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ABSTRACT 
 We present a new operating system scheduling 
algorithm for multicore processors. Our algorithm 
reduces the effects of unequal CPU cache sharing that 
occur on these processors and cause unfair CPU 
sharing, priority inversion, and inadequate CPU 
accounting. We describe the implementation of our 
algorithm in the Solaris operating system and 
demonstrate that it produces fairer schedules enabling 
better priority enforcement and improved performance 
stability for applications. With conventional 
scheduling algorithms, application performance on 
multicore processors varies by up to 36% depending 
on the runtime characteristics of concurrent processes. 
We reduce this variability by up to a factor of seven. 
 
1. INTRODUCTION 

In the recent years, the hardware industry has 
moved from discussion to full-scale production of 
multicore processors – processors that have multiple 
processing cores inside them [18]. Multiple processing 
cores enable multiple application threads to run 
simultaneously on a single processor. Multicore 
technology, with its promise of improved power 
efficiency and increased hardware utilization, has been 
embraced by the industry: AMD, Fujitsu, IBM, Intel 
and Sun Microsystems are shipping multicore systems 
and have announced plans to release future models [1-
6].  

Conventional CPU schedulers make assumptions 
that do not apply on multicore processors: they assume 
that the CPU is a single, indivisible resource and that if 
threads are granted equal time slices, those threads will 
share the CPU equally. On multicore processors, 
concurrently running threads, or co-runners, often 
share a single second-level (L2) cache, and cache 
allocation is controlled by the hardware [1-4]. Cache 
sharing depends solely on the cache needs of the co-
runner(s), and unfair cache sharing occurs often (see 
Figure 1). A thread’s cache occupancy affects its cache 
miss rate, and, as a result, impacts the rate at which the 
thread retires instructions. Therefore, a thread’s CPU 
performance significantly varies depending on its co-
runner. This co-runner-dependent performance 
variability can create the following problems: 
 
(1) Unfair CPU sharing: Conventional schedulers 

ensure that equal-priority threads get equal shares of 
the CPU. On multicore processors a thread’s share of 
the CPU, and thus its forward progress, is dependent 
both upon its time slice and the cache behavior of its 
co-runners. Kim et al showed that a SPEC CPU2000 
[12] benchmark gzip runs 42% slower with a co-runner 
art, than with apsi, even though gzip executes the same 
number of cycles in both cases [7]. 
 

(2) Poor priority enforcement: A priority-based 
scheduler on a conventional processor ensures that 
elevating a job’s priority results in greater forward 
progress for this job. On a multicore processor, if the 
high-priority job is scheduled with ‘bad’  co-runners, it 
will experience inferior rather than superior 
performance. 
 
(3) Inadequate CPU accounting: On grid-like systems 
where users are charged for CPU hours [37] 
conventional scheduling ensures that processes are 
billed   proportionally to the amount of computation 
accomplished by a job. On multicore processors, the 
amount of computation performed in a CPU hour 
varies depending on the co-runners (we observed 
variability of up to 36%, and other studies reported 
similar numbers [7,16]), so charging for CPU hours is 
not appropriate. 
 
Clearly then, co-runner-dependent performance 
variability requires that we rethink fair sharing and 
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Figure 1. Conventional processor (left) and multicore processor 
(right). Cache coloring shows the thread’s working set. Each 
thread’s working set is large enough to populate the entire L2 
cache, as shown on the left. However, when the threads become 
co-runners on a multicore processor (right), the cache is not 
equally allocated among the threads.  
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timeslicing for multicore processors. To achieve fair 
sharing on these processors, L2 cache allocation must 
be considered. This problem is actually more difficult 
than fair sharing in a shared-memory multiprocessor, 
where a thread’s performance similarly depends on 
how much of the shared memory it gets [25]. The 
fundamental difference is that the operating system can 
observe and control multiprocessor memory allocation 
while L2 cache allocation is completely opaque to the 
operating system. 

We present a new scheduling algorithm, the 
cache-fair algorithm, that addresses unequal cache 
allocation and reduces co-runner-dependent 
performance variability. This algorithm redistributes 
CPU time to threads to account for unequal cache 
sharing: if a thread’s performance decreases due to 
unequal cache sharing it gets more time, and vice 
versa. The challenge in implementing this algorithm is 
determining how a thread’s performance is affected by 
unequal cache sharing using limited information from 
the hardware. Our solution uses runtime statistics and 
analytical models and does not require new hardware 
structures or operating system control over cache 
allocation.  

We implemented our algorithm as an extension to 
the Solaris™ 10 operating system and evaluated it on a 
full-system hardware simulator [11] of the 
UltraSPARC® T1 [4]. We demonstrate that our 
algorithm significantly reduces co-runner-dependent 
performance variability: by at least a factor of two and 
by as much a factor of seven in the cases where the 
variability is significant. Co-runner-dependent 
performance is the result of unequal cache sharing, and 
by eliminating it, we address the problems caused by 
unequal cache sharing: 

 
(1) Unfair CPU sharing: With our algorithm, an 
application achieves predictable forward progress 
regardless of its co-runners. The effects of unfair cache 
sharing are negated.  
 
(2) Poor priority enforcement:  Our algorithm ensures 
that a thread makes predictable forward progress 
regardless of its co-runner. Therefore, elevating a 
thread’s priority results in greater forward progress, 
and vice versa, just like on conventional processors. 
Priorities are properly enforced. 
 
