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ABSTRACT

In clinical studies of survival, additional endpoints on patients may be collected over
the course of the study that give additional insight into a treatment’s effect. We propose
three methods to analyze right censored survival data in the presence of multiple out-
comes. In order to make limited parametric assumptions on the data-generating mecha-
nisms, the methods are based on Wilcoxon-type rank statistics. Each method is applied
to a recent clinical trial of Ceftriaxone in patients with amyotrophic lateral sclerosis.

In chapter 1, we modify the Gehan-Wilcoxon test for survival to account for auxil-
iary information on intermediate disease states (e.g. progression) that subjects may pass
through before failure. We use multi-state modeling to compute expected ranks for each
subject conditional on their last observed disease states and censoring time, and these
ranks form the basis of our test statistic. Simulations demonstrate that the proposed
test can improve power over the log-rank and generalized Wilcoxon tests in some settings
while maintaining the nominal type 1 error rate.

In chapter 2, we propose an estimator for an accelerated failure time model based on
the test statistic proposed in chapter 1. We use the statistic as an estimating equation
for a parameter that accelerates the time to each subsequent disease state. The estima-
tor incorporates the intermediate states in a manner relevant to the survival outcome,

yielding interpretable treatment and covariate effects that consider the entire trajectory

il



of the patient. Simulations demonstrate that the estimator is unbiased, and that the pro-
posed standard error estimator is near the empirical value.

In chapter 3, we aim to assess the treatment effect globally across any types of mul-
tiple endpoints. The test we propose is based on a simple scoring mechanism applied to
each pair of subjects for each endpoint. The scores for each pair of subjects are then re-
duced to a summary score, and a rank-sum test is applied to the summary scores. This
can be seen as a generalization of several other global rank tests in the literature. Ad-
ditionally, for certain statistics we describe optimal weighting schemes with respect to

statistical power, and provide a method of selecting outcome weights adaptively.
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A Model-Informed Rank Test for Right

Censored Data with Intermediate States

1.1 INTRODUCTION

In clinical trials that compare treatments on overall survival, some patients are censored
due to drop-out or the administrative completion of the study. In analyses of survival

of patients, under the usual independent censoring assumption, patients who are cen-



sored at a specific time are treated as having the same prognosis as those who are alive
and continue in follow-up. However, there is often information on each patient’s clinical
status at the time they are censored that could be used to refine these analyses. Many
chronic diseases involve a complex process by which individuals move through different
disease states (progress), and by including this auxiliary information on censored pa-
tients in the analysis of survival, we can obtain a more precise treatment comparison.
For example, in clinical trials of amyotrophic lateral sclerosis (ALS), we obtain interme-
diate information on neurological function via ALSFRS-R scores, which may be predic-
tive of survival. The goal of this paper is to develop a new test to improve power and
accuracy in treatment comparisons based on a survival endpoint.

There have been several methods developed that utilize auxiliary information in sur-
vival analysis. In many of these papers, the authors reconstruct overall survival estimates
with the additional information, and compute test statistics that are based on the new
survival estimates. Finkelstein and Schoenfeld!, and Gray? propose methods based on a
3-stage model with progression as an intermediate stage. Malani® incorporates biomark-
ers into the survival estimate by redistributing the weight of censored observations to
individuals with similar biomarker values at the time of censoring. Murray and Tsiatis*?®
propose weighted Kaplan-Meier estimators to account for fixed or time-dependent covari-
ates and propose a test statistic based on that of Pepe and Fleming®" for comparing the
two samples. They indicated that their estimate was equivalent to Malani’s for categor-
ical markers and that it is also related to the inverse probability of censoring weighted
(IPCW) survival curve estimate of Robins and Rotnitzky®. Mackenzie and Abrahamow-
icz” proposed tests based on functionals of any type of Kaplan-Meier estimators, includ-
ing ones that account for longitudinal markers such as the Murray-Tsiatis estimator.

Under certain conditions their adjusted hazard ratio and log-rank test are equivalent



to the IPCW versions proposed by Robins and Finkelstein'’. Hsu et al.'"'%13 use aux-
iliary variables and a multiple imputation approach to estimate the marginal survival
function and adjust for dependent censoring, and apply the conventional nonparametric
two-sample tests to the augmented data sets. This method involves reducing the auxil-
iary variables into two sets of risk scores via proportional hazards models, one for event
times and one for censored times, and utilizing these scores in the imputation scheme.
Conlon et al.' use time to recurrence as an auxiliary variable for survival, and impute
missing values due to censoring. Song'® developed a covariate adjusted log-rank test in
the recurrent events setting.

While each of these approaches rely on tests constructed from auxiliary variable re-
fined estimates of the survival curve, the approach we propose is to develop an extension
of Efron’s modification for the Gehan-Wilcoxon test ', Our test is based on scores for
each patient, derived from the probabilities that they survived longer than other subjects
in the study. We use these probabilities to construct what are essentially expected ranks
for each subject given their observed states and censoring times, and then make infer-
ence on the ranks. To estimate the probabilities, we propose using a multi-state Markov
model. The Markov model is chosen for its simplicity and flexibility in modeling different
disease processes. With it, we can accommodate forward and backward transitions be-
tween states and estimate transition probabilities even when the exact transition times in
to and out of each state are unknown (resulting in interval censored data), which is often
the case in clinical studies as patients are monitored over periodic visits.

We first present our modification of the Gehan-Wilcoxon test, some basic notation,
and concepts for multi-state models, including how to estimate the probabilities that we
need. Next, simulation results are presented, illustrating in which settings the method

is valid and works best. Then we demonstrate the method on data from an ALS clinical



trial. Finally, in the discussion we consider the merits and drawbacks of our method,
possible variations and extensions on the model, and other considerations to be taken

when implementing it.

1.2 METHODS

1.2.1 TEST STATISTIC

We are interested in using auxiliary information, the disease state at the censoring time
for each subject, to improve the efficiency of the Gehan rank statistic used to test for
equality of two survival distributions'”. For the Gehan test, if we have two groups of
subjects, then for every pair of individuals 7 and j, the test assigns a score u;;, where

u;j = 1 if i clearly survived longer than j, u;; = 0 if it is unclear who survived longer,
and u;; = —11if j outlived i. Let Z; be the indicator that subject 7 is in group 1. The
“rank” for individual ¢ is given by U; = > j Uig and the numerator of this test statistic is
> ZiUs.

Efron proposed a modification of the Gehan-Wilcoxon test, assigning to pairs of sub-
jects a value equal to the probability that ¢ outlives j given the follow-up times and cen-
soring indicators for both'®. We note that this modification assigns the same score of +1
or -1 when survival times can be compared, but for subjects for whom w;; = 0 in Gehan’s
test, Efron’s test could give a non-zero value to the comparison. Efron suggested using
Kaplan-Meier type estimates for the probabilities above, conditional on the censoring
times but not disease states'".

We now suggest a further modification of Efron’s test by including auxiliary informa-
tion available at the censoring times. Let T; and C; be the survival and censoring times
for individual 4, respectively, let 0; = I(T; < C;), and Z; the indicator that subject i is in

group 1. Suppose individuals independently move among d possible states 1, ..., d, where



d is an absorbing state (e.g. death). Let S;(t) denote the state occupied at time ¢ for
subject i. Further, suppose we observe the state of individual ¢ at m; times {t;1, ..., tim, }-

For the pair of subjects 7 and 7, the statistic we propose assigns the score:
ug; = P(T; > Tj[Si(tim, ), Sj(tjm, ), Ci, Cj) — P(T; < Tj[Si(tim, ), Sj(tjm, ), Ci, C5),  (1.1)

where P(T; > T;[Si(tim,), Sj(tjm;), Ci, Cj) denotes the probability of subject i surviv-
ing beyond subject j conditional on each of their last observed disease states and cen-
soring times. If it is known that j fails before 7, or i before j, the score u;; would be 1
or -1 respectively, as in the Gehan test. If it is not known who of ¢ or j lived longer, we
must calculate the probability given in (1.1). This is described in the next section. The
basis for using probabilities is that they give us the expected Wilcoxon scores when we
do not have full data (i.e. when there is censoring). The expected rank score for individ-
ual ¢ is given by U; = Z uw, and as in the Gehan test the numerator of the statistic is
W =>",2ZU.

Under the null hypothesis that the treatment has no effect on the transitions between
states, and the censoring distributions in both groups are equal, the permutation distri-

bution of W has mean 0 and variance'®:

nins Zm-&-nz U2
(n1 4+ n2)(ny +ng — 1)

var(W) = (1.2)

1.2.2 MULTI-STATE MODELS

Multi-state Markov models give us a simple and flexible way to model the disease state
process, and estimate the probabilities we need to compute our test statistic. These mod-

els are well-established and have been used in a variety of medical and epidemiological

19,20

applications, including modeling hospital length of stay , competing risks of bone



marrow transplantation?!, estimating risk of death after an intermediate event??, and

23,2425 Our use

modeling an epidemic in populations susceptible to an infectious disease
of the multi-state Markov model differs from other work in that it is auxiliary; we are
simply using the model as a flexible tool to unify the measurement of patient disease
states and mortality in order to estimate the desired probabilities described in the previ-
ous section. With continuing research on multi-state models in general, the models used
for this method may become more and more sophisticated, as long as the probabilities
can still be estimated. For example, Naranjo et al. recently developed a method that
allows multi-state models to accommodate missing response and covariate data?°.

A formulation of these models can also take into account the interval-censored na-
ture of data on time to intermediate states (and if necessary, the absorbing state), as
those times typically will not be oberved exactly. For a thorough treatment of estimation
for multi-state Markov models with panel or interval-censored data, see Kalbfleisch and
Lawless?”, Gentleman et al.?®, and Commenges?”. We will briefly cover the notation and
concepts here. The notation will follow that of Kalbfleisch and Lawless?’, and Jackson?'.
An important issue is that the model should be fit under the null hypothesis, that is, it
is fit on the pooled data set. This way when two subjects are censored at the same time
and in the same state, there will be no difference in their expected rank. In this paper,
we will use the time-homogeneous Markov model to illustrate the method, though some
extensions on the model are possible and will be discussed later.

Suppose we have d states, 1, ...,d, where d represents the absorbing state, and S(t)

is the state occupied by a randomly chosen individual at time ¢. The continuous-time

Markov process can be specified in terms of transition intensities,

.. Pr(S(t+dt)=s|S(t) =r)
ars(t) = My 5t -




This is the rs*" entry of the d x d transition intensity matriz (), and represents the in-
stantaneous risk of moving from state r to state s at time ¢t. The rows of ) sum to zero,
with the diagonal entries defined to be gr(t) = —3_ . grs(t). For time-homogeneous
models, where the intensities are independent of ¢, this is related to the sojourn time
spent in state r, which has an exponential distribution with mean —¢_,!. The pattern of
zeros in the intensity matrix determines which states individuals can move to and from,
and this is specified by the investigator. For example, if the last state is absorbing, the
bottom row of the matrix will be 0 because subjects cannot move out of the absorbing
state.

Now define:

prs(u,t +u) = Pr(S(t+ u) = s|S(u) =r).

This is the rs** entry of the d x d transition probability matriz P(u,t + u), and repre-
sents the probability of moving from state r to state s in the interval (u,t + u). If we
have a time-homogeneous model, then the transition intensities are constant over the in-
terval (u,t + ), and P(u,t + u) reduces to P(¢). The models can be fit and transition
probabilities can be calculated with the msm package for R3%3!; other packages for this
exist as well. For details on the likelihood and computation of transition probabilities,

see Appendix section 1.1.6.

1.2.3 ESTIMATING THE PROBABILITIES

After we fit the model, we can estimate the transition probabilities needed to compute
our test statistic. There are three scenarios under which we need to calculate an estimate
for the probability of subject ¢ surviving beyond j: 1) when j fails after i is censored; 2)

i fails after j is censored; 3) or when both subjects are censored.

1. Suppose ¢ is observed to be in state r at tip,, i.e. Si(tim;,) = 7, is censored at ¢; >

7



tim;, and j fails at t; > ¢;. Then the probability that subject 7 survives longer than

subject j is given by:

1- pr,d(timw tj)

Pr(T > t18i(tim,) =, Ti > ;) = — pr.a(tim,, ci)
r.d\lim;, Ci

2. This is the same as the case above, with 7 and j switched. The probability that 7

would have survived longer than j is 1 — Pr(Tj > t;|S;(tjm,) = r,Tj > ¢;)

3. Without loss of generality, suppose subject 7 is observed in state r; at ¢;p,,, cen-
sored at ¢;, and subject j is observed in state r; at tim, s and censored at ¢; > ¢;.

Then the probability of ¢ surviving longer than j is estimated by:

P?“(TZ > Tj|Sz(t2m,) = Ti,Sj(tjmj) = 7“]',1—% > Ci,Tj > Cj) =

d—1d—1
Pri k(tim, C5) prjl(tjmj ) Cj) /OO ’
L : 1 —pralci,c; +1)|p; 4(ci,ci +t)dt
L= = 1 —pryaltimg, ) 1= pryaltimg, ¢5) Jo | g ¢+ lPaleg e +)
(1.3)
P(t
where p;, (1) represents the 1, d"" entry of di ) = QExp(Qt). We can see how to arrive

at (1.3) by first assuming that both subjects are censored at the same time ¢;. Then we
get the integral above by the law of total probability, integrating the survival function
for subject i weighted by the density function for the event time for subject j conditional
on each of their disease states. However, we have to weight the integral by the probabil-
ity that subject 7 is in state k and subject j is in state [ at time c;, where k£ and [ are any
of the non-absorbing disease states.

For some models, analytic forms for the function p,4(¢) are complicated functions of
the intensities, so in general we will estimate this function locally for each t over a fine

grid of values, and use numerical integration to compute the integral above. However,



for simpler models, analytic expressions for the functions are tractable (though the in-
tegral above may still need to be computed numerically). For example, for a three-state

unidirectional model with transition intensity matrix:

-q2 qi2 0
Q=1 0 —q3 g3
0 0 0

the transition probability functions to state 3 (death) would be:

oz 2" — qroeT 3" 4 qro — go3
pi3(t) = P , o Q2 F Qi3

p1s(t) = e ¥ (e? — qt — 1), q12 = q23
p23(t> =1— 6*Q23t

p33(t) =1

Symbolic algebra software such as Mathematica®? can be used to obtain these expres-
sions. Note that the multi-state Markov model is just one possible choice of probability
model. A different class of models, including semi-Markov, could be used provided that
we can estimate the necessary probabilities.

A quantity that may also be of interest to investigators is the hazard of transitioning
to the absorbing state over time. While the hazard and the limiting hazard rates of ab-
sorption can be derived for the multi-state process, this paper focuses on using the state

information and transition probabilities to augment a nonparametric comparison of sur-

33

vival. Please see Aalen et al. for details on obtaining the hazard functions



1.2.4 REMARK ON PERMISSIBLE TRANSITIONS

The advantage of using a continuous-time Markov model is that it can accommodate
transitions between any stages, but the fit will be more complex and convergence of pa-
rameters is not guaranteed, particularly if the sample size is insufficient for the num-

ber of transition parameters that need to be estimated. The allowed transitions in the
model should make sense from a clinical standpoint. For example, Satten and Longini
used multi-state models to examine the progression of CD4 cell counts before the onset
of AIDS?*. They discretized CD4 counts into 6 stages, allowing transitions only between
adjacent stages. This makes sense clinically, because someone cannot go from stage 2
(700-900 CD4 count) to stage 4 (350-500), without passing through stage 3 (500-700).

If CD4 counts are measured at visits that are far apart, then we might observe some-
one transition from stage 2 to stage 4 between visits. However, even if we never observed
them in stage 3, we know that they had to pass through stage 3 on the way to stage 4.
That is, they cannot instantaneously transition from stage 2 to stage 4. When using a
continuous-time model for a continuously changing outcome, we only need to allow tran-
sitions between adjacent stages to specify the model. In some cases, the disease process
will allow jumps. In the same example, the authors allow transitions to the absorbing
stage 7 (AIDS or death) from any of stages 3-6.

The zeroes in the ) matrix are determined by where we do not allow transitions to
occur. For example, if we disallow an instantaneous transition from state 2 to state 4,
the entry (2.4 will be 0. Zeroes will populate much of the () matrix in many chronic dis-
ease settings, and this is ideal for model parsimony and convergence of parameters. If
the model is excessively intricate for the number of transitions that we observe in the
data, then maximum likelihood estimation may yield non-identifiable parameters. This

can be an issue in the common setting of interval-censored transitions, where we only

10



observe patients intermittently and do not know the exact transition time between two
states. While we cannot specify an absolute minimum number of transitions that should
be observed to ensure stable parameters (of course, at a bare minimum we need to ob-
serve at least 1 of each allowed transition), there are prescriptions to check and remedy
the problem of non-identifiability. Initial values for ) need to be set before maximum
likelihood estimation, so we should check that the parameters converge to the same so-
lution using a variety of different initial values. If we end up with multiple unique solu-
tions, we may need to simplify the model to allow fewer transitions or states. In general,
it is good practice to use the simplest model that is consistent with the science of a dis-
ease process. Jackson also discusses options pertaining to the maximization algorithm
that may help with convergence, including adjusting the tolerance level and rescaling
the log-likelihood?". As far as the precision of model estimates, that is not a major issue
with our method as long as they are identifiable, because we conservatively fit the model

under the null hypothesis, on the pooled data.

