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Abstract 

Cytokinesis is the final step of cell division, in which the cytoplasm of one cell is 

physically divided into two. Animal cells integrate multiple positional cues from the mitotic 

spindle to decide where to position their cleavage plane. The unusually large egg cells from 

frogs face additional spatial organization challenges due to their large size compared to their 

mitotic spindle. How the spindle communicates to the cell cortex to precisely position the 

cleavage furrow at the cell midplane in these large cells is the focus of this dissertation. 

Chapter One introduces how cells across all domains of life position their division site, 

and the spatial organizing principles and molecular mechanisms that have been established for 

animal cells. The unique challenges faced by very large cells are discussed using eggs from the 

frog Xenopus laevis as a model system, and the large microtubule asters that organize the 

cytoplasm in these cells during cytokinesis are described. 

Chapter Two describes the development of a cell-free system using cytoplasmic extracts 

from Xenopus eggs to reconstitute signaling events from microtubules to the cell cortex that 

lead to cleavage furrow induction. This is the first time a biochemical extract system is reported 

for studying cytokinesis. The Chromosome Passenger Complex (CPC) is identified as the main 

furrow-inducing signal, which is delivered to the interaction zone between neighboring asters 

through a combined action of two kinesins, Kif4A and an embryonic paralog of Kif20A. 

Chapter Three describes experiments using the cell-free system to elucidate what 

happens when two neighboring asters meet and how they maintain an interaction zone that 

serves as a clear mutual boundary where cytokinesis proteins can be accumulated. The 
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Prc1/Kif4A midzone module is identified as being essential for forming antiparallel microtubule 

overlaps that block further plus end growth, which both prevents microtubules from one aster 

from crossing into another and ensures that the majority of microtubules within a single aster 

grow radially outward. 

Chapter Four describes experiments in both extracts and whole embryos that identify 

initial conditions for CPC recruitment to aster interactions, such as proximity of chromatin and 

optimal starting distance between aster centers. 
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Introduction 
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Strategies for Positioning Cytokinesis 

Cytokinesis is the final step of cell division: a process that physically splits dividing cells 

in two following chromosome segregation. Since the formulation of the cell theory in the mid-19th 

century, biologists have been fascinated by the question of how cells across all domains of life 

faithfully partition their genetic material and other cytoplasmic contents into daughter cells 

(reviewed in (Wilson, 1928)). More than a century later, we now know that both prokaryotes and 

eukaryotes employ actin and tubulin cytoskeletal structures during cell division: a mitotic 

apparatus for segregating chromosomes and a plasma-membrane associated cytokinesis 

apparatus for cleaving the cell into two (reviewed in (Balasubramanian et al., 2004; Busiek and 

Margolin, 2015)). Among eukaryotes, while the mechanisms by which the microtubule-based 

mitotic spindle segregates chromosomes are fairly conserved, diverse strategies have evolved 

to position the division site and to subsequently separate daughter cells. Failure to correctly 

position the division site leads to uneven partitioning of the genetic material and potentially cell 

death; in multicellular organisms, it also results in abnormal tissue growth and morphogenesis. 

Thus understanding the mechanisms of cytokinesis positioning allows us to develop 

therapeutics to induce cell death in unwanted organisms, to correct uncontrolled cell division 

during cancer, and to prevent abnormal tissue morphogenesis and differentiation during growth 

and development. 

There are three major mechanisms involved in correct positioning of the division site: 

(1) active choice of a fixed division site using positive signals based on cell division history; 

(2) active choice of a dynamic division site using positive signals independent of history; and 

(3) inhibition of cell division at inappropriate locations using negative signals (Balasubramanian 

et al., 2004). In yeast and animal cells, the cytokinesis apparatus is the contractile ring 

assembled from F-actin and myosin, while in plant cells it is the phragmoplast consisting of 

microtubules, F-actin, and endoplasmic reticulum (ER) (Figure 1.1) (Barr and Grüneberg, 2007; 

Müller, 2012). The budding yeast (Saccharomyces cerevisiae) uses strategy #1 to place the 
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division site adjacent to the previous division site (‘bud scar’), whereas the fission yeast 

(Saccharomyces pombe) uses both strategies #2 and #3 to place its contractile ring at the 

position specified by the pre-mitotic nucleus (Figure 1.1) (Oliferenko et al., 2009). Plants use 

strategy #2 and the pre-mitotic nucleus as a dynamic positional cue, similar to the fission yeast 

(Murata and Wada, 1991). In addition, plants employ a transient ring-like microtubule array 

termed the preprophase band (PPB) at the cortex to precisely mark the position of the nucleus. 

The PPB disassembles before formation of the mitotic spindle, leaving behind a cortical division 

site that later guides the placement of the phragmoplast and construction of a new cell wall (‘cell 

plate’) during cytokinesis (Figure 1.1) (Müller et al., 2009). Generally speaking, the position of 

the future division site in both fungi and plants is determined early on, before the cells enter 

mitosis. 

 
Figure 1.1: Cytokinesis in animals, plants, and yeast. The selection of the division site and 

cytokinesis relative to other key cell-cycle transitions is shown for animal cells, plants, and 

budding and fission yeast. Reprinted from (Barr and Grüneberg, 2007), with permission from 

Elsevier. 
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In contrast to yeast and plant cells, animal cells are not encased by a rigid cell wall and 

thus are able to migrate and change their shape within tissues. This lifestyle demands that 

animal cells employ flexible mechanisms for cleavage furrow positioning that facilitate error 

correction even in the relatively late stages of mitosis. Animal cells therefore use strategies #2 

and #3 to determine the division plane and to position the actomyosin contractile ring at the 

cortex, integrating multiple spatial cues provided by the mitotic apparatus (reviewed in (von 

Dassow, 2009; Rappaport, 1996)). 

This dissertation focuses on animal cells and how they specify their cytokinesis site. The 

focus will be on unusually large egg cells, exemplified by the frog egg. A priori, large egg cells 

might use a scaled-up version of the same cell division mechanisms used in somatic cells of the 

same organism, some variant of those mechanisms, or a completely different mechanism. The 

work described in this thesis, together with parallel effort from co-workers in our laboratory, has 

partly answered this question for the first time for frog eggs. 

In the Introduction, I will first discuss the various positional cues provided by the mitotic 

apparatus in specifying the cleavage furrow and how their relative contribution could vary with 

cell size. I will then review the key molecular regulators of cytokinesis signaling and their roles in 

various animal model systems. Next, I will discuss the challenges of cleavage furrow positioning 

faced by very large cells, using eggs from the frog Xenopus laevis as a model system, and raise 

mechanistic questions regarding the spatial organization of cytokinesis signaling. Finally, I will 

outline the development of and the mechanistic insights gained from a cell-free system using 

Xenopus egg cytoplasm that reconstitutes the signaling processes involved in cleavage furrow 

specification. 

Positional Cues from the Mitotic Apparatus in Animal Cytokinesis 

Classical experiments in sea urchin eggs have established that the position of the mitotic 

apparatus determines the cleavage plane: when the spindle was displaced by 
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micromanipulation, the existing furrow regressed and a new furrow formed at the spindle 

midplane (Rappaport, 1985; Rappaport and Ebstein, 1965). Four spindle-derived spatial cues 

have been proposed to position the cleavage furrow in animal cells during anaphase (Burgess 

and Chang, 2005; Eggert et al., 2006). Positive cues lead to ‘equatorial stimulation’, while 

negative cues lead to ‘polar relaxation’ of the cortex (Figure 1.2). Positive cues for furrow 

induction include the midzone microtubules (Bement et al., 2005; Bonaccorsi et al., 1998; 

Bringmann and Hyman, 2005a; Cao and Wang, 1996), astral microtubules that reach the cortex 

at the cell midplane (Bringmann and Hyman, 2005b; Rappaport, 1961; Rappaport and 

Rappaport, 1985), and the chromosomes that load positive signals onto both midzone and 

astral microtubules at the cell midplane (Canman et al., 2003; Fuller et al., 2008; Hu et al., 

2008). Negative cues from the astral microtubules that reach the cortex near the spindle poles 

are thought to locally inhibit cortical contractility (Hiramoto, 1990; White and Borisy, 1983). 

 
Figure 1.2: Organization of anaphase microtubule arrays and models for their roles in 

signaling to the cortex in animal cells. (a) In anaphase, astral microtubules (light green) 

emanate from the centrosomes (circles) and many of their plus ends reach the cortex. The 

midzone microtubule array (dark green) consists of bundled, overlapping microtubules that 

extend between the segregated chromatins (light blue). (b) Models of how anaphase microtubules 

signal to the cortex: equatorial stimulation signals (blue arrows) and polar relaxation signals (red 

arrows) are shown. Reprinted from (Eggert et al., 2006). 
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While the various models for cleavage plane positioning (equatorial stimulation vs. polar 

relaxation, midzone vs. asters) were once considered alternatives, we now believe that cells 

employ multiple overlapping signaling mechanisms, where no single positional cue is absolutely 

necessary. An animal cell will integrate information from all available signals to make a final 

decision about where to position the cleavage furrow. For example, in a classic experiment in 

sea urchin embryos, Rappaport induced a furrow between a pair of asters, where both 

chromosomes and midzone were absent (Rappaport, 1961). However, when faced with a 

decision whether to form a furrow between asters or at a midzone, C. elegans embryos pick the 

midzone as the dominant cue (Bringmann and Hyman, 2005b). 

It has been proposed that the relative contribution from each positional cue varies 

depending on spindle-to-cell size ratio (von Dassow, 2009; Wang, 2001). Most somatic cells 

have a diameter of ~10-20 µm when rounded up during mitosis, and their metaphase spindle 

measures ~5-10 µm in length. This represents a 1:2 spindle-to-cell ratio. Spindle size does not 

scale with cell size infinitely, however. Wühr and colleagues have found an upper limit on 

spindle length (~60 µm) by measuring mitotic spindle lengths and cell sizes in early cleaving 

frog embryos (Wühr et al., 2008). Therefore, in large embryo cells, the larger the cell is, the 

smaller is its spindle-to-cell ratio (see Table 1.1). 

Table 1.1: Estimates of spindle-to-cell size ratio for various animal cell model systems 

Cell type Mitotic spindle 
length (µm) 

Cell diameter 
(µm) 

Spindle-to-cell 
ratio 

Somatic cell 5-10 10-20 1:2 

C. elegans egg 25 50 1:2 

Sea urchin egg 30 90 1:3 

Zebrafish egg (D. rerio) 60 600 1:10 

Frog egg (X. laevis) 60 1200 1:20 

Sturgeon egg ? 4000 ? 
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In small cells, the midzone and the chromosomes are thought to be the dominant furrow 

positioning cues. In large cells, where the spindle-to-cell size ratio is reduced, the asters’ role 

becomes more important (von Dassow, 2009; Wang, 2001). Whether polar relaxation is a real 

phenomenon and its contribution towards furrow positioning is still unclear. 

Key Molecular Regulators of Cytokinesis Signaling 

Key proteins involved in cytokinesis have been previously identified by classical genetics 

and biochemistry, and more recently by chemical genetic and RNA interference (RNAi) screens 

(Echard et al., 2004; Eggert et al., 2004; Sönnichsen et al., 2005) as well as mass spectrometry-

based proteomics (Skop et al., 2004). We now have an almost complete “parts list” (Eggert et 

al., 2006; Glotzer, 2005) and the challenge is to relate this list to biological mechanisms. For the 

scope of this dissertation, I am particularly interested in how some of these known proteins 

participate in the signaling processes between the mitotic apparatus and the cell cortex 

described above. Identifying the signals associated with the positive and negative positional 

cues, and the molecular mechanisms through which they are delivered and restricted to their 

target location, could explain why certain cues override others (e.g. midzone overrides asters 

(Bringmann and Hyman, 2005b)). It could also explain the cell size-dependent importance of 

each positional cue. 

Figure 1.3 outlines an input-output model that I use to conceptualize and categorize 

candidate molecules for various roles in cytokinesis signaling. The output in this model is 

cleavage furrow induction at the cortex, the first step of which is thought to be activation of the 

small GTPase RhoA, a master organizer of the furrow (Bement et al., 2005; Drechsel et al., 

1997; Jordan and Canman, 2012; Piekny et al., 2005; Zuo et al., 2014). The mechanism of 

RhoA activation is still not well understood. Several guanine nucleotide exchange factors 

(GEFs) are implicated in converting RhoA from its GDP-bound form to its active GTP-bound 

form (Figure 1.3; reviewed in (Jordan and Canman, 2012)). One protein that has emerged as
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Figure 1.3: Molecular input-output model for cytokinesis signaling. Output: RhoA activation 

at the cell cortex that leads to actomyosin contractility. Input: positive signals that are associated 

with positive positional cues, i.e. midzone microtubules (MTs), astral MTs, and chromatin. The 

two putative signals we will consider here are the Chromosome Passenger Complex (CPC) and 

the Centralspindlin complex. Spatial organizing mechanisms: the overarching role of these 

mechanisms is to deliver the signals to a narrow band at the cleavage plane that reaches the cell 

cortex. Possible mechanisms: (a) directed transport towards MT plus ends, (b) recruitment to 

antiparallel microtubule overlaps, (c) lateral transfer from microtubules to microtubules that make 

contact through bending and/or buckling. Listed are the candidate microtubule associated proteins 

(MAPs) that we consider in this dissertation. Parts of the figure are adapted by permission from 

Macmillan Publishers Ltd: Nature Cell Biology (Fededa and Gerlich, 2012), © 2012.  
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Figure 1.3 (Continued) 
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being crucial in many animal systems is Ect2, which is thought to be delivered to the cleavage 

plane by binding to the RacGAP1 subunit of the Centralspindlin complex (see below) (Kamijo et 

al., 2006; Loria et al., 2012; Nishimura and Yonemura, 2006; Wolfe et al., 2009; Yüce et al., 

2005). The role of GTPase activating proteins (GAPs) that convert RhoA-GTP back to RhoA-

GDP is even less understood. For example, RacGAP1 (or MgcRacGAP), a protein highly 

implicated in regulating RhoA activity, has in vitro GAP activity for other GTPases, but not for 

RhoA (reviewed in (Jordan and Canman, 2012)). Thus how its GAP activity regulates RhoA 

activity is still an active area of research. 

For the inputs in this model, I am only considering putative signaling molecules 

associated with the positive positional cues, as molecular evidence for aster-mediated polar 

relaxation is still lacking. Two conserved signaling complexes have emerged as being critical for 

cleavage furrow induction: the Chromosome Passenger Complex (CPC; a 1:1:1:1 complex 

between INCENP, Aurora B kinase (AurkB), Dasra/Borealin and Survivin) and the 

Centralspindlin complex (a 2:2 complex between the plus end-directed kinesin MKLP1 (Kif23) 

and RacGAP1) (Figure 1.3) (Carmena et al., 2012; White and Glotzer, 2012). Both complexes 

can bind to microtubules and both localize to the spindle midzone after anaphase onset in 

somatic cells. The CPC can also bind to the chromosomes at the metaphase place (hence its 

name), and is therefore an attractive candidate for the positive signal associated with the 

chromosomes (Fuller et al., 2008). Centralspindlin received its name from its presumed 

essential role in assembly of the central spindle (another name for the midzone) (Mishima et al., 

2002). The connection between Centralspindlin and RhoA activation has been much better 

studied due to its RacGAP1 subunit (see above). Less is known about the connection between 

CPC and RhoA regulation. In somatic cells undergoing drug-induced monopolar cytokinesis 

(Canman et al., 2003), AurkB but not Kif23 localizes to actin filaments in the gap region between 

the end of the polarized monopolar spindle and the plasma membrane (Hu et al., 2008). This 
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localization is dependent on the plus end-directed kinesin MKLP2 (or Kif20A), and is required 

for furrow propagation and completion in monopolar cytokinesis (Kitagawa et al., 2013). 

The final component of this model is what connects the inputs to the output: spatial 

organizing mechanisms that make sure the positive signals are delivered to the right place 

(Figure 1.3). Specifically, the signaling molecule(s) must be transported to a narrow plane on 

midzone microtubule bundles in order to precisely specify the cleavage plane. Furthermore, 

they must somehow be delivered to the cell cortex to activate RhoA and induce furrow 

assembly. A priori, three main microtubule-mediated mechanisms of transport can be proposed: 

(a) directed transport towards microtubule plus ends by motors, (b) recruitment to antiparallel 

microtubule overlaps by microtubule crosslinkers, (c) lateral transfer from microtubules to 

microtubules that make contact through bending and/or buckling. A list of candidate microtubule 

associated proteins (MAPs) involved in processes is provided and the individual proteins will be 

introduced in subsequent chapters where it is appropriate. 

Cytokinesis Signaling in Very Large Animal Cells 

Eggs of the frog Xenopus laevis are among the largest fully cleaving cells (see Table 

1.1) and face unique challenges in their cytoplasmic organization (reviewed in (Ishihara et al., 

2014; Mitchison et al., 2012; Wühr et al., 2009)). One major challenge is: how does the 

relatively small mitotic apparatus, a 60 µm-long spindle (Wühr et al., 2008), specify the 

cytokinetic apparatus, a contractile ring with an initial radius of 600 µm (Figure 1.4A)? Unlike 

smaller somatic cells, these large embryonic cells cannot solely rely on the spindle midzone to 

position the division plane and to deliver cytokinesis signals to the cortex. Previously, Martin 

Wühr’s work in the Mitchison lab established the importance of microtubule asters, huge radial 

arrays of microtubules that emanate from the spindle poles, in determining the cleavage plane 

(Figure 1.4, B and C) (Wühr et al., 2010). 

Theories have proposed that in large cells, asters deliver factors by microtubule-based 
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transport to the equatorial cortex where they stimulate cleavage (Atilgan et al., 2012; Devore et 

al., 1989). Due to difficulty of imaging and molecular perturbation in large eggs, the precise 

identity of these signals and how they are transported on microtubules had been largely 

unknown. In order to circumvent the challenges of working with intact eggs, my co-workers and I 

have developed an egg extract-based system that for the first time reconstituted the full 

complexity of cytokinesis signaling events outside of a real cell (Nguyen, Groen et al., 2014). 

While an extract system has been available to study metaphase spindles for more than two 

decades (Sawin and Mitchison, 1991), the cytokinesis field had been waiting for a similar, 

biochemically tractable extract system to be reported. Chapter Two describes this cell-free 

system and addresses questions regarding signal identity and transport. 

 
Figure 1.4: Growth and interaction of sister asters in the first two divisions in X. laevis. 

Fertilized eggs were fixed, stained for tubulin (A, A’ upper, B, and C) and DNA (A’ lower) as 

described (Wühr et al., 2010). The animal half of the egg was cut off and imaged from the cut 

surface, so the z-axis is parallel to the animal-vegetal axis of the zygote. (A, A’) Metaphase of 

first mitosis. Note the small mitotic spindle (~60 µm) compared to the large cell diameter (~1200 

µm). Also note small asters in metaphase. (B) Anaphase–telophase of first mitosis. Note aster 

growth and formation of an interaction zone between sister asters at mid-cell. (C) later telophase. 

Note the dense, bushy appearance of microtubules at the aster periphery and low microtubule 

density in the interaction zone. Adapted from (Mitchison et al., 2012). 

As described in Chapter Two, we found that cytokinesis signals were indeed localized to 

the interaction zone that forms where asters emanating from the spindle poles meet. We termed 
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this microtubule structure the aster-aster interaction zone (AAIZ). In order for the signaling 

molecules to be restricted to a precise, narrow plane that marks the putative cleavage furrow, 

the AAIZ structure must be established and maintained in such a way as to demarcate a clear 

intracellular boundary. This raises the question: what happens when two neighboring asters 

grow to touch each other? 

 
Figure 1.5: Consequences of aster-aster interaction depend on the system. Possible branching 

nucleation is omitted for simplicity. (A) In pure tubulin, plus ends simply grow past each other 

(Brinkley et al., 1981). (B) In metaphase (M-phase) extract prepared from unfertilized Xenopus 

eggs, asters (and spindles) that touch each other adhere, move together, and fuse. Movement is 

driven by dynein, which is thought to cross-bridge antiparallel microtubules (Gatlin et al., 2009). 

(C) In interphase (I-phase) in early embryos, growing asters interact to generate a zone of 

antiparallel overlap and low microtubule density at their mutual boundary, called an aster-aster 

interaction zone (AAIZ). The asters then tend to move apart, pulled by cytoplasmic dynein 

anchored in bulk cytoplasm (Wühr et al., 2010). A block to microtubule interpenetration during 

anaphase-telophase was also noted in a classic EM study in echinoderm embryos (Asnes and 

Schroeder, 1979). Adapted from (Mitchison et al., 2012). 

Beyond cell division, this is a central question in spatial organization of any cell with two 

or more centrosomes, such as egg cells undergoing polyspermic fertilization or multinucleated 

syncytial cells (e.g. muscle myofibers, bone osteoclasts, placental synsytiotrophoblasts, fungal 

hyphae). Figure 1.5 shows three possibilities drawn from the literature, where the consequence 

of aster–aster interaction depends strongly on the system and cell cycle state. When asters 

grow from nearby centrosomes in pure tubulin, their microtubules simply interpenetrate (Figure 

+ ?

Pure%tubulin:%interpenetra.on M1phase%cytoplasm:%fusion I1phase%cytoplasm:%separa.on

A B C
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1.5A) (Brinkley et al., 1981). When two asters meet in mitotic Xenopus egg extract, they adhere, 

then move together and fuse due to dynein activity (Figure 1.5B) (Gatlin et al., 2009). When two 

asters meet during interphase in frog and fish embryos, their microtubules do not interpenetrate 

and the asters move apart (Figure 1.5C) (Wühr et al., 2010). Aster movement is again driven by 

dynein, but in this case the dynein is presumably anchored in the cytoplasm rather than to 

another microtubule, so it produces force in the opposite direction (reviewed in (Mitchison et al., 

2012). The molecular mechanisms underlying the block to interpenetration had been unclear 

and are the focus of Chapter Three. 

My investigations into the mechanisms regulating aster-aster interactions were highly 

confounded by the fact that not all interactions are equivalent in frog eggs. Unlike echinoderm 

embryos, frog embryos cannot form so-called ‘Rappaport furrows’. In his famous toroidal cell 

experiment in echinoderm embryos, Rappaport observed that neighboring pairs of asters could 

induce furrows regardless of whether the asters arose from the poles of the same spindle 

(‘sister’ asters) or from juxtaposed poles of two different spindles (‘non-sister’ asters). The 

furrow between non-sister asters was recorded in history as the ‘Rappaport furrow’. In 

polyspermic frog embryos, however, furrows are induced only where the AAIZs between sister 

asters, but not non-sister asters, reach the cortex after 1st mitosis (Figure 1.6, A-C) (Render and 

Elinson, 1986; Wakabayashi and Shinagawa, 2001). While AAIZs between both sister and non-

sister asters are very similar in terms of microtubule morphology (Figure 1.6D), the fact that one 

induces furrows while the other does not suggests that they are different molecularly. 

Chapter Four addresses this difference and reveals insights about the contributions from 

positional cues other than asters in directing cleavage furrow positioning. 

 



 
15	  

 
Figure 1.6: Interaction of non-sister asters following polyspermic fertilization in amphibian 

embryos. (A-C) Sequential stages from fertilization to 1st cleavage following forced polyspermy 

in the frog R. fusca. Images drawn from histological sections (Brachet, 1910). (D) Tubulin 

staining in fixed polyspermic X, laevis embryo. (A) Neighboring sperm asters move apart as they 

center within the egg. (B) Asters tend to space out regularly before 1st mitosis, dividing the 

cytoplasm into regularly spaced units. (C) Cleavage furrows are induced between sister asters at 

1st cleavage in R. fusca, while zones between non-sisters do not. The same is true in X. laevis 

(Render and Elinson, 1986; Wakabayashi and Shinagawa, 2001). (D, D’) Forced polyspermy in 

X. laevis after anaphase of 1st mitosis but before furrow induction. Two pairs of sister asters can 

be recognized in D by the brighter bundles of microtubules at the center of the interaction zone 

where the metaphase spindle used to be. Note the sharply defined interaction zones between both 

sister and non-sister asters. D’ is a higher mag. view from D where (s) denotes interaction zones 

between sister asters, and (ns) between non-sister asters. Adapted from (Mitchison et al., 2012).
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Scope of Dissertation 

To study the spatial organizing principles of cytokinesis signaling, my collaborators and I 

have developed a cell-free system that can reconstitutes these processes outside of a real cell 

(described in Chapter Two). This system has allowed us to address several mechanistic 

questions related to cleavage furrow positioning in the unusually large egg cells of the frog. 

Future studies are required to determine which of these mechanisms are conserved among all 

animal cells, and which are evolutionary adaptations specific to the large frog egg. 

Questions addressed in Chapter Two: 

1) What is the positive furrow signal delivered by the large asters to the cell cortex in frog 

eggs? 

2) How is the furrow signal delivered to the equatorial plane and the cortex? 

Questions addressed in Chapter Three: 

1) How is the asters-aster interaction zone formed and maintained? 

a. How do asters recognize each other? 

b. How are they prevented from growing into each other and therefore maintain a clear 

boundary? 

2) What is the microtubule dynamics at aster-aster interaction zones? Is there evidence for 

stabilization of microtubules? 

Questions addressed in Chapter Four: 

1) Why Rappaport furrows (i.e. induced by asters without midzone or chromatin between them) 

do not form in polyspermic frog embryos? 

2) Under what conditions are aster-aster interaction zones sufficient to induce a cleavage 

furrow? 

3) How do the other positional cues, such as the chromosomes, contribute towards furrow 

induction?  



 
17	  

References 

Asnes, C.F., and Schroeder, T.E. (1979). Cell cleavage. Ultrastructural evidence against 
equatorial stimulation by aster microtubules. Exp Cell Res 122, 327–338. 

Atilgan, E., Burgess, D., and Chang, F. (2012). Localization of cytokinesis factors to the future 
cell division site by microtubule-dependent transport. Cytoskeleton (Hoboken) 69, 973–982. 

Balasubramanian, M.K., Bi, E., and Glotzer, M. (2004). Comparative analysis of cytokinesis in 
budding yeast, fission yeast and animal cells. Curr Biol 14, R806–R818. 

Barr, F.A., and Grüneberg, U. (2007). Cytokinesis: placing and making the final cut. Cell 131, 
847–860. 

Bement, W.M., Benink, H.A., and von Dassow, G. (2005). A microtubule-dependent zone of 
active RhoA during cleavage plane specification. J Cell Biol 170, 91–101. 

Bonaccorsi, S., Giansanti, M.G., and Gatti, M. (1998). Spindle self-organization and cytokinesis 
during male meiosis in asterless mutants of Drosophila melanogaster. J Cell Biol 142, 751–761. 

Brachet, A. (1910). La polyspermie expérimentale comme moyen d“analyse de la fe”condation. 
Development Genes and Evolution 30, 261–303. 

Bringmann, H., and Hyman, A.A. (2005a). A cytokinesis furrow is positioned by two consecutive 
signals. Nature 436, 731–734. 

Bringmann, H., and Hyman, A.A. (2005b). A cytokinesis furrow is positioned by two consecutive 
signals. Nat Cell Biol 436, 731–734. 

Brinkley, B.R., Cox, S.M., Pepper, D.A., Wible, L., Brenner, S.L., and Pardue, R.L. (1981). 
Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian 
cells. J Cell Biol 90, 554–562. 

Burgess, D.R., and Chang, F. (2005). Site selection for the cleavage furrow at cytokinesis. 
Trends Cell Biol 15, 156–162. 

Busiek, K.K., and Margolin, W. (2015). Bacterial actin and tubulin homologs in cell growth and 
division. Curr Biol 25, R243–R254. 

Canman, J.C., Cameron, L.A., Maddox, P.S., Straight, A., Tirnauer, J.S., Mitchison, T.J., Fang, 
G., Kapoor, T.M., and Salmon, E.D. (2003). Determining the position of the cell division plane. 
Nature 424, 1074–1078. 

Cao, L.G., and Wang, Y.L. (1996). Signals from the spindle midzone are required for the 
stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell 7, 225–232. 

Carmena, M., Wheelock, M., Funabiki, H., and Earnshaw, W.C. (2012). The chromosomal 
passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13, 
789–803. 



 
18	  

von Dassow, G. (2009). Concurrent cues for cytokinetic furrow induction in animal cells. Trends 
Cell Biol 19, 165–173. 

Devore, J.J., Conrad, G.W., and Rappaport, R. (1989). A model for astral stimulation of 
cytokinesis in animal cells. J Cell Biol 109, 2225–2232. 

Drechsel, D.N., Hyman, A.A., Hall, A., and Glotzer, M. (1997). A requirement for Rho and Cdc42 
during cytokinesis in Xenopus embryos. Curr Biol 7, 12–23. 

Echard, A., Hickson, G.R.X., Foley, E., and O'Farrell, P.H. (2004). Terminal cytokinesis events 
uncovered after an RNAi screen. Curr Biol 14, 1685–1693. 

Eggert, U.S., Kiger, A.A., Richter, C., Perlman, Z.E., Perrimon, N., Mitchison, T.J., and Field, 
C.M. (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis 
inhibitors and targets. PLoS Biol 2, e379. 

Eggert, U.S., Mitchison, T.J., and Field, C.M. (2006). Animal cytokinesis: from parts list to 
mechanisms. Annu Rev Biochem 75, 543–566. 

Fededa, J.P., and Gerlich, D.W. (2012). Molecular control of animal cell cytokinesis. Nat Cell 
Biol 14, 440–447. 

Fuller, B.G., Lampson, M.A., Foley, E.A., Rosasco-Nitcher, S., Le, K.V., Tobelmann, P., 
Brautigan, D.L., Stukenberg, P.T., and Kapoor, T.M. (2008). Midzone activation of aurora B in 
anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132. 

Gatlin, J.C., Matov, A., Groen, A.C., Needleman, D.J., Maresca, T.J., Danuser, G., Mitchison, 
T.J., and Salmon, E.D. (2009). Spindle fusion requires dynein-mediated sliding of oppositely 
oriented microtubules. Curr Biol 19, 287–296. 