(3) Inaccurate CPU accounting: Our algorithm reduces 
dependency of a thread’s performance on its co-runner. 
Charging for CPU hours is appropriate, because the 
amount of work accomplished by a thread is 
proportional to the CPU hours paid for by the customer 
and is not affected by the co-runner. 
 

 Multicore processors offer advantages of power 
efficiency, improved hardware utilization and reduced 
cost due to component duplication [2,4,5,17]. The 
exploding popularity of these processors suggests that 
they will become the dominant CPU type. The 
performance effects of unequal L2 cache sharing will 
increase in the future: Unequal cache sharing affects 
the cache miss rate, an increased cache miss rate 
causes more memory accesses, and the cost of memory 
access in terms of processor cycles grows at the rate of 
50% per year [38]. Therefore, it is critical to address 
this problem now, so we can enjoy the benefits of 
multicore processors without losing good systems 
properties developed through years of research and 
practice. 

The rest of the paper is organized as follows: In 
Section 2 we describe the algorithm; in Section 3 we 
describe the analytical models used in our algorithm; in 
Section 4 we describe our implementation; and in 
Section 5 we evaluate it. We discuss related work and 
alternative solutions in Section 6, and conclude in 
Section 7.  
 
2. ALGORITHMIC OVERVIEW  

Our scheduling algorithm reduces co-runner-
dependent performance variability, diminishing the 
effect of unfair cache allocation. We reduce co-runner-
dependent performance variability by redistributing 
CPU time such that a thread runs as quickly as it would 
with an equally shared cache, regardless of its co-
runners.  

More specifically, we make the thread’s CPU 
latency, i.e. the time to complete a logical unit of work 
(such as 10 million instructions) equal to its CPU 
latency under equal cache sharing. A thread’s CPU 
latency is the product of its cycles per instruction (CPI) 
(how efficiency it uses the CPU cycles it’ s given) and 
its share of CPU time (how long it runs on the CPU). 
Co-runner-dependence affects a thread’s CPI, because, 
for example, a cache-starved thread incurs more 
memory stalls, exhibiting a higher CPI. An OS 
scheduler, on the other hand, influences the thread’s 
CPU latency by adjusting its share of CPU time.  

Figure 2a) illustrates co-runner dependency. 
There are three threads (A though C) running on a 
dual-core processor. Thread A is cache-starved when it 
runs with Thread B and suffers worse performance 
than when it runs with Thread C. In the figure, a box 
corresponds to each thread. The height of the box 
indicates the amount of cache allocated to the thread. 
The width of the box indicates the CPU quantum 
allocated to the thread. The area of the box is 
proportional to the amount of work completed by the 
thread. Thread boxes stacked on top of one another 
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indicate co-runners.  
Figure 2b) depicts the imaginary ideal scenario: 

the cache is shared equally, as indicated by the equal 
heights of all the boxes. Our goal is to complete the 
same amount of work (the shaded area) in the same 
time (the length along the X-axis) it takes in the ideal 
scenario. 

In Figure 2a) Thread A completes less work per 
unit of time than it does in Figure 2b), because it does 
not get an equal share of the cache when running with 
Thread B. As a result, it takes longer to complete the 
same amount of work; its latency is longer than its 
latency under equal cache sharing.  

Figure 2c) shows how the cache-fair algorithm 
eliminates dependency of Thread A’s performance on 
Thread B. By giving Thread A more CPU cycles, it 
makes Thread A retain the same latency as under equal 
cache sharing (Figure 2b). Note that the adjustment to 
Thread A’s CPU quantum is temporary. Once the 
thread catches up with its work, its quantum is restored 
to its initial value. 

Giving more CPU time to one thread takes away 
time from another thread (or other threads in general), 

and vice versa. Figure 2c) il lustrates that our algorithm 
gives more time to Thread A at the expense of Thread 
B. Our algorithm requires, therefore, that there are two 
classes of threads in the system: the cache-fair class 
and the best-effort class. In our example, Thread A is a 
cache-fair thread, and Thread B is a best-effort thread. 
The scheduler reduces co-runner-dependent 
performance variability for threads in the cache-fair 
class, but not for threads in the best-effort class. Our 
algorithm, however, avoids imposing significant 
performance penalties on best-effort threads. 

The user specifies the job’s class in the same way 
she specifies a job’s priority. We expect that user jobs 
will be in the cache-fair class by default and that 
background system jobs will fall into the best-effort 
class. Because modern systems typically run dozens of 
background threads (running a single-threaded “hello 
world” program in Java requires nine threads!), the 
requirement that best-effort threads exist in the system 
is easily satisfied. 

The cache-fair scheduling algorithm does not 
establish a new CPU sharing policy but helps enforce 
existing policies. For example, if the system is using a 
fair-share policy, the cache-fair algorithm will make 
the cache-fair threads run as quickly as they would if 
the cache were shared equally, given the number of 
CPU cycles they are entitled to under the fair-share 
policy. 

The key part of our algorithm is correctly 
computing the adjustment to the thread's CPU 
quantum. We follow a four-step process to compute the 
adjustment: 
1. Determine a thread’s fair L2 cache miss rate – a 

miss rate that the thread would experience under 
equal cache sharing. We designed a new efficient, 
online analytical model to estimate this rate 
(Section 3.1).  

