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Abstract 

Nanoparticles containing high-Z elements are known to boost the efficacy of radiation therapy. 
Gadolinium (Gd) is particularly attractive because this element is also a positive contrast agent for 
MRI, which allows for the simultaneous use of imaging to guide the irradiation and to delineate the 
tumor. In this study, we used the Gd-based nanoparticles, AGuIX®. After intravenous injection 
into animals bearing B16F10 tumors, some nanoparticles remained inside the tumor cells for more 
than 24 hours, indicating that a single administration of nanoparticles might be sufficient for several 
irradiations. Combining AGuIX® with radiation therapy increases tumor cell death, and improves 
the life spans of animals bearing multiple brain melanoma metastases. These results provide pre-
clinical proof-of-concept for a phase I clinical trial. 

Key words: AGuIX, radiosensitizer, radiation therapy, brain metastases, nanoparticles, imaged-guided therapy, 
personalized medicine 

Introduction 
Despite recent outcome progress,[1-3] melanoma 

is still difficult to treat due to multidrug- and ra-
dio-resistance and high metastatic capacity.[4] In ap-
proximately 80% of cases, malignant melanomas tend 
to metastasize into the central nervous system;[5] this 
specific dissemination has a considerable effect on 
overall patient survival. Neurosurgeons and neu-
ro-oncologists have attained limited success using 
conventional treatments such as surgical resection[6, 
7] when possible, and radiation therapy with local 
approach,[8] stereotactic radiosurgery,[9] or in toto 
radiation with whole-brain radiotherapy (WBRT).[10] 

One method for enhancing the effect of radio-
therapy is to combine X-ray radiation exposure with 
metallic nanoparticles containing high-Z atoms. This 
approach has been known for at least 10 years,[11] 
and is based on the interaction of low-energy photons 
with these elements.[12-14] During this interaction, 
photons are absorbed by the nanoparticles, which 
subsequently release photoelectrons and Auger elec-
trons, leading to a local dose enhancement and the 
creation of reactive oxygen species (ROS), damaging 
the neighboring cells.[15] After IV injection, the parti-
cles can reach the tumor site through the passive en-

 
Ivyspring  

International Publisher 



 Theranostics 2016, Vol. 6, Issue 3 

 
http://www.thno.org 

419 

hanced permeability and retention effect (EPR ef-
fect).[16, 17] Gd-based nanoparticles are not only a 
radiosensitizer under the presence of photons at dif-
ferent energies, ions (such as He2+, 150 MeV/µma, 
linear energy transfer (LET) 2.33 KeV/μm) and had-
rons (C6+, 200 MeV/µma, LET 13 KeV/μm),[17-20] 
they can also act as T1 contrast agents for MRI.[13, 17, 
21-23] Therefore, they act as dual modality agents 
with both diagnostic and therapeutic applications. 

This paper focuses on radiotherapy enhance-
ment using small Gd-based nanoparticles, named 
AGuIX® (Activation and Guidance of Irradiation by 
X-ray). The study includes both a cellular model and a 
pre-clinical model consisting of multiple brain mela-
noma metastases to provide a proof of concept for a 
short term clinical trial for this pathology. In vitro, the 
combination of the nanoparticles and 2 Gy radiation 
was 52 % higher compared with radiation alone, with 
a significant increase in double strand breaks (DSBs), 
although the particles remained outside the nucleus. 
In vivo MRI confirmed the uptake of the nanoparticles 
by B16F10 brain metastases and increased during 
more than 3.5 hours as confirmed by two-photon 
confocal imaging. In addition, the signal remained for 
24 hours after injection. This long period of uptake 
allows the treatment to be performed for at least 2 
continuous days. The 7-Gy dose delivery increased 
the life spans of mice bearing multiple brain mela-
noma metastases by 8.3 %, whereas the combined 
treatment allowed an increase of up to 25 % compared 
with untreated mice, i.e., a threefold higher treatment 
efficacy. 

Materials and methods 
Cell culture  

B16F10 cells (# CRL-6475, LGC Promochem, 
Molsheim France), which are mouse skin melanoma 
cells, were cultured in Dulbecco's Modified Eagle 
Medium supplemented with 10 % fetal bovine serum 
(Pan-Biotech) and 1 % penicillin-streptomycin gluta-
mine (Pan-Biotic).[24] Cells were grown in a humidi-
fied incubator at 37°C and 5 % CO2. 