1.2.5 COVARIATES AND PIECEWISE-CONSTANT TRANSITION INTENSITIES

Thus far we have only considered time-homogeneous Markov models. Covariates can be
included with a type of proportional hazards model, described by Kalbfleisch and Law-
less?” and Marshall and Jones® . We define ¢,4(2(t)) = qﬁg)emp( T 2(t)), where qﬁg) is the
baseline transition intensity from state r to state s, 8% is a vector of parameters, and
z(t) a vector of possibly time-dependent covariates. The parameters are interpreted just
as a Cox model for a particular transition intensity. For example, if we had a single co-
variate z that took values 0 or 1, then 3, represents the log-hazard ratio of transitioning
from state r to state s for a subject with z = 1 vs z = 0. Confidence intervals for 3,5

are also available in the msm package in R. For each observation the likelihood contri-

11



bution p,s(tx, tx+1) is replaced with the conditional probability given the time-dependent
covariates at time k, i.e. pps(t, tir1;2(tx)). Multi-state models can accommodate fixed
covariates in this way, and use time-dependent covariates to relax time-homogeneity.

Relaxing the time-homogeneous assumption is straightforward with interval censored
transitions through the use of piecewise-constant transition intensities. This can be done
by modeling a time-dependent covariate that changes value at each cut point where we
want the intensities to change. For example, if we want the ¢,s transition intensity to
change at time t., we could specify z(t) = 0 fort < t., and z(t) = 1fort > t.in
the model above. In general, suppose we allow the transition intensity matrix Q(t) to
change at time points t.,, ..., t.,,, so that Q(t) = Qo over [0,%.,), and Q(t) = Q; over
[te; te; 1), and Q(t) = Qp, over [t,,,00). Now suppose we want to calculate P(t1,t2)
Then

where e,y <1 <te, and t¢, <to <te,,,-

P(tlatQ) = P(t17t6j)P(t t0j+2)"'P(tck—lvtck)P(tht?)

Cj+1

36 That is, it is just the product of transition probability matrices over the time-homogeneous
intervals. Then we can calculate the necessary probabilities for our test statistic as be-
fore. If piecewise constant intensities are to be used in the modeling, the cut points

should always be specified prior to the study.

1.2.6 POWER AND SAMPLE SIZE

w
The test statistic is given by T' = 7(‘/‘/_), where W and var(W) are defined as in sec-
var
tion 1.2.1. Define @)1 and @2 to be the hypothesized transition matrices for groups 1 and
2, respectively. Let 17, T5 be the failure time random variables that correspond to @1,

@2, and let C1, C5 the censoring random variables. Let t1, to be the random variables

for the final observation times, and S1(¢1) and Sz(¢2) be the random states at those visit

12



times for each group. Define § = P(T7 > T5|Q1,Q2,C1,Co, S1(t1), S2(t2)) — P(T1 <
T5|Q1,Q2,C1, Ca, S1(t1), Sa(tz)). Without loss of generality, under the alternative that

& > 0, the power of the test is given by:

n1n25

1-5%1-@(21_5—7(%

)

where 3 is the probability of making a type 2 error, ® is the cumulative distribution
function of the standard normal distribution, nq and no are the sample sizes in each
group, and z, is the p'" percentile of the standard normal distribution. Obtaining § and
an estimate for the variance is difficult to do analytically, as they will be complex func-
tions of the transition intensities, censoring distributions, and observation times. How-
ever, we can use simulation to obtain an approximate power or sample size for the test.
To do so, first we need to specify hypothesized values for Qg and @)1, censoring distribu-
tions, and an observation scheme. We can then generate multi-state data for each group,
using a very large sample size for each group, and apply the method to this generated
data set. Jackson provides a function for this type of data generation in the msm pack-
age in R3031. Let n*lg be the simulation sample size for group 1 and ng = lmf where

0 < k < 1. After generating the data, we can estimate § with § = ﬁﬁ/, and var(W)
172

with vm) using formula (1.2) in section 1.2.1. Let 6 = ﬁ\/ vm). Then for
2

1
given type 1 and type 2 errors a and 3, we can estimate the necessary sample size per

group with

and ny = kn;.

S |:(zla/2 - Zﬁ)&} ?
b}

niy :nl
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1.3 SIMULATIONS

We performed several simulations to assess power and type 1 error of the test statis-
tic when the data were generated under a multi-state Markov model, when the model
was misspecified, and under both equal and unequal censoring distributions. We com-
pared the results of our test with the Wilcoxon rank-sum test on the unobserved exact
death times, the Gehan-Wilcoxon test'”, and the G” family of tests of Harrington and
Fleming®’, with p = 0 (log-rank test)*®3° and p = 1 (Peto & Peto Wilcoxon test)?".
With our proposed test and the Gehan test, we computed the test statistic using the
permutation variance, and compared it to a standard normal distribution. For each set
of simulations, censoring distributions were uniformly distributed, each subject’s state
was observed at the same fixed set of times, {1,2,3, ...}, until failure or censoring, and
transitions into the absorbing state are assumed to be observed exactly while all other
transitions are interval censored. For each scenario, 1000 repetitions were performed for

type 1 error, and 500 repetitions for power.

1.3.1 MOoDEL CORRECTLY SPECIFIED

First we generated the data from a 3-state progressive multi-state Markov model under
Hj (Table 1.1). One can think of the 3 states as initial diagnosis (1), progression (2),
and death (3). Under this model, the size of our proposed test was around the nominal
level of 0.05 and comparable to that of the other tests considered. This held for each of
the sample sizes considered, and under both equal and unequal censoring distributions.
This also held for unequal sample sizes (results omitted) in the two groups.

For power, there were three types of alternative distributions considered (Table 1.2).
For group 1, denote the transition intensities from state 1 to 2 and state 2 to 3 by \; =

0.2 and Ao = 0.1, respectively. Let c1 A1 and coXo be the transition intensities for group
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Table 1.1: Type 1 error (%): 3-state progressive multi-state Markov model (correctly specified).
*Wilcoxon rank-sum test performed on (unobserved) exact death times.

Censoring n; =ns Wilcoxon* Gehan Peto-Peto Log-rank Proposed

Equal, 30 4.5 4.4 4.3 5.1 4.3
50 % 50 5.0 5.6 4.9 5.4 5.2
100 3.1 4.7 4.4 4.9 4.2

Equal, 30 4.7 5.7 5.2 5.3 5.4
70 % 50 6.0 5.4 5.6 5.9 5.9
100 5.5 4.4 4.6 4.4 4.6

Unequal, 30 4.5 4.2 4.9 5.2 4.0
50, 68% 50 5.0 6.3 6.4 5.9 5.7
100 3.1 5.0 5.5 5.1 4.9

Unequal, 30 4.5 4.2 4.9 5.6 4.9
70, 81 % 50 4.1 4.4 6.3 6.5 5.2
100 6.6 5.5 7.0 7.7 6.9

2. The alternatives considered were: (1) ¢; = c2 = 1.5; (2) c1 = 2,¢c2 = 1; and (3)
c1 = 1,c9 = 2. In the first case, the hazard ratio of transitioning to the next state for
group 2 versus group 1 was 1.5 for each transition. In the second alternative, the haz-
ard from state 1 to state 2 is twice as high for group 2, but the hazard from state 2 to

3 is the same. This corresponds to group differences in only the intermediate transition.
And in the third case, the hazard from state 2 to 3 is twice as high in group 2, but the
same for state 1 to 2 (group differences in last transition, but not the intermediate one).
Under alternative 1, of the four tests, the proposed test and the log-rank test performed
best and were comparable to each other. Under the second alternative, the proposed test
was far superior to the others under both equal and unequal censoring, with a relative
increase of more than 20% power over the next best test in each simulation. Under al-
ternative 3, the proposed test was inferior to the log-rank and the Peto-Peto test, but
comparable to Gehan’s test.

With the same models and heavier censoring, the percentage gain in power for our
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Table 1.2: Power(%): 3-state progressive multi-state Markov model (correctly specified). *Wilcoxon
rank-sum test performed on (unobserved) exact death times

Scenario  Censoring n; =mny Wilcoxon® Gehan Peto-Peto Log-rank Proposed

1 Equal, 50 74.8 55.4 60.4 63.0 64.0
50, 35 % 100 95.4 84.6 87.6 88.6 89.4

Equal, 50 71.6 41.2 45.4 44.8 48.6

70, 55 % 100 94.4 71.0 74.2 76.4 80.6
Unequal, 50 72.6 49.6 53.4 55.0 56.6

50, 52 % 100 93.0 76.4 81.4 84.4 84.8
Unequal, 50 70 41.6 474 50.4 52.0

70, 69 % 100 93.8 62.4 69.6 73.6 76.0

2 Equal, 50 27.4 23.8 23.2 18.0 28.8
50, 42 % 100 47.2 40.8 414 36.6 49.8

Equal, 50 25.0 21.2 21.4 20.2 31.6

70, 61 % 100 46.8 36.0 34.8 32.0 49.6
Unequal, 50 26.0 20.6 22.6 21.8 28.2

51, 59 % 100 474 43.2 46.2 45.4 59.2
Unequal, 50 30.4 21.0 23.6 24.6 374

70, 73 % 100 47.8 35.4 41.6 43.0 63.2

3 Equal, 50 63.8 45.0 49.6 53.5 45.4
50, 35 % 100 93.8 78.3 82.2 85.4 77.6
Unequal, 50 70.2 45.6 51.2 52.7 43.7

50, 52 % 100 94.8 73.4 79.4 82.4 73.2
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Table 1.3: Type 1 error(%): 3-state progressive model with Weibull distributed sojourn times, with
varying shape parameters for state-to-state transitions. *Wilcoxon rank-sum test performed on (unob-
served) exact death times

shape(ki,ks) Censoring n; =ng Wilcoxon® Gehan Peto-Peto Log-rank Proposed

(0.5,0.5) Equal, 30 4.0 4.1 4.3 4.5 3.7
50 % 50 6.0 4.4 4.9 5.4 5.5

100 4.7 4.0 4.1 4.3 4.8

Unequal, 30 4.7 5.2 5.3 5.8 7.8

50, 68% 50 4.7 6.0 6.1 6.8 9.4

100 5.6 5.3 5.2 5.7 14.5

(1.5,1.5) Equal, 30 5.6 5.3 4.5 5.6 5.0
50 % 50 3.9 5.0 5.4 5.2 5.2

100 4.9 5.3 5.4 5.4 4.9

Unequal, 30 5.4 4.6 4.6 4.6 4.8

50, 68% 50 5.3 5.6 5.2 5.2 5.2

100 5.5 6.0 6.4 5.6 6.1

(0.5,1.5) Equal, 30 5.2 5.7 5.8 5.4 5.4
50 % 50 5.1 4.7 4.7 5.0 4.9

100 6.0 5.7 4.9 4.8 5.1

Unequal, 30 4.5 4.6 3.9 4.5 3.9

50, 68% 50 4.4 4.3 4.0 4.1 3.7

100 4.6 4.7 4.1 4.2 4.9

proposed test versus the others was more substantial under the first two alternatives.

1.3.2 MODEL MISSPECIFIED

When the model was misspecified with a 3-state process generated by Weibull sojourn
times in each state (Table 1.3), the size of the test was correct under equal censoring
distributions, but was inflated for some parameter levels under unequal censoring distri-
butions. This was most severe with heavy censoring (50+% in each group) and when the
shape parameter (k) for each transition time was equal to 0.5, which indicates a transi-

tion rate that decreases over time. With k& = 1.5 for each state transition time, the type
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1 error was also inflated for larger sample sizes, and was exacerbated by heavy censor-
ing. With & = 0.5 for the state 1 sojourn time, and & = 1.5 for the state 2 sojourn time,
the size of the test was accurate under equal and unequal censoring and all sample sizes.
This may be because the probabilities were getting underestimated for one of the tran-
sitions, and overestimated for the other. Under unequal sample sizes (results omitted),
the type 1 error was controlled under equal censoring, but in some cases inflated under
unequal censoring as before.

Under the alternative with Weibull-distributed sojourn times (Table 1.4), the results
were similar to those under the correctly specified model (with equal censoring). As be-
fore, say for group 1 we have scale parameters A\; and A9 for transitions from state 1 to
2 and 2 to 3, respectively. Then for group 2 we used ci A1 and co s as scale parameters.
We set the shape parameters k; = k2 = 0.5 (decreasing hazard rate over time), and
k1 = ko = 1.5 (increasing hazard rate). The alternatives here correspond to the same
used with the model correctly-specified. If the shape parameters were set to 1, this would
correspond to the same data-generation process given under the multi-state Markov
model. Unsurprisingly, the results for each alternative were similar to those obtained
with data generated by the Markov model under equal censoring (see Table 1.2). Results
for unequal censoring were biased when the shape parameters were less than 1, and are

not presented.

1.4 EXAMPLE

We will illustrate the proposed method on data from a clinical trial of patients with
amyotrophic lateral sclerosis (ALS)*!. Subjects in the trial were monitored for two end-
points: survival, and rate of decline in neurological function as measured by their ALSFRS-

R scores. The ALSFRS-R is a functional rating scale by which physicians estimate the
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Table 1.4: Power(%): 3-state progressive model with Weibull distributed sojourn times, with varying
shape parameters for state-to-state transitions. *Wilcoxon rank-sum test performed on (unobserved)
exact death times

Scenario shape(kj, k2) Censoring n; = ny Wilcoxon® Gehan Peto-Peto Log-rank Proposed

1 (0.5,0.5) Equal, 50 24.5 17.2 18.2 18.1 19.6
60, 50 % 100 44.6 31.2 31.7 31.5 32.5

(15,15)  Equal, 30 80.0 62.9 67.5 70.0 69.3
51,33% 50 96.7 84.5 87.4 90.5 89.7

2 (0.5,0.5) Equal, 50 19.4 12.2 14.6 14.6 16.2
58,50 % 100 28.4 21.0 18.8 18.8 25.6

(1.5,1.5) Equal, 30 26.7 21.9 22.6 20.9 27.6

51,42 % 50 41.4 31.5 32.1 28.2 39.8

3 (0.5,0.5) Equal, 50 24.1 15.1 16.7 17.2 15.6
60, 50 % 100 45.2 27.0 28.7 29.8 25.1

(1.5,1.5) Equal, 30 78.4 55.7 60.9 68.3 57.3

51,34 % 50 95.6 80.8 84.7 89.9 82.3

degree of functional impairment in ALS patients*?. The scale ranges from 0-48, with a
higher score indicating better function. ALSFRS-R was measured periodically in patients
until death, drop-out, or the end of the study. We discretized this score into 4 states:
37-48 (state 1), 25-36 (2), 13-24 (3), 0-12 (4). Subjects could go back and forth between
states, and die from any state. The model is displayed graphically in Figure 1.1.

We fit the model to the longitudinal data using the msm package for R*’, and ob-

tained the following transition intensity matrix:

—.00591  .00587 0 0 .00004
000764 —.00458 .00364 0 .00017
Q= 0 .000861 —.00505 .00239  .0018
0 0 00228  —.00882 .00654
0 0 0 0 0
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Figure 1.1: Multi-state model for amyotrophic lateral sclerosis (ALS) trial, where states represent
categories of ALS Functional Rating Scale-Revised scores. 1: 37-48; 2: 25-36; 3: 13-24; and 4: 1-12.

From this, we can get the transition probability matrix, P(¢), at any time ¢. For ex-

ample, for this model, P(365) is given by:

State 1 State 2 State 3 State 4 State 5
State 1 0.160 0.378 0.246 0.051 0.164
State 2 0.049 0.282 0.291 0.075 0.303
P(365) =
State 3 0.008 0.069 0.240 0.093 0.591

State 4 0.001 0.017 0.088 0.067 0.826

State 5 0.000 0.000 0.000 0.000 1.000

This gives us the probability of a subject being in a particular state after 1 year (365
days), given their current state (in the matrix, current state is indexed by rows). For
example, the probability of a subject dying within a year given that they are currently
in state 1 is estimated to be 0.164. A plot of the fitted survival probabilities from each
state is given in Figure 1.2. We can see that estimated survival is worse for subjects with
lower ALSFRS-R scores, so we hope to recover some information on survival that is lost
due to censoring by accounting for the subjects states. We examined survival with re-
spect to the variable site of onset, which is the type of disease. The log-rank test gave a
z-statistic of -2.249, with two-sided p-value .0245. For the Peto-Peto Wilcoxon test, Z =

-2.296, with a p-value of .0217. After applying our method, we obtained a Z-statistic of

20



e |
~ o
. —— From State 1
N --- From State 2
NN From State 3
© LR ---- From State 4
(< B
» Lo
(0] \
= \
% A
© \
Q : .
o o \
13 \
o \
© \
2 \
s \
5 X \~\
1) o \
\
el s
Qo \
= \
[T \
N
o
<
o
T T T T

Time (days)

Figure 1.2: Plot of survival probabilities from each state based on fitted multi-state model.

-2.39 and p-value .0166.

1.5 DISCUSSION

The proposed test aims to use auxiliary information to test for group differences in sur-
vival when there are a general number of intermediate states and possible transitions
between those states. It should be noted that with censoring, we are under a somewhat
more restrictive null hypothesis of equality of transition intensities for each group. The
reason for this is because we chose to fit the model on the pooled data. The advantages
of doing so are that we will get less variable model estimates under the null, we can use a
permutation variance when we have equal censoring or when the model is correctly spec-
ified, and subjects who are censored at the same time and in the same state will have the

same score. The drawback is that we may not be gaining much, if any, power under cer-
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tain types of alternatives (see Simulations). Another option is to fit separate models for
each group, and get a bootstrap estimate of the standard error. We did not assess how
this would perform relative to fitting under the null.