2. Compute the thread’s fair CPI rate – the cycles 
per instruction under the fair cache miss rate. We 
use an existing analytical model to perform this 
computation (Section 3.2). 

3. Estimate the fair number of instructions – the 
number of instructions the thread would have 
completed under the existing scheduling policy if 
it ran at its fair CPI rate (divide the number of 
cycles by the fair CPI). Then measure the actual 
number of instructions completed.  

4. Estimate how many CPU cycles to give or take 
away to compensate for the difference between the 
actual and the fair number of instructions. Adjust 
the thread’s CPU quantum accordingly. 

 
The algorithm works in two phases: 
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Figure 2. Thread A’s CPU latency when the cache is not 
shared equally and a conventional scheduler is used (a), when 
the cache is ideally shared equally and a conventional 
scheduler is used (b), and when the cache is not shared equally 
and the cache-fair scheduler is used (c). Thread A takes longer 
to complete the shaded work in (a) than in (b) or (c). 



 4

Reconnaissance phase: The scheduler computes the 
fair L2 cache miss rate for each thread. 
 
Calibration phase: A single calibration consists of 
computing the adjustment to the thread’s CPU 
quantum and then selecting a thread from the best-
effort class whose CPU quantum is adjusted to offset 
the adjustment to the cache-fair thread’s quantum. 
Calibrations are repeated periodically. We explain how 
we select best-efforts thread in Section 4. 
 

New threads in the system are assigned CPU 
quanta according to the default scheduling policy. For 
new threads in the cache-fair class, the scheduler 
performs the reconnaissance phase and then the 
calibration phase. We present the implementation 
details in Section 4. 
 The challenge in implementing this algorithm is 
that in order to correctly compute adjustments to the 
CPU quanta we need to determine a thread’s fair CPI 
ratio using only limited information from hardware 
counters. Hardware counters allow measuring threads’  
runtime statistics, such as the number of cache miss 
and retired instructions, but they do not tell us how the 
cache is actually shared and how the thread’s CPI is 
affected by unequal cache sharing. We estimate the 
fair CPI ratio using both information from hardware 
counters and analytical models. These models are the 
subject of the next section. 
 
3. ANALYTICAL MODELS  

The key requirement for analytical models we 
employ is that they can be efficiently used at runtime 
and not require any pre-processing of the workload or 
any advance knowledge about it. We now present the 
analytical models used to estimate a) the fair L2 cache 
miss rate and b) fair CPI ratio. 
 
3.1 Fair L2 cache miss rate 
 The fair L2 cache miss rate is the number of 
misses per cycle (MPC) that would be generated by a 
thread if the cache were shared equally. We need to 
determine a thread’s fair cache miss rate in order to 
estimate its fair CPI ratio. Modeling cache miss rates is 
a well-studied area [7,13,20,26,27,30-32,36], but the 
existing models require inputs that are expensive to 
obtain at runtime. Our model is not a general-purpose 
cache-model, but it produces accurate estimates of the 
fair cache miss rate and can be used efficiently at 
runtime, and is thus well suited for our needs. 
 Our approach is based on an empirically derived 
observation that if the co-runners have similar cache 
miss rates they share the cache roughly equally. So if 
co-runners A and B experience similar miss rates, they 

share the cache equally and they each experience their 
fair miss rate. In this case we say that A and B are 
cache-friendly co-runners. To estimate the fair cache 
miss rate, for example, for Thread A on a dual-core 
CPU, one could run Thread A with different co-runners 
until finding its cache-friendly co-runner. This is not 
practical, however, because this may take an 
unbounded amount of time. Instead we run Thread A 
with several different co-runners and derive the 
relationship between Thread A’s miss rate and its co-
runner. We then use this relationship to estimate the 
miss rate Thread A would experience with a 
“hypothetical”  cache-friendly co-runner; this miss rate 
is Thread A’s fair miss rate.  

Figure 3 illustrates this idea. Step 1 shows the 
miss rates measured as Thread A runs with different 
co-runners. Step 2 shows that we derive a linear 
relationship between the miss rate of Thread A and its 
co-runners. We use the corresponding linear equation 
to compute Thread A’s miss rate when running with a 
hypothetical cache-friendly co-runner – its fair miss 
rate.  

We now justify the assumptions in this approach: 
(1) Cache-friendly co-runners have similar cache miss 
rates, and (2) the relationship between co-runners’  miss 
rates is linear. 

 
Co-runners with similar miss rates share cache 
equally: If we assume that a thread's L2 cache accesses 
are uniformly distributed in the cache, then we can 
model cache replacement as a simple case of the balls 
in bins problem [41]. Assume two co-runners, whose 
cache requests correspond to black and white balls 
respectively. We toss black and white balls into a bin.  
Each time a ball enters the bin, a ball is evicted from 
the bin.  If we throw the black and white balls at the 
same rate, then the number of black balls in the bin 
after many tosses will form a multinomial distribution 
centered around one-half.  This result generalizes to 
any number of different colored balls being tossed at 
the same rate [40]. Thus, two threads with the same L2 

Figure 3. Estimating the fair cache miss rate for Thread A. 
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cache miss rate (balls being tossed at the same rate) 
will share the cache equally. We verified this 
empirically by analyzing how co-runners’  cache miss 
rates correspond to their cache allocations (we 
instrumented our simulator to count per-thread cache 
allocations). This theory applies if cache requests are 
distributed uniformly across the cache. We measured 
how cache request made by SPEC CPU2000 
benchmarks are distributed among the cache banks on 
a simulated machine with a four-banked L2 cache (we 
instrumented the simulator to collect distribution data). 
We found that for most benchmarks, the distribution 
was close to uniform: the difference between the 
access frequencies of two different cache banks was at 
most 15%. There were rare exceptions, gzip, twolf, and 
vpr, where such difference reached 50%, but even in 
those cases, the “hot-bank”  effect was not significant 
enough to affect our model’s accuracy, as we will 
demonstrate in Figure 4. 
 