Glotzer, M. (2005). The molecular requirements for cytokinesis. Science 307, 1735–1739. 

Hiramoto, Y. (1990). Mechanical properties of the cortex before and during cleavage. Ann N Y 
Acad Sci 582, 22–30. 

Hu, C.-K., Coughlin, M., Field, C.M., and Mitchison, T.J. (2008). Cell polarization during 
monopolar cytokinesis. J Cell Biol 181, 195–202. 

Ishihara, K., Nguyen, P.A., Wühr, M., Groen, A.C., Field, C.M., and Mitchison, T.J. (2014). 
Organization of early frog embryos by chemical waves emanating from centrosomes. Philos. 
Trans. R. Soc. Lond., B, Biol. Sci. 369. 

Jordan, S.N., and Canman, J.C. (2012). Rho GTPases in animal cell cytokinesis: an occupation 
by the one percent. Cytoskeleton (Hoboken) 69, 919–930. 

Kamijo, K., Ohara, N., Abe, M., Uchimura, T., Hosoya, H., Lee, J.-S., and Miki, T. (2006). 
Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell 17, 43–
55. 

Kitagawa, M., Fung, S.Y.S., Onishi, N., Saya, H., and Lee, S.H. (2013). Targeting Aurora B to 
the equatorial cortex by MKlp2 is required for cytokinesis. PLoS ONE 8, e64826. 



 
19	  

Loria, A., Longhini, K.M., and Glotzer, M. (2012). The RhoGAP domain of CYK-4 has an 
essential role in RhoA activation. Curr Biol 22, 213–219. 

Mishima, M., Kaitna, S., and Glotzer, M. (2002). Central spindle assembly and cytokinesis 
require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2, 
41–54. 

Mitchison, T., Wühr, M., Nguyen, P., Ishihara, K., Groen, A., and Field, C.M. (2012). Growth, 
interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. 
Cytoskeleton (Hoboken) 69, 738–750. 

Murata, T., and Wada, M. (1991). Effects of centrifugation on preprophase-band formation in 
Adiantum protonemata. Planta 183, 391–398. 

Müller, S. (2012). Universal rules for division plane selection in plants. Protoplasma 249, 239–
253. 

Müller, S., Wright, A.J., and Smith, L.G. (2009). Division plane control in plants: new players in 
the band. Trends Cell Biol 19, 180–188. 

Nguyen, P.A., Groen, A.C., Loose, M., Ishihara, K., Wühr, M., Field, C.M., and Mitchison, T.J. 
(2014). Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 
346, 244–247. 

Nishimura, Y., and Yonemura, S. (2006). Centralspindlin regulates ECT2 and RhoA 
accumulation at the equatorial cortex during cytokinesis. J Cell Sci 119, 104–114. 

Oliferenko, S., Chew, T.G., and Balasubramanian, M.K. (2009). Positioning cytokinesis. Genes 
Dev 23, 660–674. 

Piekny, A., Werner, M., and Glotzer, M. (2005). Cytokinesis: welcome to the Rho zone. Trends 
Cell Biol 15, 651–658. 

Rappaport, R. (1961). Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp 
Zool 148, 81–89. 

Rappaport, R. (1985). Repeated furrow formation from a single mitotic apparatus in cylindrical 
sand dollar eggs. J Exp Zool 234, 167–171. 

Rappaport, R. (1996). Cytokinesis in animal cells (Cambridge; New York: Cambridge University 
Press). 

Rappaport, R., and Ebstein, R.P. (1965). Duration of stimulus and latent periods preceding 
furrow formation in sand dollar eggs. J Exp Zool 158, 373–382. 

Rappaport, R., and Rappaport, B. (1985). Surface contractile activity associated with isolated 
asters in cylindrical sand dollar eggs. J Exp Zool 235, 217–226. 

Render, J.A., and Elinson, R.P. (1986). Axis determination in polyspermic Xenopus laevis eggs. 
Dev Biol 115, 425–433. 



 
20	  

Sawin, K.E., and Mitchison, T.J. (1991). Mitotic spindle assembly by two different pathways in 
vitro. J Cell Biol 112, 925–940. 

Skop, A.R., Liu, H., Yates, J., Meyer, B.J., and Heald, R. (2004). Dissection of the mammalian 
midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66. 

Sönnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., 
Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Full-genome RNAi profiling of early 
embryogenesis in Caenorhabditis elegans. Nature 434, 462–469. 

Wakabayashi, Y., and Shinagawa, A. (2001). Presence of a nucleus or nucleus-deriving factors 
is indispensable for the formation of the spindle, the diastema and the cleavage furrow in the 
blastomere of the Xenopus embryo. Dev Growth Differ 43, 633–646. 

Wang, Y.L. (2001). The mechanism of cytokinesis: reconsideration and reconciliation. Cell 
Struct. Funct. 26, 633–638. 

White, E.A., and Glotzer, M. (2012). Centralspindlin: at the heart of cytokinesis. Cytoskeleton 
(Hoboken) 69, 882–892. 

White, J.G., and Borisy, G.G. (1983). On the mechanisms of cytokinesis in animal cells. J Theor 
Biol 101, 289–316. 

Wilson, E.B. (1928). The cell in development and heredity (New York: The Macmillan Co.). 

Wolfe, B.A., Takaki, T., Petronczki, M., and Glotzer, M. (2009). Polo-like kinase 1 directs 
assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. 
PLoS Biol 7, e1000110. 

Wühr, M., Chen, Y., Dumont, S., Groen, A.C., Needleman, D.J., Salic, A., and Mitchison, T.J. 
(2008). Evidence for an upper limit to mitotic spindle length. Curr Biol 18, 1256–1261. 

Wühr, M., Dumont, S., Groen, A.C., Needleman, D.J., and Mitchison, T.J. (2009). How does a 
millimeter-sized cell find its center? Cell Cycle 8, 1115–1121. 

Wühr, M., Tan, E.S., Parker, S.K., Detrich, H.W., and Mitchison, T.J. (2010). A model for 
cleavage plane determination in early amphibian and fish embryos. Curr Biol 20, 2040–2045. 

Yüce, O., Piekny, A., and Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the 
localization and function of RhoA. J Cell Biol 170, 571–582. 

Zuo, Y., Oh, W., and Frost, J.A. (2014). Controlling the switches: Rho GTPase regulation during 
animal cell mitosis. Cell Signal 26, 2998–3006. 



 
21	  

Chapter Two 

Cell-Free Reconstitution of Cytokinesis Signaling 
 

Citation. This chapter was assembled with modifications from the final as well as earlier, longer 

versions of the following published manuscript: 

Science 346, 244-247 (2014) 

Spatial Organization of Cytokinesis Signaling Reconstituted in a Cell-Free System 

Phuong A. Nguyen1,2†, Aaron C. Groen1,2†, Martin Loose1, Keisuke Ishihara1,2, Martin 

Wühr1, Christine M. Field1,2‡, Timothy J. Mitchison1,2‡ 

1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. 
2Marine Biological Laboratory, Woods Hole, MA 02543, USA. 

† Co-first authors. 

‡ Co-senior authors. 
 

Contributions. This was a highly collaborative project and would have been impossible without 

the contribution from many excellent scientists. I feel very grateful to have been able to work 

with them. 

Methods. Drs. Christine Field, Timothy Mitchison and I worked together to develop the 

interphase aster assembly assay starting in 2009. Initially, Drs. Field and Mitchison used 

demembranated sperm with attached centrosome to nucleate microtubule asters in calcium-

activated Xenopus egg extract, then imaged the asters between uncoated or casein-coated 

glass coverslips. I introduced the use of PEG-passivated coverslips, which allowed for 

reproducible aster morphology, and reliable localization and inhibition of proteins or protein 

complexes that would otherwise adsorb to the uncoated glass surface. To circumvent the effect 

of sperm chromosomes on microtubule morphology, I initially used purified centrosomes as 
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microtubule nucleating centers. Later, Drs. Field and Mitchison introduced the Aurora A kinase-

based artificial centrosome beads in the system. I also developed the conditions for imaging 

asters with TIRF microscopy (kappa-casein coating of bottom coverslip, PEG-coating of top 

coverslips, combined with dynein inhibition). Dr. Aaron Groen helped optimize the protocol for 

extract preparation with intact actin by modifying centrifugation conditions. Dr. Field introduced 

the use of fluorescently labeled Fab fragments coupled with target-specific antibodies to 

visualize certain proteins (e.g. Aurora kinase B, Kif23) in extract. This approach was later 

replaced by using directly labeled antibodies, whose labeling protocol was developed by Dr. 

Mitchison. We published these developments in the following methods paper: 

Field, C.M., Nguyen, P.A., Ishihara, K., Groen, A.C., and Mitchison, T.J. (2014). 

Xenopus egg cytoplasm with intact actin. Meth Enzymol 540, 399–415. 

Dr. Martin Loose and I worked together to develop a supported lipid bilayer system that 

would be stable when combined with the Xenopus egg extract system; Dr. Field initiated and 

supervised this project. Dr. Loose came up with the initial lipid composition (70% PC, 29% PS, 

1% PI(4,5)P2) based on a previous publication, which Dr. Field and I later modified to support 

reproducible RhoA activation. Rotation student Himanish Basu helped optimize the buffer 

conditions for lipid bilayer assembly, and found that addition of sucrose was beneficial. I 

confirmed this finding and also found that increasing the salt concentration helped too. Dr. Field 

and I optimized glass cleaning procedures. We published these developments in the following 

methods paper: 

Nguyen, P.A., Field, C.M., Groen, A.C., Mitchison, T.J., and Loose, M. (2015). 

Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. 

Methods Cell Biol 128, 223–241. 
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Reagents. While Dr. Martin Wühr was building a mass spectrometry-based proteomic 

database of all proteins found in Xenopus eggs and embryos at various developmental stages, 

he pointed out Kif20AE as a kinesin highly abundant in early Xenopus development. I designed 

and ordered the affinity purified C-terminal peptide antibodies against X. laevis Kif23, Kif20A, 

and Kif20AE. The Kif23 and Kif20AE antibodies worked for immunofluorescence (in both extract 

and egg) and immunoblot, but less so for immunodepletion. Thus Dr. Groen proceeded to make 

antibodies against longer C-terminal fragments of these kinesins with the help of Dr. Edwin Tan. 

Dr. Groen also made the antibodies against X. laevis Aurora A kinase, which we initially 

received from Dr. Yixian Zheng. I inherited the X. laevis Kif4A antibodies from Dr. David 

Miyamoto, and when we ran out of the antibodies, I purified them from stored sera. Dr. 

Mitchison performed the on-column labeling of antibodies. 

I made the baculovirus for Kif4A-GFP expression using an expression plasmid from Dr. 

Thomas Surrey, and purified the protein from Sf21 insect cells. I cloned and purified the GFP-

PRC1E protein. Dr. Groen cloned and purified the RhoA-GTP reporter (mCherry-rGBD). I 

designed the DasraA constructs with the purpose of visualizing the CPC without using 

antibodies, and purchased the cDNA and the primers. Dr. Aaron Groen carried out the 

subcloning and purification of the GFP-DasraA protein. 

Drs. Groen and Dr. Edwin Tan helped me with tubulin preparation from bovine brains, 

and labeling tubulin with fluorophores. 

Experiments. I conducted all the experiments and analyses described in this chapter 

except for the following: 

Dr. Groen and I designed the experiment testing the role of various kinesins in CPC 

recruitment and motility (Figure 2.6, A and B, and Figure S2.4). I had previously made the 

observation that Kif4A depletion leads to lack of CPC movement, so we proceeded to test the 
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role of other kinesins. Specifically, Dr. Groen acquired the data for Kif23, Kif20AE, Kif20A 

depletion, and Kif10, Kif11 inhibition. 

Dr, Groen acquired the time-lapse sequence shown in Figures 2.2 and S2.1A. While I 

had previously acquired imaged many image sequences of aster-aster interactions, this 

sequence was particularly beautiful and showcased the resemblance to cytokinesis zones in 

dividing embryos the best. Dr. Groen also provided the data for Figure 2.6C. 

Drs. Field and Mitchison performed the fertilization and immunofluorescence of Xenopus 

zygotes with advice from Dr. Wühr (Figures 2.3 and 2.5). Dr. Groen microinjected the zygotes 

with the Aurora B kinase inhibitor (Figure 2.5). 

The supported lipid bilayer experiments (Figures 2.7 and 2.8) were two-person 

experiments. I worked with either Dr. Groen or Dr. Field. When working with Dr. Groen, I made 

the bilayer, he made the extract, I prepared the sample, and he and I imaged (data shown in 

Figure 2.8). When working with Dr. Field, I made the extract, she made the bilayer, and I 

prepared and imaged the sample. For the immunodepletion experiments shown in Figure 2.7C, 

either Dr. Groen or I carried out the depletion. 

Keisuke Ishihara helped with setting up the lab at Woods Hole, moving and organizing 

reagents, frog maintenance, extract reagents and preparation, and critical reading of the 

manuscript. 

Writing. I made all the figures, tables, and movies except for Figure 2.3 (by Dr. Mitchison 

and Field) and Figure 2.5 (by Dr. Field). Dr. Groen, Dr Mitchison and I wrote the manuscript with 

significant contributions from Drs. Loose and Field. 

 

Supplemental materials. Materials and Methods, Supplementary Figures, Tables and Movies 

for this chapter can be found in Appendix I.  
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Abstract 

During animal cell division, the cleavage furrow is positioned by microtubules that signal 

to the actin cortex, inducing cortical contraction at the cell midplane. Molecular genetics has 

revealed the key signaling molecules, but it has been difficult to assign precise spatiotemporal 

functions to them. Here, we developed a cell-free system to recapitulate cytokinesis signaling 

using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial 

centrosomes and met to organize antiparallel overlap zones. These zones blocked 

interpenetration of neighboring asters and recruited cytokinesis midzone proteins including the 

Chromosomal Passenger Complex (CPC) and Centralspindlin. The CPC was transported to 

overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported 

lipid bilayers to mimic the plasma membrane, we observed recruitment of cleavage furrow 

markers, including a RhoA-GTP reporter, at microtubule overlaps. This system opens further 

approaches to understanding the biophysics of cytokinesis signaling. 
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Introduction 

Actomyosin-based cleavage furrows in animal cells are positioned by signals emanating 

from microtubule assemblies formed shortly after anaphase onset (Rappaport, 1996). In typical 

somatic cells, the signaling complexes Centralspindlin and CPC (Chromosomal Passenger 

Complex) accumulate at the center of a microtubule structure called the midzone (or central 

spindle), which forms in the space previously occupied by the mitotic spindle (Carmena et al., 

2012; Glotzer, 2005; Mastronarde et al., 1993; White and Glotzer, 2012). It is unclear how the 

microtubules that position furrows are organized in much larger egg cells, and how they signal 

to the cortex (Mitchison et al., 2012; Wühr et al., 2009). We addressed these questions by 

developing a cell-free system to reconstitute the spatial signaling characteristic of cytokinesis in 

a large egg cell. 

Results and Discussion 

Cell-free system that reconstitutes cytokinesis signaling 

Cytoplasmic extracts prepared from unfertilized Xenopus laevis eggs by centrifugal 

crushing contain undiluted cytosol and organelles, and have long provided a system for 

accurate reconstitution of meiosis-II spindles (Sawin and Mitchison, 1991). To extend this 

system to reconstitution of cytokinesis events, we prepared undiluted egg cytoplasm with intact 

actin (Field et al., 2014). We then added fluorescent probes and beads coated with an activating 

antibody to Aurora kinase A (AurkA), which mimic centrosomes without chromosomes attached 

(Tsai and Zheng, 2005). Extract was released from meiotic arrest by a Ca2+ pulse, which mimics 

fertilization, and immediately spread between two passivated coverslips to a ~10-15 µm 

thickness for imaging (Figure 2.1). 
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Figure 2.1: Workflow of interphase aster assembly assay in Xenopus egg cytoplasm. 

Undiluted cytoplasm with intact actin was prepared from Xenopus eggs (Field et al., 2014). 

Extract was supplemented with fluorescent probes and then released from meiotic arrest into 

interphase by calcium addition, which mimics fertilization. Beads coated with Aurora A kinase 

(AurkA) antibody that mimic centrosomes (Tsai and Zheng, 2005) were added, a thin extract 

layer was spread between PEG-passivated coverslips and immediately imaged. 

A description of the cell cycle state of our extract system can be found in our recent 

methods paper (Field et al., 2014). Judging by immunoblots of proteins that report on Cdk1 

phosphorylation status, some mitotic Cdk1 sites were lost as soon as 5 min after calcium 

addition, while others took up to 20 min to be lost. These findings are consistent with previous 

observations that different Cdk1 substrates are dephosphorylated at different rates following the 

fertilization-induced calcium pulse, which breaks the arrest at metaphase of meiosis II 

(cytostatic factor (CSF)-arrested state) (Lorca et al., 1993; Mochida and Hunt, 2007; Nishiyama 

et al., 2007; Rauh et al., 2005). We conclude that calcium addition caused the extract to begin 

to enter the interphase state within a few minutes, but that the full interphase state was not 

reached until approximately 20 min after calcium addition. 

As the cell cycle progressed from metaphase to interphase, large microtubule asters 

grew out rapidly from each AurkA bead. Where the expanding edges of two neighboring asters 

met, antiparallel microtubule bundles formed in a boundary zone that we term the aster-aster 

interaction zone (AAIZ) (Figure 2.2, Figure S2.1A, and Movie S2.1). AAIZs started forming after 

about 15 min, and remained for at least 20 min (Figure S2.1B), so their assembly occurred in 

the full interphase state. In somatic cells, the CPC and Centralspindlin complexes are recruited 
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to the midplane in anaphase where they specify the division plane by activating the small 

GTPase RhoA at the cortex (Asiedu et al., 2008; Kamijo et al., 2006; Kitagawa et al., 2013; 

Nishimura and Yonemura, 2006; Wu et al., 2014; Yüce et al., 2005). We imaged endogenous 

complexes by adding labeled antibodies, and for the CPC confirmed localization with a GFP 

tagged DasraA subunit. CPC and the Kif23 subunit of Centralspindlin were recruited to the AAIZ 

in a 5-15 µm wide line bisecting the line between two AurkA beads (Figure 2.2, B and C; Figure 

S2.1, A and B). This is the first time co-recruitment of conserved cytokinesis midzone 

complexes has been observed in a cell-free system. 

 
Figure 2.2: Aster outgrowth and interaction reconstituted in cell-free Xenopus egg 

cytoplasm. (A) Experimental setup. Cytoplasmic extract was sandwiched between two PEG-

passivated glass coverslips. Microtubules (MTs) grow from Aurora kinase A (AurkA)-coated 

beads to form aster-aster interaction zones (AAIZs). (B) Widefield time-lapse sequence showing 

recruitment of Aurora kinase B (AurkB, red) to an AAIZ. MTs (green) were visualized with 

Alexa488-labeled tubulin and AurkB visualized with a specific Alexa647-labeled antibody. (C) 

Same AAIZ at 30 min (widefield) showing recruitment of AurkB (CPC subunit, red) and Kif23 

(Centralspindlin subunit, cyan). Kif23 was visualized with a specific Alexa568-labeled antibody. 
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Visualization of cytokinesis structures in dividing Xenopus zygotes 

The AAIZ formed in the cell-free extract was wider than a somatic cell midzone, and 

hundreds of microns long. To evaluate its physiological relevance, we imaged the same proteins 

in Xenopus zygotes fixed between mitosis and cytokinesis, which takes place at interphase in 

early embryonic cells (Figure 2.3) (Wühr et al., 2010). The 1st mitotic spindle was small 

compared to the egg (Figure 2.3B, Z1) (Wühr et al., 2008). As zygotes proceeded from 

metaphase to cleavage, asters from the two halves of the spindle grew, and a zone of 

antiparallel overlap formed between them (Mitchison et al., 2012). We found that the CPC and 

Centralspindlin were first recruited to the spindle midzone marked by a dense array of 

microtubules (Figure 2.3C, arrowheads in Z1 and Z2), and later spread to the less dense 

overlap zone between the asters (Figure 2.3C, arrows in Z2). As the asters grew further and the 

centrosomes moved apart, the overlap zone expanded radially, forming a plane ~10-30 µm wide 

that bisected the egg and appeared as a line in optical section (Figure 2.3C, Z3). The 

morphology of the midplane in zygotes, as defined by microtubule morphology and 

CPC/Centralspindlin localization, was strikingly similar to the AAIZ in extracts (Figure 2.2). 

We propose that while the AAIZ is morphologically different, it is functionally equivalent 

to the central overlap in midzones in smaller cells. In each case the molecules that accumulate 

at this plane are thought to signal to the cell cortex and plasma membrane to induce a furrow 

(Argiros et al., 2012; Yabe et al., 2009). By forming a 10-30 µm thick disk whose radius also 

expands as the asters expand to fill the entire cytoplasm, the AAIZ serves as a structure that 

can deliver the cytokinesis signals from the spindle to the cortex at the rate of aster expansion 

(~15-30 µm/min) (Wühr et al., 2009), which is much faster than the rate of transport by diffusion 

alone (~5 µm/min) (Ishihara et al., 2014). Thus the AAIZ could be an evolutionary adaptation in 

very large cells to face spatial challenges arising from their size. 
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Figure 2.3: Visualization of cytokinesis structures in Xenopus zygotes. (A) Cartoons of 

microtubule structures formed in dividing Xenopus zygotes after metaphase exit, during anaphase 

(left) and mid-interphase (right). (B,C) Localization of MTs (green), AurkB (CPC subunit, red) 

and Kif23 (Centralspindlin subunit, cyan) in Xenopus zygotes fixed at consecutive stages of the 

first cell division (Z1-Z3) imaged by laser scanning confocal microscopy. Low-mag images show 

almost whole zygotes (B) and high-mag cropped images show detailed the morphology of 

cytokinesis structures (C). Localization of AurkB and Kif23 to the spindle midzone (arrowheads) 

is distinct from localization to the aster-aster interaction zone (AAIZ) (arrows in Z2). [Figure by 

Timothy Mitchison and Christine Field] 
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Microtubule organization at the AAIZ requires Aurora B kinase activity 

To measure microtubule orientation at the AAIZ we tracked GFP-tagged EB1, which 

binds to growing microtubule plus ends (Figure 2.4A, Figure S2.2, Movie S2.2) (Petry et al., 

2013; Tirnauer and Bierer, 2000; Tirnauer et al., 2002). Microtubules grew outward radially 

within each aster. At the AAIZ, EB1 comets from both directions entered antiparallel bundles, 

where they usually disappeared (Figure 2.4A). We quantified the degree of interpenetration by 

categorizing EB1 comets based on their direction, and measuring the fraction of each 

population at different distances along the bead-bead axis (Figure S2.3; see Methods). The 

AAIZ was characterized by a sharp change in directionality over ~20 µm, indicating a localized 

block to interpenetration between the asters (Figure 2.4B). 

 
Figure 2.4: Microtubule organization at the AAIZ visualized with plus tip tracking in cell-

free extract. (A) Quantification of microtubule orientation using EB1 tracking. Left: Spinning 

disc confocal images of control (top) and AurkB inhibited (bottom) AAIZs. MTs (green) were 

visualized with Alexa568-labeled tubulin and AurkB visualized with a specific Alexa647-labeled 

antibody. Middle: Map of EB1-GFP trajectories colored by their mean direction (over 2 min). 

Right: 4X zoom-up of square in middle panel with maximum intensity projection (MIP) of EB1 

tracks (over 15 sec). (B) Spatial distribution of EB1 tracks at AAIZs classified by direction 

(shading indicates standard deviations determined from n ≥ 5 zones). (See Figures S2.2, S2.3, and 

Methods for data analysis.) 
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Kinase activity of the Aurora B (AurkB) subunit of the CPC is required to establish 

midzone morphology and for furrow ingression (Argiros et al., 2012; Yabe et al., 2009). We 

confirmed this in Xenopus eggs by injecting the specific inhibitor ZM447439 into fertilized eggs 

either before or after metaphase of 1st mitosis. Cytokinesis was completely inhibited after early 

injections (50-55 min) and no furrows (2/10) or shallow, abortive cleavage was observed after 

late injections (8/10 embryos). Immunofluorescence of zygotes injected after metaphase (75-80 

min) showed disruption in AAIZ formation and CPC recruitment (Figure 2.5). Control buffer 

injections had no effect (6/6 embryos), confirming the expected AurkB requirement (Argiros et 

al., 2012; Yabe et al., 2009). 

AurkB inhibition blocked recruitment of the CPC in our cell free system (Figure 2.4A), 

and caused much deeper interpenetration of microtubules (Figure 2.4, A and B; Movie S2.3). 

Thus, AurkB activity was required to create a sharp boundary between asters. This is the first 

quantitative measurement of the role of AurkB in blocking microtubule interpenetration, which 

would be difficult to visualize in live cells. Our cell-free system allows us to separate the effects 

of AurkB inhibition on cytokinesis from other stages during mitosis, which is also difficult to 

achieve in live cells.  
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Figure 2.5: Aurora B kinase activity is required for organization of the aster-aster 

interaction zone (AAIZ) in Xenopus zygotes. Fertilized Xenopus eggs were injected with the 

Aurora kinase B specific inhibitor ZM447439 (10mM in buffer) or buffer alone after first mitosis 

and before first cytokinesis (75-80 minutes post fertilization), then fixed, stained for microtubules 

(green) and AurkB (red), and imaged by confocal microscopy. Similar images were obtained in 

three biological repeats. (A, A’) Zygote injected with ZM447439 at 78 min and fixed at 130 min. 

Two focal planes are shown. Note disruption of antiparallel microtubule organization and CPC 

recruitment between the growing asters. Aster growth was not affected. (B, B’) Zygote injected 

with control buffer at 73 min and fixed at 110 min. Antiparallel microtubule organization and 

CPC recruitment were not affected. Note buffer injection could move or distort the asters, 

however organization of the AAIZ with AurkB in zone was maintained. [Figure by Christine 

Field] 
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Recruitment and directed transport of CPC requires Kif20AE and Kif4A 

Next we wondered how the CPC is recruited to the AAIZ and how its localization is 

restricted to a narrow band (~5-15 µm wide). The CPC is proposed to be transported to the 

center of midzones along microtubules by a kinesin molecular motor (Grüneberg et al., 2004; 

Kitagawa et al., 2013), but transport has not been observed directly (Atilgan et al., 2012). Five 

plus-end directed kinesins involved in cell division are candidates for CPC transport (Cross and 

McAinsh, 2014): Kif4A, Kif10 (also called CenpE), Kif11 (Eg5), Kif20A (Mklp2/Rabkinesin-6) and 

Kif23 (Mklp1, a subunit of Centralspindlin). Xenopus eggs also contain an unusual kinesin 41% 

identical to Kif20A by sequence (Wühr et al., 2014). This is likely to be an embryo-specific 

paralog, and we propose the name KIF20Aembryonic, abbreviated KIF20AE. 

We tested the roles of these motor proteins in our system by immunodepletion or 

inhibition (Figure 2.6, A and B). Small molecule inhibition of Kif10 and Kif11, and depletion of 

somatic Kif20A and Kif23, had no effect on antiparallel microtubule bundling in the AAIZ or on 

CPC localization (Figure 2.6, A and B, Figures S2.4 and S2.5). Depletion of Kif4A did not block 

CPC accumulation or assembly of antiparallel bundles, but increased the width of the CPC-

positive zone; adding back recombinant Kif4A rescued this phenotype (Figures 2.6A and S2.5). 

Depletion of Kif20AE completely blocked CPC accumulation and disorganized the AAIZ (Figure 

2.6A). Thus Kif20AE is absolutely required for CPC recruitment in eggs, presumably mirroring 

the Kif20A requirement in somatic cells (Grüneberg et al., 2004; Kitagawa et al., 2013), and 

Kif4A plays some role in focusing it.  
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Figure 2.6: Kinesin-dependent recruitment and motility of the CPC. 

(A) Representative spinning disc confocal images of microtubules (MTs) and AurkB at AAIZs 

after kinesin immunodepletions, as labeled above. MTs were visualized with Alexa568-labeled 

tubulin and AurkB visualized with a specific Alexa647-labeled antibody. (B) Summary of kinesin 

perturbations using drug inhibition (inh) or immunodepletion (dep). (C and D) Localization of 

Kif20AE and Kif4A at AAIZs. MTs (green) were visualized with Alexa488- (C) or Alexa568-

labeled (D) tubulin, AurkB (red) with a specific Alexa647-labeled antibody, Kif20AE (cyan) with 

a specific Alexa568-labeled antibody, and Kif4A (cyan) with a Kif4A-GFP fusion protein. (E) 

Kymographs of CPC dynamics on individual microtubule bundles in AAIZs. AurkB was 

visualized with a specific Alexa647-labeled antibody. (F) CPC velocity as a function of distance 

from the center of the AAIZ [error bars are standard deviations determined from n ≥ 3 

microtubule bundles (see Methods)].  
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Figure 2.6 (Continued)  
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Microtubule bundles in the AAIZ localized Kif20AE (Figure 2.6C), Kif4A (Figure 2.6C), 

and an embryonic paralog of PRC1 (PRC1E, an antiparallel microtubule crosslinker and Kif4A’s 

binding partner; Figure S2.1C), all of which have been shown to bind the CPC in pull-down 

experiments (Bieling et al., 2010; Grüneberg et al., 2004; Mitchison et al., 2013; Ozlü et al., 

2010). Time-lapse imaging showed that CPC clusters moved to the center of the overlap zone 

at a rate of 10-25 µm/min, slowing as they reached the center (Figure 2.6, E and F, Figure S2.6, 

Movie S2.4). Tubulin speckle imaging showed sliding of microtubules away from the overlap 

center at <5 µm/min (Figure S2.7, Movies S2.6 to S2.8). Thus the observed CPC movement 

represents transport towards plus ends. The maximal transport rate was close to that of Kif4A in 

an isolated aster not part of an AAIZ (26.4 ± 4.1 µm/min [mean ± SD, n = 34 tracked Kif4A 

particles]) (Figure 2.6F, green line, Figure S2.8) (see Methods). Kif4A depletion blocked CPC 

movement, and addback of recombinant Kif4A rescued it (Figure 2.6, E and F, Figure S2.9, 

Movie S2.5). Moving CPC and Kif4A partially co-localized by live imaging (Figure S2.10). Thus, 

the CPC is targeted to the AAIZ and transported to a narrow band by the combined action of 

Kif20AE and Kif4A. Transport probably slows as CPC engages binding sites in the AAIZ. 