There are a few advantages and disadvantages to using the multi-state Markov model
for auxiliary information. A major advantage is that we can estimate the model param-
eters even when we do not know the exact transition times between states, and get sur-
vival probabilities conditional on observed disease status. It is also flexible and can ac-
commodate a number of disease states, forward and backward transitions, and different
observation times between subjects. The main limitation is that it is a parametric model,
and if it is incorrect, the test can behave poorly when censoring distributions differ sub-
stantially between groups. Semi-Markov models may be more appropriate and can also
be used to estimate transition probabilities in some settings, but this will likely require
knowing the exact transition times, and disallow backward transitions in the model.

We can also incorporate covariates into the model using a type of proportional haz-
ards model. The transition matrices for a particular set of covariates can be calculated,
and the transition probabilities obtained from there. Adding too many covariates, how-
ever, can yield poor model estimates because the number of parameters increases by the
number of possible transitions for each additional covariate. To limit this, covariates can
be constrained to only affect specific transitions. One important application of this is
using time-dependent covariates to allow the transition intensities to change at specific
time points. This allows us to relax the strict assumption of time-homogeneity.

Assessing the fit of the model should be of interest to investigators who decide to use
this method. While diagnostics are limited for models with panel-observed or interval-
36

censored data, some methods are available. See Titman and Sharples for a review

Limitations of this method include that it will not be valid under informative censor-
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ing or informative sampling times, i.e., when the censoring times or observation times
depend on the current disease state of the individual. Sweeting et al. developed a model
that incorporated informative observations times into the likelihood, which would be ap-
plicable with our method*3. Additionally, a calculation for desired sample size may be
difficult to obtain analytically, but we have provided a procedure to approximate it via
simulation.

We have shown through simulations that in some settings, use of this method can im-
prove power over the traditional tests. The most substantial improvement occurred with
a progressive disease where the mechanism of treatment mainly delays transition to the
intermediate states, which is often the case for targeted cancer treatments. The reason
for this is that censored individuals in the non-treatment group will, on average, be in
later disease stages and thus less likely to survive than those on treatment. In general,
the utility we get from this method versus others will depend on the amount of censor-
ing, the data-generation process, and the treatment mechanism. While the proposed
method performed increasingly better than others under heavier censoring, we need to
observe at least a few transitions into the absorbing state in order to get reliable parame-
ter estimates. Thus, the amount of censoring may not be excessively high, particularly in
relatively small samples.

We also determined that the method yields a valid test under equal censoring distribu-
tions, even when the model does not match the data-generating process. Thus, it will be
most appropriate to use in settings with roughly equal follow up, such as clinical trials.
The ill effects of model misspecification with unequal censoring can possibly be mitigated

by using piecewise constant transition intensities with a sufficient number of cut points.
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1.6 APPENDIX

The Kolmogorov forward differential equations relate the transition probability matrix

P(t) and the transition intensity matrix Q:

The solution to this gives us P(t) = exp(Qt), where exp denotes the matrix exponential.
This is defined as the power series: Y 7 o £X¥, where X is an n x n matrix. This can be
difficult to compute, but in most cases, it can be computed via an eigensystem decompo-
sition of Q. That is, if Q has k distinct eigenvalues, di, ..., d, then Q = UDU ™!, where
D is the diagonal matrix with entries dy, ...dg, and U is the matrix whose columns are
the eigenvectors of Q. Then P(t) = UeP'U~1.

The full likelihood for the model is given by the product of the transition probabilities

between states over all individuals and observation times:

N my

L(Q) = [T T Psittiw),Sstts psr) (it tisprn)

i=1k=1
Maximum likelihood estimates for the transition intensities can be computed by nu-
merical optimization of the likelihood, via derivative-free algorithms such as Nelder-
Mead**, or through quasi-Newton methods*®. Jackson notes that this likelihood is only
valid when the sampling times t;; are non-informative, that is, the current observation
does not depend on the current state. For more on this, see Jackson®’ and Gruger?S. For
details on modeling informative sampling times as part of the likelihood, see Sweeting et

al. %3,
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Estimation for an Accelerated Failure

Time Model with Intermediate States

2.1 INTRODUCTION

In many chronic diseases, patients move through a series of progressively worsening dis-
ease states until a primary failure such as death. Further, in clinical studies of progres-

sive diseases, we often will not know every subject’s failure time because many are lost to
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follow-up or do not fail within the time period of the study. We may, however, also have
information on their disease course recorded up to their last follow-up time. For a clini-
cal study of a progressive disease, we will provide an estimator for the effect of treatment
on survival time that incorporates the information from these intermediate disease states
in a manner relevant to the primary failure. When there are relatively few observed pri-
mary failures in the study, it can be challenging to precisely estimate this effect. The
goal of this paper is to utilize the intermediate states to get a more precise and holistic
estimate of the treatment effect.

The proportional hazards (PH) model has been used to obtain estimates of a survival
treatment effect with auxiliary information, for example in Lu and Tsiatis*”. While the
PH model is useful for testing and hazard ratio estimation, the estimate does not have
direct interpretation in terms of the survival time for a subject. Alternatively, the esti-
mate for an accelerated failure time (AFT) model has the straightforward interpretation
of the treatment accelerating (or decelerating) the average time to failure. This makes it
an appealing alternative to the proportional hazards model.

The standard semiparametric AFT model relates the covariates to the logarithm of

the survival time through the following regression model:

log(T;) = By Xi + € (2.1)

where T; is the failure time for subject ¢, ¢; are i.i.d. with unspecified distribution func-
tion F', By is a vector of parameters, and X; is a vector of covariates.

Several methods for estimating parameters of the semiparametric AFT model arose
from treating the censored data linear rank tests as estimating equations*®*°. These lin-
ear rank tests include the popular log-rank®®3?, Peto-Peto’, and Gehan®’ tests. The

weighted-log rank test with the Gehan weight has become a particularly attractive es-
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timating function due to properties that make it more practical for model fitting than
other methods. Fygenson and Ritov®!' showed that this estimating equation is mono-
tone in each component of 3, and Jin et al.’? developed an algorithm using linear pro-
gramming to reliably estimate the parameters in multidimensional settings. Further, the
Gehan function is amenable to smooth approximations, which allows for computationally
simpler parameter and variance estimation "%,

These estimators for AFT models are based on univariate failure times, so they need
to be modified to incorporate the intermediate states. Under the same premise of us-
ing linear rank tests as estimating equations, we propose estimating the AFT parame-
ters based on a recent extension of the Gehan test statistic proposed by Ramchandani
et al.”® that accounts for the observation of intermediate events, such as disease progres-
sion, among censored subjects. The test statistic modifies the Gehan test by estimating
probabilities for each subject surviving longer than each of the other subjects conditional
on their follow-up times and their last observed disease states. These probabilities are
estimated using multi-state models, and allow us to compute the expected Wilcoxon
ranks of survival for each subject conditional on what we observe. The idea is that we
can obtain more precise parameter estimates by using the intermediate disease states as
additional information to the usual death and censoring times. This allows us to mean-
ingfully include the intermediate transitions into parameter estimation while not allowing
them to dominate the estimator. The key assumption that we have to make in order to
obtain interpretable parameter estimates is that the acceleration parameters act uni-
formly on each transition of the process. While this may be a strong assumption, it is
necessary to preserve the AFT structure from origin to the primary failure. The AFT
model is a natural one to use in this case because of its straightforward interpretation in

terms of linearly accelerating or decelerating a disease process.
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In section 2.2, we will describe the model under which we are operating, and provide
a formulation of the proposed estimating equation under the assumption that the proba-
bilities were known. We will then describe the Aalen-Johansen estimator, which we pro-
pose using in order to estimate the probabilities, and discuss properties of the estimating
equation. We follow by proposing a method for estimating the variance of the parame-
ters based on a recent Monte Carlo smoothing method given by Jin et al®®. In section
2.3, we describe the simulation studies. We illustrate the method on a recent clinical
trial for amyotrophic lateral sclerosis (ALS) in section 2.4, and conclude with a discus-

sion in section 2.5.

2.2 METHODS

Suppose T; is a failure time, and C; the independent censoring time for subject i; let
Y; = min(T;, C;), ef = log(Y;) — /' X; (the observed residual), and §; = I(T; < C;),i =
1,...,n. The Fygenson-Ritov (Gehan) estimating equation for fitting the semiparametric

accelerated failure time model is given by:

Ua() = o5 30 D2 6K~ X))I(e] < ef) (22)

i=1 j=1
With a binary covariate, this equation is simply the Gehan-Wilcoxon test applied to the
observed residuals, and counts all the pairs for which we know that log(T;) — /'X; <
log(Tj) — B’ X, i.e. that the failure time residual for one individual is less than the fail-
ure time residual for another. However, we can possibly get better precision if all pairs
of residuals, whether uncensored or censored, contribute to the statistic in a meaningful
way. The idea is to base an estimating equation on the expected scores of Ug () condi-
tional on what we observe. Let éi’g = log(T;) — X5 denote the possibly unobserved failure

time residual for individual 7. A straightforward modification to the above estimating
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equation would be:

1 n n ~ ~
Up(8) = — SN - X)Pe] < élel e 6:,05) (2.3)
i=1 j=1

where P(éf < éf \ef , e? ,0;,0;) represents the probability that the failure time residual
for subject 7 is less than that of subject j, conditional on each of their residual follow-up
times and their failure status. This estimating equation is related to Efron’s modifica-
tion of the Gehan-Wilcoxon test'. Another way to think of the conditional probabilities
in (2.3) is in terms of disease states. In the above setting, we are in the simple case of
two disease states: alive and dead, with §; the indicator for the latter. However, if we are
in the setting of a chronic disease where individuals pass through multiple states on the
way to failure, we can condition the above probabilities on the disease states of the indi-
viduals at each of their last observed times to get a more precise estimate of the model
parameters. Examples of this type of intermediate data include CD4 counts in studies of
time to AIDS or death, neurodegeneration from ALS as measured by ALSFRS-R scores,
and Alzheimer’s disease transitioning from mild to severe. This can be an especially use-
ful extension for studies with relatively low failure rates over long periods of time.

To develop this idea more precisely, suppose individuals move through a finite set of
states S = {0,1,2,..., D} governed by a progressive multi-state process, where 0 is the
initial state, D represents the single absorbing state, and that transitions to each state
are observed exactly. We will consider progressive models of the forms given in Figure
2.1(a) and 2.1(b). Let S;(t) denote the state of individual 7 at time ¢, let T} 4, denote the
random variable for the transition time for individual ¢ from state g to state h, and let T;
be the absorbing failure time for individual ¢ (i.e. the time from origin to the absorbing
state). We will assume that each transition from one state to another follows the AFT

model, i.e. log(Ti,gh) = By Xi + €i,gh- This assumption is made to preserve the AFT
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Figure 2.1: a) Progressive multi-state model; b) Progressive multi-state model where absorbing state
can be reached from any state; c) lliness-death model without recovery from illness

Death

structure on the absorbing failure time from origin. For example, in the case of a strictly
progressive model as in 2.1(a), the failure time random variable is simply T" = Tp1 + T12 +
... + Tp_1,p. Simple algebra shows that log(T') also follows an AFT model with the same
parameter vector 3y (but with a different error term). As another example, under an
illness-death model without recovery as pictured in figure 2.1(c), there are three possible
transition time random variables for an individual: Ty, T2, and Tyo, with 2 being the
absorbing state. Then the absorbing failure time random variable can be written as T' =
(Tor + T12)I(To1 < To2) + To2l (T2 < To1). In this case log(T") also follows an AFT model
with the parameter §y. Similar constructions follow for models with more than 3 states.

Additionally, we let C; be a censoring random variable independent of the multi-state
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process, Y; = min(T;,C;), and 6; = I(T; < C;). Let e = log(Y;) — B'X;, and é° =

log(T;) — ' X;. Under the model described, a reasonable estimating equation for 3 is:

n n

Up(8) = 5 3D (Xi — X)P(& < &15:(e0), 55(c]) (24)

i=1 j=1
where P(&° < €;°|S;(e; ) Sj(e? )) represents the probability that the failure time residual
for individual ¢ will be less than the failure time residual for individual j conditional on
each of their observed disease states at their observed follow-up time residual. This ex-
tension of the Gehan estimating equation is based the extension of Gehan’s test statistic
proposed by Ramchandani et al.®® to account for intermediate disease state information.

At B = By, this equation is centered around 0 at the true probabilities (see Appendix,

section 2.6.1). The estimating equation in (2.4) can also be written as:

= ZZ (Xi — X;) P <€?18i(€)), Si(e))) — P(e > €,°|Si(e]), Si(e))]
i g<i
(2.5)
This formulation of Up(8) can be identified as an order 2 U-statistic, thus giving us
asymptotic normality of the score function at a fixed £, and providing a way of comput-

ing the covariance matrix of \/nUp(f). From standard U-statistics theory, the covariance

matrix D(() has elements that can be estimated with:

Dy (B) = % SOSTS (X — X)) (Xim — X 05500 (2.6)

it g kA

where ¢ = P(&7 < &°(Si(e), S;(€)) — P(6:° > €,°|Si(e}), Sj(e])) 7.
When we know that log(T;) — ' X; < log(Tj)— ' X, the probability in the summand is

1, just as in the Gehan estimating equation, Ug(3). It follows that we can rewrite Up(/3)
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as the sum of Ug() and an additional term of probabilities for censored subjects:

Up(8) =3 3 (Xi = X))I(e] <€)

{80+ (1 =0)[P(&7 < &715:e)), Si(e)) = P(&7 > &718:(eD), S5(e))] | (2.7)

The summand of the estimating equation Up(f3) is based on the true probabilities, but in
practice we have to estimate the probabilities. This can be done in a number of ways us-
ing event history models that account for incomplete observation, as long as the param-
eters that the probabilities depend on have certain properties, which will be discussed in
section 2.2.3. In this paper, we will estimate the probabilities nonparametrically using

the Aalen-Johansen estimator.

2.2.1 THE AALEN-JOHANSEN ESTIMATOR

To estimate the failure probabilities, we propose using the empirical transition matrix
developed by Aalen and Johansen”®, fit on the residuals of each transition time. The
Aalen-Johansen estimator is a natural generalization of the Kaplan-Meier estimator for
non-homogeneous Markov chains with a finite number of states®?. Suppose we have a fi-
nite number of states S = {0,1,..., D}. Let oy ;(t) denote the transition intensity from
state g to state h, where g # h. This describes the instantaneous risk, or the hazard, of
transitioning from state g to state h at time t. Now, let P, ;(s,t) denote the probabil-
ity of a subject being in state h at time ¢ given that the subject was in state g at time

s. This is called a transition probability, and it is the g, h entry of the d x d transition
probability matriz P(s,t). The transition probability matrix can be written as a function

of the transition intensities through the product integral:
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P(s,t) = [[I + dA(u)]

(s:t]
where I is the identity matrix, and A(w) is the cumulative transition intensity matrix
with elements Agp(t) = f(f agp(u)du. Let Ngp(t) be the number of individuals observed
to experience a transition from state g to h between time 0 and time ¢, and let Let Y(?)
be the number of individuals in state g just before time ¢. For g # h, we can use the

Nelson-Aalen estimator to estimate Agp(t), which gives Ay (t) = g dj;;?é;)' Also, we let

Agy(t) = — > hitg flgh(t), so that the rows of the (D + 1) x (D + 1) matrix A(¢) sum to 0.
Suppose u; < ug < ... are the exact times when a transition between any two states are

observed. Then the estimate for P(s,t) is given by the matrix product:

P(s,t) = [ [T+ dA(uy)]

s<u; <t

In the presence of censoring, these transition probabilities will be used to estimate the
probability of an individual’s lifetime being less than another individual’s, on the scale of
the failure time residual, é® = log(T) — ' X. The rationale for estimating the transition
probabilities based on the residuals is that, under our assumed model, the trajectory of
each patient based on their residual transition times is identically distributed at the true
Bo. There are several statistical packages that allow for the computation of the Aalen-

Johansen estimator. One excellent option is the etm package in R 53

2.2.2 THE ESTIMATING EQUATION

For the estimating equation Up(/3), when comparing two subjects, we have two scenar-

ios where we would need to estimate a probability: when subject 7 is censored and j is
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uncensored, and when both are censored. In the first case, suppose subject ¢ is censored
in state k, j is uncensored, and e’f < ef. Then we can estimate [P (&7 < éjBISi(ef) =
k, Sj(e]) = d)—P(&7 > ¢;7|Si(e]) = k, Sj(e]) = d)] with [Pea(e), €] —)+Prale] , e]) 1],
where t— indicates a time just before time . Now suppose that subject i is censored in

state k, and subject j is censored in state {. Then [P(e}ﬂ < éjﬁ]Si(e?) = k,Sj(ef) =

k) —P(e” > éj5|S¢(ef) =k, Sj(e?) = k)] can be estimated with:

o) o
[ = Poate) DlaPatel 0 = [ 1= Poatel DlaPoate) ) (28)
i €5

where by convention we define P(e;,t) = 0 for t < e;. Note that these expressions are
general in the sense that we can use them for any multi-state models where we estimate
transition probabilities. In the case of the Aalen-Johansen estimator, the probabilities
are step-functions, so in practice equation (2.8) is computed with sums. Denote the max-
imum follow-up residual time as eﬁwx, and let t1,%9,... be the jumps in ]5(3, t) for any

fixed s. We can compute (2.8) as:

> [ = Puales, t))[Pleits) — Praleitioy)]

B< t Segnam

i

— > [1— Pra(ei, t)][P(ej. t1) — Pralej, tio1)]

l: ef< t; §e§mm

l: e

We now denote the estimating equation Up(53) as Up([3; A) to indicate that the equa-

tion depends on the estimated cumulative transition hazard matrices fl() The estimat-
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ing equation can now be written as:

[Psi(eﬁ) d(elﬁ’ jﬁ ) + P (66) d( zﬂa jﬂ) 1] + (1 - (51)(1 — (5])

[/:O[l—Pk/ A2, )Py a(c? )—/e:o[l—Phd(ef,t)]dpk/,d(ef,t)}} (2.9)

i J

The estimate £ is the value of 8 where U p(5; /l) crosses 0.

