
A No-Limit Omaha Hi-Lo Poker Jam/Fold Endgame
Equilibrium

Citation
Ho, Kenneth. 2015. A No-Limit Omaha Hi-Lo Poker Jam/Fold Endgame Equilibrium. Master's
thesis, Harvard Extension School.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24078344

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24078344
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20No-Limit%20Omaha%20Hi-Lo%20Poker%20Jam/Fold%20Endgame%20Equilibrium&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=f5053205b7e50086542a61660d8ad53a&department
https://dash.harvard.edu/pages/accessibility

A No-Limit Omaha Hi-Lo Poker Jam/Fold Endgame Equilibrium

Kenneth Ho

A Thesis in the Field of Information Technology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

November 2015

Abstract

Omaha Hi-Lo Poker is a variant of the game of Poker, with more possibilities

resulting from having four cards per player and a split Hi and Lo pot, compared to

Texas Hold’em Poker. Recently published algorithms, commodity cloud computing,

and graphics processor acceleration enable the analysis of more complex games. We

use the newly published CFR+ algorithm, OpenCL heterogeneous computing frame-

work, and Amazon Web Services cloud computing to analyse Omaha Hi-Lo Poker.

Using these tools, an endgame jam/fold ε-Nash Equilibrium is found and a scoring

heuristic that approximates this equilibrium strategy is constructed.

Acknowledgements

I would like to express my gratitude to my thesis supervisor, Eric Giesecke,

for his expertise in distributed computing and generous guidance.

It is my privilege to thank my wife Melanie for her patience and understanding

through the late nights, blank stares, and quiet dinner tables. I couldn’t have done

it without you.

iv

Contents

Table of Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis structure . 2

2 Background 4

2.1 A No-Limit Omaha Hi-Lo Poker Jam/Fold Tournament 4

2.1.1 No-Limit Omaha Hi-Lo Poker 4

2.1.2 Poker Game Concepts . 9

2.1.3 Properties and Terminology in Omaha Hi-Lo Poker 13

2.1.4 Tournament Structure . 15

2.2 Game Theory . 17

2.3 Prior Work in Computer Poker and Poker Strategy 21

2.4 Amazon Web Services . 23

2.5 OpenCL . 23

3 Methodology and Design 25

v

3.1 Overview . 25

3.2 Hand Evaluator . 27

3.3 Game Tabulator . 32

3.4 Matchup Tabulator . 35

3.5 Equilibrium Solver . 38

3.5.1 The Summary Table and Expected Value calculations 38

3.5.2 Regret Matching and CFR+ 42

3.6 Feature Valuation . 46

4 Results 49

4.1 Analysis of the ε-Nash Equilibrium 49

4.2 Value of Hand Features . 52

4.3 The ORACLE Strategy . 56

4.4 Analysis of the Strategy . 59

5 Summary and Conclusions 62

5.1 Contributions . 62

5.2 Lessons Learned . 63

5.3 Known Issues and Future Work . 64

References 65

A Glossary 67

vi

List of Figures

2.1 Example of a preflop betting round 6

3.1 Logical flow between Project Components 26

3.2 Encoding of Hi and Lo hand ranks 28

3.3 eval8 process . 34

3.4 Processing sequence between Worker Nodes and Matchup Tabulator

Server in AWS . 39

4.1 Optimal Play Frequency by the small and big blinds, as a function of R 50

4.2 Non-dominance of hands at stacks of 3,000 and 4,000, table stakes

200/400 . 52

4.3 Minimax value for the small blind, as a function of R 53

4.4 Linear Regression results on playability metric, zero intercept, all at-

tributes . 55

4.5 Strategy performance between equilibrium, model, and maximal ex-

ploitation of the model strategy at table stakes 200/400 56

4.6 Linear Regression results on playability metric, filtered attributes . . 57

4.7 Linear regression on ORACLE Strategy versus playability metric . . . 60

4.8 The ORACLE Strategy performance at 200/400 60

vii

List of Tables

2.1 Poker hand ranks . 8

3.1 BoardType table layout . 30

3.2 HandV alue lookup table, combining Hand and Board classes for Hi/Lo

hand ranks . 31

3.3 Eight-card combinations and GenerateTableClasses.py class codes . 37

3.4 Attributes of Omaha Hi-Lo four-card hands 47

4.1 Playability of selected hands by attribute 51

viii

Chapter 1: Introduction

Poker is a very popular and challenging card game for both humans and com-

puters. John von Neumann, the creator of game theory, found poker to be an excellent

starting point for analysing the behaviour of rational and unpredictable people. “Real

life is not like [chess]. Real life consists of bluffing, of little tactics of deception, of

asking yourself what is the other man going to think I mean to do. And that is

what games are about in my theory.” von Neumann went on to make many contri-

butions to mathematics, computer science, economics, and physics, but he lacked the

computing power necessary to solve a game as deep as poker. With the explosive

popularity of online poker, inexpensive computers, and recent developments in game

theory, researchers can now build strategies that approach perfect play.

The majority of poker research focuses on a variant of poker, Texas Hold’em.

This variant is the most popular, as the game commonly seen on television and the

format of the World Series of Poker main event. As the most heavily researched

variant, computer scientists and researchers have built extremely strong strategies.

In early 2015, the University of Alberta has even published an “essentially perfect”

strategy for two player Limit Texas Hold’em, a game that is widely played in both

casinos and online poker sites. And while there are no published perfect strategies for

No-Limit Texas Hold’em, researchers have made large strategic contributions to this

variant. With a few additional restrictions on the game rules, two and three player

No-Limit Jam/Fold Texas Hold’em has been solved.

1

In comparison, Omaha Poker and its variants are somewhat less popular and

lacking in research. This thesis project seeks to change that, by rigorously analysing

the Omaha Hi-Lo Poker variant and computing an unexploitable strategy for No-

Limit Omaha Hi-Lo Poker. The project uses game restrictions of jam-or-fold action

constraints and two players to make the computation feasible, similar to the restric-

tions in No-Limit Texas Hold’em research.

1.1. Contributions

This thesis involves aspects of game theory, machine learning, and high per-

formance computing. The major contributions of this thesis are:

(a) the computation of an ε-Nash Equilibrium strategy for Omaha Hi-Lo Hold’em

Poker in the restricted domain of two player jam/fold games, and

(b) the creation of the ORACLE Strategy, a new evaluation heuristic for a hand in

Omaha Hi-Lo Hold’em Poker, approximating a Nash Equilibrium, that a player

can use to decide whether to jam or fold their hand.

1.2. Thesis structure

Chapter Two will further describe concepts in Omaha Hi-Lo Poker, game

theory, and the computation frameworks used by this project. It will also highlight

recent related work in game theory and poker research.

The following chapter describes the programs and algorithms used in this

project. It steps through the questions that a poker player must answer to formulate

a strong strategy, including the need to bluff, deceive, and consider the opponent’s

options, as demanded by von Neumann.

2

Chapter Four provides an analysis of the output from the project’s poker

programs, illustrating the steps taken to construct the ORACLE Strategy heuristic.

Chapter Five concludes the thesis with a discussion of the project’s limitations, and

suggestions for further research.

3

Chapter 2: Background

This chapter begins with an overview of Omaha Hi-Lo Poker, the rules of the

game, and definitions of poker game concepts, followed by a description of a poker

tournament and strategic aspects of the tournament structure. Next, this chapter

covers basic concepts in game theory. It continues with a discussion of previous work

in computer poker and tournament poker strategy, with a focus on the Counterfac-

tual Regret Minimization (CFR) algorithm and its relationship to Nash Equilibrium

strategies. The chapter concludes with a discussion about the Amazon Web Services

platform and OpenCL heterogeneous computing framework that I used to search for

an equilibrium strategy for a two-player Omaha Hi-Lo Poker tournament endgame.

2.1. A No-Limit Omaha Hi-Lo Poker Jam/Fold Tournament

2.1.1 No-Limit Omaha Hi-Lo Poker

Omaha Hi-Lo Poker is a variant of Poker that uses a standard fifty-two card

deck, consisting of cards with a suit and a face value. Cards can have one of four

suits: Clubs ♣, Diamonds ♦, Hearts ♥, or Spades ♠. Each suit appears on thirteen

cards, with face values of thirteen different values, in descending rank, Ace, King,

Queen, Jack, and then numeral values from Ten down to Two. In Omaha Hi-Lo,

the lowest possible card for the Lo portion of the game is also the Ace. This thesis

abbreviates these cards ranks as A, K, Q, J, T, 9, 8, 7, 6, 5, 4, 3, 2. The

4

players in this game start with a quantity of chips, called their stack, for making and

matching bets in the game.

A particular player is designated the button and he acts as the card dealer

from a standard fifty-two card deck. The button deals four cards to each player, face

down, for the players’ hands. After this, the player seated directly left of the button

must bet an amount, called the small blind, and the player to his left must make a

larger bet, called the big blind. The amounts of these blind bets are predetermined

as the table stakes. The two players making these bets are also called the small blind

and big blind, respectively. These blind bets form the initial pot of chips to be won

by the game’s winners.

After the players receives their cards, the preflop betting stage begins. Players

take turns making their game actions, starting with the player left of the big blind,

proceeding to the left. On each player’s turn, he must decide whether to fold, forfeiting

the game and any previous chips he has bet, call, making a bet to equal the highest

previous bet (including the big blind bet) in the round, or raise, making a wager to

increase the bet level. If a player cannot call the other players’ bets because she lacks

sufficient chips, the player can still call all-in, wagering all her chips into a pot with

contributions per player up to her total chip contribution into the pot. Any chips

wagered by players above that amount form a side pot in which the all-in player does

not participate. Should the player decide to raise, he must increase the bet level by

at least the value of the big blind bet and the last increase in the bet level. In a

no-limit poker game, there is no prescribed upper limit for the raise. A player may

therefore raise all-in for all her chips as well. The terms shove and jam are synonyms

for raising or calling all-in, symbolically pushing all her chips into the pot. If all

players have taken their turns after the last raise, the dealer moves and organizes the

wagered chips in the round to the center of the table. If all but one player fold, the

5

Figure 2.1: Example of a preflop betting round at table stakes of 300/600
for the small and big blind bets. Francis is the button. 1. Alice and Bob

make their blind bets of 300 and 600 chips. 2. Charlie folds. 3. Diana
calls the big blind. 4. Eve makes the minimum raise, of 600, to 1,200. 5.
Francis makes a raise of 800, bringing the total bet to 2,000. 6. Alice’s
turn again, she makes the minimum raise, same as Francis’ raise of 800,
to 2,800. 7. Bob and Diana fold. 8. Eve calls Francis’ and Alice’s raises,
topping up her bet to 2,800. 9. Francis calls Alice’s raise, topping up to

2,800. Alice being the last raiser, the preflop round concludes after
Francis’ call. The pot is 9,600 chips: 2,800 from each of Alice, Francis,

and Eve, and 600 each from Bob and Diana.

sole remaining player wins all the chips in the pot. Otherwise, the players remaining

in the game continue to the next betting stage. Figure 2.1 shows an example of a

preflop betting round.

The flop betting stage follows the preflop stage. It starts with the dealer

dealing three cards, called the flop, face up, to the center of the table. The flop cards

are the first three of five cards that form the board, a set of cards available to all the

players to create the best hand. Once again, players take turns taking their game

actions of folding, calling, and raising, starting with the small blind. Players may

call the “bet” of zero chips in the round if others do not decide to raise; this action

6

of calling zero chips is also called a check. As before, players continue betting and

calling until all players respond to the last raise, or all players check.

The turn betting stage follows the flop, with the dealer dealing a single card,

face up, into the board. Players take turns again, starting with the small blind. After

the turn is the river, with the dealer dealing a final single card, face up, into the

board. Players again take turns with their bets, starting with the small blind, until

all players respond to the last raise.

After the river betting stage, all players that have not folded reveal their hands

in a showdown. The winner of each pot is determined among these remaining players

participating in these pots by the following:

• Half the chips in the pot, called the Hi, is won by the player with the highest-

ranked poker hand that can be formed using exactly two cards from the player’s

hand and three cards from the board. Table 2.1 lists the different Hi poker hand

types and ranks.

• The other half of the pot, called the Lo, is won by the player with the lowest-

ranked poker hand that can be formed using exactly two cards from the player’s

hand and three cards from the board, ignoring straights and flushes. Such a

Lo hand may not have a hand higher than an Eight, and may not have any

duplicate face values such as pairs. Lo hands are ranked by highest face valued

card, with lower values beating higher. Two hands with the same five face

values are equal in rank. If no player has a qualifying Lo hand, then the winner

of the Hi pot also wins the Lo pot.

A player may use two different sets of two cards to form their best Hi and Lo

hands, and can win both pots. Winning both Hi and Lo pots is called scooping the

7

Class Description Example Ranking rule Hands
of

class
Straight

flush
Five cards of
the same suit,
face values in

sequence

8♠ 7♠ 6♠ 5♠ 4♠ Value of the top card
in the sequence

10

Four-of-
a-kind

Four cards of
the same face

value

J♠ J♥ J♦ J♣ A♠ Face value of
four-of-a-kind, then
face value of kicker

156

Full
house

Three-of-a-
kind and a

pair

9♠ 9♥ 9♣ 7♥ 7♦ Face value of
three-of-a-kind, then

face value of pair

156

Flush Five cards of
the same suit

A♠ J♠ T♠ 9♠ 3♠ Highest-valued card in
the hand, then

second-highest, down
to lowest

1,277

Straight Five cards
with face
values in
sequence

T♠ 9♦ 8♣ 7♠ 6♥ Value of the top card
in the sequence

10

Three-
of-a-
kind

Three cards
of the same
face value

3♠ 3♥ 3♣ A♥ 7♣ Face value of the
three-of-a-kind, then

the higher kicker, then
the lower kicker

858

Two
pair

Two pairs A♠ A♦ 8♥ 8♦ 2♠ Higher-ranked pair,
then lower-ranked pair,

then the rank of the
kicker card

858

Pair Two cards of
the same face

value

J♠ J♣ A♠ 9♣ 3♥ Face value of pair, then
highest kicker,

middle-ranked kicker,
lowest kicker

2,860

High
Card

Any hand not
satisfying any
of the above

7♠ 5♣ 4♠ 3♦ 2♥ Highest-valued card in
the hand, then

second-highest, down
to lowest

1,277

Table 2.1: Poker hand Hi classes, in descending order. Any hand of a
higher class beats hands of lower class. For hands of the same class, the

ranking rule determines the higher-ranked hand

8

pot. If two or more players have hands of the same rank for either pot, the pot is

divided evenly among all such players. If a player is the sole winner of one pot and

splits the other pot, he is said to have quartered the other player, leaving the opponent

with one-quarter of the total pot. The game determines winners of the main pot and

any side pots separately to ensure that players cannot win more than their fair stake

in the overall pot of bets. The game ends with the winners receiving their portions

of the pot, adding them to their chip stack. The small blind in this game becomes

the button player in the next game, and a new game begins.