Model for CPC Recruitment and Transport at AAIZs 

The simplest model that is consistent with our data is one in which the CPC is targeted 

to regions of antiparallel overlap by interaction with Kif20AE; once recruited there, it is 

transported to the center of the overlap region by interaction with Kif4A. In this model Kif4A acts 

as a transport motor, at least over a limited region. Kif20AE could act as a transport motor, or in 

some other way. For example it could serve as a recognition element for antiparallel overlapping 

microtubules that lacks transport activity, and instead promotes targeting of CPC to the overlap 

by diffusion and trapping. It could also act as an allosteric activator of the CPC without 

microtubule binding activity. Its somatic homolog Kif20A has been shown to possess 

microtubule-stimulated ATPase activity, but has not been shown to possess transport motor 
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activity (Neef et al., 2003). Our reasons for proposing the simple model are listed below. We 

note that our data do not exclude less direct roles for either kinesin, where the kinesin need not 

directly interact with the CPC. For example, Kif4A could act to somehow modify the microtubule 

tracks in the overlap zone to promote transport of CPC by some other kinesin, for example 

Kif20AE. It is difficult, in general, to rule out indirect actions in a complex system. Pure protein 

reconstitution is required to fully address the function of the two kinesins in CPC targeting. 

The following observations from the depletion/addback experiments lead us to propose 

the two-kinesin mechanism above for CPC transport: 

1. Kif20AE depletion leads to complete block of CPC recruitment to antiparallel microtubule 

overlaps (Figure 2.6A). 

2. Kif4A depletion does not lead to block of CPC or Kif20AE recruitment (Figure 2.6A), but only 

blocks transport of CPC within antiparallel microtubule overlaps (Figure 2.6, E and F). 

3. The localizations of Kif20AE and Kif4A are distinct: Kif20AE co-localized with the CPC in the 

center (Figure 2.6C), while Kif4A localized more broadly on antiparallel microtubule overlaps 

(Figure 2.6D). This suggests that the CPC-Kif20AE complex could be a cargo of the Kif4A 

transport motor. 

We hypothesize that a two-kinesin mechanism is required to ensure precise localization 

of the CPC to the cleavage plane in egg cells where the spatial scale is very large, and 

antiparallel overlaps are much wider (up to tens of µms) than in small somatic cells (2-3µm) 

(Bieling et al., 2010; Kurasawa et al., 2004). Further experiments are required to better define 

the spatial extent of antiparallel overlaps, and the factors that determine the extent of Kif4A and 

CPC localization relative to these overlaps. 

Cytokinesis signaling from microtubules to the cortex 

We next tested if the AAIZs in the cell-free system can signal to the cortex. To mimic the 

cell membrane, we prepared supported lipid bilayers on glass coverslips using lipids 
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characteristic of the inner leaflet of animal cell plasma membranes, including 

phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Lee et al., 2010; 

Loose et al., 2008; Nguyen et al., 2015). Protein recruitment was imaged using total internal 

reflection fluorescence (TIRF) microscopy (Figure 2.7). 

The small GTPase RhoA is thought to be the master organizer of the furrow by positively 

regulating actomyosin contractility (Benink and Bement, 2005; Jordan and Canman, 2012; 

Piekny et al., 2005). To localize active, GTP-bound RhoA we added an mCherry-tagged RhoA 

binding fragment of Rhotekin (mCherry-rGBD) (Benink and Bement, 2005). Using PEG-

passivated coverslips (as per Figure 2.2A), we saw no recruitment of RhoA-GTP. Using lipid 

bilayers (as per Figure 2.7A), the RhoA-GTP reporter was enriched at the bilayer under AAIZs 

that recruited CPC and Centralspindlin (Figures 2.7B and S2.11). Inhibition of AurkB or 

depletion of Kif20AE completely blocked AAIZ assembly and CPC localization as expected 

(Argiros et al., 2012; Grüneberg et al., 2004; Yabe et al., 2009), and also blocked localized 

RhoA-GTP enrichment (Figure 2.7, B and C). Kif4A depletion resulted in broadening of both 

CPC and RhoA-GTP zones (Figure 2.7C). 
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Figure 2.7: Spatially localized recruitment of GTP-bound RhoA on model plasma 

membranes. (A) Drawing of experimental setup. Cytoplasmic extract was incubated on a lipid 

bilayer-coated glass coverlip. The lipid composition was 60% PC, 30% PS, 10% PI, and 0-1% 

PI(4,5)P2 (see Methods). (B and C) Localization of a probe for RhoA-GTP (mCherry-rGBD; 

cyan) (Benink and Bement, 2005) and AurkB (red) at lipid bilayers proximal to AAIZs. MTs 

(green) were visualized with Alexa488-labeled tubulin and AurkB with a specific Alexa647-

labeled antibody. TIRF images from 3 × 3 to 5 × 5 adjacent fields were corrected for uneven 

illumination and stitched (see Methods). (B) Representative images of control and AurkB 

inhibition. (C) Representative images of kinesin immunodepletions, as labeled above. Scale bar, 

200 mm. 
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Figure 2.7 (Continued)  
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Depletion of Kif23, a subunit of the Centralspindlin complex, did not block AAIZ 

assembly (Figure 2.6A) or RhoA-GTP recruitment (Figure 2.7C). RhoA activation in the absence 

of Kif23 (or Mklp1) is consistent with previous observations that a furrow still ingresses, albeit 

fails to complete and thus later regresses, when Kif23 is knocked down in C. elegans embryos 

(Powers et al., 1998; Raich et al., 1998) or human somatic cells (Yüce et al., 2005). One caveat 

in our depletion experiment is that we only depleted Kif23, the motor component of 

Centralspindlin. We do not know whether its binding partner, the Rho GTPase activating protein 

RacGAP1, is still present in our system after Kif23 depletion, and whether its activity could 

contribute towards the localized RhoA activation we observed. 

More surprising was the lack of detectable difference in AAIZ morphology in the absence 

of Kif23: neither antiparallel microtubule overlap formation nor CPC recruitment was affected. 

Studies in C. elegans embryos found that knocking down either Centralspindlin subunit, Kif23 

(or ZEN-4) or RacGAP1 (or CYK-4) blocked the formation of a midzone (Jantsch-Plunger et al., 

2000; Raich et al., 1998), leading to a popular model of midzone assembly where 

Centralspindlin plays a crucial role in microtubule bundling (Glotzer, 2009; Mishima et al., 2002; 

2004). In human somatic cells, however, midzones can still form and recruit the CPC in the 

absence of Centralspindlin (Zhu et al., 2005). In the same study, when INCENP (a CPC subunit) 

was knocked down, Kif23 was no detected at the midzone (Zhu et al., 2005), consistent with our 

findings. Thus the dispensability of Kif23 in our system likely reflects functional redundancy 

among midzone factors. 

Overall, we conclude that a CPC-positive AAIZ can locally activate RhoA in our system, 

although we cannot distinguish whether localized AurkB phosphorylation of cytokinetic factors or 

some specific organization of microtubules at the AAIZ is required for furrow signaling. 

Recruitment and organization of cortical cleavage furrow proteins 

Cytokinesis signaling from microtubules leads to the reorganization of the actin cortex 
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and recruitment of cleavage furrow proteins to form a contractile ring. To probe cortical 

organization in our system we visualized F-actin using Lifeact-GFP (Figure 2.8) (Riedl et al., 

2008). F-actin was enriched at the lipid bilayer under CPC-positive AAIZs, while microtubules 

were depleted (Figure 2.8, A and B). Above the cortical layer, F-actin organized into branched 

networks that showed only partial alignment with the microtubules (Figure 2.8C). At the cortical 

layer, F-actin organized into long, uniformly spaced cables that aligned radially with microtubule 

asters (Figure 2.8, left). Where asters interacted, F-actin cables ran parallel to the overlapping 

microtubule bundles, forming a continuous array of cables between the two asters (Figure 2.8, 

middle). Where CPC and RhoA-GTP were recruited and microtubule density was lower, we 

observed increase in actin polymer density, most likely due to local nucleation and assembly 

(Movie S2.9). The spacing between actin cables was 1.3 ± 0.5 µm (SD; n = 140), comparable to 

actin-containing contractile bands on the cortex of live frog eggs (Danilchik et al., 2006). This 

organization was microtubule-dependent (Figure 2.8D, right). The furrow-selective actin 

bundling protein Anillin (Straight et al., 2005) co-localized with F-actin cables throughout the 

cortex, but not in the cytoplasm above the cortex (Figure 2.8C), and was enriched under AAIZs 

along with its binding partner septin complex (Figure 2.8E, Movie S2.10). 

We suspect that our system reconstitutes a pre-cytokinesis state where the CPC-

positive overlap zones signal to the cortex to position the cleavage furrow. The orientation of 

actin cables we observe in our system likely represents a configuration of actin bundles at early 

anaphase in live cells, and not the contractile ring itself. The alignment of cortical actin cables 

orthogonal to the putative cleavage plane is consistent with observations using fluorescently 

labeled actin filaments in somatic cells (Oegema et al., 2000). It has been proposed that actin 

filaments undergo reorganization at the cleavage site from an orthogonal alignment to a parallel 

one along the cleavage plane as cells proceed from anaphase to cytokinesis (Fishkind and 

Wang, 1993; Noguchi and Mabuchi, 2001; Opas and Sołtyńska, 1978).  
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Figure 2.8: Recruitment and organization of cortical cleavage furrow proteins. 

Experimental setup was as per Figure 2.7A. (A) F-actin (TIRF image). Note the enrichment 

proximal to the CPC at AAIZs. Microtubules (green) were visualized with Alexa568-labeled 

tubulin, AurkB (red) with a specific Alexa647-labeled antibody, and F-actin (cyan) with Lifeact-

GFP (Riedl et al., 2008). (B) Intensity line scans across the AAIZ [boxed in (A)] show 

enrichment of AurkB and F-actin; a.u., arbitrary units. (C) XZ slices of three-dimensional 

reconstructions using spinning disc confocal microscopy, showing the organization of the 

microtubules, F-actin, and Anillin (left). XY slices of microtubules and F-actin at the plane 

marked by an arrow (right). Microtubules (green) were visualized with Alexa647-labeled tubulin, 

and F-actin (cyan) with Lifeact-GFP, and Anillin (magenta) with a specific Alexa568-labeled 

antibody. (D) TIRF images of microtubules and F-actin at aster center (left) and an AAIZ 

(middle). The right panel shows a nocodazole-treated sample. (E) Anillin and septin on a bilayer 

(TIRF image) colocalize with the CPC at the AAIZ. AurkB (red), Anillin (magenta), and septin 

(yellow) were each visualized with a specific antibody labeled with Alexa488, Alexa568, and 

Alexa647, respectively. 
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Figure 2.8 (Continued)  
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Summary 

Summarizing, we have developed a cell-free system that recapitulates the hallmarks of 

spatially organized signaling characteristic of egg cytokinesis. Midzone proteins were recruited 

to the overlap zone between microtubule asters in egg extract, where they signaled to a nearby 

lipid bilayer to locally activate the RhoA pathway. Our system confirmed known mechanisms of 

spatially organized signaling, for example the Aurora B kinase activity requirement for cleavage 

furrow induction, and revealed new mechanistic aspects that were difficult to observe in living 

cells, notably transport of the CPC along microtubules towards the midzone in a process 

requiring two kinesins. Our data favor a model in which Kif4A is a transport motor for the CPC, 

and Kif20AE is required for it to bind microtubules, though not necessarily as a transporter. 

Future pure protein reconstitution experiments are required to conclusively determine the 

mechanism of CPC transport and the exact roles of these two kinesins. 

Two factors facilitated imaging approaches in the cell-free system: the large spatial scale 

of the AAIZ (~20 µm) and its long time duration (>20 minutes). Both reflect the pre-cytokinesis 

organization of the large egg cell. By comparison, the microtubule overlap in somatic cell 

midzones is ~2-3 µm wide and lasts only ~3 minutes before being compressed by the furrow 

(21). Future studies will take advantage of these features and the experimental flexibility of an 

extract system to probe biophysical mechanisms involved in cytokinesis. 
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Abstract 

In dividing cells, signalling complexes that induce cleavage furrows are transported by 

plus end-directed kinesins. Anaphase microtubules must, therefore, orient with their plus end 

towards the cell midplane. In very large embryo cells, furrow-inducing complexes are positioned 

by large microtubule asters that form a distinct aster-aster interaction zone (AAIZ) with anti-

parallel overlaps at the cell midplane. The AAIZ is known to block interpenetration of 

microtubules from the two asters, but the molecular basis of this block is unknown. Here we 

investigated the role of the Prc1/Kif4A module, which organises cytokinesis microtubules in 

many systems. Using a cell-free system derived from Xenopus laevis eggs, we showed that 

growth of plus ends slows down and terminates preferentially in AAIZs. Both the slowdown and 

the block to interpenetration depended on Prc1 and Kif4A. Unexpectedly, Prc1 and Kif4A were 

also required for radial order of large asters growing in isolation. Our findings describe in 

unprecedented detail how the conserved Prc1/Kif4A module regulates microtubule overlap 

interactions in a dividing cell. They also reveal a novel function of this module, eliminating 

inappropriate anti-parallel overlaps to control microtubule orientation. 
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Introduction 

Symmetric cell division requires precise positioning of the cleavage furrow at the 

midplane of a cell. Animal somatic cells typically initiate furrowing within 5 minutes of anaphase 

onset; during this time microtubules assemble into a bipolar array called the cytokinesis 

midzone or central spindle, which fills the space in the cell centre left by the separating 

chromosomes (Glotzer, 2009). The plus end directed kinesin-family motors Kif23 (MKLP1) and 

Kif20A (MKLP2) recruit the furrow-stimulating factors RacGAP1 (which is in the Centralspindlin 

complex with Kif23) and the chromosome passenger complex (CPC, which binds Kif20A) to the 

cell midplane along midzone microtubules (Grüneberg et al., 2004; Mishima et al., 2002). 

RacGAP1 and the CPC then signal locally to the equatorial cortex to position the furrow (Argiros 

et al., 2012; Canman et al., 2008; Jantsch-Plunger et al., 2000; Lewellyn et al., 2011; Yüce et 

al., 2005). Centralspindlin has also been implicated in anti-parallel bundling in midzones 

(Mishima et al., 2002; 2004). In addition, astral microtubules may inhibit furrow formation at the 

poles in some systems (Tse et al., 2011; White and Borisy, 1983). 

The orientation of midzone microtubules plays a central role in cleavage plane 

positioning. Recruitment of RacGAP1 and CPC to the midplane depends on uniform orientation 

of microtubules in each half of the cell, with limited anti-parallel overlap at the midplane 

(Euteneuer and McIntosh, 1980). When midzone microtubules are forced to adopt a monopolar 

orientation, RacGAP1 and CPC accumulate on one side of the cell, resulting in highly 

asymmetric, incomplete cleavage (Canman et al., 2003; Hu et al., 2008; Shrestha et al., 2012). 

How midzone microtubules are orientated is unclear, but the conserved Prc1/Kif4A module is 

known to play an important role in controlling the anti-parallel overlap at the midplane 

(Kurasawa et al., 2004). These proteins interact dynamically but do not form a stable complex 

(Zhu and Jiang, 2005). Prc1 (a member of the Ase1/MAP65 family of microtubule crosslinkers) 

promotes anti-parallel bundling (Gaillard et al., 2008; Jiang et al., 1998; Kapitein et al., 2008; 
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Loïodice et al., 2005; Mollinari et al., 2002; Subramanian et al., 2010; Yamashita et al., 2005), 

while Kif4A (a member of the Kinesin-4 family of plus end directed motors with plus end 

polymerization-inhibiting activity) antagonizes growth of midzone plus ends (Bringmann et al., 

2004; Hu et al., 2011; Sekine et al., 1994). Together, they can generate anti-parallel overlaps of 

defined length in a pure protein system (Bieling et al., 2010). 	  

In the very large cells of early frog and fish embryos, the mitotic spindle is small 

compared to the cell (Mitchison et al., 2012; Wühr et al., 2009). Large microtubule asters grow 

out from centrosomes at the spindle poles at anaphase onset, and it takes many minutes for 

them to reach the cortex to initiate furrowing. As the asters grow, the centrosomes and nuclei at 

their centres move away from the midplane of the cell under the influence of dynein (Wühr et al., 

2010). What happens at the midplane is unclear. In tubulin immunofluorescence images of 

dividing frog embryos fixed between anaphase and furrow initiation, a darker region is observed 

where the two asters meet, which we termed the ‘aster-aster interaction zone’ (AAIZ) (Mitchison 

et al., 2012; Wühr et al., 2009; 2010). Microtubules from each aster appear not to cross the 

AAIZ. Wühr and colleagues (2010) proposed that this zone served to limit microtubule length, 

and thus generate length asymmetries that promote dynein-mediated centrosome movement 

(Wühr et al., 2010). 

We recently reconstituted growth and interaction of large interphase asters in a cell-free 

system derived from Xenopus laevis eggs, and showed that when pairs of growing asters meet, 

they recognize each other and assemble an AAIZ that recruits many of the same kinesins and 

furrow stimulating factors as cytokinesis midzones in somatic cells (Nguyen, Groen et al., 2014). 

Tracking of growing microtubule plus ends using a fluorescently labelled end binding protein 

EB1 revealed a block to interpenetration of microtubules at the shared boundary between asters 

(Nguyen, Groen et al., 2014). This block was shown to depend on activity of the Aurora B 

kinase (AurkB) subunit of the CPC (Argiros et al., 2012; Nguyen, Groen et al., 2014; Yabe et al., 

2009). How AurkB and other factors locally regulate microtubule dynamics to generate the AAIZ 
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is unclear, however, as are the more fundamental questions of how the two asters recognize 

each other and how they stay separate. The cell-free system also revealed that aster growth 

occurs mainly by nucleation of microtubules at the expanding aster periphery (Ishihara et al., 

2014). This raised another question: how is radial order of the aster maintained when most 

nucleation occurs away from the centrosome? Is microtubule direction controlled by oriented 

nucleation sites and parallel bundling with pre-existing microtubules, or are other mechanisms 

involved? 

Here, we show that the Prc1/Kif4A module plays a key role in aster-aster recognition and 

organisation of an AAIZ by regulating anti-parallel overlaps. We provide a detailed analysis of 

microtubule dynamics at AAIZs regulated by a combined action of Prc1, Kif4A, and AurkB. 

Unexpectedly, we found that Prc1 and Kif4A also work together to enforce radial order in 

expanding single asters through removing anti-parallel overlaps. Although this function within 

asters appears opposite to their function in promoting overlaps between asters, we show that 

conceptually similar molecular activities are involved in each case. Thus, the Prc1/Kif4A module 

plays a central role in controlling microtubule orientation within, as well as between, large 

embryo asters. These findings extend our understanding of the biology of the Prc1/Kif4A 

module to new aspects of cell division biology, and reveal interesting adaptations of conserved 

microtubule organising mechanisms that allow scaling to very large cells. 
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Results 

Prc1E and Kif4A localization in an egg extract system  

We recently described a cell-free system that reconstituted spatial organisation of 

cytokinesis signalling molecules in Xenopus egg extracts (Field et al., 2014; Mitchison et al., 

2012; Nguyen, Groen et al., 2014). Xenopus Kif4A, also called Xklp1, is present in eggs at ~100 

nM (Wühr et al., 2014). An embryonic isoform of Prc1 that we will call Prc1E is present in eggs 

at ~63 nM (Nguyen, Groen et al., 2014; Wühr et al., 2014). We were unable to detect somatic 

Prc1 by either immunoblotting with an isoform specific antibody or mass spectrometry (Gache et 

al., 2010; Wühr et al., 2014). To localize Prc1E and Kif4A in the extract system we added 

fluorescently tagged recombinant proteins (Figure S3.1a), using <20% the concentration of 

endogenous proteins to minimize perturbation. 

Aurora A kinase (AurkA)-coated beads were used as centrosome-mimics to nucleate 

microtubules (Tsai and Zheng, 2005), and the aster assembly reaction was spread to a layer 

~10-15 µm thick between polyethylene glycol (PEG)-coated coverslips and imaged by confocal 

microscopy (Figure 3.1a and Movie S3.1). Both the Prc1E and Kif4A probes were recruited to 

microtubules and localized throughout asters. When AAIZs formed between asters, Prc1E was 

weakly enriched, while Kif4A strongly enriched, at anti-parallel bundles between the asters 

(Figure 3.1a, ~17 min). The proteins co-localized on some microtubule bundles, consistent with 

functioning together, but their overall distribution differed, consistent with their not forming a 

stable complex (Zhu and Jiang, 2005). To quantify microtubule morphology and Prc1E/Kif4A 

recruitment over time, we generated kymograph plots along the line connecting the two aster 

centres (Figure 3.1a’). These plots confirmed Prc1E and Kif4A recruitment to anti-parallel 

bundles between the asters. Both were recruited at the same time, and Kif4A was always more 

enriched in the AAIZ. Unexpectedly, we also observed bright streaks of Prc1E and Kif4A at the 

free edges of growing asters that have not yet formed an AAIZ (Figure 3.1a, zoom-ups).  
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Figure 3.1: Localization of Prc1E and Kif4A in Xenopus laevis egg extracts. 

Confocal (a) and widefield (b) time-lapse sequence of asters nucleated from AurkA beads, 

visualizing: microtubules (Alexa647-tubulin), mCherry-Prc1E, and either Kif4A-GFP (a) (Movie 

S3.1) or the chromosome passenger complex (CPC) using a GFP-DasraA subunit (b) (Movie 

S3.2). (a’ and b’) Quantification of AAIZ formation: mean fluorescence intensities along a 30 µm 

wide line (cyan box in a and b) were plotted over time.  
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Figure 3.1 (Continued)  
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We also co-localized the CPC with Prc1E, using a GFP tagged DasraA subunit of the 

CPC (Figure 3.1b and Movie S3.2). Unlike Prc1E and Kif4A, the CPC exclusively localized to a 

narrow region at AAIZs, and also to the AurkA beads (Figure 3.1b). This observation was 

quantified using kymograph plots (Figure 3.1b’). No CPC localization was observed at free 

edges of growing asters. 

 
Figure 3.2: Localization of Prc1E and Kif4A in dividing Xenopus laevis zygotes. 

(a) Immunofluorescence staining for tubulin, Prc1E and Kif4A in Xenopus zygotes fixed after 

anaphase of 1st mitosis at 100 min after fertilization. (b) Fluorescence profile plots along the 

transects R1-R4. Scale bars, 200 µm. 
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To observe Prc1E and Kif4A localizations in vivo, we probed fixed Xenopus zygotes by 

immunofluorescence (Figure 3.2). After anaphase of 1st mitosis, microtubule asters grew out 

from the spindle poles to fill the entire cytoplasm. Where the AAIZ formed between the asters at 

the egg midplane, a region of lower microtubule density was observed (Mitchison et al., 2012; 

Wühr et al., 2009; 2010). Both Prc1E and Kif4A localized to the entire aster. While Kif4A was 

highly enriched at the AAIZ nearer the centre of the egg, Prc1E was not. Prc1E appeared 

depleted from the AAIZ, except for a narrow zone nearer the periphery, where the asters only 

recently began to overlap. The overlap region of cytokinesis midzones in somatic cells exclude 

antibodies (Saxton and McIntosh, 1987), so the relative lack of Prc1E signal in the AAIZ could 

be either physiological or due to antibody exclusion. 

Plus end dynamics in AAIZs 

Live imaging is not feasible in opaque Xenopus eggs. Therefore, we used the extract 

system to investigate plus end dynamics in AAIZs, with the goal of understanding how 

microtubules from one aster are prevented from growing into the neighbouring aster. Figure 

3.3a shows EB1 trajectories colour-coded by the orientation of microtubule growth (Movie S3.3) 

(Applegate et al., 2011; Matov et al., 2010; Nguyen, Groen et al., 2014). More than 90% of the 

growing microtubules within each aster were oriented with their plus ends pointing radially away 

from the nucleating site, and orientation switched abruptly over ~30 µm in the AAIZ (Figure 

3.3a’, red area). The position of the AAIZ midline was defined as the line where microtubules 

were growing equally in both directions.  
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Figure 3.3: Plus end dynamics at AAIZs. 

(a, b) Growth trajectories of microtubule plus ends coloured by their mean direction (a) or 

instantaneous velocity (b). Trajectories were visualized by imaging and tracking the plus tip 

binding protein EB1-eGFP over 2 minutes at 1.5 sec intervals (Movie S3.3). Red-shaded region 

defines a 30 µm-wide AAIZ area. (c) Locations of growth initiations (left) and terminations 

(right) coloured by instantaneous growth velocity. Spatial distributions of (a’) growth trajectories 

at AAIZs classified by direction (grey dots: fraction of EB1 comets moving from left to right, 

blue curve: sigmoidal fit to grey dots, red curve: sigmoidal fit to fraction of EB1 comets moving 

in opposite direction), (b’) mean instantaneous growth rates (mean ± SEM), (c’) EB1 comet 

density (left) and fractions of EB1 comets that are growth initiation/terminations (right) (mean ± 

SD), n = 12 neighbouring ROIs (see Methods for data analysis). (d) Straightened growth tracks 

color-coded by instantaneous velocity, and rank ordered by termination velocity measured during 

last 3 sec of growth. Tracks terminating inside (left) or outside (right) AAIZ. Red line demarcates 

tracks with termination velocity less than 20 µm/min from those with higher termination velocity.  
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Figure 3.3b shows EB1 comet trajectories colour-coded by velocity in the same AAIZ 

and Figure 3.3b’ shows mean EB1 velocity as a function of distance from the AAIZ midline. EB1 

comets tended to slow down as they entered the centre of the AAIZ. Mean growth rates in one 

experiment were 25.8 ± 9.9 µm/min (± SD, n = 13632 comets) outside the AAIZ and 22.9 ± 11.0 

µm/min (± SD, n = 3172 comets) inside it, representing an 11% reduction (the two rate 

distributions were statistically significantly different, P < 10-45 from KS test). Other experiments 

showed qualitatively similar slowdowns (11.3 ± 2.3% reduction, mean ± SD, n = 5 AAIZs, P < 

0.001 from one-sample t-test). 

We located the initiation and termination of microtubule growth trajectories (Figure 3.3c). 

Initiations corresponded to microtubule nucleations or rescues, while terminations corresponded 

to catastrophes or pauses. We also measured the EB1 comet density as a function of distance 

from the AAIZ midline (Figure 3.3c’, left), and determined the fraction of comets that were track 

initiations or terminations (Figure 3.3c’, right). From the analysis of multiple representative 

AAIZs, we observed no particular spatial regulation of either EB1 comet density (10 ± 39% 

reduction, mean ± SD from n = 5 AAIZs, P = 0.59 from one-sample t-test) or frequency of 

initiation events (15 ± 33% increase, P = 0.37). However, we saw a consistent increase in the 

frequency of termination events near the AAIZ midline (86 ± 33% increase, P = 0.004). Thus, 

plus ends tended to slow down and terminate more within AAIZs than elsewhere in asters. 

To determine if slowdown in AAIZs correlated with termination there, we extracted many 

EB1 trajectories for microtubules where growth terminated inside an AAIZ vs. outside, colour-

coded the trajectory by instantaneous growth velocity, then rank ordered by velocity in the last 3 

sec of growth (Figure 3.3d). Considering microtubules that stopped growing outside AAIZs, we 

noted an approximately equal spread of terminal velocities at the end of the growth interval. 

Considering microtubules that stopped growing inside, we noted more microtubules that slowed 

down before they stopped growing. We also observed a higher positive correlation between 

growth rates and growth lifetimes inside AAIZs than outside (Supplementary Note 3.1 and 
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Figure S3.2). Combined with the preceding data, we conclude that microtubules tend to slow 

down, then stop growing, inside AAIZs. 

The Prc1/Kif4A module blocks interpenetration at AAIZs 

To test the role of Kif23, Kif4A and Prc1E at AAIZs, we depleted each protein to less 

than 5% of its initial abundance, as judged by immunoblots (Figures 3.4 and S3.1b-d). We 

observed no obvious effect on nucleation from AurkA beads or on microtubule polymerization 

rates. Kif23, Kif4A and Prc1E did not significantly co-immunoprecipitate by immunoblot or mass 

spectrometry (not shown), so we could independently measure the effect of depletions on 

localization of the other factors as well as on AAIZ dynamics. Although Prc1E and Kif4A do not 

form a stable complex in egg extract, they do interact while bound to microtubules (Bieling et al., 

2010; Zhu and Jiang, 2005), and phosphorylation of Kif4A by the AurkB subunit of the CPC may 

increase their interaction (Nunes Bastos et al., 2013). 

Depletion of Kif23 did not have any detectable effect on AAIZ organisation, as measured 

by plus end interpenetration (Figure 3.4b). Depletion of either Kif4A or Prc1E caused strong 

perturbation of AAIZs (Figure S3a). Specifically, microtubules from each aster started to grow 

into the neighbouring aster (Figure 3.4c, d). There was still a gradual switch in microtubule 

orientation, but this might simply reflect distance from the nearest nucleating site. Prc1E 

depletion resulted in profound disorganisation of the AAIZ, with effects including inhibition of 

anti-parallel microtubule bundling, and a complete block to localization of Kif4A (Figure S3.3b, c) 

or the CPC (AurkB, INCENP, or DasraA; not shown). Kif4A depletion caused a less profound 

disorganisation: anti-parallel microtubule bundles were still observed, and these bundles 

localized Prc1E (Figure S3.3d) and other midzone markers such as the CPC (Nguyen, Groen et 

al., 2014). CPC localization, however, was dispersed and no directional movement of CPC was 

observed on bundles in the absence of Kif4A (Nguyen, Groen et al., 2014), consistent with 

siRNA experiments in mammalian cells (Hu et al., 2011; Kurasawa et al., 2004).  
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Figure 3.4: The Prc1/Kif4A module and AurkB activity are required for block of 

interpenetration at AAIZs. 

(a-f) Analyses of microtubule growth directions as per Fig. 2a. Immunodepletion conditions as 

labelled above: control IgG (a), Kif23 (b), Kif4A (c), Prc1E (d), Prc1E depletion with addback of 

embryonic Prc1E (e), Prc1E depletion with addback of somatic Prc1 (f). (g) The D60 parameter, a 

metric for the degree of interpenetration, was defined as the difference between the interpolated 

distances where the red and blue curves crossed 60% (see panel a). Plot of mean D60 values (± 

SD) measured for each treatment (n ≥ 3 AAIZs each). The last two bars (control and AurkB 

inhibition with 100 µM ZM-447439) were obtained from data reported in ref. (Nguyen, Groen et 

al., 2014). Welch’s t-test analyses, compared with IgG control. (h) Difference in dynamics 

measurements (as per Figure 3.3b, c) for tracks ending inside vs. outside AAIZ under each 

treatment, expressed as % change of measurements inside compared to those outside. Mean ± SD, 

n ≥ 3 AAIZs each condition. One-sample t-test analyses, null hypothesis of no change. *P < 0.05, 

**P < 0.01, ***P < 0.001).  
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Both Kif4A and Prc1E depletion phenotypes were rescued by adding back the 

appropriate recombinant purified proteins, either as a GFP fusion or unlabelled protein (Figures 

3.4e and S3.1b, c). This confirms both the specificity of the immunodepletion and the functional 

attributes of the protein probes. The effect of Prc1E depletion was also fully rescued, to the 

extent we could assay, by adding back the somatic isoform of the Prc1 protein (Figure 3.4f). 

The effects of depletions and addbacks are quantified in Figure 3.4g by the D60 

parameter, a metric of the depth of growing plus end interpenetration at the aster-aster 

boundary. This plot includes the effects of small molecule inhibition (ZM-447439) of the AurkB 

subunit of the CPC, which we previously showed to block AAIZ formation (Nguyen, Groen et al., 

2014). Anti-parallel bundles recruiting both Kif4A and Prc1E still formed at aster-aster 

boundaries when AurkB was inhibited (Figure S3.3e). However, they did not effectively block 

interpenetration, since the D60 parameter was increased to a similar extent when AurkB was 

inhibited as when Prc1E or Kif4A was depleted. Collectively, these data suggest that block of 

interpenetration at AAIZs require a combined action of Prc1 (represented here by its embryonic 

isoform Prc1E), Kif4A, and AurkB. 

Next we quantified the effect of AurkB inhibition and Kif4A or Prc1E depletion on 

microtubule dynamics using the methods described in Figure 3.3. Figure 3.4h shows the 

difference between dynamics measurements of microtubule growth tracks ending inside vs. 

outside the ~30 µm AAIZ area (defined in Figure 3.3). Since the absolute values of dynamics 

measurements varied from experiment to experiment under the same condition, we used the 

values measured outside the AAIZ as the reference for each experiment. Differences were then 

expressed as % change of values measured inside the AAIZ compared to those measured 

outside, which was more consistent from experiment to experiment. P-values are therefore 

reported for inside-outside AAIZ differences under a particular condition, and not for comparison 

between conditions. More than 3 AAIZs were analysed for each condition. 
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For control AAIZs, there was a statistically significant decrease in growth rate (11.3 ± 

2.3%, SD) and increase in growth termination frequency (86 ± 33%, SD), as per Figure 3.3. The 

increase in termination frequency disappeared when Kif4A or Prc1E was depleted, or AurkB 

was inhibited. The decrease in growth rate was eliminated when Kif4A or Prc1E was depleted, 

however, it was still present to a slight but statistically significant degree when AurkB was 

inhibited (4.3 ± 1.2%, SD). Note that while growth rate differences inside vs. outside AAIZs were 

proportionately smaller than termination differences, the standard deviation in growth rates was 

much smaller, so differences were as, or more, significant. Correlation between growth 

slowdown inside AAIZs and growth termination there was reduced when AurkB was inhibited, 

and completely lost when either Kif4A or Prc1E was depleted (see Supplementary Note 3.1, 

Figures S3.2 and S3.4). 

Microtubules stop growing within anti-parallel microtubule overlaps formed by Prc1E and 

Kif4A at AAIZs 

To determine how the Prc1/Kif4A module blocks aster interpenetration, we used high 

resolution TIRF microscopy to image microtubules, EB1 and Prc1E at AAIZs (Figure 3.5a). We 

then coloured EB1 tracks based on their direction and overlaid them on top of Prc1E images 

(Figure 3.5a, right, and Movie S4). We found that most microtubules that encountered and/or 

joined an anti-parallel overlap marked by Prc1E stopped growing. In contrast, when Kif4A was 

depleted, many microtubules that encountered Prc1E-marked anti-parallel overlaps continued 

growing beyond the overlap, leading to extensive interpenetration (Figure 3.5b and Movie S5). 

Although anti-parallel overlaps localizing both Prc1E and Kif4A still formed when AurkB was 

inhibited, these overlaps were less efficient at stopping microtubule growth, also resulting in 

interpenetration (not shown). These data suggest that neighbouring asters recognize each other 

via anti-parallel microtubule overlaps formed by Prc1E (or Prc1 in somatic cells). In the  
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Figure 3.5: The Kif4A/Prc1E module inhibits microtubule growth within anti-parallel 

overlaps at AAIZs. (a) TIRF images of microtubules (Alexa647-tubulin, cyan), EB1-GFP (red), 

and mCherry-Prc1E (grey) at AAIZs formed in mock depleted and Kif4A depleted extracts. 

(b) Overlay of Prc1E image and direction-coloured EB1 tracks corresponding to each detected 

EB1 comet in a single frame. Yellow circles indicate track terminations (Movies S4 and S5). 

(c) Example behaviours of microtubule plus ends before they stop growing, shown as time-lapse 

montages of the boxed areas in b.  
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presence of Kif4A that gets recruited to the overlaps, microtubules encountering overlaps are 

prevented from further growth. This growth termination effect is enhanced by AurkB activity. 

The Prc1/Kif4A module enforces radial order within large asters 

In the course of measuring the effects of Prc1E and Kif4A depletion on AAIZs, we 

noticed that the morphology of isolated growing asters was also strongly perturbed. In isolated 

asters assembled in extracts depleted of either Prc1E or Kif4A, microtubules initially grew 

radially from the AurkA bead to a radius of ~40 µm. Microtubules continued to assemble at the 

periphery, but instead of forming a well-organised aster, they appeared disorganised at larger 

radii. This effect was not observed when AurkB was inhibited. 

To quantify radial order in asters, we measured the directions of EB1 comet trajectories 

within a quadrant of an isolated aster with its centre at the top left corner (Figure 3.6a-e). We 

generated radial order heat maps by plotting radial order parameters (R) calculated from the 

distribution of angular deviations of EB1 trajectories from the radial direction (Figure 3.6a’-e’; 

see Methods). We also plotted radial order parameters against the distance from the aster 

centre at the AurkA bead (Figure 3.6f; see Methods). Radial order may be inaccurately 

measured at small radii (<10 µm) due to growth in the Z plane close to the bead, so the initial 

rise in these plots probably does not represent low order near the bead. 

Mock depleted asters maintained high radial order out to the largest radius measured 

with our camera (~150-200 µm), with a slight decrease at large radii. Depletion of Kif4A or 

Prc1E strongly disrupted radial order: limited order was maintained within ~40 µm radius, 

presumably due to frequent re-nucleation of straight microtubules from the AurkA bead. Radial 

order was progressively lost as radius increased, though growth direction never completely 

randomized. Both depletion phenotypes could be rescued by adding back appropriate 

recombinant proteins (Figure 3.6d, e; data not shown for Kif4A addback). As with AAIZ 

formation, both the embryonic and somatic isoforms of Prc1 were able to rescue radial order. 
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Similar results were obtained using an alternative method of quantifying radial order (Figure 

S3.5). We conclude from these data that Kif4A and Prc1 (either embryonic or somatic) are 

necessary to maintain radial order within large asters as they expand. 

 
Figure 3.6: The Kif4A/Prc1 module enforces radial order within large microtubule asters. 

(a-e) Growth trajectories of microtubule plus ends coloured by their mean directions within 

isolated asters. Methods similar to Fig. 2a. Immunodepletion conditions as labelled above: control 

IgG (a), Kif4A (b), Prc1E (c), Prc1E depletion with addback of embryonic Prc1E (d), Prc1E 

depletion with addback of somatic Prc1 (e). (a’-e’) Radial order heat maps showing the local 

radial order quantified by the R parameter; each square cell measures 5x5 µm2 (see Methods). 

Warmer colours represent higher radial order. (f) Order parameter R as a function of distance 

from the aster centre for the five asters shown above. Error bars are standard deviations (see 

Methods for analysis). 
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Regulation of anti-parallel microtubule overlaps by Prc1E and Kif4A 

To better understand how Kif4A and Prc1E enforce radial order, we analysed 

representative regions of 2- or 3-colour movies of tubulin, Kif4A, Prc1E or EB1 within growing 

asters, seeking examples where we could interpret the dynamics (Figure 3.7). In general, Kif4A 

and Prc1E localized to a subset of microtubules bundles within the growing aster, and tubulin 

imaging suggested that these included at least one anti-parallel interaction. We know from EB1 

tracking (Figure 3.3a) that ~3-10% of microtubules in control asters grow in the wrong direction 

(i.e. deviating by >±90° from the radial direction). This presumably occurs because nucleation 

away from the centrosome, which dominates in large asters (Ishihara et al., 2014), tends to 

randomize growth direction, while bundling interactions tend to line up microtubules either 

parallel or anti-parallel. 

 
Figure 3.7: The Kif4A/Prc1E module eliminates anti-parallel overlaps within growing 

asters. (a,b) Examples of anti-parallel microtubule overlap formation and elimination at the edge 

of growing asters imaged with TIRF microscopy (Movies S3.6 and S3.7). Proteins visualized: 

Alexa647-tubulin and Kif4A-GFP (a); Alexa647-tubulin, Kif4A-GFP, and mCherry-Prc1E (b). 

Arrowheads indicate: plus ends (red), minus ends (cyan), microtubule growing out radially from 

aster (empty), microtubule growing in opposite direction (full). (a’,b’) Kymographs of examples 

above along the radially growing microtubule. Events indicated: catastrophe (c), stabilization (st), 

rescue (r). 
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In the example in Figure 3.7a (Movie S6), a microtubule initially grows at 33 µm/min from 

right to left at the edge of an expanding aster (empty arrowhead; ‘MT1’). At 44 sec, an anti-

parallel microtubule (full arrowhead; ‘MT2’) makes contact and bundles. Presumably, the anti-

parallel crosslinking activity of Prc1E helps promote this bundling. We followed the overlap 

formation and microtubule dynamics using a kymograph along MT1 (Figure 3.7a’). MT1 slows 

down to 7.6 µm/min before it catastrophes and starts shrinking at 14 µm/min (55 sec). 

Formation of the overlap can be observed on the tubulin kymograph as an expanding bright 

patch. On the right, lengthening of the overlap (13 µm/min) can be attributed to growth of MT2 

and/or anti-parallel sliding. Overlap extension is accompanied by recruitment of Kif4A, during 

which MT2 stops growing and starts depolymerizing within the bundle at 5.8 µm/min (86 sec). At 

this point, the shrinking rate of MT1 is reduced to 3.1 µm/min (101 sec). Eventually when the 

overlap shrinks from a maximum length of 19 µm to 1.9 µm (241 sec), the localization of Kif4A is 

diminished and MT1 rescues at a 40 µm/min growth rate. 

It is unusual to find an example as clear as that shown in Figure 3.7a due to the high 

microtubule density in asters and the presence of more than two microtubules in most bundles, 

but we believe this sequence is representative, based on EB1 tracking and Kif4A localization. 

Figure 3.7b shows another example of anti-parallel overlap formation and turnover where both 

Kif4A and Prc1E were localized (Movie S7). Examples like this suggest that Prc1E is an 

accurate marker of anti-parallel overlaps, and that the bright streaks of Prc1E seen in Figure 

3.1a mark microtubule bundles that contain at least one microtubule in the anti-parallel 

orientation. 
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Discussion 

Figure 3.8 summarizes a model we propose for how control of antiparallel overlaps by 

the Prc1/Kif4 module (Figure 3.8a) gives rise to both radial order within a single aster and block 

of interpenetration between neighbouring asters (Figure 3.8b). In our egg extract system, Prc1 

is required for bundling of antiparallel microtubules and recruitment of Kif4A and other 

cytokinesis factors to the overlaps (Figures 3.5, 3.7b, and S3.3), consistent with previous 

studies (Kurasawa et al., 2004; Mollinari et al., 2005; Subramanian et al., 2010). Microtubules 

within the overlap are prevented from further growing by Kif4A (Figures 3.5 and 3.7), consistent 

with Kif4A’s function in inhibiting microtubule dynamics (Bieling et al., 2010; Bringmann et al., 

2004; Hu et al., 2011; Nunes Bastos et al., 2013). Surprisingly, we found that in our system the 

Prc1/Kif4 overlaps underwent dynamic shrinking (Figure 3.7). Previous reconstitution studies 

using pure proteins reported only growing or stabilized, but not shrinking, microtubule overlaps 

formed in the presence of Prc1 and Kif4A (Bieling et al., 2010; Nunes Bastos et al., 2013). This 

suggests that in our system in addition to microtubule stabilization by Kif4A, anti-parallel sliding 

and/or microtubule depolymerisation are also involved in controlling the length of anti-parallel 

overlaps. Both depletion of Kif4A and inhibition of AurkB reduced the rate of overlap shrinkage, 

but did not completely eliminate it (not shown). Prc1 is known to bind to and target other 

cytokinesis factors to the midzones (Grüneberg et al., 2006; Kurasawa et al., 2004; Neef et al., 

2007), whose roles in overlap shrinkage could be explored in future studies. 

In large asters, most microtubules are nucleated away from the centrosome (Ishihara et 

al., 2014), which raises the question: how is radial order maintained? Oriented nucleation and/or 

parallel bundling are probably important, but evidently insufficient. Here we showed that the 

Prc1/Kif4A module is required for enforcing radial order (Figure 3.6), presumably by capturing 

and eliminating microtubules growing in the wrong direction (Figure 3.7). Whether or not Prc1 

could bundle two anti-parallel microtubules depends on the contact angle between them (Dixit 
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and Cyr, 2004; Portran et al., 2013; Tulin et al., 2012). In our system, we observed that contact 

angles <~30° tended to result in bundling by Prc1 (e.g. Figure 3.7a), whereas angles >~30° 

tended to lead to crossovers (data not shown, but concept illustrated in Figure 3.8a). Therefore, 

the denser the microtubule array is, the higher is the probability of a stray microtubule being 

captured within an antiparallel overlap as the probability of encounters at a bundling contact 

angle is higher. Activity of Prc1/Kif4A within a large aster results in a small positive correlation 

between microtubule growth rate and growth lifetime (Figure S3.2). This is consistent with 

Kif4A’s known function in reducing growth rate (Bieling et al., 2010; Bringmann et al., 2004; 

Nunes Bastos et al., 2013) and in increasing the frequency of pauses (Nunes Bastos et al., 

2013). 

 
Figure 3.8: The Prc1/Kif4A module controls microtubule orientation within and between 

large asters. (a) Model of anti-parallel overlap control mediated by the Prc1E/Kif4A module. 

(b) Model of radial order and block to interpenetration at AAIZ through growth inhibition of anti-

parallel microtubules and elimination of anti-parallel overlaps. 

At AAIZs a similar mechanism of overlap control operates (Figure 3.8b). In this case, 

however, Prc1/Kif4A-coated bundles contain more than two microtubules and the antiparallel 
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overlaps persist longer, as new microtubules constantly join the bundle from both sides (Figure 

3.5). Within the AAIZs, Kif4A and Prc1 lead to a decrease in growth rates, suggesting an 

increase in Kif4A activity due to an increase in Prc1 recruitment to anti-parallel bundles, an 

effect that is enhanced by Aurora B kinase activity (Figure 3.4h). AurkB activity also increases 

the correlation between growth rates and lifetimes (Figure S3.2), consistent with previous 

findings that phosphorylation of Kif4A by AurkB enhances its activity and binding affinity for Prc1 

(Nunes Bastos et al., 2013). 

Kif4A has been shown to be essential for normal cleavage and germ plasm organisation 

in Xenopus zygotes (Robb et al., 1996; Vernos et al., 1995). Those studies did not investigate 

interphase microtubule organisation in detail, but the findings are consistent with extensive 

disorganisation of interphase asters without Kif4A. A role for Prc1 in enforcing unidirectional 

microtubule organisation is new to our knowledge. Members of the conserved 

Ase1/MAP65/Prc1 family are thought to recognize anti-parallel microtubule overlaps in most 

eukaryotes, and are generally thought to promote formation of anti-parallel bundles during cell 

division (Bratman and Chang, 2008; Duellberg et al., 2013; Subramanian and Kapoor, 2012). 

Outside of cytokinesis, these proteins have known roles in organisation of the microtubule 

minus ends in interphase fission yeast cells (Sawin and Tran, 2006), as well as crosslinking of 

the cortical microtubule array, a scaffold for cell wall synthesis, in interphase plant cells 

(Paredez et al., 2006; Van Damme et al., 2004). A recent study suggested a role for Prc1 and 

Kif4A in marking and measuring single microtubules in human cells undergoing monopolar 

cytokinesis (Subramanian et al., 2013). We suspect additional roles of this interesting protein 

family remain to be discovered. 
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Chapter Four 

Positional Cues for Cytokinesis Signaling in Large Cells 

Citation. Parts of this chapter were taken with modifications from the following manuscript in 

revision: 

Spindle to Cortex Communication in Cleaving, Polyspermic Xenopus Eggs 

Christine M. Field1,2, Aaron C. Groen1,2, Phuong A. Nguyen1,2, Timothy J. Mitchison1,2 

1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. 
2Marine Biological Laboratory, Woods Hole, MA 02543, USA. 

Contributions. This was another highly collaborative project where observations made over 

many years in either whole Xenopus eggs or the extract system complemented each other and 

generated ideas for further experiments. 

Experiments. Dr. Christine Field performed the polyspermic fertilization and 

immunofluorescence of polyspermic Xenopus eggs, and made the observation that CPC was 

recruited to sister aster-aster interaction zones (AAIZs), but not to non-sister ones. I made the 

initial observation of aster polarization in the presence of chromatin in Xenopus egg extract, and 

performed the experiment testing the role of Aurora B kinase in chromatin-induced polarization. 

One factor that allowed for these observations was the use of PEG-passivated coverslips, which 

I introduced in the extract system, as both localization and inhibition experiments were 

previously unreliable due to the tendency of the AurkB complex to adsorb to the uncoated glass 

surface. Drs. Field and Timothy Mitchison repeated the aster polarization experiments for 

statistics. I hypothesized that apart from the presence of chromatin, sister and non-sister zones 

differed in the distance that initially separated the aster centers, and therefore conducted and 

analyzed the experiment testing the effect of inter-aster distance on CPC recruitment AAIZs in 

extract. The results were consistent with Dr. Field’s data that CPC was recruited to both sister 
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and non-sister interaction zones in highly polyspermic Xenopus eggs. Dr. Aaron Groen 

performed the experiment testing the effects of agents stimulating microtubule-mediated 

cytokinesis signaling on CPC recruitment to AAIZs in extract. (I had prior performed a 

preliminary experiment with MCAK antibody addition, where I observed enhanced CPC 

recruitment to AAIZs. This observation along with the literature inspired Dr. Groen to try out 

various microtubule stabilizing agents.) Dr. Groen designed and performed the microinjection 

experiments of Xenopus zygotes with these same agents, while Dr. Field carried out the 

fertilization, fixation, staining, and imaging of the embryos. 

Writing. Drs. Field and Mitchison wrote the manuscript with contributions from Dr. Groen 

and myself. I only included select figures from the manuscript in this chapter, emphasizing the 

extract-based investigation of the question: what positional cues are employed by large cells to 

specify their cleavage plane? Figures 4.1 and 4.8 were created by Dr. Mitchison; Figures 4.2, 

4.3 and 4.7 by Dr. Field; Figures 4.6 by Dr. Groen; and Figures 4.4 and 4.5 by myself.  
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Abstract1 

In animal cells, mitotic spindles specify cleavage planes using various positional cues to 

communicate their position and orientation to the cell cortex. In early embryo cells, microtubule 

asters that grow out from the spindle poles during anaphase form an interaction zone where 

they meet, and this zone specifies the cleavage plane. The role of the chromatin and the spindle 

midzone is unclear in these cells. Polyspermic fertilization provides a natural experiment where 

aster pairs from the same spindle (sister asters) have chromatin and midzone between them, 

while asters pairs from different spindles (non-sisters) do not. In frogs, only sister aster pairs 

induce furrows. We found that only sister asters recruited two conserved furrow-inducing 

signaling complexes, the Chromosome Passenger Complex (CPC) and Centralspindlin, to the 

plane between them. This explains why only sister pairs induce furrows. We then used a 

cytokinesis egg extract system to investigate the factors that influenced CPC recruitment to 

microtubule bundles. We found that proximity to chromatin, optimal starting distance between 

asters, and microtubule stabilization all favored CPC recruitment. We propose a model in which 

proximity to chromatin biases initial CPC recruitment to bundles between asters from the same 

spindle. Next, a positive feedback between CPC recruitment and microtubule stabilization 

promotes lateral growth of a plane containing CPC-positive microtubule bundles out to the 

cortex to position the furrow.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Modified from the manuscript. 
2 Reproduced from the manuscript with minor modifications. 
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Introduction2 

Cleavage furrows in early metazoan embryos typically ingress on a plane defined by the 

metaphase plate of the mitotic spindle. How spatial information encoding the position and 

orientation of the spindle is transmitted to the cortex to position the furrow is unclear. In eggs, 

cleavage planes are induced between pairs of microtubule asters that grow out from 

centrosomes at the two poles of a mitotic spindle, and spindle position is communicated in part 

by the geometric relationship between these asters. The furrow is induced at the border 

between the asters at the time they reach the cortex (Rappaport, 1996). In Xenopus laevis, 

where the egg is large (~1.2mm) compared to the 1st mitotic spindle (~60µm), it takes many 

minutes for microtubule asters to grow out to touch the cortex after anaphase onset, and the 

distance between the cortex and the centrosomes at the time of furrow initiation is very large on 

a molecular scale (Mitchison et al., 2012). Thus, a spatially robust mechanism is required to 

transmit information on spindle position and orientation to the cortex. 

A classic approach to the problem of how spindles communicate to the cortex in early 

embryos has been to ask: can any pair of microtubule asters induce a furrow between them, or 

must some special conditions be met? Polyspermic fertilization in frogs provides a natural 

experiment where different types of aster pairs can be generated in a single egg. When 

polyspermic Rana eggs entered anaphase, furrows were induced between pairs of asters that 

grew out from the same mitotic spindle, which we will call “sister asters”. They were not induced 

between pairs of asters that grew out from different spindles, which we will call “non-sister 

asters” (Brachet, 1910; Herlant, 1911). This classic observation, which was later confirmed in 

Xenopus laevis eggs (Render and Elinson, 1986), is diagrammed in Figure 4.1. One 

interpretation of these data is that the presence of chromatin and/or spindle midzone between 

aster pairs is necessary for them to induce a furrow. Consistent with a positive signal from 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Reproduced from the manuscript with minor modifications. 
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chromatin to the cortex, cells forced to undergo monopolar cytokinesis induced cleavage 

furrows only on the side of the cell nearest to chromatin (Canman et al., 2003; Hu et al., 2008). 

 
Figure 4.1: Cleavage pattern in a bispermic frog egg. 

Metaphase spindles in Xenopus are ~50-60µm long in a 1.2mm egg. After anaphase onset the 

small asters at the spindle poles grow steadily until they fill the cell. Asters from the two poles of 

the same spindle (sister pairs) contact each other shortly after anaphase onset at the plane 

previously occupied by the metaphase plate. Asters from the poles of two different spindles (non-

sister pairs) contact each other later. In both cases, aster growth halts where the asters contact 

each other, and a zone of lower microtubule density is observed at the aster-aster interaction zone 

(AAIZ) (grey shading). When asters grow to touch the cortex, furrows initiate between sister aster 

pairs, but not between non-sister pairs. Adapted from (Brachet, 1910; Mitchison et al., 2012; 

Snook et al., 2011; Wühr et al., 2009). [Figure by Timothy Mitchison] 

A requirement for chromatin for furrow induction is not universal. In a famous experiment 

using micro-manipulated echinoderm eggs, Rappaport showed that furrows were induced 

between non-sister aster pairs as well as between sisters (Rappaport, 1961; 1996). This 

experiment proved that aster pairs did not have to grow out from the same spindle to induce a 

furrow between them, and therefore chromatin or spindle midzone was not required for furrow 

induction. The discrepancy with the polyspermic frog egg observations has not been explained. 

The Rappaport experiment was recently re-investigated in echinoderm eggs using molecular 

markers (Argiros et al., 2012). Here, we re-investigate cleavage following polyspermic 
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fertilization in the frog Xenopus laevis, focusing on a cell-free cytokinesis system that allows us 

to separate the contributions from various positional cues (Nguyen, Groen et al., 2014). 

Cleavage furrow induction depends on two conserved signaling complexes that bind to 

microtubules: the Chromosome Passenger Complex (CPC; a 1:1:1:1 complex between 

INCENP, Aurora B kinase (AurkB), Dasra (CDCA8 or 9) and Survivin (BIRC5) (Carmena et al., 

2012)) and Centralspindlin (a 2:2 complex between MKLP1 (Kif23) and RacGAP1 (White and 

Glotzer, 2012)). In somatic cells these complexes localize to midzone microtubule bundles after 

anaphase onset. In Xenopus eggs they initially also localize to the midzone, then spread to a 

plane that bisects the cell at the location previously occupied by the metaphase plate, but 

extends all the way to the cortex (Nguyen, Groen et al., 2014). Where one or both of these 

complexes touch the cortex, they induce cleavage furrows by locally activating the RhoA 

pathway. The furrow then ingresses along the plane defined by the signaling complexes (Eggert 

et al., 2006; Glotzer, 2005). While both CPC and Centralspindlin are implicated in cleavage 

furrow induction in all animal cells, their relative roles may vary. Centralspindlin was implicated 

as the main furrow-inducing molecule in some systems, with the CPC serving as its positive 

regulator (White and Glotzer, 2012). In C. elegans, both complexes were argued to contribute 

independently to furrow induction (Lewellyn et al., 2011). In a cell free system derived from 

Xenopus eggs, CPC activity, but not the Kif23 subunit of Centralspindlin, was required for local 

activation of RhoA on a model plasma membrane (Nguyen, Groen et al., 2014), suggesting the 

CPC plays a more important role in furrow specification in Xenopus eggs. Here, we will focus 

mainly of the role of the CPC in spindle to cortex communication because of its central role in 

Xenopus eggs. 

The mechanisms by which the CPC is recruited to microtubule bundles during 

cytokinesis are complex and poorly understood. The INCENP subunit has direct microtubule 

binding sites (Carmena et al., 2012), and two kinesins, Kif4A and Kif20A, are also involved in 

CPC targeting (Grüneberg et al., 2004; Nguyen, Groen et al., 2014; Nunes Bastos et al., 2013). 
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CPC binds to chromatin during metaphase, which led Earnshaw and colleagues to propose that 

it is transported to spindle microtubules by chromatin at anaphase onset (Cooke et al., 1987). 

Currently, it is thought more likely that chromatin spatially bias CPC recruitment to microtubules 

by mechanisms that involve kinase activity gradients (Fuller et al., 2008). Microtubule binding 

activates the kinase activity of CPC, probably by promoting trans-phosphorylation of the AurkB 

and INCENP subunits (Kelly et al., 2007). Once activated, Aurora B kinase activity is thought to 

promote microtubule polymerization and stabilization. Several mechanisms may be involved, 

including CPC regulation of Kif4A (Nunes Bastos et al., 2013), KifC1 (MCAK) (Ohi et al., 2004), 

Stathmin (Kelly et al., 2007), and EB1 family members (Ferreira et al., 2013; Zimniak et al., 

2009). Positive feedback between AurkB activity and microtubule stabilization has been 

proposed during assembly of cytokinesis midzones in somatic cells (Hu et al., 2008; Nunes 

Bastos et al., 2013) and meiosis-II spindles in eggs (Tseng et al., 2010). 

Here, we re-investigated the origin of the cleavage pattern in polyspermic frog eggs by 

imaging the CPC and microtubules in both dividing frog eggs and the cell-free cytokinesis 

extract system. Our data partly solve a classic puzzle in fertilization biology, and suggest a 

mechanism by which information on spindle position is transmitted from the spindle at the center 

of the egg to the cortex to position the cleavage furrow. 