In the simple two-state model, this estimator is similar to the Peto-Prentice version
of the weighted log-rank estimator. Note that by using the Aalen-Johansen estimator
for the probabilities, we are additionally making the assumption that the error terms
for the multi-state process arise from a non-homogeneous Markov process. However, the
method is more general as the probabilities can be estimated in other ways as well, in-
cluding parametrically. Alternative estimates for the probabilities may be used if one
wants to relax the Markov assumption, such as those proposed by de Una-Alvarez and
Meira-Machado, and Meira-Machado et al®’:%!. Nevertheless, simulations suggest that

the proposed estimator works well in several non-Markov settings as well.

REMARK

It is clear that the proposed estimating equation is neither continuous nor monotone in
B. This is not a major problem when there is a single covariate, but for multidimensional
settings, it can make estimation of 3 difficult and admits the possibility of multiple so-
lutions. In these settings, we could first find a consistent auxiliary estimator, such as the
Gehan estimator that is obtained with linear programming as described by Jin et al.??.
We would then solve for 3 as the minimizer of the norm |[Up(8; A)| using a derivative-

free optimization algorithm such as Nelder-Mead®?, and use the consistent auxiliary es-
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timator as an initial value to arrive at a solution in the correct neighborhood of SGy. In
general, it is encouraged to use various starting values to ensure that the estimates ob-

tained are the global minimizers.

2.2.3 ASYMPTOTIC PROPERTIES OF THE ESTIMATING EQUATION AT [,

As described in Section 2, the estimating function Up(f3) is a U-statistic when we know
the true conditional probabilities in the summand of the statistic of equation (2.5). Those
conditional probabilities are based on the true cumulative hazard process A(-) described
in section 2.2.1. In practice we do not know the true hazard process, and we propose
estimating it to obtain the necessary transition probabilities. By estimating this pro-
cess, the estimating equation is no longer strictly a U-statistic, so the usual properties

of U-statistics do not directly apply. Randles, however, gives conditions under which U-
statistics with estimated parameters remain asymptotically normal with the same mean
as their counterparts with the known parameters®?. Suppose we have a U-statistic, U()),
that depends on the parameter vector A\, and with mean §(X). If A is estimated from our
data with X at a root-n consistent rate, and \/ﬁ(j\ — A) asymptotically normal with mean
0, then we will have that \/n[U()) — 8()\)] is asymptotically normal with mean 0.

Under a setting where the hazard process depends on a finite-dimensional parameter
vector that is estimated with root-n convergence and asymptotic normality (e.g. if time
is discrete), this result can be directly applied to our estimating function Up(fp; fl) In
the continuous case, the cumulative hazard process A(-) for the Aalen-Johansen estima-
tor is infinite dimensional, so the result from Randles does not directly apply. While we
do not currently have a formal proof, our numerical studies suggest that the result gen-
eralizes to our case where we estimate 121(), a continuous-time stochastic processes that

is weakly convergent to a Gaussian process at a root-n rate. Andersen et al. give condi-
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tions for weak convergence of \/n[A(-) — A(-)] to a matrix of zero-mean Gaussian mar-
tingale processes®. It would follow that /n[Up(Bo; A) — 0] is asymptotically normal and
mean (, making it reasonable to use as an estimating equation for fJy.

We must also consider how estimation of the nuisance parameters effects the asymp-
totic variance of \/nUp(5o; fl) With the known probabilities, the sample variance could
be estimated with equation (2.6). However, there is potentially an additional variance
component of our score equation due to estimation of the transition probabilities. Ran-
dles discusses how the asymptotic variance of \/n[U(A) —8(\)] can differ from /n[U()\) —
O(A\)], and gives an expression to obtain the correct variance (see Appendix, section 2.6.2).
For our estimating equation with the estimated probabilities, the variance is intractable
to obtain analytically even in simple cases. Our simulation studies, however, suggest that
the variance estimator given in equation (2.6), with the estimated probabilities replacing
the true probabilities, provides a reasonable estimate of the variance of our estimating
equation. Ultimately we want to make inference on ﬁ , and this is a key component to do
so. Alternatively, a bootstrap approach can be used to obtain standard errors for B to
bypass direct variance estimation.

If the score function were differentiable in 3, the consistency and asymptotic normality
of the score equation would induce consistency and asymptotic normality of the estimate
3 through the usual Taylor series expansion: /nU(8) = v/nU(Bo) + B(Bo)v/n(B — Bo) +
op(1), where B(fy) is the expectation of the derivative of the score at 8y. In general,
the score function will be non-smooth and thus non-differentiable in 8, in which case
we require the assumption of local asymptotic linearity of the estimating equation in an
O(nfl/ 2) neighborhood of . Consistency and asymptotic normality for 3 would then

follow from similar arguments given by Tsiatis, and Ying*’:64.
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2.2.4 INFERENCE PROCEDURE FOR 6

It is well known that variance estimation for the parameters of the ordinary semipara-
metric accelerated failure time model is difficult. This is because the estimating equa-
tions are non-smooth, and the usual sandwich variance estimate involves the derivative
of the unknown hazard function of the error terms. For the general weighted-log rank es-
timating functions, it has been established that the covariance matrix for \/H(B — Bo) is
given by V.= B7!DB™'T where B is the non-singular slope matrix of the estimating
function U(#3), and D is the variance of the score function, each evaluated at 8y%. Esti-
mation of D is straightforward, but the discontinuities of the estimating equation do not
allow for direct computation of B using derivatives; further, direct numerical differentia-
tion can be unstable in practice. This will similarly be the case for our estimating func-
tion, where we may estimate D using the asymptotic variance formula for the U-statistic
with the resubstituted probability estimates, but where an estimate of B is difficult to
obtain due to the discontinuity of the estimating equation in finite samples.

In light of these issues, some authors have pursued a smooth approximation of the
Gehan estimating equation to allow for straightforward parameter and variance estima-
tion3°%. While this approach works well for the Gehan estimating equation, it is not
straightforward to obtain smooth versions of many other estimators. To accommodate
other types of estimators, Jin et al.?® proposed a Monte Carlo smoothing method based
on the approach of Brown and Wang’? for estimating standard errors. We implement
a version the Gaussian Quadrature Method of Jin et al., and describe the algorithm in
Appendix section 2.6.3°%. Confidence intervals for 5y can be obtained with the Wald
method.

An alternative to this method would be to use a bootstrap approach for estimating

the variance of B . The classical bootstrap would entail resampling subjects’ entire trajec-
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tory with replacement, reestimating the requisite probabilities using the Aalen-Johansen
estimator, and obtaining an estimate of B* that solves the estimating equation based on
the new sample. This process would be repeated a large number of times B, with stan-
dard errors computed from the empirical distribution of [3* = (Bi", - BE)T. Confidence
intervals for By can be obtained either with the Wald method, or directly from the em-

pirical distribution of B*

2.3 SIMULATIONS

To test the performance of our estimator, we simulated data from a 3-state progressive
multi-state model of the form 0 — 1 — 2 (where 2 is the absorbing state), such that
the acceleration parameter acts on the entire process. Let T;; represent the time taken
to transition from state k — 1 to state k. We generated the sojourn times log(T;;) =

2 4+ BoX; + €, for k = 1,2, ¢ = 1,...,n. Clearly, the absorbing state failure time

T; = Ty + Tjo satisfies log(T;) = 2 + BoXi + €¢;. We set fp = 0.7, which corresponds
approximately to a 2-fold acceleration of the failure time for a unit difference in the co-
variate X. This was done for various choices of ¢;;, including distributions for which
the Markov assumption does not hold. In one setting, the ¢;, were independent of each
other, and had either standard extreme-value (log-weibull), standard normal, standard
logistic distributions. In another setting we allowed the ¢;; to be correlated, with stan-
dard multivariate normal distributions with either correlation p = 0.5 and p = 0.9. It
should be noted that these are the distributions of the state sojourn times and not the
distributions of the absorbing failure times. The covariate X; was normally distributed
with mean 0 and standard deviation 0.5 in all settings. Censoring values were generated
from a Uniform(0, 7) distribution, with 7 chosen to yield a desired level of censoring. In

each setting, we also allowed censoring to depend on the covariate, with C; distributed as
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exp(1.5X;)-Uniform(0, 7).

Table 2.1: Equal Censoring. Dist: Sojourn Time Distributions; PC: Percent Censoring; SE: empirical
standard error; SEE: mean of standard error estimator; CP: 95% coverage probability; RE: Relative ef-
ficiency of Proposed estimator compared to Gehan or Peto-Prentice estimator = MSE(Gehan or Peto-
Prentice)/MSE(Proposed). EV: Extreme-Value (log-Weibull); L: Logistic; N: Normal; CN1: Correlated
Normal (p = 0.5); CN2: Correlated Normal(p=0.9).

Proposed Gehan Peto-Prentice
N Dist. PC Bias SE SEE CP Bias SE RE Bias SE RE
100 EV 50| 0.012 0.196 0.198 0.935 | 0.016 0.216 1.213 | 0.016 0.206 1.101
75 | 0.013 0.263 0.261 0.947 | 0.024 0.321 1.496 | 0.026 0.306 1.356
L 50| 0012 0.303 0.295 0.938 | 0.014 0.314 1.073 | 0.013 0.318 1.101
75 | 0.008 0.351 0.348 0.946 | 0.009 0.390 1.239 | 0.013 0.388 1.222
N 50| -0.005 0.180 0.179 0.943 | 0.002 0.191 1.133 | 0.000 0.190 1.117
75 | -0.007 0.221 0.221 0.936 | -0.000 0.253 1.314 | -0.001 0.255 1.330
CN1 50| 0.005 0.211 0.205 0.941 | 0.005 0.225 1.144 | 0.007 0.226 1.153
75| 0.011 0.245 0.243 0.931 | 0.012 0.284 1.340 | 0.013 0.282 1.318
CN2 50 | -0.004 0.223 0.220 0.940 | -0.005 0.238 1.136 | -0.006 0.240 1.160
75 | 0.004 0.259 0.264 0.946 | 0.014 0.307 1.410 | 0.010 0.305 1.389
200 EV 50| 0.004 0.145 0.139 0.939 | 0.006 0.161 1.229 | 0.005 0.153 1.122
75 | -0.010 0.174 0.184 0.951 | -0.004 0.214 1.504 | -0.005 0.201 1.334
L 50| 0.005 0.212 0.210 0.943 | 0.007 0.218 1.058 | 0.008 0.219 1.069
75 | -0.012 0.236 0.241 0.951 | -0.002 0.268 1.291 | -0.002 0.264 1.247
N 50 | -0.000 0.130 0.127 0.944 | -0.001 0.135 1.081 | 0.000 0.136 1.100
75| 0.003 0.145 0.156 0.953 | 0.010 0.166 1.316 | 0.009 0.166 1.307
CN1 50 | -0.006 0.143 0.146 0.959 | -0.007 0.155 1.173 | -0.006 0.154 1.151
75| 0.001 0.173 0.172 0.943 | 0.007 0.203 1.384 | 0.007 0.205 1.405
CN2 50 | 0.000 0.155 0.156 0.949 | -0.001 0.168 1.181 | -0.000 0.167 1.169
75 | -0.002 0.180 0.186 0.955 | -0.005 0.212 1.394 | -0.005 0.210 1.361

We computed the bias, empirical standard error, and empirical MSE for the Fygenson-

Ritov (Gehan), the Peto-Prentice, and the Proposed estimators. For the proposed es-
timator, we also computed standard error estimates, 95% coverage probabilities based
on Wald confidence intervals, and relative efficiencies of the proposed estimator com-

pared to the Gehan and Peto-Prentice estimators. The variance of the score equation

was obtained using equation (2.6) with the resubstituted probability estimates. Standard

error estimates for the proposed estimator were obtained using the GQM method with

16 Gauss-Hermite quadrature nodes, and a tolerance level of 10~ for convergence of I
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1000 simulations were used in each setting, with sample sizes of 100 and 200. The results
are given in Tables 2.1 and 2.2. Table 2.1 refers to the setting where the censoring distri-
butions are independent of the covariate, while Table 2.2 refers to the unequal censoring
case.

Recall that the Gehan estimating function is given in equation (2.2). The Peto-Prentice

xaI(eP<e? A
—%), where F'(-) denotes the left-continuous
(P <l

=77

estimator is given by , & F (e? ) (4
Kaplan-Meier estimator based on the observed residuals.

Table 2.2: Unequal Censoring. Dist: Sojourn Time Distributions; PC: Percent Censoring; SE: empiri-
cal standard error; SEE: mean of standard error estimator; CP: 95% coverage probability; RE: Relative
efficiency of Proposed estimator compared to Gehan or Peto-Prentice estimator = MSE(Gehan or
Peto-Prentice)/MSE(Proposed). EV: Extreme-Value (log-Weibull); L: Logistic; N: Normal; CN1: Cor-
related Normal (p = 0.5); CN2: Correlated Normal(p=0.9).

Proposed Gehan Peto-Prentice

N Dist. PC Bias SE SEE CP Bias SE RE Bias SE RE

100 EV 50| -0.013 0.214 0.200 0.928 | -0.018 0.234 1.193 | -0.017 0.225 1.109
75 | -0.018 0.257 0.273 0.953 | -0.033 0.323 1.592 | -0.029 0.302 1.390

L 50 |-0.016 0.308 0.297 0.933 |-0.017 0.311 1.016 | -0.016 0.315 1.043

75 | -0.026 0.337 0.352 0.950 | -0.031 0.379 1.261 | -0.032 0.377 1.251

N 50| 0.001 0.179 0.180 0.946 | -0.002 0.189 1.112 | -0.003 0.189 1.120

75 | -0.000 0.216 0.223 0.940 | -0.002 0.241 1.247 | -0.004 0.246 1.298

CN1 50 | -0.007 0.212 0.205 0.932 | -0.013 0.229 1.162 | -0.011 0.229 1.167

75 | -0.010 0.243 0.249 0.943 | -0.022 0.279 1.322 | -0.018 0.283 1.361

CN2 50 | -0.004 0.233 0.223 0.934 | -0.004 0.249 1.138 | -0.004 0.248 1.125

75 | -0.005 0.262 0.267 0.949 | -0.012 0.313 1.435 | -0.007 0.316 1.462

200 EV 50 | -0.003 0.145 0.142 0.950 | -0.007 0.161 1.232 | -0.006 0.154 1.134
75 | -0.001 0.182 0.190 0.951 | -0.016 0.226 1.561 | -0.012 0.209 1.333

L 50| 0.012 0.213 0.208 0.943 | 0.009 0.214 1.007 | 0.009 0.217 1.041

75 | -0.002 0.232 0.246 0.955 | -0.001 0.261 1.265 | -0.002 0.265 1.307

N 50 |-0.003 0.127 0.129 0.949 | -0.005 0.133 1.094 | -0.005 0.132 1.084

75 | 0.000 0.149 0.160 0.962 | -0.006 0.169 1.288 | -0.006 0.170 1.303

CN1 50| 0.001 0.146 0.146 0.945 | -0.001 0.156 1.151 | -0.001 0.157 1.155

75 | -0.010 0.165 0.177 0.959 | -0.011 0.193 1.375 | -0.014 0.192 1.368

CN2 50 |-0.011 0.161 0.158 0.937 | -0.015 0.173 1.158 | -0.015 0.173 1.157

75 | -0.009 0.179 0.191 0.963 | -0.017 0.212 1.399 | -0.015 0.210 1.369

Observe that in all settings, the proposed estimator is essentially unbiased, the average

of the standard error estimator is close to the empirical standard error, and the coverage
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probabilities are close to the nominal level of 0.95. In addition, the proposed estimator is
more efficient than the Gehan and Peto-Prentice estimator in each of these settings, with
the most efficiency gains coming in cases of high censoring. It is not expected that in
finite samples the proposed estimator will always be more efficient, but these simulations
demonstrate the potential efficiency gains we can get when the intermediate states are

taken into account.