Confocal microscopy  
The experiment was performed using a LEICA 

confocal microscope system. The cells were thermo-
statically controlled and regulated in CO2. B16F10 
cells were grown in 4-well LabTek chambers I at a 
density of 10,000 cells/well. For localization studies, 
cells were incubated with 0.6 mg/L with AGuIX® 
functionalized with FITC as a fluorescent marker for 1 
hour. After incubation, cells were rinsed and then 
incubated with 5 µg/ml fluorescent Alexa Fluor 594 
wheat germ agglutinin (Image-iT LIVE Plasma 
Membrane and Nuclear labeling kit, Life Technolo-

gies) for highly selective staining of the plasma 
membrane for 10 minutes at 37°C and 5 % CO2. Af-
terwards, cells were suspended in Hank's balanced 
salt solution (HBSS) for imaging. FITC was excited at 
499 nm, and the fluorescence emission was detected at 
520 nm. Alexa Fluor 594 was excited at 592 nm, and 
emission was detected at 620 nm.  

Clonogenic survival assay  
Cells were seeded at a density of 40,000 

cells/cm2 and allowed to grow for 18 hours. The cells 
were incubated 1 hour with 0.6 mg/L with AGuIX® 
and then irradiated at different doses with 220 kV 
X-ray at a dose rate of 2 Gy/min. After irradiation, the 
cells were incubated for 1 hour. Afterwards, the cells 
were washed, trypsinized, and counted. The cells 
were then replated in 25-cm2 flasks and allowed to 
grow for six divisions (7 days) before staining with a 1 
% crystal violet and 10 % ethanol solution. The plates 
were allowed to dry overnight before being digitally 
counted for colonies. Clonogenic survival was fitted 
according to a linear quadratic model of the form SF= 
𝑒𝑒−(𝛼𝛼𝛼𝛼+𝛽𝛽𝛼𝛼2), where SF is the surviving fraction, and ɑ 
and β represent the probabilities of lethal and 
sub-lethal damage, respectively.[25, 26] The data were 
normalized to the platting efficiency (PE) of the con-
trol condition (0 Gy), i.e. PE = number of colony 
formed after six divisions / number of cells seeded. 
The experiments were performed in triplicate. 

γ-H2AX immunofluorescence assay  
After radiation exposure, cells were fixed at two 

time points, 0.5 and 24 hours, to study the γ-H2AX 
induction.[27] Cells were fixed with 4 % paraformal-
dehyde for 20 minutes. After fixation, cells were 
permeabilized with 0.5 % Triton X-100 and then 
blocked with 0.2 % skim milk, 0.1 % Triton X-100, and 
5 % FBS. The cells were then labeled with the primary 
antibody anti-phospho-histone H2AX (Merck Milli-
pore) and anti-mouse AlexaFluor-488 secondary an-
tibody (Molecular probes). Coverslips were mounted 
with VECTASHIELD mounting medium containing 
DAPI. γ-H2AX assays were scored using an Axio Im-
ager Z1 fluorescence microscope (Carl Zeiss S.A.S., Le 
Pecq, France), and the average number of foci was 
calculated for a minimum of 100 cells per slide. Ex-
perimental data represent the average of three inde-
pendent experiments. 

Tumor implantation  
The B16F10 cells (50,000 cells) were implanted in 

the brains of six-week-old C57BL/6J (Janvier, France) 
as previously described by Lamoral-Theys et al.[28] or 
subcutaneously (106 cells suspended in 100 µl culture 
medium) for the intravital two-photon study. All mice 
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were housed in a specific pathogen-free (SPF) envi-
ronment, and procedures were performed in accord-
ance with the Institutional Animal Care and User 
Committee at the University of Lyon and Grenoble, 
France. The research involving animals was author-
ized and was provided an agreement number (L. 
Sancey, Ph.D., permit number 380922). All efforts 
were made to minimize the number of animals used 
and their suffering due to the experimental proce-
dure. 