2.1.2 Poker Game Concepts

Poker is heavily researched in game theory as a popular game of both chance

and hidden information. There is uncertainty about the players’ hands, resulting in

opportunities to play deceptively. There is also an element of randomness in the five

community cards, even after the betting. This section describes a simple card game

with betting, then discusses the concepts of expected value, pot odds, and bluffing.

It then relates this simple game back to Omaha Hi-Lo poker.

A Simple Jam/Fold Betting Card Game. This two-player game uses the thirteen

Spade cards in a standard deck. The cards are ranked in the same order as in Poker,

with the Ace having the highest rank. One player is assigned the position of small

blind, and makes a blind bet of $1. The other player is the big blind, making a blind

bet of $2. Each player receives one card. The small blind moves first, deciding either

to fold or raise to $4. If the small blind folds, the big blind wins $1, the small blind

loses $1, and the game ends. Otherwise, the big blind can choose to either fold or

call. If the big blind folds, she loses $2 to the small blind. If the big blind calls the

bet of $4, the two players reveal their cards and the player with the higher-ranked

card wins $4 from the other.

9

Expected Value of Playing. It is apparent that if a player receives the Ace, he

should play, knowing that his opponent has a lower ranked card. But a player choosing

to play only if holding the Ace will lose in the long run, as he will fold too frequently

and lose too much to offset the gains of winning with the Ace. The expected value of

a player’s strategy is the average gain or loss experienced by a player that uses the

strategy. The expected value of a big blind’s strategy that calls only with the Ace,

against an indiscriminate small blind player that bets regardless of his card is:

EV (big blind) = $4 · 1

13
+ (−$2) · 12

13
= −$

20

13

The big blind can improve this by calling with other highly ranked cards.

Again, against the small blind player that bets with anything, a strategy with the big

blind calling with the Ace or King, folding everything else, expects:

EV (big blind) = $4 · 1

13
+

(
−$4 · 1

12
+ $4 · 11

12

)
· 1

13
+ (−$2) · 11

13
= −$

50

39

The incremental improvement by calling with the King corresponds to winning

four chips with probability 11
12

, the chance that the opponent does not have the Ace,

and losing four chips with 1
12

chance. Calling with the King improves the big blind’s

expected value, and the big blind should call with the King, even with a chance of

losing. Expected values can also be calculated given a specific holding for the big

blind, such as when she calls while holding the Seven:

EV (call with Seven) =

(
−$4 · 7

12
+ $4 · 5

12

)
= −$

2

3

The Big Blind expects to lose $ 2
3

every time she calls with the Seven. Never-

10

theless, this is better than the expected (and certain) loss of two chips from folding,

so the Big Blind should still call in this case.

Pot Odds. The Big Blind can actually call with hands even lower than a Seven,

with the breakeven case being calling with a Five. The expected value of calling with

a Five is:

EV (call with Five) =

(
(−$4) · 9

12
+ $4 · 3

12

)
= −$2

The specific case when the Big Blind holds the Five relates to the size of the

pot and the additional wager required. The Big Blind can only win if the Small Blind

has one of three cards, while she loses if the Small Blind holds any of the other nine

cards. In the long run, the Big Blind loses three times for every win. However, the

Big Blind is calling with only an additional $2, for a potential win of $6 already in the

pot. The ratio of the value of the pot to potentially win, to the required bet to call,

is called the pot odds. Higher pot odds mean that the size of the pot is large relative

to the wager size. Strategically, when the pot odds are higher than the odds against

winning the hand, the player should call. The occasional large pot will sufficiently

offset the more frequent but smaller losses in this situation.

Bluffing. The analysis of this game, so far, has focused on the big blind. The

analysis from the small blind is more complex, however, because the big blind de-

cides her play after the small blind. This means the small blind must consider the

possibility that the big blind folds with weak hands such as a Two or Three. But

while neither play can possibly win showing a Two, it does not mean the small blind

should automatically fold with it. Bluffing is the deceptive bet by a player with a

hand that, if the opponent calls, is expected to lose.

As an illustration of the value and implications of bluffing, consider a strategy

for the small blind, where he bets with any card with at least a 50% chance of being

11

higher ranked than his opponent’s card. This corresponds to raising with Eights or

higher; there are six cards ranked above and six cards ranked below Eight. Reasoning

with pot odds, the big blind should call with any Ten or higher. The expected value

of this strategy for the small blind is therefore

EV (small blind) = (−$1) · 6

13
+

2

13
·
(

$2 · 7

12
+ (−$4) · 5

12

)
+

5

13
·
(

$2 · 8

12

)
= −$

1

39

Now consider a bluffing version of this strategy, where the small blind plays

the same Eights or higher, but also raises with the Two. He now sometimes plays a

hand that he cannot win unless his opponent folds. Adjusting for the small blind’s

new strategy, the big blind now has sufficient pot odds to play with Nines and above.

The expected value of this bluffing small blind strategy is

EV (bluffer) = (−$1) · 5

13
+

2

13
·
(

$2 · 6

12
+ (−$4) · 6

12

)
+

6

13
·
(

$2 · 7

12

)
= $0

The small blind improves his overall average by betting when holding the Two,

even though the Two can never win if the big blind calls. This effect arises from two

sources. First, the big blind still folds hands Eight or below, possibly allowing the

small blind’s Two to win uncontested. Second, the big blind’s Nine loses on average,

winning against Eights and Twos but losing to Tens and above. These two effects

more than offset the increased losses from being caught bluffing with the Two versus

a strong hand.

Back to Omaha Hi-Lo Poker. This game, despite its simplicity, still provides

insight into Omaha Hi-Lo Poker. Most importantly, it demonstrates the evaluation

of a strategy through its expected value. In Omaha Hi-Lo Poker, while there are many

12

more than thirteen possible hands, evaluating a strategy still requires calculating the

long-run profitability of hands using expected value. It also provides a basis for

analyzing the call versus fold decision on the basis of pot odds, and illustrates the

value of both raising and calling with hands that will lose more often than win against

the opponent.

2.1.3 Properties and Terminology in Omaha Hi-Lo Poker

Omaha Hi-Lo Poker shares many characteristics with other poker games, such

as Texas Hold’em poker. The standard poker hand rankings apply to Omaha Hi-Lo,

as do the Lo hand rankings from Razz and Lowball poker. But Omaha Hi-Lo, with

four cards per player and the requirement that the poker hands be formed with exactly

two cards from the player’s hand, also has characteristics distinct to this variant.

Four card hands. Each player receives four cards from a fifty-two card deck

at the start of the game. This greatly increases the number of possible hand types

in Omaha Hi-Lo Poker, compared to Texas Hold’em, where each player receives two

cards. In Texas Hold’em, there are
(
52
2

)
= 1,326 possible hands, while in Omaha Hi-Lo,

there are
(
52
4

)
= 270,725 possible hands. Adjusting for permutations between suits,

there are 169 possible hand classes in Texas Hold’em, compared to 16,432 possible

hand classes in Omaha Hi-Lo.

Two cards from the hand. The rule that each player uses exactly two cards from

their hand creates strategic implications. Compared to Draw Poker, where receiving

a four-of-a-kind hand is very strong, it is the worst possible hand to receive in Omaha

Hi-Lo. A player receiving four Kings can only rarely do better than creating a hand

with two pairs, using two Kings and a pair from the board. It is impossible to create

a three-of-a-kind, a straight, flush, or a Lo hand with such a hand. Three-of-a-kind

hands are also correspondingly weak.

13

The two cards rule also impacts the value of holding cards in the same suit.

The best possible suit distribution consists of two cards in two different suits, such

as A♠ K♠ J♥ T♥. This hand can possibly produce a flush in both spades or hearts.

Hands with this suit distribution are called double-suited. Hands where there are two

or more cards of one suit, such as A♠ 9♠ 3♠ 3♥ are called single-suited, and hands

where all four cards are of different suit are called unsuited. Among the single-suited

hands, the best form have two off-suit cards, such as K♠ Q♠ 3♥ 2♣, as there are

more possible combinations of boards to complement the two suited cards and create

a flush. Compare this to the mono-suited hand K♠ Q♠ 3♠ 2♠: while both hands

can create a flush when three spade-suited cards appear in the board, there are eleven

possible spade cards for the first hand, but only nine in the second.

The four card hand size dramatically increases the straight potential for hands

with cards in a tight range. Consider the hand A♠ 9♥ 8♦ 2♣ versus T♠ 9♥ 8♦

7♣. The only way to create a straight with the first hand is if the board contains at

least one of QJT, JT7, T76, or 765. For the second hand, a straight can be formed

from many more possibilities: KQJ, QJT, QJ9, QJ8, JT9, JT8, JT7, J98, J97, J87, T96,

T86, T76, 986, 976, 975, 965, 876, 865, 765, and 654. Connectors are cards with

consecutive face values, and hands with many connectors have high straight potential.

Suited connectors are connectors that also share the same suit, and these also have

straight flush potential.

The Lo hand. The split pot structure of Omaha Hi-Lo also gives value to cards

from Two to Eight, and additional value to Aces. A hand becomes significantly better

if it has two or more Lo cards. A hand with multiple ways to take both Hi and Lo pots

has much higher overall expected value than a hand with many high cards. Even A♠

A♦ Q♠ J♦, a double-suited hand with a pair of Aces, has a negative expected value

against 5♥ 4♠ 3♣ 2♥, a single-suited hand with four low cards. This effect arises

14

because the first hand cannot qualify for the Lo pot at all: on almost any board that

has three cards between Ace to Eight, the second hand will win half of the overall

pot. In many of those cases, the second hand can also form a straight, which beats

the pair of Aces. The result is that in this matchup, the first hand has an expected

value of 49.47% of the pot, and the second has 50.53% of the pot. The best hand

a player can receive in Omaha Hi-Lo combines all of high card strength, low card

strength, straight potential, and flush potential: A♠ A♦ 2♠ 3♦.

For a hand to qualify for the Lo pot, the five cards in the hand must all have

face values Eight or below, and all values must be different. There are therefore(
8
5

)
= 56 distinct Lo hand types.

2.1.4 Tournament Structure

Poker can be played in two different forms: cash play and tournament play.

In cash play, players can enter and exit a poker table between games. To enter a

game, a player can bring any number of chips he purchased to make and call the bets

in the game. The player can later exit and exchange those chips back into cash. In

contrast, in a poker tournament, players all start with the same number of chips, and

all start play at the same time. Players may not leave the game except by either losing

all their chips, or by winning all of the chips and eliminating all the other players.

The players’ chips have no value as a result, except as scoring tokens to signify that

they remain participants in the tournament. The elimination order of each player

determines the ranking of the players in the tournament.

A poker tournament will typically set a low blind bet size at the outset. Players

can observe the strategies and playing styles of the other players with only a small

risk of elimination. However, the table stakes increase according to a predetermined

schedule. This forces the players to play with a wider variety of hands: a player

15

cannot wait to be dealt strong cards, as the high blind bets whittle away the player’s

chip stack. A player with 2,000 chips can bide her time for better cards when the

blind bets are twenty and forty chips, at 2% of her chip stack; she cannot when the

blind bets are 300 and 600 chips, at almost a third of her total stack.

An immediate strategic implication of the rising blinds is that players’ strate-

gies shift towards a preflop jam-or-fold model. Suppose a player (Hero) has 2,000

chips, at blinds level of 300/600, and on his turn can choose to either play or fold

his hand. The pot, through the blinds, is already at 900 chips. The minimal playing

action, calling the big blind of 600, increases the pot to 1,200 chips, while reducing

his remaining stack to 1,400 chips. If another player later raises to a bet of 2,000,

Hero faces a conundrum. He can call and risk his remaining 1,400 chips to possibly

win 3,500 chips, or fold. He is almost always receiving sufficiently high pot odds to

call and therefore should call. In effect, Hero calling the big blind commits him to

call all further bets and risk all his 2,000 chips. Observing this, he should instead

have raised all-in with all 2,000 chips, depriving his opponents of the option to call

the 600 chip big blind, with the same 2,000 chips at risk. As such, if Hero decides to

not fold, he should jam all his chips into the pot.

Tournament poker is a very popular game format, with the online poker site

PokerStars hosting thousands of poker tournaments at any given time. A typical

PokerStars impromptu “Sit-and-Go” six-player tournament will provide each player

with 1,500 chips, and set the starting blinds of 10/20 chips. Blind levels increase

every ten minutes. By the time only two players remain, the small and big blinds

are frequently as high as 200/400 or 300/600 chips. With the high table stakes, these

two players often will play with jam/fold strategies. Assuming that both players will

use jam/fold techniques, we compute near-perfect strategies for them in this project.

16

2.2. Game Theory

The aspect of poker that distinguishes it from other games such as blackjack,

lotteries, and other games of chance is the interaction between the players. The

players can make strategic decisions and adapt to opponents’ strategies, in an effort

to win and profit. Other games, such as chess, checkers, and backgammon share this

interaction between players, but poker also has an element of hidden information in

the players’ hands. A rigorous analysis of poker requires a basic understanding of

game theory, in particular about concepts such as strategy, regret, and equilibrium.