2.4 EXAMPLE

We will illustrate the proposed method on data from a clinical trial of patients with
amyotrophic lateral sclerosis (ALS)*!. Subjects in the trial were monitored for survival,
and rate of decline in neurological function as measured by their ALSFRS-R scores. The
ALSFRS-R is a functional rating scale by which physicians estimate the degree of func-
tional impairment in ALS patients*?. The scale ranges from 0-48, with a higher score
indicating better function. ALSFRS-R was measured periodically in patients until death,
drop-out, or the end of the study. We discretized this score into 3 states: 33-48 (state
1), 17-32 (2), 0-16 (3). We assume the transition time occurs when a transition is ob-
served, and we allowed all forward transitions that were seen in the data, but no back-
ward transitions. This means that even if someone actually moved from state 2 to 1 for
example, that they were forced to remain in state 2. There were a total of 513 subjects
in the analysis, an average follow-up time of 1.5 years, a maximum follow up time of 5.5
years, and 43% of all subjects were censored.

We estimated coefficients for the model log T; = i+ X treatment + Bgire X Site + €,
where treatment = 1 for “active” and 0 for “placebo”, and site indicates site of onset (1
for bulbar-onset, 0 for limb-onset). We first estimated the coefficients using the Gehan

estimating equations. The Gehan estimators were (.217, -.350) for treatment and site
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of onset, respectively. We then estimated the coefficients using the proposed estimating
equation given in (2.9). This was done using the optim function in R, with the Nelder-
Mead method®!*4. The coefficients for the proposed estimator were (.210, -.383). This
implies that average progression and survival times among the treated group, adjusted
for site of onset, were estimated to be exp(.21) = 1.23 times that of the placebo group.
Similarly, adjusting for treatment, average progression and survival times in the bulbar-
onset group were 0.68 times that in the limb-onset group.

Standard errors were estimated using the Gaussian Quadrature Method described in
section 2.2.4 and 2.6.3, and the classical bootstrap. We estimated the covariance matrix

D using the formula in (2.6), obtaining

.063 .001

.001 .046

We used 6 Gauss-Hermite quadrature nodes, given by the values z = £(2.35,1.33,0.436),
with requisite weights w = (.0045,.157,.725). The transformed nodes z* = /22 were
used in order to approximate the desired integral B(I"; 5) defined in equation (2.10) of
section 2.6.3. An illustration of the grid of points over which we approximate the integral
is given in Figure 2.2.

The algorithm converged in 4 iterations within a .0001 tolerance level for each entry of
the matrix I'. Standard error estimates of the coefficients for treatment and site of onset
were .144 and .173, and p-values based on Wald test statistics were .145 and .026, respec-
tively. We also estimated standard errors using the bootstrap. We obtained standard er-
ror estimates of .145 and .159 , with Wald p-values given by .148 and .016, respectively.
We would conclude that treatment, adjusted for site of onset, is not significantly asso-

ciated with progression and survival, but that bulbar site of onset of the disease is as-
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Figure 2.2: Points 2} used to evaluate the double integral in (2.10)

sociated with earlier progression and failure, resulting in almost two-thirds the average

survival time of patients whose site of onset was in the limbs.

2.5 DISCUSSION

While the asymptotic properties are not fully developed, simulations have demonstrated
that the proposed estimator and the corresponding standard error estimator have good
finite-sample properties in several settings. The estimators are close to their empirical
values under semi-Markov sojourn time distributions, correlated sojourn time distribu-
tions (non-Markov), and when the censoring distribution depends on the covariates.

In most settings, the proposed estimator was more efficient than those obtained with
the Gehan and Peto-Prentice estimators that ignore intermediate events. The improve-
ment in efficiency will depend on the sojourn time distributions and the censoring dis-
tributions, with the most improvement in settings where there is very high censoring.
Thus, the method of estimation can be particularly useful for shorter studies where the

main event of interest is rarely observed, but subjects are monitored frequently for inter-
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mediate “benchmarks” as well. An example of this would be any relatively short clinical
trial of a chronic disease such as ALS.

A key assumption for the proposed estimator is that the acceleration parameters are
the same for every transition of the process. This is a stronger assumption than the ordi-
nary accelerated failure time model for two states (alive and dead), but a necessary one
to ensure that the AFT parameters we estimate are interpretable as such. Thus, it would
be useful to devise a procedure to check if the AFT model holds in the manner speci-
fied. One potential way would be to treat the time from origin to state k as a failure
time, and use the Gehan estimating equation to estimate i, for each non-initial state
kE =1,...,D. We could then construct a test for Hy : 5; = By, j # k, using the method
proposed by Lin and Wei®. If one was instead interested in estimating AFT parameters
for each particular state’s sojourn time, Huang’s accelerated sojourn times model® is the
appropriate choice.

Additionally, under our assumed model, there are certainly other ways of estimating
the desired parameters, such as in the framework of clustered failure times®®%?. Other
estimators could be proposed to put more emphasis on the intermediate states. Meth-
ods that may emphasize all intermediate transition times are somewhat different than
what we are proposing. We are essentially treating the intermediate failures as auxiliary
information that informs the primary failure of interest, the absorbing state. The absorb-
ing failures are still driving the proposed estimator, with some additional information
gleaned from the intermediate disease states. Thus, the proposed estimator will likely be
close to the survival-based Gehan and Peto-Prentice estimators in reasonably sized sam-
ples, but will also be more efficient in many settings. Under the assumed model, more
emphasis on the intermediate transitions can certainly make more efficient use of all of

the observed data, but it was our desire to have an estimator driven primarily by sur-
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vival that also incorporated the intermediate information in a manner directly relevant
to the survival outcome.

The proposed estimating equation does not have the same desirable property of mono-
tonicity as does the Gehan estimating equation, but its close relationship with the Gehan
function can make parameter estimation feasible in practical settings with sufficient
sample size. In order to simplify parameter and standard error estimation, an induced
smoothing approach may also work well with the proposed estimator, but such an ap-
proach would involve smoothing both the indicator functions and the transition proba-
bility estimates of the estimating function. Aalen and Johansen’® provide an asymptoti-
cally equivalent smooth version of their estimator that could be used for this purpose.

The asymptotic properties of the estimator need to be explored in greater detail. As
with the traditional censored linear rank estimators, the key result is to establish asymp-
totic linearity of the score function in a neighborhood of 3y, from which consistency and

asymptotic normality of the estimate 8 typically follow. Our simulation studies suggest

this to be the case, but it remains to be formally established.

2.6 APPENDIX

2.6.1 JUSTIFICATION FOR ESTIMATING EQUATION

Consider the formulation of the estimating equation given in (2.5):

Up(8) = 3 3 S (i = Xp)[P(e” < 61860, 85(e0)) — P& > ¢715:(e), 85(e5))

i j<i

We can think of the probabilities as expectations of indicator functions conditional on
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what we observe:

Y (X - X[ < 71Sie)). 5y(e) ~ 16 > 6718, 5,(e))

i g<i
where the expectation is taken with respect to the distribution of the residual failure
times conditional on the disease states at the residual follow-up times. This function can
be seen to be centered at 0 when 8 = 5y, as its expectation is:

(X = X)E{B[1(&7 < &71Si(e]), Si(e)) = 1(¢7 > &°1Si(e)), 85(e)))]}

where the outside expectation is taken with respect to the distribution of the observed
states at the residual follow-up times. By the law of iterated expectations, this is simply

equal to:

(Xi — X)) [P(&” < ") — P(&’ > ¢”)]

Since é;7 and e}ﬂ are i.i.d. and independent of X; and X; when 8 = Sy, it follows that
the expectation is 0 under boundedness of the residual failure time and log censoring

time densities, and the covariates.

2.6.2 ADJUSTMENT TO ASYMPTOTIC VARIANCE OF Up(f,; A)

As described in section 2.2.3, we estimate the cumulative hazard matrix A(t) with fl(t),
so the variance of our estimating equation, /nUp(Bo; /1), may need to be adjusted. For
simplicity, we will assume that time is discrete, and that for each fixed time point ¢ in
{t1,t2,...,tm}, we estimate the cumulative hazard matrix A(t) with A(ty).

Based on the discussion of Randles, whether or not estimation of the transition haz-

ards effects the asymptotic variance of the score depends on the following. Suppose A(tx)
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is the true cumulative transition hazard matrix at time ¢;. Define

O(A(t1), ..., Altn)) = E{(Xi — X)) [P(&% < &%18i(e]), Sj(e))

—P(&% > 6018 (e), S5(e) s Alt), o Alt) |

where the P(-) are functions of the observations and the A(ty). Thinking of A(tx) as
variables, if for each point t; where we estimate A(tx), we have that

90(A(tk))

oAty

then the asymptotic variance of /nUp(Bo; A) is the same as that of /nUp(Bo; A). If
any of the above partial derivatives are nonzero, then their asymptotic variances will be
different. In this case, suppose that /n[Up(Bo; A) — 0(A), A(ty) — A(t1), ..., A(tm) —
A(tm)] = Npy1(0, %), then we will have that the asymptotic variance of \/n[Up(S80; A) —

0(A)] is given by B’YB where

90(A(t1)) aH(A(tm))>

B =1 DAL 7 0A(by)

In general, evaluating the vector B and the matrix ¥ in our setting would not be feasi-
ble. However, based on numerical studies it appears that the sample variance in equation
(2.6) with the estimated probabilities is adequate for capturing the variance of the score

function.

2.6.3 VARIANCE ESTIMATION FOR B: GAUSSIAN QUADRATURE METHOD

First, we give the assumptions in Jin et al. for validity of their Monte Carlo Method and

56

Gaussian Quadrature Method of variance estimation®®. Suppose we denote the estimat-
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ing equation as U(f), and fy is the true parameter vector:

Assumption 1: \/nU(fp) is asymptotically normal with mean 0 and covariance matrix D.
Assumption 2: The estimator 3 is root-n consistent, and \/ﬁ(B — Bp) is asymptotically
normal with mean 0 and covariance matrix V.

Assumption 3: U(p) is locally asymptotically linear in a neighborhood of .

Let B be the limiting slope matrix of U (). B is difficult to estimate because the
estimating function U is not smooth in 3. First, we define I' = n~Y2V1/2 where V =
B~'DB™!, i.e. the variance of \/ﬁ(ﬁ — Bo). We are ultimately interested in estimating T,
which depends on B. Jin et al. show that the derivative B of a smoothed version of the

estimating equation satisfies the following expression:

B(I;8) = Ez[U(B+T2)Z"T7Y (2.10)

We can use Gaussian quadrature or Monte Carlo methods to approximate B(I; 5)
and evaluate I', but notice that B(T'; 8) also depends on T', resulting in an iterative al-
gorithm. We describe our implementation of the algorithm for the Gaussian Quadrature

Method below:

1. Calculate an estimate D for D, the covariance matrix of /nU(j3). This can be

done using the formula in (2.6), or a bootstrap procedure. Set T'g = n~1/21.

2. Suppose the dimension of 3 is p. Choose m nodes z;, j = 1,...,m, based on one-
dimensional Gauss-Hermite quadrature, and let 21, 29, ..., zy» each be a p X 1 vec-
tor for a unique single combination of the m nodes among p points. For example,
if we choose 5 1-D Gauss-Hermite quadrature nodes, and we had 2 3's to esti-
mate, we would have 5% unique vectors zj of 2-dimensional nodes for estimating

the (double) integral of interest. Let w; be the p x 1 vector of Gaussian quadra-
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ture weights corresponding to the nodes in z;. Thus, we will have a grid of points

over which we approximate the p-dimensional integral B(I'; ). We are interested

in computing the integral, ffooo(\/%)pe_x%ﬂ e 2U (B + T2)a T dzy - - - da,

Since Gauss-Hermite quadrature computes integrals of the form f_oooo e~ f(x)dx,

we have to use a change of variable on x so that we can write the integral in this
%2

form. Set x* = 1/2x, then the integral becomes f pe_“”l e s+

Lz*)x* T Yda? - ~dzy. Thus, let 27 = V/2z; for all j, and proceed.

3. Compute at the k" step:

R 1 & R
Bk:B(qu;B):WZU(BJFFkﬂZ Z'Ty 11ijl
j=1

where wj; is the I element of the weight vector w;.
4. Calculate Gy, = By 'DB; ! and let Ty, = G/ *n=1/2.
5. Repeat steps 3 and 4 until I'y converges within a specified tolerance level.

The diagonal of the matrix I'y, at the last iteration yields the standard error estimates for
the vector B The MCM is the same as the above method, except that in step 2 the z;
vectors are randomly generated from a standard multivariate normal distribution, and in
step 3 By is estimated as B(I'y_1; B) = % Z;nzl U(B + Fk_lzj)ijF,;ll. In simulations, we
found that as few as 8-10 Gauss-Hermite nodes worked reasonably well for the variance

estimation when there is a single covariate.
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Global Rank Tests for Multiple, Possibly

Censored, Outcomes

3.1 INTRODUCTION

Many clinical trials are conducted to compare treatments with respect to a single pri-
mary measure, such as time to death. A single outcome, however, does not always ad-

equately capture the entire effect of a therapy, which can impact patients in many di-
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mensions. For example, new treatments for amyotrophic lateral sclerosis (ALS) target
both mortality and different aspects of neurological function, which are measured using
the ALS Functional Rating Scale (ALSFRS-R)*2. In such cases, it is useful to test the
efficacy of a treatment with respect to all relevant outcomes simultaneously. The design,
analysis, and interpretation of studies in the presence of multiple outcomes like these can
be difficult, especially when some of the outcomes are subject to censoring. We propose
flexible nonparametric global tests to summarize a treatment effect across multiple end-
points.

Several methods for combining multiple endpoints have previously been proposed.
Pocock, Geller, and Tsiatis” provide a global test statistic that can be used to com-
bine any set of asymptotically normal test statistics. Many authors have also proposed
nonparametric tests based only on composite ranks of a set of outcomes. O’Brien’s”"
nonparametric rank-sum method sums the ranks for each outcome, and makes infer-

72

ence on the combined ranks. Wei and Johnson ‘“ combined Wilcoxon statistics for in-

complete repeated measurement data using U-statistics. Finkelstein and Schoenfeld’s

t® is a method that compares each pair of subjects with respect to mor-

joint rank tes
tality and a secondary endpoint jointly, an extension of similar joint tests proposed by
Moyé et al ™. Wittkowski”® proposed a test for multivariate ordinal data using U-
statistics based on a product ordering of outcomes, an idea also explored by Rosenbaum
in depth”""®. Hiberle, Pfahlberg, and Geffeler ™ defined the ranking methods of many of
the above referenced tests in terms of different types of partial orders.

These combined tests have increasingly attracted clinical interest for complex diseases

180

where treatment can be expected to effect multiple dimensions. Felker and Maisel®” sug-

gested using global rank approaches for trials of acute heart failure, with death, dyspnea

1'81

improvement, and other biomarkers as outcomes. Sun et a assessed the performance
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of various global approaches using simulations based on phase II trials for acute heart
failure. Berry et al.*! proposed using a global test for ALS trials, and retrospectively
applied the Finkelstein-Schoenfeld test to a phase II trial for ALS. Healy and Schoen-
feld®? also examined through simulation how that global test performs relative to other
methods of analyzing a longitudinal and survival outcome jointly. Cobo et al.® consider
using O’Brien’s test to combine information from three different outcome scales that are
used to assess stroke recovery.

We propose a generalization of the aforementioned global nonparametric rank tests
using U-statistics. The class of tests can be applied to settings that involve continuous,
ordinal, and censored endpoints. The advantage of this generalization is that one can
choose a test that best suits their data structure, the relative importance of outcomes,
hypothesized treatment effect, and the alternative hypothesis of interest using our frame-
work. In addition, an easily estimable variance is provided for any given test. In sec-
tion 3.2 we will describe the test. Section 3.3 will focus on the choice of optimal outcome
weights for specific tests, including an outline of an adaptive procedure for estimating
weights. We will present simulation results in section 3.4, and an example analysis of an
ALS clinical trial in section 3.5. We will close by discussing the merits and drawbacks of

such combined tests, and the implications in interpreting results.

3.2 METHODS

Suppose we have two groups of subjects on different treatments, and we are interested in
testing a hypothesis about the efficacy of one treatment versus the other when there are
multiple outcomes that have been recorded for each subject. First, we will score all pairs
of patients between groups with respect to each outcome, with a score between -1 and

1. For example, if we are comparing subjects ¢ and j on survival and a quantitative out-
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come (e.g. ALSFRS-R score), for the pair (i,j) we would assign a score of 1 for survival
if subject i survived longer than subject j (-1 if j survived longer than 7). For ALSFRS-
R, we may assign a score of 1 if ¢ had a higher score than subject j at their last common
follow-up time (-1 if 7 had a lower score). Generally, for each outcome, indexed by k, we
have a function r; that takes data from both subjects and assigns a score of -1, 0, or 1.
This function should indicate which patient did better with respect to the k** outcome,
with a value of 1 indicating a better outcome for subject i over j, -1 a worse outcome,
and 0 the same. We will call this a pairwise rank.