Irradiation set up  
For the in vitro experiments, radiation exposure 

was performed using a 220 kV X-ray generator (2 mm 
Al filter - Precision X-ray Inc., North Branford, CT) at 
doses ranging from 0 to 8 Gy. Cells were irradiated 
using a source-to-surface distance of 50 cm and a dose 
rate of 2 Gy/min. During the in vivo experiments, the 
radiation exposure was performed using a 
source-to-surface distance of 35 cm, using 320 kV 
X-ray generator (1.5 mm Al, 0.25 mm Cu, 0.75 mm Sn 
filter). The dose rate was verified by ionization 
chamber. The animals were injected intravenously 
with nanoparticles 3.5 hours before radiation expo-
sure.  

Magnetic resonance imaging 
Mice were imaged before and after IV injection 

with 10 mg of AGuIX®. MRI was performed using a 
4.7 T scanner (Biospec 47/40 USR AV III, Bruker, 
Germany; IRMaGe Facility Grenoble) equipped with a 
12 cm inner diameter, actively shielded gradient in-
sert (640 mT/m in 120 μs). Actively decoupled vol-
ume and surface coils were used for excitation and 
reception, respectively (Bruker, Germany). Animals 
were placed in the prone position. All images were 
acquired in the coronal orientation. The data were 
processed using Matlab (v7.6, The MathWorks Inc., 
Natick, MA, USA). The Contrast-to-Noise Ratio 
(CNR) was computed as the difference between the 
signal in the tumor and in the healthy tissue, normal-
ized by the SD of the image noise. 

Intravital microscopy - two-photon microsco-
py 

Two-photon microscopy was performed as pre-
viously described in Sancey et al. [29] using an LSM 
7MP (Zeiss, Germany) equipped with a 20X wa-
ter-immersion objective (NA 1.0, Zeiss Jena Germany) 
and ZEN 2010 software on mice-bearing subcutane-
ous B16F10 tumors. Laser excitation was performed at 
800 nm with a Ti:sapphire laser (Chameleon vision II; 
Coherent, UK) using a constant laser power of ap-
proximately 60 mW. Fluorescence emission was de-
tected by photomultiplier tubes in nondescanned 
mode with a 492/SP25 nm filter for fluorescence 

emission, and a 617/73 nm filter (filters from Sem-
rock, US) for red fluorescence emission (rhodamine 
B).  

Small animal radiation  
Animals were anesthetized with 2 % isoflurane 

for the duration of the treatment. Animals treated 
with AGuIX® (10 mg, IV injection) were exposed to 
radiation 3.5 hours after injection. Only the head of 
the animals was placed under the collimated 320 kV 
beam (12 mm-size). The dose was delivered in 1 frac-
tion of 7 Gy at a dose rate of 2 Gy/min. Prior to the 
irradiation, the treatment planning system Muriplan 
(V.1.3.0) was used to calculate the dose distribution in 
the tumor and in some healthy organs. The radiosen-
sitivity response of the tumor was evaluated using 3 
groups composed of 8 to 10 mice each. Animals 
without nanoparticles and radiation and animals 
treated with AGuIX® only were merged into a single 
group of 10 mice because the survival was exactly the 
same, as previously described in other reports.[30]  

Statistical analysis 
All experiments were carried out in triplicate 

with the results expressed as the mean ± standard 
error (SE). Statistically significant differences were 
calculated using a two-tailed unpaired t-test or 
one-way analysis of variance; p-values of < 0.05(*), and 
< 0.01(**) were considered significant. For in vivo in-
vestigations, to study the effect of treatment on the 
survival of B16F10-bearing mice, the mean survival 
time (MST), standard error (SE), and median survival 
time (MeST) were calculated for each group using the 
Kaplan-Meier estimate (Madsen 1986, Statistical con-
cepts prentice Hall, Englewood Cliffs, NJ). A log-rank 
test was used to determine the p-value for the 
Kaplan-Meier curve. The p-value for the chi-squared 
test was calculated using StatsDirect statistics soft-
ware (StatsDirect Ltd., UK). 

Results  
Nanoparticle characteristics 

The synthesis and main characteristics of 
AGuIX® have been previously reported.[31, 32] 
Briefly, AGuIX® are composed of a polysiloxane 
network surrounded by Gd chelates similar to DOTA 
(1,4,7,10-tetra-azacyclododecane-1-glutaric anhy-
dride-4,7,10-triacetic acid) that are covalently grafted 
to an inorganic matrix. The hydrodynamic diameter 
of the AGuIX® is 3 ± 0.1 nm for a mass of 8.5 ± 1 kDa 
and a slightly positive zeta potential at pH 7.2, as 
shown in Figure 1. For some of the experiments, the 
AGuIX® have been labeled with fluorescein isothio-
cyanate (FITC). 
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Figure 1. AGuIX® and their characteristics. (a) Representation of the nanoparticles with the following color code: green = Si, red = C, violet = Gd, blue = N, and white 
= H; (b) Hydrodynamic diameter of the nanoparticles; (c) Zeta potential of the nanoparticles; (d) Summary of the main characteristics. 

 
Figure 2. Cellular uptake of AGuIX® in B16F10 cells. (a-c) Fluorescence image of B16F10 cells obtained by confocal microscopy 1 hour after the addition of 0.6 g/L 
AGuIX® conjugated to FITC (a). The plasma membranes were labeled in red (b), and the merged image is presented in (c).  

 

In vitro investigations 

Cell uptake 
The internalization of AGuIX® was first inves-

tigated. Their cell uptake was observed after 1 hour of 
incubation with 0.6 mg/L in the cell culture medium, 
corresponding to 0.4 pg of Gd per cell. This concen-
tration was not toxic to the cells in the absence of ra-
diation exposure and was similar to the values from 
other in vitro investigations using the AGuIX®.[20, 30, 
33] Confocal imaging demonstrated that the 
FITC-labeled particles were located in the cytoplasm 
of the melanoma cells and inside vesicles (Fig. 2a-c), 
and confirmed by TEM imaging (Supplementary in-
formation). Similarly to previously reported studies 
on various cell types, B16F10 cells are able to effi-
ciently internalize AGuIX®.[30, 33, 34] 

Cell radiation exposure 
To assess the efficacy of AGuIX® as radiosensi-

tizers, a clonogenic cell survival assay was performed. 
As indicated in Figure 3a, compared with control 
cells, cells incubated with AGuIX® were sensitized to 
radiation with a sensitivity enhancement ratio (SER) 
of 2.08 at 2 Gy (Table 1). A dose enhancement fraction 
(DEF) of 1.3 was calculated from the clonogenic assay 
results when the AGuIX® were incubated for 1 hour 
before irradiation. Both the radiation dose inducing 50 
% survival (D50%) and the survival fraction at 2 Gy 
(SF2) decreased in the presence of the nanoparticles. 
Moreover, the presence of AGuIX® strongly increased 
the directly lethal damage (increase in α factor), as 
previously reported for the irradiation of radiore-
sistant head and neck carcinoma cells with these na-
noparticles.[30]  



 Theranostics 2016, Vol. 6, Issue 3 

 
http://www.thno.org 

422 

 
Figure 3. Radiation exposure of B16F10 cells. (a) Surviving fraction of B16F10 after radiation exposure without nanoparticles (blue) and with incubation with 0.6 g/L 
AGuIX® nanoparticles (red) 1 hour prior to irradiation with 220 kV X-ray. Regression analysis was used to fit the data to a linear quadratic model of the form log 𝑆𝑆𝑆𝑆 =  ɑ ∗ 𝐷𝐷 +
𝛽𝛽 ∗ 𝐷𝐷2 (n = 3 / point). (b) Representative images of γ-H2AX foci and (c) their quantification at 0.5 (left panel) and 24 hours (right panel) after exposure to 2 Gy radiation. (d) 
Percentage of cells having a specific foci class for a total of 350 cells counted per condition. Error bars represent the standard error of the mean of three independent ex-
periments. 

 
Table 1. Radiation response of B16F10 cells untreated or 
treated with AGuIX®. The sensitivity enhancement ratio (SER) 
was calculated as the ratio of cell survival without and with 
AGuIX® treatment at 2 Gy. Additionally, the percentage en-
hancement factor at 2 Gy was calculated as %𝐸𝐸𝑆𝑆 = 100 ×
(𝐸𝐸𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

2 𝐺𝐺𝐺𝐺 − 𝐸𝐸𝑆𝑆𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴
2 𝐺𝐺𝐺𝐺 ) 𝐸𝐸𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

2 𝐺𝐺𝐺𝐺� . DEF is the dose enhancement 
fraction; SF2 is the survival fraction at 2 Gy. 

 ɑ 
(Gy-1) 

β 
(Gy-2) 

D50% 
(Gy) 

SF2 %EF 
2Gy 

DEF SER 2Gy 

Control 0.04 0.26 4.5 0.96 - -  
0.6 mg/L AGuIX 0.26 0.022 1.8 0.46 52 % 1.3 2.08 

 
 
In addition, γ-H2AX assays provide information 

on the DNA alteration after cell exposure to radiation 
through measurement of DNA DSBs. After incubation 

with the nanoparticles and a 2 Gy radiation exposure, 
both the initial (0.5 hour) and residual (24 hours) foci 
were quantified (Fig. 3b-d). The resulting foci were 
compared to those of the control group (exposed cells 
without nanoparticle incubation). Thirty minutes after 
radiation exposure, the induced foci were not signifi-
cantly different between cells incubated with and 
without nanoparticles. However, 24 hours after irra-
diation, the foci disappearance is associated with the 
DNA damage repair.[35] At this time point, the DNA 
breaks returned to a low level for the cells that were 
treated with irradiation alone, reflecting the radiore-
sistance of B16F10 cells. In contrast, DSBs persisted in 
the cells treated with the combination of radiation and 
the nanoparticles, resulting in 19.3 ± 0.9 foci/nucleus 
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versus 28 ± 1 foci/nucleus (p = 0.04), respectively. At 
24 hours, the damage observed after irradiation with 
AGuIX® corresponded to 44 % of the initial damage. 
Additionally, the combination of radiation exposure 
and nanoparticles led to a 45 % enhancement in the 
DSBs compared to the irradiation only. Compared 
with previous investigations using similar conditions 
for other tumor cell lines, the response varied at 30 
minutes and was slightly lower at 24 hours, indicating 
a cell type-dependent response.[30] Figure 3d shows 
that an increasing percentage of cells have a large 
number of foci (greater than 20 foci) when AGuIX® 
were used in combination with an external X-ray 
beam. 

In vivo studies 

Tumor model and protocol adjustment 
To assess the efficacy of AGuIX® as radiosensi-

tizer, a multiple brain metastases model was selected. 
B16F10 mouse melanoma cells were orthotopically 
grafted into mouse brains to mimic melanoma brain 
metastases (Fig. 4a-b), a feature that occurs in a large 
proportion of melanoma patients and contributes to 
the exceedingly poor prognosis.[36, 37] As indicated 
in Figure 4a-b, the cells rapidly formed a main tumor 
with many metastases that were present in both 
hemispheres, from the frontal to the occipital lobes. 

Imaging was performed on mice to determine 
the optimal treatment protocol. First, due to the 
presence of Gd in the nanoparticles, T1-weighted MR 
imaging was performed at 4.7T 4 and 5 days after 
tumor implantation. On day 4, the tumors were too 
small for imaging (not shown), but on day 5, AGuIX® 

efficiently reached the tumors (Fig 4c). Thus, T1-MRI 
can efficiently be performed using AGuIX® as con-
trast agent to visualize the tumor area.  

Due to the small size of both the mouse brain 
and the metastases, most of the time, only the main 
tumor was observed on day 5, as indicated in Figure 
4c, with a CNR of 20.99 for the tumor vs. contralateral 
hemisphere and 59.56 for the tumor vs. muscle. In-
travital two-photon imaging using fluorescent 
AGuIX® confirmed the nanoparticle accumulation 
within the tumor area. In this experiment, the tumor 
was implanted sub-cutaneously to facilitate the ac-
quisition. A kinetics experiment was performed to 
determine not only the amount of nanoparticles 
within the tumor but also their fine distribution 
within tumor cells and the extracellular matrix (Fig 
4d-f). Within the first hour after injection, most of the 
fluorescence was observed as a diffuse signal in the 
extracellular environment. Then, from 1 to 3.5 hours, 
the fluorescence signal increased and assumed the 
form of small dots within the tumor cells, meaning 
that some AGuIX® were actively internalized into 
vesicles over time. The signal was still observed 24 
hours after injection with relatively high persistence 
(31 % compared with that at 1 hour) (Fig 4g). 

This study in mice suggests that radiation ex-
posure might be performed from 1 to 24 hours after 
injection with substantial nanoparticle uptake in tu-
mors and a low background in the surrounding 
healthy tissue due to both the 21-minute blood 
half-life [29] of AGuIX® and the absence of extrava-
sation from the normal blood vessels of healthy tis-
sues.  

 
Figure 4. Brain tumor distribution of AGuIX®. (a) Mouse brains 5 and 10 days after B16F10 implantation and (b) the corresponding H&S section. The arrows indicate the 
localization of tumor metastases. Note that metastases are black due to the high secretion of melanin. (c) T1-weighted images of the brain of B16F10-bearing mouse (spatial 
resolution of 156 µm). The images were acquired before and 3.5 hours after an intravenous injection of 0.2 ml of particles (50 g/L) at day 5. The tumors were revealed by the 
T1-positive particles. (d-f) Intravital two-photon microscopy of labeled particles in subcutaneous B16F10 tumors at 1 hour, 3.5 hours and 24 hours after injection, and (g) the 
corresponding normalized cell fluorescence (CFCT). CFCT was calculated as CFCT = Integrated Density – (Area of selected cell × Mean fluorescence of background reading). 
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Radiation exposure and overall survival 
In common clinical practice, 3D calculations of 

radiation dose based on imaging and geometrical 
control of the radiation beams are used to minimize 
damage to organs-at-risk. In our preclinical study, 
cone-beam CT was performed prior to the therapy 
radiation exposure to calculate the expected radiation 
dose to the brain, the metastases, and other organs at 
risk, such as eyes. The dose-volume histogram (DVH) 
showed that 95 % of the brain was covered by the 
prescription dose (Fig. 5a-b). We also calculated a 
relative dose of 51.5 % of the prescription for the eyes. 
While this is higher than typical clinical WBRT pro-
cedures, deleterious effects were not observed in our 
study likely because of the short survival time for all 
experimental arms 

It has been demonstrated that AGuIX® accu-
mulate passively in brain tumors. This phenomenon 
has previously been reported in brain tumor-bearing 
animals when the blood brain barrier is damaged.[17, 
22, 38] Based on the imaging investigations performed 
on B16F10 brain metastases (Fig 4c-f), the therapeutic 

irradiation was performed five days after tumor im-
plantation and at 3.5 hours post IV injection of 
AGuIX® for highest tumor to healthy tissue ratio. As 
summarized in Figure 5c and Table 2, the pathology is 
very aggressive without any animals surviving for 
more than 14 days after tumor implantation for the 
control group. After a single 7-Gy radiation exposure, 
the increase in life span (ILS) was 8.3 % for the ani-
mals that were only irradiated and increased to 25 % 
with the injection of AGuIX® prior to radiation, cor-
responding to a 3-fold higher treatment efficacy 
(p=0.0025) when compared with control group. After 
brain sampling, the metastases were observed in all 
groups (Fig. 5d).  

 

Table 2. Main survival data. Main survival data of mice bearing 
B16F10 brain metastases following radiation exposure with or 
without pre-injection of AGuIX®. 

Treatment group n Survival time (days)  ILS vs. control 
  Mean ± SE MeST  Mean MeST 
Control 10 11.9 ± 0.6 12  - - 
7 Gy 8 13.7 ± 0.6 13  15.1 % 8.3 % 
10 mg + 7 Gy 9 15.4 ± 0.5 15  29.4 % 25 %  

 
 

 
Figure 5. In vivo radiation exposure in combination with AGuIX®. (a) Coronal and sagittal views from cone-beam CT performed for the treatment planning. The purple 
lines correspond to the beam, the red line to the 100 % isodose, the orange line to the 75 % isodose, and the green line to the 5 % isodose. (b) Dose-volume histogram (DVH) 
showing the percentage of the volume receiving the prescribed dose in the brain region, including the metastases and the eyes (7 Gy in 1 fraction with unique vertical beams). (c) 
Kaplan-Meier survival curve comparison obtained for brain B16F10 metastases-bearing mice without treatment (black curve, n = 10, including 5 mice injected with particles 
without radiation exposure), those only treated with 7 Gy radiation exposure (blue curve, n = 8), and those treated with a combination of nanoparticles (10 mg, 3.5 hours after 
IV injection) and 7 Gy radiation exposure (red curve, n = 9) (p < 0.001). (d) H&E staining of brains in the different conditions. Production of melanin might be observed in the 
metastases. 
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Discussion 
Improvement of radiation therapy while sparing 

the healthy surrounding tissue requires either ad-
vanced technology [39, 40] or a combination of im-
age-guided therapy with radiosensitization com-
pounds.[20, 41] Among the agents that are able to 
enhance the radiation dose, high-Z nanoparticles such 
as the Gd-based AGuIX® have excellent potential as 
radiosensitizers, principally due to the superior 
cross-section for high atomic number elements during 
photon irradiation. Since 2004,[11, 42] Gold nanopar-
ticles have been the subject of in vitro and in vivo ra-
diosensitization studies including recent papers with 
improved tumor growth control.[43, 44] Nevertheless, 
there is no clinical trial currently in progress for radi-
osensitization using Gold-based nanoparticles. The in 
vivo efficacy of IV injected AGuIX® has recently been 
reported for aggressive pathologies, such as 
glioma,[17, 20, 45] pancreatic adenocarcinoma,[46] 
melanoma [20] and in this paper for brain melanoma 
metastases. Moreover, due to the presence of Gd, the 
particles can be used as a T1-positive MRI contrast 
agent and thus perform the double role of radiosensi-
tizer and imaging agent. The accumulation of 
AGuIX® in the tumor occurs through the enhanced 
permeability and retention (EPR) effect.[16, 17, 20] 
Efficient renal elimination of AGuIX® has been 
demonstrated elsewhere.[29] The tumor to healthy 
tissues ratio of IV injected AGuIX® is highly favorable 
for both imaging and therapy for a window of several 
hours, although the exact kinetics will be patient and 
tumor specific.[17, 20]  

In this study, we demonstrated that the AGuIX® 
are internalized in vitro in small vesicles in the B16F10 
cells. This internalization has been observed using 
both fluorescent and label-free nanoparticles. In vitro, 
a dose enhancement fraction (DEF) of 1.3 was calcu-
lated from the clonogenic assay. This radiosensitiza-
tion is correlated to the enhancement of DNA DSBs, 
and to the augmentation of the number of cells pre-
senting a high number of foci (Fig. 3d). These results 
are in concordance with previous in vitro studies.[30, 
33, 34] The AGuIX® reached the tumor after IV ad-
ministration and were internalized into cells in small 
vesicles, similar to in vitro accumulation, from 1 hour 
to 24 hours in this model. The radiosensitization was 
also demonstrated in vivo with an increase of the an-
imal’s lifespan after treatment by the combination of 
AGuIX® and radiotherapy. 

Clinically, AGuIX® could be useful for several 
clinical applications. In addition to enhanced radia-
tion therapy, MRI contrast enhancement would be 
beneficial for treatment planning simulation, patient 
set-up and real-time guidance. Tumor delineation 

should be much improved over CT-only imaging. If 
confirmed in humans, the long-term persistence of 
AGuIX® in tumor cells may enable dose enhancement 
for multiple radiation treatments. Extensive studies 
performed in rodents and non-human primates, 
demonstrated no adverse effects even at high repeat-
ed doses (to be published separately). These studies 
combined supply a strong rationale for a future clini-
cal trial with AGuIX®. 

Conclusion  
In summary, we have demonstrated the thera-

peutic efficacy of Gd-based nanoparticles, AGuIX®, 
as a radiosensitizer in an aggressive pathology, i.e. 
multiple brain metastases. In addition, AGuIX® are 
effective T1-MRI contrast agents. The combination of 
AGuIX® and irradiation created significant dose en-
hancement in vitro, and improved the survival of mice 
bearing aggressive brain tumors. This study demon-
strated the safety and efficacy of AGuIX® as a poten-
tial clinical contrast agent and radiosensitizer.  

Supplementary Material  
Figures S1. http://www.thno.org/v06p0418s1.pdf 
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