Relationship between co-runners’  miss rates is linear. 
We chose nine benchmarks from the SPEC CPU2000 
suite with different cache access patterns and ran them 
in pairs on our simulated dual-core processor. We ran 
each benchmark in several pairs. We analyzed the 
relationship between the miss rate of each benchmark 
and the miss rates of its co-runners and found that a 
linear equation approximated these relationships better 
than other simple functions. 
  
The expression for the relationship between the co-
runners’  miss rates for a processor with n+1 cores is: 

�
=

+=
n

i

bCiMissRateaTMissRate
1

)(*)(  (1), 

where T is a thread for which we compute the fair miss 
rate, Ci is the ith co-runner, n is the number of co-
runners, and a and b are the linear equation 
coefficients. Thread T experiences its fair cache miss 
rate FairMissRate(T) when all concurrent threads 
experience the same miss rate: 
 

)Ci(MissRate)T(MissRatete(T)FairMissRa == , for 

all i. Equation (1) can be expressed as: 
 

b)T(teFairMissRa*n*a)T(teFairMissRa += , 
 
and the expression for FairMissRate(T) is: 
 

n*a

b
)T(teFareMissRa

−
=

1
   (2). 

 
The cache-fair scheduler dynamically derives 

coefficients for Equation 1 for each cache-fair thread at 
runtime and then estimates its fair cache miss rate. 
Section 4 provides implementation details. 

We evaluate the accuracy of the estimated fair 
miss rates produced using our model by comparing it 
with the actual fair miss rates. We compute the actual 
fair miss rate for a thread by running this thread and a 
co-runner on a simulated dual-core machine with an 
equally partitioned cache (an equally partitioned cache 
ensures equal cache sharing). We compute the 
estimated fair miss rate by running each thread with 
several different co-runners, deriving the coefficients 
for Equation 1 by means of linear regression, and then 
using Equation 2. We validated the model for 
workloads where there was no data sharing among the 
co-runners. Studying whether data sharing affects the 
model is the subject of ongoing work. 

Figure 4 shows how the estimated fair miss rate 
compares to the actual miss rate. The names of the 
SPEC CPU2000 benchmarks are on the X-axis; the Y-
axis shows the cache miss rate for the actual and 
estimated fair miss rates for each benchmark. The 
estimated miss rates closely approximate the actual 
miss rates. The source of errors in the model is the 
implicit assumption that cache misses occur due to 
insufficient capacity, rather than changes in the 
working set or mapping conflicts. To account for these 
effects one would need to know about the workload’s 
memory access patterns; this information is expensive 
to obtain at runtime. Besides, on multicore processors, 
where cache is scarce, capacity misses dominate the 
miss rate. Our model provides a good combination of 
accuracy and efficiency, which makes it practical to 
use inside an operating system. We describe its 
implementation in Section 4.  
  
3.2 Fair CPI ratio 
 The fair CPI ratio is the number of cycles per 

Figure 4. Estimated vs. the actual fair cache miss rate. 
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instruction achieved by a thread under equal cache 
sharing. It is used to compute the adjustment to cache-
fair threads’  CPU quanta. To estimate it, we use an 
existing analytical model [29] adapted to our CPU 
architecture [30]. We describe the general form of the 
model and omit the details. The model has the form: 
 

sCacheStallLIdealCPICPI 2+=   (3), 
 
where IdealCPI is the CPI when there are no L2 cache 
misses, and L2CacheStalls is the per-instruction stall 
time due to handling L2 cache misses.  
 The expression for fair CPI is: 
 

sCacheStallFairLIdealCPIFairCPI 2+=  (4), 
 
where FairCPI  is the CPI when the thread experiences 
its fair cache miss rate. To estimate FairCPI, we need 
to determine (1) IdealCPI and (2) FairL2CacheStalls: 
 
Computing IdealCPI: We compute it using Equation 3. 
At runtime, we measure the thread’s actual CPI and 
the statistics needed to compute the thread’s actual 
L2CacheStalls. Subtracting L2CacheStalls from CPI  
gives us the thread’s IdealCPI. 
 
Computing FairL2CacheStalls: L2 cache stall time is a 
function of the cache miss rate, the per-miss memory 
stall time MemoryStalls (including memory latency 
and memory-bus delay), and the store buffer stall time1 
StoreBufferStalls: 
 

)rStallsStoreBuffe
,lsMemoryStal,MissRate(FCacheStalsL =2
 (5). 

FairL2CacheStalls is computed using the fair cache 
miss rate FairMissRate: 
 

)rStallsStoreBuffe
,lsMemoryStal,teFairMissRa(FsCacheStallFairL =2

         (6). 
 