In general, let x;1, y;r represent observed data on subjects ¢ and j for outcome £,
where X;i, y;i can possibly be vectors, and 4 indexes subjects on treatment (i = 1,...,7n),
Jj indexes control subjects (j = 1,...,m), and k indexes the outcomes (k = 1,...,p). We
assume that the complete vetor of outcome random variables X;, and Y; are i.i.d. with
respective distribution functions Fx (x1,X2, ..., Xp) and Fy (y1,¥2, .-, ¥p)-

Suppose, for example, that x;;,y; are scalar observed outcomes where a larger value
is favorable; then we would write the ranking function for that outcome as ry(xik, yjr) =
I(zi > yjr) — I(zix < yjk). In the case of a failure time, we will use the Gehan scoring
function® to score pairs. For example, let X/, and Y}, denote the follow-up time ran-
dom variables for subjects ¢ and j on outcome k (i.e. X/, = min(X;,C;), where Xy,
C; are the failure and censoring time random variables for subject 4; Y}, = min(Yjx, C;)
analogously), and let d;;, 0,5 be the indicator variables that a failure was observed on
outcome k. Then we have (i, dik), (Vg 0jk)) = I(@y > yip) ok — I(@ly, < Yl )ik
This will be equal to 1 if subject ¢ is known to have survived longer than subject j, -1 if
7 is known to fail before j, and 0 if tied or it is indeterminate who survived longer. We
will denote E[ri(x,y)] = 0. This 0 can be thought of as a marginal treatment effect for

outcome k, where a positive value favors the treated group. Note that in the expression
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rk(X,y), x and y may be vectors of data, as in the Gehan scoring function.

Now define r;; = (r1(xi1,¥51), r2(Xi2,¥52), - Tp(Xip, ¥jp))- This is the vector of the
scores comparing subject ¢ to subject j on each of the p outcomes. The vector r;; =
(—1,1,0), for example, would indicate subject i did worse than j on the first outcome,
better on the second outcome, and the same or indeterminate on the third.

Once we have the vector r;; for each pair ¢ and j between different groups, we map it
to a one-dimensional score, and then construct a test statistic based on the univariate
scores for each pair of subjects. That is, we will have a function ¢(r1,..,7,) that maps
the vector of pairwise outcome scores to a single summary score. The univariate score
resulting from ¢(r;;) is interpreted as a summary measure of the differences in outcomes
between subjects ¢ and j. A positive score favors subject i, a negative score subject j,
and 0 favors neither.

The test statistic is given by the sum of all pairwise comparisons between the two

groups:
1 n m

U= %ZZMU]’) (3.1)
i

This is simply a two-sample U-statistic that estimates the parameter 64 = E[¢(r1(X1, Y1),
ooy Tp(Xp, Yp))]. Borrowing terminology from Huang®!, we can think of 6, as a global
treatment effect. Essentially, it is a scaled probability of doing “better” on treatment,
“better” being defined by the function ¢. Note that in this paper we construct the statis-

tic so that 64 = 0 under the null hypothesis Hy.

3.2.1 SOME EXAMPLES FOR ¢

Below we will give examples for composite functions ¢ for some tests previously proposed

in the literature. For ease of notation, we will denote the outcome-specific rank scores

Tk (Xik, Yik) = Tk-
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1. O’Brien™: O’Brien’s proposed nonparametric procedure for comparing multiple
outcomes was based on an overall rank for each subject that is obtained by sum-
ming their outcome-specific ranks, and using a rank-sum or ANOVA test based
on the overall ranks. A function ¢ that would yield a test similar to O’Brien’s is
é(ri,...,rp) = 11+ 12 + -+ + ). More generally, we could weight the outcomes

differently, and have ¢(rq,...rp) = wir1 + warg + - - - + wpry, with wy > 0 for all k.

2. Finkelstein-Schoenfeld (FS)™: This test compares a mortality outcome and a lon-
gitudinal outcome in a hierarchy, where subjects are first compared pairwise on
survival, and then on the longitudinal marker if it is indeterminate who survived
longer. Here r1(-) is the Gehan scoring function, and ry(-) ranks pairs of subjects
on their longitudinal outcome at their last common follow-up time. In our frame-
work, the function ¢ is given by ¢(r1,7r2) = 1 + I(r1 = 0)ry. For p outcomes
arranged in a hierarchy®, we would have ¢(r1,72, ..., rp) =11+ 1I(r1 =0)ra + ... +
I(ry =+ =rp_1 = 0)rp. We could also assign a different weight to each outcome
with ¢(r1,72,...,7p) = wir1 + I(r1 = 0)warg + ...+ I(r1 = - - = rp—1 = 0)wprp, with
wy > 0 for all k. With censored data, when there is only administrative censoring
at the end of the study period, but no drop-out during the study period, this is

equivalent to using “worst-rank” scores®.

3. Wittkowski ®: Wittkowski’s proposal compares subjects pairwise with respect to
several ordinal measures. When all of the outcomes for subject ¢ are at least as
favorable as that of the subject j, and at least one of subject i’s outcomes is more
favorable, a score of 1 is assigned for the pair (-1 if subject j does better). If some
outcomes are better and some are worse in the pairwise comparison, the score is 0.
For ¢, we can write ¢(r1,...,rp) = I(maz{ry : k = 1,...,p} > 0) — I(min{ry : k =

1,...,p} < 0). This could be modified to score a 1 if subject 1 has more favorable
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outcomes than subject 2: ¢(r1,...,7p) = I(Q_p 7k > 0) = I(>_, 7k < 0). This can
further be modified with weights: ¢(r1, ..., rm) = I(Q 0, wiry > 0)—1(>, wiry < 0),

with wy > 0 for all k.

4. Combination of different tests: To illustrate the flexibility of the test, we can also
use a combination of other tests. For example, a ¢ function that combines ele-
ments of the O’Brien and FS tests could be ¢(r1,...,7p) = ri+I(r1 = O)I% > o Tk
This function gives a composite score based on the the first outcome, but if the
first outcome is tied, the composite score is an average of the scores for all other

outcomes.

We will mainly focus on the O’Brien and FS tests in this paper, but the large-sample

properties of the test hold for any approprite function ¢.

3.2.2 THE NULL HYPOTHESIS AND RESTRICTIONS ON ¢

The null hypothesis with which we are working is that the global treatment effect 64 = 0,
but when that holds depends on what kind of data we have and which test we are using.
For each test described above, 64 = 0 holds under the strongest null hypothesis that
the joint distributions in each group are the same, but in many settings a weaker null is
also valid. For uncensored data using O’Brien’s test, 6, = 0 when Y} P(X}, > Y;) —
P(Xj < Yy) = 0. This is essentially equivalent to the null hypothesis for the modification
of O’Brien’s test proposed by Huang et al.®”. For Wittkowski’s test, 05 = 0 whenever
P X, >Y,) — P(UL Xk < Yg) =0.

With censored data, it is a little more complicated. For example, suppose we have a
survival and longitudinal outcome, where the survival and censoring distribution func-
tions are denoted by Fx1(t), Fy1(t) and Gx(t), Gy (t) respectively, and the longitudinal

outcome random variables are denoted by Xa(t), Y2(¢). Then for the O’Brien and FS
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tests, 0y = 0if F'x1(t) = Fyi(t) and P(Xa(t) > Ya(t)) — P(Xa(t) < Ya(t)) = 0 for
all ¢, irrespective of the censoring distributions Gx,Gy. When considering a test in this
framework, the null should be clearly specified.

The following conditions on ¢ will always ensure a valid test under the strong null

that the joint distributions of the outcomes are equal between both groups.

1. $(0) = 0.
2. ¢ is an odd function, i.e. ¢(r;j) = —@(—ri;) = —p(rj;). Then ¢(ri;) + ¢(rj;) =0

3. E[¢*(r1(X1,Y1), ..., 7p(Xp, Yp))] < o0

The first two conditions ensure that the composite scores will only differ by sign if we

flip the arguments of the 74(-,-). By symmetry, 64 = E[¢(r;;)] = 0 under the strong null,
and the test statistic will have mean 0 when this is the case. Let N = n 4+ m be the total
sample size. Under Hy, when the third condition holds and % — Xas N — oo, it follows

that vVNU — N(0,0?), where

1 1

o’ = 3 Elo(rij)¢(riy )] + = Elo(rij)d(riry)] (3.2)

This follows from standard asymptotic theory on U-statistics®®. The asymptotic variance
is not distribution free under Hy, as it will generally depend on the correlation between

the scores among different outcomes, but it can be consistently estimated from the data

with:
R TE DI IPILCHLCHED 99 D) SECHLCH) (33

(see Appendix section 3.7.1).

S

> o1 Us

/NS 52
s=10%

If we have stratified data, a stratified test statistic is given by T = , where
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S is the total number of strata, and for the st stratum, U is calculated as in (3.1) and
62 is estimated as in (3.3). T has an asymptotic standard normal distribution, but note
that the asymptotic distribution is based on the asymptotic normality of the within-
strata U-statistics, which may not hold if some of the strata have very small sample sizes

per treatment group.

3.2.3 POWER AND SAMPLE S1ZE CONSIDERATIONS

For a given function ¢, probability of type 1 and type 2 errors o and 3 respectively, and

global treatment effect 6, > 0 under the alternative hypothesis Hy, the power of the test
VNO,

o

can be approximated by 1 — 8 ~ 1 — ®(21_4/2 — ), where ® is the standard nor-
mal cumulative distribution function, z;_,/9 is the minimum upper tail value for which
we would reject Hp, and o is the standard deviation of the U-statistic as given in (3.2).

Then for a given power 1 — 5, an estimated total sample size is given by

N {a(zla/z - zmr

0y
It follows that n = AN and m = (1 — A)N. Note that to find candidate values for 0,
and o, we would need to make some distributional assumptions on the data, and obtain
the parameters analytically or by simulation. As Huang, Woolson, and O’Brien note®*,
this has no bearing on the test statistic itself, for which we do not make any parametric
assumptions.

In the next section, we will show that we can write the O’Brien and Finkelstein-Schoenfeld
tests as a sum of outcome-specific U-statistics, Uy, ..., Up. Then we can construct a weighted
global test of the form w/'U where w is a vector of weights. For these weighted tests, we
can rewrite the power function in terms of the weighted component U-statistics. Let

U = (Ui,...,Up,) be the vector of outcome-specific U-statistics, A = cov(U), 0y =
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(041, ...,00p) = E(U) under Hy, and w = (wq, ..., wp)" be a fixed weighting vector. With-

out loss of generality, assume 84 > 0 in all components. Then the power of the test is

\/Nw’qu
vVw!/ Aw

power corresponds to maximizing w6 (w’Aw)

given by 1 =~ 1—®(21_q/2 — ). For optimal weights, it follows that maximizing

—1/2 with respect to w. Note that if we
assumed 04 < 0, maximizing power corresponds to minimizing this quantity. The total

sample size for given § is then

N = w'Aw [Zl—a/z - Zﬂ} 2

W’0¢
As a guide to choosing a particular test, one can compute the estimated power for

different tests under a range of distributional assumptions and alternative hypotheses.

3.3 WEIGHTS

In order to allow the relative importance of the outcomes to be reflected in the test, we
may wish to incorporate outcome weights in the test statistic. For example, in some
cases the treatment may be most targeted to improving survival, while in other cases
death may be a competing risk. Weights would allow us to easily cast our statistic in
terms of these different settings.

One method for choosing weights would be to base it on the importance of outcomes.
These utility weights are completely determined by the investigator prior to the study.
For example, in a study of ALS and survival, the rank on survival may get a larger weight
than the rank on ALSFRS-R score because survival is more important. One problem
with utility weights is that utility of certain outcomes may be different for different sub-
jects, and can be arbitrarily chosen based on investigator belief. On the other hand, this
may be attractive when there is a clear subset of outcomes that should dominate the

statistic.
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An alternative method would be to construct optimal weights by maximizing the
power of of our test statistic under a particular alternative hypothesis. We can do this

for both the O’Brien and the Finkelstein-Schoenfeld tests, which we will describe further.

3.3.1 O’BRIEN

For O’Brien’s test, note that ¢ is a linear function of the individual outcome scores,
so we can write the test a sum of U-statistics for each outcome, as described by Li et

. 1 - N
al®. First, let U, = — Z Z 71 (Xik, Y i), the U-statistic for the k" outcome. The
i

weighted O’Brien statistic is then given by w'U where w is a weighting vector. Since
VNU, — N(0,02), it follows that VN Y, Uy — N(0,A), where A = cov(U). Then
VNwW'U — N(0,w'Aw). As noted earlier, maximizing power is equivalent to maximiz-
ing E[|w'U|](w'Aw)~'/2. The solution to this equation is w = A~'0 (see Appendix
section 3.7.2), where 8 = (01, ...,6,) = (E[Ui], ..., E[Up])". We would need to choose
a priori under a specific alternative hypothesis we have in mind. Without loss of gener-
ality, we will assume that 8, > 0 for all k, since these are the alternative hypotheses in
which we are interested. For any distribution functions we assume on the data, we can
always approximate the desired € by simulation, and in many cases we can solve for it
analytically. The covariance matrix A has entries oy; = cov(Uy, U;), which can be esti-

mated with:

n m m

O = (n];;)z [Z SO (XK, Y (Ko, Yo) + 33 Y re(Kie, Yo (X, Yon)

i it ] I

Then our optimal solution is estimated by w = A~19. Note that the solution for the op-
timal weights can yield negative weights, which would be undesirable since we are testing

for efficacy of treatment over all the outcomes. This can happen, for example, when the
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correlation between outcomes are high, but they have very different effect sizes under the
alternative. In this case, a constrained optimization should be used where we restrict the
weights to be nonnegative. Algorithms are available to do this, and it can be performed

using the optim function in R%%3!.

3.3.2 FINKELSTEIN-SCHOENFELD

To find optimal weights for the test of Finkelstein and Schoenfeld, we will use a simi-
lar method we used for O’Brien’s test, where we write the test a sum of dependent U-
statistics. First suppose that the first, and most important outcome is a failure time. Let
Xi1,Yj1 denote the follow-up times on this outcome for subjects i (group 1) and j (group
2). Let 6;1,0;1 be the indicator that a failure was observed for i and j respectively. Let
rij1 = 1(Xi1 > Yj1)0j1 —I(Xi1 < Yj1)0i1 be the pairwise Gehan rank for the first outcome,
and in general let 7, = I(X;, > Yir) — I(Xi < Yir) be the pairwise rank for subject
1 vs. subject j on outcome k. Note that these ranks can also be Gehan ranks on fail-
ure and censoring times with their own ¢ values, but we suppress the notation for gen-
erality. Also, the non-survival outcome(s) will not be able to be measured on a subject
after he or she fails or is censored, so subjects can be compared on the other outcomes
based on information up to their last common follow-up time. Now, define e;;; = 1 and
ek = I(rij1 = 0,r552 = 0,...,750—1 = 0) for & > 2. Then the test statistic is given by
> b Uk, where Uy, = % S Z;ﬂ €ijkTijk

As before VNwW'U — N(0,w'Aw). Let § = (61,...,0,) = (E[U1],..., E[Up])". The

optimal weight is estimated by w = A~10, where A is the estimate for A with entries

. N n n m n m m
Okl = (nm)Q[E E E CijkTijkCiljiTi i + § § E €ijkTijk€ijTij!1]-
] iog A

The “optimal” solution can yield weights that may be undesirable from a clinical stand-
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point. In this test, we order outcomes in a hierarchy, with survival usually being the
most important, so there is already an implicit weighting scheme incorporated into the
test. It may not be advisable to allow a non-fatal outcome to have a higher weight than
the survival outcome. In this case, we would want to use a constrained optimization al-
gorithm by setting the appropriate restrictions on w. For example, we may set the first
component w; = 1, and then simply estimate the rest of the components of w with the

constraint that they be between 0 and 1.

3.3.3 ADAPTIVE WEIGHTING

The biggest issue with attempting to use optimal weights as described above is that we
need to have an idea of the parameter values 6 under the alternative hypothesis for the
weights to be useful in improving power. This may be viable if we have previous studies
for which we can estimate those parameters, but in general they are unknown. An adap-
tive weighting method can be used to avoid guessing weights prior to the study when we
have multiple strata and use a stratified test. Natural strata are frequently present in
medical studies, e.g. different enrollment periods and/or centers in clinical trials. In such
settings, we propose an adaptive method of estimating outcome weights by using data
from “previous” strata to estimate weights for “upcoming” strata. Fisher?! describes the
general method and shows that adapting weights in this manner maintains the signifi-

cance level of the trial. An adaptive weighting scheme can be constructed as follows.

1. Suppose we have p outcomes and S strata. Order the strata 1,...,.5. This could
be a natural ordering based on the design of the study (e.g. enrollment period),
or a random ordering. Let Uy denote the k™" component U-statistic for the s

stratum.

2. Estimate the covariance matrices A, in each of the S strata, s =1, ..., 5.
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3. In the first stratum, calculate the outcome specific test statistics Uyg, k=1, ...,p as
described in section 3.3.1 or 3.3.2 for the appropriate test. Uy is then an estimate
of 0, = E[Ugy] for the subsequent strata, and Uy = (Uyy, ..., Uyp)’ is an estimate of
0=(64,....0,).

4. Estimate the optimal weights for the second stratum with wy = A5 U, (or, if this
yields negative weights, numerically optimize). Scale the weights wo such that it’s
components sum to 1, i.e. Z£:1 wop, = 1. Then the numerator of the statistic for

the second stratum is w4 Uz, and the variance is 05 = whAow.

5. Reapply the procedure for each of the following strata by accumulating the neces-
sary statistics from previous strata. That is, we estimate the vector 6 for stratum s
as the average of the U-statistics in the previous strata, 85 = S_% Zj;} U;. Then
the optimal weight for strata s is estimated to be ws = A;16s. The numerator of

the statistic for strata s is w, Uy and the variance is w,Asw

6. Combine the stratum-specific test statistics using a stratified statistic, as described

in section 2.2.