Results 

Visualization of aster pairs in fixed monospermic eggs3 

To investigate the normal situation we fixed monospermic eggs after 1st  mitosis and 

before or during 1st cleavage, and stained for microtubules and cytokinesis signaling complexes 

using fluorescently labeled antibodies: anti-Aurora B kinase (AurkB) for CPC and anti-Kif23 for 

Centralspindlin. Figure 4.2A shows an egg fixed shortly before cleavage onset. The sister asters  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Reproduced from the manuscript with modifications. Experiments performed by Dr. Christine 
Field. 
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Figure 4.2: Localization of furrow-inducing complexes in polyspermic eggs. Eggs were fixed 

between 1st  mitosis and 1st
 cleavage, stained for AurkB (a subunit of the CPC) and Kif23 (a 

subunit of Centralspindlin) and imaged by confocal microscopy. Cyan double-headed arrows 

illustrate sister aster pairs. (A) Normal, monospermic egg. Note plane of CPC- and 

Centralspindlin-positive microtubule bundles between sister asters. (B) Bispermic egg fixed a few 

minutes after anaphase onset. The asters have just started to grow. A CPC-positive disc is evident 

at the plane previously occupied by the metaphase plate, where sister asters recently met. 

Centralspindlin recruitment is less evident (cyan single arrow in Kif23 image). (C) Bispermic egg 

fixed midway between anaphase and cleavage. Interaction zones between sister and non-sister 

asters were evident in the tubulin image. Note a brighter tuft of microtubules that connects the 

sister pair to the upper left, in register with the centrosomes. This midzone-like morphological 

marker reveals the previous position of the spindle, and was used to identify sister aster pairs in 

microtubule images. CPC and Centralspindlin have been recruited to the interaction zone between 

sister asters, but not to the zone between non-sister asters. (D) Egg with 4 sperm fixed early in 

cleavage. Cleavage has initiated near the animal pole (not shown). This image shows a focal 

plane near the equator, where 3 aster pairs are visible. Furrowing had not yet occurred in this 

focal plane, but asters had grown all the way to the cortex. Note selective recruitment of CPC and 

Centralspindlin to zones between sister asters. [Figure by Christine Field]  
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Figure 4.2 (Continued)  
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are dome-shaped, and a planar interaction zone of lower microtubule density forms where they 

meet at mid-cell. CPC was dramatically enriched at this interaction zone. Centralspindlin was 

also enriched at the interaction zone, though the staining was dimmer and the enrichment less 

dramatic. CPC was probed with either anti-AurkB or anti-INCENP (not shown); Kif23 was 

probed with two independent antibodies (not shown). In all cases, Kif23 staining was always 

fainter than CPC staining. This intensity difference possibly reflects the lower concentration in 

eggs of Kif23 (~20nM) compared to the CPC (~150nM) (Wühr et al., 2014). 

Localization of cytokinesis signaling complexes in polyspermic eggs4 

We induced polyspermic fertilization of Xenopus laevis eggs using sodium iodide 

treatment and followed eggs by time-lapse microscopy. As previously reported (Render and 

Elinson, 1986), polyspermic eggs were identified in time-lapse movies by concentration of 

cortical pigment into patches over centrosomes and nuclei starting ~50 min after fertilization, 

late in interphase before  1st mitosis. We confirmed that only one furrow was induced per sperm 

when 1-4 sperm entered the egg, and the furrow only cleaved between sister aster pairs, as 

diagrammed for a bispermic egg in Figure 4.1. Highly polyspermic eggs formed many furrows 

that fused and regressed unpredictably, making them difficult to analyze. 

In polyspermic eggs fixed in late anaphase of 1st mitosis we observed well-separated 

anaphase spindles that were indistinguishable from those seen in monospermic eggs. Figure 

4.2B shows a bispermic example. At this stage the asters had grown sufficiently that sister pairs 

had contacted each other at the center of each anaphase spindle, but not yet sufficiently for 

non-sister asters to contact each other. AurkB localized strongly to microtubule bundles on a 

plane bisecting each spindle, and extended outwards to an extent that depended on aster 

radius. Kif23 was only faintly localized at this stage, indicated by the blue arrow in Figure 4.2B. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Reproduced from the manuscript with modifications. Experiments performed by Dr. Christine 
Field.	  
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In polyspermic eggs fixed later in the interval between 1st mitosis and 1st
 cleavage we 

observed interactions between both sister and non-sister aster pairs (tubulin staining in Figure 

4.2, C and D). A distinct zone of reduced microtubule density was evident for both types of 

aster-aster interaction. In most cases the zone of lower microtubule density at the boundary 

between the asters was more distinct for zones formed between sister asters (see tubulin 

panels in Figure 4.2, C and D). We used microtubule morphology to determine which aster pairs 

were sisters vs. non-sisters. A pair of opposed microtubule tufts with increased density 

compared to the rest of the aster, resembling a cytokinesis midzone in somatic cells, connected 

sister aster pairs at the position previously occupied by the spindle. An example of these tufts is 

seen connecting the upper left aster pair in Figure 4.2C. Using this criterion, we indicate sister 

pairs in Figure 4.2 using double headed blue arrows. Note that the midzone-like tuft of 

microtubules connecting sister asters was only present in a few focal planes in a confocal stack, 

and may not be evident in the image planes shown. Midzone-like microtubules tufts were no 

longer visible in eggs where cleavage had initiated, but in those eggs we could often infer which 

asters were sisters by the location of nuclei, which stained with AurkB at this stage, as in Figure 

4.2A. 

In eggs fertilized with 2-4 sperm we reproducibly observed CPC and Centralspindlin 

localizing to microtubule interaction zones formed between sister asters, but not to zones 

formed between non-sister asters (Figure 4.2, C and D). This observation was highly 

reproducible for eggs fertilized with 2-4 sperm; we observed no exceptions to this rule in more 

than 40 examples of polyspermic eggs. The difference was essentially binary; the CPC staining 

intensity was strongly elevated over the local background value in zones between sister asters, 

and was approximately the same as the local background in the zone between non-sister 

asters. We also investigated localization of another conserved cytokinesis midzone protein, 

Kif4A, in polyspermic eggs. This kinesin has been implicated in blocking growth of midzone 

microtubule plus ends, and also in targeting the CPC (Bieling et al., 2010; Hu et al., 2011; 
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Nguyen, Groen et al., 2014). We observed enrichment of Kif4A on microtubule bundles in the 

interaction plane between sister asters, but not between non-sister asters (Figure 4.3). Thus, 

Kif4A is recruited in a manner similar to CPC and Centralspindlin, implying that microtubule 

bundles between sister asters resemble somatic cell midzones in their biochemistry, while 

bundles between non-sister asters do not. 

 
Figure 4.3: Kif4A co-localizes with Aurora B kinase in sister zones. 

An example of a bispermic egg fixed at early cleavage (furrow is ingressing from above the plane 

of focus). Note that Kif4A co-localizes with AurkB and does not localize to interaction zones 

between non-sister asters. [Figure by Christine Field] 

Kinase activity of the AurkB subunit of the CPC is required for furrow induction in 

Xenopus (Nguyen, Groen et al., 2014), and both CPC and Centralspindlin are required for 

furrowing in many systems (Eggert et al., 2006; Glotzer, 2005). Thus, the difference in 

recruitment of CPC and Centralspindlin presumably explains why sister aster pairs induce 

furrows between them, and non-sister aster pairs do not (Figure 4.1). This observation 

immediately begs the question: what controls differential recruitment of cytokinesis signaling 

complexes to interaction zones formed between sister vs. non-sister aster pairs? 

We speculate that sister and non-sister zones are distinguished by three factors: 

1) sister asters initially have a spindle midzone between them while non-sister asters do not; 

2) sister asters have chromatins between them while non-sister asters do not; 
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3) sister asters start with their centers close to each other (pole-to-pole distance of the mitotic 

spindle, which is ~60 µm (Wühr et al., 2008)) while non-sister asters start with their centers 

far apart (~600 µm in Figure 4.2B). 

To test the effect these different factors have on CPC recruitment, we turned to a recently 

reported Xenopus egg extract cytokinesis system. This system reconstitutes both recruitment of 

CPC to microtubule bundles between asters and also down-stream cytokinesis signaling events 

when placed on artificial lipid bilayers (Nguyen, Groen et al., 2014). Since we are not yet able to 

create midzones from mitotic spindles in our extract system, we could not test the contribution 

from the midzone (1). Therefore, we only focused on the proximity of chromatin (2) and the 

starting distance between aster centers (3). 

Proximity to chromatin promotes CPC recruitment in egg extracts5 

Multiple experiments have suggested that chromatin can provide a spatial bias to CPC 

recruitment to microtubules (Canman et al., 2003; Fuller et al., 2008; Hu et al., 2008). To test if 

proximity to chromatin influences CPC recruitment in Xenopus eggs, we modified the extract 

system by using permeabilized Xenopus sperm with attached centrosomes to nucleate asters. 

As isolated sperm asters grew, we noted they reproducibly became polarized with longer, more 

bushy microtubules on the side furthest from the chromatin, and shorter, more bundled 

microtubules on the side closest to chromatin (Figure 4.4A). The CPC was recruited 

preferentially to the aster periphery on the chromatin side, where microtubules were shorter and 

more bundled (Figure 4.4A). Both the length and angle of the CPC-positive arc increased as 

asters expanded, suggesting lateral spreading of the CPC along the aster circumference. Asters 

grew radially on both CPC-positive and negative sides, though more slowly on the CPC-positive 

side.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Partially reproduced from the manuscript. Here I describe experiments that I performed, which 
were later repeated with modifications by Drs. Christine Field and Timothy Mitchison for 
statistics reported in the manuscript.	  
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Figure 4.4: Chromatin spatially biases CPC recruitment in monopolar sperm asters in 

Xenopus egg extract, which requires Aurora B kinase activity. Microtubule asters were 

assembled by adding permeabilized sperm nuclei with attached centrosome to calcium activated 

egg extract. Microtubules (MTs, Alexa488-tubulin, green) and CPC (probed with Alexa647-anti-

AurkB antibody, red). Note that the AurkB antibody also stains chromatin. Widefield time-lapse 

image sequences were collected in parallel from the same extract preparation. The last panel of 

each row is a 3x magnification of the boxed region. (A) Control sperm asters. Note polarized 

microtubule distribution and formation of an arc of CPC-positive bundles on the periphery of 

each isolated aster on the same side as the chromatin. (B) Control aster nucleated from 

centrosome without chromatin attached (white box). Note lower microtubule density than in 

sperm asters. (C) Sperm asters with AurkB inhibition (100 µM ZM447439). Note loss of both 

polarization and CPC localization to aster periphery in both B and C. Scale bars, 100 µm.  
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Figure 4.4 (Continued) 
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Aster polarization required chromatin and AurkB activity6 

Our sperm preparations contained free centrosomes (i.e. not associated with chromatin). 

These nucleated asters that were radially symmetric and did not recruit CPC to their periphery 

unless they interacted with a neighboring aster (white arrows in Figure 4.4B). Similar 

observations were made using Aurora A kinase (AurkA)-based artificial centrosome beads (Tsai 

and Zheng, 2005) to nucleate asters, which were radially symmetric and did not recruit CPC to 

their periphery unless they interacted with a nearby aster (Figures 4.5 and 4.6) and (Ishihara et 

al., 2014; Nguyen, Groen et al., 2014). Thus, chromatin is required for polarized CPC 

recruitment to asters in the extract system. 

Addition of the AurkB inhibitor ZM447439 blocked CPC recruitment to the sperm aster 

periphery in extract, and also blocked aster polarization (Figure 4.4C). This is consistent with 

previous reports that AurkB activity is required for CPC recruitment to microtubule asters in Hela 

cells and egg extract (Hu et al., 2008; Nguyen, Groen et al., 2014). Collectively, our data 

suggest that chromatin locally activates Aurora B kinase activity leading to its localization to the 

periphery of asters proximal to chromatin. 

Starting distance between asters influences CPC recruitment7 

To investigate the effect of initial distance between aster nucleating centers independent 

of the effect of chromatin, we used beads coated with an activating antibody to AurkA (Tsai and 

Zheng, 2005). Large asters grew out from the beads, and where they met, CPC-positive AAIZs 

formed (Nguyen, Groen et al., 2014). Here, we analyzed many fields at low magnification and 

noted that only a subset of aster-aster interactions recruited CPC (Figure 4.5A). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Reproduced from the manuscript with modifications. Here I describe experiments that I 
performed. 
	  
7	  Reproduced from the manuscript. I conducted these experiments and analyses.	  
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Figure 4.5: Initial distance between nucleating sites influences CPC recruitment. 

Asters were assembled in interphase egg extracts containing fluorescent probes for tubulin 

(Alexa488-tubulin) and the CPC (Alexa647-labeled anti-AurkB), and beads coated with anti-

AurkA as artificial centrosomes. Bead pairs were identified based on whether their asters 

interacted at the end of the movie. The distance between the bead pairs was measured at the start 

of the movie, and whether or not a CPC-positive zone formed between beads was scored upon 

initial aster-aster contact. (A) Example images from a widefield time-lapse sequence. Arrowheads 

indicate typical bead pairs. Yellow and blue show examples where AurkB-positive zones did not 

form between beads, magenta shows examples where AurkB-positive zones did form. Note that 

the yellow arrowheads are close together (n = 2), blue arrowheads further apart (n = 7), and 

magenta arrowheads are separated by an intermediate distance (n = 15). (B). Histogram of initial 

bead separations plotted separately for bead pairs where an AurkB-positive zone did (blue bars; n 

= 39), or did not (red bars; n = 30), form upon aster-aster contact. Initial distances were pooled 

for multiple fields imaged in parallel in two independent experiments (n = 6 fields total). Note the 

initial separation distance was uni-modal for bead pairs where a CPC-positive zone did form. The 

distribution was much more spread out, and possibly bimodal, for bead pairs where a CPC-

positive zone did not form.  
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Figure 4.5 (Continued) 
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By analyzing pairwise interactions between beads we determined that the initial distance 

between beads correlated with whether they did, or did not, generate a CPC-positive zone 

between them. Bead pairs that started very close (yellow arrowheads in Figure 4.5A) or very far 

apart (blue arrowheads) usually failed to induce a CPC-positive zone between them upon aster-

aster contact. Zones that were initially CPC-negative but then recruited CPC via a lateral 

spreading mechanism from neighboring CPC-zones were scored as CPC-negative. 

Using this strategy, we counted 15/24 CPC-positive zones and 9/24 CPC-negative zones in a 

representative experiment shown in Figure 4.5A. Figure 4.5B shows a histogram where image 

sequences were collected from multiple positions using an automated stage. The X-axis is the 

initial bead-to-bead distance, and separate histograms are plotted for bead pairs that did, or did 

not, recruit CPC to a zone between them by the end of the movie. Note that CPC recruitment 

tended to fail at very short, and very long, initial distances. Initial separation distance is 

obligatorily coupled to the time when asters meet in this experiment. Thus, we cannot 

distinguish whether the preference for an intermediate initial distance is due to an optimal 

distance or an optimal time after initiating the reaction. 

Forced activation of the CPC and microtubule stabilization increases CPC recruitment8 

The extract experiments above showed that both proximity to chromatin and anti-parallel 

overlaps formed at some optimal initial distance between nucleating centers could trigger 

recruitment of the CPC to microtubule bundles. Once recruited, the CPC-positive zone was 

stable, and often spread laterally—either along the circumference of a sperm aster or an AAIZ. 

CPC recruitment to both the periphery of sperm asters (Figure 4.4) and AAIZs (Nguyen, Groen 

et al., 2014) required Aurrora B kinase activity. Both the binary nature of CPC recruitment to 

sister vs. non-sister zone and the lateral spreading phenomenon suggest that some positive 

feedback loop regulates CPC recruitment. In Xenopus extracts, the CPC can be activated by 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Modified from the manuscript. Experiments performed by Dr. Aaron Groen.	  
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binding to microtubules (Tseng et al., 2010). Thus we proceeded to test if there was a 

relationship between microtubule stabilization and CPC activation and recruitment (Figure 4.6). 

To test for a causal relationship between CPC activation and CPC recruitment to AAIZs, 

we made an activating antibody (IgG) to INCENP, copying a design of Funabiki and colleagues 

that was shown to activate Aurora B kinase activity by cross-linking the CPC (Kelly et al., 2007). 

To test if increasing microtubule stability (and density) promoted CPC recruitment to AAIZs, we 

used an inhibitory IgG to the catastrophe factor MCAK (Kif2C), which is a potent microtubule 

destabilizing factor in frog eggs (Walczak et al., 1996). To nucleate and stabilize microtubules 

by a different mechanism, we used used taxol at a low concentration (0.5 µM). 

By eye, formation of CPC-positive AAIZs was enhanced by activating the CPC or 

stabilizing microtubules, as evidenced by more CPC-positive zones per field, and in some cases 

earlier formation of those zones (Figure 4.6, A and B). In some sequences, the CPC-positive 

state appeared to spread laterally from the initial point of microtubule interaction, suggesting the 

possibility of positive feedback regulation. To quantify CPC recruitment we made movies of 

multiple fields at low magnification, and quantified the total length of CPC-positive zones per 

field divided by the number of nucleating beads in that field. Normalization to bead density 

corrects for greater potential zone length in fields containing more beads. These data confirmed 

that forced CPC activation, or microtubule stabilization by two means, stimulated formation of 

CPC-positive interaction zones between asters (Figure 4.6C). 

We confirmed the relevance of these findings in intact eggs by microinjecting these 

agents (activating anti-INCENP, inhibitory anti-MCAK, and taxol). In all cases, both ectopic CPC 

recruitment to microtubule arrays and ectopic furrowing were observed (not shown). Thus, CPC 

recruitment to aster microtubules is regulated in a similar manner in both intact eggs and egg 

extracts. In both cases, CPC recruitment is stimulated by both CPC activation and microtubule 

stabilization. 
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Figure 4.6: Forced activation of the CPC and microtubule stabilization promotes CPC 

recruitment. 

Interphase egg extracts containing fluorescent probes for tubulin and the CPC (directly labeled 

anti-AurkB) and AurkA-based artificial centrosome beads. (A) Representative images from time-

lapse sequences collected in parallel from the same extract preparation. Note more CPC-positive 

zones were formed between nucleating sites in extracts treated with activating IgG to INCENP, 

taxol and inhibitory IgG to MCAK than in control. Once formed, CPC-positive zones were stable 

for the duration of experiments under all conditions except MCAK inhibition, where they formed 

early relative to control, but then decayed. (B) Higher magnification image sequences of the 

regions shown by red boxes in A. Regions were chosen to highlight the establishment and growth 

of CPC-positive zones between nucleating sites. Note the zone from control and taxol treated 

extracts grows laterally after it initiates. CPC-positive zones formed earlier when the CPC was 

activated or microtubules were stabilized. (C) Quantification of CPC-positive zone formation 

from multiple image fields. At each time point the length of CPC-positive zones in a field was 

measured, and divided by the number of nucleating beads in the field. Note that CPC stimulation 

(anti-INCENP), taxol and MCAK inhibition all stimulated the rate and extent of CPC-positive 

zone formation. The last time point was omitted from the MCAK inhibition experiment since 

CPC-positive zones were unstable under this condition. [Figure by Aaron Groen] 
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Forced recruitment of CPC to zones between non-sister asters9 

Using the egg extract system, we identified the following factors in CPC recruitment (and 

hence cleavage plane specification potentially): (1) proximity of chromatin, (2) initial distance 

between aster nucleating centers, (3) CPC activation, and (4) microtubule stabilization. The 

ultimate test for the relevance of these factors in intact eggs is whether we can force recruitment 

of CPC to interaction zones formed between non-sister asters, which are normally CPC-

negative (Figure 4.2, C and D), by varying these factors. 

Highly polyspermic eggs provide a natural experiment where all asters start close 

together, and close to chromatin and/or spindle midzones, due to the general crowding of the 

egg. In these cases we observed CPC-positive interaction zones between asters that were 

clearly non-sisters (yellow arrows in Figure 4.7A). This is consistent with the fact that one or all 

of the conditions above explain why non-sister aster pairs recruited CPC between them in highly 

polyspermic eggs, although they did not in eggs containing 2-4 sperm. 

We next asked if forced activation of CPC could force CPC recruitment to non-sister 

zones in eggs containing 2-4 sperm. We injected the activating anti-INCENP into polyspermic 

eggs, and fixed them before 1st cleavage. We observed CPC recruitment to zones formed 

between sister- and non-sister aster pairs with similar intensity (Figure 4.7, B and C). An image 

of un-injected bispermic embryo fixed at a similar stage is included for comparison (Figure 

4.7D). Thus, artificial activation of the CPC forces its recruitment to interaction zones between 

non-sister asters, which are normally CPC negative.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9	  Modified from the manuscript. Experiments performed by Dr. Christine Field and Dr. Aaron 
Groen.	  
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Figure 4.7: High sperm density and forced CPC activation can recruit the CPC to 

interaction zones between non-sister asters in polyspermic Xenopus eggs. 

(A) Highly polyspermic egg fixed early in cleavage. The region presented at higher magnification 

shows a single aster with CPC-positive zones at the junction with several neighboring asters 

(yellow arrows). None of these are zones with its sister aster, which is in a different Z plane. 

(B and C) An activating anti-INCENP IgG was injected into polyspermic eggs 60-70 min post 

fertilization, after 1st mitosis. (B) Bispermic egg fixed at 90 min post fertilization. Note 

recruitment of CPC at similar levels to the interaction zones between sister and non-sister asters. 

Sister asters are indicated by blue double-headed arrows. CPC recruitment between non-sister 

asters is highlighted by yellow arrowheads. Note: Aster morphology has been slightly distorted 

by the injection. (C) Bispermic egg fixed 98 min post-fertilization. CPC is again recruited to 

interaction zones between non-sister asters. Same labeling convention as in A. 

(C) Uninjected bispermic egg fixed at the same stage as B shown for comparison. CPC is not 

recruited between non-sister asters. [Figure by Christine Field]  
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Figure 4.7 (Continued) 
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Discussion10 

Figure 4.8 summarizes our results along with a mechanistic interpretation. We illustrate 

the arrangement of asters in a bi-spermic egg midway between 1st anaphase and cleavage, as 

per Figure 4.1. It has long been known in frog eggs that sister aster pairs, which are identified 

by the chromatin and spindle midzone position, induce furrows between them when they reach 

the cortex, while non-sister aster pairs do not (Brachet, 1910; Herlant, 1911). We showed that 

this is because the cytokinesis signaling complexes CPC and Centralspindlin are recruited to 

the interaction zones that form between sister asters, and not to the zones between non-sisters 

(Figure 4.2). We then explored the factors that determine this difference. Using a combination of 

egg extract and whole egg experiments, we identified four positive influences on CPC 

recruitment: proximity to chromatin (Figure 4.4), optimal starting distance between asters 

(Figure 4.5), microtubule stabilization (Figure 4.6), and forced CPC activation (Figure 4.6). 

In Figure 4.8 we propose a conceptual separation between initial conditions that 

positively influence CPC recruitment to an aster-aster interaction zone (proximity to DNA and 

starting distance) and a core feedback loop, based on microtubule stabilization, CPC 

recruitment and activation, that maintains the CPC-positive state once it has initiated, and 

promotes its lateral growth. As cited in the Introduction, positive feedback in CPC recruitment 

has been proposed before, and multiple mechanisms may be involved, including spatial 

gradients of kinase activity, kinesin-mediated transport, microtubule bundling and microtubule 

stabilization. Here, we showed that forced activation of the CPC stimulated assembly of ectopic 

CPC-positive microtubule arrays (anti-INCENP injection in egg; not shown) and that forced 

microtubule stabilization promoted CPC recruitment (Figure 4.6), consistent with a feedback 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	  Reproduced from manuscript with minor modifications. 



	  
107	  

loop. Non-sister aster pairs, which never meet the initial conditions, never become CPC-positive 

at their shared boundary, do not initiate the feedback loop, and therefore do not induce furrows. 

 
Figure 4.8: Model illustrating results and hypothetical underlying mechanisms. 

The image illustrates the situation in a bispermic egg between 1st anaphase and 1st cleavage, 

similar to the cartoon in Figure 4.1 and the experimental examples in Figures 4.2C and 4.7D. 

Color-coding and orientation of sister and non-sister aster pairs are as Figure 4.1, red boxes 

indicate CPC and Centralspindlin complexes. The text boxes linked by arrows are factors we 

identified that control CPC recruitment and activation. We hypothesize that locally acting signals 

from chromatin (Figure 4.4) and the starting distance between asters (Figure 4.5) together provide 

an initial bias that promotes CPC recruitment between sister asters, and are lacking between non-

sister asters. We further hypothesize that CPC activation/recruitment (Figures 4.6 and 4.7) and 

microtubule bundling/stabilization (Figure 4.6) together constitute a positive feedback loop that 

promotes CPC retention on microtubule bundles, and lateral spreading of CPC-positive bundles. 

These positive feedbacks allow a CPC-positive interaction zone to grow radially from the site 

previously occupied by the metaphase plate all the way to the cortex while retaining its CPC-

positive state. [Figure by Timothy Mitchison] 

By separating initial conditions from the feedback loop in Figure 4.8 we seek to explain 

how a zone between two sister asters remains CPC-positive, even when its cortex proximal 
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regions are hundreds of µm from the nearest chromatin. We propose that the positive feedback 

loop indicated in Figure 4.8 gives rise to a memory effect so that a transient influence from 

chromatin and starting distance (and possibly spindle midzone) can give rise to a long-lived, 

CPC-positive disc that grows out to reach the cortex. Alternatively, continued transport of CPC 

from chromatin to the aster periphery could be required to maintain the CPC-positive zone. 

Given the huge distances involved, and the dynamics of CPC-positive zone in egg extract 

(Figures 4.4 and 4.6), we consider a memory effect more likely. Our model does not precisely 

account for how the CPC-positive zone spreads outwards as the asters grow. Spreading might 

involve spatial gradients of AurkB kinase activity and/or bending fluctuations of microtubules. By 

initiating at the site previously occupied by the metaphase plate, and spreading outwards as a 

plane orthogonal to aster microtubules, the CPC-positive zone transmits information on spindle 

position and orientation to the cortex to correctly position the furrow. Understanding how this 

spreading occurs is a key question for future studies. 

Why are Rappaport furrows induced between non-sister aster pairs in echinoderm eggs 

but not frog eggs? The different spatial scale is likely to be one factor; egg diameter is ~1200µm 

in frog compared to ~100µm in typical echinoderms. The difference between sister- and non-

sister aster pairs appeared to break down in highly polyspermic frog eggs (Figure 4.7A), where 

the spatial scale becomes comparable to echinoderms. Starting distance between asters 

appears to be important in both systems. Rappaport noted that asters which started closer 

together were more likely to induce furrows (Rappaport, 1969), and we found an optimal range 

of starting distances in egg extract (Figure 4.4). CPC localization data shows both similarities 

and differences between systems. In sea urchin eggs Shuster and colleagues observed 

recruitment of the CPC to microtubule bundles between sister asters, but not between non-

sisters (Argiros et al., 2012), which is similar to our data (Figure 4.2). They also proposed 

proximity to chromatin as a positive influence on CPC recruitment. However, the CPC-positive 

disc did not obviously extend all the way to the cortex in sea urchin eggs, as it does in frog. 
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Centralspindlin-positive bundles did extend to the cortex in sea urchin, suggesting a more 

central role for that complex in furrow induction in that system. Based on comparisons between 

frog eggs, echinoderm eggs, and mammalian tissue culture cells, we speculate that the 

molecular mechanisms proposed in Figure 4.8 are conserved, but the ability of the positive 

feedback loop to retain a memory of initial conditions provided by positional cues, and to 

propagate the CPC-positive state hundreds of microns from chromatin to the cortex, are special 

adaptations that allow spindle to cortex communication in huge egg cells. 

Materials and methods11 

Whole egg fertilization, injection and staining for imaging 

Xenopus eggs were collected, fertilized, de-jellied and injected using standard methods 

(Sive et al., 2000). See also http://wiki.xenbase.org/xenwiki/index.php/Protocols. Polyspermic 

fertilization was induced with sodium iodide using a modification of a reported procedure 

(Render and Elinson, 1986). Eggs were extruded into MMR (100mM NaCl, 2mM KCl, 1mM 

MgCl2, 2mM CaCl2, 0.1mM EDTA and 10mM Hepes-KOH pH 7.8) quickly rinsed with a small 

volume of 20mM NaI in 0.1x MMR, then partially drained. 1/3rd of a testis per 5 cm dish of eggs, 

was homogenized in 0.75 ml of 1x MMR, and added to the eggs. After 90 sec to allow sperm 

attachment, the dish was flooded with 20mM NaI in 0.1x MMR. After ~20min eggs were de-

jellied with 2% cysteine and transferred to 0.1x MMR for imaging and fixation. 

For immunofluorescence de-jellied eggs in 0.1x MMR were fixed by transferring to 90% 

methanol, 50mM EGTA. After 24 hours of gentle agitation at RT eggs were transferred to 100% 

methanol and moved to 4°C where they can be stored for months. To probe with antibodies 

eggs were re-hydrated through a series of methanol-TBS mixtures (75%, 50%, 25% methanol, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11	  Reproduced from the manuscipt. 
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15 min each with gentle agitation) and finally transferred to TBS (50mM Tris pH 7.5, 150 mM 

NaCl). They were then hemisected and bleached overnight in a hydrogen peroxide/formamide 

mixture. Directly labeled antibodies were used at approximately the following concentrations: 

Alexa488-tubulin (1-2µg/mL), Alexa647-AurB kinase (0.5µg/mL), Alexa568-Kif23 (1-2µg/mL). 

See methods section in (Nguyen, Groen et al., 2014) for full protocol and more information on 

antibodies. 

Light Microscopy for fixed embryos 

Fixed Xenopus embryos were imaged with a laser scanning confocal microscopes at two 

locations. The Nikon Imaging Center at Harvard Medical School. A 10X dry and a 20X multi-

immersion objective (Nikon) was used on a Nikon Ti-E inverted microscope with a Nikon A1R 

point scanning confocal head, driven by NIS-Elements image acquisition software. Also at MBL 

using a Zeiss 780 LSM (laser scanning confocal) on an inverted Observer Z1 microscope with a 

motorized stage driven by ZEN software, 10x dry objective. 

Extract experiments 

Actin-intact CSF-arrested Xenopus extract from unfertilized eggs was prepared as 

described, kept on ice, and used within 8hrs (Field et al., 2014). Fluorescence probes were 

prepared and used as described in (Nguyen, Groen et al., 2014). General methods for imaging 

microtubules in the egg extract system have been described (Desai et al., 1999; Maresca and 

Heald, 2006). 

To initiate microtuble aster growth, extract containing fluorescent probes was converted 

to interphase by addition of CaCl2 to 0.4mM, incubated at 20°C for 3 minutes, and transferred to 

ice. Calcium addition mimics fertilization and releases CSF arrest (Field et al., 2014). Two 

methods were used to nucleate microtubule asters: either AurkA coated magnetic beads 

(Nguyen, Groen et al., 2014; Tsai and Zheng, 2005) or permeablized Xenopus sperm (Murray, 
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1991) were added, and the reaction was spread between two coverslips that had been 

passivated by coating with polylysine-PEG (PLL(20)-g{3.5}-PEG(2): SuSOS Chemicals). We 

used a simplified method for this coating. Coverslips were dipped in 70% ethanol, flamed, 

cooled and placed onto a droplet of 100 µg/ml polylysine-PEG in 10 mM Hepes, pH 7.4 on 

Parafilm for 15-30 min. They were then washed twice with water for 5 min each and dried with a 

jet of nitrogen and used the same day. 

Reactions were imaged by widefield fluorescence at 20°C, using a 10x or 20x Plan Apo 

1.4 NA objective lens (Nikon) on an upright Nikon Eclipse 90i microscope equipped with a Prior 

Lumen 200 metal arc lamp, a Prior ProScan III motorized XY stage, a Hamamatsu ORCA-ER 

cooled CCD camera, and driven by Metamorph image acquisition software (Molecular Devices, 

CA). 

Starting distance experiments 

Interphase asters were nucleated using AurkA beads in extract containing Alexa488-

labeled tubulin and Alexa647-labeled anti-AurkB IgG. The extract was assembled between 

PEG-coated coverslips. Two-color time-lapse sequences were taken of multiple image fields in 

parallel at 1.5 min intervals, starting from ~7-9 min of assembly reaction. Bead pairs were 

identified from the last frame of the tubulin movie (at ~50-55 min), based on whether their asters 

interacted. For each pair, the initial distance between the beads was measured from the first 

frame of the AurkB movie (at 9 min).The time of initial contact between each aster within a pair 

was estimated from the tubulin movie, and an interaction was scored based on the AurkB movie 

using the following criteria: 1) Was AurkB recruited to the zone within the next 4 frames (i.e. 6 

minutes)? 2) Was AurkB recruited without lateral spreading from a neighboring zone? Zones 

satisfying both criteria were scored as AurkB -positive. Zones not satisfying criterion 1 were 

scored as AurkB -negative, even though they might acquire AurkB via lateral spreading at a 

later time point. Zones satisfying criterion 1 but not criterion 2 (i.e. they acquired AurkB via 
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lateral spreading from a neighboring zone) were scored as ambiguous and omitted from further 

analysis. 
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Chapter Five 

Conclusions and Future Directions 
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This dissertation sought to understand the spatial organizing principles and molecular 

mechanisms that allow unusually large embryonic cells to precisely position their cleavage 

furrow to their midplane. Eggs from the frog Xenopus laevis served as the model system, as 

they are among the largest fully cleaving cells (Table 1.1). In these large cells, the mitotic 

spindle measures 1/20th of the cell diameter, which raises the question: how does such a small 

spindle communicate its position to the distant cell cortex to position the cleavage furrow exactly 

to the plane that would bisect the spindle? 

Previous graduate work in the Mitchison lab by Martin Wühr had established the 

importance of interphase aster, an unusually large radial array of microtubules growing from a 

centrosome, in spatially organizing the egg cytoplasm and determining the cleavage plane 

(Mitchison et al., 2012; Wühr et al., 2008; 2009; 2010). In particular, it was proposed that asters 

growing from the spindle poles mark the putative cleavage plane where they meet each other 

and form a specialized microtubule structure, which we have termed the ‘aster-aster interaction 

zone’ (AAIZ). The work described in this dissertation followed up on these phenomenological 

observations to elucidate the underlying molecular mechanisms. 

Whole frog eggs are difficult to study at a molecular level. Their interior cannot be 

imaged live using fluorescence microscopy, because they are filled with light scatter yolk 

particles and pigment granules. It is difficult to perform molecular perturbation on them: 

microinjected small molecules, especially if they are hydrophobic like taxol, cannot diffuse too 

far in the cytoplasm before being captured by yolk or lipid particles; morpholino knockdown in 

immature occytes is possible, but extremely technically challenging (Wylie and Heasman, 

1997). In order to circumvent these difficulties, my colleagues and I developed a cell-free 

biochemical system using undiluted cytoplasmic extracts from unfertilized eggs that 

reconstituted cytokinesis signaling events on top of a coverslip (Chapter Two). Using this 

system, we were able to address several unanswered mechanistic questions about cleavage 

furrow specification in the large frog eggs (see Abstract for a summary of findings by chapter). 
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Aster-aster interaction zone: the primary positional cue for cytokinesis in large cells 

As expected from its hypothesized role in cleavage furrow specification, we were able to 

localize all the key spindle midzone proteins against which we had antibodies to the AAIZ in 

dividing eggs: the Chromosome Passenger Complex (CPC; Figures 2.2, 4.2, 4.3, and 4.7), the 

Centralspindlin complex (Figures 2.2 and 4.2), Kif4A (Figures 3.2 and 4.3), and an embryonic 

paralog of Prc1 (Prc1E; Figure 3.2). All these localizations were observed on AAIZs assembled 

in the extract system between asters nucleated from Aurora A kinase-based artificial 

centrosome beads (Figures 2.2, 2.6, and 3.1). This result suggested that asters alone have the 

potential to specify a cleavage plane in the absence of either the spindle midzone or 

chromatins. The cell-free assay also allowed us to localize other proteins for which we only had 

purified fluorescent probes but not antibodies. 

To confirm that AAIZs assembled in extract were able to signal to the cortex to initiate 

the assembly of a cleavage furrow, we layered the extract on top of a supported lipid bilayer 

with a composition that mimicked the inner leaflet of the plasma membrane (Figure 2.7). We 

found that CPC-positive AAIZs were able to locally activate RhoA, to induce F-actin assembly, 

and to recruit other cortical cleavage furrow proteins, such as anillin and septin (Figure 2.8). 

Interestingly, neither AAIZ assembly nor RhoA activation was significantly affected when 

the Kif23 subunit of the Centralspindlin complex was depleted (Figure 2.7). This suggests that in 

our system, the microtubule-bound CPC is the positive signal that is delivered to the cell cortex 

to induce a cleavage furrow and that Centralspindlin (or at least Kif23) is dispensable. Future 

studies need to investigate whether RacGAP1 was co-depleted with Kif23 in our system, and if 

not, whether it has a role in localized RhoA activation. A recent study from the Glotzer lab 

proposes that Aurora B kinase (a CPC subunit) promotes cytokinesis by inducing 

oligomerization of Centralspindlin through phosphorylating Kif23, and that furrow is induced in 

C. elegans embryos where these oligomers associate with the plasma membrane (Basant et al., 
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2015). Unfortunately, the findings in our system are not consistent with this model at all—which 

could be due to differences in animal cell systems. 

Preliminary experiments delivering beads coated with antibodies against either Aurora B 

kinase or INCENP (CPC subunits) in extract to the lipid bilayer did not show local RhoA 

activation (unpublished data). Therefore, we are still unable to distinguish whether Aurora B 

activity at the cortex or the CPC-positive microtubule structure is required for furrow induction.  

Based on these findings, some might argue that the AAIZ is just the spindle midzone in 

large cells and there is nothing new or special about it. However, I believe it is a structure 

distinct from both the midzone and the astral microtubules that reach the equatorial plane 

depicted in textbooks (Figure 1.1, the ‘Animals’ panel on the left, and Figure 1.2). Unlike the 

astral microtubules, the AAIZ contains antiparallel microtubule bundles. And unlike the midzone, 

the AAIZ does not require a pre-existing spindle for its assembly, and microtubule density is 

lower in the AAIZ than in the interior of the participating asters. Therefore, I think the AAIZ 

should be considered as a distinct microtubule structure and a 4th positive positional cue (next to 

the chromatin, midzone, and astral microtubules) that operates in larger cells. 

Chromatin and starting distance between asters: secondary positional cues 

My initial investigations into the molecular mechanisms establishing AAIZs using 

centrosomes attached to permeabilized sperm as nucleating centers were confounded by the 

fact that not all AAIZs were equivalent. To remove the Aurora B-dependent aster polarization 

effect associated with the sperm chromatin, I conducted experiments with either purified 

centrosomes or the Aurora A kinase beads. The beads were easier to work with because they 

were bigger and had autofluorescence, therefore it was easier to locate the asters early in the 

assembly reaction. When Aurora B kinase was inhibited, most AAIZs between beads were 

disrupted: microtubules interpenetrated and CPC was not localized (Figure 2.4). However, some 

AAIZs were still observed in terms of microtubule morphology: both reduced microtubule density 
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and lack interpenetration (unpublished data). The AAIZs formed under Aurora B inhibition did 

not localize the CPC, however, which reminded me of the non-sister zones in polyspermic eggs. 

In fact, the common property between the AAIZs formed under Aurora B inhibition was that they 

formed between asters with large initial inter-center distance. 

These observations prompted us to test the effect of chromatin on CPC recruitment to 

isolated asters (Figure 4.4) and the effect of starting distance between aster centers on CPC 

recruitment to AAIZs (Figure 4.5). We concluded that proximity of the chromatin biased CPC 

recruitment onto microtubules even when they were not participating in an aster-aster 

interaction, and that in the absence of the chromatin, CPC was recruited to AAIZs between 

asters with an optimal starting distance. Since sister asters in polyspermic eggs both have 

chromatins between them and start close to each other (about the length of the spindle, i.e. 60 

µm, which falls within the optimal range found in extract [~45-110 µm]) (Figure 4.2), we 

proposed that these two initial conditions allow them to recruit CPC to the interaction zone 

(Figure 4.8). Non-sister asters, however, do not have chromatin between them and start much 

father apart (~600 µm); therefore, according to our model, they do not recruit the CPC. 

Block to microtubule interpenetration at AAIZs requires antiparallel overlaps and 

microtubule stabilization 

In Chapter Three, I asked how neighboring asters recognized each other and how they 

were prevented from interpenetrating. In order to simplify analysis, I only reported AAIZs that 

were assembled between asters with a starting distance that fell under the optimal distance 

range. However, when I depleted either Prc1E or Kif4A, I observed only interpenetrating AAIZs 

regardless of starting distance (Figure 3.4 and unpublished data). As discussed above, when I 

inhibited Aurora B kinase, AAIZs formed between asters that started from farther apart did not 

interpenetrate, albeit they did not localize the CPC. They did localize Prc1E and Kif4A, however, 

although the localization was more disperse than what is seen in control AAIZs that also localize 
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the CPC (unpublished data). I also found that the somatic paralog of Prc1 could rescue normal 

AAIZ formation when Prc1E was depleted. From these data, I conclude that block to 

interpenetration at AAIZs requires antiparallel overlaps mediated by either form of Prc1, and the 

block to interpenetration is not a phenomenon specific to the embryonic Prc1E protein. 

Careful analysis of microtubule dynamics inside and outside an AAIZ revealed that plus 

ends tended to slow down before they stopped growing within AAIZs. This behavior was 

dependent on Prc1 and Kif4A, and Aurora B kinase activity enhanced it (Figure 3.3). This 

provides evidence for microtubule stabilization at AAIZs, probably mediated by Kif4A activity 

(Bieling et al., 2010; Bringmann et al., 2004; Nunes Bastos et al., 2013). Preliminary analyses of 

microtubule dynamics in AAIZs assembled in extract that resemble non-sister zones also reveal 

reduced growth rate and increased rate of growth termination within these CPC-negative, but 

Prc1 and Kif4A positive, zones (unpublished data). From these results, I conclude that block to 

interpenetration also requires microtubule stabilization. To obtain more conclusive evidence for 

microtubule stabilization, photobleaching or photoactivation experiments need to be conducted 

in the future. 

Why extract AAIZs resembling non-sister zones in embryos do not require Aurora B 

kinase activity for blocking interpenetration is an interesting question. It is possible that the 

increased initial distance between asters allows them to become very bushy and more 

disorganized at their peripheries, which in turn allows for formation of more Prc1E and Kif4A-

coated antiparallel overlaps. This zone of overlaps again acts like a microtubule sink, preventing 

asters from growing into each other. Controlling initial distance between aster nucleating centers 

by micropatterning combined with computation modeling would be useful tools to explore the 

distance-dependent microtubule dynamics at AAIZs. 
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Positive feedback between microtubule stabilization and CPC recruitment/activation 

We found that AAIZs that recruit CPC in extracts likely have stabilized microtubules, 

based on the observation that plus ends tend to slow down before they stop growing in AAIZs 

(Figure 3.3). This effect was more pronounced when Aurora B kinase was active, likely due to 

Aurora B regulation of Kif4A (Figure 3.4) (Nunes Bastos et al., 2013). We also found that 

treating extract with microtubule stabilizing agents led to increased CPC recruitment (Figure 

4.6). From these observations we propose that there is a positive feedback loop between 

microtubule stabilization and CPC recruitment (Figure 4.8). We speculate that this loop serves 

to maintain the CPC-positive status of an interaction zone once it satisfies the initial conditions 

(proximity to chromatin or spindle midzone, and/or optimal starting distance), which could 

explain the binary nature of CPC recruitment to sister vs. non-sister aster interaction zones 

(Figure 4.2). 

Another molecular evidence for the feedback loop is the finding that Kif4A transports the 

CPC towards microtubule plus ends within the antiparallel bundles at the AAIZ (Figure 2.6), and 

we already mentioned that Kif4A activity is enhanced by Aurora B phosphorylation (Nunes 

Bastos et al., 2013). An embryonic paralog of Kif20A (or Mklp2) is also involved in CPC 

localization, as expected from studies in somatic cells (Grüneberg et al., 2004; Kitagawa et al., 

2013). We believe it is responsible for either targeting the CPC to antiparallel overlaps or 

activating Aurora B within the complex in an allosteric manner, which then allows for CPC 

binding to microtubule via INCENP. 

The positive feedback is likely necessary for efficient transport of the CPC from its initial 

docking site at the spindle midzone and the nearly aster interaction zones all the way to the cell 

cortex. Future studies could address whether this transport is purely recruitment-based or 

whether there is a lateral transfer mechanism orthogonal to microtubules (Figure 1.3). 
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Radial order within large microtubule asters also requires the Prc1/Kif4A module 

While investigating the role of the Prc1/Kif4A midzone module on AAIZs, I also 

discovered that they are necessary to maintain uniform radial microtubule orientation. Figure 3.8 

describes the model for how antiparallel microtubule overlap control allows Prc1 and Kif4A to 

control microtubule orientation both within and between large asters. This role of Prc1 and Kif4A 

in maintaining radial order is likely a mechanism found in only large cells where microtubule 

asters expand via nucleation away from the centrosome (Ishihara et al., 2014), a process that 

would otherwise randomize microtubule orientation within an aster as it expands. 

Why are there embryonic paralogs of cytokinesis proteins? 

During our investigations of the molecular mechanism underlying AAIZ formation, we 

encountered several proteins that had a second paralog in Xenopus, which was only expressed 

during early embryonic development. Furthermore, phylogenetic analyses of these proteins 

revealed that the gene duplication was only present in species with large fully cleaving eggs 

(e.g. frogs and fish), but not in species with either small eggs or large eggs that do not cleave 

fully (unpublished data). Two of these proteins were discussed in this dissertation: Kif20A and 

Prc1. We are in the process of systematically finding all the proteins that satisfy the two criteria 

above. It would be an intellectually stimulating adventure to explore how these proteins have 

been evolved to adapt to the special challenges faced by very large cells. 
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Supplemental Materials for Chapter Two: 
Cell-Free Reconstitution of Cytokinesis Signaling 

 

 

Supplementary contents include Materials and Methods, Figures S2.1 to S2.12, Tables S2.1 to 

S2.2, Movies S2.1 to S2.10, and References.  



	  
126	  

Materials and Methods 

Antibodies 

Antibodies were raised in rabbits to GFP-fused X. laevis Aurora kinase A (full-length), 

Kif20A (C-terminal 359 amino acids), and Kif23 (C-terminal 309 amino acids), as well as GST-

fused Kif20AE (C-terminal 190 amino acids). Antisera were first depleted of GFP or GST 

antibodies, then antibodies were affinity purified using the respective fusion protein. For 

antibodies against Aurora kinase A, antisera were depleted against Aurora kinase B to ensure 

that the purified antibody was specific to Aurora kinase A and did not perturb kinase activity. 

DNA for fusion constructs was purchased (GenScript, NJ) and subcloned with Gibson cloning. 

Affinity purified C-terminal peptide (CTP) antibodies (rabbit) were produced against X. 

laevis Kif23 (C-EMRAGSNLGPGYEHHVVSKRRRP) and Kif20AE 

(C-KRTTSKSQEKPEEVSGTSRKRPLLSRR) (NeoBioLab, MA). 

Antibodies (rabbit) generated to MBP-fused C-terminal 316 amino acids of X. laevis 

Kif4A (or Xklp1; construct kindly provided by Isabelle Vernos [ICREA, Spain]) were affinity 

purified (depleted of MBP antibodies). Antibodies (rabbit) generated to GST fused to the N-

terminal 100 amino acids of X. laevis Aurora kinase B were kindly provided by Ryoma Ohi 

(Vanderbilt University, TN). See Table S2.1 for sequence information on the proteins studied in 

this paper. 

Antibodies against anillin (Straight et al., 2005) and septin 7 (Oegema et al., 2000) were 

from previous studies. Tubulin antibodies (Sigma #T6074) were purchased. 

Antibodies were labeled on column with Alexa-488, Alexa-568, or Alexa-647 dyes (Life 

Technologies, NY) as previously described (Groen et al., 2014). 
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Protein Expression Plasmid Constructs 

The following constructs were received as kind gifts: Lifeact-GFP construct (Riedl et al., 

2008) from David Burgess (Boston College, MA), human EB1-GFP construct from Kevin Slep 

(UNC Chapel Hill, NC), X. laevis Kif4A-GFP construct (aka Xklp1-GFP) in pFastBac1 

baculovirus expression vector (Bieling et al., 2010) from Thomas Surrey (London Research 

Institute, UK). 

 The Rho GTPase-binding domain (rGBD) of mouse Rhotekin (amino acids 7-82) was 

subcloned into pGEX-4T-1 bacterial expression vector with an N-terminal 6xHis-mCherry tag, 

replacing the GST tag between EcoN1/Not1 restriction sites, creating mCherry-rGBD. The 

Rhotekin fragment (rGBD) specifically binds to active, GTP-bound RhoA (Bement et al., 2005; 

Benink and Bement, 2005). Mouse Rhotekin cDNA was a gift from William Bement (University 

of Wisconsin–Madison, WI). 

The X. laevis DasraA cDNA (IRBHp990G0393D, Source Bioscience, UK) was subcloned 

into pGEX-4T-1 with an N-terminal 6xHis-eGFP tag, creating GFP-DasraA. 

The X. laevis PRC1embryonic (PRC1E) cDNA (codon optimized for E. coli and insect 

cell expression; GenScript, NJ) was subcloned into pET-28b bacterial expression vector with an 

N-terminal Strep-tag (WSHPQFEK) followed by an eGFP tag, creating GFP-PRC1E. This is an 

embryonic paralog of the PRC1 protein in Xenopus that we called ‘PRC1L’ in a previous 

publication (Mitchison et al., 2013). 

All subcloning was performed with Gibson cloning. See Table S2.1 for sequence 

information on the Xenopus proteins studied in this paper. 

Protein Expression and Purification 

EB1-GFP-His, His-mCherry-rGBD (Rho GTPase binding domain), His-GFP-DasraA 

were conventionally purified from E. coli (Rosetta2(DE3)pLysS). Purification of EB1-GFP-His 

was previously described (Petry et al., 2013). Briefly, expressing cells were lysed by sonication 
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in ice-cold lysis buffer A (50mM NaPi, pH 7.7, 500mM NaCl, 0.1mM MgCl2, 1% Triton X-100, 

1mM dithiothreitol [DTT], 1mM phenylmethylsulfonyl fluoride [PMSF]). Clarified lysates were 

batch-incubated for 1.5 hr at 4°C with HisPur Cobalt resin (~2 mL/L of culture; Thermo 

Scientific, MA). After elution in lysis buffer containing 300mM imidazole, proteins were gel 

filtered using a Superdex 75 10/300 GL column (GE Healthcare, MA) equilibrated with 10mM K-

HEPES, pH 7.7, 150mM KCl, 1mM DTT. Proteins were supplemented with 10% (w/v) sucrose 

and flash-frozen in liquid nitrogen for storage at −80°C. Coomassie-stained gels are shown for 

mCherry-rGBD and GFP-DasraA in Figure S2.12. 

Strep-GFP-PRC1E was expressed in E. coli (Rosetta2(DE3)pLysS) after induction with 

0.5mM IPTG for 3-4 hrs at 18°C. Expressing cells were lysed by sonication in ice-cold lysis 

buffer B (50mM NaPi, pH 7.7, 400mM NaCl, 3mM EDTA, 10mM β-mercaptoethanol, Halt 

Protease Inhibitor Cocktail [Thermo Scientific, MA], 1mg/mL lysozyme, 10µg/mL DNase). 

Clarified lysates were loaded onto a Strep-Tactin column (IBA GmbH, Germany). After protein 

binding, column was washed with buffer C (50mM NaPi, 400mM NaCl, 3mM EDTA, 50mM 

arginine, 50mM glutamate, pH 7.7), then with buffer D (10mM K-Hepes, pH 7.7, 500mM KCl). 

Protein was eluted with buffer D containing 2.5mM desthiobiotin (Sigma #D1411), 

supplemented with 1mM DTT and 20% (w/v) sucrose, and flash-frozen in liquid nitrogen for 

storage at −80°C. Coomassie-stained gels are shown for GFP-PRC1E in Figure S2.12. 

Kif4A-GFP-His was purified from Sf21 insect cells as previously described (Bieling et al., 

2010) with the following modification: after elution from the HisPur Cobalt column, the protein 

was gel filtered using a Superose 6 10/300 GL column (GE Healthcare, MA) equilibrated with 

10mM K-Hepes, pH 7.7, 500mM KCl, 1mM MgCl2, 0.2mM ATP, 1mM DTT. Protein was 

supplemented with 20% (w/v) sucrose, and flash-frozen in liquid nitrogen for storage at −80°C. 

Tubulin was purified from bovine brain and labeled with X-rhodamine, Alexa488, 

Alexa568, or Alexa647 dyes (Life Technologies, NY) as previously described (Groen et al., 

2014). Purified Lifeact-GFP was a kind gift from David Burgess (Boston College, MA). 
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Protein concentrations were determined by Bradford assay with BSA standards, and 

refer to dimers for tubulin and monomers for all the other proteins. See Table S2.1 for sequence 

information on the Xenopus proteins studied in this paper. 

Preparation of Xenopus Egg Cytoplasm with Intact Actin 

Metaphase arrested Xenopus egg extracts with intact actin were prepared as described 

(Field et al., 2014). Briefly, eggs were dejellyed and processed at 16°C, and immediately 

crushed at ~12,500xg for 15 min at 4°C. The cytoplasmic layer was isolated, supplemented with 

protease inhibitors (leupeptin, pepstatin chymostatin; Sigma) and 50mM sucrose, and 

immediately stored at 4°C. Egg quality varied from frog to frog, thus batches of eggs from 

different female frogs were processed separately and the corresponding extracts were never 

pooled. Extracts from each batch were assayed for actin contractility (Field et al., 2014) and 

AAIZ formation between glass coverslips (see below). Only extracts that exhibited strong actin 

contractility, assembled dense microtubule asters, and formed robust AAIZs, were selected for 

further experiments. 

Aster Assembly Assay Between Glass Coverslips (see Figures 2.1 and 2.2A) 

For each experiment, ~50µL of extract was supplemented with fluorescent probes 

(directly labeled tubulin, directly labeled antibodies, GFP-tagged proteins). Extract was treated 

with 0.4mM CaCl2 and incubated at 20°C for 2 min to mimic fertilization and induce metaphase-

to-interphase transition (referred to as activated extract). Activated extract was incubated on ice 

for 2 min to depolymerize microtubule and F-actin polymers. Then extract was supplemented 

with Aurora A antibody-coupled Protein A Dynabeads (Life Technologies, NY) which served as 

artificial centrosomes (Tsai and Zheng, 2005), and placed between two PEG-passivated glass 

coverslips (~10-15µm deep, or ~5µL extract for a 18mm X 18mm glass coverslip prep; see 

workflow in Figure 2.1). Coverslips were passivated with silane-PEG as described (Field et al., 
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2014). Aster assembly reactions were monitored with a widefield or spinning disc confocal 

microscope at 20°C. 

For TIRF imaging, extract was placed between a PEG-passivated and a kappa-casein 

coated coverslip. Kappa-casein (Sigma #C0406) coating minimized the adsorption of many 

microtubule-interacting proteins on the glass, while it still allowed microtubules to track along the 

coated surface (Field et al., 2014). 

For visualization, fluorescent probes were used at the following concentrations: 250nM 

Alexa488-, 568- or 647-tubulin, 40nM EB1-GFP, 10nM Kif4A-GFP, 20nM GFP-PRC1E, 20nM 

GFP-DasraA, and 0.1-1 µg/mL Alexa674-IgG against AurkB to visualize the CPC, Alexa568-IgG 

against a Kif23-CTP to visualize the Centralspindlin complex, Alexa568-IgG against a Ki20AE-

CTP to visualize Kif20AE. 

Aster Assembly Assay on Lipid Bilayer Coated Coverslips (see Figure 2.7A) 

Supported lipid bilayers (SLBs) were prepared in a reaction chamber consisting of a 

plastic ring glued on plasma-cleaned glass coverslips as previously described (Loose and 

Schwille, 2009; Loose et al., 2008) with modifications in lipid compositions (Lee et al., 2010). 

Small unilamellar vesicles (SUVs) were prepared by sonication from porcine brain PC, porcine 

brain PS, and porcine liver PI (Avanti Polar Lipids, AL) at the molar ratio of 0.6/0.3/0.1 and 5mM 

total lipid concentration in high salt extract buffer XB (10mM K-Hepes, pH 7.7, 300mM KCl, 

1mM MgCl2, 0.1mM CaCl2, 50mM sucrose). The SUV suspension was diluted to 1mM, added to 

the reaction chamber, and vesicle fusion was induced by adding 0.1mM CaCl2. After 30-60 min 

incubation at 42°C, lipid bilayers were extensively washed with extract buffer XB (10mM K-

Hepes, pH 7.7, 100mM KCl, 1mM MgCl2, 0.1mM CaCl2, 50mM sucrose), and stored at 4°C till 

experiment. 

Note that Xenopus egg extracts made on different days varied in their ability to promote 

actin polymerization at the cortical layer, and we found that adding porcine brain PI(4,5)P2 
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(Avanti Polar Lipids, AL) up to 1% of the total lipid mixture was sometimes necessary to observe 

actin enrichment at the AAIZs. We routinely prepared SLBs containing 0%, 0.1%, and 0.5% 

PI(4,5)P2 for each extract and assayed for cortical actin morphology (alignment along 

microtubule asters and enrichment at AAIZs) at the beginning of each experiment to determine 

which PI(4,5)P2 concentration to use for that particular extract. 

For each experiment, 60µL of extract was treated with 0.4mM CaCl2 and incubated at 

20°C for 10 min, then returned to ice for 2 min. Bilayers were washed 2 times with 20µL extract 

each, and finally 20µL extract containing fluorescent probes and AurkA beads was layered on 

top of the bilayer. Aster assembly reactions were monitored with an inverted TIRF or spinning 

disc confocal microscope at 20°C. 

For visualization, fluorescent probes were used at the following concentrations: 250nM 

Alexa488-, Alexa568-, or Alexa647-tubulin, 140nM mCherry-rGBD to visualize RhoA-GTP, 

140nM Lifeact-GFP to visualize F-actin, and 0.1-1µg/mL Alexa488- or Alexa647-IgG against 

AurkB to visualize the CPC, Alexa568-IgG against a Kif23-CTP to visualize Centralspindlin, 

Alexa568-IgG against Anillin to visualize Anillin, and Alexa647-IgG against septin 7 to visualize 

the septin complex. 

Immunodepletions, Protein Addback, and Drug Inhibitions 

(related to Figures 2.4, 2.6, 2.7, 2.8D, S2.4, S2.5, and S2.9) 

Kif4A, Kif23, Kif20A, and Kif20AE were depleted using 2 rounds of 20µg of IgG (raised 

against their C-terminal tail) conjugated to 50µL Protein A Dynabeads (Life Technologies, NY) 

for 50µL of extracts. Depletions using beads coated with random rabbit IgG served as controls. 

Depletions were confirmed by Western blots (Figure S2.5) and loss of localization of labeled 

antibodies against the depleted proteins in the aster assembly assay. Kif4A depletion phenotype 

was rescued by adding back 100nM Kif4A-GFP. 
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For drug inhibition experiments, 100µM ZM447439 (Aurora B kinase inhibitor; Tocris 

Bioscience, MN), 100µM STLC (S-trityl-l-cysteine; Eg5 inhibitor; Sigma), 100µM GSK-923295 

(CenpE inhibitor; MedChem Express, NJ), or 100µM nocodazole (microtubule depolymerizer; 

Sigma) was added to calcium activated extracts, and samples were prepared and imaged as 

described above. 

All immunodepletion and drug inhibition experiments were performed with n ≥ 3 

biological repeats, using extracts prepared from eggs produced by different female frogs. 

Light Microscopy 

Widefield images were obtained using a 20X Plan Apo 1.4 NA objective lens (Nikon) on 

an upright Nikon Eclipse 90i microscope equipped with a Prior Lumen 200 metal arc lamp, a 

Prior ProScan III motorized XY stage, a Hamamatsu ORCA-ER cooled CCD camera, and driven 

by Metamorph image acquisition software (Molecular Devices, CA). 

Spinning disc confocal images were obtained using a 40X oil Plan Apo 1.30 NA 

objective lens (Nikon) on an upright Nikon Eclipse E800 microscope equipped with a Melles 

Griot Krypton/Argon ion laser (488nm, 568nm, 647nm), a Yokogawa CSU-10 spinning disc 

(Perkin Elmer, MA), a Hamamatsu ORCA-ER cooled CCD camera, and driven by Metamorph. 

Confocal Z-stack images were obtained at the Nikon Imaging Center at Harvard Medical 

School using a 60X oil Plan Apo 1.49 NA objective lens (Nikon) on a confocal Nikon Ti 

motorized inverted microscope equipped with a Yokogawa CSU-X1 spinning disc (Spectral 

Applied Research Aurora Borealis modification), Perfect focus, a Prior Proscan II motorized 

stage, a Spectral Applied Research LMM-5 laser merge module (Ex:Em 488:480/40, 

561:620/60, 642:700/75) with AOTF controlled solid state lasers, a Hamamatsu ORCA-AG 

cooled CCD camera, and driven by Metamorph. 

Fixed Xenopus embryos were imaged with a laser scanning confocal microscope at the 

Nikon Imaging Center at Harvard Medical School. A 10X dry and a 20X multi-immersion 
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objective (Nikon) was used on a Nikon Ti-E inverted microscope with a Nikon A1R point 

scanning confocal head, driven by NIS-Elements image acquisition software. 

TIRF images were obtained using a 60X Apo TIRF 1.49 NA objective lens (Nikon) on a 

Nikon Ti-E motorized inverted microscope equipped with a Nikon motorized TIRF illuminator, 

Perfect focus, a Prior Proscan II motorized stage, Agilent MLC400B laser launch (488nm, 

561nm, 647nm), an Andor DU-897 EM-CCD camera driven by NIS-Elements image acquisition 

software. One such setup was used at the Nikon Imaging Center at Harvard Medical School and 

one at the Marine Biological Laboratory at Woods Hole. 

Microtubule Plus Tip Tracking: Image Acquisition, Processing and Analysis 

(see Figures S2.2 and 2.4A) 

Extract was supplemented with 250nM Alexa568-tubulin, 40nM EB1-GFP, and 1µg/mL 

Alexa647-IgG against AurkB to visualize the CPC. Asters were assembled between PEG-

passivated glass coverslips as described above, simultaneously for samples treated with 100µM 

ZM447439 (AurkB specific inhibitor) and control buffer. Multiple AAIZs were imaged between 20 

and 50 minutes of the assembly reaction at 20°C, alternating between control and treatment 

conditions. A spinning disc confocal microscope with a 40x oil objective (NA = 1.30) was used to 

acquire images with 2x2 binning. Time-lapse image sequences were acquired of EB1-GFP with 

1.5 sec intervals for a total duration of 2 min. Images of tubulin and AurkB were acquired at the 

beginning and end of each sequence. 

To correct for the flow of cytoplasm between the passivated coverslips, EB1 image 

sequences were registered using the StackReg ImageJ plugin with rigid body transformation 

(Thévenaz et al., 1998). The plusTipTracker Matlab software was used to perform automated 

detection and frame-to-frame linking of EB1 to obtain growth tracks (see Table S2.2 for 

parameters) (Applegate et al., 2011; Matov et al., 2010). Here we were only interested in the 

direction of microtubule plus tip growth, not its dynamics, thus we disabled the software’s ability 
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to infer plus tip shrinkage events by restricting the ‘maximum gap length’ to 2 frames. This 

setting still allowed for inferred forward gaps due to potential error in comet detection, but 

minimized the number of inferred backward gaps. The frame-to-frame XY coordinates of each 

tracked comet were extracted from the software’s output for further analysis in Matlab. 

Tracks were filtered out and excluded from analysis based on the following criteria: 

a) Mean intensity of detected particles within a single track is above 99th percentile of the 

intensity distribution of all detected particles. This is to filter out tracks associated with 

centrosome beads, bright aggregates and hot pixels that are not stationary because of 

image registration. 

b) Tracks with lifetime longer than 1 min. This is to filter out tracks associated with less bright 

hot pixels. 

c) Tracks with lifetime longer than 20 sec and with mean speed lower than 10µm/min. This is 

to filter out tracks associated with less bright hot pixels. 

Tracks were plotted and colored according to their mean direction. 

Aster-Aster Interpenetration Analysis (see Figures S2.3 and 2.4B) 

All EB1 comets detected over the time-lapse sequence of 2 min were divided into two 

populations based on their direction with respect to the axis defined by the interaction zone: 0-

180° (blue) and 180-360° (red). This was an approximation for which aster the microtubule 

originated from. Rectangular regions of interest (ROIs) with a length of 90µm and width of 10µm 

that were perpendicular to and bisected by the interaction zone were drawn across the image 

space. Each ROI was divided into 9 square bins with 10µm edges. For each ROI, the fraction of 

blue/red comets were calculated for each bin and plotted against distance along the length of 

the ROI (roughly corresponding to the bead-to-bead axis). The plots were visually inspected and 

outlying data were removed. Data from 50+ ROIs from 5+ interaction zones were pooled and 

the mean values of all fractions and their standard deviations were determined for each bin, and 
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plotted as a function of distance. The complementary red/blue fractions were also calculated 

and plotted against distance (Figure S2.3). Mean blue/red fractions are plotted as a blue solid 

line, and the complementary mean red/blue fractions as a red solid line in Figure 2.4B, where 

shaded areas represent standard deviations. 

Velocity Measurements for CPC Movement (see Figures S2.6, S2.9, and 2.6, E and F) 

Extract was supplemented with 250nM Alexa568-tubulin and 1µg/mL Alexa647-IgG 

against AurkB to visualize the CPC. Asters were assembled between PEG-passivated glass 

coverslips as described above and AAIZs were imaged between 20 and 50 minutes of the 

assembly reaction at 20°C. A spinning disc confocal microscope with a 40x oil objective (NA = 

1.30) was used to acquire images with 2x2 binning. Time-lapse image sequences were 

acquired of the CPC at the AAIZ with 1.43 sec intervals for a total duration of 1.5-3 min. The 

most representative image sequences were selected for analysis. 

To correct for the flow of cytoplasm between the passivated coverslips, CPC image 

sequences were registered using the StackReg ImageJ plugin with rigid body transformation. A 

segmented line (3 pixels wide) was manually drawn over the CPC-positive microtubule bundles 

in each image frame in ImageJ (Figure S2.6A), and kymographs were generated to show the 

frame-to-frame fluorescence intensities along these lines (Figure S2.6B). 

For each kymograph, individual tracks of CPC clusters were marked with a segmented 

line in ImageJ, and coordinates of the tracks were imported into Matlab for further analysis 

(Figure S2,6C, Step 1). The position of the CPC cluster was interpolated for each time point 

(𝑑! 𝑡!  ), and the instantaneous velocity of the CPC cluster was estimated as: 

 𝑣! 𝑡! = ∆!!
∆!!

= !!!!!!!
!!!!!!!

     (Figure S2.6C, Step 2). 

The distance between the CPC cluster and the CPC-bright midpoint was determined for 

each time point (𝐷! 𝑡!  ) (Figure S2.6C, Step 3), and 𝑣! was plotted against 𝐷! for each track 
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(Figure S2.6C, Step 4). Data from 3+ kymographs were pooled and binned along the 𝐷! axis by 

1µm intervals, and the mean CPC velocity with standard deviation was calculated for each 

interval (Figure S2.6C, Step 5). Mean CPC velocities are plotted against distance as solid lines 

in Figure 2.6F, where error bars represent standard deviations. 

The same analysis was performed for AAIZs assembled with extracts where Kif4A was 

depleted (Figure S2.9, A to C) and where Kif4A depletion was followed by addback of 100nM 

recombinant Kif4A-GFP (Figure S2.9, D to F). 

Velocity Measurements for CPC-Independent Kif4A Movement (see Figure S2.8) 

Extract was supplemented with 250nM Alexa647-tubulin and 3nM Kif4A-GFP. Asters 

were assembled between a PEG-passivated glass coverslip and a partially passivated coverslip 

coated with kappa-casein (Field et al., 2014; Groen et al., 2014), which allows microtubules to 

track along the kappa-casein-coated side of the coverslip sandwich. A growing aster edge was 

imaged at 20 min of aster assembly reaction at 20°C. A TIRF microscope with a 60x TIRF 

objective (NA = 1.49) was used to acquire a two-color time-lapse sequence with 2.1 sec 

intervals (Figure S2.8A). 

We observed that at the edges of expanding asters, Kif4A loaded onto antiparallel 

microtubule overlaps that transiently formed between radially outwards growing microtubules 

and isolated microtubules that grew in the opposite direction (Figure S2.8A). These antiparallel 

overlaps recruited PRC1E, the binding partner of Kif4A that preferentially crosslinks antiparallel 

microtubules, but not the CPC. Kymographs along microtubules that formed these overlaps 

allowed us to visualize Kif4A movement in the absence of recruited CPC (Figure S2.8B). After 

correcting for microtubule sliding from tubulin images, we obtained a mean velocity of 26.4±4.1 

µm/min (mean±SD) from n = 34 tracked Kif4A particles (Figure S2.8C). This was the maximal 

Kif4A velocity we observed in our extract system on interphase asters, as within AAIZs Kif4A 

slowed down. The reason we observe Kif4A movement in situ at ~half the velocity of that seen 
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with pure protein is unclear (Bieling et al., 2010). One possibility is that other microtubule-

associated proteins (MAPs) bound to microtubules slowed movement. 

Co-localization of Moving Kif4A and Moving CPC (see Figure S2.10) 

Extract was supplemented with 250nM Alexa568-tubulin, 0.1µg/mL Alexa674-IgG 

against AurkB, and 3nM Kif4A-GFP. Asters were assembled between a PEG-passivated glass 

coverslip and a partially passivated coverslip coated with kappa-casein. AAIZs were imaged at 

50 min of aster assembly reaction at 20°C. A TIRF microscope with a 60x TIRF objective (NA = 

1.49) with an additional magnification using a 1.5 optovar was used to acquire a two-color time-

lapse sequence with 2.73 sec intervals. Kymographs along antiparallel microtubules bundles 

were created as described above (Figure S2.10). 

Tubulin Speckle Imaging (see Figure S2.7) 

Asters were assembled between two PEG-passivated glass coverslips, and AAIZs were 

imaged with either a 100X oil objective with 2x2 binning on a widefield microscope (Figure 

S2.7A) or a 60X oil objective with 2x2 binning on a spinning disc confocal microscope (Figure 

S2.7B). Extract was supplemented with 250nM X-rhodamine-tubulin and 40nM EB1-GFP for the 

widefield sample, and 1nM Alexa647-tubulin for the confocal sample. Kymographs along the 

microtubule bundles were created as described above. 

TIRF Image Background Correction and Stitching 

(related to Figure 2.7, B and C, Figures 2.8A and S2.11) 

The Scan Large Image function of the NIS Elements image acquisition software was 

used to acquire 5x5 to 7x7 adjacent areas with 15% overlap. We refer to the small image 

captured of one area as a ‘tile.’ To correct for the dark grid in the large stitched image due to 

uneven illumination across the image area, a median image was obtained from all individual 
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tiles and normalized to the range 0-1 to obtain a correction image. All individual tiles were then 

divided by the correction image. The background corrected tiles were stitched into a large image 

using the Grid/Collection stitching ImageJ plugin. Regions of interest were cropped for display. 

All image processing was done in ImageJ. 

3D Reconstructions of Z Stacks (related to Figure 2.8C) 

Confocal Z stack images of asters assembled on top of a supported lipid bilayer were 

obtained using an inverted spinning disc microscope with a 60x objective (1.49 NA): 80 z-

sections were acquired at 0.25-µm intervals. 3D reconstruction was performed with Volume 

Viewer ImageJ plugin. 

Immunofluorescence of Fixed Xenopus Zygotes (see Figures 2.3 and 2.5) 

Embryos were fixed and stained as previously described (Becker and Gard, 2006; Wühr 

et al., 2010). Briefly, embryos were fixed in 50mM EGTA, pH 6.8, 10% H2O, 90% methanol for 

24 hrs at room temperature with gentle shaking. Prior to staining, embryos were rehydrated in a 

series of steps—25%, 50% 75%, 100% TBS (50 mM Tris, pH 7.5, 150 mM NaCl) /Methanol—

and then hemisected in TBS on an agarose cushion using a small piece of razor blade. 

Embryos were bleached overnight in a solution of 1% H2O2, 5% formamide, 0.5x SSC (75mM 

NaCl and 8mM sodium citrate, pH 7). Embryos were incubated with directly labeled antibodies 

for at least 24 hrs at 4° C with very gentle shaking. Antibodies were diluted into TBSN (10mM 

Tris-HCl, pH 7.4, 155mM NaCl, 0.1% Igepal CA-630) + 1% BSA + 2% FCS + 0.1% Azide. After 

antibody incubation, embryos were washed in TBSN for at least 48 hrs (with several buffer 

changes), then washed 1X in TBS and 2X in methanol for 20 min each. Embryos were cleared 

in Murray Clear solution (benzyl benzoate, part benzyl alcohol 2:1) and mounted in metal slides 

(1.2mm thick) with a hole in the center. The hole was closed on the bottom with a Parafilm-

attached coverslip. 
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Directly labeled antibodies were used at approximately the following concentrations: 

Alexa488-tubulin (1-2µg/mL), Alexa647-AurB kinase (0.5µg/mL), Alexa568-Kif23 (1-2µg/mL), 

Alexa568-anillin (1-2µg/mL). 

Aurora Kinase B Inhibition in Xenopus Zygotes (see Figure 2.5) 

Eggs were fertilized, dejellyed with 2% cysteine in MMR (110mM NaCl, 2mM KCl, 1mM 

MgCl2, 2mM CaCl2, 2mM NaHCO3, 5mM K-Hepes, pH 7.8), and microinjected with ZM447439 

(Aurora B kinase inhibitor) before or after metaphase of 1st mitosis (either 50-55 or 75-80 

minutes post fertilization). For injections, eggs were placed in Petri dishes, with mesh attached 

to the bottom, containing 5% Ficoll in 0.1X MMR. Eggs were injected with calibrated needles 

using an air-pressure microinjector (Narishige). Needles (~1.2mm initial diameter) were pulled 

with a Micropipette Puller (Sutter Instrument Company) and calibrated to inject 10nL of sample 

(Sive et al., 2010a). Briefly, the tips of needles were broken with a pair of forceps under a 

dissection microscope and the time of the injection pulse was varied until the desired injection 

volume was reached (Sive et al., 2010b). ZM447439 (10mM) was dissolved in 10mM glycine 

(pH 7); control buffer injections were done with 10mM glycine (pH 7).  
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Figure S2.1: Related to Figure 2.2. Aster outgrowth and interaction reconstituted in cell-

free Xenopus egg cytoplasm. 

(A) Widefield time-lapse sequence showing recruitment of AurkB (CPC subunit) and Kif23 

(Centralspindlin subunit) to an aster-aster interaction zone (AAIZ). 

(B) Kymographs along the bead-bead axis (yellow lines in (A)) showing aster growth and 

interaction (MTs, left) and recruitment of Kif23 where asters interact (right, from 18 min). 

Similar profiles were obtained for AurkB recruitment. 

(C) Spinning disc confocal image of AAIZs at 30min with the embryonic paralog of PRC1 

localized (GFP-PRC1E).  
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Figure S2.2: Related to Figure 2.4A. Microtubule plus tip tracking using EB1-GFP protein. 

(1) Asters were assembled between PEG-passivated coverslips, simultaneously for control and 

treatment samples (e.g. AurkB inhibition). Multiple AAIZs were imaged between 20 and 50 min 

of the assembly reaction, alternating between control and treatment conditions, using a spinning 

disc confocal microscope with a 40x oil objective. Time-lapse sequences were acquired of EB1-

GFP with 1.5 sec intervals for a total duration of 2 min. Images of tubulin and AurkB were 

acquired at the beginning and end of each sequence. 

(2) Flow of cytoplasm was corrected by registering EB1 image sequences using the StackReg 

ImageJ plugin. 

(3) The plusTipTracker Matlab software was used to perform automated detection and frame-to-

frame linking of EB1 to obtain growth tracks (see Table S2.2 for parameters) (Applegate et al., 

2011; Matov et al., 2010). False tracks associated with bright centrosome beads, protein 

aggregates, and hot pixels in the camera were removed. Tracks were plotted and colored 

according to their mean direction. Top row images are zoomed up views of area marked by white 

square in EB1 image in Step 1. See Methods section “Microtubule Plus Tip Tracking: Image 

Acquisition, Processing and Analysis” for more detailed description.  
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Figure S2.3: Related to Figure 2.4AB Aster-aster interpenetration analysis based on tracked 

microtubule plus ends. 

See Methods section “Aster-Aster Interpenetration Analysis” for description.  
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Figure S2.4: Related to Figure 2.6, A and B. Small molecule inhibition and 

immunodepletion of kinesin candidates that had no effect on AAIZ formation and CPC 

localization. 

Asters were assembled between PEG-passivated coverslips, and AAIZs were imaged after 30 

min. Representative spinning disc confocal images of MTs and AurkB at AAIZs after treatment 

with DMSO control, 100µM GSK-923295 (a Kif10/CenpE inhibitor; experiments with mitotic 

spindles in egg extracts and Xenopus tissue culture cells confirmed expected activity of this 

compound, i.e. displacement of mitotic chromosomes from the metaphase plate (Gudimchuk et 

al., 2013)), 100µM STLC (S-trityl-l-cysteine, a Kif11/Eg5 inhibitor (Groen et al., 2008)), or 

depletion of the somatic Kif20A motor, as labeled above. Representative control depletion with 

random IgG is shown in Figure 2.6A. Scale bar, 20 µm.  



	  
144	  

	  
Figure S2.5: Related to Figure 2.6, A and B. Immunoblots showing immunodepletion of 

Xenopus laevis kinesin candidates.  

(A) Kif20A (Mklp2 or Rabkinesin-6, ~101 kD). 

(B) Kif20AE (~88 kD), an embryonic paralog of Kif20A in Xenopus. 

(C) Kif23 (Mklp1, a subunit of Centralspindlin complex, ~90 kD). 

(D) Kif4A (~139 kD) depletion was rescued by adding back 100nM recombinant Kif4A-GFP 

(~168 kD).  
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Figure S2.6: Related to Figure 2.6F. Measuring velocity of directed CPC movement on the 

antiparallel microtubule overlaps at the aster-aster interaction zones (AAIZs). 

(A) Spinning disc confocal image of CPC visualized with Alexa647-labeled antibody against 

AurkB at an AAIZ at the beginning of a time-lapse sequence (top). Segmented lines for 

kymographs are overlaid in yellow (bottom). 

(B) Kymographs generated from the time-lapse (total duration of 170 sec with 1.43 sec intervals) 

corresponding to lines (a-e) in (A). 

(C) Procedure for obtaining CPC velocity as a function of distance from the CPC bright 

midpoint. See Methods section “Velocity Measurements for CPC Movement” for more detailed 

description.  
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Figure S2.6 (Continued)  
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Figure S2.7: Tubulin speckle imaging shows antiparallel microtubules sliding outward from 

overlap center. 

(A) Tubulin speckles were formed by uneven incorporation of the relatively hydrophobic X-

rhodamine-tubulin into microtubules. The movement of these X-rhodamine tubulin clusters was 

imaged with time-lapse widefield microscopy at 5 sec intervals (Movie S2.6). 

(B) Tubulin speckles were formed by single-molecule level incorporation of Alexa647-tubulin 

into microtubules. Time-lapse spinning disc confocal images were taken at 4 sec intervals (Movie 

S2.8). 

(C) CPC clusters were visualized using Alexa647-IgG against AurkB and imaged with time-lapse 

spinning disc confocal microscopy at 1.3 sec intervals (same data as shown in Figure S2.6A, 

Movie S2.4). 

(A-C) Still images from each time-lapse sequence (top). Kymographs along the MT overlap 

bundles indicated by yellow arrow (bottom). Horizontal scale bars, 20 µm. Vertical scale bars, 1 

min. Kymographs show that while microtubules slide slowly outwards from the overlap centers at 

<5 µm/min, CPC clusters move inwards at 10-25 µm/min towards overlap center. This confirms 

that the fast inwards movement of the CPC is indeed motor-driven transport along microtubules. 

(D) Overlay of EB1-GFP image (magenta) on tubulin image (green) shown in (A); a still image 

from Movie S2.7 (left). Maximum intensity projection of EB1 images (middle), and EB1 tracks 

colored by their mean direction (right) over the first half (2.5 min) of Movie S2.7. Movie S2.7 

illustrates the relationship between microtubule plus end growth (i.e. EB1 comet movement) and 

formation of antiparallel bundles. Horizontal scale bars, 20 µm.  
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Figure S2.7 (Continued)  
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Figure S2.8: Related to Figure 2.6F (green line). Measuring the plus-end directed velocity of 

the kinesin Kif4A. 

(A) Expanding aster partially adhered to κ-casein coated coverslip with microtubules (Alexa647-

tubulin; red) and Kif4A-GFP (green) visualized. TIRF image from a time-lapse sequence 

acquired using 2.1sec intervals for a total duration of 7.3min. 

(B) Kymographs of a microtubules (red) and Kif4A (green) along a microtubule that had a free 

plus end but was also part of an anti-parallel overlap (box in A). Scheme (right) shows the 

geometry of microtubules (red lines) before and after the time-lapse (top and bottom panels, 

respectively), and the inferred plus ends of the anti-parallel microtubules (yellow and blue solid 

lines); an antiparallel overlap is formed between the solid and dashed yellow lines. Apparent 

Kif4A velocity (measured from Kif4A kymographs) was corrected by velocity of microtubule 

sliding (measured from microtubule kymographs). 

(C) The velocity distribution of Kif4A moving on microtubules that are not part of AAIZs. Kif4A 

has a mean velocity of 26.4 ± 4.1 µm/min (mean±SD, n = 34 tracked Kif4A particles), an 

estimate for maximum velocity in our extract system.  
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Figure S2.8 (Continued)  
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Figure S2.9: Related to Figure 2.6, E and F. Directed CPC movement on antiparallel 

microtubule bundles requires the kinesin Kif4A. 

Same analysis of CPC movement as described in Figure S2.6 was performed on extracts where 

Kif4A was depleted (A to C) and where Kif4A depletion was followed by addback of purified 

Kif4A-GFP (D to F). 

(A,D) Spinning disc confocal image of CPC visualized with Alexa647-labeled antibody against 

AurkB at an AAIZ at the beginning of a time-lapse sequence (top). Segmented lines for 

kymographs are overlaid in yellow (bottom). 

(B,E) Kymographs generated from the time-lapse: total duration of 90 sec with 1.29 sec intervals 

for (B) and total duration of 177 sec with 3.94 sec intervals for (E). 

(C,F) Instantaneous CPC velocities (𝑣!) plotted against distance from bright CPC midpoint (𝐷!) 

determined from 3 kymographs, with the mean velocity calculated for each 1 µm distance bin.  
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Figure S2.9 (Continued)  
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Figure S2.10: Partial co-localization of moving Kif4A and moving CPC clusters at AAIZ. 

(A) Stills from a time-lapse, two-color TIRF image sequence taken with a 2.73 sec time interval, 

and a time delay of ~1.36 sec between acquisition in the two channels. Kif4A-GFP was added at 

3nM on top of endogenous Kif4A present in extract (left, green). Alexa647-anti-AurkB was 

added at 0.1µg/mL to probe for endogenous CPC (middle, red). The right shows a merged image. 

(B) 2x zoom-up of rectangle in (A) highlighting an antiparallel microtubule overlap and partial 

co-localization of the two probes. 

(C) Kymographs along the antiparallel MT overlap shown in (B). Note that the two probes move 

inwards at very similar rates (visualized as parallel lines in the kymographs). The fast-moving 

clusters localized at the outside of the AAIZ were moving inwards at ~25 µm/min in this 

example. We noted more co-localization between Kif4A-GFP and CPC clusters in static and slow 

moving clusters near the center. In fast moving clusters, the lines of Kif4A and CPC were 

staggered, presumably due to the time delay between acquisition in the green and red channels. 

Horizontal scale bars, 10 µm. Vertical scale bars, 1 min.  
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Figure S2.11: Related to Figure 2.7B. The CPC and Centralspindlin complexes co-localize 

at AAIZs on model plasma membranes. Experimental setup as per Figure 2.7A. TIRF images 

from 5 × 5 adjacent fields were corrected for uneven illumination and stitched (see Methods). 

Microtubules (MTs, green), CPC (AurkB, red), Centralspindlin (Kif23, cyan).  
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Figure S2.12: Coomassie-stained SDS gels of purified proteins with cloning and purification 

methods established in this study. Theoretical molecular weights of the protein constructs are: 

39 kD (mCherry-rGBD), 61 kD (eGFP-DasraA), and 96 kD (eGFP-PRC1E).  
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Table	  S2.1:	  List	  of	  Xenopus	  laevis	  protein	  sequences	  studied	  in	  Chapter	  Two.	  
 

Name	   Description/Alternate	  
names	  

NCBI	  GI	  number	  

AurkA	   Aurora	  kinase	  A	   148236543	  

AurkB	   Aurora	  kinase	  B	   147899288	  

DasraA	   Borealin-‐2	   148232132	  

PRC1E	  
Embryonic	  paralog	  of	  PRC1	  
(42%	  identity	  by	  
sequence)	  

148231955	  

Kif4A	   Chromokinesin,	  Xklp1	   18202613	  

Kif20A	   Mklp2,	  Rabkinesin-‐6	   147902220	  

Kif20AE	  

Embryonic	  paralog	  of	  
Kif20A	  
(41%	  identity	  by	  
sequence)	  

169642006	  
(starting	  at	  
“MDSRN”)	  

Kif23	   Mklp1,	  CHO1	   148222381	  
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Table	  S2.2:	  Parameters	  for	  automated	  detection	  and	  tracking	  of	  EB1	  comets	  using	  
plusTipTracker	  (Applegate	  et	  al.,	  2011;	  Matov	  et	  al.,	  2010).	  

 

Image	  sequence	  calibrations	   	   Tracking	  parameters	  

Pixel	  size	   0.3284	  μm	   	   Maximum	  gap	  length	   2	  frames	  

Frame	  rate	   1.5	  s	   	   Minimum	  sub-‐track	  length	   3	  frames	  

	   	   Minimum	  search	  radius	   1	  pixel	  

Detection	  parameters	   	   Maximum	  search	  radius	   3	  pixels	  

Method	   Watershed-‐based	   	   Maximum	  forward	  angle	   30°	  

Sigma	  1	   1	   	   Minimum	  forward	  angle	   10°	  

Sigma	  2	   7	   	   Fluctuation	  radius	   1	  pixel	  

K	   1-‐2.5	   	   Maximum	  shrinkage	  factor	   1	  
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Supplemental Movie Captions 

Movie S2.1: Aster outgrowth and interaction in Xenopus egg cytoplasm (related to 

Figures 2.2B and S2.1A). Asters were nucleated from beads coated with Aurora A kinase 

antibody on PEG-passivated coverslips. Where neighboring asters met, an aster-aster 

interaction zone (AAIZ) formed that recruited the chromosomal passenger complex (CPC). 

Widefield time-lapse sequence was acquired starting at 9 min of aster assembly reaction using 

a 20X objective, with 1 min intervals. Microtubules (green), CPC (Aurora B kinase subunit, red). 

Field of view: 277µm x 277µm. Duration: 21 min (420x speed). 

Movie S2.2: Block to microtubule interpenetration at an AAIZ (related to Figure 2.4A, top 

panel, and Figure S2.2). Growth of microtubule plus ends was visualized with EB1-GFP at an 

AAIZ on PEG-passivated coverslips. Aster #1 at top right corner, aster #2 at bottom left corner, 

aster #3 at top left corner. Confocal time-lapse sequence was acquired starting at 20 minutes of 

aster assembly reaction using a 40X oil objective, with 1.5 sec intervals. Field of view: 198µm x 

157µm. Duration: 2 min (24x speed). 

Movie S2.3: Block to microtubule interpenetration requires Aurora B kinase (related to 

Figure 2.4A, bottom panel). Growth of microtubule plus ends was visualized with EB1-GFP at 

an AAIZ in the presence of Aurora B kinase inhibitor (ZM447439) on PEG-passivated 

coverslips. Aster #1 on the left, aster #2 on the right. Confocal time-lapse sequence was 

acquired starting at 20 minutes of aster assembly reaction using a 40X oil objective, with 1.5 sec 

intervals. Field of view: 193µm x 157µm. Duration: 2 min (24x speed). 

Movie S2.4: Directed CPC movement on antiparallel microtubule bundles at an AAIZ 

(related to Figures 2.6E and S2.6). CPC recruitment and movement at the AAIZ was 

visualized using Aurora B kinase antibody on PEG-passivated coverslips. Aster #1 at top right 

corner, aster #2 at bottom left corner. Confocal time-lapse sequence was acquired starting at 50 

minutes of aster assembly reaction using a 40X oil objective, with 1.44 sec intervals. Field of 

view: 122µm x 122µm. Duration: 1.5 min (24x speed). 
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Movie S2.5: Directed CPC motility at an AAIZ requires Kif4A (related to Figure 2.6E and 

Figure S2.9, A to C). CPC recruitment and movement at the AAIZ in Kif4A depleted cytoplasm 

was visualized using Aurora B kinase antibody on PEG-passivated coverslips. Aster #1 at top 

right corner, aster #2 at bottom left corner. Confocal time-lapse sequence was acquired starting 

at 50 minutes of aster assembly reaction using a 40X oil objective, with 1.31 sec intervals. Field 

of view: 122µm x 122µm. Duration: 1.5 min (24x speed). 

Movie S2.6: Antiparallel sliding of microtubules at AAIZ (widefield) (related to Figure 

S2.7A). Microtubule sliding was visualized using clusters of unevenly incorporated X-

rhodamine-tubulin on PEG-passivated coverslips. Aster #1 on the left, aster #2 on the right. 

Widefield time-lapse sequence was acquired starting at 50 minutes of aster assembly reaction 

using a 100X oil objective, with 5 sec intervals. Note slow outwards sliding of microtubules away 

from center of antiparallel overlap. Field of view: 87.0µm x 66.3µm. Duration: 5 min (40x speed). 

Movie S2.7: Antiparallel sliding and plus end growth of microtubules at AAIZ (widefield) 

(related to Figure S2.7D). Same image sequence as shown in movie S6, but with the EB1 

channel added to visualize growing microtubule plus ends. Note the transition from parallel 

bundles in each aster to antiparallel bundles in the AAIZ. Some EB1 comets entered the 

antiparallel bundles where they disappeared after tracking along them for a few frames; other 

EB1 comets disappeared outside of a bundle. X-rhodamine-tubulin (green), EB1-GFP 

(magenta). Field of view: 87.0µm x 66.3µm. Duration: 5 min (40x speed). 

Movie S2.8: Antiparallel sliding of microtubules at AAIZ (confocal) (related to Figure 

S2.7B). Microtubule sliding was visualized using speckle-level of Alexa647-tubulin on PEG-

passivated coverslips. Aster #1 at the top, aster #2 at the bottom. Confocal time-lapse sequence 

was acquired starting at 50 minutes of aster assembly reaction using a 60X oil objective, with 4 

sec intervals. Field of view: 138µm x 105µm. Duration: 5.5 min (60x speed). 

Movie S2.9: Organization of F-actin at an AAIZ on a model membrane (related to Figure 

2.8D, bottom middle panel). F-actin was visualized using Lifeact-GFP on lipid bilayer-coated 

coverslip. TIRF time-lapse sequence was acquired starting at 50 minutes of aster assembly 

reaction using a 60X TIRF objective, with 3 sec intervals. Field of view: 136µm x 136µm. 

Duration: 4 min (120x speed). 
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Movie S2.10: Organization of anillin at an AAIZ on a model membrane (related to Figure 

2.8E, middle panel). Anillin was visualized using directly labeled antibody on lipid bilayer-

coated coverslip. TIRF time-lapse sequence was acquired starting at 50 minutes of aster 

assembly reaction using a 60X TIRF objective, with 3 sec intervals. Field of view: 136µm x 

136µm. Duration: 4 min  (120x speed). 
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Appendix II 

Supplemental Materials for Chapter Three: 
Cell-Free Reconstitution of Cytokinesis Signaling 

 

 

Supplementary content includes Materials and Methods, Supplementary Note 3.1, Figures S3.1 

to S3.5, Table S3.1, Movies S3.1 to S3.7, and References.  
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Materials and Methods 

Protein expression plasmid constructs 

 The X. laevis Prc1E coding sequence (codon optimized for E. coli and insect cell 

expression; GenScript, NJ) was subcloned into pET-28b bacterial expression vector with an N-

terminal Strep-tag (WSHPQFEK), creating Strep-Prc1E. The N-terminal amino acid sequence 

preceding the Prc1E sequence is: MA-WSHPQFEK-GA. To create the Strep-Prc1 construct, the 

Prc1E sequence was replaced with the X. laevis Prc1 somatic coding sequence from a 

published construct (Bieling et al., 2010a) kindly provided by Thomas Surrey (London Research 

Institute, UK). To create the Strep-mCherry-Prc1E construct, a mCherry coding sequence with a 

C-terminal AAA linker was inserted N-terminal to the Prc1E coding sequence. All subcloning 

was performed with Gibson cloning.	  

 

Proteins and antibodies 

X. laevis Kif4A-GFP-His was purified from Sf21 insect cells as described (Bieling et al., 

2010a; Nguyen, Groen et al., 2014). X. laevis His-GFP-DasraA, human EB1-GFP-His and 

human EB1-mCherry-His were purified from E. coli as described (Nguyen, Groen et al., 2014). 

X. laevis Strep-mCherry-Prc1E, Strep-Prc1E and Strep-Prc1 were purified as previously 

described for a similar Strep-GFP-Prc1E construct (Nguyen, Groen et al., 2014). Tubulin was 

purified from bovine brain and labelled with Alexa488, Alexa568, or Alexa647 dyes (Life 

Technologies, NY) as described (Groen et al., 2014). Protein concentrations were determined 

by Bradford assay with BSA standards, and refer to dimers for tubulin and monomers for all the 

other proteins. See Table S3.1 for sequence information on the Xenopus proteins studied in this 

paper. 
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Affinity purified C-terminal peptide antibodies (rabbit) were produced against X. laevis 

Prc1E (C-FKEEMTKKSSHSEAVFNSTVNENL) (NeoBioLab, MA). Antibodies were raised in 

rabbits to GST-fused X. laevis Prc1 (C-terminal 160 amino acids), and affinity purified using the 

Prc1 C-terminal tail fused to MBP. Affinity purified antibodies (rabbit) against C-terminal tails of 

X. laevis Kif4A, Kif23, and Aurora kinase A were from a previous study (Nguyen, Groen et al., 

2014). Tubulin antibodies (Sigma #T6074) were purchased. Antibodies were labelled on column 

with Alexa488, Alexa568, or Alexa647 dyes (Life Technologies, NY) as described (Groen et al., 

2014). 

Passivation of glass coverslips 

Partially passivated PEG-coated coverslips were prepared following previous protocols 

(Field et al., 2014; Portran, 2014) with modifications. Coverslips (18 × 18 mm and 22 × 22 mm, 

No. 1.5 with 0.16–0.19 mm thickness) were pre-cleaned in 3 M KOH and ethanol as described 

(Nguyen et al., 2015). Coverslips were blow dried with nitrogen gas and further cleaned with 

oxygen plasma (Technics plasma etcher 500-II, oxygen gas at 100 mTorr, glow discharge at 

200 W for 4 min) as described (Field et al., 2014; Nguyen et al., 2015). Methoxy PEG silane 

(MW 5000, JenKem Technology USA #A3037) was dissolved at 1 mg/mL in 96% ethanol with 

0.1% (v/v) HCl by warming the solution to 50°C. Freshly plasma-cleaned coverslips were 

incubated in the silane-PEG solution at room temperature for 18 hrs with gentle agitation as 

described (Portran, 2014). Coverslips were rinsed with 96% and deionized water, and blow 

dried with nitrogen gas as described (Portran, 2014). Coverslips can be stored in the dark with a 

desiccant at -20°C for up to one year. 

Fully passivated PEG-coated coverslips were prepared either by following previous 

relatively labour-intensive protocols for covalently coating coverslips with silane-PEG (Bieling et 

al., 2010b; Field et al., 2014) or by coating partially passivated PEG coverslips with poly-(L-

lysine)-PEG (PLL-PEG). For the latter method, partially passivated coverslips were incubated 
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with 100 µg/mL PLL-PEG {PLL(20)-g[3.5]-PEG(2), SuSoS, Switzerland} dissolved in 10 mM 

Hepes, pH 7.7, for 10-30 min at room temperature. Coverslips were rinsed in deionized water, 

blow dried with nitrogen gas, and used within 24 hrs. 

Aster assembly assay 

Metaphase arrested Xenopus egg extracts with intact actin were prepared as described 

(Field et al., 2014; Nguyen, Groen et al., 2014). Interphase asters were assembled between 

PEG-passivated coverslips as previously described (Nguyen, Groen et al., 2014) with 

modifications in the coverslip passivation procedure described below. Briefly, M-phase extract 

was supplemented with fluorescent probes, treated with 0.4mM CaCl2 to mimic fertilization and 

induce metaphase-to-interphase transition. Activated extract was supplemented with Protein A 

Dynabeads (Life Technologies, NY) coupled to Aurora kinase A antibody, which served as 

artificial centrosomes (Tsai and Zheng, 2005). Extract was then spread between two PEG-

passivated glass coverslips. Aster assembly reactions were monitored with a widefield, spinning 

disc confocal, or TIRF (Total Internal Reflection Fluorescence) microscope at 20°C. 

For widefield and confocal imaging, asters were assembled between two fully passivated 

PEG-coated coverslips. For TIRF imaging, asters were assembled between a fully passivated 

PEG coverslip (top, 18 × 18 mm) and a partially passivated coverslip (bottom, 22 × 22 mm). 

Partial passivation allowed microtubules to track along the coated surface, within the TIRF 

illumination field. 

For visualization, fluorescent probes were used at the following concentrations: 250 nM 

Alexa488-, 568- or 647-tubulin, 40 nM EB1-GFP or EB1-mCherry, 10 nM Kif4-GFP, 20 nM 

mCherry-Prc1E, 20 nM GFP-DasraA. 
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Immunodepletions, protein addback, and drug inhibition 

Kif4A, Kif23, and Prc1E were depleted using 2 rounds of 20 µg of antibodies conjugated 

to 50µL Protein A Dynabeads (Life Technologies, NY) for 50 µL of extracts. Depletions using 

beads coated with random rabbit IgG served as controls. Depletions were confirmed by 

immunoblots. Kif4A depletion was rescued by adding back ~100 nM Kif4A-GFP, and Prc1E 

depletion was rescued by adding back ~65 nM purified Prc1E or Prc1. For inhibition of Aurora B 

kinase, 100 µM ZM447439 (Tocris Bioscience, MN; 10 mM stock solution in 10 mM glycine, pH 

7) was added to calcium activated extracts. Aster assembly assays were performed with treated 

extracts as described above. 

All immunodepletion and drug inhibition experiments were performed with n ≥ 3 

biological repeats, using extracts prepared from eggs produced by different female frogs. 

Ideally, all the treatments ought to be performed on the same extract to reduce extract-to-extract 

(and frog-to-frog) variability, and the samples from each treatment ought to be imaged at the 

same time to reduce the variability introduced by the “aging” of extracts while stored on ice. In 

practice, however, this is impossible due to limitations posed by the amount of extract produced 

from a single female frog and our ability to handle samples. Therefore, we routinely performed 

only 3-4 treatments (including control buffer addition or IgG depletion) per experiment. Although 

we aimed to acquire data for all treatments simultaneously, 1-2 samples out of the 3-4 would 

often be destroyed via mishandling, thus the data for those treatments had to be acquired in the 

next round of aster assembly reaction. 

Time-lapse fluorescence microscopy 

Widefield images were obtained using a 10x Plan Apo 0.45 NA objective lens (Nikon) on 

an upright Nikon Eclipse 90i microscope equipped with a Prior Lumen 200 metal arc lamp, a 

Prior ProScan III motorized XY stage, a Hamamatsu ORCA-ER cooled CCD camera, and driven 

by Metamorph image acquisition software (Molecular Devices, CA). 
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Spinning disc confocal images were obtained using a 40x oil Plan Apo 1.30 NA objective 

lens (Nikon) on an upright Nikon Eclipse E800 microscope equipped with a Melles Griot 

Krypton/Argon ion laser (488nm, 568nm, 647nm), a Yokogawa CSU-10 spinning disc (Perkin 

Elmer, MA), a Hamamatsu ORCA-ER cooled CCD camera, and driven by Metamorph. 

TIRF images were obtained using a 60x Apo TIRF 1.49 NA objective lens (Nikon) on a 

Nikon Ti-E motorized inverted microscope equipped with a Nikon motorized TIRF illuminator, 

Perfect focus, a Prior Proscan II motorized stage, Agilent MLC400B laser launch (488nm, 

561nm, 647nm), an Andor DU-897 EM-CCD camera driven by NIS-Elements image acquisition 

software. Two separate TIRF setups were available at the Nikon Imaging Center at Harvard 

Medical School and the Marine Biological Laboratory. 

Immunofluorescence of fixed Xenopus zygotes 

Zygotes were fixed and stained 100 min after fertilization as previously described 

(Nguyen, Groen et al., 2014). Briefly, zygotes were fixed in a methanol/EGTA solution for 24 hrs 

at room temperature, rehydrated in a series of methanol/TBS mixtures, and then hemisected. 

Zygotes were bleached overnight in a SSC/formamide/H2O2 solution and then incubated with 

directly labeled antibodies for at least 24 hrs at 4°C. Antibodies were used at approximately the 

following concentrations: Alexa488-anti-tubulin (1-2µg/mL), Alexa568-anti-Prc1E (1-2µg/mL), 

Alexa647-anti-Kif4A (1-2µg/mL). 

Fixed zygotes were imaged with a laser scanning confocal microscope at the Nikon 

Imaging Center at Harvard Medical School. A 10x dry objective (Nikon) was used on a Nikon Ti-

E inverted microscope with a Nikon A1R point scanning confocal head, driven by NIS-Elements 

image acquisition software. 



	  
168	  

Image analysis: microtubule plus end dynamics from EB1 comet tracking 

(related to Figures 3.3, 3.4 and 3.6) 

Time-lapse image sequences of EB1-GFP were acquired, processed, and analyzed as 

described (Nguyen, Groen et al., 2014). Briefly, extract was supplemented with 40 nM EB1-GFP 

and 250 nM Alexa647-tubulin. Asters were assembled between fully passivated PEG coverslips 

as described above. Lower AurkA bead density was used to study isolated asters, and higher 

bead density to study AAIZs. Multiple isolated asters or AAIZs were imaged between 20 and 50 

min of the assembly reaction at 20°C, alternating between control and treatment conditions. A 

spinning disc confocal microscope with a 40x oil objective (NA = 1.30) was used to acquire 

images with 2x2 binning. Time-lapse image sequences were acquired of EB1-GFP with 1.5 sec 

intervals for a total duration of 2 min (81 frames total). Tubulin images were acquired at the 

beginning and end of each sequence. 

EB1 image sequences were registered using the StackReg ImageJ plugin with rigid 

body transformation (Thévenaz et al., 1998). The plusTipTracker MATLAB software (Applegate 

et al., 2011; Matov et al., 2010) was used to perform automated detection and frame-to-frame 

linking of EB1 comets using the parameters in ref. (Nguyen, Groen et al., 2014). Tracks were 

filtered out and excluded from analysis based on the criteria listed in ref. (Nguyen, Groen et al., 

2014). Remaining tracks were then plotted and colored according to their mean direction (Figure 

3.3a) or instantaneous velocity averaged over 3 consecutive frames (Figure 3.3b). 

The degree of interpenetration was quantified by dividing all EB1 comets detected in 

frames 2-81 into two groups based on the direction of their displacement relative to the previous 

frame (Figure 3.3a’, inset showing ‘blue’ and ‘red’ directions). Rectangular regions of interests 

(ROIs; 90 µm x 10 µm) parallel to the bead-bead axis and traversing the interaction zone were 

overlaid. Each ROI was divided into 9 cells (10 µm x 10 µm each), and the fraction of EB1 

comets moving in the ‘blue’ direction was determined and plotted as grey dots against the 

distance from the AAIZ midline (see Figure S2.3 in Appendix I). The procedure was repeated for 
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multiple non-overlapping, neighbouring ROIs within an AAIZ, giving rise to all the grey dot data. 

The data points were fitted to a sigmoidal distribution (Figure 3.3a’, blue curve): 

𝑓 𝑥 = 𝑌!"# +
!!"#!!!"#
!! ! ! ! , 

where 𝑥 is distance and 𝑓(𝑥) is the fraction of EB1 comets moving in the ‘blue’ direction. A 

complementary sigmoidal distribution described the fraction of EB1 comets moving in the other, 

‘red’, direction (Figure 3.3a’, red curve). The exact position of the AAIZ ‘midline’ was defined 

where the blue and red curves intersected. A ‘D60’ parameter was defined as the difference 

between the interpolated distances where the red and blue curves crossed 60%. This parameter 

served as a measure for the depth of interpenetration. 

The instantaneous velocities associated with each EB1 comet detected in frames 2-81 

were averaged within each square cell. The total number of EB1 comets was counted, and the 

comet density determined for each cell. The number of EB1 comets comprising the initiation or 

the termination of a growth track was counted and expressed as the fraction of total EB1 comets 

for each cell. EB1 comet speeds, densities, track terminations and initiations were averaged for 

cells in neighboring ROIs at a given distance from the AAIZ midline. These mean values were 

plotted in Figures 3.3b’ and 3.3c’, where the error bars indicate SEMs for EB1 speeds and SDs 

for densities, track terminations and initiations. 

To obtain the % difference in plus end dynamics measurements inside an AAIZ 

compared to outside, the mean value of each measurement obtained at the exact AAIZ midline 

(0 µm) was divided by the mean of the mean values obtained at -40, -30, -20, 20, 30, and 40 µm 

from the AAIZ midline. The mean values obtained at -10 and 10 µm were considered transition 

values, and thus were omitted from the calculations. The % difference measurements were 

averaged for multiple (n ≥ 3) AAIZs per condition; the mean values were plotted with standard 

deviations as error bars in Figure 3.4h). 

All analyses were performed in MATLAB. 
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Image analysis: kymographs of anti-parallel overlap formation (related to Figure 3.7) 

Extract was supplemented with 250 nM Alexa647-tubulin, 10 nM Kif4A-GFP, and 20 nM 

mCherry-Prc1E. Asters were assembled between a fully and a partially PEG-passivated glass 

coverslip, which allows microtubules to track along the partially passivated surface. AAIZs were 

imaged between 20 and 50 min of aster assembly reaction at 20°C. A TIRF microscope with a 

60x TIRF objective (NA = 1.49) was used to acquire two- or three-color time-lapse sequences. 

A segmented line (3 pixels wide) was manually drawn over the Kif4A-positive microtubule 

bundles in each image frame in ImageJ, and kymographs were generated to show the frame-to-

frame fluorescence intensities along these lines. 

Image analysis: quantification of radial order within isolated asters 

The first approach to quantifying radial order in asters involved tracking EB1 comets 

over 2 min (81 frames at 1.5 sec intervals) and measuring their directions (angles of frame-to-

frame displacement) within a quadrant of an isolated aster. Radial order heat maps were 

created by dividing the field of view into square cells measuring 5x5 µm2 (Figure 3.6a’-e’). A 

radial order parameter (R) was calculated from the distribution of angular deviations of EB1 

comet directions from the radial direction within each square cell: 

𝑅 = !
!

(cos 𝜃! + 𝑖 sin(𝜃!))!
!!! = !

!
𝑒!!!!!

!!! , 

where 𝜃! = 𝛽! − 𝛼!. The variable 𝛼! is the radial direction of each EB1 comet (i.e. angular 

coordinate within a polar coordinate system with the aster centre as the pole) and 𝛽! is the 

angle of displacement of each comet with respect to the previous frame. The variable 𝜃! ranges 

from −𝜋 to +𝜋 in radians. For the heat maps, all EB1 comets detected from frame 2 to 81 were 

considered within each square cell. 

In directional statistics, circular variance is defined as (1 - R), which is a measure of the 

spread of a population of angles 𝜃!. R is the length of the mean resultant vector of the 
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population of angles and ranges from 0 to 1. A MATLAB toolbox called ‘CircStat’ was used to 

compute the resultant vector length (R) (Berens, 2009). 

To quantify the dependence of radial order on the distance from the aster centre, the 

field of view was divided into concentric rings with a width of 5 µm, centring on the AurkA bead. 

Radial order parameters (R) were obtained for each ring area, considering EB1 comets 

detected within 10 consecutive frames (e.g. frames 2 to 11, 12 to 21, …, 72 to 81). The mean R 

values were obtained from all 8 time ranges and plotted against distance from the bead, along 

with standard deviations as error bars (Figure 3.6f). 

An alternative approach to quantifying radial order in asters involved analysing 

microtubule morphology from TIRF images of isolated asters (Figure S3.5). TIRF images were 

acquired with an 60x oil TIRF objective, corrected for uneven illumination and stitched as 

previously described (Nguyen, Groen et al., 2014). Images were cropped and rotated to position 

the aster centre at the top left corner. The most prominent microtubule structures (bundles or 

single microtubules) were detected and their direction determined using a 2-D steerable ridge 

filter implemented by Francois Aguet (http://www.francoisaguet.net/software.html) based on ref. 

(Jacob and Unser, 2004). The inputs for the MATLAB function: 

[res, theta, nms, rotations] = steerableDetector(img, M, sigma) 

were M = 4 and sigma = 2, and a local threshold filter was further applied to the non-maximum-

suppressed response (nms) output image. The angular deviations from the radial direction were 

calculated for each detected pixel as 𝜃! = 𝛽! − 𝛼!, where 𝛼! was the angular coordinate of the 

pixel in a polar coordinate system with the aster centre as the pole, and 𝛽! was the orientation 

angle of the pixel determined by the steerable ridge filter (theta). The variable 𝜃! ranged from 

– 𝜋/2 to +𝜋/2 in radians. Radial order parameters (R) were computed from the distribution of 

angles (𝜃!) within a square cell measuring 51 pixels. Moving this cell as a sliding window 

generated a heat map of radial order. 
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All analyses were performed in MATLAB. 

Statistics 

Related to 2nd paragraphs in Results section titled “Plus end dynamics in AAIZs”. To 

compare the two non-normal distributions of instantaneous plus end growth rates (i.e. frame-to-

frame EB1 comet velocities) observed inside vs outside an AAIZ, we used the two-sample 

Kolmogorov-Smirnov (KS) test. The test was performed using the MATLAB function: 

kstest2(<growth rates inside AAIZ>,<growth rates outside>). 

Related to Figure 3.4g. To evaluate the statistical significance of the difference in the 

degree of interpenetration between asters observed under various treatment conditions, we 

used Welch’s t-test (two-sample, unpaired t-test assuming unequal sample sizes and unequal 

variances) to compare the D60 parameters obtained from treatment conditions to those 

obtained from IgG control depletion. The test was performed using the MATLAB function: 

ttest2(<IgG data>,<treatment data>,‘Vartype’,’unequal’). 

Related to Figure 3.4h. To evaluate the statistical significance of the % difference 

between the microtubule dynamics measurements inside the AAIZ and those outside, the one-

sample t-test was used to test against the null hypothesis of no difference (0% difference). The 

test was performed using the MATLAB function: 

ttest(<data>). 
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Supplementary Notes 

Supplementary Note 3.1. Correlation between microtubule growth lifetimes and growth 

rates (related to Figures S3.2 and S3.4). 

To better understand why termination events were enriched within AAIZs, we measured 

the lifetimes of microtubule growth trajectories ending within an AAIZ and compared them to 

trajectories ending outside (Figure S3.2a, left). Growth lifetimes (the time interval between a 

nucleation or rescue and a catastrophe or pause) were fit reasonably well by an exponential 

distribution, as expected for stochastic switching between dynamic states at the plus end in a 

simple model of dynamic instability (Dogterom and Leibler, 1993; Mitchison and Kirschner, 

1984; Verde et al., 1992). We observed a slight shift towards shorter durations within the AAIZ 

(70% of growth excursions lasting less than the overall mean lifetime [11 sec] inside vs. 63% 

outside). However, this effect appeared less striking than a shift to slower growth rates within 

the AAIZ (50% growth excursions slower than the overall average rate [24 µm/min] inside vs. 

35% outside) (Figure S3.2a, right). In a simple stochastic model under constant conditions, 

microtubule growth rates and lifetimes should be uncorrelated. In reality, we observed a slight 

but statistically significant positive correlation between growth lifetimes and growth rates 

averaged over the growth lifetime of a single microtubule (Figure S3.2b, control panel). The 

correlation coefficient (r) was higher inside the AAIZ than outside; this observation was 

consistent over multiple representative AAIZs analysed (inside r = 0.24 ± 0.05 [SD], outside r = 

0.14 ± 0.02 [SD], n = 4 AAIZs) (Figure S3.2c). This suggests that some process slows 

microtubules before a catastrophe or pause is triggered. 

We also measured the degree of correlation between growth rates and growth lifetimes 

inside and outside AAIZs for all these treatments (Figure S3.2b, c). We found a complete loss of 

correlation when Kif4A or Prc1E was depleted. When AurkB was inhibited, there was a slight 

but significant correlation, the degree of which was similar to the correlation measured outside 
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the AAIZ under control conditions. The enhanced correlation observed inside the AAIZ for 

control aster interactions was eliminated when AurkB was inhibited. 

To determine whether the slowdown of microtubule growth inside an AAIZ was affected 

by the treatments above, we examined the EB1 trajectories rank ordered by their termination 

velocity (Figure S3.4). AurkB inhibition still led to more microtubules that slowed down before 

they stopped growing inside an AAIZ than outside, consistent with the decrease in growth rate 

measured in Figure 3.4h. Depletion of either Kif4A or Prc1E, however, eliminated the 

preferential slowdown of microtubule growth before termination within an AAIZ. Collectively, 

these data show that microtubule growth slowdown in AAIZs and the increased rate of 

catastrophes (or pauses) required Prc1E and Kif4A activities.  
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Figure S3.1: Purification, immunodepletion, and addbacks of proteins. 

(a) Coomassie-stained SDS gel of proteins used in this study. Theoretical molecular weights of 

the protein constructs: Strep-mCherry-Prc1E, 96 kD; Strep-Prc1E, 68 kD; Strep-Prc1, 73 kD; 

Kif4A-GFP-His, 168 kD. 

(b-d) Immunoblots showing immunodepletion from Xenopus egg extracts and addback of Prc1E 

(b), Kif4A (c), and Kif23 (d). 

(b) Prc1E (~68 kD) depletion was rescued by adding back ~65 nM recombinant Prc1E (~68 kD) 

or Prc1 (~73 kD). Prc1E was much less abundant in Xenopus laevis tissue culture cells (S3 cells). 

(c) Kif4A (~139 kD) depletion was rescued by adding back ~100 nM recombinant Kif4A-GFP 

(~168 kD). 

(d) Kif23 (also known as Mklp1, a subunit of the centralspindlin complex, ~90 kD).  
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Figure S3.2: Correlation between the mean growth rate and growth lifetime of microtubule 

growth trajectories. 

(a) Relative frequencies of growth lifetimes (left) and per track average growth rates (right) for 

tracks terminating inside (red) vs. outside (blue) a control AAIZ. 

(b) Representative correlation plots for growth trajectories ending inside an AAIZ (red) and 

outside an AAIZ (blue) formed under various conditions, with Pearson correlation coefficients (r) 

and P-values displayed. (c) Mean Pearson correlation coefficients (±S D) from n ≥ 3 AAIZs per 

condition, and the range of P-values displayed in parentheses.  
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Figure S3.2 (Continued)  
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Figure S3.3: Representative images showing microtubule morphology and localization of 

Prc1E and Kif4A at AAIZs under various conditions. 

(a) Low-mag widefield tubulin images of interacting asters formed using mock depleted, Prc1E 

or Kif4A depleted extracts, or extracts treated with 100 µM ZM-447439 (AurkB inhibitor). 

(b-d) High-mag TIRF images showing microtubules (Alexa647-tubulin), mCherry-Prc1E, Kif4A-

GFP at AAIZs under the treatments above. Zoom-ups of boxed areas are shown on the right. 
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Figure S3.4: Microtubule growth trajectories profiled by growth rates and growth lifetimes 

under various conditions. Straightened growth tracks colour-coded by instantaneous velocity, 

and rank ordered by termination velocity measured during the last 3 sec of growth (as per Figure 

3.3d). Red line demarcates tracks with termination velocity less than 20 µm/min from those with 

higher termination velocity. Conditions as labelled on the right: mock depletion, AurkB inhibition 

with 100 µM ZM-447439, Kif4A and Prc1E depletions.  
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Figure S3.5: Alternative radial order measurement from microtubule morphology. 

Microtubules within isolated asters imaged with TIRF microscopy under mock, Kif4A, or Prc1E 

depletion conditions (1st column). The most prominent microtubule structures (bundles or single 

microtubules) were detected and their direction determined using a steerable ridge filter (2nd 

column). The angular deviations of microtubules from the radial direction were calculated and 

radial order parameters (R) were computed from the distribution of angles within a square cell. 

Moving this cell as a sliding window generated a heat map of radial order, where warmer colours 

represent higher radial order (3rd column; see Methods).  
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Table	  S3.1:	  List	  of	  Xenopus	  laevis	  protein	  sequences	  studied	  in	  Chapter	  Three.	  
 

Name	   Description/Alternate	  
names	  

NCBI	  GI	  number	  

AurkA	   Aurora	  kinase	  A	   148236543	  

AurkB	   Aurora	  kinase	  B	   147899288	  

DasraA	   Borealin-‐2	   148232132	  

Kif4A	   Chromokinesin,	  Xklp1	   18202613	  

Kif23	   Mklp1,	  CHO1	   148222381	  

Prc1	   Protein	  regulator	  of	  
cytokinesis	  1	   148236333	  

Prc1E	   Embryonic	  paralog	  of	  PRC1	  
(42%	  identity	  by	  sequence)	  

148231955	  
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Supplemental Movie Captions 

Movie S3.1: Related to Figure 3.1a 

Confocal movie of aster growth and interaction with Prc1E and Kif4A visualized. 

Movie S3.2: Related to Figure 3.1b 

Widefield movie of aster growth and interaction with Prc1E and CPC visualized. 

Movie S3.3: Related to Figure 3.3a 

EB1 tracking in control AAIZ imaged with confocal microscope. 

Movie S3.4: Related to Figure 3.5a 

EB1 tracks overlaid on Prc1E images in control AAIZ imaged with TIRF microscope. 

Movie S3.5: Related to Figure 3.5b 

EB1 tracks overlaid on Prc1E images in Kif4A-depleted AAIZ imaged with TIRF microscope. 

Movie S3.6: Related to Figure 3.7a 

Overlap formation at aster edge with tubulin and Kif4A visualized with TIRF microscope. 

Movie S3.7: Related to Figure 3.7b 

Overlap formation at aster edge with tubulin, Kif4A, and Prc1E visualized with TIRF microscope. 
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