FairMissRate is estimated as described in Section 3.1. 
We delay discussing estimation of MemoryStalls and 
StoreBufferStalls until Section 4, which describes how 
the models for fair cache miss rates and fair CPI are 
used inside the cache-fair scheduler. 

                                                   
1 A store buffer is the queue at the processor that allows non-
blocking writes: a writing thread places a value in the store 
buffer and continues without waiting for the write to 
propagate down the memory hierarchy.  If the store buffer 
becomes full, the thread stalls until space becomes available 
in the store buffer. 
 

 
4. IMPLEMENTATION 
 Recall that the cache-fair scheduler enforces an 
existing scheduling policy. We implemented our 
cache-fair scheduler in the Solaris 10 operating system 
on top of its fixed-priority scheduling policy (each 
thread has a fixed priority). Like conventional 
schedulers, our scheduler runs on every system clock 
tick for each running thread. It performs the 
housekeeping needed by the baseline fixed-priority 
policy for that thread. It also performs cache-fair-
specific processing, depending on the phase that the 
thread is undergoing.  

Each cache-fair thread goes through two phases, 
the reconnaissance phase and the calibration phase. 
The logical structure of these phases was described in 
Section 2 and is summarized in Figure 5. In this 
section, we describe how the phases are implemented, 
how often they are repeated and, in particular, how we 
obtain the inputs for the analytical models used inside 
the algorithm. Most inputs are obtained using hardware 
performance counters, which allow measuring thread-
specific runtime statistics [22]; such counters are 
typically available on modern processors [23,24], so 
our implementation is not limited to a specific 
hardware architecture.  

 
4.1 Reconnaissance phase 

The goal of the reconnaissance phase is to 
estimate a thread’s fair cache miss rate and generate 
inputs needed by the fair CPI model.  

Assume that a cache-fair thread T is in its 
reconnaissance phase. The cache-fair scheduler first 
measures the miss rates of T and the different co-
runners with which it runs. The scheduler does not 
force T to run with specific co-runners, but observes 
any co-runner combinations that appear on the 
processor.  

Whenever T appears on the CPU with a new 
group of co-runners, we reset the hardware counters. 

 
Figure 5. The structure of the cache-fair algorithm. 
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When any of the co-runners goes off the processor, we 
record the miss rate of T and the overall miss rate of its 
co-runners, generating a data point. By the end of the 
reconnaissance phase, we have approximately ten such 
data points. We perform linear regression analysis on 
these data points, as explained in Section 3.1, and 
generate linear equation coefficients for Equation 1. 
Then, using Equation 2, we estimate the fair cache 
miss rate for thread T.  Implementations of linear 
regression analysis usually require floating-point 
operations, which are not permitted inside the Solaris 
kernel, so we implemented linear regression using only 
integer operations.  
 During the reconnaissance phase, we also 
generate values for MemoryStalls and 
StoreBufferStalls needed as inputs for the fair CPU 
model used in the calibration phase. Recall that these 
values are used to compute FairL2CacheStalls 
(Section 3.2, Equation 6) and correspond to the 
memory and store buffer stall times that a thread 
would attain if it experienced its fair cache miss rate. 
Since we cannot measure these values directly we 
estimate them: we measure T’s actual memory and 
store buffer stall times as T runs in the reconnaissance 
phase, and then express them as linear functions of T’s 
cache miss rate. We substitute T’s fair cache miss rate 
into these equations to compute the store buffer and 
memory stall times for the FairL2CacheStalls model. 
  
4.2 Calibration phase 
 Upon completion of the reconnaissance phase 
thread T enters the calibration phase, where the 
scheduler periodically re-distributes, or calibrates, the 
CPU time. A single calibration involves adjusting T’s 
CPU quantum, based on how its actual CPI ratio 
differs from it fair CPI ratio, and selecting a best-effort 
thread whose quantum is adjusted correspondingly.  

Calculating the adjustment to the CPU quantum, 
described in Section 2, requires knowing T’s fair CPI 
ratio. In Section 3.2, we explained how to estimate it. 
The required inputs are: (1) the actual CPI, (2) the 
actual L2 cache stall time (L2CacheStalls), and (3) the 
L2 cache stall time corresponding to T’s fair cache 
miss rate (FairL2CacheStalls). Here is how we obtain 
these inputs: 
1. Actual CPI is computed by taking a ratio of the 

number of CPU cycles T has executed and the 
number of instructions T retired.  

2. The actual L2 cache stall time is estimated using 
the model expressed by Equation 5. The required 
inputs, i.e., the cache miss rate and the memory 
and store buffer stall times, are obtained from the 
hardware counters 

3. FairL2CacheStalls is estimated using the model 
expressed by Equation 6. The inputs are obtained 
using the inputs from the reconnaissance phase.  

 
Once T’ s fair CPI ratio is known, the scheduler 
compares it to T’s actual CPI and estimates the 
temporary adjustment to T’ s CPU quantum, so that by 
the end of its next quantum, T completes the number of 
instructions corresponding to its fair CPI. If T has been 
running faster than it would at its fair CPI, its quantum 
is decreased, and the quantum of some best-effort 
thread is increased correspondingly. In this case, we 
compensate the best-effort thread that has suffered the 
most performance penalty by increasing its quantum. If 
T has been running slower than it would at its fair CPI, 
its quantum is increased, and a best-effort thread’s 
quantum is decreased. In this case, we select the best-
effort thread that has suffered the least performance 
penalty. The adjustment to the best-effort thread’s CPU 
quantum is temporary: once the thread has run with the 
adjusted quantum, its quantum is reset to its original 
value. Section 5 evaluates the performance effects on 
best-effort threads. 
 
4.3 Phase duration and repetition 
 The reconnaissance phase needs to be sufficiently 
long to capture the long-term properties of the 
workload’s cache access patterns. Upon analysis of 
temporal variation of L2 cache access patterns for nine 
SPEC CPU2000 benchmarks, we found that most 
workloads (eight out of nine) had stable cache access 
patterns over time, and though there was occasional 
short-term variability, any window of 100 million 
instructions captured the long-term properties of the 
workload. Accordingly, we set the duration of the 
reconnaissance phase to 100 million instructions. 

After an initial reconnaissance phase, a cache-fair 
thread enters the calibration phase. In the calibration 
phase, the adjustments to the thread’s CPU quantum 
are performed every ten million instructions (roughly 
every clock tick). Frequent adjustments allow the 
cache-fair algorithm to be more responsive.  

A reconnaissance phase is repeated occasionally 
to account for changes in the thread’s cache access 
patterns, which would necessitate the need to re-
compute its fair cache miss rate. From our analysis of 
the benchmarks’  temporal behavior, we found that 
most workloads change their L2 cache access patterns 
gradually and infrequently, so it is appropriate to 
choose a fixed-sized repetition interval for the 
reconnaissance phase. We set it to one billion 
instructions.  
 Statically setting phase repetition intervals works 
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for most workloads, but for less-common workloads 
with frequently changing cache-access patterns, the 
frequency of reconnaissance phase needs to be 
determined dynamically. Standard techniques for 
phase detection [19] can be used to detect when the 
workload has changed its cache access patterns, and 
the reconnaissance phase can be performed every time 
such a change is detected. 
 
5. EVALUATION 

We evaluate our algorithm by demonstrating that 
it significantly reduces co-runner-dependent 
performance variability for the cache-fair threads. Co-
runner-dependent performance variability is the effect 
of unfair cache sharing, and by eliminating it, we 
address the problems resulting from unfair cache 
sharing. We also show that our algorithm has only a 
small performance penalty on best-effort threads. We 
begin by introducing our experimental setup and the 
workload. 
 
5.1 Experimental setup  
 We use Sun Microsystems’ multicore processor 
simulator [11] for the UltraSPARC T1 architecture [4]. 
The number of cores, the type of core (single-threaded 
or multithreaded), and the cache size are configurable. 
We configure our simulated machine with two single-
threaded cores and a shared L2 cache. Table 1 
summarizes the configuration parameters. This is a 
full-system simulator: it runs the complete operating 
system and applications unmodified. 
 Our workload consists of benchmarks from the 
SPEC CPU2000 suite [12]. This benchmark suite is 
commonly used for CPU studies and has been recently 
updated to include programs with large cache working 
sets, to reflect trends in modern commercial 
applications. This suite is built of real applications, 
with different cache access patterns [21]. For our 
experiments, we picked nine benchmarks that 
represent a variety of popular workloads: 
 
art   – image recognition  

crafty – game playing: chess  
gcc   – a compiler 
gzip   – a compression utility 
mcf   – combinatorial optimization 
parser  – word processing  
twolf  – place and route simulator 
vortex  – object-oriented database 
vpr    – FPGA circuit placement and routing 
 
We run each benchmark in two scenarios: in the slow 
schedule case, the  benchmark’s co-runners have high 
cache requirements; and in the fast schedule case, the 
co-runners have low cache requirements. In a slow 
schedule, a thread is likely to run more slowly than in 
the fast schedule, hence the naming of the two cases. In 
each of the schedules, the principal benchmark belongs 
to the cache-fair class and runs with three other 
application threads, one of which is in the best-effort 
class. Table 2 shows the schedules for each 
benchmark. 
 We run each schedule until the principal 
benchmark completes a segment of one hundred 
million instructions in the calibration phase; running to 
completion would take weeks on a simulator. We fast-
forward the simulation to the point where all 
benchmarks enter the main processing loop, and then 
perform the detailed simulation. All benchmarks are 
CPU-bound.  
 
5.2 Co-runner-dependent performance 
variability  
 We compare the time that it takes the principal 
benchmark to complete its work segments in the fast 
and slow schedules. We refer to this quantity as 
completion time. When running with a conventional 
fixed-priority scheduler, the difference between 
completion times in the fast and in the slow schedules 
is large, but when running with our cache fair 
scheduler, it is significantly smaller.  
 Figure 6 demonstrates normalized completion 
times with the conventional scheduler. The co-runner-

Processing 
cores 

Two single-threaded processing 
cores, each running at 992 MHz. 

L1 caches A 16KB instruction-cache and an 
8KB data cache per core. Each cache 
is four-way set associative. 

L2 cache 256KB, four-way banked, eight-way 
set associative, unified instruction 
and data. 

Memory bus 4 GB/s peak bandwidth 

Table 1. Architectural parameters of the simulated machine 

Principal Fast Schedule Slow Schedule 
art art,vpr,vpr,vortex art,gcc,mcf,gzip 

crafty crafty,vpr,vpr,vortex crafty,art,mcf,gzip 
gcc gcc,crafty,vortex,vpr gcc,art,mcf,gzip 

gzip gzip,vorex,vpr,vpr gzip,art,mcf,gcc 

mcf mcf,vpr,vpr,vortex mcf,art,gcc,gzip 
parser parser,crafty,vpr,vortex parser,art,mcf,gzip 

twolf twolf,vpr,vpr,vortex twolf,art,mcf,gzip 
vortex vortex,vpr,crafty,vpr vortex,art,mcf,gzip 

vpr vpr,crafty,vpr,vortex vpr,gcc,crafty,vortex 

Table 2. The schedules for each benchmark 
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dependent performance variability is evident for most 
benchmarks, and reaches as much as 36% for vortex. 
Vortex runs 36% slower in the slow schedule, because 
its L2 cache miss rate is 85% higher than in the fast 
schedule.  
 Figure 7 shows normalized completion times 
with the cache-fair scheduler. The variability is 
significantly smaller. For vortex, the difference in 
completion times was 7%, reduced by more than a 
factor of five. For gzip, the difference was reduced 
from 21% to 3%  – a factor of seven. One benchmark, 
crafty, that experienced only a small performance 
variability (2%) with the conventional scheduler, 
experienced a slightly higher variability with the 
cache-fair scheduler (4%); this was due to small errors 
in the model. The cache-fair scheduler reduced 
performance variability by at least a factor of two for 
the remaining benchmarks, which all experienced a 
significant variability (at least 8%) with the 
conventional scheduler. 
 
5.3 Effect on performance 
 We now evaluate the effect of our scheduling 
algorithm on absolute performance. As expected, 
applications with high cache requirements may 
experience longer completion times with the cache fair 
scheduler than with the conventional scheduler, 
because the cache-fair scheduler would reduce their 
CPU quantum to compensate them for occupying more 
than their fair share of the cache. Conversely, 
applications with low cache requirements may 
experience shorter completion times with the cache-
fair scheduler. 
 Figure 7 shows raw completion times for each 
benchmark in each schedule. There are four bars for 
each benchmark. The first two bars show the 
completion times for the fast and slow schedules with 
the cache-fair scheduler, the second two – with the 

conventional scheduler. Smaller bars indicate shorter 
completion times. 
 Applications with high cache requirements, 
especially mcf and art, have longer average 
completion times with the cache-fair scheduler. On the 
contrary, applications with low cache requirements, 
such as gzip and vpr, achieve shorter completion times 
with the cache-fair scheduler.  
 Such effect on absolute performance is expected. 
The goal of the cache-fair scheduler is to reduce the 
effects of unequal cache sharing on performance. 
Those applications that are hurt by unequal cache 
sharing experience improved performance, and vice 
versa. Nevertheless, all applications experience 
improved performance stability and predictability. 
 
5.4 Effect on best-effort threads 
 In our experiments, best-effort threads 
occasionally experienced a small performance 
degradation, and in some cases – a performance boost. 
The largest observed degradation was an 8% slowdown 
relative to a best-effort thread’s performance with the 
conventional scheduler. Best-effort threads 

Figure 6. Co-runner-dependent performance variability with 
the conventional scheduler. 
 

Figure 7. Co-runner-dependent performance variability with the 
cache-fair scheduler. 
 

Figure 8. Raw completion times in the fast and slow schedule 
with cache-fair and conventional scheduler. 
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experienced performance boost when their CPU shares 
increased in response to decrease in cache-fair threads’  
CPU shares. Although we did not observe significant 
degradation in best-effort thread performance in our 
experiments, it is important to prevent it in general. 
One way to do this is to limit how much the scheduler 
can reduce a best-effort thread’s CPU share. 
 
5.5 Comparison with cache partitioning 
 Recent research proposed using dynamic cache 
partitioning on multicore processors to address unequal 
cache sharing [7,13,33-35]. Although it has been 
shown that dynamic cache partitioning can be used to 
lessen the effects of “bad”  co-runners [7], we found 
that cache partitioning cannot reduce co-runner-
dependent performance variability to the extent that 
cache-fair thread scheduling does.  
 We implemented dynamic cache partitioning in 
our simulated processor in a similar fashion as was 
done in the recent work [7], and ran the nine 
benchmarks (in the same fast and slow schedules as 
shown in Table 2) on a dual-core machine with the 
cache equally partitioned among the cores. Partitioning 
reduced co-runner-dependent performance variability 
only for three out of nine benchmarks and made no 
difference for the remaining six benchmarks. While 
performance variability due to cache sharing was 
eliminated, there remained performance variability due 
to contention for the memory bus. (We confirmed that 
memory-bus contention was the problem by showing 
that running with unlimited memory-bus bandwidth 
eliminated performance variability.) Our cache-fair 
algorithm incorporates memory-bus delay into the fair 
CPI model, accounting for performance variability due 
to sharing of the memory bus.  
 
5.6 Scheduler overhead and scalability 
 The cache-fair scheduling algorithm was 
designed to avoid measurable performance overhead. 
Most of the work done during the reconnaissance 
phase involves accessing hardware performance 
counters, which involves only a few processor cycles 
per access. Our method for estimating the fair cache 
miss rate requires generating only about ten data points 
for each cache-fair thread, keeping memory overhead 
low. A small number of data points also limits the 
overhead of the linear regression, which runs in O(N) 
steps, where N is the number of data points. The 
calibration phase involves simple arithmetic operations 
and inexpensive access to hardware performance 
counters.  
 Scalability was an important design goal because 
the number of cores on multicore processors is likely 

to increase, and it is important that our algorithm work 
for future processor generations. Although we have not 
yet empirically evaluated the scalability of our 
algorithm, we believe our design will scale because we 
avoid inter-processor communication and because the 
amount of work done in phases of the algorithm is 
independent of the number of cores.  
 It has been shown that inter-processor 
communication can limit scalability of multiprocessor 
operating systems [10]. Our algorithm makes 
scheduling decisions using thread-local information, so 
there is no communication among the cores. This puts 
our solution at an advantage over algorithms for 
multicore processors that rely on co-scheduling, i.e. 
making sure that a thread only runs with the “ right” co-
runner [14-16]. Co-scheduling is difficult to implement 
without inter-core communication, because scheduling 
a thread to run on one core requires knowing what 
threads are running on other cores. 
 The amount of work done in the reconnaissance 
and calibration phases of the algorithm is fixed per 
thread. Although in the reconnaissance phase we 
measure the miss rates of the thread’s co-runners, the 
hardware allows measuring the aggregate miss rate of 
all of the co-runners, so the cost of this measurement 
does not increase with the number of cores. 
 
5.7 Applicability to other hardware 
architectures 
 The implementation of our algorithm has two 
hardware-specific components: the model for 
estimating fair CPI and the mechanism for accessing 
hardware performance counters.  
 Modeling CPI as the function of cache miss rate 
is well studied, and accurate models for different kinds 
of processors (single- and multithreaded cores, single-
issue and multiple-issue pipelines) exist [28-32,43]. 
Therefore, the fair CPI model can be easily adapted for 
most modern processors. 
 Our algorithm relies on runtime statistics that can 
be obtained from hardware performance counters. We 
used performance counters that are available on the 
UltraSPARC T1 processor [22]; other multicore 
processors have similar counters [23]. 
 We demonstrated how our algorithm targets 
performance variability due to sharing of the L2 cache, 
because studies have shown that the L2 cache is a 
performance-critical component on multicore 
processors [8,9]. Our technique also applies to 
processors with shared L1 [2,4] or L3 caches [1,3]. 
 
6. RELATED WORK 
 We discuss alternative ways to address the effects 
of unequal cache sharing in hardware and software.  
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 Multicore processor architectures that enforce 
fair resource sharing or expose control over resource 
allocation to the operating system have been proposed 
in the past [7,13,33-35]. Such hardware was used for 
improved performance predictability [33], fairness 
[7,34], and performance [13,35]. The advantage of a 
hardware solution is that it can be used to address fair 
resource sharing for all resources, not just CPU caches, 
so it could be used for processors that have shared 
resources other than caches. The downside of a 
hardware solution is higher cost and long time-to-
market of such hardware. To the best of our 
knowledge, none of the proposed hardware 
architectures has been made commercially available. 
Our scheduling algorithm can be used on systems that 
exist today, allowing applications to enjoy the benefits 
of multicore processors without losing attractive 
properties offered by thread schedulers on 
conventional processors.  
 Software solutions based on co-scheduling, i.e. 
aiming to select the “ right” co-runner for a thread, 
have been used to improve performance [14-15] and 
predictability [16]. Co-scheduling requires being able 
to determine how a thread’s performance is affected by 
a particular co-runner. To do this, previous work used 
performance models and heuristics. Effectiveness of 
these models and heuristics has been demonstrated on 
systems running at most four concurrent threads. It is 
not clear whether these methods will scale for 
multicore systems with larger degrees of concurrency 
[2,4]. Another limitation of co-scheduling is that if the 
right co-runner for a thread cannot be found, the 
thread’s performance remains vulnerable to co-runner-
dependent performance variability.  
 
7. SUMMARY 
 We presented the cache-fair scheduling 
algorithm, a new operating system scheduling 
algorithm for multicore processors. We evaluated our 
implementation of the algorithm in Solaris 10 and 
showed that it significantly reduces co-runner-
dependent performance variability, while imposing 
little penalty on best-effort threads.  
 Co-runner-dependent performance is the result of 
unequal cache sharing, and by eliminating it, we 
address the problems caused by unequal cache sharing. 
Using our algorithm, applications are not penalized for 
with “bad” co-runners. This permits better priority 
enforcement and results in improved fairness. Our 
technique enables fair CPU accounting in Grid 
systems: applications can be charged only for the CPU 
cycles given to them by the system scheduler, and not 
for the “compensation”  cycles given to them by the 
cache-fair scheduler. Finally, applications enjoy 

improved performance stability and predictability, 
which facilitates performance tuning and forecasting.  
 We demonstrated that our solution is viable by 
implementing it in a commercial operating system, 
relying only on features commonly available on 
commercial hardware and not requiring any advance 
knowledge about the workload.  
 Improved power efficiency and hardware 
utilization, and superior performance-per-watt ratio 
could make multicore processors the dominant CPU in 
the future.  In order to enjoy these benefits while 
retaining good systems properties that we have 
cultivated for years, we must adapt our software for 
this new hardware.  
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