Strategy. The basic premise in games between players is that the players can

choose their actions. The players’ individual choices can affect the final outcome.

For example, in the game of Rock-Paper-Scissors, a player can choose from one of

these three items, which determines whether he wins or loses based on his opponent’s

action. Define a player’s strategy σ to be the action the player will take at any game

setting where the player’s decision can affect the final outcome. These strategies can

be pure, meaning that the player always chooses the same action at that decision

point, or mixed, where the player decides among different possible actions according

to a probability distribution. In Rock-Paper-Scissors, “always pick rock” is a pure

strategy. In an Omaha Hi-Lo Poker Jam/Fold tournament, the only actions available

to the small blind are to Raise All-In or Fold. The small blind, for example, may

decide to jam all his hands except for unsuited hands, which he jams with probability

0.3. This decision rule, defining the action selected for every possible decision point,

is a strategy for the small blind. A strategy profile is a set of strategies, one for each

player, so that every possible decision point by any player has an associated assigned

action.

17

Best Response. Strategic thinking in a game requires more than blindly choos-

ing among possible actions; players can possibly achieve better results by evaluating

and adapting to the opponents’ strategies. The best response is a strategy σ′ with

the maximum expected value for a player, given that the opponent played σ. In the

Rock-Paper-Scissors example, the best response to “always pick rock” is “always pick

paper,” winning every time. The best response to “pick either rock or scissors, 50%

of the time” is “always pick rock,” on average winning every other game and tying

the other. The basic form of the big blind’s best response is that, based on the small

blind’s strategy σSB of what hands to raise and how frequently, to call with hands

whose odds of winning are better than the pot odds offered. The best response strat-

egy is also called the maximally exploitative strategy, as it takes as much advantage

as it can against the opponent.

Regret. Informally, regret is the player’s observed loss compared to what was

possible. Mathematically, define a player P ’s regret for playing their own strategy σP

instead of an alternative strategy σPA as the difference in expected value for playing σPA

and playing σP . Positive regrets mean that the alternative strategy performs better

than P ’s own strategy, so P regrets using σP instead of σPA . The larger the regret,

the larger the opportunity to gain, and therefore the more P regrets not using σPA .

Negative regrets can be interpreted as P ’s “thankfulness” for choosing σP instead of

σPA .

When the alternative strategy is not mentioned, P ’s regret for playing σP is P ’s

regret compared to the best response possible against the opponent. By definition,

a player’s regret is non-negative, since a player regrets nothing for using the best

possible strategy against the opponent.

Nash Equilibrium. When a player P has a positive regret for using strategy

σP , it means that there is an alternative strategy σPA better for P . That means a

18

strategy profile where P uses σP is not in equilibrium; P should switch to σPA . A

strategy profile where all players have no regrets for using their respective strategies

is in equilibrium, called a Nash Equilibrium. No player can improve their outcome by

choosing a different strategy.

Back to Rock-Paper-Scissors, suppose players A and B follow a strategy profile

σA = “Play Rock, Scissors, Paper at random, each 1
3

of the time”, σB = “Always

play Rock.” Player B has no regrets, because B can do no better than win, lose, or

draw 1
3

of the time each. But Player A has a positive regret for not choosing “Always

pick Paper,” so strategy profile
(
σA, σB

)
is not a Nash Equilibrium. The strategy

where both players use “Play Rock, Scissors, Paper at random, each 1
3

of the time”

is a Nash Equilibrium; neither player can improve against the opponent by changing

strategies. There always exists at least one Nash Equilibrium strategy profile in every

game (Von Neumann & Morgenstern, 2007; Nash, 1950).

A computer might not be able to compute an exact Nash Equilibrium, but

it might find an approximate solution. An ε-Nash Equilibrium is a strategy profile

where no player has regret exceeding a small ε; a player might have a better strategy,

but the improvement is de minimis.

Minimax. The existence of a Nash Equilibrium does not imply that the equi-

librium strategy profile is fair. Games can have a scoring structure that makes the

game unfair for one side. In this case, the best a player can do is minimize their

loss against the opponent. This amount of loss is called the minimax value, or just

value, of the game. The name derives from “minimal maximum,” as the player seeks

to minimize the opponent’s score, assuming the opponent will attempt to maximize

their own score. The Omaha Hi-Lo Poker Jam/Fold game has non-zero minimax

values, dependent on the stakes and the number of chips each player holds.

19

Regret Matching. The concept of regret lends itself to a strategy learning mech-

anism through iterative play. People naturally learn to play games better through

practice. A beginner player might decide on her actions at random, and observe the

results. When she wins, she is thankful for taking her action, and when she loses, she

regrets not taking some other action that would have performed better. Over time,

she learns which actions she tends to regret making, which actions she would have

preferred to take, and which actions she is most thankful for taking. She then shifts

her strategy to take the preferable actions more frequently, and the poorer actions

less frequently.

A computer can use a similar learning mechanism, acting out all the players

in a game. Like the beginner player, the computer starts by modelling each player’s

strategy as uniformly random. The computer calculates the regret for a player P ’s

model strategy, compared to each of P ’s pure strategies, assuming that the opponents

follow their corresponding model strategies. It also keeps P ’s running totals of the

regrets for each strategy. Afterwards, the computer constructs a new strategy for P ,

never using any action that P is thankful not to play, and using actions that P wishes

it chose, in proportion to the amount P wishes it used that alternative action. The

computer repeats this for each player to build a new strategy profile.

The computer runs this process repeatedly, constructing strategy profiles by

selecting actions in proportion to the accumulated regret for not using that action. In

a game such as poker, where one player’s gain is another player’s loss, the sequence

of strategy profiles that match the proportion of regrets over time converge to a Nash

Equilibrium (Hart & Mas-Colell, 2000; Robinson, 1951).

20

2.3. Prior Work in Computer Poker and Poker Strategy

Research into poker has focused on the most popular poker variant, Texas

Hold’em. While Omaha Poker and its variants are similar to Texas Hold’em in their

use of community cards, Omaha Hi-Lo Poker is more complex to analyze due to its

greater number of combinations in hand types and the Hi/Lo split pot structure.

With only 169 different hand classes in Texas Hold’em, there are many widely pub-

lished guidelines for preflop play of different hand types (Sklansky & Malmuth, 1999;

Harrington & Robertie, 2010). There are few such systems for Omaha Hi-Lo Poker,

with 16,432 different hand classes. Furthermore, published starting hand guidelines

for Omaha Hi-Lo Poker are imprecise and qualitative. The Hutchison Point System

is one of the few such evaluation systems available for Omaha Poker, though it as-

sumes “a ten-handed game at the lower levels with a mix of good and poor players”

(Hutchison, 1997).

This thesis builds upon the work of Miltersen and Sørensen, who published “A

Near-Optimal Strategy for a Heads-Up No-Limit Texas Holdem Poker Tournament”

(Miltersen & Sørensen, 2007). They found a pair of strategies in two-player jam/fold

Texas Hold’em tournament, for their respective small and big blinds, forming an ε-

Nash Equilibrium. In doing so, Miltersen and Sørensen demonstrated the feasibility

of computing such an equilibrium in a game where each player has one of 169 pos-

sible hand classes, using linear optimization. A year later, Ganzfried and Sandholm

published a similar equilibrium for three players (Ganzfried & Sandholm, 2008).

This thesis draws inspiration from the SAGE System, an approximation of a

Nash Equilibrium for a Texas Hold’em tournament end-game situation (Jones, 2006).

The SAGE System is a set of scoring rules for the cards in a Texas Hold’em poker

hand, with which a player can quickly calculate a Power Index score. The player then

21

compares the computed Power Index to a threshold score; if the hand’s Power Index

exceeds the threshold, the player should jam all-in.

Equilibrium results in Texas Hold’em research have used simplifying assump-

tions to shrink the search space. In particular, the SAGE System, the two player

ε-Nash Equilibrium and the three player ε-Nash Equilibrium all restricted their anal-

ysis to jam/fold situations. This is a common assumption, as described in Sklansky’s

“The System” (Sklansky, 2007). The assumption is not necessary, however, as demon-

strated in Cepheus, an approximate equilibrium strategy for two-player Limit Texas

Hold’em Poker.

The University of Alberta’s Poker Research Group developed Cepheus through

a machine learning algorithm called CFR+ (Bowling et al., 2015; Tammelin, 2014).

This algorithm is a new refinement of the Counterfactual Regret Minimization (CFR)

algorithm developed by the University of Alberta (Zinkevich et al., 2007), in turn

a successor to regret matching. CFR is well-suited to games with many different

potential decision points, scaling linearly to the number of such points, instead of

scaling exponentially using regret matching or linear optimization. Cepheus used

nearly a one thousand CPU-years of computation to learn an unexploitable strategy

for every possible contingency.

In this project, we calculate an ε-Nash Equilibrium for a two-player jam/fold

Omaha Hi-Lo tournament game. This project uses the CFR+ algorithm to compute

the equilibrium, as CFR+ is better suited for games with many possible game states

than linear optimization. Finally, it finds a hand scoring system for Omaha Hi-Lo

tournament endgames, similar to the SAGE System for Texas Hold’em tournament

endgames. While this project does not require even a CPU century of computer

time, it still requires extensive computation; Amazon Web Services (AWS) and the

OpenCL framework make powerful computers and specialized processors available

22

inexpensively.

2.4. Amazon Web Services

AWS is the Cloud Computing division of Amazon.com. It provides web ser-

vices and computing resources to users that require computing capacity flexibly with-

out upfront hardware costs. Instead, AWS charges users by hours of server usage,

gigabyte-months of storage, and gigabytes of network transfer. AWS offers the Elas-

tic Compute Cloud (EC2) service for turnkey computer servers. Amazon offers these

servers in three pricing models: on-demand, spot, and reserved instances. On-demand

instances run continuously, with fees accruing per hour according to Amazon’s pub-

lished price schedule. Spot instances run based on auction pricing: if the user’s offered

price for an instance exceeds the spot market rate, the server starts, and if the market

rate later exceeds the offered price, AWS shuts the server down. Reserved instances

require the user to pay an upfront or annual commitment fee, with a corresponding

discounted per hour fee, with assured capacity. Spot market prices for an instance

can be deeply discounted compared to on-demand prices: a server with a quad-core

Intel processor and sixteen gigabytes of memory can cost as little as 2.65 cents per

hour in an m4.xlarge spot pricing instance, compared to 25.20 cents per hour on-

demand. This thesis project used AWS EC2, in on-demand and spot pricing models,

and Simple Storage Service (S3) for large bursts of computing power and storage.

2.5. OpenCL

OpenCL is an industry standard computing framework for writing programs

that execute in a heterogeneous computing environment. Programs written using the

OpenCL framework can execute on central processing units (CPUs), graphics pro-

23

cessing units (GPUs), and other processors. Similar to CUDA by NVIDIA, OpenCL

is commonly used to offload highly parallel computing tasks to GPUs, performing

general purpose computing on graphics processing units (GPGPU). Programs using

GPGPU can be over 100 times faster than CPU-only processes (Stone et al., 2010).

OpenCL can also be used to spawn parallel processes on CPU-only computers. The

OpenCL platform remains current, with version 2.1 ratified in March 2015.

AWS provides access to servers with dedicated GPUs with support for OpenCL

in their g2.2xlarge and g2.8xlarge instance types. The servers available through

EC2 also all support OpenCL without GPUs using CPU processing.

24

Chapter 3: Methodology and Design

This chapter will describe the stages taken to construct the heuristic scoring

system that is the goal of this project. The first section provides a high-level overview

of the Hand Evaluator, Game Tabulator, Matchup Tabulator, Equilibrium Solver, and

Feature Valuation components and the system architecture that integrates them. The

following sections then describe these components in detail.

3.1. Overview

This project required the construction of five distinct components: 1. a fast

Hand Evaluator to determine the winner of a showdown between two players, 2. a

Game Tabulator that compares two four-card hands in a matchup and reports the

distribution of win/quarter/tie/loss results, 3. a Matchup Tabulator that records

these results for all possible matchups, 4. an Equilibrium Solver to learn a ε-Nash

Equilibrium strategy for the two players, and 5. Feature Valuation of a four-card

hand to compute a Power Level score of that hand.

Both cards and hands required a consistent enumeration method throughout

this project. For simplicity in separating out the suits and face values of a given

card, this project uses the card numbering convention A♣ = 0, 2♣ = 1, ..., K♣

= 12, A♦ = 13, ..., A♥ = 26, ..., K♠ = 51.

The numbering of an n-card combination is given by its combinatorial index

25

All eight-card
combinations
(Table 3.3)

Compute
two-card

combinations

Compute four-
card player’s

hands

Compute
boards

35 results for all boards

Matchup Tabulator (Figure 3.4)

Equilibrium Solver

Feature Valuation

Eight card
combination

For each board:

Result
Hands

Compute possible
resultant hands

Compute possible
matchups for board

35 Board
Results

Get matchup results for each
eight-card combination

Classify each possible hand in
eight-card combination

outcomes

Run CFR+ algorithm

(Section 3.5.2)
equilibrium

Hand Feature

List (Table 3.4)

Linear Regression

Compute playability
metric

feature values

Execute
omaha_table_gen

BoardType HandValue

FiveCardRank
Execute

five_card_hand_table

Pre-computation

Game Tabulator ``eval8"

Figure 3.1: Logical flow between Project Components

26

value,

N(c1, c2, . . . , cn) =
n∑
i=1

(
ci
i

)
where the cards ci are ordered so that c1 < c2 < . . . , cn and

(
n
m

)
= 0 if

m > n. For example, the four-card combination K♠ J♥ T♠ 6♦ corresponds to

(c1, c2, c3, c4) = (18, 36, 48, 51) and its index is
(
51
4

)
+
(
48
3

)
+
(
36
2

)
+
(
18
1

)
= 267,844. The

four-card combination with the lowest index is A♣ 2♣ 3♣ 4♣, corresponding to

(c1, c2, c3, c4) = (0, 1, 2, 3) and index
(
3
4

)
+
(
2
3

)
+
(
1
2

)
+
(
0
1

)
= 0. The four-card combina-

tion with the highest index is K♠ Q♠ J♠ T♠, with an index of
(
51
4

)
+
(
50
3

)
+
(
49
2

)
+
(
48
1

)
= 270,724. All

(
52
4

)
= 270,725 four-card combinations have a unique index between

0 and 270,724.

This thesis uses the phrase “maps an n-card combination to a class” to mean

“calculate the index value of the n-card combination and retrieve the value in a lookup

table using that index value as the search key.”

3.2. Hand Evaluator

In poker, the player revealing the highest ranked hand is the winner of the

showdown. Determining the winner of a showdown, therefore, requires answering the

fundamental question for each player’s hand: “what is the rank of this hand?” The

Hand Evaluator answers this question.

The construction of a fast Hand Evaluator in this project required com-

puting three preliminary lookup tables. The first lookup table FiveCardRank :(
0 . . .

(
52
5

))
→ int maps a five-card combination to the Hi and Lo poker hand ranks

for these five cards. The second lookup table BoardType :
(
0 . . .

(
52
5

))
→ int maps

a five-card combination to a community card board class, and the third lookup table

HandV alue : (0 . . . 152619, 0 . . . 402) → int maps a board type and two-card hand

27

type index to a final hand rank value.

The five card hand table program computes all the values in the

FiveCardRank table. It encodes the Hi and Lo hand ranks into a thirty-two bit

value, using four bits for a Hi poker hand class, twelve bits for the rank of that hand

within that type, and eight bits for the Lo hand rank.

0781920232431

Unused Hi class Hi hand rank Lo hand

Figure 3.2: Encoding of Hi and Lo hand ranks

The eight Lo hand bits encode either zero, corresponding to no Lo hand, or a

number from one to fifty-six, corresponding to one of the fifty-six possible Lo hand

classes, with the value of fifty-six representing the best possible Lo hand, 5432A. The

four Hi hand class bits encode a number from one (High Card) to nine (Straight flush)

and the twelve Hi hand rank bits encode a number from zero to 2,859. These sixteen

bits distinguish each of the hand classes and ranks in Table 2.1. Figure 3.2 illustrates

the bit assignments for these ranks.

This encoding allows for a fast comparison of poker hand ranks: for two

hands H1 and H2, determining whether H1 beats H2 in the Hi hand can be done

by looking up FiveCardRank(H1) and FiveCardRank(H2), dropping the eight

Lo bits of each, and evaluating whether FiveCardRank(H1) & 0xffffff00 >

FiveCardRank(H2) & 0xffffff00. In turn, determining the winner of the Lo hand

can be done by comparing the Lo bits of the two FiveCardRanks.

The omaha table gen program uses the FiveCardRank table to compute the

BoardType and HandV alue lookup tables. To construct the BoardType lookup

table, the omaha table gen program iterates through the
(
52
5

)
possible five-card com-

binations, decomposing each combination into a same-suit classification and a face

28

value classification. Because in Omaha Poker the player must use exactly three of

the five community cards to construct their final hands, a combination of five cards

without three cards of the same suit precludes any flush or straight flush hand. The

program evaluates the same-suit classification of five cards as one of: five cards of the

same suit, four cards of the same suit and one card of a different suit, three cards of

the same suit and two cards of a suit different from that (but not necessarily different

from each other) and no three cards of the same suit. In conjunction with this, the

program classifies face values, retaining the suit information of three or more cards of

the same suit. Each five-card combination can thus be classified into one of 152,607

types:

Five cards of the same suit

There are
(
13
5

)
= 1,287 possible combinations of five cards, all of the same suit,

none with the same face value, of thirteen possible face values.

Four cards of one suit and one card of another suit

There are
(
13
4

)
= 715 possible combinations of four cards of the same suit, and

thirteen possible face values for the final card (the card’s suit is irrelevant),

totalling 9,295 classes of this type.

Three cards of one suit and two card of other suits

There are
(
13
3

)
= 286 possible combinations of three cards of the same suit.

There are
(
14
2

)
= 91 possible combinations of face values for the other two cards,

since the face values of these two cards can repeat, such as in the example Ks

Qs Js Kd Kh. There are 26,026 classes of this type.

No three cards of the same suit

There are
(
17
5

)
= 6,188 possible combinations of five cards from thirteen possible

29

face values, with face values selected with replacement. However, since there

are only four cards of each face value total, the thirteen combinations with five

cards all with the same face value never occur. There are 6,175 boards of this

type. For convenience in recalculating the index of these boards, the impossible

combinations are still assigned an index value.

For the first three types, there are four possible relevant suits. There are

thus 1,287 + 715 + (26,026 × 4) + 6,188 = 152,620 types of boards in total. The

omaha table gen program assigns indices for each type as described in Table 3.1.

Index Description of board

Clubs

0 - 1,286 Five clubs

1,287 - 10,581 Four clubs

10,582 - 36,607 Three clubs

Diamonds

36,608 - 37,894 Five diamonds

37,895 - 47,189 Four diamonds

47,190 - 73,215 Three diamonds

Hearts

73,216 - 74,502 Five hearts

74,503 - 83,797 Four hearts

83,798 - 109,823 Three hearts

Spades

109,824 - 111,110 Five spades

111,111 - 120,405 Four spades

120,406 - 146,431 Three spades

Unsuited 146,432 - 152,619 Fewer than three cards per suit

Table 3.1: BoardType table layout

Similar to the BoardType function that maps a five-card combination to a

community card class, a TwoCardType mapping function classifies the
(
52
2

)
possible

two-card combinations into either two cards of the same suit, or two cards of a different

suit. There are
(
13
2

)
= 78 possible two-card combination types where the two cards

have different face value, and 13 types where the two cards have the same face value.

30

Each combination of two cards with different face values can be further classified as

one of: two clubs, two diamonds, two hearts, two spades, or two cards of different

suit. There are a total of 78× 5 + 13 = 403 total two-card combination types.

To construct the HandV alue lookup table, the omaha table gen program it-

erates through all five-card combinations of community cards, along with all two-card

combinations of possible player cards. With each such combination, the program looks

up the ten possible poker hands using both player cards and exactly three community

cards, and tracks the highest Hi and Lo hand values. The program then evaluates the

BoardType and TwoCardType values of the five community cards and two player

cards, encodes the best Hi and Lo ranks as BestRank in the same method as in the

FiveCardRank lookup table, and stores HandV alue(BoardType, TwoCardType) =

BestRank in the lookup table. Table 3.2 describes the layout of the HandV alue

lookup table.

Four-card Hand

0 1 . . . 402

Five-card Board Class

0

Best Hand: Hi and Lo Ranks

1

2

. . .

152619

Table 3.2: HandV alue lookup table, combining Hand and Board classes
for Hi/Lo hand ranks

With the BoardType, and HandV alue lookup tables created by

omaha table gen, a Hand Evaluator can now answer the question “what is the rank

of this hand?” given the five community cards and four player cards:

• Use the BoardType lookup table to determine the board type of the five com-

munity cards,

31

• Compute the six TwoCardType values from the possible two-card combinations

in the player’s four cards,

• Use the HandV alue lookup table for the determined BoardType class and

TwoCardType classes to determine the six possible Hi and Lo hands,

• Get the rank of the highest ranked Hi and Lo hands from these six hands.

3.3. Game Tabulator

Determining the winner of a showdown is an important aspect of poker, but

it is a backward-looking activity. There can only be a winner of a showdown at the

end of the game, after all the players have made their decisions. As such, the Hand

Evaluator does not help the player to answer the question “should I play or should I

fold this hand?” A Game Tabulator provides insight into this question by answering

the question “what do I expect to win with this hand, if I knew my opponent had

that hand?”

As a baseline, evaluating a single showdown given two four-card hands and

five community cards requires six TwoCardType evaluations for each of the two

hands, one BoardType lookup for the five community cards, and six HandV alue

lookups per player to determine that player’s overall Hi and Lo hand ranks. With

(52
4)(48

4)
2

= 26,338,835,250 possible preflop matchups and
(
44
5

)
= 1,086,008 possible

showdowns per preflop matchup, a brute-force evaluation of every showdown would

require approximately 3.43 × 1017 iterations of HandV alue lookups. Even at one

billion showdown evaluations per second, calculating all these results would require

almost one year.

We reduce the number of evaluations required by exploiting three symmetries

in the game. The first symmetry is across community card combinations. Observe

32

that dealing the two players’ hands can be split into two steps: pre-selecting eight

player cards from the deck, then distributing four cards to each player from these

eight selected cards. On selecting the eight player cards, the remaining forty-four

cards in the deck becomes fixed. This also fixes the possible community card boards,

independent of the actual hands the players receive. The second symmetry is across

two-card combinations. The six possible two-card combinations that each player can

use to create their Hi and Lo hands will be among the
(
8
2

)
= 28 two-card combina-

tions from the eight selected player cards. The third symmetry is across community

card combination classes. Each of the
(
44
5

)
= 1,086,008 possible community card

combinations can still be classified as a BoardType from Table 3.1.

The eval8 algorithm exploits these three symmetries to efficiently deter-

mine the distribution of matchup outcomes. It takes an input of the eight player

cards. eval8 starts by determining the frequency of each BoardType among the

1,086,008 possible boards. Then, for each BoardType, eval8 retrieves the Hi and Lo

HandV alues for the twenty-eight possible TwoCardTypes and stores the outcomes

in a small lookup table. eval8 then constructs the
(
8
4

)
= 70 possible hands using the

eight player cards, and determines the best resulting hands using this table. Next,

eval8 determines the winner in each of the thirty-five possible matchups based on

the values of the seventy hands. The eval8 algorithm concludes after evaluating all

the possible boards by summing the results for each board, weighted by the frequency

of each BoardType. Figure 3.3 illustrates the use of pre-evaluated HandV alue re-

sults for two possible matchups given an input of eight player cards. Exploiting these

three symmetries reduces the number of HandV alue lookups for thirty-five matchups

from the brute-force computation with 35 × 1,086,008 × 12 = 456,123,360 lookups

to 152,620 × 28 = 4,273,360, for a reduction of over 99%.

The GameTabulator program implements the eval8 algorithm to compute

33

Figure 3.3: eval8 process for eight-card combination of
3♣ 8♣ 9♣ 2♦ T♥ A♠ 5♠ J♠ and board of A♣ 7♣ Q♣ 6♦ 7♦. 1. Evaluate

all twenty-eight possible hands from board and two-card combinations
from hand. 2. Look up the six possible two-card hands from each

four-card hand. 3. Determine winner of Hi and Lo hands.

34

the number of scoops, draws, quarters, and ties for the thirty-five matchups arising

from an eight-card player card combination. In this implementation, GameTabulator

uses the OpenCL framework to offload the HandV alue lookups to a graphics ac-

celerator. A graphics accelerator, tuned for highly parallel processing, can evalu-

ate thirty-two different BoardTypes simultaneously. The OpenCL framework allows

GameTabulator to dispatch table lookups and evaluate the Hi and Lo hands us-

ing the results of those lookups as a workgroup task, and even run workgroups in

parallel. Running the workgroups in parallel permits the graphics processor to cal-

culate Hi and Lo hands while other workgroups incur memory latency when waiting

for HandV alue table lookups. The performance gain using GPU processing is no-

ticeable: GameTabulator completes 500 runs of eval8 in fifteen seconds using the

graphics accelerator on an Amazon g2.2xlarge instance, compared to twenty sec-

onds on the eight-core CPU of the same instance, reducing the computation time by

20%.

3.4. Matchup Tabulator

The limitation of GameTabulator lies in the input assumption that it knows

the opponent’s exact hand. The player in the small blind position has no information

about his opponent’s hand at all, and yet he must make his decision to raise or fold

his hand. This player must run the Hand Evaluator for every possible opponent hand,

and calculate the frequency of each possible opponent hand, to compensate for the

opponent’s hidden holding. The MatchupTabulator runs GameTabulator to evaluate

every possible eight-card player card combination.

There are
(
52
8

)
= 752,538,150 eight-card player card combinations that

MatchupTabulator must evaluate. However, observe that permuting the suits in

a matchup between two four-card hands does not affect the distribution of outcomes.

35

For example, the hand A♠ J♦ 9♠ 9♦ will perform equally against K♠ Q♠ 3♦ 2♥

as A♥ J♣ 9♥ 9♣ against K♥ Q♥ 3♣ 2♠. The possible eight-card combinations of

fifty-two cards can therefore be classified into equivalent combination types, letting

MatchupTabulator evaluate only one item of each class, using symmetry to infer

the results of the equivalent combination types. There are 32,819,436 such types,

described in Table 3.3.

MatchupTabulator only needs to evaluate one eight-card combination from

each of these types, shrinking the search space by 95.5% compared to evaluating every

possible eight-card combination. The GenerateTableClasses.py program computes

representative combinations for each eight-card combination class, creating a comma-

separated values file of class index and eight cards.

MatchupTabulator coordinates multiple processing nodes running the

GameTabulator program to process the eight-card classes more quickly. It uses a sim-

ple SQLite database to track previously evaluated combinations, and send work pack-

ets to the individual processing nodes. The GameTabulator program returns, for each

eight-card combination in its work packet, the results of the thirty-five matchups, as

well as the two players’ hand classes in each matchup. The MatchupTabulator server

validates that the total number of results is 1,086,008 outcomes per match, each eight-

card combination has thirty-five matchups, and that the processing node evaluated

all the eight-card combinations in its work packet. After MatchupTabulator validates

the response, it uploads the results as comma-separated values files to S3 for storage.

The MatchupTabulator consists of two web-server CGI scripts, GetMatchups.py and

ReceiveResults.py, which distribute and receive work packets and results. The

EvaluatorWorkerNode.py client retrieves work units from the web server and runs

GameTabulator to compute hand classes and matchup results.

36

Suit distribution and
characteristics

Example Code Classes Duplicates Total

(8, 0, 0, 0) A♠ K♠ Q♠ J♠
T♠ 9♠ 8♠ 7♠

C A8B0C0D0
(
13
8

)
4 5,148

(7, 1, 0, 0) A♠ K♠ Q♠ J♠
T♠ 9♠ 8♠ A♥

C A7B1C0D0
(
13
7

)(
13
1

)
12 267,696

(6, 2, 0, 0) A♠ K♠ Q♠ J♠
T♠ 9♠ A♥ T♥

C A6B2C0D0
(
13
6

)(
13
2

)
12 1,606,176

(6, 1, 1, 0), pair in
unsuited cards

A♠ K♠ Q♠ J♠
T♠ 9♠ A♥ A♦

C A6B1C1D0m0
(
13
6

)(
13
1

)
12 267,696

(6, 1, 1, 0), not pair in
unsuited cards

A♠ K♠ Q♠ J♠
T♠ 9♠ A♥ 2♦

C A6B1C1D0m1
(
13
6

)(
13
2

)
24 3,212,352

(5, 3, 0, 0) A♠ K♠ Q♠ J♠
T♠ A♥ 8♥ 6♥

C A5B3C0D0
(
13
5

)(
13
3

)
12 4,416,984

(5, 2, 1, 0) A♠ K♠ Q♠ J♠
T♠ A♥ 8♥ 3♦

C A5B2C1D0
(
13
5

)(
13
2

)(
13
1

)
24 31,320,432

(5, 1, 1, 1), pair in
unsuited cards

A♠ K♠ Q♠ J♠
T♠ A♥ 8♦ 8♣

C A5B1C1D1m1
(
13
5

)(
13
2

)(
13
1

)
12 2,409,264

(5, 1, 1, 1), trips in
unsuited cards

A♠ K♠ Q♠ J♠
T♠ 8♥ 8♦ 8♣

C A5B1C1D1m2
(
13
5

)(
13
1

)
4 66,924

(5, 1, 1, 1), no pairs or
trips in unsuited cards

A♠ K♠ Q♠ J♠
T♠ A♥ 8♦ 3♣

C A5B1C1D1m0
(
13
5

)(
13
3

)
24 8,833,968

(4, 4, 0, 0), matching
four-flush

A♠ K♠ Q♠ J♠
A♥ K♥ Q♥ J♥

C A4B4C0D0m1
(
13
4

)
6 4,290

(4, 4, 0, 0), not
matching four-flush

A♠ K♠ Q♠ J♠
A♥ K♥ Q♥ T♥

C A4B4C0D0m0
((

13
4

)
2

)
12 3,063,060

(4, 3, 1, 0) A♠ K♠ Q♠ J♠
A♥ 8♥ 6♥ 3♣

C A4B3C1D0
(
13
4

)(
13
3

)(
13
1

)
24 63,800,880

(4, 2, 2, 0), matching
two-flush

A♠ K♠ Q♠ J♠
T♥ 8♥ T♦ 8♦

C A4B2C2D0m1
(
13
4

)(
13
2

)
12 669,240

(4, 2, 2, 0), not
matching two-flush

A♠ K♠ Q♠ J♠
T♥ 8♥ T♦ 6♦

C A4B2C2D0m0
(
13
4

)((
13
2

)
2

)
24 51,531,480

(4, 2, 1, 1), unmatched
unsuited cards

A♠ K♠ Q♠ J♠
T♥ 9♥ 3♦ 2♣

C A4B2C1D1m0
(
13
4

)(
13
2

)(
13
2

)
24 104,401,440

(4, 2, 1, 1), unsuited
cards pair

A♠ K♠ Q♠ J♠
T♥ 9♥ 3♦ 2♣

C A4B2C1D1m1
(
13
4

)(
13
2

)(
13
1

)
12 8,700,120

(3, 3, 2, 0), matching
three-flush

A♠ K♠ Q♠ A♥
K♥ Q♥ Q♦ T♦

C A3B3C2D0m1
(
13
3

)(
13
2

)
12 267,696

(3, 3, 2, 0), not
matching three-flush

A♠ K♠ Q♠ A♥
K♥ J♥ Q♦ T♦

C A3B3C2D0m0
((

13
2

)
2

)(
13
2

)
24 76,293,360

(3, 3, 1, 1), matching
three-flush, pair in

unsuited cards

A♠ K♠ Q♠ A♥
K♥ Q♥ J♦ J♣

C A3B3C1D1mb
(
13
3

)(
13
1

)
6 22,308

(3, 3, 1, 1), matching
three-flush, not pair in

unsuited cards

A♠ K♠ Q♠ A♥
K♥ Q♥ J♦ T♣

C A3B3C1D1m3
(
13
3

)(
13
2

)
12 267,696

(3, 3, 1, 1), not
matching three-flush,
pair in unsuited cards

A♠ K♠ Q♠ A♥
K♥ T♥ J♦ J♣

C A3B3C1D1m1
((

13
2

)
2

)(
13
1

)
12 6,357,780

(3, 3, 1, 1), none of the
above

A♠ K♠ Q♠ A♥
K♥ T♥ J♦ T♣

C A3B3C1D1m0
((

13
2

)
2

)(
13
2

)
24 76,293,360

(3, 2, 2, 1), matching
two-flush

A♠ K♠ Q♠ J♥
T♥ J♦ T♦ 9♣

C A3B2C2D1m1
(
13
3

)(
13
2

)(
13
1

)
12 3,480,048

(3, 2, 2, 1), not
matching two-flush

A♠ K♠ Q♠ J♥
T♥ J♦ 9♦ 9♣

C A3B2C2D1m0
(
13
3

)((
13
2

)
2

)(
13
1

)
24 267,963,696

(2, 2, 2, 2), all
two-flushes match

A♠ K♠ A♥ K♥
A♦ K♦ A♣ K♣

C A2B2C2D2m4
(
13
2

)
1 78

(2, 2, 2, 2), three
two-flushes match

A♠ K♠ A♥ K♥
A♦ K♦ K♣ Q♣

C A2B2C2D2m3
(
13
2

) ((
13
2

)
− 1

)
4 24,024

(2, 2, 2, 2), two
two-flushes match, two
other two-flushes match

A♠ K♠ A♥ K♥
A♦ Q♦ A♣ Q♣

C A2B2C2D2m2p
((

13
2

)
2

)
6 18,018

(2, 2, 2, 2), two
two-flushes match

A♠ K♠ A♥ K♥
A♦ Q♦ Q♣ J♣

C A2B2C2D2m1
(
13
2

)((
13
2

)
−1

2

)
12 2,738,736

(2, 2, 2, 2), no
matching two-flushes

A♠ K♠ K♥ Q♥
A♦ Q♦ Q♣ J♣

C A2B2C2D2m0
((

13
2

)
4

)
24 34,234,200

Total 32,819,436 752,538,150

Table 3.3: Eight-card combinations and GenerateTableClasses.py class
codes

37

Both MatchupTabulator server scripts and EvaluatorWorkerNode.py clients

ran in the AWS environment. The server ran in an AWS t2.medium on-demand

instance, equivalent to 20% CPU time on a dual-core server with four gigabytes of

memory. In contrast, the worker nodes ran in g2.2xlarge spot instances, each hav-

ing a GPU with four gigabytes of memory. The server distributed work packets as

requested from the worker. The server also linked each work packet to the assigned

node to prevent duplication of work across nodes. Each work packet contained 10,000

eight-card combinations, for an estimated processing time of six minutes per packet.

Every hour, the server unlinked work packets that remained incomplete after two

hours since the request, on the assumption that the worker node was shut down by

AWS or otherwise failed. This is a simple fault-tolerance mechanism, enabling the use

of cheaper but potentially volatile spot instances which can be shut down and reallo-

cated by AWS. Figure 3.4 illustrates the process flow between the MatchupTabulator

server that tracks the work assignments for workers, the Worker Nodes that run the

GameTabulator, and the S3 storage to archive the workers’ results.

After MatchupTabulator processes all 32,819,436 eight-card combination

classes, the BuildOutcomes program takes all the uploaded matchup outcomes and

eight-card combination list to create a (16,432 × 16,432) → (int, int, int, int,

int) mapping. This outcomes table takes two hand classes, and returns the number

of scoops, quarters, and ties for all possible matchups between those two hand classes.

3.5. Equilibrium Solver

3.5.1 The Summary Table and Expected Value calculations

MatchupTabulator provides the data necessary to evaluate strategies for each

player: a complete table of every possible Omaha hand type versus hand type

38

Figure 3.4: Processing sequence between Worker Nodes and Matchup
Tabulator Server in AWS

matchup, a table freq containing the frequencies of all possible matchups, and the

total distribution of outcomes for each matchup. The solver program described

in this section implements an Equilibrium Solver that can evaluate different player

strategy profiles and learn stronger strategies. In doing so, solver can answer the

player’s fundamental question, “should I play or should I fold this hand?”

The outcomes table computed by MatchupTabulator is a (16,432 × 16,432

× 5) array of 32-bit integers, requiring over five gigabytes of memory. This array,

while smaller than the available memory in a modern desktop computer, cannot be

loaded into the four gigabytes of memory available in an Amazon g2.2xlarge GPU.

This project makes two assumptions to pre-process the large table into a smaller data

representation that solver can fit inside four gigabytes of memory. The Independent

Chip Model (ICM) assumption states that a player’s chance to win a tournament is

equal to their share of the total chips. The rational risk-neutral player assumption

39

states that a player always prefers options with higher expected utility over lower

expected utility, and is indifferent to options with equal expected utility, regardless

of any randomness in the options.

For a two-player tournament, the ICM assumption means that a player’s equity

in an all-or-nothing tournament is equal to his share of the total chips. As a result,

a player winning n chips increases his equity by n
total number of chips

. This implies that

every chip has equal value in a two-player game. The rational risk-neutral player

assumption means that the players will raise or call if the unweighted expected value

of raising or calling exceeds the expected value of folding.

The expected value from folding is the loss of the players’ blinds. We can also

calculate the expected value from raising or calling in a matchup using the outcomes

distribution calculated by MatchupTabulator. Once the two players’ hands are dealt,

the outcomes distribution for the potential showdown is fixed. The expected value of

that showdown for the player, where the probability of scooping, quartering, tying,

and getting quartered are Pscoop, P3Q, Ptie, and P1Q, respectively:

EV = pot× Pscoop + pot× 0.75× P3Q + pot× 0.5× Ptie + pot× 0.25× P1Q

Since the small blind player must have wagered chips to total half of the pot, the net

expected value of that showdown is

EV = pot× (Pscoop + 0.75P3Q + 0.5Ptie + 0.25P1Q)− 0.5× pot

The expression (Pscoop + 0.75P3Q + 0.5Ptie + 0.25P1Q) summarizes the player’s show-

down equity as a proportion of the total pot. A lookup table summary of these

summary values can be constructed as a (16,432 × 16,432) table of values, so that

summary(A,B) is the normalized showdown equity of a hand of class A versus a

40

hand of class B. Using 64-bit floating point values, the summary table is just over

two gigabytes in size.

Having a player’s showdown equity is not enough to determine whether to

play or fold; a player must also evaluate the possibility that his opponent folds, and

the types of hands his opponent will play. This modelling of the opponent’s strategy

and the calculation of the best response against that strategy can be formalized. To

do so, we define a player’s strategy vector σP to be a list of probabilities, such that

Player P raises or calls given that he was dealt a hand of class i with probability σPi .

Consider the perspective of the big blind player, dealt a hand of class B, facing a raise

from the small blind. She must decide whether to call or fold, and must estimate the

expected value of calling versus folding. She can do so with an estimate of the small

blind’s strategy vector σS and a calculation of pot, the final pot size should she call:

pot = 2×min(small blind’s stack, big blind’s stack) (3.1)

raise freq =

16,432∑
i=1

σSi freq(B, i) (3.2)

EV (fold) = -big blind (3.3)

EV (call) = pot×
∑16,432

i=1 σSi summary(B, i)− 0.5

raise freq
(3.4)

EV (call) is the expected value of playing hand B against all possible opponent

hands i, weighted by the probability that the opponent actually has and plays hand

i. If EV (call) exceeds EV (fold), the sure loss of the big blind by folding, the big

blind player should call.

The small blind player faces a similar problem when deciding whether to raise

or fold with a hand A. He can do so with an estimate of the big blind’s strategy

41

vector σB and a calculation of pot:

EV (fold) = -small blind (3.5)

EV (raise) =

16,432∑
i=1

freq(A, i)(pot(σBi summary(A, i)− 0.5) + (1− σB,i)(big blind))

(3.6)

EV (raise) is the expected value of playing hand A against all possible oppo-

nent hands i, winning the big blind if the opponent folds, and winning the expected

value of the possible showdowns if the opponent calls. The solver program uses both

summary and freq tables as precomputed inputs for the strategy learning process.

3.5.2 Regret Matching and CFR+

solver implements the CFR+ variant of the CFR algorithm (Tammelin, 2014)

to compute an ε-Nash Equilibrium for the two players using a regret minimization

technique. The specific details of the CFR+ algorithm, as implemented by the solver

program, follow.

Initialization

The solver program takes inputs of the freq and summary tables, the size

of the small blind and big blind, the total chip count between the two players,

and an increment for the small blind’s stack size. It starts by making initial

estimates of the two players’ strategies σA,t and σB,t at t = 0. It also initializes

matrices RA,i,α and RB,i,α, representing the cumulative regrets of A and B, dealt

hand i, for playing their respective strategies instead of always playing action

α. Finally, it sets the time index t = 0.

42

Calculate the expected value of Player A’s current strategy

solver calculates the expected value EV (σA,t) of using the strategy σA,t coun-

terfactually on A having been dealt a hand of class i, for all 16,432 hand classes.

Using the law of total probability,

EV (σA,t) =
16432∑
i=1

EV (σA,t|Awas dealt handi) Pr(Awas dealt handi)

Denote EV (σA,t|Awas dealt handi) as EV (σA,t|i).

Calculate the expected value of Player A’s alternative pure strategies

solver cannot calculate the expected values of all of A’s 216432 alternative

pure strategies. Instead, as with the calculation of EV (σA,t), solver calculates

the expected values counterfactually. Assuming that A was dealt hand i, the

only strategies that can affect EV (σA0) are those where A changes his strategy

given that A was dealt hand i. The two such pure strategies are Always Raise

and Always Fold hand i. solver calculates the expected values of these two

strategies using Equations 3.5 and 3.6.

The build sb values kernel implements Equations 3.5 and 3.6 using the

OpenCL framework. This enables solver to calculate these expected values

for each hand class i in parallel.

Calculate and accumulate the regrets of all pure strategies

solver calculates the regret of playing σA,t, conditional on being dealt hand i,

compared to folding hand i, using the calculated EV (σA,t|i) and Equation 3.5,

and compared to raising using Equation 3.6. Denote these regrets compared to

folding and raising as ρF,i and ρR,i. solver then adds these regrets, weighted

by the time index, as prescribed by CFR+, by assigning RA,i,α ← RA,i,α + tρα,i.

43

The build new strategy kernel calculates these regrets compared to Always

Raise and Always Fold. It computes and accumulates them for each hand class

i in parallel.

Zero out negative regrets

solver sweeps RA,t,α for negative values, and if any are found, sets those values

to zero. CFR+ uses this optimization to optimistically use a new best response,

even if that strategy vector previously performed poorly.

Calculate Player A’s regret

Having calculated the expected values for both raising and folding for all possible

hand classes held by A, solver determines A’s regret for playing σA,t as the

average regret incurred for using σA,t for each hand class, weighted by the

frequency of being dealt that class.

A’s regret =
16432∑
i=1

(max(ρF,i, ρR,i)− EV (σA,t|i)) Pr(Awas dealt handi)

Construct a new strategy vector σA,t+1

solver matches A’s strategy to the proportion of regrets A previously experi-

enced, σA,t+1
i = RA,i,raise/(RA,i,raise +RA,i,fold), as prescribed by CFR+.

Repeat the calculations above for Player B

solver uses a build bb values kernel that implements Equations 3.3 and 3.4

for Player B’s expected values of her strategies, but otherwise follows the same

algorithm.

Check if both A and B have regrets smaller than ε

When this is the case, the strategy vectors σA,t+1 and σB,t+1 form an 2ε-Nash

Equilibrium, so solver outputs these vectors and stops. Otherwise, solver

44

increments the time index by 1 and repeats the calculations. ε takes the value

of 0.001 chips until 10,000 iterations of the CFR+ self-play loop, after which it

increases the tolerable ε to 0.01.

When solver finds an ε-Nash Equilibrium for the two players, it continues

looping through the algorithm up to 100 further times. In many cases, solver finds

an exact Nash Equilibrium where both players have pure strategies in this final loop.

The program outputs the strategy vectors after running through this loop.

solver then proceeds to the next increment of the small blind’s stack size. It

initializes the players’ strategies to be the equilibrium just discovered, on an estimate

that the small adjustment to the game’s circumstances will affect only a small portion

of the equilibrium strategy. The solver continues constructing equilibrium strategies

for the higher small blind stack sizes until the small blind stack size is more than half

the total chips in the game. When the small blind has more than half the total chips,

the big blind has correspondingly less than half. Based on Equation 3.1, the potential

pot size becomes capped by the big blind’s stack, to pot sizes that solver previously

analyzed. The previously calculated equilibrium for the small blind’s bigger stack

size is the same as for the small blind’s smaller stack size. solver calculated ε-

Nash Equilibrium strategies for games with a total of 9,000 chips, with table stakes

of 1000/2000, 750/1500, 600/1200, 500/1000, 400/800, 300/600, 250/500, 200/400,

150/300, 100/200, and 50/100, for stack sizes of the small blind from 50 to 8,950

chips in increments of 50 chips.

The verify program calculates the value of the game given the strategy vectors

of the small and big blinds, and optionally also flag strategy choices that are not

the best response to the opponent’s strategy. The build best response program

constructs the best response strategy vector against an opponent’s given strategy

vector.

45

3.6. Feature Valuation

The output of the Equilibrium Solver is an ε-Nash Equilibrium strategy profile

for the two players, prescribing how frequently a player should raise or call for every

possible Omaha hand type. But with 16,432 different Omaha hand types, it would be

difficult to memorize even one strategy table for a particular stack size situation. The

Feature Valuation process assigns scores to different attributes of an Omaha hand

type so that a player can calculate a Power Level score for that hand.

The HandAttributes.py program cycles through the different possible hand

classes and identifies attributes about the four cards in a hand of each class. This

program tags hands across the hand attributes in Table 3.4, setting the attribute value

to 1 if the hand contains the attribute. The program can also exclude from its output

the hands that contain particular attributes. It outputs two comma-separated values

files. The first file, attribs separate.csv, lists hand classes and their attributes

tags. The second file, attribs combined.csv, extends the output of the first file

with a dummy 0/1 variable column to identify whether the hand is to be analyzed in

the position of the small or big blind.

Separately, cutoff.py calculates the playability of each hand class reported

in an output file from HandAttributes.py. This program uses a simple measure

of a hand’s playability: the maximum stack size to big blind ratio where a player

should play that hand. This ratio R is the same ratio used by the SAGE System

for Texas Hold’em Poker. It is an appropriate measure through its relationship with

the pot odds faced by each player: as the players’ stack size increases, the number of

chips at risk when raising or calling increases, and the pot odds offered approaches

1:1. Hands that win infrequently require higher pot odds for them to be profitable

to play; this corresponds to smaller stack sizes and lower R values. This measure

46

Attribute Code Example Hand Attribute &
Value

Single card of face
value X, for Nines to

Kings

hasX A♠ K♠ K♥ J♣ hasK = 0,
hasJ = 1

Single card of Lo card
X, hand cannot make

Lo

bareX K♠ K♥ J♣ 2♠ bare2 = 1

Single card of Lo card
X, hand can make Lo

hasLowX A♠ A♠ K♥ 3♣ bareA = 0,
hasLowA = 0,
hasLow3 = 1

Pair of face value X hasPairX A♠ K♠ K♥ 3♣ hasPairK = 1
Exactly one pair is one pair A♠ K♠ K♥ 3♣ is one pair = 1
Exactly two pairs is two pair A♠ A♣ K♠ K♥ is one pair = 0,

is two pair = 1
Three of a kind is trips A♠ K♠ K♥ K♣ is one pair = 0,

is trips = 1
Four of a kind is quads K♠ K♥ K♦ K♣ is one pair = 0,

is two pair = 0,
is trips = 0,
is quads = 1

Double-suited suited AABB A♠ K♠ Q♥ J♥ suited AABB = 1
Mono-suited suited AAAA A♠ K♠ Q♠ J♠ suited AAAA = 1

Single-suited with one
off-suit card

suited AAAB A♠ K♠ Q♠ J♥ suited AAAB = 1

Single-suited with two
off-suit cards

suited AABC A♠ K♠ Q♥ J♣ suited AABC = 1

Lo cards with exactly
X distinct Lo face

values

low card X A♠ 4♠ 3♥ 3♣ low card 3 = 1

Suited with X-high in
suit

suitedX A♠ K♠ Q♥ J♣ suitedA = 1,
suitedK = 0

Suited connector XY cXY s A♠ K♠ Q♥ J♥ cQJs = 1
Connector XY cXY K♠ Q♥ J♥ T♦ cQJ = 1,

cJT = 1
Range of X between

highest and lowest card
rangeX K♠ Q♥ J♥ 9♦ range5 = 1

Table 3.4: Attributes of Omaha Hi-Lo four-card hands

47

assumes that hands that should be played at high R values should also be played

at low R values. In practice, this assumption holds for nearly all hand classes at R

levels up to 10. cutoff.py reports the maximum R levels for the hand classes in

three output files, multiplied by ten for convenience: small blind R levels, big blind

R levels, and combined. The first two outputs align with the attribs separate.csv

file from HandAttributes.py, and the last file aligns with attribs combined.csv.

The Feature Valuation process uses the list of independent attribute vari-

ables in the attribs combined.csv and the corresponding R level vector in the

attribs combined.csv file. It uses linear regression to estimate the effect each at-

tribute has on the overall playability of all the analyzed hands. The linear regression

coefficients form a starting estimate for the Power Index calculation rules.

Unlike the previous components of this project, determining the ideal Feature

Valuation coefficients is qualitative in nature. Using fewer rules in the calculation of

the Power Index heuristic increases its usability but decreases the accuracy relative

to the exact Nash Equilibrium strategy. The results of Feature Valuation are values

of different hand attributes. A player can calculate the sum of his hand’s attributes’

values, and on comparing that sum with a cutoff score, decide whether to raise or

fold his hand.

48

Chapter 4: Results

This chapter will discuss the results of the Equilibrium Solver and Feature

Valuation described in the Methodology chapter. First, it describes characteristics

of the ε-Nash Equilibrium and compares them to other research results. It then

discusses the results of the linear regression and the analysis that followed the regres-

sion calculation, culminating in the Omaha Raise All-in/Call Lightweight Endgame

(ORACLE) Strategy scoring heuristic. Finally, this chapter discusses the ORACLE

Strategy in detail, comparing it to the ε-Nash Equilibrium and analyzing its deviation

from optimal play.

4.1. Analysis of the ε-Nash Equilibrium

Lee Jones, the creator of the SAGE System, claimed that “most players play

far too tightly in heads-up jam-or-fold situations” (Jones, 2006). While analysing this

claim is outside the scope of this thesis, it is possible to quantify how frequently a

player should play in these situations. A high play frequency in a strategic equilibrium

supports Jones’ claim that players likely do not play frequently enough.

Both the small blind and big blind should play many hands at the low R levels

that signify that a player is running out of chips. In many endgame situations, the

R level is ten or below, leaving both players at the mercy of the cards as they play

more than 70% of hands each. The optimal play frequency drops off as R increases,

49

Figure 4.1: Optimal Play Frequency by the small and big blinds, as a
function of R

as expected, as raising all-in requires putting more chips at risk. The small blind’s

play frequency falls to just over 33% at an R = 45, and the big blind plays just

over half that, at 18%. This can be understood as a consequence of pot odds: as

R increases, the pot odds offered to the big blind approaches 1:1, and the big blind

cannot profitably call with hands that win less than half the time.

The equilibrium results clearly demonstrate the value of Aces in Omaha Hi-

Lo Poker. The worst possible hand that contains two Aces is the four-of-a-kind

Ace hand. A player with this hand will always use two Aces from the hand, so he

cannot make any straights, any flush, and cannot win any Lo pot. It is playable,

based on the playability measure described in Section 3.6, even at the lowest table

stakes analyzed, 50/100, R = 45. For comparison, the four-of-a-kind Kings hand has

a playability measure of less than two, and the least playable hand with a pair of

Kings, K♠ K♥ 9♦ 2♣, should not be played by the small blind at R ≥ 16. Aces

are also valuable as the best Lo card possible; aside from the hands with three-of-

50

Attribute Least playable
hand for small

blind

R level,
small blind

R level,
big blind

Two or more Aces A♠ A♥ A♦ A♣ 45+ 8.5
Two Kings K♠ K♥ 9♦ 2♣ 15 10

Two Queens Q♠ Q♥ 9♦ 2♣ 6 7.5
Ace and Lo card, not trips A♠ T♥ 9♦ 8♣ 18.5 14

Ace and Pair A♠ T♥ 9♦ 9♣ 5 7.5
Double-suited K♠ 2♠ 9♥ 2♥ 2 4

Double-suited with Ace A♠ 9♠ T♥ 9♥ 38.5 17
Two Pairs 9♠ 9♥ 2♦ 2♣ 2 4

Double-suited Two Pairs 9♠ 9♥ 2♠ 2♥ 4.5 7
Double-suited and three different

Lo cards
Q♠ 8♠ 7♥ 3♥ 27 14.5

Table 4.1: Playability of selected hands by attribute

a-kind, the least playable hand with an Ace and another Lo card, A♠ T♥ 9♦ 8♣,

remains playable for the small blind at R ≤ 18. Table 4.1 lists other hand attribute

combinations and their playability measures.

Hands that are readily playable by the small blind are not necessarily strong

for the big blind. The small blind can play all hands that are an “Ace and Lo card,

not three of a kind” up to R ≤ 18. The least playable hand of this type for the small

blind is A♠ T♥ 9♦ 8♣. But the least playable hand of this type for the big blind is

A♠ 9♥ 2♦ 2♣, which she should fold at R > 12.5. There is therefore no method to

rank either hand as superior to the other. Conversely, there are hands that are more

playable as the big blind than as the small blind. The hand J♠ 6♠ T♥ 9♥ is only

profitable to play as the small blind at R ≤ 3.5 but remains playable for the big blind

when R ≤ 6.5.

Similar to the two player Texas Hold’em jam/fold equilibrium, not all hands

that are playable with a large stack are playable with a small stack (Miltersen &

Sørensen, 2007). At table stakes of 200/400, 8♠ 5♠ 6♥ 2♣ should be raised by the

51

small blind if either the small blind or big blind has 3,500 or fewer chips, or if both

small and big blinds have more than 4,100 chips. Similarly, A♠ K♠ Q♠ J♠ should

be raised by the small blind if either player has 2,650 or fewer chips, or both players

have more than 3,950 chips. These discontinuities show that there is no uniform

playability ranking across the hand types, illustrated in Figure 4.2. There are 116

such discontinuities at table stakes of 200/400, but only three of these persist to stakes

of 250/500, and none to 300/600. As described in Section 3.6, the Feature Valuation

assumes that no discontinuities exist; while this assumption is not valid at 200/400,

its impact, affecting fewer than 1% of hand classes, is small.

Hand 3,000 4,000
8♠ 5♠ 6♥ 2♣ Raise Fold
A♠ K♠ Q♠ J♠ Fold Raise

Figure 4.2: Non-dominance of hands at stacks of 3,000 and 4,000, table
stakes 200/400

The unexploitability of a strategy does not guarantee its profitability. At very

low R levels, both players play nearly all their hands, effectively determining the

winner of any given hand by random luck. This results in a near-zero expected value,

when both players play whatever cards they were dealt. Figure 4.3 illustrates the

minimax of the small blind’s jam/fold strategy, showing that it peaks at R = 9.5,

and falls below zero by R = 16. The SAGE System is also only profitable for the

small blind at R ≤ 7 (Jones, 2006).

4.2. Value of Hand Features

Based on the playability cutoffs listed in Table 4.1, four types of hands were

removed from the analysis, as their exact cutoff levels are too high. To model an

endgame situation, the playability measures were calculated using table stakes of

52

Figure 4.3: Minimax value for the small blind, as a function of R

150/300. As a result, any hand that is playable above R = 15 will have a reported

playability metric of 150. This artificial cutoff causes the value of strong hands such

as a Pair of Aces to have an understated playability value, with their correspond-

ing attributes also undervalued. The regression results are also not expected to be

effective at the cutoff value R = 15. Instead, the model is tested at table stakes

of 200/400, corresponding to R = 11.25. Figure 4.4 shows the results of the linear

regression across the attributes described in Table 3.4. The four hand types excluded

from the regression analysis are:

• Hands with two or more Aces

• Hands with a Pair of Kings

• Hands with an Ace and a Lo card

53

• Double-suited hands with an Ace

The use of a zero intercept accounts for the linearly dependent suitedness

attributes: a hand will always be one of double-suited, single-suited with two off-

suit cards, single-suited with one off-suit cards, mono-suited, or unsuited. The linear

regression results show that the dominant attributes of a hand’s playability are the

presence of an Ace, the presence and value of any pairs, the suitedness of the hand,

and the presence and quantity of low cards. The connectors and suited connectors

only have a small effect on the overall playability of a hand, as do the specific high

card values of suited hands. Removing these attributes from the regression leaves a

smaller linear model, as shown in Figure 4.6.

The correlation coefficient drops from 0.9645 to 0.9637, still a very explanatory

model. From here, the valuation rules for each attribute can be read off the regression

coefficients. The resultant model tracks the equilibrium strategy very closely, as seen

in Figure 4.5. Even while the linear model strategy is not identical to the equilibrium,

it is nevertheless difficult to exploit, as shown by the small gap between the ideal

equilibrium curve and the two Exploitative strategy curves in Figure 4.5. The small

blind using this model potentially gives up 6.5 chips, approximately 0.016 big blinds,

to a maximally exploitative opponent, and the big blind possibly gives up 0.01 big

blinds.

But while the linear model strategy is accurate, it is not easy to use. It is

not reasonable to memorize these coefficients and calculate the playability indices at

a live poker table. The ORACLE Strategy uses further simplifications by rounding

coefficients and grouping attributes of similar type and value into one aggregate score.

54

Estimate Std. Error t value Pr(>|t|)

suited_AABB 75.06386 4.58868 16.358 < 2e-16 ***

suited_AABC 51.06602 4.57024 11.174 < 2e-16 ***

suited_AAAB 45.61450 4.58538 9.948 < 2e-16 ***

suited_AAAA 39.00056 4.64692 8.393 < 2e-16 ***

suited_ABCD 16.23615 4.53929 3.577 0.000349 ***

hasBareA 45.56065 1.74301 26.139 < 2e-16 ***

hasBare2 -5.56085 1.71359 -3.245 0.001176 **

hasBare3 -4.80332 1.71308 -2.804 0.005053 **

hasBare4 -4.32431 1.70956 -2.529 0.011429 *

hasBare5 -2.66168 1.70024 -1.565 0.117486

hasBare6 0.01130 1.68819 0.007 0.994661

hasBare7 2.44854 1.68776 1.451 0.146861

hasBare8 10.59496 1.72326 6.148 7.96e-10 ***

has9 -9.26773 1.25062 -7.411 1.30e-13 ***

hasT -1.43792 1.25580 -1.145 0.252210

hasJ -0.46050 1.29097 -0.357 0.721313

hasQ 6.55489 1.29541 5.060 4.22e-07 ***

hasK 13.03615 1.28035 10.182 < 2e-16 ***

hasLowA NA NA NA NA

hasLow2 15.65821 1.67597 9.343 < 2e-16 ***

hasLow3 16.17328 1.66254 9.728 < 2e-16 ***

hasLow4 17.13257 1.65114 10.376 < 2e-16 ***

hasLow5 19.15817 1.65312 11.589 < 2e-16 ***

hasLow6 14.07537 1.66329 8.462 < 2e-16 ***

hasLow7 -0.86279 1.66877 -0.517 0.605149

hasLow8 -8.00539 1.68573 -4.749 2.06e-06 ***

hasPairA NA NA NA NA

hasPair2 -15.58783 2.59239 -6.013 1.85e-09 ***

hasPair3 -6.70535 2.58999 -2.589 0.009633 **

hasPair4 2.93011 2.58869 1.132 0.257692

hasPair5 14.41827 2.59043 5.566 2.64e-08 ***

hasPair6 20.56876 2.59449 7.928 2.33e-15 ***

hasPair7 20.34035 2.59690 7.833 4.98e-15 ***

hasPair8 25.69891 2.60009 9.884 < 2e-16 ***

hasPair9 22.22332 2.57578 8.628 < 2e-16 ***

hasPairT 42.00693 2.57345 16.323 < 2e-16 ***

hasPairJ 56.35528 2.57899 21.852 < 2e-16 ***

hasPairQ 73.08115 2.57213 28.413 < 2e-16 ***

hasPairK NA NA NA NA

is_one_pair -5.88005 0.71409 -8.234 < 2e-16 ***

is_two_pair NA NA NA NA

is_trips -33.24601 3.59013 -9.260 < 2e-16 ***

is_quads NA NA NA NA

low_card_2 46.53096 1.88152 24.731 < 2e-16 ***

low_card_3 45.07704 3.25715 13.839 < 2e-16 ***

low_card_4 3.75768 4.80952 0.781 0.434633

suitedA NA NA NA NA

suitedK 0.71356 0.64838 1.101 0.271114

suitedQ -0.17266 0.61979 -0.279 0.780567

suitedJ 0.53166 0.60954 0.872 0.383092

c65 -7.26607 0.87080 -8.344 < 2e-16 ***

c76 -0.63301 0.87765 -0.721 0.470759

c87 9.32823 0.87721 10.634 < 2e-16 ***

c98 -9.83669 0.85999 -11.438 < 2e-16 ***

cT9 -3.48146 0.84058 -4.142 3.46e-05 ***

cJT 3.45460 0.85248 4.052 5.09e-05 ***

cQJ 1.60290 0.86622 1.850 0.064262 .

cKQ -5.72949 0.87836 -6.523 7.03e-11 ***

c65s 3.51241 1.14183 3.076 0.002100 **

c76s 2.33150 1.14138 2.043 0.041094 *

c87s -0.37413 1.14141 -0.328 0.743084

c98s 0.03762 1.14139 0.033 0.973706

cT9s -1.02645 1.11408 -0.921 0.356879

cJTs -0.13021 1.15111 -0.113 0.909942

cQJs -0.89316 1.14671 -0.779 0.436051

cKQs -1.74516 1.19169 -1.464 0.143086

range2 11.98542 2.13874 5.604 2.12e-08 ***

range3 22.37658 1.23473 18.123 < 2e-16 ***

range4 16.87906 0.91810 18.385 < 2e-16 ***

range5 15.24941 0.75451 20.211 < 2e-16 ***

range6 5.05374 0.64542 7.830 5.08e-15 ***

range7 5.95275 0.54663 10.890 < 2e-16 ***

is_big_blind -4.55564 0.29052 -15.681 < 2e-16 ***

Residual standard error: 22.23 on 23345 degrees of freedom

Multiple R-squared: 0.9646, Adjusted R-squared: 0.9645

F-statistic: 9494 on 67 and 23345 DF, p-value: < 2.2e-16

Figure 4.4: Linear Regression results on playability metric, zero
intercept, all attributes

55

Figure 4.5: Strategy performance between equilibrium, model, and
maximal exploitation of the model strategy at table stakes 200/400

4.3. The ORACLE Strategy

The Omaha Raise All-in/Call Lightweight Endgame Strategy is a newly-

developed scoring system for a player’s four-card Omaha Hi-Lo hand. A player can

calculate a Power Index using this system to determine whether to raise/call or fold,

as follows:

• If the hand satisfies any of the following, Raise as the Small Blind and Call as

the Big Blind.

– The hand contains two or more Aces

– The hand contains exactly two Kings

– The hand contains an Ace and any Lo card (any card from Two to Eight)

56

Estimate Std. Error t value Pr(>|t|)

suited_AABB 75.4023 4.6251 16.303 < 2e-16 ***

suited_AABC 51.2397 4.6169 11.098 < 2e-16 ***

suited_AAAB 45.9329 4.6233 9.935 < 2e-16 ***

suited_AAAA 39.4743 4.6691 8.454 < 2e-16 ***

suited_ABCD 16.2362 4.5896 3.538 0.000405 ***

hasBareA 45.9749 1.7567 26.171 < 2e-16 ***

hasBare2 -6.1151 1.7278 -3.539 0.000402 ***

hasBare3 -5.3562 1.7273 -3.101 0.001932 **

hasBare4 -4.8630 1.7240 -2.821 0.004795 **

hasBare5 -3.1391 1.7153 -1.830 0.067257 .

hasBare6 -0.2991 1.7039 -0.176 0.860649

hasBare7 2.4725 1.7025 1.452 0.146429

hasBare8 5.9118 1.6902 3.498 0.000470 ***

has9 -12.2450 1.2329 -9.932 < 2e-16 ***

hasT -0.8358 1.2271 -0.681 0.495808

hasJ 1.8411 1.2222 1.506 0.131979

hasQ 5.7257 1.2187 4.698 2.64e-06 ***

hasK 12.2488 1.2153 10.079 < 2e-16 ***

hasLowA NA NA NA NA

hasLow2 14.2839 1.6790 8.508 < 2e-16 ***

hasLow3 14.8790 1.6648 8.937 < 2e-16 ***

hasLow4 15.9166 1.6525 9.632 < 2e-16 ***

hasLow5 16.1336 1.6428 9.821 < 2e-16 ***

hasLow6 11.1568 1.6369 6.816 9.60e-12 ***

hasLow7 0.9696 1.6366 0.592 0.553548

hasLow8 -8.7167 1.6430 -5.305 1.13e-07 ***

hasPairA NA NA NA NA

hasPair2 -16.0038 2.6146 -6.121 9.46e-10 ***

hasPair3 -7.0042 2.6112 -2.682 0.007315 **

hasPair4 2.7465 2.6086 1.053 0.292426

hasPair5 13.1576 2.6074 5.046 4.54e-07 ***

hasPair6 19.4988 2.6078 7.477 7.86e-14 ***

hasPair7 22.4482 2.6099 8.601 < 2e-16 ***

hasPair8 25.7124 2.6099 9.852 < 2e-16 ***

hasPair9 20.8810 2.5930 8.053 8.47e-16 ***

hasPairT 43.2602 2.5860 16.729 < 2e-16 ***

hasPairJ 58.9256 2.5782 22.856 < 2e-16 ***

hasPairQ 73.0455 2.5694 28.429 < 2e-16 ***

hasPairK NA NA NA NA

is_one_pair -5.8403 0.7210 -8.100 5.75e-16 ***

is_two_pair NA NA NA NA

is_trips -32.1351 3.6230 -8.870 < 2e-16 ***

is_quads NA NA NA NA

low_card_2 48.1883 1.8792 25.643 < 2e-16 ***

low_card_3 48.8163 3.2399 15.067 < 2e-16 ***

low_card_4 10.1430 4.7635 2.129 0.033237 *

range2 9.9900 2.1258 4.699 2.62e-06 ***

range3 20.5774 1.1964 17.199 < 2e-16 ***

range4 15.4809 0.8847 17.498 < 2e-16 ***

range5 14.1812 0.7355 19.282 < 2e-16 ***

range6 4.3286 0.6350 6.817 9.52e-12 ***

range7 5.7728 0.5397 10.695 < 2e-16 ***

is_big_blind -4.5556 0.2937 -15.509 < 2e-16 ***

Residual standard error: 22.47 on 23364 degrees of freedom

Multiple R-squared: 0.9638, Adjusted R-squared: 0.9637

F-statistic: 1.295e+04 on 48 and 23364 DF, p-value: < 2.2e-16

Figure 4.6: Linear Regression results on playability metric, filtered
attributes

57

– The hand contains an Ace and is double-suited

• Score the suit distribution of the hand.

– If the hand is unsuited, start with a Power Level of 16

– If the hand is single-suited, start with a Power Level of 40

– If the hand is double-suited, start with a Power Level of 75

– If the hand is single-suited, add 6 for every card in the hand not in that

suit

• Score the unpaired cards in the hand.

– For an unpaired Ace, King, or Queen, add 46, 12, or 6, each

– For an unpaired 9, subtract 12

– For an unpaired 2, 3, or 4, if there are no other Lo cards in the hand,

subtract 5

• Score the low cards in the hand.

– If the hand has fewer than two Lo cards (Two to Eight) of different value,

skip this section.

– If the hand contains four Lo cards all of different face values, add 10.

Otherwise, add 48.

– Add 15 for each different face value of Lo card from Two to Five, and 10

for a Six

– Subtract 8 if the hand contains an Eight

• Score the pairs in the hand. Three of a kinds do not count as pairs in this

category.

58

– For each pair of Twos or Threes, subtract 16 and 8, respectively

– For each pair of Sixes to Nines, add 20. For a pair of Fives, add 15

– For each pair of Tens, Jacks, or Queens, add 45, 60, and 75, respectively

• Score the hand’s structure.

– If the hand contains exactly one pair, subtract 6

– If the hand contains a three of a kind (but not a four of a kind), subtract

32

• Score the hand’s straight potential.

– Calculate the distance from the highest to the lowest card in the hand.

– If the distance is two (the top and bottom cards are consecutive face val-

ues), add 10

– If the distance is three, add 20

– If the distance is four or five, add 15

– If the distance is six or seven, add 5

• If you are the Big Blind, subtract 5

• Calculate the action threshold 10R = size of the small stack×10
size of the big blind

.

If the Power Level exceeds 10R, Raise as the Small Blind and Call as the Big

Blind.

4.4. Analysis of the Strategy

The ORACLE Strategy is calibrated to play at a maximum R level of 11.25,

corresponding to table stakes of 200/400 and 9,000 total chips in the tournament.

59

Changing the table stakes used for the cutoff will change the regression coefficients,

calibrating the strategy to higher or lower R level ranges. As a further approximation

of the linear regression approximation, the ORACLE strategy is less accurate still,

with a correlation coefficient of 0.9577. But while goodness of fit is useful, the real

test of this model is the corresponding strategy and its exploitability.

Estimate Std. Error t value Pr(>|t|)

oracle_strategy 0.987292 0.001802 547.94 <2e-16

is_big_blind -4.869797 0.303881 -16.02 <2e-16

Residual standard error: 24.25 on 23410 degrees of freedom

Multiple R-squared: 0.9577, Adjusted R-squared: 0.9577

F-statistic: 2.652e+05 on 2 and 23410 DF, p-value: < 2.2e-16

Figure 4.7: Linear regression on ORACLE Strategy versus playability
metric

Figure 4.8: The ORACLE Strategy performance at 200/400

60

The ORACLE strategy, with more strategic deviations from the equilibrium

than the attribute model coefficients, is more exploitable. But it is still a very strong

strategy. The small blind using the ORACLE System is worse by 8.7 chips against

an equilibrium big blind opponent, at a stack size of 2,300 chips, compared to using

the equilibrium strategy himself. In turn, the big blind using the ORACLE System

is worse by 6 chips against an equilibrium small blind, at a stack size of 4,500 chips.

Against maximally exploitative opponents, using the ORACLE System costs the small

blind at most 8.96 chips, and the big blind at most 6.87 chips compared to perfect

play. These correspond to 0.0224 and 0.0172 big blinds.

61

Chapter 5: Summary and Conclusions

This thesis project sought to compute an approximate Nash Equilibrium strat-

egy for No-Limit Jam/Fold Omaha Hi-Lo Hold’em Poker, and construct an evaluation

heuristic for an Omaha Hi-Lo poker hand that approximates the Nash Equilibrium

strategy. Through this project’s Equilibrium Solver and Feature Valuation compo-

nents, an ε-Nash Equilibrium was found and the ORACLE Strategy heuristic was

constructed. The objectives of this thesis were thus successfully met.

5.1. Contributions

In addition to computing the ε-Nash Equilibrium strategy for jam/fold Omaha

Hi-Lo Poker, this project contributes to artificial intelligence research by demonstrat-

ing the use of the CFR+ algorithm and the use of OpenCL and GPU acceleration

for analyzing games. The CFR+ algorithm has proven itself in Limit Texas Hold’em,

a game with at most 169 possible hand types per player. This project found that

CFR+ is also effective in games with many more possible player hands, and achieves

similar performance gains over plain CFR for these games as well. This project also

shows that GPU parallel processing using OpenCL can achieve performance gains

even in a turn-based game such as poker. While using OpenCL did not reach the

hundred-fold speed improvements observed by previous research (Stone et al., 2010),

a 20% improvement was achieved using GPU processing alone.

62

5.2. Lessons Learned

As the previous chapters have shown, this project resulted in a nearly un-

exploitable strategy and scoring heuristic for Omaha Hi-Lo poker, fulfilling all its

proposed objectives. There were many lessons learned, but two lessons feature most

prominently.

The first lesson is the importance of preparation and the value of theory.

This featured most prominently in the MatchupTabulator task of evaluating all
(
52
8

)
eight-card combinations. A brute force attempt would require almost one year of

computation. Enumerating the symmetric classes reduced this to twelve days. Careful

preparation and memory caching reduced the number of HandV alue memory lookups

by one thousand-fold. Theory also reduced the Equilibrium solver time: using the

new CFR+ enhancements resulted in a convergence to an equilibrium strategy in, on

average, half the number of self-play iterations compared to vanilla CFR.

The second lesson is the importance of resource management. Originally, the

data consolidation step described in Section 3.4 was planned to run in the Relational

Database Service (RDS) by Amazon. But this became prohibitive in both cost and

system load. In particular, the database size requirement expanded far beyond ex-

pectations and disk access was slower than anticipated. The slow disk write speed

slowed down the cluster of GameEvaluator nodes, as the web server itself faced de-

lays in writing results to the database and retrieving new work packets. Switching

to a local SQLite database and storing results in an uncollated format on Simple

Storage Service dramatically improved response times. Using S3 instead of RDS also

simplified disk space allocation, as S3 scales automatically with usage.

63

5.3. Known Issues and Future Work

There are a few issues in this analysis of Omaha Hi-Lo Poker. The major

issue is the assumption of jam-or-fold play, which is only realistic in tournament

endgame situations. In a cash game or the early stages of a poker tournament, using

the jam/fold equilibrium is unprofitable as the small blind, as the R ratio typically

exceeds 50.

This analysis also assumes risk-neutral players that follow the Independent

Chip Model. Miltersen and Sørensen explicitly assumed otherwise, modeling all pos-

sible stake levels and plays together with a goal of winning the tournament. They

could construct their model for Texas Hold’em poker because that game has only win,

lose, or tie results in each round, and therefore could guarantee that their players’

stack sizes remained multiples of 50 chips at all times. In Omaha Hi-Lo, a player

can win one-quarter or three-quarters of the pot, violating this game assumption.

Based on the assumptions made, the computed equilibrium strategy achieves maxi-

mum chips won in each round. It is therefore an accurate short-stacked cash game

strategy. Further work is necessary to validate or repudiate the ICM and risk-neutral

player assumptions for the iterated game structure of a tournament.

Finally, the ORACLE Strategy, while short, still consists of seven hand cate-

gory rules. The SAGE System for Texas Hold’em uses four rules. Further refinements

on hand attributes or scores might achieve similarly strong results with fewer rules;

these other attributes have not been explored.

64

References

Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit

holdem poker is solved. Science, 347(6218), 145–149.

Ganzfried, S. & Sandholm, T. (2008). Computing an approximate jam/fold equi-

librium for 3-player no-limit Texas Hold’em tournaments. In Proceedings of the

7th international joint conference on Autonomous agents and multiagent systems-

Volume 2 (pp. 919–925).: International Foundation for Autonomous Agents and

Multiagent Systems.

Harrington, D. & Robertie, B. (2010). Harrington on Online Cash Games: 6-Max

No-Limit Hold’em. Two Plus Two Publishing LLC.

Hart, S. & Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68(5), 11271150.

Hutchison, E. (1997). Hutchison point count system for omaha high-low poker.

Jones, L. (2006). Are you sage? getting an edge in heads-up no-limit Hold’em. Card

Player Magazine, 19(2).

Miltersen, P. B. & Sørensen, T. B. (2007). A near-optimal strategy for a heads-up

no-limit Texas Hold’em Poker tournament. In Proceedings of the 6th international

joint conference on Autonomous agents and multiagent systems (pp. 191).: ACM.

65

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences, 36(1), 48–49.

Robinson, J. (1951). An iterative method of solving a game. Annals of mathematics,

(pp. 296–301).

Sklansky, D. (2007). Tournament Poker for Advanced Players. Two Plus Two Pub-

lishing LLC.

Sklansky, D. & Malmuth, M. (1999). Hold’em Poker For Advanced Players. Two

Plus Two Publishing LLC.

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard

for heterogeneous computing systems. Computing in science & engineering, 12(1-

3), 66–73.

Tammelin, O. (2014). Solving large imperfect information games using CFR+. arXiv

preprint arXiv:1407.5042.

Von Neumann, J. & Morgenstern, O. (2007). Theory of games and economic behavior.

Princeton university press.

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007). Regret mini-

mization in games with incomplete information. Advances in neural information

processing systems, (pp. 1729–1736).

66

Appendix A: Glossary

ε-Nash Equilibrium A strategy profile where no player can improve their expected

score by changing their own strategy by more than a small value ε, assuming

no other players change their strategy. vi, 2, 19, 21, 22, 46, 49, 62

AWS Amazon Web Services. 4, 22–24, 38

best response the strategy available to a player that maximizes his expected return,

assuming that all other players’ strategies remain fixed. 18, 41, 44, 45

big blind The larger of the forced bets at the start of the game, made by the player

left of the small blind. Also, the player that must make the big blind bet. vii,

5, 6, 9–12, 16, 41, 42, 45, 46, 48–52, 54, 59, 61

CFR Counterfactual Regret Minimization. 4, 22, 42, 62, 63

connector Two cards with consecutive face value, valuable for constructing straight

hands. 14, 47

CPU central processing unit. 23, 35

double-suited An Omaha poker hand with its cards in one of two suits, two cards

to each suit. Example: A♣ 5♣ Q♠ 8♠. 14, 47, 51, 54, 58

EC2 Elastic Compute Cloud. 23, 24, 68, 69

67

flush Five cards, all with the same suit. Example: K♣ 8♣ 6♣ 3♣ 2♣. 7, 8, 13–15,

29, 50

four-flush Four cards, all with the same suit. 37

four-of-a-kind Four cards sharing the same face value. 8, 13, 50

full house A poker hand consisting of both a three-of-a-kind and a pair. Example:

J♣ J♥ J♠ Q♦ Q♠. 8

GPGPU general purpose computing on graphics processing units. 24

GPU graphics processing unit. 23, 24, 35, 38, 39, 62

Hi The half of the pot set aside, whose winner is the player with the highest-ranking

poker hand. 7, 8, 14, 27, 28, 31, 32, 34, 35, 69

ICM Independent Chip Model. 39, 40, 64

Lo The half of the pot set aside, whose winner is the player with the lowest-valued

five cards of distinct face value, all Eight or below. 4, 7, 13–15, 27, 28, 31, 32,

34, 35, 47, 50, 51, 53, 56, 58, 69

Nash Equilibrium A strategy profile where no player can improve their expected

score by changing their own strategy, assuming no other players change their

strategy. 2, 4, 19–21, 62, 69

on-demand instance An EC2 instance run on demand by a user, with fees charged

according to the published fixed price structure. 23, 38

68

OpenCL Open Compute Language, a framework to facilitate computation across

different hardware types, such as CPUs, GPUs, and other heterogeneous hard-

ware. 4, 22–24, 35, 43, 62

quarter One player solely winning one of the Hi or Lo pots, and splitting the other,

leaving the other player with a quarter of the overall pot. 9, 35, 38, 40

RDS Relational Database Service. 63

S3 Simple Storage Service. 23, 36, 38, 63

SAGE System Sit-And-Go Endgame System, an approximate Nash Equilibrium

strategy for Texas Hold’em tournament endgames. 21, 22, 46, 49, 52, 64

scoop One player winning both Hi and Lo pots. 7, 38, 40

single-suited An Omaha poker hand with at least two cards having the same suit.

Example: K♣ Q♣ T♣ 4♥. 14, 47, 54, 58

small blind The smaller of the forced bets at the start of the game, made by the

player left of the button. Also, the player that must make the small blind bet.

vii, 5, 9–12, 17, 35, 40–42, 45, 46, 48–54, 59, 61

spot instance An EC2 instance dynamically available according to the user’s max-

imum bid price, compared to the spot market rate. If the bid exceeds the

market rate, the instance starts, and fees accrue according to the spot rate. If

the market rate later exceeds the bid, the instance stops.. 23, 38

straight Five cards, with consecutive face value. Example: K♣ Q♥ J♥ T♦ 9♣. 8,

13, 50, 67

69

straight flush Five cards, with consecutive face value, all with the same suit. Ex-

ample: K♣ Q♣ J♣ T♣ 9♣. 8, 14, 28, 29

suited Two cards having the same suit. 47

three-flush Three cards, all with the same suit. 37

three-of-a-kind Three cards sharing the same face value. 8, 13, 37

two-flush Two cards having the same suit. 37

unsuited Cards all with different suits. 37, 54, 58

70

	Titlepage
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Thesis structure

	2 Background
	2.1 A No-Limit Omaha Hi-Lo Poker Jam/Fold Tournament
	2.1.1 No-Limit Omaha Hi-Lo Poker
	2.1.2 Poker Game Concepts
	2.1.3 Properties and Terminology in Omaha Hi-Lo Poker
	2.1.4 Tournament Structure

	2.2 Game Theory
	2.3 Prior Work in Computer Poker and Poker Strategy
	2.4 Amazon Web Services
	2.5 OpenCL

	3 Methodology and Design
	3.1 Overview
	3.2 Hand Evaluator
	3.3 Game Tabulator
	3.4 Matchup Tabulator
	3.5 Equilibrium Solver
	3.5.1 The Summary Table and Expected Value calculations
	3.5.2 Regret Matching and CFR+

	3.6 Feature Valuation

	4 Results
	4.1 Analysis of the ene
	4.2 Value of Hand Features
	4.3 The ORACLE Strategy
	4.4 Analysis of the Strategy

	5 Summary and Conclusions
	5.1 Contributions
	5.2 Lessons Learned
	5.3 Known Issues and Future Work

	References
	A Glossary

