
Clilets: Web Applications with Secure Client-Side
Storage

Citation
Fischer, Robert and Margo Seltzer. 2002. Clilets: Web Applications with Secure Client-Side
Storage. Harvard Computer Science Group Technical Report TR-11-02.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104426

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104426
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Clilets:%20Web%20Applications%20with%20Secure%20Client-Side%20Storage&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=87c113af2a8f4b67058f5321d57ef5f5&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Clilets: Web Applications with
Secure Client-Side Storage

Robert Fischer
and

Margo Seltzer

TR-11-02

Computer Science Group
Harvard University

Cambridge, Massachusetts

Clilets: Web Applications with Secure Client-Side Storage∗

Robert Fischer Margo Seltzer
{citibob,margo}@eecs.harvard.edu

Abstract

Today’s web applications require that all data be visible
to the server. This is a problem in cases, such as a Web
Tax service, where the user may not trust the server with
the data. We present the Clilet system, a new web ap-
plication system that allows sensitive data to be stored
securely on the client yet still accessed by the web applic-
ation. The system ensures that this data is not transmitted
to the server, even though no trust is shared between cli-
ent and server. We have built a working prototype.

1 Introduction

Web applications generally process data of some sort:
bank account transactions, airline reservations, etc. Whether
that data is stored in a database on the server or in cook-
ies on the client, it is visible to the server. Therefore, the
user must trust the web application with all data that it
processes. If the data originate with the web server, then
it is certainly acceptable that the web server has access to
it.

However, when those data originate from the user,
sharing them with the server may require a level of trust
with which the user is not entirely comfortable. It is
neither necessary nor desirable that users should be re-
quired to reveal personal or private information to a web
server simply to use the services provided by that server.1

This required trust relationship can become problematic
in a number of real-world scenarios:

Tax Preparation Software Some tax preparation ser-
vices provide web applications that process tax forms.

∗Submitted to 3rd USENIX Symposium on Internet Technologies
and Systems (USITS ’03)

1Note that SSL, the basis for the HTTPS protocol, only protects
personal data while it is in transit to the server. It does not provide
privacy once the data reaches the server.

In using these “Web Tax” applications, the user must re-
veal all relevant tax data to the preparation service via the
web, thereby trusting the Web Tax service with sensitive
financial information. Even if the service’s intentions are
good, the fact that it has so much personal tax data ag-
gregated in one place makes it a prime target for hackers
or other intrusions.

Banking Web Site Consider a bank web site that provides
a check register maintenance service for its customers.
When the user logs on, the bank provides a record of
checks that have cleared (by check number), the date they
cleared, and their dollar amount. By summing the cleared
checks, the service also computes an account balance.

There might be additional information relevant to the
account and necessary to compute its balance, e.g., a re-
cord of uncleared checks, a description of each check.
The bank cannot provide this information: it generally
does not read handwriting on checks, and it cannot know
about checks that have not yet cleared. The bank allows
users to add this information to their on-line account re-
cord, thereby constructing a complete version of the ac-
count status. That way, the user does not have to inter-
pret check numbers seen on the screen, and the displayed
check register has an up-to-date account balance that in-
cludes uncleared checks.

However, the customer might not trust the bank with
this “extra” information. For example, a bank user prob-
ably does not wish for the bank to know that s/he know-
ingly wrote a check for more than the current balance, an-
ticipating a deposit to be made before that check clears.
Alternately, the user might be involved in an embarrass-
ing activity about which the bank (or others) ought not
know: e.g., that the innocuous $1,000 check was for the
President’s party.

Shared Calendars Web-based calendars allow users to
keep track of their schedules and coordinate with others.

1

Clilets: Harvard DEAS TR 11-02 2

The web, by allowing the sharing of information between
users, is a perfect medium for this task. However, certain
information, meant only for the user’s private calendar,
should not be shared. For example, a user might not want
the boss to know of the planned trip to Vegas on a sick
day.

Not trusting centralized web servers with their private
appointment data, users will typically keep two calen-
dars: one on the web for public data, and one for private
data. They must manually "integrate" the information
on the two calendars when considering their schedule.
It would be nice if one integrated application could se-
curely handle both sets of data.

Discussion

Today’s web application protocols do not provide the re-
quired security for sensitive user data. In all three cases
above, it is simply a matter of convenience that the server
has access to the data; no one has come up with an al-
ternate architecture that would permit the preservation of
user data privacy. As a result, the potential of today’s
web applications is far from realized: savvy users are of-
ten not willing to use them due to these very real security
concerns.

In order to address these concerns, we have developed
a new application-level web architecture and protocol,
called theClilet System. As with HTTP/HTML, a stand-
ardized browser, called theClilet browser, functions as a
client for all applications following the Clilet protocol.
However, the Clilet system allows the application de-
veloper to specify that certain pieces of data are private.
They are stored on the client, generally in a database or
other type of persistent storage. The Clilet browser ad-
vertises this fact to the user via visual cues (e.g., the color
or style of text on the screen).

Although data stored on the client is not revealed to
the server, the web application is still allowed to access
and process that data. Thus, we have a seeming para-
dox. The web application must be able to process, read
and write client-side data, but the server on which it is
running is not allowed access to that data.

We have developed a fully secure, fully functional
prototype implementation of the Clilet system, which in-
cludes a Clilet browser, a server development framework,
and a sample server. In this paper, we will focus on the
browser because that is the component requiring new se-
curity mechanisms.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the Clilet protocol and discusses its se-
curity requirements. Section 3 describes our prototype
implementation. Because it executes mobile code on the
client, the Clilet system introduces a number of interest-
ing problems that must be addressed in order to achieve
the stated goal of Client data privacy; some are new prob-
lems, whereas others have already been solved in the lit-
erature. Sections 4 and 5, discuss security mechanisms in
the Clilet browser. Finally, we offer possible applications
of the Clilet system and its technology in Section 6. We
point to directions for further research in Section 7 and
conclude in Section 8.

2 Clilet Protocol

The main goal of the Clilet system is to allow web ap-
plications to store and process data in the Clilet browser
without being able to leak that data to the server. We call
this dataprivate data.

To users sitting at a Clilet browser, a Clilet protocol
session works much like an HTTP/HTML session. Users
are presented an HTML page, with which they interact.
When a user clicks on an anchor or form submit button,
the Clilet browser initiates a round-trip communication
with the server, called aninterchange; the effect of that
communication is to display a new HTML page in the
browser. Sessions are managed through the use of ses-
sion keys shared between browser and server.

The workings of the Clilet protocol are similar to
HTTP, with one important difference. Rather than re-
turning HTML to the browser, the server returns aclilet
— a kind of mobile agent that includes data and execut-
able code. The clilet, when run, produces HTML, which
is displayed to the user.

Clilets are sent to the Clilet browser in two pieces, the
public clilet segmentand theprivate clilet segment. The
public clilet segment generates the bulk of the HTML.
The private clilet segment is responsible for reading and
writing private data, and for generating HTML that will
display that data to the user.

Protecting the privacy of private data is a hard prob-
lem because of the unique trust model in which the Cli-
let system operates. Although the Clilet browser is con-
sidered to be trusted, the server and its clilets are com-
pletely untrusted. The Clilet browser must allow for un-
trusted clilets to run and access private data, but not to

Clilets: Harvard DEAS TR 11-02 3

collaborate with the server in transmitting that data to the
server.

2.1 Clilet Execution

Clilet execution begins at an entry point in the public cli-
let segment; from that point, a single thread of control
passes between public and private clilet segments. Every
time control switches from public to private clilet seg-
ment, we say the clilet hasswitched context. Context
switches are necessary because only the private clilet seg-
ment is allowed to access private data, whereas only the
public clilet segment is allowed to write certain kinds of
HTML.

The two clilet segments collaborate to generate the
HTML page that the user will see, successively append-
ing to the end of the output as they run. Clilets are al-
lowed write-only access to the output stream. The res-
ulting HTML therefore consists of an alternating series
of segments, calledpublic HTML segmentsandprivate
HTML segments; they are written by the public and private
clilet segments, respectively.

2.2 Information Flow

Having restricted private data access to the private clilet
segment, we must prevent the flow of information from
the private clilet segment to all other untrusted entities
in our system: that is, to the public clilet segment or to
the server. If we can do this, then we can be sure that
user data privacy is maintained, even though we have
provided a piece of untrusted code — the private clilet
segment — access to the private data.

We have taken the obvious step of sandboxing the
private clilet segment so it cannot communicate directly
with the server. However, there are three other ways the
private clilet segment might indirectly transmit data to
the server:

Information Flow via Public Clilet Segment: The private
clilet segment transmits data to the public clilet
segment, which then communicates it to the server.

Information Flow via HTML: The private clilet segment
writes data into anchors or form elements, which
are then transmitted to the server when the user
interacts with the resulting HTML page. For ex-
ample, the private clilet segment might put private
data into an anchor’s URL.

Information Flow via User: The clilet tricks the user into
manually revealing private data to the server. For
example, the Web Tax system might get the user to
click on a different anchor depending on that user’s
income.

Since we do not use static information flow analysis
on the clilets [3, 5, 6], we must assume that any and all
communication between the private clilet segment and
other entitiesmightbe transmitting information.

The Clilet browser contains sub-systems that prevent
these communications. TheMulti-Domain Sandbox(Sec-
tion 4) prevents information flow from private to public
clilet segment. TheHTML Verifier (Section 5) prevents
information flow to the server via HTML; it prevents,
for example, private clilet segments from writing anchors
into the HTML output stream.

There is unfortunately no way to prevent information
flow via the user. Depending on the application, the sub-
tleties involved could challenge even astute users. For
example, the Web Tax system — or even a traditional
web site that just serves up tax forms — might gain in-
formation about the user’s financial state based on the set
of forms downloaded.

Any secure system can be compromised unwittingly
by its users actions. Users must understand the security
model in order to maintain it. Future research could focus
on conveying the security model effectively, so that they
do not inadevertantly leak private data.

2.3 Other Security Properties

In addition to user data privacy, a number of other se-
curity properties most be maintained by any realistic Cli-
let system. For example, clilets should not be able to
initiate worms or viruses. Browsers and servers should
have strong ways to authenticate each other. Communic-
ation between browser and server should be encrypted to
maintain privacy. If the Clilet browser is running on a
multi-user system, its data must be kept secure from un-
authorized users.

These and other security properties have been extens-
ively studied. We have implemented them, or weak ver-
sions of them, only as necessary to demonstrate the viab-
ility of user data privacy as a useful and implementable
security property. Classical security mechanisms can be
“added on” to the Clilet system as needed, in the obvi-
ous ways, to produce a system that meets the security

Clilets: Harvard DEAS TR 11-02 4

requirements for a specific application. Their omission
in this paper does not necessarily indicate a flaw in the
idea of user data privacy or in the methods we use to im-
plement it.

2.4 Conclusion

Beginning with a trust model, we built an architecture in
which only the (untrusted) private clilet segment is al-
lowed access to private data. From there, we concerned
ourselves with preventing the flow of that information
from the private clilet segment to other untrusted entities,
such as the public clilet segment or the server. We built
two client-side mechanisms to prevent these information
flows: theMulti-Domain Sandboxand theHTML Veri-
fier. We also examined information flows enabled by the
user, but they are outside the scope of this paper.

We have therefore given good reason that our archi-
tecture is sound: that when implemented correctly, it yields
a system in which user data privacy is maintained in the
face of untrusted servers and clilets. A formal proof of
this fact is outside the scope of this paper, but will be
presented in the future. Other work will be needed to
verify that a particular implementation of the Clilet browser
meets the security specifications.

3 Browser Architecture

We described the Clilet protocol and gave reasons for its
security in Section 2. Clearly, the interesting part of the
system lies in the Clilet browser and how it deals with
untrusted clilets. In this section, we describe the archi-
tecture of our prototype Clilet browser.

3.1 Web Browser Front-End

Ideally, we would develop a Clilet browser as a self-
contained application program to be run on a client ma-
chine. However, the Clilet system currently faces the
chicken-and-egg problem of no installed browsers.

Since the Clilet system user experience is so similar
to the HTTP/HTML user experience, we sought to solve
this problem by using a standard web browser as the user
interface for our Clilet browser. In this way, Clilet applic-
ations could be used from any computer with an installed
web browser.

Since a stock web browser cannot speak the Clilet
protocol, something needs to translate between HTTP/HTML

and the Clilet protocol, allowing a standard web browser
to be used as a front-end to Clilet applications. This
is accomplished through a piece of middleware, called
the Glue, that functions as a Clilet system client and an
HTTP server (see Figure 1). Note that our implementa-
tion of the Clilet browser specified by the Clilet protocol
consists of the Glue and stock web browser coupled to-
gether.

The use of the stock web browser as a front-end ul-
timately saved us much effort and provided great flex-
ibility. However, its use also introduced some problems
that are artifacts of this approach. We summarize those
problems here:

• Presuming that the Glue is receiving HTTP con-
nections from anywhere, it must authenticate users.
This can be done as in any standard web applica-
tion. Alternately, if it is running on a single user
system, the Glue can reject all HTTP requests from
outside the local host.

• If the Glue is willing to partake in HTTP sessions
outside the local host, those sessions must be en-
crypted via SSL to maintain user data privacy.

• The user must trust the computer on which the Glue
runs.

• The Clilet system uses a variant of HTML that is
somewhat different from that used by a stock web
browser (see Section 5). The Glue must translate
Clilet HTML into HTML suitable for display by
the stock browser. It must also reject HTML that
tries to invoke features, such as JavaScript, that are
implemented by the stock web browser but have
been purposefully removed from Clilet HTML.

3.2 Java

As with other mobile agent systems, the Clilet system
requires a standard language in which to code mobile
agents, a standard way to transport those agents between
computers, and way to safely run those agents in a con-
trolled environment. We chose to use the Java Program-
ming Language [2] for the Clilet system because it provides
all three of these mechanisms in an easy-to-use but flex-
ible and configurable fashion. The ideas behind the Clilet
system could be implemented outside the Java environ-
ment as well.

Clilets: Harvard DEAS TR 11-02 5

Glue

Private
Sandbox

http://
jcp://

(pub)(priv)

(priv)

Application
Server

H
T

M
L

query

(pub)

data

HTML

Stock Web

Browser

1

2

3

5

4

8

7

9

Database (priv)
6

10

11

Figure 1: The major components of the prototype Cli-
let browser, and how they interact on a client-server in-
terchange. Numbers indicate the order in which inter-
changes take place. All components within the dotted
line are part of the Clilet browser.

3.3 Prototype Interchange

Our prototype Clilet browser actually consists of three
client-side processes communicating with each other: the
Glue, the Private sandbox and the stock web browser. All
three of these components are part of the Clilet browser.
All three must be trusted by the user, just as the user must
trust a stock web browser when using HTTP. We assume
that all three are running on the same computer; if not,
trusted (encrypted) channels must be used to communic-
ate between them.

With the architecture of our prototype Clilet browser
in mind, we present again, in more detail, the steps that
take place in a Clilet protocol interchange (See Figure 1):

1. The stock web browser sends an HTTP request to
the Glue.

2. The Glue translates the HTTP request into the Cli-
let protocol and forwards it to the Clilet server.
By acting as an intermediary between browser and
server, the Glue allows use of the Clilet protocol
from any standard web browser. This eliminates
the need to build and deploy a special browser for
the Clilet protocol.

3. The server processes the request. In processing,
it could do a number of things, such as access a
local database, connect to a legacy mainframe, etc.
When it is ready, it returns public and private clilet
segments to the Glue.

4. The Glue runs the public clilet segment in an in-
process public sandbox; HTML output is buffered

in the Glue. Whenever it needs to display private
data, the public segment (seemingly) makes a func-
tion call to the private clilet segment.

5. Regaining control, the Glue suspends execution of
the public clilet segment, opens a connection to
the out-of-process private sandbox, and sends it the
private clilet segment.

6. The private sandbox runs the private clilet segment.
HTML output is buffered in the private sandbox.

7. In the process of execution, the private clilet seg-
ment accesses the private data store. This can hap-
pen more than once. Access is provided through
the private sandbox server.

8. The private data store returns private data to the
private clilet segment.

9. When the private clilet segment is finished, its out-
put is returned to the Glue. The Glue incorpor-
ates the private HTML segment with HTML into
the on-going HTML output buffer. Annotations
are added to remember which HTML came from
private clilet segments. The Glue then returns con-
trol to the public clilet segment.

10. When the public clilet segment is finished, the Glue
passes the resulting HTML stream through the in-
process HTML Verifier. This ensures that the HTML
is not being used to leak private data to the server;
specific leakage issues are addressed in Section 5.

11. HTML that passes the verifier is sent to the browser;
HTML that fails the verifier results in an error mes-
sage being sent to the browser.

Having given an overview of the Clilet system spe-
cification as well as our implementation of it, we now
give the details of the browser security mechanisms used
to run clilets: the Multi-Domain Sandbox and the HTML
Verifier.

4 Multi-Domain Sandbox

As mentioned above, the multi-domain sandbox prevents
information flow from the private to the public clilet seg-
ment.

Clilets: Harvard DEAS TR 11-02 6

This is done by building a multi-level system, along
the lines of the Bell-LaPadula model [1], in which the
public and private clilet segments run. The public and
private clilet segments therefore run in different security
domains, called thepublic sandboxand theprivate sand-
box.

The private clilet segment runs in a different secur-
ity domain from the public clilet, with no shared global
state between the two. It performs the required task and
returns control to the public clilet segment. Its output
was written to the HTML output stream, and isnotmade
available to the public clilet segment.

All function calls to the private clilet segment are
forced by the multi-domain sandbox to return a void data
type to the public clilet segment. In this way, the required
task is accomplished, yet the public clilet segment gains
no information about the contents of the private data.
Data is allowed to flow from the public to the private cli-
let segments, but not the other way.

4.1 Information Flows

The typical malicious private clilet segment might try a
variety of ways to pass data back to the public clilet seg-
ment. We classify these methods as eitherDirect Chan-
nels, in which the private clilet segment tries to use a
direct communication channel to the public segment —
or Covert Channels, in which the private segment uses a
shared mechanism not normally intended for communic-
ation. We have addressed these concerns in our multi-
domain sandbox:

4.1.1 Direct Channels

The public clilet segment calls the private clilet segment
via a synchronous function call. The simplest direct chan-
nel would be for the private clilet segment to pass back a
return value. This is prevented by design: by definition,
the public clilet segment receives a void in return. The
Java System would not allow a private segment to return
a value.

The private clilet segment might also try to throw an
exception, which will be propagated up the call stack.
This is prevented because the Clilet browser catches all
exceptions from private clilet segments and doesnotpropag-
ate information about them to the public clilet segment.

4.1.2 Covert Channels

The clilet might try to use a variety of more subtle covert
channels:

• Pass data through the HTML output stream. The
private and public clilet segments are allowed to
write data to the HTML output stream; however,
since neither segment is allowed any information
about the state of that stream, the stream cannot be
used as a covert channel.

• Pass data through covert timing channels. The private
clilet segment could, for example, vary its running
time. This is prevented by eliminating all concur-
rency, including access to the system clock [9, 8].2

• Pass data through the use of shared system resources.
For example, a private clilet segment could use
vast quantities of memory, forcing the public clilet
segment to page. This is not a viable communica-
tion channel because the public clilet segment can-
not detect this kind of system activity, or even the
timing glitches it might cause. In any case, Java’s
garbage collection makes memory system unpre-
dictable.

• Pass data through shared system state. This is not
possible in our implementation because public and
private clilet segments are run in different JVMs
that do not share state.

4.2 Implementation

Having conceived of the multi-domain sandbox, we had
to face the problem of its implementation in Java. It is
clearly possible to build one [10]. However, Java was not
designed with an eye towards multi-level security. Any
shared state between the public and private sandboxes
can be used to build a covert channel.

Seeing no obvious easy way to guarantee lack of shared
state between classes within one Java Virtual Machine
(JVM), we found we could instead implement our multi-
domain sandbox in two separate JVM’s.

In the Clilet system, the Glue is responsible for run-
ning public clilet segments. Private clilet segments are
run by thePrivate Sandboxin a separate JVM on the

2Preventing access to the system clock is not possible using the
standard Java system, but it was not difficult to modify the Java Sys-
tem source code to allow this.

Clilets: Harvard DEAS TR 11-02 7

client machine. When it wishes to run a private Clilet
segment, the Glue sends the appropriate code and data
to the Private server. The Private sandbox runs the seg-
ment under appropriate security constraints and returns
the HTML that resulted. It is up to the Glue to further
process that HTML properly.

By using separate JVMs for the public and private
clilet segments, covert channels are eliminated with min-
imal programming effort, at the cost of efficiency. How
to implement a multi-domain sandbox in one JVM, which
would be orders of magnitude more efficient, remains an
open but probably solvable question.

5 HTML Verifier

The writing of HTML can result in communication with
the server: for example, data written into an anchor or an
inline image tag is transmitted to the server. Therefore,
the Clilet browser must be careful about what HTML it
allows the clilet to write. The HTML Verifier accom-
plishes this task, preventing private clilet segments from
leaking data to the server via the HTML output stream.

The HTML Verifier examines the HTML stream after
it is written by the clilet and before it is displayed on the
user’s screen. Upon examining the clilet’s HTML output,
it chooses one of two options. It can accept the HTML,
displaying it in the browser’s window and allowing the
user to interact with it thus enabling further interaction
with the server. Alternately, the HTML Verifier can re-
ject the HTML, displaying an error message to the user
instead. In this section, we describe how the HTML Veri-
fier works.

The HTML Verifier’s work is divided into two tasks.
First, it must ensure that all HTML written by the clilet
strictly conforms to a well-defined HTML specification,
Clilet HTML. Clilet HTML is an HTML subset that re-
moves dangerous features such as JavaScript.

Then, the HTML Verifier is left to focus on the more
subtle forms of information flow. Any Clilet HTML fea-
tures that can cause data to be communicated between
clilet and server must be examined. We found that these
features fall into a few categories:Anchors and Forms,
Context Switches, Form Elements, andSecondary Inter-
changes.

In our prototype, the HTML Verifier is also respons-
ible for transforming Clilet HTML written by the clilet
into standard HTML to be displayed by the stock web

browser. Like the Glue, this is an artifact of our choice
to use a stock web browser as our front-end, not a funda-
mental characteristic of the Clilet architecture.

5.1 Clilet HTML

Since HTML carries security ramifications for us, we
must clearly define the HTML variant, calledClilet HTML,
used by the Clilet system. We start with XHTML 1.1, the
latest version of the HTML standard (as of June 2001).
XHTML 1.1 is HTML reformulated in XML, rather than
SGML in which its predecessor was formulated. From a
practical point of view, one can think of XHTML 1.1 as
a very clean and well-defined HTML specification.

To obtain our Clilet HTML, we first had to remove
portions of the language that should never be used by the
Clilet system. JavaScript, for example, could easily be
used to subvert user data privacy. We call the resulting
HTML subsetClilet HTML; it is this HTML that clilets
must produce.

Whether or not we write the Clilet browser from scratch,
it is necessary to figure out which parts of HTML to
remove to form Clilet HTML. Removing features from
XHTML 1.1 was easy because it was made modular for
this purpose.

We systematically examined modules, removing all
modules that could cause security problems. This in-
cluded modules that could invoke arbitrary plug-ins, mod-
ules that allow for arbitrary client-side executable code
such as JavaScript and applets, deprecated modules which
were included in XHTML 1.1 only for backwards com-
patibility, and modules for which we had never seen an
implementation in a working stock web browser.

We ultimately removed the following modules:Im-
age3, Ruby, Scripting and Param4, Embedded Object,
andLegacy Markup.

Our prototype implementation ensures that clilet out-
put conforms to the Clilet HTML specification. It does
this by running the page through a validating XML parser.

5.2 Anchors and Forms

Anchors and forms contain information that is potentially
transmitted to the server. They must therefore be preven-

3The XHTML 1.1 Image Module does not define the tag,
but rather provides a more general framework by which arbitrary
plug-ins may be invoked; we have therefore not removed inline image
functionality.

4Used for parameters to applets and similar executable objects.

Clilets: Harvard DEAS TR 11-02 8

ted from containing, or relying upon, private data. The
HTML Verifier does this by preventing the use of the
<a> and<form> tags in private HTML segments. Cli-
let HTML contains many features that act like anchors:
clickable images, for example. These are also prohibited
in private HTML segments, the same as anchors.

5.3 Context Switches

Certain HTML elements — anchors, for example — only
make sense if an entire sub-tree falls entirely in a public
or private HTML segment. One could imagine a clilet
that could subvert user data privacy by writing an an-
chor’s begin and end tags in the public HTML segment,
but writing the text displayed to the user in the private
HTML segment.

For example, the clilet segments might collaborate to
write a series of anchors, each one with the begin and
end tags written by the public segment, but the text to
be displayed written by the private segment. The private
segment could use this setup to build alternate versions
of the HTML page that look the same to the user but
send different information to the server, depending on the
contents of the private data.

The key issue here is that the<a> tag generates a
single user interface element on-screen but requires more
than one node in the XML parse tree to describe. HTML
Verification makes sense only if the entiresubtreede-
scribing the on-screen element is public or private. This
property is ensured by prohibiting context switches while
an<a> tag is open; i.e. after an open tag but before a
close tag.

The list of tags in Clilet HTML with this property is:
<a>,<link>,<area>,<map>,<input>,<button>,
<option>,<optgroup>,<select> and<textarea>.
The HTML Verifier prohibits context switches while any
of them remain open.

5.4 Form Elements

Although form tags are not allowed in private HTML
segments, it would be too restrictive to prohibit form ele-
ments as well. Instead, the Clilet browser distinguishes
betweenpublic form elements— those occurring in a
public HTML segment — andprivate form elements.

Data entered into public form elements are sent to
the server upon initiation of an interchange, the same as
in a classical web application. For this reason, the Cli-

let browser renders public form elements distinctively, to
warn the user that data entered into them is not private
and will be disclosed to the server. In our prototype im-
plementation, public form elements are rendered in a dis-
tinctive red color.5

Data entered into private form elements is NOT sent
to the server; rather, they are made available to the private
clilet segment that the server returns in the up-coming
interchange. In this way, the Clilet application is able to
query the user for input and store it locally in the Clilet
browser.

Private form elements are rendered by the browser in
any style, as requested in the private HTML segment. It
is not a major security problem if they look like public
form elements to the user, since this will only spur the
user on to greater caution than is necessary.

The work of the HTML Verifier with form elements
is therefore to recognize the difference between public
and private form elements and to make sure the Clilet
browser handles them appropriately. In our prototype,
the HTML Verifier does this by renaming form elements
so the Glue will know, at a glance, which ones are public
and which ones are private. It also transforms the HTML
to ensure that public form elements show up in red.

5.5 Secondary Interchanges

An interchange in a classical web application consists
of more than just one exchange of information. Fre-
quently, HTTP returned by the server will require that
other files be downloaded in order to display properly;
for example, tags are used to include in-line im-
ages. The browser is required to download the specified
files, or find them in a local cache, before displaying the
page. We call the interchanges triggered by these re-
quests for images and other such objectssecondary in-
terchanges, to distinguish them from the primary inter-
change that returns the basic HTML to the browser.

Secondary interchanges would offer a great oppor-
tunity for private clilet segments to leak private data. For
example, a private clilet segment could encode private
data into the URL of an tag. Therefore, private
clilet segments are not allowed to initiate secondary in-
terchanges in the Clilet system.

Prohibiting all the functionality gained from second-
ary interchanges would be draconian: a private clilet seg-

5A production version would require additional visual cues as
well, since it is bad user interface design to rely on color alone.

Clilets: Harvard DEAS TR 11-02 9

ment might legitimately wish to include, for example, a
custom icon represented by a GIF image in its output.
Therefore, we offer cache tags as a way that the benefits
of secondary interchanges may be realized without the
security risk.

5.5.1 Cache Tags

We add a new tag,<cache>, to our HTML; the HTML
Verifier ensures it is only allowed in public HTML seg-
ments. Each<cache> tag references one URL. Before
displaying the HTML page, the Clilet browser down-
loads all URLs referenced by the<cache> tags, if they
are not already cached locally. This process provides no
information to the server about the private data because
<cache> tags are written only by the public clilet seg-
ment.

Now consider the HTML rendering behavior of the
Clilet browser. When it encounters a tag in a private
HTML segment that would normally trigger a secondary
interchange, it cannot forward the request to the server.
Instead, it compares the requested URL to the list of URLs
downloaded by the page’s<cache> tags. If the desired
URL is present, the Clilet browser displays it from the
cache. If not, the Clilet browser produces an error: a
broken image icon, for example. In this way, private seg-
ment secondary interchanges are prevented.

In our prototype, we implemented this caching beha-
vior in the Glue and the HTML Verifier. Before send-
ing HTML to the stock browser, the Glue downloads all
<cache> tag requests. The HTML Verifier transforms
the URLs of all tags that cause secondary interchanges
to point to the Glue instead. In this way, the resulting
transformed HTML can be sent to the stock web browser
without fear of triggering inappropriate secondary inter-
changes.

5.6 Implementation

The HTML Verifier works by applying rules to an XML
parse tree representation of the HTML document. It is
easy to see how the behavior described above can be
translated into a table-driven checker. The HTML Veri-
fier must keep track of which nodes are in the public or
private HTML segment. It then rejects certain nodes if
they fall in a private segment.

For these rules to make sense every element of the
tree must be identified as having been written entirely

by the public or the private clilet segment. It is easy to
determine the public and private segments of the HTML
stream; after all, they are written by different API calls
inside the public and private sandboxes, and are only later
combined inside the Clilet browser. However, this does
not guarantee that every element of the parse tree is either
public or private. For that guarantee, the following initial
constraints must be applied:

Atomic Tag Writing: Tags must be written entirely by
the public or the private clilet segment, but not in
part by both.

Private Sub-Tree: The HTML output of one call to the
private clilet segment must consist of zero or more
well-formed HTML sub-trees. It is not allowed,
for example, for the private clilet segment to provide
a matching end tag to a begin tag produced by the
public clilet segment.

Well-formed XML: The clilet output must be a well-
formed XML document. Although it may not be
legal HTML, it must at least be parsable by a non-
validating XML parser.

We now describe how we enforce these initial con-
straints in our prototype browser.

5.6.1 Atomic Tag Writing

We enforce atomic tag writing by providing a constrained
API to the output stream that only allows tags to be writ-
ten atomically. Rather than the standard stream output
function such asputchar(), two functions are provided.
The clilet author who finds these API calls to be cumber-
some can build a standard stream interface to them:

writeText(): Writes arbitrary text to the output stream;
however, it converts any occurrences of the< or
> characters into their HTML equivalents, “>”
and “<”. It is therefore impossible to write a tag
to the output stream via thewriteTextcall.

writeTag(): Writes a begin or end tag to the output stream.
The clilet provides the name of the tag and the
value of all attributes to write; thewriteTag then
writes an entire, complete tag. Tag writing is there-
fore atomic.

Clilets: Harvard DEAS TR 11-02 10

5.6.2 Private Sub-Tree

In order for the HTML Verifier to tell the difference between
public and private HTML segments, the Clilet browser
adds extra tag information to the HTML output stream
whenever a call is made to the private clilet segment.
Just before a call, it adds<private>; just after, it adds
</private>. The writeTag() API function does not
permit either clilet segment to write these tags. There-
fore, by keeping track of the<private> tags, the HTML
Verifier knows definitively which HTML segments were
written by which clilet segment.

In addition to marking context switches, the<private>
tags enforce the private sub-tree property: by wrapping
them around the output of the private clilet segment, the
resulting document will be well-formed XML only if each
private HTML segment consists of zero or more well-
formed HTML sub-trees.

5.6.3 Well-Formed XML

The first thing the HTML Verifier does when receiving
clilet output is to parse the output with a standard non-
validating XML parser. Because of the<private>
tags described above, this not only ensures the stream is
well-formed XML, but also the private sub-tree property
is enforced.

5.6.4 Verification Rules

Once the initial constraints have been satisfied, the HTML
Verifier applies its table-based verification rules. These
are the main rules preventing the private clilet segment
from writing HTML in ways that could leak data to the
server, and they have already been described in Section 5.
The verification rules prevent anchors, forms and similar
elements in private HTML segments. They allow for, and
distinguish between, public and private form elements.
They prevent secondary interchanges from private clilet
segments, but allow for them in a limited way through
the<cache> tag. Finally, they prevent context switches
at inopportune moments.

5.6.5 HTML Validation

The last step of the HTML Verifier, although we described
it first, is to ensure that the document conforms strictly to
the Clilet HTML specification. This is necessary, espe-
cially in our prototype that uses an ill-defined stock web

browser as its front-end, to ensure that the clilet does not
try to invoke undocumented or otherwise illegal browser
features.

In our prototype implementation, all comments are
removed from the HTML in this step as well. Some
stock browsers interpret JavaScript or other “extensions”
placed in comments.

5.7 Conclusion

The HTML Verifier checks the HTML after it is writ-
ten by the clilet and before it is displayed on the user’s
screen. It is responsible for preventing information flow
from the private clilet segment to the server via HTML.
To do so, it applies a set of validation rules to the HTML.
Examples of such rules include the prohibition of anchors
and secondary interchanges in private HTML segments.
Finally, the HTML Verifier ensures that the output con-
forms to Clilet HTML, a subset of XHTML 1.1 designed
to disable dangerous browser features.

6 Clilet Applications

We began with some motivating examples for the Cli-
let system. Now, having described the Clilet system and
shown why it is secure, we proceed to describe more ap-
plications of this technology.

6.1 Demonstrations

Our canonical demo Clilet application, which has been
implemented, is a checkbook register that stores check
descriptions as private data.

Our next implemented demo application is one in
which the clilets try to subvert user data privacy in a num-
ber of different ways. In each case, we show how our
prototype Clilet browser does not let this happen.

6.2 E-mail Worms

E-mail worms, commonly called viruses, are currently a
costly problem for e-mail clients that allow the easy exe-
cution of code received via e-mail. The obvious solution
to this problem is to disallow executable e-mail attach-
ments. Unfortunately, that solution would prohibit legit-
imate e-mail attachments as well as the malicious ones.

Clilets: Harvard DEAS TR 11-02 11

By applying the same type of multi-domain sandbox-
ing controls used in the Clilet system to e-mail attach-
ments, E-mail clients could run attachments, even attach-
ments that are meant to modify private data, with more
assurance against malicious code.

6.3 Available-Anywhere E-mail

POP and IMAP exemplify two general approaches to e-
mail management today. In POP, a user downloads all e-
mail to the client and periodically deletes it off the server;
the user is responsible for storing and managing e-mail.
In IMAP, e-mail remains on the server and is displayed
to the user on-line.

IMAP presents a complete view of the user’s e-mail
but requires that the ISP stores all the e-mail. POP works
well as long as the user works at a single main computer,
but not when the user is travelling. At that point, access
to downloaded mail is suddenly lost, as the user switches
to an IMAP-type protocol during the trip. The POP user
is forced to deal with two e-mail clients, one at home and
one on the road.

A clilet-based e-mail system could give the POP user
a more seamless experience. To make it work, the user
must have a trusted machine that can store the “client-
side” e-mail database. Clilet browsers will be directed to
that machine for their private database. Messages would
be downloaded from the mail server, as they are read,
via the Clilet protocol; the distinction between displaying
and downloading a message would be blurred.

7 Future Research

In addition to enabling new kinds of web applications
the prototype Clilet system and implementation open up
a host of new research projects. These directions for re-
search fall into the broad categories of extensions and
generalizations.

7.1 Extensions

Enriched API The current system allows for arbitrary
client-side processing in the clilet, but only limited ac-
cess to client-side resources. Future versions should provide
clilets with a richer API for client-side tasks; client-side
GUI access, for example. The trick is to ensure that user
data privacy is still maintained, even as the set of capab-
ilities allowed to clients is enlarged.

Limited Disclosure The current Clilet system builds
an impenetrable wall between private data and the server.
This is a good first step, but some applications required
a controlled disclosure of some data to the server. For
example, a web-based vendor might wish to store credit
card numbers as private data rather than on the server; the
browser would then need to transmit that private data, in
a controlled fashion, to the server. The trick will be to
make a mechanism for limited disclosure that is general
enough to be useful for many applications, yet still se-
cure.

Improved Multi-Domain Sandbox We do not yet know
how how to build a secure multi-level system, such as
our multi-domain sandbox, in a single Java virtual ma-
chine. At this time, it is not clear what changes (if any) to
the Java system would be required. Existing research on
Java-based multi-level systems includes a flow-verification
system [7] and theJKernel/JServer[4].

7.2 Generalizations

Cryptographic Clilets For simplicity, we have avoided
the use of cryptography when possible in our prototype.
It would be interesting to re-visit the design junctures at
which these decisions were made, and use more crypto-
graphic options. The result would be another Clilet-type
system, with properties similar but different from the sys-
tem we do build.

Combined Data The Clilet system accomplishes the
feat of allowing data from two distinct domains to be
combined on a user’s screen in a flexible manner without
subverting the security of that data. It is a first application
of the idea of bringing the program to the data, without
ultimately letting the program know what the data is.
Other non-web applications for this technique are inev-
itable.

Lightweight Multi-Level Computing Our Multi-Domain
Sandbox uses the same ideas as those in multi-level oper-
ating systems, except that it simplifies them in two ways.
It uses multi-level ideas outside the context of an oper-
ating system, and it prohibits concurrency. It seems that
this simplified form of multi-level computing could cer-
tainly have many applications not envisioned by the de-
signers of the classical multi-level systems.

Clilets: Harvard DEAS TR 11-02 12

Beyond Public-Private We have used only two sand-
boxes in our system: one public and one private. It is
theoretically possible to build a multi-domain sandbox
with many more domains, and with complex rules gov-
erning possible information flow between the domains.
How these systems might be built and reasoned about,
and what they might be useful for, is a matter for further
research.

Multi-Level User Interface Through the use of HTML,
the Clilet system allows a web application to build a user
interface with two distinct types of user widgets, pub-
lic and private. It should be possible to build multi-level
user interfaces outside the scope of web applications —
a multi-user GUI widget set, for example.

8 Conclusion

The web enables more interesting and complex on-line
transactions every year. Clilets, which allow web applic-
ations to work with client-side data without the possibil-
ity of the disclosure of that data to the server, are another
step in this evolution. They solve the problem of user
data privacy, a problem that until now has not been ad-
dressed.

We have shown that the Clilet system is practical
today by developing the necessary client and server com-
ponents. Our prototype allows the use of a Clilet applic-
ation via any standard web browser, thereby leveraging
the installed base of web browsers. We expect that in the
future, web browsers that speak the Clilet protocol nat-
ively will be developed.

We have built some sample Clilet applications, and
we invite the interest to take a look:
http://www.eecs.harvard.edu/ citibob/cliletWe also look
forward to others interested in building and deploying
new Clilet applications.

References

[1] D. Bell and L. LaPadula. Secure Computer Sys-
tems: Unified Exposition and Multics Interpreta-
tion. The Mitre Corp, 1976.

[2] Mary Campione and Kathy Walrath.The Java
Tutorial Second Edition: Object-Oriented Pro-
gramming for the Internet. Addison-Wesley Pub

Co, 1998. http://java.sun.com/docs/
books/tutorial/index.html.

[3] Dorothy E. Denning. “A Lattice Model of Secure
Information Flow”. Communications of the ACM,
19(5):236–243, 1976.

[4] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Cza-
jkowski, Deyu Hu, and Thorsten von Eiken. “Im-
plementing Multiple Protection Domains in Java”.
In Proceedings of the 1998 USENIX Annual Tech-
nical Conference, New Orleans, LA, 1998.

[5] Carl E. Landwehr. “Formal Models for Computer
Security”. ACM Computing Surveys, 13(3):247–
278, 1981.

[6] G. Lowe. “Defining Information Flow”. Technical
Report 1999/3, University of leicester, 1999.

[7] Andrew C. Myers. “JFlow: Practical Mostly-Static
Information Flow Control”. InSymposium on Prin-
ciples of Programming Languages, pages 228–241,
1999.

[8] Andrew C. Myers and Barbara Liskov. “Protect-
ing Privacy Using the Decentralized Label Model”.
Software Engineering and Methodology, 9(4):410–
442, 2000.

[9] Geoffrey Smith and Dennis Volpano. “Confinement
Properties for Multi-Threaded Programs”. In Mi-
chael Mislove Stephen Brookes, Achim Jung and
Andre Scedrov, editors,Electronic Notes in Theor-
etical Computer Science, volume 20. Elsevier Sci-
ence Publishers, 2000.

[10] G. Wagner. “Multi-Level Security in Multiagent
Systems”. In1st International Workshop on Co-
operative Information Agents (CIA-97). SV, 1997.