This is just a general outline, and there can be many variations on the above pro-
cedure. For example, one can use weighted instead of simple averages of the previous
strata U-statistics to estimate @ for the current stratum, perhaps to account for differen-
tial sample sizes within strata. Similarly, in estimating within-stratum weights, one can
use a weighted average of covariance estimates across strata, as that may be less variable
than only using the within-stratum covariance. In addition, the stratified statistic given
in section 3.2.2 weights each of the strata equally in the overall test statistic, so a further
modification can be to give different strata different weights, perhaps to upweight the

strata that use more previous information.

64



Alternatively, one can use Bayesian methods by setting a prior on the weights, and
updating the weights with additional data. Minas et al.”? use a type of Bayesian method
to estimate weights in the case of multivariate normal data, basing the priors on previous
studies, and computing the posterior with a subset of pilot data taken from the main
study data. Something similar to the above procedure can also be made to fit within a
group-sequential design framework.

The weights used for the first stratum can all be equal, or they can be estimated from
historical data or simulation based on a hypothesized treatment difference between groups.
In addition, the ordering of the strata should be pre-specified, as the value of the test
statistic will depend on the order. A natural ordering could be based on the sample size
of each stratum, or could be chronological if the strata are distinguished by enrollment
period.

The main advantage of this procedure is that we are letting the data self-select the
weights based on what outcomes the treatment is affecting most. A disadvantage is
that we are using different outcome weights for different strata, so interpretation of the
pooled stratified test becomes muddled. In addition, if we get the wrong weights we can
lose power. This is more likely to happen when equal weights are already near optimal,
causing us to estimate sub-optimal weights due to the variability in estimation. With
censored data, there is greater variability in weight estimation as the optimal weights
will also depend on the censoring distributions. Furthermore, the above procedure as-
sumes the same treatment effect across strata, and thus may give sub-optimal weights

when this is not the case.
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3.4 SIMULATIONS

We assessed the performance of the O’Brien and FS tests under two separate scenarios.
In the first scenario, we consider the type 1 error and power for O’Brien’s original test
and our version of O’Brien’s test for uncensored data on 4 outcomes. We also compare
the power of these tests with the optimally weighted O’Brien test. In the second sce-
nario, we compare the type 1 error and power of our version of the O’Brien and FS tests,
and their optimally weighted counterparts, with data generated based on the ALS simu-
lation study by Healy and Schoenfeld®*. In each simulation setting, 5000 iterations were

performed.

3.4.1 SCENARIO 1: FOUR OUTCOMES, UNCENSORED

To test performance of O’Brien’s test under the null hypothesis, we generated data from
a multivariate normal distribution with four outcomes and zero mean for all outcomes,
under both equal and unequal variances between the groups. In the equal variances set-
ting, all outcomes had variance 1, and all correlations between outcomes were set to p,
with the value of p for each setting given in Table 3.1. For unequal variances, the co-
variance matrix for group 1 was equal to 1 on the diagonals, and all off-diagonal entries
were 0 (no correlation between outcomes). The covariance matrix for group 2 was set
to (1,4,9,25) on the diagonal, and all off-diagonal entries were set to 1. O’Brien’s orig-
inal test with unpooled variances (see Huang et al.®” and O'Brien”!) is denoted Tp in
Table 3.1, while our proposed version of O’Brien’s test is denoted by Tg . In the table,
we see that when the multivariate distributions are equal, i.e. when the variances are
equal, that both tests control the type I error at the nominal 0.05 level, including under
unequal sample sizes. Under unequal variances, however, the type I error for Ty is in-

flated, while the type I error for the proposed T, g statistic is still controlled at the nomi-
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Table 3.1: Type | Error and Power (%), Scenario 1: Uncensored data, 4 outcomes. Tp = O’ Brien
original test; Tg = Proposed O'Brien test. For unequal variances below, group 1 covariance ¥; =
diag(1,1,1,1); for group 2, X has elements (1,9,16,25) on the diagonal, and Xg;; = 1 for i # j.

Type I Error

Variances p n,m To TY
Equal 0 30,30 4.9 4.1
100,100 5.2 5.0

50,100 4.8 4.5

Equal 0.5 30,30 4.6 4.0
100,100 5.3 5.0

50,100 5.2 49

Unequal See Caption 30,30 6.9 44
100,100 6.8 5.1

50,100 6.8 5.2

100,50 7.1 4.7

Power: 0,= (.03,.08,.16,.28)

Variances p n,m To Tg Tg w
Equal 0 60,60 74.1 73.0 85.2
0.5 388 378 75.0
-0.1 86.4 859 90.6
0 80,40 69.0 676 78.9
0.5 354 342 69.3
-0.1 81.4 80.7 85.6
nal level. This was the same conclusion drawn by Huang et al®7.

Under the alternative hypothesis, we similarly generated multivariate normal data,
using the same covariance matrix as the “equal variances” scenario under the null hy-
pothesis above for both groups. The mean for each outcome was zero in group 2, and in
group 1 the means were chosen so that § = (.03,.08,.16,.28). The power is given in the
lower part of Table 3.1 for the Tp, T, g and T, g “ tests, where T, g “ denotes the optimally
weighted O’Brien test subject to the constraint that the weights wy are non-negative
for all k. Observe that the power of the Tg test is only marginally less than that of the
O’Brien test in the equal variance setting, with about a 1% difference in each simulation
setting. Also, the power of the optimally weighted O’Brien statistic TOU W is significantly

higher than those of Tp and T, g in all scenarios. When the correlations p increase be-
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tween outcomes, the disparity becomes larger. This is happening because as the correla-
tion increases, the weighted test gives increasing weight to the outcomes that have larger
differences in magnitude between the two groups, which mitigates the increasing vari-
ance of the global U-statistic. This is only illustrative, as it is not realistic to know the
optimal weights in practice. These simulations, however, can give us insight into which
endpoints to include in the test statistic, and the relative weights they should contribute
to the test. For example, if we had three outcomes, two of which are known to be highly

correlated, it is likely to be optimal to drop one of the two correlated variables entirely.

3.4.2 SCENARIO 2: SURVIVAL AND NEUROLOGICAL FUNCTION

In this scenario, we generate data based on a clinical trial where patients are monitored
for two outcomes: survival, and ALSFRS-R scores. The ALSFRS-R is a functional rating
scale by which physicians estimate the degree of neurological function in ALS patients.
For every subject, we generated ALSFRS-R data for 25 time points, (0, 1,..., 24), where
each time can be thought of as a month. We also generated survival times, subject to
equal and unequal censoring distributions between groups in different scenarios. For the
equal censoring case, we used administrative censoring in both groups at time 24. Un-
der unequal censoring, one group had only administrative censoring at time 24, while
the other group was subject to administrative censoring at time 24 or random censoring
before time 24, generated from a uniform distribution.

The simulation is nearly identical to a simulation study by Healy and Schoenfeld ®?
for ALS, so we refer to their paper for details. They generated the data from a shared
parameter model, where survival was correlated with ALSFRS-R trajectory through
patient-specific random effects. The parameters for their model were derived from esti-

mation of the model for data from an ALS clinical trial®?, and they varied the treatment
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Table 3.2: Type 1 Error (%), Scenario 2: Survival and ALSFRS; Tg = Proposed O'Brien test, ngs
= Proposed Finkelstein-Schoenfeld (FS) test.

Equal Censoring (%) nm | 75 | T
53 3030 | 4.2 | 4.4

53 100,100 | 5.1 | 4.7

53 50,100 | 5.0 | 4.8

Unequal Censoring (%) n,m 75 | TS
53, 80 30,30 4.2 | 4.6

53, 80 100,100 | 4.8 | 4.2

53, 80 50,100 | 5.0 | 4.9

53, 80 100,50 | 4.9 | 4.5

effects for ALSFRS and survival across simulations.

In Table 3.2, we present results for our version of the O’Brien and FS tests, denoted
Tg and TgS, under no treatment effect on ALSFRS or survival. The tests control the
type I error at the nominal level for equal and unequal censoring distributions, including
under unequal sample sizes. As O’Brien’s originally proposed test was not constructed
for censored data, we did not assess its performance in this scenario.

Power under the alternative hypothesis is presented in Table 3.3 for 7Y, T 1{“]57 and
their optimally weighted counterparts, denoted Tg W and TI(;] g . For TI(;] &, we constrained
the weight on the survival outcome to be equal to at least 10% of the weight on the ALS
outcome. Data was generated under different combinations of effect sizes for mortality
and ALS, respectively (in parentheses we note the parameter values these correspond
to in the Healy-Schoenfeld paper): mild (e5 = log%) and moderate (82 = %), moder-
ate (€3 = log3) and mild (B2 = {); mild and mild. We see that the optimally weighted
tests have higher power when the magnitude of the treatment effects differ meaningfully

between the two outcomes. When the treatment effects are similar (mild, mild), how-
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Table 3.3: Power (%), Scenario 2: Survival and ALSFRS (n=m=100); T§ = Proposed O'Brien
test, Tg“’ = Proposed optimally-weighted O'Brien test, TFUS = Proposed FS test, Tgé“ = Proposed
optimally-weighted FS test.

Equal Censoring (%)  Effect size (Mortality, ALS) T T§¥ TYg TY¥

(71, 63) (mild, moderate) 60.8 725 520 558
(72, 58) (moderate, mild) 50.7 57.6 48.6 58.0
(66, 58) (mild, mild) 324 313 27.9 268

Unequal Censoring (%) Effect size (Mortality, ALS) T5 1T5° TF; THY

(71, 85) (mild, moderate) 66.5 72.3 65.0 65.3
(89, 63) (mild, moderate) 48.4 51.8 43.2 43.1
(72, 85) (moderate, mild) 39.2 405 344 39.2
(89, 58) (moderate, mild) 31.1 389 249 381
(66, 82) (mild, mild) 29.6 278 26.8 25.0
(86, 58) (mild, mild) 23.6 229 1905 20.3

ever, weighting does not give us any additional power. In fact, the power is slightly lower
in many of the “optimally” weighted tests in this case. This is likely due to a combina-
tion of the fact that equal weights are close to optimal in this setting, and that their is
some variability in our weight estimation due to estimation of the covariance matrix. It
is clear that weighting in this scenario has the potential to be useful, but the utility we
get out of it will depend heavily on the relative outcome effects of the treatment, and on
the censoring distributions. In many cases, equal weights are the safest and most sensible

option, and protect against selecting substandard weights.

3.5 EXAMPLE

We will illustrate the proposed O’Brien and F'S tests on data from a clinical trial of Cef-
triaxone in patients with ALS*'. The 513 subjects in the trial were monitored for two
endpoints: survival, and rate of decline in neurological function as measured by their
ALSFRS-R scores. The scale ranges from 0-48, with a higher score indicating better
function. ALSFRS-R was measured periodically in patients until death, drop-out, or the

end of the study. 340 subjects were administered Ceftriaxone, and 173 placebo, with an
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average follow-up time of 1.6 years. We compared treatments using the stratified test
statistic, with the stratum variable being site of onset (“limb-onset” or “bulbar-onset”).
There were 119 subjects with bulbar-onset and 394 with limb-onset disease. We used
Gehan ranks for the survival outcome, and for the ALS outcome, we compared patients
pairwise on the mean of their ALSFRS-R scores up to their last common follow-up time.
The normalized component U-statistics (i.e. vV NU}) for O’Brien’s test were (1.37,0.08)
in the bulbar-onset stratum and (0.18, —0.56) in the limb-onset stratum, where the first
component refers to survival and the second ALSFRS-R; for the FS tests these were
(1.37,—.04) and (0.18, —0.36). The estimated covariance matrices in each stratum for

O’Brien’s test were

. 42 .007 . 43 .007
Ay = and Ay =
.007 1.43 .007 1.39
For the FS test we had
. 42 —.02 R 43 .003
Al = and A2 =
-.02 .11 .003 .174

The normalized test statistics were 0.56 for the O’Brien test (p-value = .577), and 1.09
for the F'S test (p-value = 0.275).

We also computed the test statistic using the adaptive method described in section
3.3.3. We first computed the statistics above, then estimated optimal weights for the
“limb-onset stratum” using data from the “bulbar-onset” stratum. For both tests, the es-
timated optimal weights (restricted to be non-negative) were (1,0), i.e. with only weight
on the survival outcome. The normalized adaptive test statistics were 0.96 (p-value =

.340) for the O’Brien test, and 1.14 (p-value = .256) for the FS test. Observe that be-
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cause the ALSFRS-R outcome is given zero weight in the second stratum, the adaptive
statistics are less diluted by that outcome. This could be problematic, however, if treat-
ment is actually better in one outcome and worse in another, because we would not want
to erroneously conclude a positive global treatment effect in that case. In this example,
ALSFRS-R goes in the opposite direction as survival in the limb-onset stratum, but it is
a fairly small effect size and thus is likely only contributing noise to the statistic. This
example illustrates well how the decomposition of each statistic and its variance into a
weighted sum of its components gives us a sense of which outcomes are contributing the

most and the least to the test statistic, and in which direction.

3.6 DISCUSSION

We have generalized previously proposed nonparametric tests that use different methods
to rank multivariate outcomes. For both uncensored and censored data, the generaliza-
tion creates a class of valid tests under the null hypothesis that the two groups have the
same joint distribution of outcomes, though for some tests a weaker null will suffice. For
uncensored data, the proposed O’Brien test and it’s weighted counterparts are valid un-
der the Behrens-Fisher hypothesis as described by Huang®’. With censored outcomes,
the tests are valid under unequal censoring distributions between groups. The tests are
also valid under unequal sample sizes.

This unified framework allows the investigator the flexibility to choose a test that fits
the purposes of their study without making any distributional assumptions on the data.
The generalization allows for an easily estimable variance for each method, and the abil-
ity to compare the global treatment effect size among different methods under various
distributional assumptions, which have implications in the power and sample size of the

test. We have also provided a method for determining optimal weights for O’Brien’s test
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and the FS test under a specified alternative hypothesis. The problem is that we will
not know the parameter 6 needed to obtain the optimal weights under the true alterna-
tive hypothesis. While they can be estimated using historical or pilot data, in general
they are unknown. An adaptive weighting method may be a useful way to incorporate
data-driven weights, and we have described a procedure to do this. Settings under which
adaptive weighting works well is a topic of future study.

Investigators may be interested in some guidance concerning which methods may be
most appropriate to use for their setting. For the tests presented in this paper, O’Brien’s
test may be better powered when most or all outcomes favor the treatment, as it utilizes
all of the available pairwise comparisons on each outcome, whereas the F'S test priori-
tizes pairwise comparisons on a primary outcome, and uses secondary outcomes only in
the event that the primary comparison is indeterminate. Thus, the F'S test is most appli-
cable when there is a clear hierarchy of outcomes, though it may not be as powerful as
O’Brien’s test when all outcomes are more favorable on treatment (except perhaps when
there is a high correlation between outcomes, as the construction of the FS test removes
much of the additional variance due to that correlation). On the other hand, if the pri-
mary outcome is favorable on treatment, but the other outcome(s) are null or near-null
in either direction, the FS test may have better power as it will be less diluted by the
secondary outcome(s).

Direct covariate adjustment is not available through this method, but we can adjust
for some covariates using stratification. If there are many covariates, we could potentially
use propensity scores and stratify on quantiles of the propensity scores.

While these global tests can be effective in testing for efficacy of a treatment simul-
taneously over several outcomes, limitations of the test should be well understood. The

tests described in this paper work well under the restricted alternative hypotheses that
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the treatment is favorable on every outcome or most outcomes, but may have poor power
when several outcomes are null or the treatment is favorable for some outcomes and un-
favorable for others. This is okay for our purposes since we do not want to reject the null
when the treatment is conflicted among outcomes. However, even if we do reject the null,
this does not necessarily mean that the treatment is favorable for all outcomes. Use of
descriptive statistics on each outcome is encouraged, and closed testing procedures may
be used in combination with this test to make simultaneous inference on a subset of the
outcomes. Further, if the main interest is in isolating which specific outcomes are non-
null, multiple comparisons procedures should be used instead.

In addition, it is important to understand what these U-statistics are measuring. The
global treatment effect 04 that these statistics estimate are sometimes complex functions
of the marginal or joint distributions of the data, including censoring distributions. The
choice of function ¢ should be carefully considered, and should be a reflection of what

constitutes efficacy of the treatment within the context of the study.

3.7 APPENDIX

3.7.1 CONSISTENCY OF VARIANCE ESTIMATE IN EQUATION (3.3)

We want to show that the variance estimate given in equation (3.3) is a consistent es-

timate of the asymptotic variance given in equation (3.2) under Hy. Consider the first
N
fices to show that & 5 &, where § = L D7 2y d(ri)p(riy)] and & =

E[¢(rij)p(rijr)]. Observe that U = W Do 207 2 B(rig) (g )] s itself a U-

statistic, and thus converges to the expected value of its kernel, which is &£, under the

1

term of the asymptotic variance, %E [p(rij)é(rij)]. Since we assume 5= — 5, it suf-

condition that ¢*(r;;) < co. We can rewrite U as m Do 2 iy d(rig) (T ),

which makes it easy to see that él is asymptotically equivalent to U, and thus converges
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to &1. In a similar manner, we can show # D8 Dz 2o d(rig)p(riry) it L E[p(rij)p(ryj)],

which completes the proof.

