each thread.

Calibration phase: A single calibration consists of
computing the adjustment to the thread’s CPU
quantum and then selecting a thread from the best-
effort class whose CPU quantum is adjusted to offset
the adjustment to the cache-fair thread’s quantum.
Calibrations are repeated periodically. We explain how
we select best-efforts thread in Section 4.

New threads in the system are assigned CPU
quanta according to the default scheduling policy. For
new threads in the cache-fair class, the scheduler
performs the reconnaissance phase and then the
calibration phase. We present the implementation
details in Section 4.
 The challenge in implementing this algorithm is
that in order to correctly compute adjustments to the
CPU quanta we need to determine a thread’s fair CPI
ratio using only limited information from hardware
counters. Hardware counters allow measuring threads’
runtime statistics, such as the number of cache miss
and retired instructions, but they do not tell us how the
cache is actually shared and how the thread’s CPI is
affected by unequal cache sharing. We estimate the
fair CPI ratio using both information from hardware
counters and analytical models. These models are the
subject of the next section.

3. ANALYTICAL MODELS

The key requirement for analytical models we
employ is that they can be efficiently used at runtime
and not require any pre-processing of the workload or
any advance knowledge about it. We now present the
analytical models used to estimate a) the fair L2 cache
miss rate and b) fair CPI ratio.

3.1 Fair L2 cache miss rate
 The fair L2 cache miss rate is the number of
misses per cycle (MPC) that would be generated by a
thread if the cache were shared equally. We need to
determine a thread’s fair cache miss rate in order to
estimate its fair CPI ratio. Modeling cache miss rates is
a well-studied area [7,13,20,26,27,30-32,36], but the
existing models require inputs that are expensive to
obtain at runtime. Our model is not a general-purpose
cache-model, but it produces accurate estimates of the
fair cache miss rate and can be used efficiently at
runtime, and is thus well suited for our needs.
 Our approach is based on an empirically derived
observation that if the co-runners have similar cache
miss rates they share the cache roughly equally. So if
co-runners A and B experience similar miss rates, they

share the cache equally and they each experience their
fair miss rate. In this case we say that A and B are
cache-friendly co-runners. To estimate the fair cache
miss rate, for example, for Thread A on a dual-core
CPU, one could run Thread A with different co-runners
until finding its cache-friendly co-runner. This is not
practical, however, because this may take an
unbounded amount of time. Instead we run Thread A
with several different co-runners and derive the
relationship between Thread A’s miss rate and its co-
runner. We then use this relationship to estimate the
miss rate Thread A would experience with a
“hypothetical” cache-friendly co-runner; this miss rate
is Thread A’s fair miss rate.

Figure 3 illustrates this idea. Step 1 shows the
miss rates measured as Thread A runs with different
co-runners. Step 2 shows that we derive a linear
relationship between the miss rate of Thread A and its
co-runners. We use the corresponding linear equation
to compute Thread A’s miss rate when running with a
hypothetical cache-friendly co-runner – its fair miss
rate.

We now justify the assumptions in this approach:
(1) Cache-friendly co-runners have similar cache miss
rates, and (2) the relationship between co-runners’ miss
rates is linear.

Co-runners with similar miss rates share cache
equally: If we assume that a thread's L2 cache accesses
are uniformly distributed in the cache, then we can
model cache replacement as a simple case of the balls
in bins problem [41]. Assume two co-runners, whose
cache requests correspond to black and white balls
respectively. We toss black and white balls into a bin.
Each time a ball enters the bin, a ball is evicted from
the bin. If we throw the black and white balls at the
same rate, then the number of black balls in the bin
after many tosses will form a multinomial distribution
centered around one-half. This result generalizes to
any number of different colored balls being tossed at
the same rate [40]. Thus, two threads with the same L2

Figure 3. Estimating the fair cache miss rate for Thread A.

Thread A
Miss rate

Co-runner
Miss rate

Thread D

Thread B
Thread C

Hypothetical cache-
friendly co-runner

Fair
Miss rate

2. Derive relationships between the miss rates,
estimate the fair miss rate for Thread A

1. Run Thread A with
different co-runners.
Measure the miss rates.

Thread ACo-runner

Misses per 10,000 cycles:

Thread B

Thread C

Thread D
1 2 3 40

2.8 2.3

4.5

0.9

2.0

1.1

 5

cache miss rate (balls being tossed at the same rate)
will share the cache equally. We verified this
empirically by analyzing how co-runners’ cache miss
rates correspond to their cache allocations (we
instrumented our simulator to count per-thread cache
allocations). This theory applies if cache requests are
distributed uniformly across the cache. We measured
how cache request made by SPEC CPU2000
benchmarks are distributed among the cache banks on
a simulated machine with a four-banked L2 cache (we
instrumented the simulator to collect distribution data).
We found that for most benchmarks, the distribution
was close to uniform: the difference between the
access frequencies of two different cache banks was at
most 15%. There were rare exceptions, gzip, twolf, and
vpr, where such difference reached 50%, but even in
those cases, the “hot-bank” effect was not significant
enough to affect our model’s accuracy, as we will
demonstrate in Figure 4.

Relationship between co-runners’ miss rates is linear.
We chose nine benchmarks from the SPEC CPU2000
suite with different cache access patterns and ran them
in pairs on our simulated dual-core processor. We ran
each benchmark in several pairs. We analyzed the
relationship between the miss rate of each benchmark
and the miss rates of its co-runners and found that a
linear equation approximated these relationships better
than other simple functions.

The expression for the relationship between the co-
runners’ miss rates for a processor with n+1 cores is:

�
=

+=
n

i

bCiMissRateaTMissRate
1

)(*)((1),

where T is a thread for which we compute the fair miss
rate, Ci is the ith co-runner, n is the number of co-
runners, and a and b are the linear equation
coefficients. Thread T experiences its fair cache miss
rate FairMissRate(T) when all concurrent threads
experience the same miss rate:

)Ci(MissRate)T(MissRatete(T)FairMissRa == , for

all i. Equation (1) can be expressed as:

b)T(teFairMissRa*n*a)T(teFairMissRa += ,

and the expression for FairMissRate(T) is:

n*a

b
)T(teFareMissRa

−
=

1
 (2).

The cache-fair scheduler dynamically derives

coefficients for Equation 1 for each cache-fair thread at
runtime and then estimates its fair cache miss rate.
Section 4 provides implementation details.

We evaluate the accuracy of the estimated fair
miss rates produced using our model by comparing it
with the actual fair miss rates. We compute the actual
fair miss rate for a thread by running this thread and a
co-runner on a simulated dual-core machine with an
equally partitioned cache (an equally partitioned cache
ensures equal cache sharing). We compute the
estimated fair miss rate by running each thread with
several different co-runners, deriving the coefficients
for Equation 1 by means of linear regression, and then
using Equation 2. We validated the model for
workloads where there was no data sharing among the
co-runners. Studying whether data sharing affects the
model is the subject of ongoing work.

Figure 4 shows how the estimated fair miss rate
compares to the actual miss rate. The names of the
SPEC CPU2000 benchmarks are on the X-axis; the Y-
axis shows the cache miss rate for the actual and
estimated fair miss rates for each benchmark. The
estimated miss rates closely approximate the actual
miss rates. The source of errors in the model is the
implicit assumption that cache misses occur due to
insufficient capacity, rather than changes in the
working set or mapping conflicts. To account for these
effects one would need to know about the workload’s
memory access patterns; this information is expensive
to obtain at runtime. Besides, on multicore processors,
where cache is scarce, capacity misses dominate the
miss rate. Our model provides a good combination of
accuracy and efficiency, which makes it practical to
use inside an operating system. We describe its
implementation in Section 4.

3.2 Fair CPI ratio
 The fair CPI ratio is the number of cycles per

Figure 4. Estimated vs. the actual fair cache miss rate.

0

5

10

15

20

25

30

art crafty gcc gzip mcf parser tw olf vortex vpr

m
is

s
e
s
 p

e
r

10
,0

00
 c

yc
le

s

ESTIMATED ACTUAL

 6

instruction achieved by a thread under equal cache
sharing. It is used to compute the adjustment to cache-
fair threads’ CPU quanta. To estimate it, we use an
existing analytical model [29] adapted to our CPU
architecture [30]. We describe the general form of the
model and omit the details. The model has the form:

sCacheStallLIdealCPICPI 2+= (3),

where IdealCPI is the CPI when there are no L2 cache
misses, and L2CacheStalls is the per-instruction stall
time due to handling L2 cache misses.
 The expression for fair CPI is:

sCacheStallFairLIdealCPIFairCPI 2+= (4),

where FairCPI is the CPI when the thread experiences
its fair cache miss rate. To estimate FairCPI, we need
to determine (1) IdealCPI and (2) FairL2CacheStalls:

Computing IdealCPI: We compute it using Equation 3.
At runtime, we measure the thread’s actual CPI and
the statistics needed to compute the thread’s actual
L2CacheStalls. Subtracting L2CacheStalls from CPI
gives us the thread’s IdealCPI.

Computing FairL2CacheStalls: L2 cache stall time is a
function of the cache miss rate, the per-miss memory
stall time MemoryStalls (including memory latency
and memory-bus delay), and the store buffer stall time1
StoreBufferStalls:

)rStallsStoreBuffe
,lsMemoryStal,MissRate(FCacheStalsL =2
 (5).

FairL2CacheStalls is computed using the fair cache
miss rate FairMissRate:

)rStallsStoreBuffe
,lsMemoryStal,teFairMissRa(FsCacheStallFairL =2

 (6).

FairMissRate is estimated as described in Section 3.1.
We delay discussing estimation of MemoryStalls and
StoreBufferStalls until Section 4, which describes how
the models for fair cache miss rates and fair CPI are
used inside the cache-fair scheduler.

1 A store buffer is the queue at the processor that allows non-
blocking writes: a writing thread places a value in the store
buffer and continues without waiting for the write to
propagate down the memory hierarchy. If the store buffer
becomes full, the thread stalls until space becomes available
in the store buffer.

4. IMPLEMENTATION
 Recall that the cache-fair scheduler enforces an
existing scheduling policy. We implemented our
cache-fair scheduler in the Solaris 10 operating system
on top of its fixed-priority scheduling policy (each
thread has a fixed priority). Like conventional
schedulers, our scheduler runs on every system clock
tick for each running thread. It performs the
housekeeping needed by the baseline fixed-priority
policy for that thread. It also performs cache-fair-
specific processing, depending on the phase that the
thread is undergoing.

Each cache-fair thread goes through two phases,
the reconnaissance phase and the calibration phase.
The logical structure of these phases was described in
Section 2 and is summarized in Figure 5. In this
section, we describe how the phases are implemented,
how often they are repeated and, in particular, how we
obtain the inputs for the analytical models used inside
the algorithm. Most inputs are obtained using hardware
performance counters, which allow measuring thread-
specific runtime statistics [22]; such counters are
typically available on modern processors [23,24], so
our implementation is not limited to a specific
hardware architecture.

4.1 Reconnaissance phase

The goal of the reconnaissance phase is to
estimate a thread’s fair cache miss rate and generate
inputs needed by the fair CPI model.

Assume that a cache-fair thread T is in its
reconnaissance phase. The cache-fair scheduler first
measures the miss rates of T and the different co-
runners with which it runs. The scheduler does not
force T to run with specific co-runners, but observes
any co-runner combinations that appear on the
processor.

Whenever T appears on the CPU with a new
group of co-runners, we reset the hardware counters.

Figure 5. The structure of the cache-fair algorithm.

1. Estimate fair miss rate

2. Generate inputs for the
calibration phase

Reconnaissance
phase

Calibration
phase

REPEAT PERIODICALLY:

1. Adjust the CPU quantum

2. Adjust a best-effort
thread’s CPU quantum

 7

When any of the co-runners goes off the processor, we
record the miss rate of T and the overall miss rate of its
co-runners, generating a data point. By the end of the
reconnaissance phase, we have approximately ten such
data points. We perform linear regression analysis on
these data points, as explained in Section 3.1, and
generate linear equation coefficients for Equation 1.
Then, using Equation 2, we estimate the fair cache
miss rate for thread T. Implementations of linear
regression analysis usually require floating-point
operations, which are not permitted inside the Solaris
kernel, so we implemented linear regression using only
integer operations.
 During the reconnaissance phase, we also
generate values for MemoryStalls and
StoreBufferStalls needed as inputs for the fair CPU
model used in the calibration phase. Recall that these
values are used to compute FairL2CacheStalls
(Section 3.2, Equation 6) and correspond to the
memory and store buffer stall times that a thread
would attain if it experienced its fair cache miss rate.
Since we cannot measure these values directly we
estimate them: we measure T’s actual memory and
store buffer stall times as T runs in the reconnaissance
phase, and then express them as linear functions of T’s
cache miss rate. We substitute T’s fair cache miss rate
into these equations to compute the store buffer and
memory stall times for the FairL2CacheStalls model.

4.2 Calibration phase
 Upon completion of the reconnaissance phase
thread T enters the calibration phase, where the
scheduler periodically re-distributes, or calibrates, the
CPU time. A single calibration involves adjusting T’s
CPU quantum, based on how its actual CPI ratio
differs from it fair CPI ratio, and selecting a best-effort
thread whose quantum is adjusted correspondingly.

Calculating the adjustment to the CPU quantum,
described in Section 2, requires knowing T’s fair CPI
ratio. In Section 3.2, we explained how to estimate it.
The required inputs are: (1) the actual CPI, (2) the
actual L2 cache stall time (L2CacheStalls), and (3) the
L2 cache stall time corresponding to T’s fair cache
miss rate (FairL2CacheStalls). Here is how we obtain
these inputs:
1. Actual CPI is computed by taking a ratio of the

number of CPU cycles T has executed and the
number of instructions T retired.

2. The actual L2 cache stall time is estimated using
the model expressed by Equation 5. The required
inputs, i.e., the cache miss rate and the memory
and store buffer stall times, are obtained from the
hardware counters

3. FairL2CacheStalls is estimated using the model
expressed by Equation 6. The inputs are obtained
using the inputs from the reconnaissance phase.

Once T’ s fair CPI ratio is known, the scheduler
compares it to T’s actual CPI and estimates the
temporary adjustment to T’ s CPU quantum, so that by
the end of its next quantum, T completes the number of
instructions corresponding to its fair CPI. If T has been
running faster than it would at its fair CPI, its quantum
is decreased, and the quantum of some best-effort
thread is increased correspondingly. In this case, we
compensate the best-effort thread that has suffered the
most performance penalty by increasing its quantum. If
T has been running slower than it would at its fair CPI,
its quantum is increased, and a best-effort thread’s
quantum is decreased. In this case, we select the best-
effort thread that has suffered the least performance
penalty. The adjustment to the best-effort thread’s CPU
quantum is temporary: once the thread has run with the
adjusted quantum, its quantum is reset to its original
value. Section 5 evaluates the performance effects on
best-effort threads.

4.3 Phase duration and repetition
 The reconnaissance phase needs to be sufficiently
long to capture the long-term properties of the
workload’s cache access patterns. Upon analysis of
temporal variation of L2 cache access patterns for nine
SPEC CPU2000 benchmarks, we found that most
workloads (eight out of nine) had stable cache access
patterns over time, and though there was occasional
short-term variability, any window of 100 million
instructions captured the long-term properties of the
workload. Accordingly, we set the duration of the
reconnaissance phase to 100 million instructions.

After an initial reconnaissance phase, a cache-fair
thread enters the calibration phase. In the calibration
phase, the adjustments to the thread’s CPU quantum
are performed every ten million instructions (roughly
every clock tick). Frequent adjustments allow the
cache-fair algorithm to be more responsive.

A reconnaissance phase is repeated occasionally
to account for changes in the thread’s cache access
patterns, which would necessitate the need to re-
compute its fair cache miss rate. From our analysis of
the benchmarks’ temporal behavior, we found that
most workloads change their L2 cache access patterns
gradually and infrequently, so it is appropriate to
choose a fixed-sized repetition interval for the
reconnaissance phase. We set it to one billion
instructions.
 Statically setting phase repetition intervals works

 8

for most workloads, but for less-common workloads
with frequently changing cache-access patterns, the
frequency of reconnaissance phase needs to be
determined dynamically. Standard techniques for
phase detection [19] can be used to detect when the
workload has changed its cache access patterns, and
the reconnaissance phase can be performed every time
such a change is detected.

5. EVALUATION

We evaluate our algorithm by demonstrating that
it significantly reduces co-runner-dependent
performance variability for the cache-fair threads. Co-
runner-dependent performance variability is the effect
of unfair cache sharing, and by eliminating it, we
address the problems resulting from unfair cache
sharing. We also show that our algorithm has only a
small performance penalty on best-effort threads. We
begin by introducing our experimental setup and the
workload.

5.1 Experimental setup
 We use Sun Microsystems’ multicore processor
simulator [11] for the UltraSPARC T1 architecture [4].
The number of cores, the type of core (single-threaded
or multithreaded), and the cache size are configurable.
We configure our simulated machine with two single-
threaded cores and a shared L2 cache. Table 1
summarizes the configuration parameters. This is a
full-system simulator: it runs the complete operating
system and applications unmodified.
 Our workload consists of benchmarks from the
SPEC CPU2000 suite [12]. This benchmark suite is
commonly used for CPU studies and has been recently
updated to include programs with large cache working
sets, to reflect trends in modern commercial
applications. This suite is built of real applications,
with different cache access patterns [21]. For our
experiments, we picked nine benchmarks that
represent a variety of popular workloads:

art – image recognition

crafty – game playing: chess
gcc – a compiler
gzip – a compression utility
mcf – combinatorial optimization
parser – word processing
twolf – place and route simulator
vortex – object-oriented database
vpr – FPGA circuit placement and routing

We run each benchmark in two scenarios: in the slow
schedule case, the benchmark’s co-runners have high
cache requirements; and in the fast schedule case, the
co-runners have low cache requirements. In a slow
schedule, a thread is likely to run more slowly than in
the fast schedule, hence the naming of the two cases. In
each of the schedules, the principal benchmark belongs
to the cache-fair class and runs with three other
application threads, one of which is in the best-effort
class. Table 2 shows the schedules for each
benchmark.
 We run each schedule until the principal
benchmark completes a segment of one hundred
million instructions in the calibration phase; running to
completion would take weeks on a simulator. We fast-
forward the simulation to the point where all
benchmarks enter the main processing loop, and then
perform the detailed simulation. All benchmarks are
CPU-bound.

5.2 Co-runner-dependent performance
variability
 We compare the time that it takes the principal
benchmark to complete its work segments in the fast
and slow schedules. We refer to this quantity as
completion time. When running with a conventional
fixed-priority scheduler, the difference between
completion times in the fast and in the slow schedules
is large, but when running with our cache fair
scheduler, it is significantly smaller.
 Figure 6 demonstrates normalized completion
times with the conventional scheduler. The co-runner-

Processing
cores

Two single-threaded processing
cores, each running at 992 MHz.

L1 caches A 16KB instruction-cache and an
8KB data cache per core. Each cache
is four-way set associative.

L2 cache 256KB, four-way banked, eight-way
set associative, unified instruction
and data.

Memory bus 4 GB/s peak bandwidth

Table 1. Architectural parameters of the simulated machine

Principal Fast Schedule Slow Schedule
art art,vpr,vpr,vortex art,gcc,mcf,gzip

crafty crafty,vpr,vpr,vortex crafty,art,mcf,gzip
gcc gcc,crafty,vortex,vpr gcc,art,mcf,gzip

gzip gzip,vorex,vpr,vpr gzip,art,mcf,gcc

mcf mcf,vpr,vpr,vortex mcf,art,gcc,gzip
parser parser,crafty,vpr,vortex parser,art,mcf,gzip

twolf twolf,vpr,vpr,vortex twolf,art,mcf,gzip
vortex vortex,vpr,crafty,vpr vortex,art,mcf,gzip

vpr vpr,crafty,vpr,vortex vpr,gcc,crafty,vortex

Table 2. The schedules for each benchmark

 9

dependent performance variability is evident for most
benchmarks, and reaches as much as 36% for vortex.
Vortex runs 36% slower in the slow schedule, because
its L2 cache miss rate is 85% higher than in the fast
schedule.
 Figure 7 shows normalized completion times
with the cache-fair scheduler. The variability is
significantly smaller. For vortex, the difference in
completion times was 7%, reduced by more than a
factor of five. For gzip, the difference was reduced
from 21% to 3% – a factor of seven. One benchmark,
crafty, that experienced only a small performance
variability (2%) with the conventional scheduler,
experienced a slightly higher variability with the
cache-fair scheduler (4%); this was due to small errors
in the model. The cache-fair scheduler reduced
performance variability by at least a factor of two for
the remaining benchmarks, which all experienced a
significant variability (at least 8%) with the
conventional scheduler.

5.3 Effect on performance
 We now evaluate the effect of our scheduling
algorithm on absolute performance. As expected,
applications with high cache requirements may
experience longer completion times with the cache fair
scheduler than with the conventional scheduler,
because the cache-fair scheduler would reduce their
CPU quantum to compensate them for occupying more
than their fair share of the cache. Conversely,
applications with low cache requirements may
experience shorter completion times with the cache-
fair scheduler.
 Figure 7 shows raw completion times for each
benchmark in each schedule. There are four bars for
each benchmark. The first two bars show the
completion times for the fast and slow schedules with
the cache-fair scheduler, the second two – with the

conventional scheduler. Smaller bars indicate shorter
completion times.
 Applications with high cache requirements,
especially mcf and art, have longer average
completion times with the cache-fair scheduler. On the
contrary, applications with low cache requirements,
such as gzip and vpr, achieve shorter completion times
with the cache-fair scheduler.
 Such effect on absolute performance is expected.
The goal of the cache-fair scheduler is to reduce the
effects of unequal cache sharing on performance.
Those applications that are hurt by unequal cache
sharing experience improved performance, and vice
versa. Nevertheless, all applications experience
improved performance stability and predictability.

5.4 Effect on best-effort threads
 In our experiments, best-effort threads
occasionally experienced a small performance
degradation, and in some cases – a performance boost.
The largest observed degradation was an 8% slowdown
relative to a best-effort thread’s performance with the
conventional scheduler. Best-effort threads

Figure 6. Co-runner-dependent performance variability with
the conventional scheduler.

Figure 7. Co-runner-dependent performance variability with the
cache-fair scheduler.

Figure 8. Raw completion times in the fast and slow schedule
with cache-fair and conventional scheduler.

CONVENTIONAL SCHEDULER

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

mcf art vortex tw olf crafty gzip parser vpr gcc

N
or

m
al

iz
ed

 c
om

pl
et

io
n

tim
e

FAST

SLOW

CACHE-FAIR SCHEDULER

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

mcf art vortex tw olf crafty gzip parser vpr gcc

N
or

m
al

iz
ed

 c
om

pl
et

io
n

tim
e

FAST

SLOW

0

2000

4000

6000

8000

10000

mcf art vortex tw olf crafty gzip parser vpr gcc

C
om

pl
et

io
n

tim
e

(m
ill

is
ec

on
ds

) CACHE-FAIR-FAST

CACHE-FAIR-SLOW

CONV-FAST

CONV-SLOW

 10

experienced performance boost when their CPU shares
increased in response to decrease in cache-fair threads’
CPU shares. Although we did not observe significant
degradation in best-effort thread performance in our
experiments, it is important to prevent it in general.
One way to do this is to limit how much the scheduler
can reduce a best-effort thread’s CPU share.

5.5 Comparison with cache partitioning
 Recent research proposed using dynamic cache
partitioning on multicore processors to address unequal
cache sharing [7,13,33-35]. Although it has been
shown that dynamic cache partitioning can be used to
lessen the effects of “bad” co-runners [7], we found
that cache partitioning cannot reduce co-runner-
dependent performance variability to the extent that
cache-fair thread scheduling does.
 We implemented dynamic cache partitioning in
our simulated processor in a similar fashion as was
done in the recent work [7], and ran the nine
benchmarks (in the same fast and slow schedules as
shown in Table 2) on a dual-core machine with the
cache equally partitioned among the cores. Partitioning
reduced co-runner-dependent performance variability
only for three out of nine benchmarks and made no
difference for the remaining six benchmarks. While
performance variability due to cache sharing was
eliminated, there remained performance variability due
to contention for the memory bus. (We confirmed that
memory-bus contention was the problem by showing
that running with unlimited memory-bus bandwidth
eliminated performance variability.) Our cache-fair
algorithm incorporates memory-bus delay into the fair
CPI model, accounting for performance variability due
to sharing of the memory bus.

5.6 Scheduler overhead and scalability
 The cache-fair scheduling algorithm was
designed to avoid measurable performance overhead.
Most of the work done during the reconnaissance
phase involves accessing hardware performance
counters, which involves only a few processor cycles
per access. Our method for estimating the fair cache
miss rate requires generating only about ten data points
for each cache-fair thread, keeping memory overhead
low. A small number of data points also limits the
overhead of the linear regression, which runs in O(N)
steps, where N is the number of data points. The
calibration phase involves simple arithmetic operations
and inexpensive access to hardware performance
counters.
 Scalability was an important design goal because
the number of cores on multicore processors is likely

to increase, and it is important that our algorithm work
for future processor generations. Although we have not
yet empirically evaluated the scalability of our
algorithm, we believe our design will scale because we
avoid inter-processor communication and because the
amount of work done in phases of the algorithm is
independent of the number of cores.
 It has been shown that inter-processor
communication can limit scalability of multiprocessor
operating systems [10]. Our algorithm makes
scheduling decisions using thread-local information, so
there is no communication among the cores. This puts
our solution at an advantage over algorithms for
multicore processors that rely on co-scheduling, i.e.
making sure that a thread only runs with the “ right” co-
runner [14-16]. Co-scheduling is difficult to implement
without inter-core communication, because scheduling
a thread to run on one core requires knowing what
threads are running on other cores.
 The amount of work done in the reconnaissance
and calibration phases of the algorithm is fixed per
thread. Although in the reconnaissance phase we
measure the miss rates of the thread’s co-runners, the
hardware allows measuring the aggregate miss rate of
all of the co-runners, so the cost of this measurement
does not increase with the number of cores.

5.7 Applicability to other hardware
architectures
 The implementation of our algorithm has two
hardware-specific components: the model for
estimating fair CPI and the mechanism for accessing
hardware performance counters.
 Modeling CPI as the function of cache miss rate
is well studied, and accurate models for different kinds
of processors (single- and multithreaded cores, single-
issue and multiple-issue pipelines) exist [28-32,43].
Therefore, the fair CPI model can be easily adapted for
most modern processors.
 Our algorithm relies on runtime statistics that can
be obtained from hardware performance counters. We
used performance counters that are available on the
UltraSPARC T1 processor [22]; other multicore
processors have similar counters [23].
 We demonstrated how our algorithm targets
performance variability due to sharing of the L2 cache,
because studies have shown that the L2 cache is a
performance-critical component on multicore
processors [8,9]. Our technique also applies to
processors with shared L1 [2,4] or L3 caches [1,3].

6. RELATED WORK
 We discuss alternative ways to address the effects
of unequal cache sharing in hardware and software.

 11

 Multicore processor architectures that enforce
fair resource sharing or expose control over resource
allocation to the operating system have been proposed
in the past [7,13,33-35]. Such hardware was used for
improved performance predictability [33], fairness
[7,34], and performance [13,35]. The advantage of a
hardware solution is that it can be used to address fair
resource sharing for all resources, not just CPU caches,
so it could be used for processors that have shared
resources other than caches. The downside of a
hardware solution is higher cost and long time-to-
market of such hardware. To the best of our
knowledge, none of the proposed hardware
architectures has been made commercially available.
Our scheduling algorithm can be used on systems that
exist today, allowing applications to enjoy the benefits
of multicore processors without losing attractive
properties offered by thread schedulers on
conventional processors.
 Software solutions based on co-scheduling, i.e.
aiming to select the “ right” co-runner for a thread,
have been used to improve performance [14-15] and
predictability [16]. Co-scheduling requires being able
to determine how a thread’s performance is affected by
a particular co-runner. To do this, previous work used
performance models and heuristics. Effectiveness of
these models and heuristics has been demonstrated on
systems running at most four concurrent threads. It is
not clear whether these methods will scale for
multicore systems with larger degrees of concurrency
[2,4]. Another limitation of co-scheduling is that if the
right co-runner for a thread cannot be found, the
thread’s performance remains vulnerable to co-runner-
dependent performance variability.

7. SUMMARY
 We presented the cache-fair scheduling
algorithm, a new operating system scheduling
algorithm for multicore processors. We evaluated our
implementation of the algorithm in Solaris 10 and
showed that it significantly reduces co-runner-
dependent performance variability, while imposing
little penalty on best-effort threads.
 Co-runner-dependent performance is the result of
unequal cache sharing, and by eliminating it, we
address the problems caused by unequal cache sharing.
Using our algorithm, applications are not penalized for
with “bad” co-runners. This permits better priority
enforcement and results in improved fairness. Our
technique enables fair CPU accounting in Grid
systems: applications can be charged only for the CPU
cycles given to them by the system scheduler, and not
for the “compensation” cycles given to them by the
cache-fair scheduler. Finally, applications enjoy

improved performance stability and predictability,
which facilitates performance tuning and forecasting.
 We demonstrated that our solution is viable by
implementing it in a commercial operating system,
relying only on features commonly available on
commercial hardware and not requiring any advance
knowledge about the workload.
 Improved power efficiency and hardware
utilization, and superior performance-per-watt ratio
could make multicore processors the dominant CPU in
the future. In order to enjoy these benefits while
retaining good systems properties that we have
cultivated for years, we must adapt our software for
this new hardware.

8. REFERENCES
[1] Sun Microsystems UltraSPARC VI+ Features:

http://www.sun.com/processors/UltraSPARC-
IVplus/features.xml

[2] M. Funk. Simultaneous Multi-threading (SMT)
on eServer iSeries Power5 Processors,
http://www-03.ibm.com/servers/eserver/iseries/
perfmgmt/pdf/SMT.pdf.

[3] POWER4 System Microarchitecture, http://www-
03.ibm.com/servers/eserver/pseries/hardware/wh
itepapers/power4.html.

[4] P. Kongetira. A 32-way Multithreaded
SPARC(R) Processor. http://www.hotchips.org/
archives/hc16/, HOTCHIPS 16, 2004.

[5] AMD: Multi-core Processors – the Next
Evolution in Computing,
http://multicore.amd.com/WhitePapers/
Multi-Core_Processors_WhitePaper.pdf

[6] Intel: White Paper: Superior Performance with
Dual-Core, ftp://download.intel.com/products/
processor/xeon/srvrplatformbrief.pdf.

[7] S. Kim, D. Chandra and Y. Solihin. Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture, In Intl. Conference on Parallell
Architectures and Compilation Techniques
(PACT), 2004.

[8] A. Fedorova, M. Seltzer, C. Small and D.
Nussbaum. Performance of Multithreaded Chip
Multiprocessors And Implications For Operating
System Design, In USENIX Annual Technical
Conference, 2005.

[9] S. Hily, A. Seznec. Standard Memory Hierarchy
Does Not Fit Simultaneous Multithreading. In
MTEAC'98.

[10] B. Gamsa, O. Krieger, J. Appavoo, M. Stumm.
Tornado: Maximizing Locality and Concurrency
in a Shared Memory Multiprocessor Operating
System. In Symposium on Operating System
Design and Implementation (OSDI), 1999.

[11] D. Nussbaum, A. Fedorova, C. Small. The Sam
CMT Simulator Kit, Sun Microsystems TR 2004-
133, 2004.

 12

[12] SPEC CPU2000 Web site: http://www.spec.org
[13] G.E. Suh, S. Devadas, and L. Rudolph. A New

Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning, In the 8th
International Symposium on High-Performance
Computer Architecture, 2002.

[14] A. Snavely and D. Tullsen. Symbiotic Job
Scheduling for a Simultaneous Multithreading
Machine, In the 9th International Conference on
Architectural Support for Programming
Languages and Operating Systems, 2000.

[15] S. Parekh, S. Eggers, H. Levy, J. Lo. Thread-
sensitive Scheduling for SMT Processors,
www.cs.washington.edu/research/smt/, 2000.

[16] R. Jain, C.J. Huges, S.V. Adve. Soft Real-Time
Scheduling on Simultaneous Multithreaded
Processors, In 23rd IEEE Real-Time Systems
Symposium (RTSS), 2002.

[17] J. Li and J. F. Martinez. Power-performance
implications of thread-level parallelism on chip
multiprocessors. In Int’ l Symp. on Performance
Analysis of Systems and Software, 2005.

[18] L. Barroso et al. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing, In 27th
International Symposium on Computer
Architecture (ISCA), 2000.

[19] X. Shen, Y. Zhong and C. Ding. Locality Phase
Prediction. In the 13th International Conference
on Architectural Support for Programming
Languages and Operating Systems, 2004.

[20] E. Berg, E. Hagersten. StatCache: a probabilistic
approach to efficient and accurate data locality
analysis, in the International Symposium on
Performance Analysis of Systems and Software,
2004.

[21] Benjamin Lee. An Architectural Assessment of
SPEC CPU Benchmark Relevance, Harvard
University Technical Report TR-02-06, 2006.

[22] UltraSPARC T1 supplement to UltraSPARC
Architecture 2005 Specification
(Hyperprivileged), opensparc-t1.sunsource.net

[23] IBM PowerPC 970FX RISC Microprocessor
User's Manual, IBM Website

[24] Pentium 4 Programmer’s Manual,
download.intel.com/design/Pentium4/manuals/25
366919.pdf

[25] E. Berger et al. Scheduler-Aware Virtual
Memory Management, presented as posted in
Symposium on Operating Systems Principles,
2003.

[26] C. Cascaval, L. DeRose, D.A. Padua, and D.
Reed, Compile-Time Based Performance
Prediction, in the 12th Intl. Workshop on
Languages and Compilers for Parallel
Computing, 1999.

[27] A. Agarwal, J. Hennessey, M. Horowitz, An
Analytical Cache Model, ACM Transactions on
Computer Systems, vol.7(2), pp. 184-215, 1989.

[28] Daniel J. Sorin, et al., Analytic Evaluation of
Shared-memory Systems with ILP Processors. In
International Symposium on Computer
Architecture (ISCA), 1998.

[29] R. E. Matick, T. J. Heller, and M. Ignatowski,
Analytical analysis of finite cache penalty and
cycles per instruction of a multiprocessor
memory hierarchy using miss rates and queuing
theory, IBM Journal Of Research And
Development, Vol. 45 NO. 6, November 2001.

[30] A. Fedorova, M. Seltzer and M. Smith. Modeling
the Effects of Memory Hierarchy Performance on
the IPC of Multithreaded Processors, Technical
Report TR-15-05, Division of Engineering and
Applied Sciences, Harvard University, 2005.

[31] R. Saavedra-Barrera, D. Culler and T. von
Eicken, Analysis of Multithreaded Architectures
for Parallel Computing, SPAA 1990.

[32] P. K. Dubey, A. Krishna and M. Squillante,
Analytic Performance Modeling for a Spectrum
of Multithreaded Processor Architectures,
MASCOTS 1995.

[33] F.J. Cazorla et al. Predictable Performance in
SMT Processors, In Computing Frontiers, pp.
433-443, 2004.

[34] S. E. Raasch and S. K. Reinhardt. Applications of
Thread Prioritization in SMT Processors. In Proc.
of the Workshop on Multithreaded Execution And
Compilation, 1999.

[35] G. Dorai, D Yeung. Transparent
Threads: Resource Sharing in SMT Processors
for High Single-Thread Performance, In
International Conference on Parallel
Architectures and Compilation Techniques
(PACT), 2002.

[36] D. Chandra, F. Guo, S, Kim, Y. Solihin.
Predicting Inter-Thread Cache Contention on a
Chip Multi-Processor Architecture, In the 11th
International Symposium on High Performance
Computer Architecture (HPCA), 2005

[37] Sun Grid Frequently Asked Questions (#14)
http://www.sun.com/service/sungrid/faq.xml#q14

[38] D. Patterson and K. Yelick, Final Report 2002-
2003 for MICRO Project #02-060, University of
California, Berkeley, CA 2003.

[39] D. Willick and D. Eager, An Analytical Model of
Multistage Interconnection Networks, In Proc. of
1990 ACM SIGMETRICS, pp. 192-199.

[40] W. Feller, An Introduction to Probability Theory
and Its Applications, vol. I, (VI(9), John Wiley
and Sons, 1968

[41] R. Cole et al., On Balls and Bins with Deletions,
Proceedings of Random '98, pp. 145-158.