3.7.2 OPTIMAL WEIGHTS FOR WEIGHTED TEST STATISTICS

The proof follows the same argument given in Minas et al.”?. Let §,, = w'8,(w’ Aw)1/2,

As described in section 2.3, maximizing power corresponds to maximizing J,, when 64 >
0, or minimizing é,, when 84 < 0. Equivalently, we want to maximize 62, with respect
to w. The generalized Cauchy-Schwarz inequality °* lemma 5.3.2 states that for any

positive-definite matrix ¥, (7/y)? < v'Syy/E~1y. It follows that if A is positive-definite,
w/ AWBQ)A*19¢

82 <
W= w/Aw

= 0;A*19¢. 62 attains the maximum for w = A7'6,.

5



1]

[10]

References

Dianne M Finkelstein and David A Schoenfeld. Analysing survival in the presence
of an auxiliary variable. Statistics in medicine, 13(17):1747-1754, 1994.

Robert J Gray. A kernel method for incorporating information on disease progres-
sion in the analysis of survival. Biometrika, 81(3):527-539, 1994.

Hina Mehta Malani. A modification of the redistribution to the right algorithm
using disease markers. Biometrika, 82(3):515-526, 1995.

Susan Murray and Anastasios A Tsiatis. Nonparametric survival estimation using
prognostic longitudinal covariates. Biometrics, 52(1):137-151, 1996.

Susan Murray and Anastasios A Tsiatis. Using auxiliary time-dependent covariates
to recover information in nonparametric testing with censored data. Lifetime Data
Analysis, 7(2):125-141, 2001.

Margaret Sullivan Pepe and Thomas R Fleming. Weighted kaplan-meier statistics:
A class of distance tests for censored survival data. Biometrics, 45(2):497-507,
1989.

Margaret Sullivan Pepe and Thomas R Fleming. Weighted kaplan-meier statis-
tics: Large sample and optimality considerations. Journal of the Royal Statistical
Society. Series B (Methodological), 53(2):341-352, 1991.

James M Robins and Andrea Rotnitzky. Recovery of information and adjust-
ment for dependent censoring using surrogate markers. AIDS epidemiology-
Methodological issues, 297331, 1992.

Todd Mackenzie and Michal Abrahamowicz. Using categorical markers as auxil-
iary variables in log-rank tests and hazard ratio estimation. Canadian Journal of
Statistics, 33(2):201-219, 2005.

James M Robins and Dianne M Finkelstein. Correcting for noncompliance and
dependent censoring in an aids clinical trial with inverse probability of censoring
weighted (ipcw) log-rank tests. Biometrics, 56(3):779-788, 2000.

76



[11]

[12]

[13]

[14]

[20]

[21]

[22]

Chiu-Hsieh Hsu, Jeremy MG Taylor, Susan Murray, and Daniel Commenges. Sur-
vival analysis using auxiliary variables via non-parametric multiple imputation.

Statistics in Medicine, 25(20):3503-3517, 2006.

Chiu-Hsieh Hsu, Jeremy MG Taylor, Susan Murray, and Daniel Commenges. Mul-
tiple imputation for interval censored data with auxiliary variables. Statistics in
Medicine, 26(4):769-781, 2007.

Chiu-Hsieh Hsu and Jeremy MG Taylor. Nonparametric comparison of two sur-
vival functions with dependent censoring via nonparametric multiple imputation.
Statistics in medicine, 28(3):462-475, 2009.

Anna SC Conlon, Jeremy MG Taylor, Daniel J Sargent, and Greg Yothers. Using
cure models and multiple imputation to utilize recurrence as an auxiliary variable
for overall survival. Clinical Trials, 8(5):581-590, 2011.

Rui Song, Michael R Kosorok, and Jianwen Cai. Robust covariate-adjusted log-
rank statistics and corresponding sample size formula for recurrent events data.
Biometrics, 64(3):741-750, 2008.

Bradley Efron. The two sample problem with censored data. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and probability, volume 4,
pages 831-853. University of California Press, Berkeley, 1967.

Edmund A Gehan. A generalized wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52(1-2):203-223, 1965.

Nathan Mantel. Ranking procedures for arbitrarily restricted observation. Biomet-
rics, 23(1):65-78, 1967.

G De Angelis, A Allignol, A Murthy, M Wolkewitz, J Beyersmann, E Safran,
Jacques Schrenzel, Didier Pittet, and S Harbarth. Multistate modelling to estimate
the excess length of stay associated with meticillin-resistant< i> staphylococcus

aureus</i> colonisation and infection in surgical patients. Journal of Hospital
Infection, 78(2):86-91, 2011.

MD P Gastmeier, MD H Grundmann, MD S Béarwolff, MD C Geffers, and
MD H Riiden. Use of multistate models to assess prolongation of intensive care

unit stay due to nosocomial infection. Infection Control and Hospital Epidemiology,
27(5):493-499, 2006.

John P Klein and Youyi Shu. Multi-state models for bone marrow transplantation
studies. Statistical Methods in Medical Research, 11(2):117-139, 2002.

Carolina Meier-Hirmer and Martin Schumacher. Multi-state model for studying an
intermediate event using time-dependent covariates: application to breast cancer.
BMC medical research methodology, 13(1):80, 2013.

7



23]

[24]

[27]

28]

John A Jacquez and Carl P Simon. The stochastic si model with recruitment
and deaths i. comparison with the closed sis model. Mathematical biosciences,
117(1):77-125, 1993.

C Koide and H Seno. Sex ratio features of two-group sir model for asymme-
trie transmission of heterosexual disease. Mathematical and computer modelling,
23(4):67-91, 1996.

Eric Renshaw. Modelling biological populations in space and time, volume 11. Cam-
bridge University Press, 1993.

Arlene Naranjo, A Alexandre Trindade, and George Casella. Extending the state-
space model to accommodate missing values in responses and covariates. Journal
of the American Statistical Association, 108(501):202-216, 2013.

JD Kalbfleisch and Jerald Franklin Lawless. The analysis of panel data under a
markov assumption. Journal of the American Statistical Association, 80(392):863—
871, 1985.

RC Gentleman, JF Lawless, JC Lindsey, and P Yan. Multi-state markov mod-
els for analysing incomplete disease history data with illustrations for hiv disease.
Statistics in Medicine, 13(8):805-821, 1994.

Daniel Commenges. Inference for multi-state models from interval-censored data.
Statistical Methods in Medical Research, 11(2):167-182, 2002.

Christopher H Jackson. Multi-state models for panel data: the msm package for r.
Journal of Statistical Software, 38(8):1-29, 2011.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014.

Wolfram Research, Inc. Mathematica Edition: Version 9.0. Champaign, Illinois,
2012.

Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analy-
sis: a process point of view. Springer Science & Business Media, 2008.

Glen A Satten and Ira M Longini Jr. Markov chains with measurement error: Es-
timating thetrue’course of a marker of the progression of human immunodeficiency
virus disease. Applied Statistics, pages 275-309, 1996.

Guillermo Marshall and Richard H Jones. Multi-state models and diabetic
retinopathy. Statistics in Medicine, 14(18):1975-1983, 1995.

Andrew C Titman and Linda D Sharples. Model diagnostics for multi-state mod-
els. Statistical Methods in Medical Research, 19(6):621-651, 2010.

78



[37]

[38]

[39]

[40]

[41]

David P Harrington and Thomas R Fleming. A class of rank test procedures for
censored survival data. Biometrika, 69(3):553-566, 1982.

Nathan Mantel. Evaluation of survival data and two new rank order statistics
arising in its consideration. Cancer Chemother Rep, 50:163—-170, 1966.

David R Cox. Regression models and life-tables. Journal of the Royal Statistical
Society. Series B (Methodological), 34(2):187-220, 1972.

Richard Peto and Julian Peto. Asymptotically efficient rank invariant test proce-
dures. Journal of the Royal Statistical Society. Series A (General), 135(2):185-207,
1972.

James D Berry, Jeremy M Shefner, Robin Conwit, David Schoenfeld, Myles
Keroack, Donna Felsenstein, Lisa Krivickas, William S David, Francine
Vriesendorp, Alan Pestronk, et al. Design and initial results of a multi-phase
randomized trial of ceftriaxone in amyotrophic lateral sclerosis. PLoS One,
8(4):e61177, 2013.

Jesse M Cedarbaum, Nancy Stambler, Errol Malta, Cynthia Fuller, Dana Hilt,
Barbara Thurmond, and Arline Nakanishi. The alsfrs-r: a revised als functional

rating scale that incorporates assessments of respiratory function. Journal of the
neurological sciences, 169(1):13-21, 1999.

MJ Sweeting, VT Farewell, and D De Angelis. Multi-state markov models for dis-
ease progression in the presence of informative examination times: An application
to hepatitis c. Statistics in medicine, 29(11):1161-1174, 2010.

John A Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308-313, 1965.

Jorge Nocedal and Stephen J Wright. Springer series in operations research. nu-
merical optimization, 1999.

Jens Gruger, Richard Kay, and Martin Schumacher. The validity of inferences
based on incomplete observations in disease state models. Biometrics, 47(2):595—
605, 1991.

Xiaomin Lu and Anastasios A Tsiatis. Improving the efficiency of the log-rank test
using auxiliary covariates. Biometrika, 95(3):679-694, 2008.

Ross L Prentice. Linear rank tests with right censored data. Biometrika,
65(1):167-179, 1978.

Anastasios A Tsiatis. Estimating regression parameters using linear rank tests for
censored data. The Annals of Statistics, pages 354-372, 1990.

79



[50] Edmund A Gehan. A generalized wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52(1-2):203-223, 1965.

[51] Mendel Fygenson and Ya’acov Ritov. Monotone estimating equations for censored
data. The Annals of Statistics, pages 732-746, 1994.

[52] Zhezhen Jin, DY Lin, LJ Wei, and Zhiliang Ying. Rank-based inference for the
accelerated failure time model. Biometrika, 90(2):341-353, 2003.

[53] BM Brown and You-Gan Wang. Induced smoothing for rank regression with cen-
sored survival times. Statistics in medicine, 26(4):828-836, 2007.

[54] Glenn Heller. Smoothed rank regression with censored data. Journal of the Ameri-
can Statistical Association, 102(478), 2007.

[55] Ritesh Ramchandani, Dianne M Finkelstein, and David A Schoenfeld. A model-
informed rank test for right-censored data with intermediate states. Statistics in
medicine, 2015.

[56] Zhezhen Jin, Yongzhao Shao, and Zhiliang Ying. A monte carlo method for vari-
ance estimation for estimators based on induced smoothing. Biostatistics, page
kxu021, 2014.

[57] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university
press, 2000.

[58] Odd O Aalen and Sgren Johansen. An empirical transition matrix for non-
homogeneous markov chains based on censored observations. Scandinavian Journal
of Statistics, pages 141-150, 1978.

[59] Arthur Allignol, Martin Schumacher, Jan Beyersmann, et al. Empirical transition
matrix of multistate models: the etm package. Journal of Statistical Software,
38(4):1-15, 2011.

[60] Jacobo de Una-Alvarez and Luis Meira-Machado. Nonparametric estimation of
transition probabilities in the non-markov illness-death model: A comparative
study. Biometrics, 2015.

[61] Lufs Meira-Machado, Jacobo de Ufia-Alvarez, and Carmen Cadarso-Suérez. Non-
parametric estimation of transition probabilities in a non-markov illness—death

model. Lifetime Data Analysis, 12(3):325-344, 2006.

[62] Ronald H Randles. On the asymptotic normality of statistics with estimated pa-
rameters. The Annals of Statistics, pages 462—474, 1982.

[63] Per Kragh Andersen, Ornulf Borgan, Richard D Gill, and Niels Keiding. Statistical
models based on counting processes. Springer Science & Business Media, 2012.

80



[64]

[65]

[66]

[67]

[68]

[69]

[72]

[73]

[74]

[75]

Zhiliang Ying. A large sample study of rank estimation for censored regression
data. The Annals of Statistics, pages 76-99, 1993.

John D Kalbfleisch and Ross L Prentice. The statistical analysis of failure time
data, volume 360. John Wiley & Sons, 2011.

Jin-Sying Lin and LJ Wei. Linear regression analysis for multivariate failure time
observations. Journal of the American Statistical Association, 87(420):1091-1097,
1992.

Yijian Huang. Censored regression with the multistate accelerated sojourn times
model. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
64(1):17-29, 2002.

Lynn M Johnson and Robert L Strawderman. Induced smoothing for the semi-
parametric accelerated failure time model: asymptotics and extensions to clustered
data. Biometrika, page asp025, 2009.

Sy Han Chiou, Sangwook Kang, Junghi Kim, and Jun Yan. Marginal semiparamet-
ric multivariate accelerated failure time model with generalized estimating equa-
tions. Lifetime data analysis, 20(4):599-618, 2014.

Stuart J Pocock, Nancy L Geller, and Anastasios A Tsiatis. The analysis of multi-
ple endpoints in clinical trials. Biometrics, pages 487-498, 1987.

Peter C O’Brien. Procedures for comparing samples with multiple endpoints. Bio-
metrics, pages 1079-1087, 1984.

LJ Wei and Wayne E Johnson. Combining dependent tests with incomplete re-
peated measurements. Biometrika, 72(2):359-364, 1985.

Dianne M Finkelstein and David A Schoenfeld. Combining mortality and longitu-
dinal measures in clinical trials. Statistics in medicine, 18(11):1341-1354, 1999.

Lemuel A Moyé, Barry R Davis, and C Morton Hawkins. Analysis of a clinical
trial involving a combined mortality and adherence dependent interval censored
endpoint. Statistics in medicine, 11(13):1705-1717, 1992.

Lemuel A Moyé, Dejian Lai, Kaiyan Jing, Mary Sarah Baraniuk, Minjung Kwak,
Marc S Penn, and et al. Combining censored and uncensored data in a u-statistic:
Design and sample size implications for cell therapy research. The international
journal of biostatistics, 7(1):1-29, 2011.

Knut M Wittkowski, Edmund Lee, Rachel Nussbaum, Francesca N Chamian, and
James G Krueger. Combining several ordinal measures in clinical studies. Statistics
in medicine, 23(10):1579-1592, 2004.

81



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Paul R Rosenbaum. Some poset statistics. The Annals of Statistics, pages 1091—
1097, 1991.

Paul R Rosenbaum. Coherence in observational studies. Biometrics, pages 368—
374, 1994.

Lothar Héberle, Annette Pfahlberg, and Olaf Gefeller. Assessment of multiple
ordinal endpoints. Biometrical Journal, 51(1):217-226, 2009.

G Michael Felker and Alan S Maisel. A global rank end point for clinical trials in
acute heart failure. Circulation: Heart Failure, 3(5):643-646, 2010.

Hengrui Sun, Beth A Davison, Gad Cotter, Michael J Pencina, and Gary G Koch.
Evaluating treatment efficacy by multiple endpoints in phase ii acute heart failure
clinical trials: Analyzing data using a global method. Circulation: Heart Failure,
pages 742749, 2012.

Brian C Healy and David Schoenfeld. Comparison of analysis approaches for phase
iii clinical trials in amyotrophic lateral sclerosis. Muscle € nerve, 46(4):506-511,
2012.

Erik Cobo, Julio J Secades, Francesc Miras, José Antonio Gonzéalez, Jeffrey L
Saver, Cristina Corchero, and et al. Boosting the chances to improve stroke treat-
ment. Stroke, 41(3):e143-150, 2010.

Peng Huang, Robert F Woolson, and Peter C O’Brien. A rank-based sample size
method for multiple outcomes in clinical trials. Statistics in medicine, 27(16):3084—
3104, 2008.

Marc Buyse. Generalized pairwise comparisons of prioritized outcomes in the two-
sample problem. Statistics in medicine, 29(30):3245-3257, 2010.

Janet Wittes, Edward Lakatos, and Jeffrey Probstfield. Surrogate endpoints in
clinical trials: cardiovascular diseases. Statistics in medicine, 8(4):415-425, 1989.

Peng Huang, Barbara C Tilley, Robert F Woolson, and Stuart Lipsitz. Adjusting
o’brien’s test to control type i error for the generalized nonparametric behrens—
fisher problem. Biometrics, 61(2):532-539, 2005.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university
press, 2000.

Qizhai Li, Aiyi Liu, Kai Yu, and Kai F Yu. A weighted rank-sum procedure for
comparing samples with multiple endpoints. Statistics and its interface, 2(2):197,
2009.

82



[90]

[91]

[92]

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific Com-
puting, 16(5):1190-1208, 1995.

Lloyd D Fisher. Self-designing clinical trials. Statistics in medicine, 17(14):1551—
1562, 1998.

Giorgos Minas, Fabio Rigat, Thomas E Nichols, John AD Aston, and Nigel Stal-
lard. A hybrid procedure for detecting global treatment effects in multivariate
clinical trials: theory and applications to fmri studies. Statistics in medicine,
31(3):253-268, 2012.

Merit E Cudkowicz, Jeremy M Shefner, David A Schoenfeld, Hui Zhang, Katrin I
Andreasson, Jeffrey D Rothstein, and et al. Trial of celecoxib in amyotrophic lat-
eral sclerosis. Annals of neurology, 60(1):22-31, 2006.

Theodore Wilbur Anderson. An introduction to multivariate statistical analysis,
volume 3. New York: Wiley-Interscience, 2003.

83



HIS THESIS WAS TYPESET us-
| ing IXTEX, originally developed
by Leslie Lamport and based
on Donald Knuth’s TEX. A template
that can be used to format a PhD the-
sis with this look and feel has been
released under the permissive MIT
(x11) license, and can be found on-
line at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at
suchow@post.harvard.edu.

84


https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu

