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Retrospective Mixed Model and Propensity Score Methods for Case Control Data 

Abstract 

In chapter one a Liability Threshold Mixed Linear Model (LTMLM) association statistic 

is introduced for ascertained case-control studies that increases power vs. existing mixed model 

methods for diseases with low prevalence, with a well-controlled false-positive rate. Using a chi-

square score statistic computed from posterior mean liabilities (PML) under the liability 

threshold model. Each individual’s PML is conditional not only on that individual’s case-control 

status, but also on every individual’s case-control status and on the genetic relationship matrix 

obtained from the data estimated using a multivariate Gibbs sampler.  In a Welcome Trust Case 

Control Consortium 2 (WTCCC2) multiple sclerosis data set LTMLM attained a 4.3% 

improvement (P=0.005) in chi-square statistics (vs. existing mixed model methods) at 75 known 

associated SNPs. Family-biased ascertainment is considered in chapter 2, where cases and 

controls are ascertained non-randomly with respect to family relatedness.  We introduce a family 

based association statistic (LT-Fam) that is robust to this problem. For type 2 diabetes cases and 

controls (in the Jackson Heart Study) we down-sampled to increase relatedness among cases and 

observed: ATT was inflated and MLM was deflated, while LT-Fam was properly calibrated. 

Finally, in chapter three, we propose a 2-Step Bayesian Model Averaging (2-Step BMA) method 

with Propensity Score (PS) adjustment that targets the primary treatment of interest 

characterizing the treatment effect while controlling for a high dimensional set of unknown 

confounders including metabolites and other epidemiological factors. This method improves on 

existing methods by averaging over the entire model space of both the treatment and outcome 
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models to control for cofounding while targeting treatment effect and without need of an 

arbitrary number of confounders to include a priori.  
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1. Mixed Model with Correction for Case-Control 
Ascertainment Increases Association Power 

Introduction 

Mixed model association statistics are a widely used approach to correct for population 

structure and cryptic relatedness in genome-wide association studies (GWAS)1-11.  However, 

recent work shows that existing mixed model association statistics suffer a loss in power relative 

to standard logistic regression in ascertained case-control studies11.  It is widely known that 

appropriate modeling of case-control ascertainment can produce substantial increases in power 

for case-control studies with fixed-effect covariates12-14, but such increases in power have not yet 

been achieved with models that include random effects.    

 We developed an association score statistic based on a liability threshold mixed linear 

model (LTMLM). The LTMLM statistic relies on the posterior mean liability (PML) of each 

individual; the PML is calculated using a multivariate Gibbs sampler15. The PML of each 

individual is conditional on the genetic relationship matrix (GRM), the case-control status of 

every individual, and the disease prevalence.   Existing methods use a univariate prospective 

model to compute association statistics, but here we use a multivariate retrospective model.  

The LTMLM statistic provides an increase in power in simulations of ascertained case-

control studies of diseases with low prevalence based on either simulated or real genotypes.  In a 

WTCCC2 multiple sclerosis data set with >10,000 samples, LTMLM was correctly calibrated 

and attains a 4.3% improvement (P=0.005) in chi-square statistics (vs. existing mixed model 

methods) at 75 known associated SNPs, consistent with simulations.  

 

Materials and Methods 
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Overview of Method 

 

We improve upon standard mixed model methods11 using a retrospective association 

score statistic (LTMLM) computed from posterior mean liabilities (PML) under the liability 

threshold model.  The improvement over previous approaches comes from appropriate modeling 

of case-control ascertainment. We consider all individuals simultaneously, incorporating 

prevalence information.  

Our method consists of three steps.  First, the genetic relationship matrix (GRM) is 

calculated and a corresponding heritability parameter is estimated, modeling the phenotype 

covariance of all individuals (see Estimation of Heritability Parameter).  The heritability 

parameter is estimated using Haseman-Elston (H-E) regression on the observed scale followed 

by transformation to liability scale.  Second, Posterior Mean Liabilities (PML) are estimated 

using a truncated multivariate normal Gibbs sampler (see Posterior Mean Liabilities). The PML 

of each individual is conditional on that individual’s case-control status, on every other 

individual’s case-control status, and on disease prevalence and liability-scale phenotypic 

covariance.   Third, a chi-square (1 d.o.f) association score statistic is computed based on the 

association between the candidate SNP and the PML (see LTMLM Association Statistic). 
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Figure 1.1. Genetic relatedness to a disease case can increase an individual’s PML. In (a) and (b), we plot 

distributions of liabilities for a set of 10,000 individuals under (a) random ascertainment or (b) case-control 

ascertainment for a disease with prevalence 0.1%  (see Figure 2 of Lee et al.17).  In (c) and (d), we plot the same 

distributions conditional on an individual having genetic relatedness of 0.5 to a disease case, assuming a 
heritability of 1 on the liability scale.   

 

The toy example in Figure 1.1 provides an illustration of how genetic relatedness to a 

disease case can increase an individual’s PML.  In Figure 1.1a and 1.1b, we plot the distribution 

of liabilities in 10,000 unrelated individuals with random ascertainment and case-control 

ascertainment (for a disease with prevalence 0.1%), respectively. In Figure 1.1c and 1.1d, we 

plot the same distributions conditional on an individual having genetic relatedness of 0.5 to a 

disease case, assuming liability-scale heritability of 1.0.  In each case, the posterior distribution 
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of liabilities (and hence the PML) is shifted upwards.  (The magnitude and direction of this effect 

would be different for an individual having a genetic relatedness of 0.5 to a control.)   Our main 

focus below is on much lower levels of genetic relatedness (identity-by-state) among many 

unrelated samples, but the same principles apply.  

Estimation of Heritability Parameter 

Mixed model association statistics rely on the estimation of a heritability parameter. We 

note that this heritability parameter, which Kang et al.4 referred to as “pseudo-heritability”, is 

generally lower than the total narrow-sense heritability (h2) in data sets not dominated by family 

relatedness, but may be larger than the heritability explained by genotyped SNPs (hg
2)16 in data 

sets with population structure or family relatedness.  However, for ease of notation, we use the 

symbol h2 to represent this heritability parameter.  A list of all notation used below is provided in 

Table S1.1.  

The goal is to test for association between a candidate SNP and a phenotype.  We first 

consider a quantitative trait: 

𝝋 = 𝛽𝒙 + 𝒖 + 𝒆 .     (1) 

The phenotypic data (transformed to have mean 0 and variance 1) may be represented as a vector 

φ with values for each individual i.  Genotype values of candidate SNP are transformed to a vector 

x with mean 0 and variance 1, with effect size β.  The quantitative trait value depends on the fixed 

effect of the candidate SNP (βx), the genetic random effect excluding the candidate SNP (u), and 

the environmental component (e).  We extend to case-control traits via the liability threshold 

model, in which each individual has an underlying, unobserved normally distributed trait called 

the liability. An individual is a disease case if the liability exceeds a specified threshold t, 

corresponding to disease prevalence17 (Figure S1.1). 
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Standard mixed model association methods generally estimate h2 from a genetic 

relationship matrix (GRM) and phenotypes using restricted maximum likelihood (REML) 4; 11.   

Genotypic data is used to  build a GRM (excluding the candidate SNP11):  

𝜣̂ =
𝑿𝑇𝑿

𝑀
 ,     (2) 

where X is a matrix of non-candidate SNPs normalized to mean 0 and variance 1 and M is the 

number of SNPs. We estimate h2 using Haseman-Elston (H-E) regression followed by a 

transformation to liability scale.  The H-E regression estimate is obtained by regressing the 

product of the case-control phenotypes on the off diagonal terms of the GRM18; 19:  

hHE
2̂ =

∑ πiπk𝜣̂iki≠k

∑ 𝜣̂ik
2

i≠k
,      (3) 

where πi denotes the case-control status of individual i and 𝜣̂ik is the genetic relatedness of 

individuals i and k.    This gives an estimate on the observed scale which is then transformed to 

the liability scale20: 

  hHE,l
2̂ = hHE

2̂ [K(1−K)]2

z2(P(1−P)
,      (4) 

where z is the height of the standard normal density ( 1

2𝜋
𝑒−𝑡2/2) at the liability threshold t, K is 

disease prevalence, and P is the proportion of cases in the sample20.   

Then, the variance between the individuals is modeled as the phenotypic covariance   

   𝑽 = ℎ2𝜣̂ + (𝐼 − ℎ2)𝑰 ,    (5) 

where 𝜣̂ is the N by N GRM, V is the phenotypic covariance, h2 is the heritability parameter, and 

I is the identity matrix. 

Using the phenotypic covariance matrix V, the liability is modeled as a multivariate 

normal distribution: 
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𝐿(𝝋) = (2𝜋)
−𝒏

𝟐 ∣∣(𝑽)∣∣
−1 2⁄

exp(
−1

2
(𝝋)𝑇(𝑽)−1(𝝋))   (6) 

We note that we observe the case-control phenotypes of the individuals and not the continuous  

liabilities. 

Posterior Mean Liabilities 

We first consider the univariate PML (PMLuni), constructed independently for each individual; 

we generalize to the multivariate setting below.    As described in equations 11 and 12 of ref. 20, 

these correspond to the expected value of the liability conditional on the case control status: 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑎𝑠𝑒 = 𝐸[𝜑|𝜋𝑖 = 1] = 𝑧/𝐾 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐸[𝜑|𝜋𝑖 = 0] = −𝑧/(1 − 𝐾)   (7) 

These values are calculated analytically in the univariate setting, and can be thought of as the 

mean of a truncated normal above or below the liability threshold t depending on case control 

status20. 

 We now consider the multivariate PML (PMLmulti), estimated jointly across individuals.  

The PMLmulti for each individual is conditional on that individual’s case-control status, on every 

other individual’s case-control status, and on their phenotypic covariance.  The PMLmulti is 

estimated  using a Gibbs sampler, analogous to previous work15  (which focused on family 

relatedness and did not consider association statistics).  The Gibbs sampler is an iterative 

algorithm that generates random variables from conditional distributions in order to avoid the 

difficult task of explicitly calculating the marginal density for each random variable. 

  For each individual in turn, the conditional distribution of the liability is 

calculated based on all of the other individuals and a new value is generated.  The algorithm is: 

Initialization: for each individual j,         (8) 



 

7 
 

φi = PMLuni,case if πi=1 or φi = PMLuni,control if πi=0 
For each MCMC iteration n 
 For each individual i 
   Sample φi from the constrained conditional univariate normal distribution 
  L(φi) ~ exp(–φTV 

-1φ/2) and constraint φi≥t if πi=1, φi<t if πi=0      
  (where φ≠i are fixed) 
  
 
We use 100 burn-in iterations followed by 1,000 additional MCMC iterations.  We estimate the 

PMLmulti by averaging over MCMC iterations.  We reduce the number of MCMC iterations 

needed via Rao-Blackwellization, which averages (across iterations n) the posterior means of the 

distributions from which each φi is sampled. 

  

LTMLM Association Statistic 

 The LTMLM association statistic is calculated using PMLmulti. For simplicity, we first 

consider the case where the liability is known. We jointly model the liability and the genotypes 

using a retrospective model, enabling appropriate treatment of sample ascertainment.  We 

concatenate the two vectors (φ,x) and derive the joint likelihood for these combined terms.  The 

covariance of φ and x between individual i and k is: 

𝐶𝑜𝑣(𝝋𝒊, 𝒙𝒌) = 𝐸[𝝋𝒊, 𝒙𝒌] − 𝐸[𝝋𝒊]𝐸[𝒙𝒌] = 𝐸[𝝋𝒊, 𝒙𝒌] = 𝐸[𝛽𝒙𝒊, 𝒙𝒌] = 𝛽𝜣𝑖,𝑘, (9) 

where Θ is the true underlying genetic relatedness matrix from which genotypes are sampled.  

(We note that Θ, which is unobserved, is different from the GRM 𝜣̂ estimated from the data.) 

The variance of (φ,x) as a function of effect size 𝛽 is: 

𝑪(𝛽) = (
𝑽 𝛽𝜣

𝛽𝜣𝑻 𝜣
),      (10) 

 thus 

𝐶(𝛽)−1 = (
𝑽−𝟏 −𝛽𝑽−𝟏

−𝛽(𝑽−𝟏)𝑇 𝜣−𝟏 ) + 𝑂(𝛽2) ,   (11) 
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where both of these matrices are 2N by 2N.  (We note that the product of the matrices in equation 

10 and equation 11 is (
𝑰 + 𝑂(𝛽2) 0

0 𝐈 + 𝑂(𝛽2)
), whose difference from the identity contains 

only O(β2) terms.) 

The joint likelihood of the liability and genotypes are distributed as a multivariate normal 

N(0,C(β) ), and thus   

  

𝑳(𝒙, 𝝋|𝜷) = (𝟐𝝅)
−𝒏

𝟐 ∣∣𝑪(𝜷)∣∣
−𝟏 𝟐⁄

𝐞𝐱𝐩(
−𝟏

𝟐
(𝝋, 𝒙)𝑻𝑪(𝜷)−𝟏(𝝋, 𝒙)).  (12) 

Taking the derivative of the log likelihood results in the score equation.  The determinant of the 

matrix V does not have any terms linear in β, so the terms with V alone drop out when we take 

the derivative:   

𝑆(𝒙, 𝝋|𝛽) =
𝑑

𝑑𝛽
ln𝐿(𝒙, 𝝋|𝛽) =

𝑑

𝑑𝛽

−1

2
(𝝋, 𝒙)𝑇𝑪(𝛽)(𝝋, 𝒙) 

=
𝑑

𝑑𝛽
(𝝋, 𝒙)𝑇 (

𝑽−𝟏 −𝛽𝑽−𝟏

−𝛽(𝑽−𝟏)𝑇 𝜣−𝟏 ) (𝝋, 𝒙) = 𝑽−1𝝋𝒙   (13) 

The marginal score statistic tests the null hypothesis that the fixed effect of the candidate SNP is 

zero (H0: β = 0) vs. the alternative hypothesis (HA: β ≠ 0). The denominator of the score statistic 

is the variance of the score evaluated under the null. :     

𝑉𝑎𝑟(𝑆(𝒙, 𝝋|𝛽)) = (𝑽−𝟏𝝋)𝑇𝜣(𝑽−1𝝋)    (14) 

This leads to the score statistic: 

𝑆𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝝋)2

(𝑽−𝟏𝝋)𝑇𝜣(𝑽−𝟏𝝋)
 ,     (15) 

where Θ, the true underlying genetic relatedness of the individuals, can be approximated by the 

identity matrix in data sets of unrelated individuals.  

In equations 9-15 the liability was assumed to be known, for simplicity.  We now 
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consider a case-control trait, with unobserved liability, and derive the score function using the 

observed case-control status of each individual, π.  Returning to the score function and 

conditioning on case control status:  

𝑆 (𝒙, 𝝋|𝛽, 𝝅)𝛽=0 =
𝑑

𝑑𝛽
ln𝐿(𝒙, 𝝋|𝛽, 𝝅)𝛽=0 =

𝑑𝐿(𝒙,𝝋|𝛽,𝝅)𝛽=0

𝑑𝛽

𝐿(𝒙,𝝋|𝛽,𝜋)𝛽=0
   (16) 

Introducing the unobserved quantitative liability, φ, the score function can be rewritten in terms 

of the probability density of the liability:  

𝑑𝐿(𝒙, 𝝋|𝛽)𝛽=0

𝑑𝛽

𝐿(𝒙, 𝝋|𝛽)𝛽=0
=  

∫ 𝑃(φ)
𝑑𝐿(𝒙, 𝝋|𝛽)𝛽=0

𝑑𝛽
𝑑φ

𝐿(𝒙, 𝝋|𝛽)𝛽=0
 

𝑆(𝒙, 𝝋|𝛽, 𝝅) = 𝐶 ∫ 𝑃(φ) 𝑆(𝒙, φ|𝛽, 𝝅)𝑑φ = 𝑆(𝑥, 𝐸[φ|𝝅]|𝛽) ,   (17) 

where P(φ) is the probability density of the liability and E[φ| π] is the PML. It follows that an 

appropriate score statistic is 

𝐿𝑇𝑀𝐿𝑀 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)2

(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)𝑇𝜣(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)
    (18) 

Again Θ can be approximated by the identity matrix in data sets of unrelated individuals; we 

note that this choice affects only a constant calibration factor (since the denominator is the same 

for each candidate SNP), and that other calibration options are available (see below).  As with 

other association statistics, the LTMLM score statistic generalizes to non-normally distributed 

genotypes21-23. The overall computational cost of computing the LTMLM statistic is O(MN2) 

when M > N > #iterations (Table S1.2).   We have fixed the number of iterations at 100 burn-in 

iterations followed by 1,000 additional iterations. 

 We calculate the GRM via Leave One Chromosome Out (LOCO) analysis, i.e. for each 

candidate SNP on a given chromosome the GRM is calculated using all of the other 
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chromosomes. This prevents deflation due to double counting the candidate SNP as both a fixed 

effect and random effect in the mixed model4; 6; 11.  

Simulated Genotypes and Simulated Phenotypes 

We performed simulations both using simulated genotypes and simulated phenotypes, 

and using real genotypes and simulated phenotypes (see below).  Quantitative liabilities for each 

individual were generated from SNP effects and an environmental component.    All simulations 

included M candidate SNPs and an independent set of M SNPs used to calculate the GRM (so 

that candidate SNPs are not included in the GRM).  For each scenario a set of 100 simulations 

were run.  We set 10 candidate SNPs and 10 GRM SNPs to be causal in simulations with 

N=1,000 samples, and set 50 candidate SNPs and 50 GRM SNPs to be causal in simulations with 

N=5,000 samples, ensuring that causal SNPs have similar average chi-square statistics 

independent of M and N.    The resulting quantitative liabilities were then dichotomized based on 

the liability threshold to categorize each individual as a case or control.  Case-control 

ascertainment was performed, simulating 50% cases and 50% controls.  We compared Armitage 

Trend Test (ATT), Logistic Regression (LogR), MLM, and LTMLM statistics (see Table 1.1).  

MLM statistics were computed using the GCTA-LOCO statistic described in ref. 11, with the 

heritability parameters estimated using the GCTA software24.  We evaluated performance using 

average chi-square statistics at causal, null, and all markers, λGC at all markers (median chi-

square divided by 0.455)25, and proportion of causal and null markers that were significant at P-

value thresholds of 0.05, 0,001, 1x10-6 and 5x10-8. 

  



 

11 
 

 

 

 ATT MLM LTMLM 
 Quant vs Case 
control Trait 

Both Both CC 

Herit Param Est. None REML H-E regression 

Prospective vs. 
Retrospective  

Pro Pro Retro 

Equation (𝑥𝑇π∗ )2

𝑥𝑇𝑥
 

(𝑥𝑇π∗𝑉−1 )2

𝑥𝑇𝑉−1𝑥

=
(𝑥𝑇𝑉−1𝑃𝑀𝐿𝑢𝑛𝑖  )2

𝑥𝑇𝑉−1𝑥
 

(𝑥𝑇𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖  )2

(𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖)𝑇𝐼(𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖)
 

 
Corrects for 

Confounding? 
No Yes Yes 

Models Case-
Control Asc. 

No No Yes 

 

Table 1.1. List of association statistics. We list properties of the Armitage Trend Test (ATT), standard mixed 
model association statistic (MLM), and proposed statistic (LTMLM). π* is normalized case-control status (mean 0, 
variance 1), x are normalized genotypes, PMLuni is the univariate PML conditional on the case-control status of a 
single individual, , PMLmulti is the multivariate PML conditional of the case-control status of all individuals, I is the 
identity matrix, V is the phenotypic covariance (on the observed scale for MLM, and on the liability scale for 
LTMLM) 

In the primary analyses, we simulated individuals without population structure or LD, 

with N = 1K or 5K samples, M = 1K, 5K or 50K SNPs, and prevalence K = 50%, 10%, 1% or 

0.1%.  Genotypes were sampled from independent binomials with allele frequencies uniform on 

[0.1,0.9].  In secondary analyses, we simulated population structure by simulating two 

populations with an FST of 0.01, whose  allele frequencies were drawn from beta distributions 

with parameters p(1 – FST)/ FST and (1 – p)(1 – FST)/ FST,  based on ancestral allele frequency p 

which is uniform on [0.1,0.9].   

To test the impact of the generative distribution, the underlying distribution was 

simulated using a logit model instead of a liability threshold model. The causal 10 causal 

candidate SNPs were simulated with alternating fixed effect size of β=0.4 or β=-0.4. Then, case-

control phenotypes were generated from a binomial distribution where the probability of being a 
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case was (𝑐𝑎𝑠𝑒) =
1

1+𝑒𝑥𝑝(−[𝑐+𝛽𝒙])
 , shifted by the affine term, c, based on the desired disease 

prevalence.  

 

WTCCC2 Genotypes and Simulated Phenotypes 

We also conducted simulations using real genotypes from WTCCC2 to incorporate LD and 

realistic population structure.  The WTCCC2 data contained 360,557 SNPs and 15,633 samples, 

as described previously11. Since the goal of the power study is demonstrate a comparison of the 

statistics under case-control ascertainment, we used N = 1000 samples (500 cases and 500 

controls), with simulated phenotypes having prevalence of 50%, 25%, 10%.  The prevalence was 

restricted to a lower bound of 10% because of the limitation of only 15,633 WTCCC2 samples 

for simulating case-control ascertainment.  We computed ATT, LogR, MLM and LTMLM 

statistics as described above. 

 

WTCCC2 Genotypes and MS Phenotypes 

Finally, we analyzed WTCCC2 individuals with ascertained case-control phenotypes for 

MS11, a disease with a prevalence of around 0.1%.  As in previous work, we assume that the 

disease prevalence is known based on external epidemiological literature20; 26; 27. For the 

WTCCC2 MS data, we used a threshold of 3.0, corresponding to a disease prevalence of 0.1%.26   

We computed ATT, LogR, MLM and LTMLM statistics as described above.  Although the 

underlying MS study was appropriately matched for ancestry28, the data made available to 

researchers included only pan-European cases and UK controls.  Thus, the WTCCC2 data set 

shows a severe mismatch in ancestry of cases and controls; this severe mismatch between cases 

and controls is not representative of a typical GWAS.  We thus restricted our primary analysis to 
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10,034 samples with only a moderate mismatch in ancestry, but  analyses of unmatched and 

stringently matched data sets were also performed (Figure S1.2).  The unmatched data set 

contained 10,204 case and 5,429 controls. Matching was performed by first calculating 20 PCs in 

the full cohort and weighing the contribution of each PC based on the variance in phenotype it 

explained in a multiple regression. A Euclidean distance over these 20 weighted dimensions was 

then computed for all pairs of individuals, and each case was greedily assigned the nearest 

unmatched control until no matched case-control pairs could be identified. Finally, any matched 

case-control pairs that were not within 6 standard deviations of the mean pairwise distance were 

removed as outliers, yielding the 5,017 cases and 5,017 matched controls used in our primary 

analysis. Stringent matching was performed by additionally removing any matched case-control 

pairs that were not within 2 standard deviations of the mean pairwise distance, yielding 4,094 

cases and 4,094 matched controls used in our stringently matched analysis. 

We compared association statistics at 75 published SNPs associated to MS11.  We used a 

jackknife approach to assess the statistical significance of differences in association statistics, by 

excluding each of the 75 published SNPs in turn. 

Results 

Simulations: Simulated Genotypes and Simulated Phenotypes 

 

We first conducted simulations using simulated genotypes and simulated ascertained 

case-control phenotypes (see Materials and Methods).  Our main simulations involve unrelated 

individuals with no population structure, but the impact of population structure is explored 

below.  We evaluated the power of ATT, LogR, MLM and LTMLM.  We report average chi-

square statistics at causal, null, and all markers and λGC at all markers in Table 1.2, and the  
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Table 1.2 

N M Prev Set Statistic ATT LogR MLM LTMLM 
5000 5000 50% causal average 16.492(0.325) 16.399(0.321) 16.88(0.332) 16.867(0.332) 

   null average 0.988(0.002) 0.988(0.002) 0.990(0.002) 0.989(0.002) 
      all average 1.143(0.004) 1.142(0.004) 1.148(0.004) 1.148(0.004) 

   all λGC 1.010(0.003) 1.010(0.003) 1.014(0.003) 1.014(0.003) 
    25% causal average 18.637(0.388) 18.509(0.383) 19.014(0.396) 19.056(0.398) 

   null average 1.000(0.002) 1.000 (0.002) 1.000 (0.002) 1.001(0.002) 
      all average 1.177(0.005) 1.175(0.005) 1.18(0.005) 1.181(0.005) 

   all λGC 1.012(0.004) 1.012(0.004) 1.013(0.004) 1.013(0.004) 
    10% causal average 25.235(0.501) 25.014(0.492) 25.386(0.506) 25.778(0.514) 

   null average 0.993(0.002) 0.992(0.002) 0.991(0.002) 0.992(0.002) 
      all average 1.235(0.006) 1.233(0.006) 1.235(0.006) 1.24(0.007) 

   all λGC 1.005(0.003) 1.005(0.003) 1.007(0.003) 1.008(0.003) 
    1% causal average 45.376(0.878) 44.682(0.852) 42.594(0.825) 46.691(0.913) 

   null average 1.000 (0.002) 0.999(0.002) 0.990(0.002) 1.000 (0.002) 
      all average 1.444(0.011) 1.436(0.011) 1.406(0.01) 1.457(0.011) 

   all λGC 1.020(0.003) 1.020(0.003) 1.011(0.003) 1.019(0.003) 
    0.1% causal average 68.648(1.301) 67.099(1.248) 56.303(1.082) 70.81(1.364) 

   null average 1.000 (0.002) 1.000 (0.002) 0.918(0.002) 1.000 (0.002) 
      all average 1.677(0.016) 1.661(0.016) 1.472(0.013) 1.698(0.017) 
      all λGC 1.026(0.003) 1.026(0.003) 0.942(0.005) 1.025(0.003) 
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Table 1.2 (Continued) 

 

 

 

 

Table 1.2. Results on simulated genotypes and simulated phenotypes.  We report average χ2 statistics across 100 
simulations for each individual scenario (standard errors in parentheses).  N is the number of individuals and M is 
the number of SNPs.  Set indicates either all SNPs, the 1% causal SNPs, or the 99% null SNPs.  The disease 
prevalence ranges from 50% (no case-control ascertainment) to 0.1%. In bold are the settings where LTMLM 
demonstrates at least a 5% improvement over MLM in χ2 statistics at causal markers.  

proportion of causal and null markers that were significant at various P-value thresholds in Table 

S1.3.  The LTMLM statistic outperforms the ATT, LogR and MLM statistics for diseases with 

low prevalence. Improvements in average chi-square statistics at causal markers (which have a 

natural interpretation as the increase in effective sample size) were larger than improvements in 

power to detect an association at a given P-value threshold, likely due to the variable (normally 

N M Prev Set Statistic ATT LogR MLM LTMLM 
5000 50000 50% causal average 16.624(0.331) 16.529(0.327) 16.673(0.332) 16.69(0.333) 

   null average 1.000 (0.001) 0.999(0.001) 1.000 (0.001) 1.000 (0.001) 
      all average 1.015(0.001) 1.015(0.001) 1.016(0.001) 1.015(0.001) 

   all λGC 1.003(0.001) 1.002(0.001) 0.999(0.001) 0.999(0.001) 
    25% causal average 18.965(0.37) 18.843(0.366) 19.03(0.372) 19.04(0.372) 

   null average 1.003(0.001) 1.003(0.001) 1.003(0.001) 1.003(0.001) 
      all average 1.021(0.001) 1.02(0.001) 1.021(0.001) 1.021(0.001) 

   all λGC 1.006(0.001) 1.006(0.001) 1.003(0.001) 1.003(0.001) 
    10% causal average 23.71(0.444) 23.528(0.437) 23.868(0.449) 23.91(0.45) 

   null average 1.001(0.001) 1.000 (0.001) 1.001(0.001) 1.001(0.001) 
      all average 1.023(0.001) 1.023(0.001) 1.024(0.001) 1.024(0.001) 

   all λGC 1.007(0.001) 1.007(0.001) 1.005(0.001) 1.004(0.001) 
    1% causal average 46.683(0.883) 45.969(0.859) 46.44(0.881) 47.368(0.905) 

   null average 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 
      all average 1.045(0.001) 1.044(0.001) 1.045(0.001) 1.045(0.001) 

   all λGC 1.004(0.001) 1.004(0.001) 1.001(0.001) 1(0.001) 
    0.1% causal average 67.059(1.278) 65.561(1.225) 65.232(1.251) 68.618(1.333) 

   null average 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 
      all average 1.065(0.002) 1.063(0.002) 1.063(0.002) 1.067(0.002) 
      all λGC 1.004(0.001) 1.004(0.001) 1.000 (0.001) 1.000 (0.001) 
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distributed) effect sizes in this simulation (see below).  For LTMLM vs. MLM at disease 

prevalences of 0.1%, 26% and 5% improvements in average chi-square statistics at causal 

markers were observed in simulations with 5,000 SNPs and 50,000 SNPs respectively. Smaller 

improvements were observed at higher disease prevalences.  Test statistics were well-calibrated 

at null markers. Simulations at other values of M and N indicate that the magnitude of the 

improvement depends on the value of N/M (Tables S1.3 and S1.4).  Simulations with population 

structure demonstrate similar results, but with inflation in the ATT statistic as expected (Tables 

S1.5 and S1.6).   

The MLM statistics were calculated using an h2 parameter estimated using Restricted 

Maximum Likelihood Methods (REML)4, but  the LTMLM statistics were calculated using an h2 

parameter estimated via Haseman-Elston (H-E) regression on case-control phenotypes followed 

by transformation to liability scale 18; 20 (see Materials and Methods).  As case-control 

ascertainment becomes more severe the H-E regression estimate of the h2 remains unbiased, 

whereas the variance component estimate is severely downwardly biased even after 

transformation to the liability scale (Table 1.3 and Table S1.7), consistent with previous work 

(see ref.29  and Supp Table 9 of ref.11 ) .  Population structure resulted in bias of both REML and 

HE-regression estimates of h2, with higher bias for the REML estimates (Table S1.8).    
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    Liability  
  

Observed  

N M Prevalence H-E REML H-E REML 
5000 5000 50% 0.255(0.006) 0.253(0.006) 0.162(0.004) 0.161(0.004) 

  25% 0.24(0.005) 0.236(0.004) 0.172(0.003) 0.17(0.003) 
  10% 0.24(0.004) 0.23(0.004) 0.228(0.004) 0.219(0.004) 
  1% 0.25(0.004) 0.21(0.002) 0.453(0.007) 0.381(0.004) 
  0.1% 0.253(0.003) 0.158(0.000) 0.719(0.009) 0.449(0.001) 
 50000 50% 0.272(0.009) 0.274(0.009) 0.173(0.006) 0.174(0.006) 
  25% 0.246(0.010) 0.252(0.010) 0.177(0.007) 0.181(0.007) 
  10% 0.225(0.004) 0.231(0.004) 0.214(0.004) 0.219(0.004) 
  1% 0.246(0.004) 0.241(0.004) 0.445(0.008) 0.437(0.008) 
  0.1% 0.259(0.004) 0.241(0.004) 0.734(0.012) 0.684(0.01) 

 

Table 1.3. Heritability parameter estimates on simulated genotypes and phenotypes.  We report results on both 
liability and observed scales averaged over 100 simulations.  The true h2 explained by the SNPs used to build the 
GRM is 25% on the liability scale for all simulations. These results correspond to the same sets of simulations in 
table 2.   

These biases do not inflate LTMLM or MLM statistics under the null (Tables S1.5 and S1.6). 

We note that previous work has shown that running MLM using the correct h2 parameter does 

not ameliorate the loss in power for MLM11.  

We also evaluated performance in settings where the liability threshold (equivalently, the 

disease prevalence) is mis-specified  (Tables S1.9 and S1.10). The LTMLM statistic remains 

properly calibrated under the null, and continues to outperform the MLM statistic as the impact 

of mis-specifying the liability threshold is small.  Mis-specifying the liability threshold leads to 

bias in liability-scale heritability estimates, due to the inaccurate conversion from observed scale 

to liability scale (Table S1.11).  

Finally, we evaluated performance when phenotypes were generated using a logit model 

instead of a liability threshold model, using a fixed effect size for causal candidate SNPs (see 

Materials and Methods).  At low disease prevalence, we observed improvements for LTMLM 
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both in average chi-square statistics at causal markers (Table S1.12) and in power to detect an 

association at a given P-value threshold (Table S1.13); improvements in power depend heavily 

on the distribution of causal effect sizes, and are larger in simulations with fixed causal effect 

sizes than in simulations with variable causal effect sizes.   

Simulations: WTCCC2 Genotypes and Simulated Phenotypes 

 

We next conducted simulations using real WTCCC2 genotypes and simulated ascertained 

case-control phenotypes (see Materials and Methods)11; 28. For a given value of M (M SNPs to 

calculate the GRM and M candidate SNPs, for a total of 2M SNPs), we used the first M/2 SNPs 

from each of the first four chromosomes.  The GRM was calculated using SNPs on 

chromosomes 3 and 4, with SNPs on chromosomes 1 and 2 treated as the candidate SNPs.  The 

simulated phenotypes were generated from chromosome 1 and 3, where 1% of the SNPs were 

randomly selected as being causal.  Results are reported for causal SNPs on chromosome 1 and 

null SNPs on chromosome 2, which were not used to build the GRM. 

  



 

 
 

19
 

 

M Prev Set Statistic ATT ATT+PCs LogR LogR +PCs MLM LTMLM 
1000 50% causal average 16.234(0.723) 15.775(0.705) 15.566(0.674) 15.14(0.658) 17.48(0.780) 17.412(0.775) 

  null average 1.444(0.011) 1.425(0.010) 1.433(0.010) 1.415(0.010) 1.472(0.011) 1.471(0.011) 
    all average 1.592(0.014) 1.569(0.013) 1.574(0.013) 1.552(0.013) 1.632(0.015) 1.630(0.015) 
  all λGC 1.214(0.017) 1.224(0.017) 1.214(0.017) 1.223(0.017) 1.234(0.017) 1.226(0.016) 
  25% causal average 19.277(0.771) 18.581(0.754) 18.47(0.721) 17.822(0.706) 20.493(0.820) 20.642(0.831) 
  null average 1.551(0.012) 1.507(0.011) 1.538(0.012) 1.495(0.011) 1.571(0.012) 1.577(0.013) 
    all average 1.728(0.015) 1.678(0.014) 1.707(0.015) 1.658(0.014) 1.761(0.016) 1.768(0.016) 
  all λGC 1.256(0.016) 1.245(0.017) 1.255(0.016) 1.245(0.017) 1.241(0.015) 1.243(0.015) 
  10% causal average 22.838(0.961) 21.406(0.878) 21.618(0.881) 20.336(0.808) 23.865(1.022) 24.661(1.064) 
  null average 1.664(0.014) 1.583(0.012) 1.647(0.014) 1.568(0.012) 1.668(0.014) 1.695(0.015) 
    all average 1.876(0.018) 1.781(0.016) 1.846(0.017) 1.756(0.015) 1.890(0.019) 1.925(0.019) 
  all λGC 1.271(0.016) 1.285(0.015) 1.270(0.016) 1.284(0.015) 1.251(0.017) 1.270(0.016) 

10000 50% causal average 16.898(0.702) 16.815(0.698) 16.229(0.659) 16.156(0.655) 17.279(0.725) 17.26(0.725) 
  null average 1.078(0.002) 1.083(0.002) 1.074(0.002) 1.078(0.002) 1.078(0.002) 1.076(0.002) 
    all average 1.094(0.002) 1.099(0.002) 1.089(0.002) 1.094(0.002) 1.095(0.002) 1.092(0.002) 
  all λGC 1.039(0.005) 1.047(0.005) 1.039(0.005) 1.046(0.005) 1.039(0.005) 1.035(0.005) 
  25% causal average 17.573(0.726) 17.293(0.696) 16.856(0.679) 16.61(0.654) 17.976(0.749) 18.077(0.758) 
  null average 1.076(0.002) 1.078(0.002) 1.071(0.002) 1.073(0.002) 1.074(0.002) 1.073(0.002) 
    all average 1.092(0.002) 1.094(0.002) 1.087(0.002) 1.089(0.002) 1.091(0.002) 1.090(0.002) 
  all λGC 1.040(0.004) 1.045(0.004) 1.040(0.004) 1.044(0.004) 1.040(0.004) 1.039(0.004) 
  10% causal average 24.379(1.026) 24.116(1.014) 23.127(0.944) 22.894(0.934) 24.987(1.071) 25.399(1.091) 
  null average 1.112(0.002) 1.115(0.002) 1.107(0.002) 1.110(0.002) 1.108(0.002) 1.111(0.002) 
    all average 1.136(0.003) 1.138(0.003) 1.129(0.002) 1.132(0.002) 1.131(0.003) 1.135(0.003) 
    all λGC 1.051(0.005) 1.059(0.004) 1.050(0.005) 1.058(0.004) 1.044(0.004) 1.047(0.004) 

Table 1.4. Results on real genotypes and simulated phenotypes. We report average χ2 statistics.  M is the number of SNPs, and sample size is fixed at 500 
cases and 500 controls.  
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Results for 1,000 and 10,000 SNPs (M) are displayed in Tables 1.4, S1.14, and S1.15, 

with sample size fixed at 500 cases and 500 controls. Once again, the LTMLM statistic 

outperforms ATT and MLM as case-control ascertainment becomes more severe.  (A limitation 

of these simulations is that performing case-control ascertainment on a fixed set of individuals 

limits case-control sample size; thus, these simulations were restricted to a disease prevalence of 

10% or higher.  It is reasonable to infer that for rarer diseases with more extreme case-control 

ascertainment the LTMLM statistic would achieve even higher power gains, as was 

demonstrated in simulations with simulated genotypes.)  

The h2 parameter estimates for simulations using real genotypes are displayed in Table 

1.5. The H-E regression estimates are unbiased, but the REML estimates are again downwardly 

biased at lower prevalence and large N/M.   

   Liability  
  

Observed  

M Prevalence H-E REML H-E REML 
1000 50% 0.259(0.013) 0.252(0.010) 0.165(0.008) 0.161(0.006) 

 25% 0.241(0.010) 0.238(0.008) 0.173(0.007) 0.171(0.006) 
 10% 0.245(0.011) 0.242(0.007) 0.233(0.010) 0.230(0.007) 

10000 50% 0.236(0.014) 0.245(0.013) 0.150(0.009) 0.156(0.008) 
 25% 0.250(0.014) 0.264(0.013) 0.180(0.010) 0.190(0.010) 
 10% 0.259(0.012) 0.261(0.009) 0.246(0.011) 0.248(0.009) 

 

Table 1.5. Heritability parameter estimates on real genotypes and simulated phenotypes.  These results are 
from the same simulations used to generate Tables 4, S14, and S15.  We report results on both liability and observed 
scales.  The true h2 explained by the SNPs used to build the GRM is 25% on the liability scale for all simulations. 

 

WTCCC2 Multiple Sclerosis data set 
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We analyzed the WTCCC2 genotypes together with multiple sclerosis (MS) case-control 

phenotypes: 5,172 MS cases and 5,172 controls genotyped on Illumina chips11; 28(see Materials 

and Methods).  We compared ATT, ATT with 5 PCs  (ATT+PCs),22 LogR, LogR+PCs, MLM 

and LTMLM.  We evaluated calibration using the average χ2
 and λGC over all SNPs; we note that 

the average χ2
 and  λGC are expected to be greater than 1 due to polygenic effects11; 30.  We 

believe that LTMLM is effective in correcting for confounding, and that a higher value of λGC for 

LTMLM vs. MLM is likely due to true polygenic signal, reflecting the higher power of LTMLM 

vs. MLM.   

 We evaluated power using the average χ2
 over the 75 published SNPs (Table 1.6) and the 

proportion of published SNPs that were significant at various P-value thresholds (Table S1.16). 

We evaluated power using the average χ2
 over the 75 published SNPs (Table 1.6) and the 

proportion of published SNPs that were significant at various P-value thresholds (Table S1.16).  

 

 

 

 

 

 

Table 1.6. Results on WTCCC2 MS data set. We report going down the rows: the average χ2  over 75 published 
SNPs, genome-wide including 360,557 SNPs, the λGC Genome Wide, and then the average across 75 published 
SNPs after normalizing by the λGC.  All results are based on analysis of 10,034 individuals (see main text).  

The LTMLM method performed best, with a 4.3% improvement in average chi-square statistics 

scaled by λGC vs. MLM (jackknife P=0.005; see Materials and Methods) and an even larger 

improvement versus ATT and ATT+PCs, consistent with simulations (Tables 1.2 and S1.3). 

LTMLM also detected 56/75 known associations as nominally significant (P<0.05) after λGC 

correction vs. 53/75 for MLM, although this difference is not statistically significant. Similar 

Category Metric ATT ATT+PCs LogR LogR 
+PCs 

MLM LTMLM 

Published Mean 11.661 
(1.169) 

9.98(0.984) 11.619 
(1.161) 

9.871 
(0.965) 

9.919 
(0.974) 

10.587 
(1.017) 

Genome 
Wide 

Mean 1.379 
(0.003) 

1.152 
(0.003) 

1.378 
(0.003) 

1.142 
(0.003) 

1.144(0.003) 1.172 
(0.003) 

Genome 
Wide 

λGC 1.343 1.125 1.343 1.115 1.115 1.141 

Published Mean/λGC 8.695 8.880 8.663 8.860 8.905 9.292 
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results are obtained when calibrating association statistics via LD Score regression31 (Table 

S1.17).A perfectly matched data set with 4,094 MS cases and 4,094 controls yielded a similar 

improvement for LTMLM vs. MLM (Table S1.18).  We also applied LTMLM to the full 

unmatched data set of 10,204 MS cases and 5,429 controls, where there is a severe mismatch in 

ancestry between cases and controls that is not representative of a typical GWAS.  The LOCO 

estimates of h2 demonstrate inflation before controlling for population structure (Table S1.19). In 

this analysis, the H-E regression estimate of the h2 produces an unrealistic value of 7.3 on the 

observed scale (corresponding  to 2.8 on the liability scale), which is outside the plausible 0-1 

range suggesting severe population stratification or other severe problems with the data. We do 

not recommend the use of LTMLM on unmatched samples when such severe problems are 

detected.  For completeness, we report the results of running LTMLM, which results in a loss in 

power (Table S1.18). 

Discussion 

We have shown that controlling for case-control ascertainment using the LTMLM 

statistic can lead to significant power improvements in ascertained case-control studies of 

diseases of low prevalence.  This was demonstrated via simulations using both simulated and 

real genotypes, and in WTCCC2 MS case-control data. We emphasize that the improvement 

applies to ascertained case-control studies of diseases with low prevalence.  We note that logistic 

and linear regression generally produce similar results, and logistic mixed model score tests that 

do not explicitly model case-control ascertainment are likely to produce results similar to 

standard linear mixed model methods. 

The LTMLM statistic should not be used if the inferred liability-scale h2 parameter is 

outside the plausible 0-1 bound, as this is indicative of severe population stratification or other 
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severe problems with the data (this can also be assessed via PCA; see Figure S1.2).  In such 

settings, either matching based on ancestry should first be performed, or other statistics should be 

used.   

Several limitations of LTMLM remain as directions for future study.  First, previous 

work has shown that using the posterior mean liabilities in conjunction with fixed effects such as 

BMI, age, or known associated SNPs will further increase power12; 20. The incorporation of 

fixed-effect covariates into the LTMLM statistic is not considered here, and remains as a future 

direction. Second, the calibration of our statistic in unrelated samples relies on an approximation 

that works well in the WTCCC2 data analyzed, but may not work well in all data sets.  Here, 

calibration via LD Score regression offers an appealing alternative31.   Third, we did not consider 

ascertained case-control studies in family data sets, which also represents a future direction.  The 

LTMLM score statistic in its current form is appropriate for association testing in population 

case-control samples with low levels of relatedness.  In family data sets, other approaches to 

calibration such as LD Score regression could potentially be explored31.  Fourth, the method 

relies on the assumption of an underlying normally distributed liability.  Although this 

assumption is widely accepted by many geneticists32; 33, and the method also performs well under 

a different generative model (Tables S1.12 and S1.13), further work on whether case-control 

traits are accurately modeled using normally distributed liabilities is warranted.  Fifth, the 

method does not estimate odds ratios; in this respect the method is similar to other mixed model 

association methods. 4; 5; 8; 11  However, liability-scale effect sizes can be converted to odds 

ratios.13  Sixth, LTMLM requires running time O(MN2) when M > N > #MCMC iterations, 

analogous to standard mixed model association methods.  This may be computationally 

intractable in very large data sets.  We are developing much faster mixed model methods34, but 
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those methods do not consider case-control ascertainment and should not be applied to 

ascertained case-control data for diseases of low prevalence.  The incorporation of the ideas we 

have described here into those methods is an open question.  Seventh, potential application of the 

LTMLM statistic to rare variant data sets is not considered here, and remains as a future 

direction.  Finally, our methods could potentially be extended to multiple traits7; 27; 35.  
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2. Mixed Model Association with Family-Biased Case-
Control Ascertainment 

 

Introduction  

Mixed models have become the tool of choice for genetic association studies 4; 11; 34; 

however, existing mixed model methods may be poorly calibrated or underpowered in settings of 

family sampling bias 36 and/or case control ascertainment. In our previous work37, we introduced 

a liability threshold based mixed model association statistic (LTMLM) that addresses the power 

loss of standard mixed model methods under case-control ascertainment.  Here, we consider 

studies in which cases and controls are ascertained non-randomly with respect to family 

relatedness, such as in a discordant sibling study.  We refer to this as family-biased case-control 

ascertainment, or simply family-biased ascertainment.  

Previous work has shown that family-biased ascertainment can severely bias heritability 

estimates 38, and we show here that it also impacts mixed model association statistics.  We 

introduce a family based association statistic, LT-Fam, that is robust to this problem.  Similar to 

LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold 

model conditional on every individual’s case-control status and the disease prevalence. However, 

LTMLM is susceptible to miscalibration under family-biased ascertainment, due to biased 

narrow-sense heritability estimation and calibration based on phenotypic covariance. The LT-

Fam statistic is constructed to specifically address family-biased ascertainment, using published 

narrow sense heritability estimates as well as properly controlling for relatedness.  

The LT-Fam statistic demonstrates proper calibration and is robust to family-biased 

ascertainment. We compared LT-Fam to existing Armitage Trend Test (ATT), MLM and 
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LTMLM statistics.  MLM has been found to perform at least as well as other methods in family-

based association studies36.  Other noteworthy family-based association methods statistics as 

MQLS21 and ROADTRIPS39 are applicable to case-control data; however, they do not explicitly 

model both case-control ascertainment bias and family-biased ascertainment (see Discussion).  

First, the LT-Fam statistic was compared to ATT and MLM in different settings of family 

biased ascertainment by simulating sib pairs under different levels of discordant and concordant 

sampling. Simulating all concordant siblings settings of low disease prevalence LT-Fam is 

properly calibrated wheareas  MLM appears deflated while both LTMLM and ATT appear to be 

inflated (average χ2 of 1.502). Simulating all discordant siblings both ATT and MLM are 

deflated, again LT-Fam again appears close to properly calibrated.  Then, the LT-Fam statistic 

was compared against other methods using the Jackson Heart Study (JHS) type two diabetes 

(T2D) cases and controls. Then subjects were intentionally down sampled, to induce family-

biased ascertainment, increasing the relative relatedness among cases of T2D. After down 

sampling the LT-Fam statistic was properly calibrated whereas other statistics demonstrated 

inflation or deflation, consistent with simulations.   

 

Materials and Methods 

 

Overview of Method 

 

The LT-Fam method consists of three main steps. First, a genetic relationship matrix (GRM) is 

calculated and then restricted to include only related individuals by changing entries below a 

threshold to 0. The narrow sense heritability is then either assumed to be known (from previous 

publications or other resources) or calculated in settings without family-biased ascertainment 
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bias. Second, using a truncated multivariate Gibbs sampler the Posterior Mean Liabilities (PML) 

are estimated (see Posterior Mean Liabilities). These PMLs are conditional on the relatedness, 

case control status of all individuals, and prevalence of the disease. If we had measurements of a 

continuous liability then the mixed model analyses would have increased power and improved 

calibration. Since we only observe the case control phenotypes a method for estimating the 

unobserved liability is needed. One method is to make inference on the posterior mean liabilities.  

Finally, these components are used to calculate the χ2 (1 d.o.f) association score statistic between 

the candidate SNP and the PML.  We have released open-source software implementing the LT-

Fam statistic (see Web Resources). 

To better understand the need to directly account for family-biased ascertainment it is 

helpful to consider a toy example. The probability of being a case or control depends on the case-

control status of related samples and the prevalence of the disease. Figure2.1 depicts the 

conditional probabilities of being a case given that an individual’s sibling is a case (A) and the 

probability of being a case given that an individual’s sibling is a control (B).  Assuming for 

simplicity individuals are sibling pairs with 0.50 genetic relatedness with 1 heritability the 

phenotypes/liabilities are generated using bivariate normal.  Looking at how these two curves lie 

relative to the dotted line (the disease prevalence plotted against itself) show’s the relative level 

discordant and concordant siblings at different disease prevalences.   
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A       B 

  

Figure 2.1 Based on analytic derivation of siblings (assuming correlation of 0.5 and underlying bivariate normal 
liability) above are the plots of the conditional probabilities of being a case given that individual’s sibling is a case 
(A) and the probability of being a case given the individual’s sibling is a control (B). The dotted line is the disease 
prevalence plotted against itself, demonstrating that siblings status will result in a sibling with the same case control 
status at a rate higher than the population prevalence. The dotted line is the disease prevalence plotted against itself, 
demonstrating that siblings’ status will result in a sibling with the same case control status at a rate higher than the 
population prevalence.   

Narrow sense Heritability and Threshold GRM 

An important component of mixed model analysis is characterizing the heritability. In 

GWAS settings the fraction of heritability explained by genotyped SNPs, hg
2, is different from 

the narrow sense heritability h2
. The narrow sense heritability, h2

, is the fraction of the phenotypic 

variance explained by all genetic variants under an additive model16; 32; 38.  Estimates of narrow 

sense h2 are typically obtained by comparing the phenotypic correlation among monozygotic and 

dizygotic twins. Some mixed model statistics11; 34; 37 use hg
2 ; however, since the current work 

focuses on related individuals our analysis focuses on estimating h2.  The hg
2 is usually less than 

the h2 and restricted to only those SNPs used to in the formulation hg
2 since it corresponds the 

heritability explained by genotypes SNPs which11. 
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Standard mixed model association methods generally estimate hg
2 from a genetic 

relationship matrix (GRM) and phenotypes using restricted maximum likelihood (REML)4; 11. 

Genotypic data is used to build an identity by state (IBS) GRM (excluding the candidate SNP11). 

Other methods may use IBD estimates that rely on known pedigrees36. In our setting this 

information is unknown. Here we build on existing methods that take a cut-off, c, IBS GRM to 

estimate narrow sense heritability, where all the all estimated covariance values below c are set 

to zero 38: 

𝜣̂∗ =
𝑿𝑇𝑿

𝑀
       

𝜣̂𝒊,𝒌 = 0 𝑖𝑓 𝐼(𝜣̂𝒊,𝒌
∗ < 𝑐) 

𝜣̂𝒊,𝒌
∗  𝑖𝑓 𝐼(𝜣̂𝒊,𝒌

∗ ≥ 𝑐)     (1) 

where X is a matrix of SNPs normalized to mean 0 and variance 1 and M is the number of SNPs. 

In some settings Leave Once Chromosome Out (LOCO) analysis is recommended. However, 

here we’re approximating the pedigree by using a thresholded GRM, where the issue of proximal 

contamination makes a bigger difference to IBS6; 11.  For this reason, the candidate SNPs will be 

included in the calculation of the GRM for the JHS sample.  Using the IBS GRM in settings of 

unrelated individuals would provide estimates of hg
2
. The primary expectation is to use published 

narrow sense estimates; the H-E regression estimates are included for comparison purposes only 

as it is expected to yield biased estimates of h2 under family-biased ascertainment. The H-E 

regression estimate is obtained by regressing the product of the case-control phenotypes on the 

off diagonal terms of the cut-off GRM followed by a transformation to liability scale18; 19.  

Posterior Mean Liabilities 

Since the continuous trait is not observed in case control settings, the latent liability is 

approximated using the posterior mean liabilities.  We first consider the univariate PML 
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(PMLuni), constructed independently for each individual; we generalize to the multivariate setting 

below.    As described in equations 11 and 12 of ref.20, these correspond to the expected value of 

the liability conditional on the case control status: 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑎𝑠𝑒 = 𝐸[𝜑|𝜋𝑖 = 1] = 𝑧/𝐾 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐸[𝜑|𝜋𝑖 = 0] = −𝑧/(1 − 𝐾)   (2) 

These values are calculated analytically in the univariate setting, and can be thought of as the 

mean of a truncated normal above or below the liability threshold t depending on case control 

status20. 

𝑷𝑴𝑳𝑚𝑢𝑙𝑡𝑖,𝑖 = 𝐸[𝜑|𝝅, ℎ2, 𝑽]     (3) 

The PMLmulti for each individual is conditional on that individual’s case-control status, 

every other individual’s case-control status, and on their V. One way ot estimate the PML is by 

using a Gibbs sampler. We’ll sample from a truncated multivariate normal distribution in order to 

get estimates of the PMLs. The Gibbs sampler is an iterative algorithm that generates random 

variables from conditional distributions in order to avoid the difficult task of explicitly 

calculating the marginal density for each random variable. A large sample of each of these 

random variables will be generated then averaged across to the get the posterior means. We use 

100 burn-in iterations followed by 1,000 additional MCMC iterations.  We estimate the PMLmulti 

by averaging over MCMC iterations.  Details of the algorithm Gibbs sampler algorithm are 

described in the LTMLM manuscript37.  

 

Liability Threshold Model and LT-Fam Association Statistic 

The goal of this work is to test for association between a candidate SNP and a phenotype 
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while controlling for family biased ascertainment.   We first consider a quantitative trait: 

𝝋 = 𝛽𝒙 + 𝒖 + 𝒆 .     (4) 

The phenotypic data (transformed to have mean 0 and variance 1) may be represented as a vector 

φ with values for each individual i.  Genotype values of candidate SNP are transformed to a 

vector x with mean 0 and variance 1, with effect size β.  The quantitative trait value depends on 

the fixed effect of the candidate SNP (βx), the genetic random effect excluding the candidate 

SNP (u), and the environmental component (e).  We extend to case-control traits via the liability 

threshold model 17, in which each individual has an underlying, unobserved normally distributed 

trait called the liability. An individual is a disease case if the liability exceeds a specified 

threshold t, corresponding to disease prevalence and a control if the individual has liability below 

t. 

The liability is modeled as a multivariate normal distribution that uses the Lee 

transformation to liability scale 20: 

𝐿(𝝋) = (2𝜋)
−𝒏

𝟐 ∣∣(𝑽)∣∣
−1 2⁄

exp(
−1

2
(𝝋)𝑇(𝑽)−1(𝝋))   (5) 

We note that we observe the case-control phenotypes of the individuals and not the continuous  

liabilities. The random component of the mixed model comes from the phenotypic covariance V. 

The variance between the individuals is modeled as the phenotypic covariance   

   𝑽 = ℎ2𝜣̂ + (𝐼 − ℎ2)𝑰 ,    (6) 

where 𝜣̂ is the N by N cut-off GRM, V is the phenotypic covariance, h2 is the heritability 

parameter, and I is the identity matrix. In order to estimate the phenotypic covariance the 

heritability parameter and Genetic Relatedness Matrix are needed (described in Narrow sense 

Heritability and Threshold GRM). 
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 The LT-Fam association statistic is a modification of the LTMLM association statistic 

focused on controlling family-biased ascertainment. In this case control setting, we’ll assume 

there is some latent continuous trait, or liability. The method uses a retrospective association 

score statistic assuming a liability threshold model but, now directly accounting for related 

individuals 37.  For simplicity, we first consider the case where the liability is known.  

We jointly model the liability and the genotypes using a retrospective model, enabling 

appropriate treatment of sample ascertainment.  We concatenate the two vectors (φ,x) and derive 

the joint likelihood for these combined terms.  The covariance of φ and x between individual i 

and k is: 

𝐶𝑜𝑣(𝝋𝒊, 𝒙𝒌) = 𝐸[𝝋𝒊, 𝒙𝒌] − 𝐸[𝝋𝒊]𝐸[𝒙𝒌] = 𝐸[𝝋𝒊, 𝒙𝒌] = 𝐸[𝛽𝒙𝒊, 𝒙𝒌] = 𝛽𝜣𝑖,𝑘, (7) 

where Θ is the true underlying genetic relatedness matrix from which genotypes are sampled.  

(We note that Θ, which is unobserved, is different from the GRM 𝜣̂ estimated from the data.) 

The variance of (φ,x) as a function of effect size 𝛽 is: 

𝑪(𝛽) = (
𝑽 𝛽𝜣

𝛽𝜣𝑻 𝜣
),      (8) 

 thus 

𝐶(𝛽)−1 = (
𝑽−𝟏 −𝛽𝑽−𝟏

−𝛽(𝑽−𝟏)𝑇 𝜣−𝟏 ) + 𝑂(𝛽2) ,   (9) 

where both of these matrices are 2N by 2N.  (We note that the product of the matrices in equation 

10 and equation 11 is (
𝑰 + 𝑂(𝛽2) 0

0 𝐈 + 𝑂(𝛽2)
), whose difference from the identity contains 

only O(β2) terms.) 

The joint likelihood of the liability and genotypes are distributed as a multivariate normal 

N(0,C(β) ), and thus   
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𝑳(𝒙, 𝝋|𝜷) = (𝟐𝝅)
−𝒏

𝟐 ∣∣𝑪(𝜷)∣∣
−𝟏 𝟐⁄

𝐞𝐱𝐩(
−𝟏

𝟐
(𝝋, 𝒙)𝑻𝑪(𝜷)−𝟏(𝝋, 𝒙)).  (10) 

Taking the derivative of the log likelihood results in the score equation.  This leads to the score 

statistic (more detailed derivation in 37): 

𝑆𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝝋)2

(𝑽−𝟏𝝋)𝑇𝜣(𝑽−𝟏𝝋)
 ,     (11) 

where Θ, the true underlying genetic relatedness of the individuals, can be approximated by the 

identity matrix in data sets of unrelated individuals.  

In equations 9-15 the liability was assumed to be known, for simplicity. The liability is 

approximated (more detailed derivation in 37).  

𝐿𝑇 − 𝐹𝑎𝑚 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)2

(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)𝑇𝜣(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)
    (12) 

The key distinctions between the LT-Fam and LTMLM statistics come from the derivation of the 

GRM, where LTMLM does not use a cut-off, and the heritability parameter where LTMLM hg
2 

as opposed to the narrow sense estimate h2
.  For consistency, the LT-Fam statistic is constructed 

from PMLmulti and V using the cut-off GRM as well. Additionally, the LT-Fam statistic assumes 

related samples whereas LTMLM does not so, the denominator for the LT-Fam includes the 

GRM, as opposed to LTMLM which contains the identity matrix.  The overall computational 

cost of computing the LTMLM statistic is O(MN2) when M > N > #iterations.   We have fixed the 

number of iterations at 100 burn-in iterations followed by 1,000 additional iterations. 

Simulated Genotypes and Simulated Phenotypes 

We performed simulations using simulated genotypes and simulated phenotypes, all with N/2 

sibling pairs. Under each simulation scenario approximately 50% cases and 50% controls were 

ascertained and 100 separate simulations were run. For settings where N = 5,000 a random set of 

100 SNPs were causal and for N = 1,000 a random set of 20 SNPs were set to be causal. All 

simulations included M candidate SNPs (either 50,000 or 10,000) and an independent set of M 
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GRM SNPs, which were used for estimating the random component of the mixed model 

statistics. Half of the causal SNPs were candidate and the other half were GRM SNPs.  

Siblings were simulated by generating genotypes of parents for each sib pair, 25 blocks of 

SNPs from each parent haplotype were randomly passed along to the children to simulate 

mating. Three different family-biased ascertainment schemes were considered: unbiased 

sampling, all concordant siblings, and all discordant siblings.  

At a disease prevalence of f, sib pairs are generated then only retaining a subset based on the 

case control status of each pair.  Under the unbiased scheme all case-case siblings are retained, 

case-control siblings are retained with probability f*(1-f), and control-control siblings are 

retained with probiablity [f*(1-f)]2. The expected proportion of cases is then probability of 

getting a case-case times the retention rate plus the probability of getting a case control siblings 

times the retention, 2* f*f *1 + 2*f*(1-f)* f*(1-f).     an approximately 50/50 ascertainment 

scheme with varying levels of discordant and concordant sibling pairs based on the prevalence. 

For the concordant scheme, N/4 sibling pairs are case-case and N/4 sibling pairs are control-

control.  For the discordant scheme, all N/2 sibling pairs are discordant (Table 2.1). The 

corresponding h2 and hg
2, where hg

2 estimates are used for the standard MLM and LTMLM 

versus h2 which used for LT-Fam in settings of unkown narrow sense heritability, estimates were 

calculated knowing that (in the concordant and discordant schemes) they would be severely 

biased, for both the cut-off GRM, assuming c=0.05, and unrestricted GRM (Table S2.1).  

In the discordant and concordant simulations the h2 is set to 0.50 and the LT-Fam statistic 

assumes this parameter to be known; for the unbiased setting the HE-regression estimate is used. 

In some scenarios the narrow sense heritability might be expected to be mis-specified, so to test 
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the sensitivity simulations where the narrow sense heritability is incorrectly specified were 

performed as well.  

We compared Armitage Trend Test (ATT), MLM, LTMLM, and LT-Fam statistics. We 

evaluated performance using average χ2 statistics at causal, null, and all markers, λGC at all 

markers (median χ2 divided by 0.455)25, and proportion of causal and null markers that were 

significant at various P-value thresholds. 

JHS Genotypes and T2D Phenotypes 

We analyzed JHS individuals with case-control phenotypes for type 2 diabetes (T2D), a 

disease with a prevalence around 8%. The data set contained 339 cases and 1778 controls 

genotyped at 736,614 SNPs after QC40.  We compared ATT, MLM, and LT-Fam statistics. 

LTMLM is expected to be improperly calibrated, so it is not included.  In order to test the impact 

of family-biased ascertainment three down sampling schemes were used: controls that were 

related to cases were removed (at a level above the cut-off), cases that did not have a case 

relative were removed (at a level below the cut-off), or both. A total of 94 cases and 1318 

controls remained after down sampling both cases and controls.  

The heritability estimates were calculated and then converted to the liability scale for: 

HE-regression and REML16; 18; 19, using either the full or cut-off GRM.  The value of narrow-

sense heritability used for the down sampled data was set to 0.257, the HE-regression cut-off 

estimate from the full sample. We also ran LT-Fam with mis-specified narrow-sense heritability 

values ranging from 0.25 and 0.75. 

 

Results 

Simulations: Simulated Genotypes and Simulated Phenotypes 
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We compared the performance of ATT, MLM, LTMLM and LT-Fam in simulated studies of 

siblings.   These statistics were considered because Eu-ahsunthornwattana finds that MLM 

performs at least as well as the other methods in family-based association studies36. We 

considered unbiased (without family-biased ascertainment), concordant sibling and discordant 

sibling studies (see Materials and Methods).  Results are displayed in Table 2.1 where all of the 

statistics appear to be close to properly calibrated in the unbiased studies, having mean near 

1.000 for null SNP sets. In settings of both concordant siblings for lower prevalence diseases LT-

Fam again is properly calibrated (average χ2 of 0.999) and MLM appears deflated (0.674) 

whereas both LTMLM and ATT appear to be inflated (1.499). As the disease prevalence 

decrease to 1% and lower, LT-Fam attains 3% higher power than MLM and 8% higher power 

than ATT after properly calibrating using the respective λGC. MLM and ATT are deflated in 

settings of discordant sibling sampling, LTMLM gets unstable estimates, and LT-Fam is 

properly calibrated.  
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Table 2.1 

M N Sibling 
Set 

Prevalence Set ATT MLM LTMLM LT-Fam 

50000 1000 Unbiased 50% Causal 16.091(0.668) 15.423(0.641) 14.26(0.591) 14.502(0.601) 
    Null 1.105(0.001) 1.044(0.001) 0.965(0.001) 1.004(0.001) 
    All 1.108(0.001) 1.047(0.001) 0.968(0.001) 1.007(0.001) 
    All λGC 1.108(0.002) 1.047(0.002) 0.967(0.005) 1.007(0.002) 
   10% Causal 21.763(0.892) 20.484(0.839) 21.67(0.897) 20.889(0.865) 
    Null 1.062(0.001) 0.986(0.001) 1.026(0.001) 1.004(0.001) 
     All 1.066(0.001) 0.99(0.001) 1.03(0.001) 1.008(0.001) 
    All λGC 1.062(0.004) 0.987(0.004) 1.026(0.002) 1.003(0.002) 
   1% Causal 36.139(1.419) 31.663(1.237) 39.148(1.576) 35.62(1.419) 
    Null 1.054(0.001) 0.921(0.001) 1.085(0.001) 1.004(0.001) 
    All 1.061(0.001) 0.927(0.001) 1.093(0.001) 1.011(0.001) 
    All λGC 1.055(0.01) 0.921(0.007) 1.086(0.002) 1.005(0.001) 
  Concord 50% Causal 26.58(1.098) 12.13(0.512) 27.751(1.246) 17.785(0.746) 
    Null 1.502(0.001) 0.68(0) 1.489(0.001) 1.001(0.001) 
    All 1.507(0.001) 0.683(0) 1.494(0.001) 1.004(0.001) 
    All λGC 1.501(0.002) 0.68(0.001) 1.489(0.001) 0.987(0.005) 
   10% Causal 36.048(1.49) 16.675(0.7) 27.04(1.193) 24.767(1.057) 
    Null 1.499(0.001) 0.676(0) 1.446(0.001) 0.999(0.001) 
     All 1.506(0.001) 0.679(0) 1.451(0.001) 1.003(0.001) 
    All λGC 1.499(0.002) 0.676(0.002) 1.446(0.004) 0.986(0.005) 
   1% Causal 67.318(2.393) 31.717(1.155) 63.901(2.418) 47.75(1.773) 
    Null 1.499(0.001) 0.674(0) 1.475(0.001) 0.999(0.001) 
    All 1.513(0.001) 0.68(0.001) 1.487(0.001) 1.008(0.001) 
    All λGC 1.502(0.002) 0.674(0.001) 1.484(0.003) 0.985(0.005) 
  Discord 50% Causal 6.354(0.27) 6.354(0.27) N/A 12.272(0.514) 
    Null 0.504(0) 0.504(0) N/A 1.003(0.001) 
    All 0.505(0) 0.505(0) N/A 1.005(0.001) 
    All λGC 0.516(0.001) 0.516(0.001) N/A 1.059(0.001) 
   10% Causal 9.096(0.376) 9.096(0.376) N/A 17.871(0.736) 
    Null 0.504(0) 0.504(0) N/A 1.005(0.001) 
     All 0.506(0) 0.506(0) N/A 1.009(0.001) 
    All λGC 0.516(0.001) 0.516(0.001) N/A 1.061(0.002) 
   1% Causal 12.594(0.543) 12.594(0.543) 7.057(0.315) 25.24(1.101) 
    Null 0.503(0) 0.503(0) 0.893(0.001) 1.004(0.001) 
    All 0.506(0) 0.506(0) 0.895(0.001) 1.009(0.001) 
    All λGC 0.515(0.001) 0.515(0.001) 0.893(0.008) 1.057(0.003) 
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Table 2.2 (Continued) 

M N Sibling 
Set 

Prevalence Set ATT MLM LTMLM LT-Fam 

50000 5000 Unbiased 50% Causal 17.147(0.342) 16.517(0.329) 15.36(0.306) 15.579(0.31) 
    Null 1.101(0.001) 1.043(0.001) 0.97(0.001) 1.002(0.001) 
    All 1.118(0.001) 1.059(0.001) 0.985(0.001) 1.017(0.001) 
    All λGC 1.102(0.001) 1.045(0.001) 0.972(0.002) 1.002(0.001) 
   10% Causal 22.422(0.447) 21.154(0.423) 22.003(0.441) 21.063(0.421) 
    Null 1.069(0.001) 0.992(0.001) 1.03(0.001) 1.002(0.001) 
     All 1.091(0.001) 1.012(0.001) 1.051(0.001) 1.022(0.001) 
    All λGC 1.07(0.002) 0.992(0.002) 1.03(0.001) 1.002(0.001) 
   1% Causal 32.44(0.672) 28.431(0.585) 34.503(0.712) 31.108(0.64) 
    Null 1.041(0.001) 0.912(0.001) 1.092(0.001) 1.003(0.001) 
    All 1.073(0.001) 0.94(0.001) 1.125(0.001) 1.033(0.001) 
    All λGC 1.042(0.006) 0.912(0.005) 1.094(0.002) 1.004(0.001) 
  Concord 50% Causal 27.243(0.537) 17.567(0.347) 24.986(0.515) 18.19(0.359) 
    Null 1.504(0.001) 0.983(0.001) 1.421(0.001) 1.002(0.001) 
    All 1.53(0.001) 1(0.001) 1.445(0.001) 1.019(0.001) 
    All λGC 1.506(0.002) 0.985(0.002) 1.427(0.008) 1(0.002) 
   10% Causal 39.44(0.777) 25.372(0.502) N/A 26.419(0.524) 
    Null 1.507(0.001) 0.976(0.001) N/A 1.004(0.001) 
     All 1.545(0.001) 1(0.001) N/A 1.029(0.001) 
    All λGC 1.509(0.002) 0.979(0.001) N/A 1.005(0.002) 
   1% Causal 73.249(1.418) 46.183(0.898) 57.341(1.149) 49.503(0.973) 
    Null 1.511(0.001) 0.949(0.001) 1.317(0.001) 1.006(0.001) 
    All 1.583(0.002) 0.995(0.001) 1.373(0.002) 1.054(0.001) 
    All λGC 1.513(0.002) 0.951(0.002) 1.316(0.011) 1.004(0.002) 
  Discord 50% Causal 6.215(0.126) 6.215(0.126) N/A 12.352(0.25) 
    Null 0.503(0) 0.503(0) N/A 1.004(0.001) 
    All 0.509(0) 0.509(0) N/A 1.016(0.001) 
    All λGC 0.505(0) 0.505(0) N/A 1.011(0) 
   10% Causal 8.061(0.165) 8.062(0.165) N/A 16.063(0.329) 
    Null 0.502(0) 0.502(0) N/A 1.003(0.001) 
     All 0.51(0) 0.51(0) N/A 1.018(0.001) 
    All λGC 0.505(0) 0.505(0) N/A 1.011(0) 
   1% Causal 12.841(0.262) 12.841(0.262) N/A 25.621(0.522) 
    Null 0.501(0) 0.501(0) N/A 1.001(0.001) 
    All 0.514(0) 0.514(0) N/A 1.025(0.001) 
    All λGC 0.504(0) 0.504(0) N/A 1.011(0) 

Table 2.1: Sibling study of simulated genotypes and phenotypes, where he unbiased analysis has individuals 
sampled such that acceptance probabilities for case-case siblings is 100%, case-control siblings is f*(1-f), and 
control-control siblings is [f*(1-f)]2. This will produce an approximately 50/50 ascertainment scheme with varying 
levels of discordant and concordant sibling pairs based on the prevalence. The concordant sibling setting has 50/50 
case-case and control-control sibling pairs, whereas the discordant are all discordant sibling pairs. There are M  
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Table 2.2 (Continued) 

SNPs, N Individuals, and 100 simulations for each scenario of disease prevalence, M, N, and sibling ascertainment 
scheme. Settings where results for LTMLM read N/A come from convergence issues do to largely mis-calculated 
heritability estimates which, is expected when looking at highly related individuals.  

LT-Fam results are based on knowledge of the correct h2 (and did not use REML or H-E 

regression estimates), whereas other methods are not designed to use this knowledge. We 

determined that h2 estimates from both REML and H-E regression were in fact biased (Table 

S2.1), which explains the mis-calibration of MLM and LTMLM statistics in Table 2.1. Impact of 

mis-specification in the LT-Fam statistic 

The impact of mis-specification of the narrow sense heritability h2 was tested, where the true 

value was 0.50 and the specified parameter was set to 0.25, 0.40, 0.60, and 0.75 at a disease 

prevalence of 1% where improper calibration was seen for other statistics. LT-Fam demonstrated 

a slight loss in power relative to LT-Fam with correct h2, but was still properly calibrated (Table 

S2.2).  

JHS Genotypes and T2D Phenotypes 

We analyzed 2,117 JHS individuals (339 cases and 1,778 controls) with T2D phenotypes 

typed on genome-wide arrays.  We analyzed both the full data set, and down-sampled data sets 

with family-biased ascertainment in which we removed controls that were related to cases and/or 

removed cases that did not have a case relative, based on a down-sampling relatedness cut-off of 

0.05 (see Materials and Methods).  The first row of Table 2.2 depicts the setting when all 

individuals are used, then the subsequent rows down sample to artificially induce highly levels of 

family-biased ascertainment. In the first row we observe properly formed for ATT, MLM and 

LT-Fam, all relatively close to an average χ2 of . However, after down sampling the statistics 

become increasingly biased as family biased ascertainment also increases, except for the LT-Fam 

statistic.  In this setting of 1440 samples, where only controls that aren’t related to cases and 



 

40 
 

cases related to another case remain, the average χ2 for LT-Fam was 0.980, whereas ATT was 

inflated 1.337, and MLM was deflated 0.820 (Table 2.2). Down-sampling runs with a down-

sampling relatedness cutoff of 0.025 produced qualitatively similar results (Table S2.3).   

 

Controls Controls Cases Cases Total ATT MLM LT-Fam 
1778 All 339 All 2145 1.044(0.002) 1.000(0.002) 1.019(0.002) 
1318 Unrelated 339 All 1684 1.135(0.002) 0.950(0.002) 0.995(0.002) 
1778 All 94 Related 1900 1.236(0.002) 0.973(0.002) 0.994(0.002) 
1318 Unrelated 94 Related 1440 1.337(0.002) 0.820(0.001) 0.980(0.002) 

 

Table 2. 2 The average χ2 statistics genome wide are reported at a GRM cut-off of 0.05 for LT-Fam run on real 
genotypes and phenotypes with different family ascertainment bias.  To mimic family-biased ascertainment: controls 
that were related to cases were removed, cases that did not have a case relative were removed, or both. Unrelated 
means the controls that were related to any case were remove leaving only the controls that were not related to any 
case (based on the cut-off level). The Related term refers to cases that did not have any case relatives being 
removed, leaving only the cases related to another case (based on the cut-off level).  

 

We determined that h2 estimates from both REML and H-E regression were biased in the 

down-sampling runs (Table S2.4), which explains the mis-calibration of MLM and LTMLM 

statistics in Table 2.2.  In the most extreme down-sampling of both cases and controls, the 

REML estimate of narrow-sense heritability was 4.017 (or 1.726 at a GRM cut-off of 0.025), 

which is outside the plausible 0-1 range.  This is consistent with our simulations, in which biased 

heritability estimates also produced mis-calibrated MLM and LTMLM statistics in settings with 

family-biased ascertainment.  

 

 

Discussion 

Through both simulated sibling studies and using real JHS T2D samples we have 

demonstrated mis-calibration of existing χ2 statistics and introduced our properly calibrated LT-
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Fam statistic. The mis-calibration of standard χ2 statistics comes from the family-biased 

ascertainment of extreme phenotypes.  For this reason, narrow sense estimation of h2 from a 

reference population in conjunction with the LT-Fam statistic results in a properly calibrated test.  

The primary methods developed for similar settings, family data in retrospective case 

control settings, were developed by Thorton and McPeek. Thorton and McPeek developed 

several statistics and corresponding pieces of software to analyze case control diseases in family 

settings, specifically ROADTRIPS and MQLS (whereas MASTOR is for quantitative traits) 21; 36; 

39.  Both statistics also adjust for known relatedness while using a retrospective model but, have 

been found to demonstrate lower power than MLM in certain settings  36. One clear advantage of 

ROADTRIPS and MQLS is they take advantage of all phenotype information, even for 

individuals that have not been genotyped. The improvement from our LT-Fam statistics is it 

explicitly models the latent liability while control for family-baised assertainment while, 

ROADTRIPS and MQLS does not.  

Several limitations of our LT-Fam method restrict it’s use but, also allow for future 

directions of advancement. The LT-Fam method does require the h2 the parameter from the 

literature; however, we did demonstrate that the LT-Fam statistic is robust to misspecification 

(Table S2.2). Futur directions include improvements in speed of the algorithm. The current 

algorithm runs in O(MN^2) whereas existing methods run much faster (34 which is much faster 

for unrelated samples).  Incorporation of fixed effect covariates and large effect SNPs have been 

shown to increase power in mixed model settings, we have not been considered here but, this is a 

future avenue to improve the statistic. As with the LTMLM statistic, the method relies on the 

assumption of underlying normally distributed liability but, has been shown to be a reasonable 
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assumption 32; 33. Much work is being done to increase power in settings of multiple phenotypes, 

the LT-Fam statistic could be extended for such settings of multiple case control phenotypes. 
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3. Two Step Bayesian Model Averaging using 
Propensity Score Adjustment for Treatment Effect 

Estimation 
 

3.1). Introduction  

In clinical settings often the scientific question of interest is isolating the effect of a primary 

exposure, say, elevated expression of a specific metabolite, on Body Mass Index (BMI) or 

pancreatic ductal adenocarcinoma (PDAC). Other factors such as subject demographics and 

other epidemiological measures that are associated with the primary exposure and the outcome 

may act as confounders, clouding or completely inverting the true effect of the primary exposure. 

The goal here is to understand the causal effect of elevated levels of BCAAs on either PDAC 

or BMI.  By characterizing the effect of the primary exposure on the outcome, we 

understand how limiting or targeting the exposure may impact outcomes. This can lead to efforts 

to directly modify the primary exposure, policy or preventative medicine schemes, or indirectly 

modifying the primary exposure through developing drugs or other targeted interventions.  Note 

the distinction between this goal and that of predicting future cases PDAC or obesity.  

 
Absent the benefits of randomized exposure, statistical methods for confounding adjustment 

are required to estimate quantities that can be interpreted, at least approximately, as causal 

effects of a particular exposure.  Many techniques will leverage Propensity Score (PS) methods, 

where the probability of assignment to treatment is estimated and then the outcome are compared 

between treated versus untreated individuals with similar estimates of the PS. PS characterize 

discrepancies between individuals probabilities of being treated caused by confounders.  
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Despite the proven value of propensity scores for confounding adjustment in observational 

studies, implementation can be difficult in high dimensional settings.  It could even be argued 

that this difficulty is limiting the use of PS methods in lots of scientific contexts (e.g., genetic or 

metabolomic applications).  Often PS models will use the “kitchen sink” approach, where all of 

the covariates are used to calculate the PS estimates. In high dimensional settings the “kitchen 

sink” approach becomes untenable, using all covariates in the model or to inform the propensity 

score results in unstable estimates.  Thus, researchers are increasingly confronted with the need 

to decide which of a high-dimensional set of covariates that are genuine confounders to include 

in the PS.  

Note that the wide array of methods for penalized regression, such as Lasso or more involved 

penalties like adaptive elastic net, penalize the inclusion of covariates in a regression model. 

These methods do not control for confounding, but instead focus on association with covariates 

and the outcome, as opposed to targeting the effect of primary exposure of interest. Such 

methods are tuned for prediction purposes, but are limited for effect estimation because they do 

not target the inclusion of genuine confounders. Model selection techniques, such as stepwise 

selection, have been used to select variables to include in the PS, but, as with all model selection 

techniques, limit the inference to specific set of confounders selected and may arbitrarily miss 

the impact of some true confounders.  Schneeweiss developed a reasoned algorithm specific to 

PS estimation that first dichotomizes covariates to estimate there relative prevalence in treated 

and untreated subjects and relative risk with exposure. Then based on the prevalences and RR, 

each covariate is ranked and a pre specified k number of them are used in the outcome model 

making the method sensitive to the selection of k 41.  In addition to being sensitive to the choice 

of how many covariates to include and it is not designed to detect complex relationships among 
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confounders. Techniques that select a single subset of potential confounders then condition all 

inference on the selected set and do not account for the uncertainty inherent to the choice of 

confounders to include for adjustment.  This level of model uncertainty is increasingly important 

in high-dimensional settings. 

The need to prioritize genuine confounders while properly accounting for confounding 

uncertainty has motivated a recent vein of new methods42; 43.  These methods are rooted in the 

core ideas of Bayesian Model Averaging44 in that, rather than choose the confounders to include 

in the propensity score a priori, they average over a large space of PS specifications according to 

posterior belief that each measured covariate is or is not important for adjustment.  In 

metabolomics a high dimensional set of unknown confounders make for a novel setting for such 

propensity score methods that may improve effect estimation, where new methods are needed 

that leverage PS in high dimensional scientific contexts. 

Continuing the line of research in Zigler and Dominici45, the purpose of this paper is to 

provide a flexible 2-Step Bayesian Model Averaging method and demonstrate its effectiveness 

for treatment effect estimation in settings of high dimensional confounding43; 45. This method 

improves on existing methods by averaging over the model space controlling for cofounding 

while targeting treatment effect. It does so without need of an arbitrary number of confounders to 

include a priori and making assumptions about the underlying model.  BMA weights each model 

according to the posterior model weight, which is calculated in a manner to prioritize the 

variables most important for causal effect estimation44-46. We’ll compare our method to several 

of these methods that use model selection, adjustment for propensity scores, and existing 

methods we’re expanding upon to help highlight when the 2-Step BMA is most appropriately 

applied. The proposed method will be compared under different simulation scenarios and in a 
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metabolomics example using data from the Nurses Health Study (NHS) and Health Professionals 

Follow Up-Study (HPFS).  Comparison methods will include a gold standard method assuming 

knowledge of the true data-generating mechanism (Gold), the kitchen sink approach (Kitch), 

step-wise model selection of the PS model (SW), High Dimensional Propensity Score 

Adjustment (HDPS), Generalized Boosted Regression for the PS model (GBR), and the 

Approximately Bayesian Model Averaging MC3
 proposed in Zigler and Dominici  (AB-MC3) 41; 

45; 47.. These methods are described and compared in tables 3.1 and 3.2. 
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Method Abbreviation Brief Description 
Gold Standard Gold A PS model is fit using only the terms known to be associated with the 

outcome. This can only be used in settings where the true covariates 
associated with the outcome are known, such as the simulation scenarios. 

2-Step Bayesian 
Model 
Averaging 

2-Step BMA Performs BMA averaging on both the exposure model and outcome model 
separately to cut the feedback. The PS are calculated by first performing 
parameter selection just based on the exposure and then a function of the PS is 
use to perform BMA on the outcome model. 

Approximately 
Bayesian MC3 
Approach 

AB-MC3 Approximately Bayesian approach that separates the exposure and outcome 
model set while performing MCMC integration across the model space. 

High 
Dimensional 
Propensity 
Score 
Adjustment 

HDPS First the covariates are dichotomized then the criteria for assignment is the 
Apparent Relative Risk (ARR). The ARR is a function of the imbalance in 
prevalence of those exposed versus unexposed in conjunction with the 
independent association between potential confounder and outcome. After 
ranking based on the ARR then a pre-specified number of covariates are 
included as confounders in the PS. 

Toolkit for 
Weighting and 
Analysis of 
Nonequivalent 
Groups 

T-KS 
T-ES 
Or generally 
GBR 

Generalized boosted regression modeling that uses a multivariate 
nonparametric approach using a regression tree following a recursive 
algorithm to estimate a function characterizing treatment assignment. Two 
different stopping criteria, KS and ES. 

Kitchen Sink Kitch Uses all of the covariates to get the PS and then fits the model using all of the 
covariates. 

Step-Wise SW Performs stepwise selection using BIC criteria on the propensity score model 
Table 3.1: Brief description comparing the different methods being evaluated. For consistency of comparison, each 
method was implemented to use PS broken up by quintiles. 

 

Method Kitch Step-
Wise 

2-Step 
BMA 

AB-
MC3 

HDPS GBR 

Accounts for terms associated with X & Y PS PS PS and 
outcome 

PS PS PS 

Accounts for terms associated with Y PS No outcome No PS PS 

Accounts for terms associated with X PS PS PS PS PS PS 

Augmented PS with covariates  Inefficient Yes Yes Yes Yes No 

Treats Covariates as Binary   No No No No Yes No 

Pre-specified number α terms Yes No No No Yes No 

Model Uncertainty No No Yes Yes No No 

 

Table 3.2: Comparison of the different features of the methods being evaluated. 
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The scientific context we explore here involves metabolic diseases. Metabolites are 

known to impact diseases such as pancreatic cancer; however, the 2-Step BMA method is 

particularly beneficial in settings such as metabolomics because it is hard to reason scientifically 

about individual metabolites. Here we wish to estimate the treatment effect of elevated levels of 

branched-chain amino acids (BCAAs) on pancreatic cancer outcomes while properly controlling 

for this large set of potential confounders. As comparison and validation of our method, we will 

conduct analyses analogous to those in Mayers et al48 examining the association between BCAA 

and PDAC48 and those in  Liu et al49 examining the marginal association between BCAAs and 

BMI (Liu pending).  

2) Estimating causal effects with PS 

Here we develop a method for estimating the effect of a binary treatment, X, binary 

outcome of interest, Y, while adjusting for a set of potential confounders C, where C is possibly 

high dimensional.   

2.1) Notation, estimand 

We’ll denote our binary treatment with X=[0,1] and the outcome of interest with Y=[0,1] 

with a vector of p measured covariates as C. The propensity score (PS) will be defined as the 

conditional probability of being treated, X=1, given the confounders C where throughout the 

manuscript we’ll assume strong ignorability (“no unmeasured confounding”) 50. A confounder is 

a covariate that is associated with both the exposure and outcome.  Failure to adjust for 

confounding will distort estimates of treatment effects. The main goal of our analysis is for 

improved estimation of the average causal effect of the treatment on the outcome while 

accounting for confounders with  E[Y|C, X=1] - E[Y|C, X=0]. 
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Term Description 
X Primary exposure of interest 
Y Outcome 
C Set of confounders 
αx Vector of indicators of terms to include the PS model 
γ Coefficients in the PS model 
gx (*) Link function for PS model 
αy Vector of indicators of terms to include the outcome model 
β Coefficients in the outcome model 
gx (*) Link function for PS model 
PS The propensity score 
h(*) Generalized function of the PS 

 

Table 3.3: Description of terms used in formulation.  

 

2.2) Propensity scores and Confounding Uncertainty 

 

The PS is probability of treatment given the set of true confounders, C (Table 3.3).  

𝑃𝑆 = 𝐸[𝑋|𝐶]      (3.1) 

 

 If the true confounders in our model were known, the generalized linear model for 

exposure X is 𝑔𝑥(𝐸[𝑋𝑖|𝐶𝑖]) = ∑  𝑝
𝑘=0 𝛾𝑘𝐶𝑖,𝑘 where the γ are our exposure coefficients. GLMs of 

this form will be used estimate (1).  We extend the GLM formulation for the PS model to 

accommodate settings where the true set of confounders to be included in the model is unknown.  

Towards this end, we introduce the vector of indicators for terms in our exposure model, αx.  

𝑔𝑥(𝐸[𝑋𝑖|𝐶𝑖]) = ∑  𝑝
𝑘=0 𝛼𝑥𝛾𝑘𝐶𝑖,𝑘    (3.2) 

The αx parameter is a vector of indicators for which confounders are in the model. From the 

GLM the PS scores can be estimated, plugging back in, probability of treatment given 

confounders is: 
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𝑃𝑆(𝛾, 𝛼, 𝐶𝑖) = 𝑔𝑥
−1(∑  𝑝

𝑘=0 𝛼𝑥𝛾𝑘𝐶𝑖,𝑘)    (3.3) 

The confounders and PS are included to potentially gain efficiency and model residual 

imbalances, similar to existing matching techniques51. And a generalized linear model for our 

outcome Y: 

𝑔𝑦(𝐸[𝑌𝑖|𝑋𝑖, 𝐶𝑖]) = 𝛽0 + βX𝑋𝑖 + ℎ(𝑃𝑆(𝛾, 𝛼𝑥, 𝐶𝑖); β) + ∑  𝑝
𝑘=0 𝛼𝑦βk𝐶𝑖,𝑘   (3.4) 

So, the outcome model will be conditional on the treatment, a function of the PS, and the 

covariates associated with Y. Similar to the αx term, the αy is key the second step of the 2-Step 

BMA algorithm, allowing for flexibility to search of the outcome model space conditional on the 

PS (see supplement for details).  

It is common practice to discretize the PS into quintiles or deciles, we’ll assume an h(.) of 

quintiles (equation 4) throughout all methods used in the analysis for consistent comparison. This 

will allow for a dimension reduction of confounders while be generalized enough to allow for 

non-linear effects of the matched sets. Similarly, we have a set of indicators for terms in the 

outcome model αy and a new set of covariates related to the outcome, β. 

3) BMA for PS 
 

The αx and αy parameters should be regarded as unknown parameters, since the true 

model is unknown there is some large set of possible models, M, being considered. They are 

treated separately for the purposes of prioritizing variables based on being associated with either 

treatment or outcome. The treatment effect will be estimated by averaging over the different set 

of models weighted by the probability of each model.  

 
𝑃(𝐴𝐶𝐸 |𝑋, 𝐶 ) ≈ ∑ 𝑃(𝐴𝐶𝐸 |𝛼𝑥, 𝛼𝑦, 𝑋, 𝐶 )𝛼𝑥,𝛼𝑦∈𝑀 𝑃(𝛼𝑥, 𝛼𝑦|𝑋, 𝐶)    (3.5) 

The goal is to find the proper set of αx and αy that contain the true set of confounders and 

terms truly associated with Y.   A Markov Chain Monte Carolo (MCMC) algorithm will be 
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detailed below which samples from the joint posterior space to get estimates of the posterior 

ACE. By building on existing BMA this technique specifically targets the treatment effect, 

without restricting to a single model. In doing so BMA approaches account for model 

uncertainty while controlling for confounding, which is robust to spurious correlation between 

true confounders and other related covariates 43; 44; 46.  

 
3.2) Two-Step BMA  
 

The method we propose searches the possible model space by first fitting the PS based on 

the exposure model. Then iteratively using a function of the PS estimates to fit the outcome 

model conditional on the PS.  The model space of the exposure model and outcome models are 

averaged over to get the treatment effect estimates. This model assumes: 

 Strong ignorability, where PS require specification of all necessary confounders. 

 αx and αy independent and flat priors 

 The Bayes factor approximated by the BIC assumption (details in the supplement and see 

43; 44; 52) 

 Generalized gx(.) and gy(.)  

 Equal prior probability of each model, Mt 
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Assuming a retrospective likelihood, where both the exposure and outcome are modeled jointly.  

𝐿 (𝑌, 𝑋|𝐶, 𝛾, 𝛼, 𝛽, 𝛿)

= ∏ [𝑔𝑥
−1 (∑  

𝑝

𝑘=0
𝛼𝑥𝛾𝑘𝐶𝑖,𝑘)]

𝑋𝑖

[1 − 𝑔𝑥
−1 (∑  

𝑝

𝑘=0
𝛼𝑥𝛾𝑘𝐶𝑖,𝑘)]

1−𝑋𝑖

∗

𝑛

𝑖=1

  

[𝑔𝑦
−1 (𝛽0 + βX𝑋𝑖 + ℎ(𝑃𝑆(𝛾, 𝛼𝑥, 𝐶𝑖); β) + ∑  

𝑝

𝑘=0
𝛼𝑦βk𝐶𝑖,𝑘)]

𝑌𝑖

∗ 

[1 − 𝑔𝑦
−1 (𝛽0 + βX𝑋𝑖 + ℎ(𝑃𝑆(𝛾, 𝛼𝑥, 𝐶𝑖); β) + ∑  

𝑝

𝑘=0
𝛼𝑦βk𝐶𝑖,𝑘)]

1−𝑌𝑖

 

(3.6) 

Or more simply without the model parameters, the retrospective model maybe thought of as a 

two parameter binomial: 

 𝐿 (𝑌, 𝑋|𝐶, 𝛾, 𝛼, 𝛽, 𝛿) = ∏ [𝑔𝑥
−1(∗)]𝑋𝑖[1 − 𝑔𝑥

−1(∗)]1−𝑋𝑖 ∗ [𝑔𝑦
−1(∗)]

𝑌𝑖
[1 − 𝑔𝑦

−1(∗)]
1−𝑌𝑖𝑛

𝑖=1  

The posterior samples of (αx, γ, αy, β) are obtained by iteratively sampling from P(αx| X, 

C), P(γ| αx, X, C), P(αy|D, f(αx, γ) ),  and P(β | αy, D, f(αx, γ)) (Details of this derivation can be 

found in the supplement).  Where our observed data in a retrospective model consists of 

D=(X,C,Y). The first stage of the MCMC algorithm is to get αx and γ as a way to come up with a 

posterior distribution for the PS that is then used as a fixed prior distribution for p(beta, alpha_y, 

PS|Data), which is used to estiamte the ACE (See Appendix 3 for more information).   

3.3) Rationale/justification for 2-stage approach 
 

2-Step BMA allows both the C-X and the C-Y associations to be considered when 

prioritizing confounders, but that this is complicated by issues of "feedback". This also provides 

a more straightforward integration of the PS model, so this method could use any generalized 

linear model. Breaking up the steps, leads to the initial drawback a PS only informed by the 
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association with X. This method, in part, builds on existing methods by then averaging over the 

set of outcome models (αy), conditional on the posterior predictive distribution of the PS, to then 

account for those terms not picked up in the first step that are directly associated with Y45. We 

will investigate the causal effect of the dietary intervention on onset of diabetes, adjusting for all 

measured metabolites with the NHS and HPFS data set. 

 
4) Simulation Study 
 
Simulation Study Comparing Different Methods 

 To compare the different methods (Table 3.1 and 3.2) a series of different simulations 

studies were developed with varying effects, number of confounders, and correlation structure 

among the confounders. For all settings data are generated as follows, for 1,2,…, n individuals, 

at n=500 we simulate p=200. The covariates Ci = (Ci1, Ci2.., Cip) are drawn from a MVN(0,Σ) 

where Σ is either the identity or a series of bivariate normals with correlation of 0.5. The 

treatment Xi, is simulated from a Bernoulli distribution with probability P(Xi=1)= Φ-1(.) 

(Equation 2). Similarly, the exposure Yi is simulated Bernoulli distribution with probability from 

P(Yi=1)= logit(.)  (Equation 4). Where the treatment effect is simulated with βx=[0, 0.2, 0.4].  

Several scenarios were compared, there are 2 covariates are associated with X only, 2 

covariates associated with Y only, and 2 covariates associated with both X and Y at +/-0.3. 

Another setting will include that same set of covariates then additionally a set of low 

coefficients, where there are 28 covariates are associated with X only, 28 covariates associated 

with Y only, and 28 covariates associated with both X and Y at coefficients +/-0.05. This results 

in a total of 30 covariates associated with X only, 30 terms associated with Y only, and 30 

covariates associated with both X and Y.  
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Finally using 10 terms associated with X only, 10 terms associated with Y, and 10 

confounders each with coefficients of +/-0.5. Each confounder has alternating directionality of 

coefficient and correlated using an autocorrelation covariance matrix with parameter of 0.4. So, 

considering the first two confounders, they’ll have Cov(C1,C2) = 0.4 with βC1=0.5 and βC1=-0.5.   

We simulated 1000 replicated data sets under each of the different simulation scenarios. 

The Starting values for the MCMC searches are initially at the MLE (in settings of small n and 

large p there maybe issues and it is recommended to star the search at zero). There was a burn in 

of 2000 and 8000 for the outer MCMC simulations searching through the space of the α’s. The 

method is then currently on the magnitude the hundreds so 10,000 iterations, or two orders of 

magnitude larger will allow for proper search of the model space.  

 The proposed method will be compared under different simulation scenarios and in the 

NHS and HPFS data. Under each scenario the 2-Step BMA method will be compared to: Gold, 

Kitch, SW, HDPS, GBR, and AB-MC3.  

Simulation Results 

Comparing the Methods Under Different Simulation Scenarios 

The base scenario of simulations at βX=0.0, n=500 and p=200 with 2 covariates 

associated with X, 2 associated with Y, and 2 associated with X and Y are depicted in figures 3.1 

and 1.2. First is a comparison of the average inclusion of each of the different α’s over 1,000 

(figure 3.1). Where both methods appear to be picking up the true sets of confounders. Using the 

same simulation scenarios as in figure 3.1 where are the biases of the different methods with the 

box plots labeled with the average bias and the MSE of each method under the abbreviation for 
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the method. The 2-Step, HDPS, and AB-MC3 appear to all be demonstrating similar level of 

unbiased estimation of the treatment effect compared relative to the gold standard.  

 

Figure 3.1: The average inclusion of each of the different α’s over 1,000 simulations in the base setting of at βX=0.0, 
n=500 and p=200 with 2 covariates associated with X, 2 associated with Y, and 2 associated with X and Y. Panel 1A 
corresponds to the αx’s of the 2-Step, 1B are the αy, 1C are the union of αx and αy, and 1D corresponds to the HDPS 
method.  
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Figure 3.2: Using the same simulation scenarios as in figure 3.1 where are the biases of the different methods with 
the box plots labeled with the average bias and the MSE of each method under the abbreviation for the method.  
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Figure 3.3: Now the treatment effect is simulated to be βX=0.2. The average inclusion of each of the different α’s 
over 1,000 simulations with n=500, and p=200 with 2 covariates associated with X, 2 associated with Y, and 2 
associated with X and Y. Panel 1A corresponds to the αx’s of the 2-Step, 1B are the αy, 1C are the union of αx and αy, 
and 1D corresponds to the HDPS method.  

Next the settings of non-zero treatment effect were tested, first at βx=0.2 (Figures 3.3 and 

4) and next at βx=0.4 (figures 3.5 and 3.6). The 2-Step and HDPS both appear to be picking up 

the expected models similar to figure 3.1 (figures 3.3 and 3.5) . Again the 2-Step and AB-MC3 

methods appear to give unbiased estimates of the treatment effect, but the HDPS appears to be 

bias downward, potentially including covariates that are not truly association with Y biasing the 

observed ACE of the exposure on the outcome. This bias appears to increase as the treatment 

effect increases, resulting in more conservative estimates (figures 3.4 and 3.6).   
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Figure 3.4: Using the same simulation scenarios as in figure 3.3, at βX=0.2, where are the biases of the different 
methods with the box plots labeled with the average bias and the MSE of each method under the abbreviation for the 
method.  
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Figure 3.5: Now the treatment effect is simulated to be βX=0.4 The average inclusion of each of the different α’s 
over 1,000 simulations with n=500, and p=200 with 2 covariates associated with X, 2 associated with Y, and 2 
associated with X and Y. Panel 1A corresponds to the αx’s of the 2-Step, 1B are the αy, 1C are the union of αx and αy, 
and 1D corresponds to the HDPS method.  
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Figure 3.6: Using the same simulation scenarios as in figure 3.5, at βX=0.4, where are the biases of the different 
methods with the box plots labeled with the average bias and the MSE of each method under the abbreviation for the 
method.  
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Then the scenario with 30 covariates associated with X, 30 associated with Y, and 30 

associated with X and Y at very effect levels and each of these covariates is correlated with a 

null covariate (figures 3.7 and 3.8). Now it appears the HDPS method picks up the spuriously 

associated covariates (7D). There appears to be bias in all of the methods in this setting, however 

the 2-step method appears to be outperforming the AB-MC3 method.  

 

 

Figure 3.7: Now the treatment effect is simulated to be βX=0.0 but there are now with 30 covariates associated with 
X, 30 associated with Y, and 30 associated with X and Y at very effect levels. The average inclusion of each of the 
different α’s over 1,000 simulations with n=500, and p=200. Panel 1A corresponds to the αx’s of the 2-Step, 1B are 
the αy, 1C are the union of αx and αy, and 1D corresponds to the HDPS method.  
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Figure 3.8: Using the same simulation scenarios as in figure 3.7, at varying effect levels and correlated covariates, 
where are the biases of the different methods with the box plots labeled with the average bias and the MSE of each 
method under the abbreviation for the method.  
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Figures 3.9 and 3.10 describes the are the posterior inclusion probabilities, α, in the 

setting with 10 terms associated with X only, 10 terms associated with Y, and 10 confounders 

each with coefficients of +/-0.5 In figure a) are the results for the 2-Step BMA αx b) are the 

results for 2-Step BMA αy c) are the union of αx and αy d) HDPS using 10% of the covariates.  

 

Figure 3.9: Now the treatment effect is simulated to be βX=0.0 but there are now with 10 covariates associated with 
X, 10 associated with Y, and 10 associated with X and Y with coefficients of 0.25. All of the confounders are now 
correlated using an autocorrelation scheme with a parameter of 0.4, having alternating directions of coefficient effect 
directionality. The average inclusion of each of the different α’s over 1,000 simulations with n=500, and p=200. 
Panel 1A corresponds to the αx’s of the 2-Step, 1B are the αy, 1C are the union of αx and αy, and 1D corresponds to 
the HDPS method.  
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It appears HDPS is having a harder time picking up the correlated confounders (typically 

less than 50% of the time for the majority of the confounders) while, the 2-Step BMA appears to 

be considerably more effective at picking them up (over 90% of the time). The 2-Step BMA 

method demonstrates the least bias and MSE relative to all the other methods (Figure 3.10). The 

2-Step BMA method appears to be the most robust to complicated confounder interactions.  

 

Figure 3.10: Using the same simulation scenarios as in figure 3.9, with autocorrelated confounders with alternating 
directionality of effect. The biases of the different methods with the box plots labeled with the average bias and the 
MSE of each method under the abbreviation for the method.  

 

  



 

65 
 

 

Overview of data Analysis 

 Metabolomics are known to be associated with cancer 48 but, key metabolites are hard to 

isolate because there are many that are potentially associated; different techniques, such as 

principle component analysis (PCA), have been used to better understand and reduce the 

dimension of the problem 53. Some known risk factors of PDAC have been identified as well as 

some of the complex biological pathways involved in the disease development; however, it is 

known to be associated with systemic metabolism 54-56(Batch 2013 Metabolism, Lackey 2013 

Am J Physiol Endocrinol Metab, Newgard 2009 Cell Metabolism, Mayers et. al. 2014 Nat 

Medicine). Further, it is known that BMI is associated with progression of PDAC.  Elevated 

plasma levels of branched-chain amino acids (BCAAs) are associated with increased risk of 

pancreatic cancer and suspected to be associated with BMI as well. Two analyses will be 

performed to estimate the effect of elevated levels of BCAAs: one estimating the effect on BMI 

and another estimating the effect on PDAC. It is common in metabolic studies to group 

metabolites when studying their effects because they represent a complicated and dynamic 

biochemical state of the sample53. 

We analyzed two prospective cohort studies, Health Professional Follow-Up Study 

(HPFS) and Nurses Health Study. Initial quality control was performed on the 592 subjects from 

NHS and HPFS consisting of 197 cases of PDAC. Removing individuals based on missing data 

left 453 subjects with 137 cases of PDAC.  When BMI was considered the primary outcome of 

interest the subset of 316 control samples were used.  

Quality control was done on the 133 targeted Metabolites, of those measured Metabolites 

79 were used in both analyses. Of the over 50 metabolites that were excluded, they were 
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removed from the analysis for either poor stability with processing delay, or missing data at a 

level of greater than 10%. For PDAC there were a total of 99 covariates including metabolic 

profiles and epidemiological profiles and 98 for BMI (BMI was used a covariate for PDAC). The 

metabolite measures were transformed to the natural log scale. The primary exposure examined 

was the sum of the log-transformed plasma levels of three branched-chain amino acids 

(BCAAs): valine, leucine, and isoleucine, which have previously been shown to be linked to 

BMI and certain metabolic diseases48. The sum of the log of these metabolite levels were taken 

then dichotomized at the top quintile of expression, with those above this threshold being 

considered to have elevated expression.  

Data Analysis: Primary Outcome of BMI 

In Liu’s49 analysis confounding was adjusted for in a linear mixed model using the 

baseline covariates: baseline obesity status as a dummy variable (obese was defined as baseline 

BMI > 30 kg/m2), smoking status (never, past and current smokers) as dummy variables, 

physical activity (MET-hours) as a continuous variable, alcohol intake (g/day) as a continuous 

variable, total calorie intake (kcal/day) as a continuous variable, age (years) at blood draw and 

the follow–up years since baseline (take value 0 at baseline). In contrast, our analysis looks at 

baseline BMI was dichotomized with a cut-off of 30.  

As a comparison to Liu’s analysis both a marginal analysis of each BCAA was performed 

as well as a joint analysis after selecting out the top confounders found using the 2-Step BMA 

technique. The goal of this secondary analysis was to isolate if any discrepancy between Liu’s 

results and our results had to potentially to do with confounders as opposed to difference in 

defining the primary exposure.  
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Although the 2-Step BMA technique (as well as the HDPS adjustment) demonstrates an 

ATE of elevated levels BCAAs on BMI around zero (Table 3.4), it appears confounders that 

were previously uncontrolled for are now being incorporated. This should result in more accurate 

description of the treatment effect.  

Method Outcome ATE OR 
2-Step BMA PDAC 0.131 (0.075, 0.186) 1.807 (1.411, 2.272)  
 BMI 0.030 (-0.025, 0.107) 1.364 (0.763, 2.444) 
HDPS PDAC 0.086 (-.039, 0.233 ) 1.4815 (0.830, 2.765 ) 
 BMI 0.002 ( -0.079,  0.1739) 1.026  (0.377, 3.868) 

 
Conditional Logistic+ BMI, physical 
activity and reported diabetes at 
blood collection 

PDAC  1.89 (1.17,3.06) 

Conditional Logistic+ BMI, physical 
activity, reported diabetes, HbA1c, 
plasma insulin, proinsulin and C-
peptide 

PDAC  2.19 (1.44,3.34) 

Table 3.4: Comparison of ATE and OR with confidence/credible intervals in parenthesis for the 2-Step BMA and 
HDPS methods. The last two columns are results from Mayers et. al. 2014 Nat Med found in table 3.1. The primary 
exposure for those rows are top versus bottom quintile of log summed BCAAs.  

 

Data Analysis: Understanding the impact of Confounders with Primary Outcome of BMI 

The goal of this analysis was not to isolate a subset of confounders, better understanding 

their impact on elevated levels of BCAAs is important though. By using BMA techniques to 

account for the model uncertainty in this setting, our results indicate high levels of confounding 

(posterior probabilities of αx and αy listed in Table 3.5) maybe driving what was previously 

thought to be a clear association between elevated levels of BCAAs and BMI. The 2-Step BMA 

method found acetylglycine to be associated with BMI with inclusion probabilities are: 

p(αx)=7.8% and p(αy)= 42.1% (Liu’s found this to be a novel metabolite).   
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 Outcome 

 PDAC BMI 
Selected Covariates HDPS 2S-BMA 

P(αx) 
2S-BMA 

P(αy) 
HDPS 2S-BMA 

P(αx) 
2S-BMA 

P(αy) 
phenylalanine  0 1.00 0.01 0 0.98 0.12 
aminoadipate 0 1.00 0.02 1 0.97 0.09 
cohort  0 0.73 0.01 0 0.64 0.11 
smoking   0 0.77 0.02 0 0.39 0.38 
anthranilic acid  0 0.63 0.01 0 0.64 0.05 
glutamate   0 0.88 0.02 1 0.30 0.62 
methionine   0 0.66 0.01 0 0.32 0.13 
quinolinate    1 0.44 0.03 0 0.68 0.40 
ADMA SDMA  1 0.05 0.03 0 0.08 0.06 
alanine  1 0.06 0.01 0 0.46 0.07 
malate  1 0.06 0.02 0 0.09 0.31 
ornithine  1 0.07 0.01 0 0.16 0.06 
proline   1 0.41 0.03 1 0.31 0.37 
pyroglutamic acid  1 0.20 0.03 0 0.20 0.29 
tryptophan  1 0.20 0.03 0 0.20 0.29 
DMAPi   1 0.05 0.03 1 0.06 0.06 
HAA 1 0.34 0.02 0 0.16 0.06 
acetylglycine   0 0.06 0.02 1 0.08 0.42 
glycine  0 0.08 0.02 1 0.10 0.32 
methionine sulfoxide  0 0.06 0.01 1 0.08 0.05 
tyrosine  0 0.12 0.02 1 0.15 0.08 
xanthurenate 0 0.08 0.02 1 0.08 0.09 

 

Table 3.5: Comparison of the posterior inclusion probabilities of the HDPS method and 2-Step BMA. The 
set of covariates either selected by HDPS and/or at a level of P(α)>0.50 using the 2-Step BMA technique. 

 

Interestingly, we’re getting higher posterior probabilities for glutamate: with posterior 

inclusion probabilities of glutamate p(αx)=30.1%  and p(αy)= 61.8%; this appears to be strong 

evidence for a potential confounder. Previously, this was not picked up by Liu. In terms of 

development of our methodology, we’re less concerned with the posterior inclusion probabilities 

of these potential confounders but, can be thought of as a form of validation. Elevated levels of 

glutamate have previously been found to be associated with obesity and is thought to be 

associated with the regulation of appetite 57. Glutamate is known to be associated with 

sophisticated functionality of neurotransmission modulation. Glutamatergic synapses have been 

found to be associated with a variety of neurobiological diseases as well as non-neurobiological 
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diseases such as osteoporosis 58. Picking up these potential confounders bolsters the argument for 

BMA techniques that account for model uncertainty in high dimension settings, such as this one.  

This is not a one to one comparison of the analysis done in Liu however, they looked at 

marginal effects of each metabolite separately. A follow up analysis was done, running a logistic 

regression marginally with each BCAA we found them to be significantly associated with 

continuous BMI (with p-values for valine, leucine, and isoleucine of: 0.000456, 0.0023, and, 

0.00245 respectively), which is consistent with the findings of Liu. However, if we look at each 

BCAA individual but include the top 4 confounders (smoking, glutamate, quinolinate, and 

proline)  picked up by the 2-Step BMA method as potential confounders, none of them are 

significant any more (Table 3.6). Interesting, glutamate also does not appear to be significantly 

associated. Smoking and proline aren’t picked up by HDPS however, are significant in all joint 

analysis. Further, this may indicate elevated levels of BCAAs are less important in the biologic 

pathway resulting in BMI than previously expected.  

 BCAA Included in Joint Model 
 Valine Leucine Isoleucine 

Valine 0.089918 NA NA 
Leucine NA 0.207617 NA 

Isoleucine NA NA 0.223370 
Smoking 0.032060 0.031895 0.029182 

Glutamate 0.792327 0.741130 0.701842 
Quinolinate 4.62e-05 2.6e-05 2.5e-05 

Proline 0.013607 0.014261 0.019594 
 

Table 3.6: The reported p-values for the different joint models, where the column indicates which BCAA is included 
in the analysis.  
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Data Analysis: Primary Outcome of (PDAC) 

Initial quality control was performed on the 592 subjects from NHS and HPFS consisting 

of 197 cases of PDAC with a total of 99 covariates including metabolic profiles and 

epidemiological profiles. After removing individuals based on missing data, leaving 453 subjects 

with 137 cases of PDAC.  

The HDPS method found the OR of elevated levels of BCAAs to be 1.4815 (0.830, 

2.765) ,whereas 2-Step BMA method found 1.807 (1.411, 2.272) closer the the Mayers reported 

1.89 (1.17–3.06) when they controlled for: BMI, physical activity, reported diabetes, HbA1c, 

plasma insulin, proinsulin and C-peptide. This provides validation for our method, in a setting of 

head to head comparison of our methods without outside scientific knowledge we observed 

similar results to a setting with expert analysis with expected confounders included in a 

conditional logistic analysis run by Mayers.  It should be noted Mayers looked at top versus 

bottom quintile of log summed BCAAS as opposed to top versus lower 4 quintiles as in our 

analysis. The αx and αy posterior inclusion probabilities at or above levels of 50% and 90% and 

parameter selection of HDPS demonstrated little overlap (Table 3.4).  This may indicate model 

selection techniques are not properly controlling for confounding or model uncertainty that while 

BMA techniques do.  Both the kitchen sink and TWANG methods demonstrate unrealistically 

high treatment effects, indicating instability in statistical estimation of the ATE.   

 

Commentary across both PDAC and BMI 
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We’ve introduced the 2-Step BMA method that targets primary exposure of interest while 

controlling for a high dimensional set of unknown confounders. Through simulation study, it was 

demonstrated decreased bias and MSE in certain settings versus state of the art techniques and 

that the method is less susceptible to spurious correlation among covariates. With the NHS and 

HPFS for the 2-Step BMA method demonstrated similar treatment effects to published results as 

opposed to the other methods.  

Not controlling for a strong confounder, such as glutamate when BMI was the outcome, 

has the potential to inflate the ATE of elevated levels of BCAAs on obesity that were otherwise 

observed. Our method controlled for glutamate and other potential confounders. The 2-Step 

BMA method provides effect estimates of BCAAs for PDAC that are on par with previous 

findings of Mayer, whereas HDPS demonstrates confidence intervals that include zero (Table 

3.4).  

Neither the HDPS nor the 2-Step BMA methods found a clearly significant effect of 

BCAAs when the outcome was BMI; however, Liu looked at the marginal effect of each BCAA 

which is a different set up than our approach. For our analysis we looked at the combined impact 

of all three BCAAs, log summed and dichotomized to above and below the top quintile, which 

may be the reason for the discrepancy. Additionally, our analysis focused on baseline BMI 

dichotomized above and below 30, possibly explaining some of the discrepancy with Liu. 

Further, the joint logistic regression follow up analysis (with the top 4 confounders found using 

the 2-Step BMA) did not demonstrate significant association between continuous BMI and 

valine, leucine, or isoleucine (Table 3.6).  

In both sets of analysis the metabolites used were the same and two metabolites in 

particular where found to be strongly associated with elevated levels of BCAAs using the 2-Step 
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BMA method: phenylalanine and aminoadipate (4), demonstrating consistency in the method. 

This may point to the need for further investigation of the sets of metabolites treated as the 

primary exposure in future studies. HDPS only picked this up when looking at BMI as the 

outcome.  
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Appendix 1 Supplemental Figures for Chapter 1 
 

 

Figure S.1.1. Liability Threshold Model.  The liability threshold model performs a transformation based on disease prevalence. As ascertainment becomes 
more drastic so does the difference between the PML for cases versus controls. In Figure S.1.1, the portion of the population above the threshold is a case (blue).  
For T2D, at a prevalence of 8% (blue), the threshold is set to 1.405. In this region, the expected value for the posterior liability is 1.85 and the expected value for 
the controls is -0.14.  Comparing T2D to MS with disease prevalence around 0.1% and t around 3.00, the PMLindiv for a control is 0.00 and 3.33 for a case. As the 
disease prevalence goes down the difference in the PMLindiv for cases versus controls increases, the transformation plays a larger role for rare diseases and results 
in a power gain for the LTMLM.   
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A        B 

 

Figure S.1.2. Mismatch in ancestry between MS cases and controls. We plot the first two principal components for (a) unmatched data with a severe mismatch 
(5,429 MS cases and 10,204controls), (b) stringently matched data using the first 20 PC(4,094 MS cases and 4,094 controls).  The controls are depicted in red 
and cases in black.  After PC matching the remaining samples show considerably less population stratification differentiation between cases and controls. 
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Term Description 
φ Quantitative liability, the unobserved trait 
β Effect Size of the SNP 
x Genotype values of candidate SNP, normalized to mean 0 variance 1 
u Genetic random effect excluding the candidate SNP 
e Environmental component  
X Matrix of genotype values of non-candidate SNPs, normalized to mean 0 and variance 1 
π Observed binary case control phenotype.  
t Threshold corresponding to the disease prevalence 
K Prevalence of the disease in the population 
P Proportion of cases in the sample 
𝜣̂ Genetic Relationship Matrix (GRM) computed from the data 
Θ True underlying Genetic Relationship Matrix (GRM) 
V Phenotypic covariance matrix 
I Identity matrix 
h2 Heritability parameter 
  

Table S.1.1: Description of notation used and a brief description of the terms.  

 

Computation ATT MLM LTMLM 

GRM and V-1 NA  O(MN2) O(MN2) 

PML NA NA O(MN2)  

Assoc. Statistic O(MN) O(MN) or O(MN2) O(MN) 

Overall  O(MN) O(MN2) O(MN2) 
 

Table S.1.2. Computational cost. M is the number of SNPs and N is the number of individuals.  We assume that M > N > #MCMC iterations. The details of the 
computational costs of MLM are provided in Table 1 of ref11. 
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Table S.1.3 

N M Prev α set ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

1000 1000 50% 0.05 causal 0.732(0.015) 0.741(0.015) 0.663(0.016) 0.663(0.016) 0.671(0.016) 0.670(0.016) 

   0.001 causal 0.548(0.017) 0.562(0.017) 0.444(0.017) 0.443(0.017) 0.447(0.017) 0.444(0.017) 

    1x10-6 causal 0.331(0.016) 0.353(0.016) 0.227(0.014) 0.224(0.014) 0.236(0.014) 0.234(0.014) 

   5x10-8 causal 0.275(0.015) 0.287(0.015) 0.179(0.013) 0.175(0.013) 0.177(0.013) 0.178(0.013) 
   0.05 null 0.050(0.001) 0.049(0.001) 0.051(0.001) 0.051(0.001) 0.051(0.001) 0.051(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-

4) 
0.001(2x10-

4) 
0.001(2x10-

4) 
0.001(2x10-

4) 
0.001(2x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  25% 0.05 causal 0.704(0.015) 0.712(0.015) 0.648(0.016) 0.648(0.016) 0.652(0.016) 0.653(0.016) 

   0.001 causal 0.544(0.017) 0.557(0.017) 0.456(0.017) 0.455(0.017) 0.460(0.017) 0.466(0.017) 

    1x10-6 causal 0.379(0.016) 0.383(0.016) 0.271(0.015) 0.268(0.015) 0.267(0.015) 0.272(0.015) 

   5x10-8 causal 0.318(0.016) 0.334(0.016) 0.219(0.014) 0.215(0.014) 0.226(0.014) 0.224(0.014) 
   0.05 null 0.051(0.001) 0.051(0.001) 0.050(0.001) 0.049(0.001) 0.050(0.001) 0.049(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  10% 0.05 causal 0.761(0.014) 0.752(0.014) 0.708(0.015) 0.708(0.015) 0.708(0.015) 0.711(0.015) 

   0.001 causal 0.589(0.016) 0.601(0.016) 0.51(0.017) 0.509(0.017) 0.514(0.017) 0.516(0.017) 

    1x10-6 causal 0.410(0.016) 0.417(0.016) 0.325(0.016) 0.323(0.016) 0.325(0.016) 0.330(0.016) 

   5x10-8 causal 0.362(0.016) 0.377(0.016) 0.266(0.015) 0.259(0.015) 0.268(0.015) 0.277(0.015) 
   0.05 null 0.050(0.001) 0.051(0.001) 0.049(0.001) 0.049(0.001) 0.050(0.001) 0.050(0.001) 
   0.001 null 0.001(2x10-4) 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

 

 

 

  

N M Prev α set ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

  1% 0.05 causal 0.803(0.013) 0.796(0.013) 0.767(0.014) 0.767(0.014) 0.753(0.014) 0.769(0.014) 

   0.001 causal 0.666(0.016) 0.665(0.016) 0.632(0.016) 0.632(0.016) 0.619(0.016) 0.638(0.016) 

    1x10-6 causal 0.548(0.016) 0.543(0.016) 0.496(0.017) 0.491(0.017) 0.477(0.017) 0.501(0.017) 

   5x10-8 causal 0.504(0.016) 0.500(0.016) 0.449(0.016) 0.447(0.016) 0.433(0.016) 0.451(0.016) 
   0.05 null 0.050(0.001) 0.048(0.001) 0.050(0.001) 0.050(0.001) 0.049(0.001) 0.050(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  0.1% 0.05 causal 0.820(0.013) 0.811(0.013) 0.815(0.013) 0.815(0.013) 0.801(0.013) 0.818(0.013) 

   0.001 causal 0.727(0.015) 0.689(0.015) 0.697(0.015) 0.697(0.015) 0.656(0.016) 0.695(0.015) 
   1x10-6 causal 0.585(0.016) 0.559(0.016) 0.551(0.016) 0.547(0.016) 0.510(0.017) 0.559(0.016) 
   5x10-8 causal 0.548(0.016) 0.511(0.016) 0.512(0.016) 0.510(0.016) 0.475(0.017) 0.525(0.016) 
   0.05 null 0.050(0.001) 0.046(0.001) 0.050(0.001) 0.049(0.001) 0.048(0.001) 0.050(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

     5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

 

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR MLM LTMLM 

5000 1000 50% 0.05 causal 0.700(0.016) 0.700 (0.016) 0.642(0.017) 0.639(0.017) 0.637(0.017) 0.636(0.017) 
   0.001 causal 0.526(0.017) 0.529(0.017) 0.422(0.017) 0.420(0.017) 0.424(0.017) 0.424(0.017) 
    1x10-6 causal 0.337(0.016) 0.341(0.016) 0.234(0.015) 0.231(0.015) 0.240(0.015) 0.241(0.015) 
   5x10-8 causal 0.290(0.015) 0.288(0.015) 0.19(0.014) 0.185(0.013) 0.191(0.014) 0.190(0.013) 
   0.05 null 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
  25% 0.05 causal 0.727(0.015) 0.723(0.015) 0.649(0.016) 0.649(0.016) 0.647(0.016) 0.646(0.016) 
   0.001 causal 0.534(0.017) 0.537(0.017) 0.446(0.017) 0.444(0.017) 0.443(0.017) 0.445(0.017) 
    1x10-6 causal 0.369(0.016) 0.376(0.016) 0.271(0.015) 0.269(0.015) 0.270(0.015) 0.270(0.015) 
   5x10-8 causal 0.324(0.016) 0.324(0.016) 0.228(0.014) 0.227(0.014) 0.228(0.014) 0.228(0.014) 
   0.05 null 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
  10% 0.05 causal 0.741(0.015) 0.747(0.015) 0.691(0.016) 0.690(0.016) 0.694(0.016) 0.694(0.016) 
   0.001 causal 0.579(0.016) 0.586(0.016) 0.518(0.017) 0.516(0.017) 0.520(0.017) 0.516(0.017) 
    1x10-6 causal 0.405(0.016) 0.403(0.016) 0.305(0.016) 0.303(0.016) 0.305(0.016) 0.307(0.016) 
   5x10-8 causal 0.349(0.016) 0.355(0.016) 0.248(0.015) 0.245(0.015) 0.249(0.015) 0.249(0.015) 
   0.05 null 0.050(4x10-4) 0.050(4x10-4) 0.051(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.051(4x10-4) 
   0.001 null 0.001(6x10-5) 0.001(6x10-5) 0.001(7x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(7x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

 

 

 

 

 

 

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR MLM LTMLM 

  1% 0.05 causal 0.827(0.012) 0.834(0.012) 0.806(0.013) 0.806(0.013) 0.801(0.013) 0.807(0.013) 

   0.001 causal 0.700(0.015) 0.700(0.015) 0.668(0.016) 0.664(0.016) 0.66(0.016) 0.663(0.016) 

    1x10-6 causal 0.555(0.016) 0.551(0.016) 0.499(0.017) 0.496(0.017) 0.494(0.017) 0.503(0.017) 

   5x10-8 causal 0.514(0.016) 0.509(0.016) 0.443(0.016) 0.441(0.016) 0.44(0.016) 0.446(0.016) 
   0.05 null 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  0.1% 0.05 causal 0.845(0.012) 0.854(0.012) 0.852(0.012) 0.852(0.012) 0.848(0.012) 0.852(0.012) 

   0.001 causal 0.771(0.014) 0.770(0.014) 0.775(0.014) 0.775(0.014) 0.770(0.014) 0.770(0.014) 
   1x10-6 causal 0.689(0.015) 0.667(0.015) 0.657(0.016) 0.657(0.016) 0.631(0.016) 0.688(0.015) 
   5x10-8 causal 0.666(0.016) 0.654(0.016) 0.620(0.016) 0.593(0.016) 0.555(0.016) 0.590(0.016) 
   0.05 null 0.049(4x10-4) 0.049(4x10-4) 0.051(4x10-4) 0.051(4x10-4) 0.049(4x10-4) 0.051(4x10-4) 
   0.001 null 0.001(7x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR N M 

5000 5000 50% 0.05 causal 0.696(0.007) 0.703(0.007) 0.630(0.007) 0.629(0.007) 0.633(0.007) 0.632(0.007) 
   0.001 causal 0.519(0.008) 0.530(0.008) 0.415(0.008) 0.415(0.008) 0.424(0.008) 0.424(0.008) 
    1x10-6 causal 0.332(0.007) 0.344(0.007) 0.229(0.006) 0.229(0.006) 0.236(0.007) 0.235(0.007) 
   5x10-8 causal 0.285(0.007) 0.295(0.007) 0.186(0.006) 0.184(0.006) 0.191(0.006) 0.190(0.006) 
   0.05 null 0.0491(4x10-4) 0.049(4x10-4) 0.049(4x10-4) 0.049(4x10-4) 0.049(4x10-4) 0.049(4x10-4) 
   0.001 null 0.001 (6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
  25% 0.05 causal 0.694(0.007) 0.700(0.007) 0.628(0.007) 0.628(0.007) 0.632(0.007) 0.632(0.007) 
   0.001 causal 0.512(0.008) 0.523(0.008) 0.427(0.008) 0.427(0.008) 0.434(0.008) 0.434(0.008) 
    1x10-6 causal 0.344(0.007) 0.355(0.007) 0.260(0.007) 0.260(0.007) 0.265(0.007) 0.265(0.007) 
   5x10-8 causal 0.297(0.007) 0.307(0.007) 0.211(0.006) 0.211(0.006) 0.215(0.006) 0.215(0.006) 
   0.05 null 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001 (7x10-5) 0.001(6x10-5) 0.001 (6x10-

5) 
0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
  10% 0.05 causal 0.751(0.006) 0.758(0.006) 0.704(0.007) 0.703(0.007) 0.706(0.007) 0.709(0.007) 
   0.001 causal 0.592(0.007) 0.597(0.007) 0.516(0.008) 0.516(0.008) 0.517(0.008) 0.520(0.008) 
    1x10-6 causal 0.428(0.007) 0.434(0.007) 0.335(0.007) 0.334(0.007) 0.335(0.007) 0.339(0.007) 
   5x10-8 causal 0.373(0.007) 0.384(0.007) 0.278(0.007) 0.277(0.007) 0.280(0.007) 0.285(0.007) 
   0.05 null 0.049(4x10-4) 

 
0.049(4x10-4) 
 

0.049(4x10-4) 
 

0.049(4x10-4) 
 

0.049(4x10-4) 
 

0.050(4x10-4) 
 

   0.001 null 0.001 (6x10-5) 0.001(6x10-5) 0.001 (6x10-

5) 
0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

 

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR MLM LTMLM 

  1% 0.05 causal 0.805(0.006) 0.803(0.006) 0.775(0.006) 0.775(0.006) 0.773(0.006) 0.780(0.006) 

   0.001 causal 0.668(0.007) 0.664(0.007) 0.626(0.007) 0.626(0.007) 0.618(0.007) 0.631(0.007) 

    1x10-6 causal 0.526(0.007) 0.516(0.007) 0.479(0.007) 0.479(0.007) 0.468(0.007) 0.485(0.007) 

   5x10-8 causal 0.482(0.007) 0.469(0.007) 0.429(0.007) 0.428(0.007) 0.415(0.007) 0.433(0.007) 
   0.05 null 0.050(4x10-4) 0.045(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001(6x10-5) 0.001(5x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  0.1% 0.05 causal 0.833(0.005) 0.812(0.006) 0.818(0.006) 0.818(0.006) 0.799(0.006) 0.821(0.006) 

   0.001 causal 0.726(0.007) 0.697(0.007) 0.702(0.007) 0.702(0.007) 0.670(0.007) 0.705(0.007) 
   1x10-6 causal 0.599(0.007) 0.554(0.007) 0.562(0.007) 0.560(0.007) 0.516(0.007) 0.564(0.007) 
   5x10-8 causal 0.554(0.007) 0.510(0.007) 0.516(0.007) 0.516(0.007) 0.470(0.007) 0.519(0.007) 
   0.05 null 0.050(4x10-4) 0.0324(4x10-4) 0.050(4x10-4) 0.050(4x10-4) 0.040(4x10-4) 0.050(4x10-4) 
   0.001 null 0.001 (6x10-5) 3x10-4(4x10-5) 0.001(6x10-5) 0.001(6x10-5) 0.001(5x10-5) 0.001(6x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

  

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR MLM LTMLM 

5000 50000 50% 0.05 causal 0.702(0.007) 0.703(0.007) 0.631(0.007) 0.631(0.007) 0.631(0.007) 0.631(0.007) 

   0.001 causal 0.518(0.008) 0.520(0.008) 0.418(0.008) 0.418(0.008) 0.419(0.008) 0.420(0.008) 

    1x10-6 causal 0.331(0.007) 0.333(0.007) 0.231(0.006) 0.230(0.006) 0.232(0.006) 0.231(0.006) 

   5x10-8 causal 0.278(0.007) 0.280(0.007) 0.183(0.006) 0.182(0.006) 0.183(0.006) 0.184(0.006) 
   0.05 null 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 
   0.001 null 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  25% 0.05 causal 0.706(0.007) 0.710(0.007) 0.652(0.007) 0.652(0.007) 0.652(0.007) 0.652(0.007) 

   0.001 causal 0.539(0.008) 0.540(0.008) 0.450(0.008) 0.449(0.008) 0.450(0.008) 0.450(0.008) 

    1x10-6 causal 0.362(0.007) 0.363(0.007) 0.259(0.007) 0.259(0.007) 0.262(0.007) 0.261(0.007) 

   5x10-8 causal 0.308(0.007) 0.312(0.007) 0.207(0.006) 0.206(0.006) 0.209(0.006) 0.209(0.006) 
   0.05 null 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 
   0.001 null 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  10% 0.05 causal 0.751(0.006) 0.755(0.006) 0.726(0.007) 0.726(0.007) 0.725(0.007) 0.720(0.007) 

   0.001 causal 0.629(0.007) 0.631(0.007) 0.548(0.008) 0.545(0.008) 0.555(0.007) 0.551(0.007) 

    1x10-6 causal 0.466(0.007) 0.474(0.007) 0.355(0.007) 0.355(0.007) 0.355(0.007) 0.355(0.007) 

   5x10-8 causal 0.381(0.007) 0.385(0.007) 0.272(0.007) 0.270(0.007) 0.274(0.007) 0.273(0.007) 
   0.05 null 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 
   0.001 null 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.3 (Continued) 

 

 

Table S.1.3. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes. We report the true positive and false positives at 
different α levels. For completeness, we also report ATT and MLM statistics computed using the underlying liability, where we again observe a loss in power for 
MLM at lower prevalence. In bold are the settings where LTMLM demonstrates at least a 5% power improvement over MLM.  

 

 

 

 

N M Prev α set ATT Liability MLM 
Liability 

ATT LogR MLM LTMLM 

  1% 0.05 causal 0.793(0.006) 0.795(0.006) 0.770(0.006) 0.770(0.006) 0.769(0.006) 0.770(0.006) 

   0.001 causal 0.671(0.007) 0.671(0.007) 0.634(0.007) 0.634(0.007) 0.634(0.007) 0.637(0.007) 

    1x10-6 causal 0.526(0.007) 0.526(0.007) 0.477(0.007) 0.476(0.007) 0.476(0.007) 0.480(0.007) 

   5x10-8 causal 0.484(0.007) 0.485(0.007) 0.431(0.007) 0.431(0.007) 0.429(0.007) 0.432(0.007) 
   0.05 null 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 

   0.001 null 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  0.1% 0.05 causal 0.835(0.005) 0.833(0.005) 0.821(0.006) 0.820(0.006) 0.817(0.006) 0.821(0.006) 

   0.001 causal 0.719(0.007) 0.717(0.007) 0.697(0.007) 0.697(0.007) 0.688(0.007) 0.697(0.007) 
   1x10-6 causal 0.588(0.007) 0.587(0.007) 0.561(0.007) 0.560(0.007) 0.557(0.007) 0.560(0.007) 

   5x10-8 causal 0.547(0.007) 0.545(0.007) 0.517(0.007) 0.517(0.007) 0.508(0.007) 0.518(0.007) 
   0.05 null 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 0.050(1x10-4) 

   0.001 null 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 0.001(2x10-5) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 



 

 
 

84
 

 

Table S.1.4 

 

N M Prev Set Statistic ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

1000 1000 50% causal average 25.716(1.091) 26.947(1.132) 16.847(0.715) 16.367(0.675) 17.254(0.735) 17.229(0.736) 

   null average 1.005(0.005) 1.003(0.005) 1.008(0.005) 1.006(0.005) 1.008(0.005) 1.007(0.005) 

      all average 1.252(0.014) 1.262(0.015) 1.166(0.010) 1.160(0.009) 1.171(0.010) 1.169(0.01) 

   all λGC 1.034(0.008) 1.033(0.008) 1.031(0.009) 1.031(0.009) 1.033(0.008) 1.032(0.008) 

    25% causal average 28.716(1.229) 30.022(1.275) 19.112(0.824) 18.475(0.773) 19.553(0.849) 19.571(0.849) 

   null average 1.003(0.005) 1.004(0.005) 1.000(0.004) 0.998(0.004) 1.002(0.004) 1.001(0.004) 

      all average 1.280(0.016) 1.294(0.016) 1.181(0.011) 1.173(0.010) 1.187(0.011) 1.187(0.011) 

   all λGC 1.019(0.007) 1.021(0.007) 1.014(0.007) 1.013(0.007) 1.026(0.007) 1.02(0.007) 

    10% causal average 34.541(1.501) 35.559(1.539) 23.777(1.021) 22.821(0.943) 24.084(1.053) 24.738(1.098) 

   null average 1.001(0.005) 1.004(0.005) 1.001(0.004) 0.999(0.004) 1.004(0.004) 1.003(0.004) 

      all average 1.336(0.019) 1.349(0.019) 1.229(0.013) 1.217(0.012) 1.235(0.014) 1.241(0.014) 

   all λGC 1.021(0.008) 1.028(0.008) 1.025(0.008) 1.025(0.008) 1.030(0.008) 1.029(0.008) 

    1% causal average 55.732(2.12) 54.012(2.06) 42.316(1.565) 39.858(1.421) 40.611(1.539) 45.336(1.756) 

   null average 1.002(0.004) 0.988(0.004) 0.999(0.004) 0.997(0.004) 0.992(0.004) 0.999(0.004) 

      all average 1.550(0.028) 1.518(0.027) 1.412(0.021) 1.386(0.019) 1.388(0.020) 1.443(0.023) 

   all λGC 1.027(0.008) 1.012(0.007) 1.02(0.008) 1.019(0.008) 1.009(0.008) 1.018(0.008) 

    0.1% causal average 73.159(2.847) 63.052(2.549) 58.946(2.157) 54.625(1.924) 51.507(2.045) 65.991(2.656) 

   null average 0.997(0.004) 0.974(0.004) 0.996(0.004) 0.994(0.004) 0.978(0.004) 0.996(0.004) 

      all average 1.718(0.037) 1.595(0.032) 1.575(0.029) 1.53(0.026) 1.483(0.026) 1.646(0.034) 

      all λGC 1.035(0.009) 1.008(0.007) 1.023(0.007) 1.023(0.007) 1.000(0.007) 1.014(0.008) 
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Table S.1.4 (Continued) 

N M Prev Set Statistic ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

5000 1000 50% causal average 25.224(1.076) 25.503(1.084) 16.488(0.703) 16.029(0.666) 16.652(0.713) 16.625(0.714) 
   null average 1.002(0.002) 1.002(0.002) 1.000(0.002) 0.998(0.002) 1.000(0.002) 0.999(0.002) 

      all average 1.050(0.003) 1.051(0.003) 1.031(0.003) 1.028(0.003) 1.032(0.003) 1.031(0.003) 
   all λGC 1.006(0.003) 1.007(0.003) 1.005(0.003) 1.005(0.003) 1.006(0.003) 1.005(0.004) 

    25% causal average 28.012(1.156) 28.279(1.163) 18.545(0.767) 17.985(0.726) 18.707(0.778) 18.757(0.783) 
   null average 1.004(0.002) 1.004(0.002) 1.002(0.002) 1.000(0.002) 1.002(0.002) 1.002(0.002) 

      all average 1.058(0.004) 1.059(0.004) 1.037(0.003) 1.034(0.003) 1.038(0.003) 1.037(0.003) 
   all λGC 1.010(0.003) 1.011(0.003) 1.003(0.003) 1.003(0.003) 1.004(0.003) 1.004(0.003) 

    10% causal average 32.953(1.379) 33.282(1.395) 22.883(0.948) 22.028(0.886) 23.065(0.965) 23.497(0.996) 
   null average 1.005(0.002) 1.005(0.002) 1.004(0.002) 1.002(0.002) 1.004(0.002) 1.003(0.002) 

      all average 1.069(0.004) 1.070(0.004) 1.047(0.003) 1.044(0.003) 1.048(0.003) 1.048(0.003) 
   all λGC 1.009(0.003) 1.009(0.004) 0.999(0.003) 0.999(0.003) 1.003(0.003) 1.001(0.003) 

    1% causal average 57.101(2.112) 56.546(2.100) 43.459(1.570) 40.939(1.426) 43.546(1.611) 46.302(1.760) 
   null average 1.002(0.002) 1.002(0.002) 1.001(0.002) 0.999(0.002) 1.001(0.002) 1.001(0.002) 

      all average 1.115(0.006) 1.113(0.006) 1.086(0.005) 1.079(0.004) 1.086(0.005) 1.091(0.005) 
   all λGC 1.007(0.004) 1.009(0.003) 1.003(0.003) 1.002(0.003) 1.005(0.003) 1.003(0.004) 

    0.1% causal average 74.089(2.623) 68.943(2.51) 61.561(2.057) 57.182(1.828) 58.752(2.08) 67.284(2.450) 
   null average 0.997(0.002) 0.993(0.002) 0.996(0.002) 0.995(0.002) 0.991(0.002) 0.996(0.002) 

      all average 1.143(0.007) 1.129(0.007) 1.117(0.006) 1.107(0.005) 1.106(0.006) 1.128(0.007) 

      all λGC 1.004(0.001) 0.994(0.002) 0.989(0.001) 0.988(0.001) 1.005(0.002) 0.996(0.002) 
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Table S.1.4 (Continued) 

 

N M Prev Set Statistic ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

5000 5000 50% causal average 25.372(0.496) 26.69(0.52) 16.492(0.325) 16.399(0.321) 16.88(0.332) 16.867(0.332) 
   null average 0.993(0.002) 0.994(0.002) 0.988(0.002) 0.988(0.002) 0.99(0.002) 0.989(0.002) 

      all average 1.237(0.006) 1.251(0.007) 1.143(0.004) 1.142(0.004) 1.148(0.004) 1.148(0.004) 
   all λGC 1.010(0.004) 1.01(0.003) 1.010(0.003) 1.010(0.003) 1.014(0.003) 1.014(0.003) 

    25% causal average 28.119(0.588) 29.56(0.617) 18.637(0.388) 18.509(0.383) 19.014(0.396) 19.056(0.398) 
   null average 1.001(0.002) 1.001(0.002) 1.000(0.002) 1.000 (0.002) 1.000(0.002) 1.001(0.002) 

      all average 1.272(0.007) 1.287(0.008) 1.177(0.005) 1.175(0.005) 1.180(0.005) 1.181(0.005) 
   all λGC 1.019(0.004) 1.017(0.004) 1.012(0.004) 1.012(0.004) 1.013(0.004) 1.013(0.004) 

    10% causal average 36.38(0.716) 37.626(0.742) 25.235(0.501) 25.014(0.492) 25.386(0.506) 25.778(0.514) 
   null average 0.996(0.002) 0.994(0.002) 0.993(0.002) 0.992(0.002) 0.991(0.002) 0.992(0.002) 

      all average 1.350(0.009) 1.361(0.009) 1.235(0.006) 1.233(0.006) 1.235(0.006) 1.240(0.007) 
   all λGC 1.016(0.003) 1.017(0.004) 1.005(0.003) 1.005(0.003) 1.007(0.003) 1.008(0.003) 

    1% causal average 58.172(1.131) 55.473(1.077) 45.376(0.878) 44.682(0.852) 42.594(0.825) 46.691(0.913) 
   null average 1.000(0.002) 0.954(0.002) 1.000 (0.002) 0.999(0.002) 0.990(0.002) 1(0.002) 

      all average 1.571(0.014) 1.499(0.013) 1.444(0.011) 1.436(0.011) 1.406(0.010) 1.457(0.011) 
   all λGC 1.020(0.003) 0.970(0.005) 1.020(0.003) 1.020(0.003) 1.011(0.003) 1.019(0.003) 

    0.1% causal average 81.745(1.565) 66.716(1.29) 68.648(1.301) 67.099(1.248) 56.303(1.082) 70.81(1.364) 
   null average 1.001(0.002) 0.840(0.002) 1.000(0.002) 1.000(0.002) 0.918(0.002) 1.000 (0.002) 

      all average 1.809(0.019) 1.499(0.016) 1.677(0.016) 1.661(0.016) 1.472(0.013) 1.698(0.017) 

      all λGC 1.022(0.003) 0.861(0.006) 1.026(0.003) 1.026(0.003) 0.942(0.005) 1.025(0.003) 
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Table S.1.4 (Continued) 

N M Prev Set Statistic ATT 
Liability 

MLM 
Liability 

ATT LogR MLM LTMLM 

5000 50000 50% causal average 25.501(0.504) 25.642(0.507) 16.624(0.331) 16.529(0.327) 16.673(0.332) 16.69(0.333) 

   null average 0.999(0.001) 0.999(0.001) 1.000 (0.001) 0.999(0.001) 1.000 (0.001) 1.000 (0.001) 

      all average 1.023(0.001) 1.024(0.001) 1.015(0.001) 1.015(0.001) 1.016(0.001) 1.015(0.001) 

   all λGC 0.999(0.001) 1.000 (0.001) 1.003(0.001) 1.002(0.001) 0.999(0.001) 0.999(0.001) 

    25% causal average 28.475(0.555) 28.638(0.557) 18.965(0.37) 18.843(0.366) 19.03(0.372) 19.04(0.372) 

   null average 1.003(0.001) 1.003(0.001) 1.003(0.001) 1.003(0.001) 1.003(0.001) 1.003(0.001) 

      all average 1.030(0.001) 1.031(0.001) 1.021(0.001) 1.020(0.001) 1.021(0.001) 1.021(0.001) 

   all λGC 1.004(0.001) 1.004(0.001) 1.006(0.001) 1.006(0.001) 1.003(0.001) 1.003(0.001) 

    10% causal average 34.358(0.639) 34.704(0.647) 23.71(0.444) 23.528(0.437) 23.868(0.449) 23.910(0.450) 

   null average 0.999(0.001) 1.000 (0.001) 1.001(0.001) 1.000 (0.001) 1.001(0.001) 1.001(0.001) 

      all average 1.033(0.001) 1.034(0.001) 1.023(0.001) 1.023(0.001) 1.024(0.001) 1.024(0.001) 

   all λGC 1.006(0.001) 1.008(0.002) 1.007(0.001) 1.007(0.001) 1.005(0.001) 1.004(0.001) 

    1% causal average 60.112(1.139) 59.863(1.135) 46.683(0.883) 45.969(0.859) 46.44(0.881) 47.368(0.905) 

   null average 1.000 (0.001) 1.000 (0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 

      all average 1.059(0.002) 1.058(0.002) 1.045(0.001) 1.044(0.001) 1.045(0.001) 1.045(0.001) 

   all λGC 1.002(0.001) 1.002(0.001) 1.004(0.001) 1.004(0.001) 1.001(0.001) 1.000 (0.001) 

    0.1% causal average 79.864(1.54) 77.754(1.502) 67.059(1.278) 65.561(1.225) 65.232(1.251) 68.618(1.333) 
   null average 1.000 (0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.001) 

      all average 1.078(0.002) 1.076(0.002) 1.065(0.002) 1.063(0.002) 1.063(0.002) 1.067(0.002) 

      all λGC 1.002(0.001) 1.001(0.001) 1.004(0.001) 1.004(0.001) 1.000(0.001) 1.000(0.001) 

 

 

Table S.1.4. Complete results on simulated genotypes and simulated phenotypes.  Results are analogous to Table 2, but are reported for other values of M 
and N and consist of the same simulations as S3. For completeness, we also report ATT and MLM statistics computed using the underlying liability, where we 
again observe a loss in power for MLM at lower prevalence. In bold are the settings where LTMLM demonstrates at least a 5% power improvement over MLM.  
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M Prev Set Statistic ATT 
Liability 

MLM 
Liability 

ATT ATT+PCs LogR LogR +PCs MLM LTMLM 

1000 10% causal average 36.835 
(1.515) 

16.352 
(0.683) 

24.736 
(1.002) 

23.406(0.951) 23.622(0.93) 22.399(0.883) 13.222(0.553) 12.172(0.536) 

  null average 2.238 
(0.032) 

0.789 
(0.014) 

1.814 
(0.022) 

1.632(0.020) 1.780(0.020) 1.601(0.019) 0.849(0.012) 0.753(0.011) 

    all average 2.584 
(0.036) 

0.944 
(0.016) 

2.043 
(0.025) 

1.849(0.023) 1.999(0.023) 1.809(0.022) 0.973(0.013) 0.867(0.013) 

  all λGC 1.376 
(0.042) 

0.373 
(0.006) 

1.240 
(0.028) 

1.064(0.010) 1.239(0.028) 1.062(0.010) 0.518(0.007) 0.458(0.011) 

10000 10% causal average 33.100 
(1.375) 

29.318 
(1.217) 

22.606 
(0.943) 

21.99(0.919) 21.672(0.876) 21.104(0.854) 20.412(0.867) 19.817(0.874) 

  null average 1.342 
(0.004) 

0.965 
(0.003) 

1.232 
(0.003) 

1.084(0.003) 1.226(0.003) 1.078(0.002) 0.976(0.002) 0.948(0.002) 

    all average 1.374 
(0.004) 

0.993 
(0.003) 

1.253 
(0.003) 

1.104(0.003) 1.246(0.003) 1.098(0.003) 0.995(0.003) 0.967(0.003) 

  all λGC 1.258 
(0.036) 

0.882 
(0.003) 

1.174 
(0.025) 

1.023(0.003) 1.174(0.025) 1.023(0.003) 0.920(0.003) 0.893(0.013) 

20000 10% causal average 34.93 
(1.481) 

32.625 
(1.39) 

24.098 
(1.037) 

23.592(1.014) 23.031(0.963) 22.568(0.943) 22.892(1.003) 22.811(1.006) 

  null average 1.281 
 (0.002) 

0.982 
(0.002) 

1.187 
(0.002) 

1.042(0.001) 1.182(0.002) 1.038(0.001) 0.986(0.001) 0.981(0.001) 

    all average 1.298 
(0.002) 

0.998 
(0.002) 

1.198 
(0.002) 

1.053(0.002) 1.193(0.002) 1.048(0.001) 0.997(0.002) 0.992(0.002) 

    all λGC 1.247 
(0.029) 

0.939 
(0.002) 

1.168 
(0.020) 

1.013(0.002) 1.167(0.020) 1.013(0.002) 0.958(0.002) 0.953(0.006) 

Table S.1.5. Results on simulated genotypes and simulated phenotypes with population structure. We report average χ2 statistics for simulations with 
population structure averaged across 100 simulations for each parameter setting (see main text). 
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Table S.1.6 

 

 

 

 

  

N M Prev α set ATT 
Liability 

MLM 
Liability 

ATT ATT+PCs LogR LogR 
+PCs 

MLM LTMLM 

1000 1000 10% 0.05 causal 0.758 
(0.014) 

0.661 
(0.016) 

0.719 
(0.015) 

0.715 
(0.015) 

0.719 
(0.015) 

0.716 
(0.015) 

0.611 
(0.017) 

0.596 
(0.017) 

   0.001 causal 0.623 
(0.016) 

0.421 
(0.017) 

0.541 
(0.017) 

0.535 
(0.017) 

0.540 
(0.017) 

0.530 
(0.017) 

0.36 
(0.017) 

0.334 
(0.016) 

   1x10-

6 
causal 0.435 

(0.016) 
0.220 

(0.014) 
0.323 

(0.016) 
0.316 

(0.016) 
0.315 

(0.016) 
0.307 

(0.016) 
0.183 

(0.013) 
0.153 

(0.013) 
   5x10-

8 
causal 0.373 

(0.016) 
0.176 

(0.013) 
0.274 

(0.015) 
0.261 

(0.015) 
0.265 

(0.015) 
0.256 

(0.015) 
0.143 

(0.012) 
0.116 

(0.011) 
   0.05 null 0.097 

(0.001) 
0.020 

(0.001) 
0.086 

(0.001) 
0.069 

(0.001) 
0.085 

(0.001) 
0.069 

(0.001) 
0.022 

(0.001) 
0.020 

(0.001) 
   0.001 null 0.022 

(0.001) 
0.012 

(0.001) 
0.018 

(0.001) 
0.016 

(0.001) 
0.018 

(0.001) 
0.016 

(0.001) 
0.011 

(0.001) 
0.010 

(0.001) 
   1x10-

6 
null 0.012 

(5x10-4) 
0.006 

(4x10-4) 
0.010 

(4x10-4) 
0.009 

(4x10-4) 
0.009 

(4x10-4) 
0.009  

(4x10-4) 
0.005 

(4x10-4) 
0.004 

(3x10-4) 
   5x10-

8 
null 0.011 

(5x10-4) 
0.005 

(4x10-4) 
0.008 

(4x10-4) 
0.008 

(4x10-4) 
0.008 

(4x10-4) 
0.007 

(4x10-4) 
0.004 

(3x10-4) 
0.003 

(3x10-4) 
1000 10000  0.05 causal 0.745 

(0.015) 
0.729 

(0.015) 
0.707 

(0.015) 
0.702 

(0.016) 
0.707 

(0.015) 
0.702 

(0.016) 
0.682 

(0.016) 
0.674 

(0.016) 
   0.001 causal 0.587 

(0.016) 
0.557 

(0.017) 
0.495 

(0.017) 
0.492 

(0.017) 
0.494 

(0.017) 
0.492 

 (0.017) 
0.475 

(0.017) 
0.451 

(0.017) 
   1x10-

6 
causal 0.411 

(0.016) 
0.380 

(0.016) 
0.322 

(0.016) 
0.314 

(0.016) 
0.316 

(0.016) 
0.311 

 (0.016) 
0.295 

(0.016) 
0.280 

(0.015) 
   5x10-

8 
causal 0.347 

(0.016) 
0.315 

(0.016) 
0.270 

(0.015) 
0.269 

(0.015) 
0.266 

(0.015) 
0.259 

 (0.015) 
0.245 

(0.015) 
0.225 

(0.014) 
   0.05 null 0.08 

(4x10-4) 
0.038 

(3x10-4) 
0.071 

(4x10-4) 
0.054 

(3x10-4) 
0.071 

(4x10-4) 
0.053 

 (3x10-4) 
0.042 

(3x10-4) 
0.04 

(3x10-4) 
   0.001 null 0.006 

(1x10-4) 
0.002 

(7x10-5) 
0.004 

(9x10-5) 
0.003 

(7x10-5) 
0.004 

(9x10-5) 
0.003 

(7x10-5) 
0.002 

(6x10-5) 
0.002 

(7x10-5) 
   1x10-

6 
null 0.001 

(5x10-5) 
0.001 

(5x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 
0.001 

 (4x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 
   5x10-

8 
null 0.001 

(5x10-5) 
0.001 

(5x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 
0.001 

 (4x10-5) 
0.001 

(4x10-5) 
0.001 

(4x10-5) 



 

 
 

90
 

 

Table S.1.6 (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S.1.6. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes with population structure. We report the true 
positive and false positives at different α levels for the same simulations as in Table S.1.5 (see main text).  

 

  

1000 20000  0.05 causal 0.762 
(0.014) 

0.753 
(0.014) 

0.690 
(0.016) 

0.687 
(0.016) 

0.690 
(0.016) 

0.686 
 (0.016) 

0.686 
(0.016) 

0.682 
(0.016) 

   0.001 causal 0.588 
(0.016) 

0.578 
(0.017) 

0.512 
(0.017) 

0.506 
(0.017) 

0.511 
(0.017) 

0.505 
 (0.017) 

0.490 
(0.017) 

0.488 
(0.017) 

   1x10-

6 
causal 0.412 

(0.016) 
0.400 

(0.016) 
0.315 

(0.016) 
0.309 

(0.016) 
0.311 

(0.016) 
0.306 

 (0.016) 
0.297 

(0.015) 
0.300 

(0.016) 
   5x10-

8 
causal 0.356 

(0.016) 
0.340 

(0.016) 
0.264 

(0.015) 
0.262 

(0.015) 
0.260 

(0.015) 
0.258 

 (0.015) 
0.254 

(0.015) 
0.254 

(0.015) 
   0.05 null 0.078 

(3x10-4) 
0.043 

(2x10-4) 
0.069 

(2x10-5) 
0.052 

(2x10-4) 
0.068 

(2x10-4) 
0.051 

 (2x10-4) 
0.046 

(2x10-4) 
0.045 

(2x10-4) 
   0.001 null 0.005 

(7x10-5) 
0.002 

(4x10-5) 
0.003 

(6x10-5) 
0.002 

(4x10-5) 
0.003 

(5x10-5) 
0.00 

2(4x10-5) 
0.002 

(4x10-5) 
0.002 

(4x10-5) 
   1x10-

6 
null 0.001 

(3x10-5) 
0.001 

(3x10-5) 
0.001 

(2x10-5) 
 

0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

   5x10-

8 
null 0.001 

(2x10-5) 
0.001 

(2x10-5) 
0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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  Liability Observed 
M Prevalence H-E REML H-E REML 

1000 50% 0.259(0.013) 0.252(0.01) 0.165(0.008) 0.161(0.006) 
 25% 0.241(0.010) 0.238(0.008) 0.173(0.007) 0.171(0.006) 
 10% 0.245(0.011) 0.242(0.007) 0.233(0.010) 0.230(0.007) 

10000 50% 0.236(0.014) 0.245(0.013) 0.150(0.009) 0.156(0.008) 
 25% 0.250(0.014) 0.264(0.013) 0.180(0.010) 0.190(0.010) 
 10% 0.259(0.012) 0.261(0.009) 0.246(0.011) 0.248(0.009) 

Table S.1.7. Heritability parameter estimates on simulated genotypes and phenotypes.  Results are analogous to Table 3, under different settings of M and 
N.  

 

 

   Liability  
  

Observed  

M Prevalence H-E REML H-E REML 

1000 10% 0.470(0.013) 0.415(0.005) 0.446(0.012) 0.394(0.005) 
10000 10% 0.407(0.031) 0.526(0.011) 0.438(0.044) 0.500(0.010) 
20000 10% 0.383(0.030) 

 

0.531(0.013) 
 

0.408(0.040) 
 

0.505(0.012) 

 

Table S.1.8. Heritability parameter estimates on simulated genotypes and phenotypes with population structure. These results are from the same 
simulations used to generate Table S.1.5 and S6.  We report results on both liability and observed scales.  The true h2 explained by the SNPs used to build the 
GRM is 25% on the liability scale for all simulations. 
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 Table S.1.9 

N M True 
Prev 

Specified 
Prev 

Set Statistic ATT 
Liablity 

MLM 
Liability 

ATT LogR MLM LTMLM 

1000 1000 1% 1% causal average 55.732(2.12) 54.012(2.06) 42.316(1.565) 39.858(1.421) 40.611(1.539) 45.336(1.756) 

    null average 1.002(0.004) 0.988(0.004) 0.999(0.004) 0.997(0.004) 0.992(0.004) 0.999(0.004) 

    all average 1.550(0.028) 1.518(0.027) 1.412(0.021) 1.386(0.019) 1.388(0.020) 1.443(0.023) 

    all λGC 1.027(0.008) 1.012(0.007) 1.020(0.008) 1.019(0.008) 1.009(0.008) 1.018(0.008) 

   3.4% causal average As Above As Above As Above As Above As Above 44.441(1.805) 

    null average As Above As Above As Above As Above As Above 1.009(0.005) 

    all average As Above As Above As Above As Above As Above 1.444(0.023) 

    all λGC As Above As Above As Above As Above As Above 1.035(0.008) 

   0.2% causal average As Above As Above As Above As Above As Above 45.532(1.851) 

    null average As Above As Above As Above As Above As Above 1.002(0.004) 

    all average As Above As Above As Above As Above As Above 1.448(0.024) 

    all λGC As Above As Above As Above As Above As Above 1.023(0.008) 
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Table S.1.9 (Continued) 

  0.1% 0.1% causal average 73.159(2.847) 63.052(2.549) 58.946(2.157) 54.625(1.924) 51.507(2.045) 65.991(2.656) 

    null average 0.997(0.004) 0.974(0.004) 0.996(0.004) 0.994(0.004) 0.978(0.004) 0.996(0.004) 

    all average 1.718(0.037) 1.595(0.032) 1.575(0.029) 1.530(0.026) 1.483(0.026) 1.646(0.034) 

    all λGC 1.035(0.009) 1.008(0.007) 1.023(0.007) 1.023(0.007) 1.000(0.007) 1.014(0.008) 

   0.5% causal average As Above As Above As Above As Above As Above 65.281(2.617) 

    null average As Above As Above As Above As Above As Above 0.998(0.004) 

    all average As Above As Above As Above As Above As Above 1.641(0.033) 

    all λGC As Above As Above As Above As Above As Above 1.022(0.007) 

   0.02% causal average As Above As Above As Above As Above As Above 68.616(2.729) 

    null average As Above As Above As Above As Above As Above 1.003(0.005) 

    all average As Above As Above As Above As Above As Above 1.679(0.035) 

    all λGC As Above As Above As Above As Above As Above 1.022(0.008) 

Table S.1.9. Simulated genotypes and phenotypes with mis-specification of the liability threshold. LTMLM was run at prevalence of 1% and 0.1% under 
mis-specification of the threshold, t=true +/- 0.5.  
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Table S.1.10 

N M True 
Prev 

Specified 
Prev 

α set ATT 
Liability 

LogR 
Liability 

ATT LogR MLM LTMLM 

5000 5000 1% 1% 0.05 causal 0.803(0.013) 0.796(0.013) 0.767(0.014) 0.767(0.014) 0.753(0.014) 0.769(0.014) 
    0.001 causal 0.666(0.016) 0.665(0.016) 0.632(0.016) 0.632(0.016) 0.619(0.016) 0.638(0.016) 

    1x10-6 causal 0.548(0.016) 0.543(0.016) 0.496(0.017) 0.491(0.017) 0.477(0.017) 0.501(0.017) 
    5x10-8 causal 0.504(0.016) 0.500(0.016) 0.449(0.016) 0.447(0.016) 0.433(0.016) 0.451(0.016) 
    0.05 null 0.050(0.001) 0.048(0.001) 0.050(0.001) 0.050(0.001) 0.049(0.001) 0.050(0.001) 
    0.001 null 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
    1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
    5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   3.4% 0.05 causal As Above As Above As Above As Above As Above 0.783(0.014) 
    0.001 causal As Above As Above As Above As Above As Above 0.647(0.016) 
    1x10-6 causal As Above As Above As Above As Above As Above 0.469(0.017) 
    5x10-8 causal As Above As Above As Above As Above As Above 0.428(0.016) 
    0.05 null As Above As Above As Above As Above As Above 0.051(0.001) 
    0.001 null As Above As Above As Above As Above As Above 0.001(1x10-

4) 
    1x10-6 null As Above As Above As Above As Above As Above 0(NA) 
    5x10-8 null As Above As Above As Above As Above As Above 0(NA) 
   0.2% 0.05 causal As Above As Above As Above As Above As Above 0.774(0.014) 
    0.001 causal As Above As Above As Above As Above As Above 0.638(0.016) 
    1x10-6 causal As Above As Above As Above As Above As Above 0.491(0.017) 

    5x10-8 causal As Above As Above As Above As Above As Above 0.439(0.016) 
    0.05 null As Above As Above As Above As Above As Above 0.050(0.001) 
    0.001 null As Above As Above As Above As Above As Above 0.001(1x10-

4) 
    1x10-6 null As Above As Above As Above As Above As Above 0(NA) 
    5x10-8 null As Above As Above As Above As Above As Above 0(NA) 
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Table S.1.10 (Continued)  

N M True 
Prev 

Specified 
Prev 

α set ATT 
Liability 

LogR 
Liability 

ATT LogR MLM LTMLM 

  0.1% 0.1% 0.05 causal 0.820(0.013) 0.811(0.013) 0.815(0.013) 0.815(0.013) 0.801(0.013) 0.818(0.013) 
    0.001 causal 0.727(0.015) 0.689(0.015) 0.697(0.015) 0.697(0.015) 0.656(0.016) 0.695(0.015) 
    1x10-6 causal 0.585(0.016) 0.559(0.016) 0.551(0.016) 0.547(0.016) 0.510(0.017) 0.559(0.016) 
    5x10-8 causal 0.548(0.016) 0.511(0.016) 0.512(0.016) 0.510(0.016) 0.475(0.017) 0.525(0.016) 
    0.05 null 0.050(0.001) 0.046(0.001) 0.050(0.001) 0.049(0.001) 0.048(0.001) 0.050(0.001) 
    0.001 null 0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
0.001(1x10-

4) 
    1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
    5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
   0.5% 0.05 causal As Above As Above As Above As Above As Above 0.823(0.013) 
    0.001 causal As Above As Above As Above As Above As Above 0.717(0.015) 
    1x10-6 causal As Above As Above As Above As Above As Above 0.569(0.016) 
    5x10-8 causal As Above As Above As Above As Above As Above 0.526(0.016) 
    0.05 null As Above As Above As Above As Above As Above 0.049(0.001) 
    0.001 null As Above As Above As Above As Above As Above 0.001(2x10-

4) 
    1x10-6 null As Above As Above As Above As Above As Above 0(NA) 
    5x10-8 null As Above As Above As Above As Above As Above 0(NA) 
   0.02% 0.05 causal As Above As Above As Above As Above As Above 0.824(0.012) 
    0.001 causal As Above As Above As Above As Above As Above 0.716(0.015) 
    1x10-6 causal As Above As Above As Above As Above As Above 0.573(0.016) 
    5x10-8 causal As Above As Above As Above As Above As Above 0.523(0.016) 
    0.05 null As Above As Above As Above As Above As Above 0.050(0.001) 
    0.001 null As Above As Above As Above As Above As Above 0.001(1x10-

4) 
    1x10-6 null As Above As Above As Above As Above As Above 0(NA) 
    5x10-8 null As Above As Above As Above As Above As Above 0(NA) 
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Table S.1.10 (Continued) 

Table S.1.10. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes with mis-specification of the liability 
threshold. This corresponds to the same set of simulations as Table S.1.9. 
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 Prevalence Liability Observed 
M True Specified H-E REML H-E REML 

1000 1% 1% 0.246(0.007) 0.206(0.005) 0.445(0.013) 0.373(0.008) 
  3.4% 0.350(0.012) 0.290(0.007) 0.462(0.016) 0.383(0.010) 
  0.2% 0.182(0.006) 0.152(0.004) 0.445(0.014) 0.373(0.009) 
 0.1% 0.1% 0.247(0.008) 0.175(0.004) 0.701(0.023) 0.498(0.011) 
  0.5% 0.324(0.009) 0.234(0.004) 0.689(0.019) 0.499(0.009) 
  0.02% 0.184(0.006) 0.132(0.003) 0.677(0.022) 0.486(0.011) 

Table S.1.11. Heritability parameter estimates on simulated genotypes and phenotypes with misspecification of the liability threshold. This corresponds 
to the same set of simulations as Table S.1.9 and S10.  
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N M Prev Set Statistic ATT LogR MLM LTMLM 
1000 1000 50% causal average 18.085(0.248) 17.859(0.242) 18.582(0.252) 18.576(0.254) 

   null average 0.997(0.004) 0.996(0.004) 0.998(0.004) 0.997(0.004) 
      all average 1.168(0.007) 1.164(0.007) 1.174(0.008) 1.173(0.008) 
   all λGC 1.023(0.007) 1.022(0.007) 1.026(0.008) 1.02(0.007) 
    25% causal average 18.531(0.246) 18.295(0.24) 18.987(0.251) 18.954(0.253) 
   null average 1.005(0.005) 1.003(0.004) 1.005(0.005) 1.004(0.005) 
      all average 1.180(0.008) 1.176(0.007) 1.185(0.008) 1.183(0.008) 
   all λGC 1.037(0.007) 1.036(0.007) 1.036(0.007) 1.035(0.007) 
    10% causal average 20.926(0.268) 20.628(0.26) 21.259(0.272) 21.347(0.272) 
   null average 1.005(0.004) 1.003(0.004) 1.005(0.004) 1.004(0.004) 
      all average 1.204(0.008) 1.200(0.008) 1.207(0.008) 1.207(0.008) 
   all λGC 1.031(0.007) 1.031(0.007) 1.036(0.008) 1.037(0.008) 
    1% causal average 28.421(0.326) 27.886(0.314) 27.697(0.323) 28.974(0.338) 
   null average 1.009(0.005) 1.007(0.005) 1.008(0.005) 1.008(0.005) 
      all average 1.283(0.010) 1.276(0.010) 1.275(0.010) 1.288(0.010) 
   all λGC 1.027(0.008) 1.027(0.008) 1.025(0.008) 1.028(0.008) 
    0.1% causal average 35.927(0.358) 35.100(0.342) 33.172(0.347) 36.654(0.373) 
   null average 0.999(0.004) 0.997(0.004) 0.992(0.004) 0.998(0.004) 
      all average 1.348(0.012) 1.338(0.012) 1.314(0.012) 1.355(0.013) 
      all λGC 1.031(0.007) 1.031(0.007) 1.012(0.007) 1.022(0.007) 

Table S.1.12. Simulated genotypes and phenotypes generated from a logit distribution. We report average χ2 statistics for simulations with phenotypes 
generated from a logit distribution averaged across 100 simulations for each parameter setting (see main text). 
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Table S.1.13 

N M Prev α set ATT LogR MLM LTMLM 
1000 1000 50% 0.05 causal 0.988(0.003) 0.988(0.003) 0.988(0.003) 0.988(0.003) 

   0.001 causal 0.827(0.012) 0.821(0.012) 0.832(0.012) 0.832(0.012) 

   1x10-6 causal 0.210(0.013) 0.198(0.013) 0.227(0.013) 0.230(0.013) 

   5x10-8 causal 0.077(0.008) 0.072(0.008) 0.089(0.009) 0.088(0.009) 
   0.05 null 0.049(0.001) 0.049(0.001) 0.050(0.001) 0.050(0.001) 

   0.001 null 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 

   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 
  25% 0.05 causal 0.997(0.002) 0.997(0.002) 0.997(0.002) 0.995(0.002) 

   0.001 causal 0.832(0.012) 0.830(0.012) 0.849(0.011) 0.844(0.011) 

   1x10-6 causal 0.225(0.013) 0.209(0.013) 0.243(0.014) 0.245(0.014) 
   5x10-8 causal 0.090(0.009) 0.081(0.009) 0.098(0.009) 0.093(0.009) 

   0.05 null 0.050(0.001) 0.050(0.001) 0.050(0.001) 0.050(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 

   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 

   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 
  10% 0.05 causal 0.997(0.002) 0.997(0.002) 0.998(0.001) 0.998(0.001) 

   0.001 causal 0.893(0.010) 0.892(0.010) 0.894(0.010) 0.894(0.010) 
   1x10-6 causal 0.344(0.015) 0.334(0.015) 0.357(0.015) 0.365(0.015) 

   5x10-8 causal 0.140(0.011) 0.129(0.011) 0.154(0.011) 0.160(0.012) 
   0.05 null 0.051(0.001) 0.051(0.001) 0.051(0.001) 0.050(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.13 (Continued) 

N M Prev α set ATT LogR MLM LTMLM 
  1% 0.05 causal 1(NA) 1(NA) 1(NA) 1(NA) 
   0.001 causal 0.978(0.005) 0.977(0.005) 0.973(0.005) 0.980(0.004) 

   1x10-6 causal 0.640(0.015) 0.623(0.015) 0.613(0.015) 0.658(0.015) 

   5x10-8 causal 0.397(0.015) 0.378(0.015) 0.376(0.015) 0.419(0.016) 
   0.05 null 0.051(0.001) 0.050(0.001) 0.051(0.001) 0.051(0.001) 
   0.001 null 0.001(2x10-4) 0.001(2x10-4) 0.001(2x10-4) 0.001(2x10-4) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 
  0.1% 0.05 causal 1(NA) 1(NA) 1(NA) 1(NA) 

   0.001 causal 0.996(0.002) 0.996(0.002) 0.995(0.002) 0.997(0.002) 
   1x10-6 causal 0.868(0.011) 0.860(0.011) 0.797(0.013) 0.880(0.01) 
   5x10-8 causal 0.685(0.015) 0.664(0.015) 0.584(0.016) 0.702(0.014) 
   0.05 null 0.050(0.001) 0.050(0.001) 0.049(0.001) 0.050(0.001) 
   0.001 null 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 0.001(1x10-4) 
   1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 
   5x10-8 null 0(NA) 0(NA) 0(NA) 0(NA) 

Table S.1.13. Percentage of SNPs achieving alpha levels for simulated genotypes and phenotypes generated from a logistic distribution. Results are the 
same simulations as described in Table S.1.12 
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Table S.1.14 

M Prev Set Statistic ATT 
Liability 

MM 
Liability 

ATT ATT+PCs LogR LogR+PCs  MLM LTMLM 

1000 50% causal average 25.684 
(1.137) 

29.055 
(1.26) 

16.234 
(0.723) 

15.775 
(0.705) 

15.566(0.674) 15.14(0.658) 17.480(0.780) 17.412(0.775) 

  null average 1.698 
(0.015) 

1.792 
(0.017) 

1.444 
(0.011) 

1.425 
(0.010) 

1.433(0.010) 1.415(0.010) 1.472(0.011) 1.471(0.011) 

    all average 1.938 
(0.021) 

2.065 
(0.023) 

1.592 
(0.014) 

1.569 
(0.013) 

1.574(0.013) 1.552(0.013) 1.632(0.015) 1.630(0.015) 

  all λGC 1.274 
(0.018) 

1.278 
(0.019) 

1.214 
(0.017) 

1.224 
(0.017) 

1.214(0.017) 1.223(0.017) 1.234(0.017) 1.226(0.016) 

  25% causal average 30.169 
(1.211) 

33.771 
(1.343) 

19.277 
(0.771) 

18.581 
(0.754) 

18.47(0.721) 17.822(0.706) 20.493(0.82) 20.642(0.831) 

  null average 1.821 
(0.017) 

1.917 
(0.019) 

1.551 
(0.012) 

1.507 
(0.011) 

1.538(0.012) 1.495(0.011) 1.571(0.012) 1.577(0.013) 

    all average 2.104 
(0.023) 

2.236 
(0.025) 

1.728 
(0.015) 

1.678 
(0.014) 

1.707(0.015) 1.658(0.014) 1.761(0.016) 1.768(0.016) 

  all λGC 1.290 
(0.018) 

1.288 
(0.019) 

1.256 
(0.016) 

1.245 
(0.017) 

1.255(0.016) 1.245(0.017) 1.241(0.015) 1.243(0.015) 

  10% causal average 34.865 
(1.45) 

37.861 
(1.551) 

22.838 
(0.961) 

21.406 
(0.878) 

21.618(0.881) 20.336(0.808) 23.865(1.022) 24.661(1.064) 

  null average 1.973 
(0.020) 

2.039 
(0.021) 

1.664 
(0.014) 

1.583 
(0.012) 

1.647(0.014) 1.568(0.012) 1.668(0.014) 1.695(0.015) 

    all average 2.302 
(0.027) 

2.397 
(0.028) 

1.876 
(0.018) 

1.781 
(0.016) 

1.846(0.017) 1.756(0.015) 1.890(0.019) 1.925(0.019) 

  all λGC 1.301 
(0.017) 

1.302 
(0.018) 

1.271 
(0.016) 

1.285 
(0.015) 

1.270(0.016) 1.284(0.015) 1.251(0.017) 1.270(0.016) 

 

 

  



 

 
 

10
2 

Table S.1.14 (Continued) 

M Prev Set Statistic ATT 
Liability 

MM 
Liability 

ATT ATT+PCs LogR LogR+PCs  MLM LTMLM 

10000 50% causal average 26.781 
(1.104) 

27.44 
(1.129) 

16.898 
(0.702) 

16.815 
(0.698) 

16.229(0.659) 16.156(0.655) 17.279(0.725) 17.26(0.725) 

  null average 1.114 
(0.002) 

1.114 
(0.002) 

1.078 
(0.002) 

1.083 
(0.002) 

1.074(0.002) 1.078(0.002) 1.078(0.002) 1.076(0.002) 

    all average 1.14 
(0.003) 

1.140 
(0.003) 

1.094 
(0.002) 

1.099 
(0.002) 

1.089(0.002) 1.094(0.002) 1.095(0.002) 1.092(0.002) 

  all λGC 1.046 
(0.005) 

1.042 
(0.005) 

1.039 
(0.005) 

1.047 
(0.005) 

1.039(0.005) 1.046(0.005) 1.039(0.005) 1.035(0.005) 

  25% causal average 27.208 
(1.154) 

27.938 
(1.178) 

17.573 
(0.726) 

17.293 
(0.696) 

16.856(0.679) 16.61(0.654) 17.976(0.749) 18.077(0.758) 

  null average 1.112 
(0.002) 

1.11 
(0.002) 

1.076 
(0.002) 

1.078 
(0.002) 

1.071(0.002) 1.073(0.002) 1.074(0.002) 1.073(0.002) 

    all average 1.138 
(0.003) 

1.137 
(0.003) 

1.092 
(0.002) 

1.094 
(0.002) 

1.087(0.002) 1.089(0.002) 1.091(0.002) 1.090(0.002) 

  all λGC 1.048 
(0.005) 

1.043 
(0.005) 

1.040 
(0.004) 

1.045 
(0.004) 

1.040(0.004) 1.044(0.004) 1.040(0.004) 1.039(0.004) 

  10% causal average 35.911 
(1.500) 

36.598 
(1.525) 

24.379 
(1.026) 

24.116 
(1.014) 

23.127(0.944) 22.894(0.934) 24.987(1.071) 25.399(1.091) 

  null average 1.161 
(0.003) 

1.156 
(0.003) 

1.112 
(0.002) 

1.115 
(0.002) 

1.107(0.002) 1.110(0.002) 1.108(0.002) 1.111(0.002) 

    all average 1.196 
(0.003) 

1.192 
(0.003) 

1.136 
(0.003) 

1.138 
(0.003) 

1.129(0.002) 1.132(0.002) 1.131(0.003) 1.135(0.003) 

    all λGC 1.059 
(0.005) 

1.050 
(0.004) 

1.051 
(0.005) 

1.059 
(0.004) 

1.050(0.005) 1.058(0.004) 1.044(0.004) 1.047(0.004) 

Table S.1.14. Complete results on real genotypes and simulated phenotypes.  Results include results from Table 4 but we also report ATT and MLM 
statistics computed using the underlying liability. We report average χ2 statistics for simulations with real genotypes and simulated phenotypes averaged across 
100 simulations for each parameter setting. 
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Table S.1.15 

 
M Prev α ATT 

Liability 
MLM 

Liability 
ATT ATT+PCs LogR LogR +PCs MLM LTMLM 

1000 50% 0.05 0.689(0.016) 0.717(0.015) 0.614 
(0.017) 

0.602(0.017) 0.614(0.017) 0.603(0.017) 0.630(0.017) 0.625(0.017) 

  0.001 0.504(0.017) 0.533(0.017) 0.409 
(0.017) 

0.408(0.017) 0.405(0.017) 0.403(0.017) 0.415(0.017) 0.415(0.017) 

   1x10-

6 
0.320(0.016) 0.348(0.016) 0.235 

(0.015) 
0.227(0.014) 0.229(0.014) 0.218(0.014) 0.256(0.015) 0.256(0.015) 

  5x10-

8 
0.289(0.015) 0.309(0.016) 0.185 

(0.013) 
0.178(0.013) 0.179(0.013) 0.172(0.013) 0.205(0.014) 0.200(0.014) 

  0.05 0.095(0.001) 0.099(0.001) 0.084 
(0.001) 

0.083(0.001) 0.084(0.001) 0.083(0.001) 0.085(0.001) 0.085(0.001) 

  0.001 0.002(0.001) 0.022(0.001) 0.014 
(0.001) 

0.013(5x10-

4) 
0.013(0.001) 0.013(5x10-

4) 
0.014(0.001) 0.014(0.001) 

  1x10-

6 
0.007(4x10-

4) 
0.009(4x10-

4) 
0.003 

(3x10-4) 
0.003(2x10-

4) 
0.003(3x10-

4) 
0.003(2x10-

4) 
0.004(3x10-

4) 
0.004(3x10-

4) 
  5x10-

8 
0.005(3x10-

4) 
0.006(3x10-

4) 
0.002 

(2x10-4) 
0.002(2x10-

4) 
0.002(2x10-

4) 
0.002(2x10-

4) 
0.003(2x10-

4) 
0.003(2x10-

4) 
  25% 0.05 0.737(0.015) 0.750(0.014) 0.682 

(0.016) 
0.671(0.016) 0.680(0.016) 0.671(0.016) 0.689(0.016) 0.692(0.016) 

  0.001 0.579(0.017) 0.603(0.016) 0.491 
(0.017) 

0.482(0.017) 0.486(0.017) 0.479(0.017) 0.498(0.017) 0.496(0.017) 

  1x10-

6 
0.405(0.016) 0.437(0.017) 0.294 

(0.016) 
0.278(0.015) 0.281(0.015) 0.266(0.015) 0.314(0.016) 0.311(0.016) 

  5x10-

8 
0.336(0.016) 0.387(0.016) 0.231 

(0.014) 
0.216(0.014) 0.218(0.014) 0.208(0.014) 0.248(0.015) 0.251(0.015) 

  0.05 0.102(0.001) 0.104(0.001) 0.091 
(0.001) 

0.09(0.001) 0.091(0.001) 0.090(0.001) 0.091(0.001) 0.092(0.001) 

  0.001 0.023(0.001) 0.026(0.001) 0.016 
(0.001) 

0.015(0.001) 0.016(0.001) 0.015(0.001) 0.017(0.001) 0.018(0.001) 

  1x10-

6 
0.009(4x10-

4) 
0.01(4x10-4) 0.005 

(3x10-4) 
0.004(3x10-

4) 
0.005(3x10-

4) 
0.004(3x10-

4) 
0.005(3x10-

4) 
0.005(3x10-

4) 
  5x10-

8 
0.006(3x10-

4) 
0.007(4x10-

4) 
0.003 

(3x10-4) 
0.003(2x10-

4) 
0.003(2x10-

4) 
0.003(2x10-

4) 
0.004(3x10-

4) 
0.004(3x10-

4) 
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Table S.1.15 (Continued) 

 

 M Prev α ATT 
Liability 

MLM 
Liability 

ATT ATT+PCs LogR LogR +PCs MLM LTMLM 

 10% 0.05 0.730(0.015) 0.740(0.015) 0.678(0.016) 0.678(0.016) 0.678(0.016) 0.678(0.016) 0.684(0.016) 0.694(0.016) 

  0.001 0.575(0.017) 0.593(0.016) 0.498(0.017) 0.492(0.017) 0.494(0.017) 0.490(0.017) 0.510(0.017) 0.517(0.017) 

  1x10-

6 
0.410(0.016) 0.435(0.017) 0.332(0.016) 0.328(0.016) 0.324(0.016) 0.316(0.016) 0.340(0.016) 0.343(0.016) 

  5x10-

8 
0.374(0.016) 0.388(0.016) 0.271(0.015) 0.265(0.015) 0.261(0.015) 0.251(0.015) 0.276(0.015) 0.281(0.015) 

  0.05 0.106(0.001) 0.107(0.001) 0.096(0.001) 0.095(0.001) 0.095(0.001) 0.094(0.001) 0.095(0.001) 0.097(0.001) 

  0.001 0.027(0.001) 0.028(0.001) 0.019(0.001) 0.016(0.001) 0.019(0.001) 0.016(0.001) 0.020(0.001) 0.020(0.001) 

  1x10-

6 
0.01(4x10-4) 0.011(5x10-

4) 
0.007(4x10-

4) 
0.005(3x10-

4) 
0.006(3x10-

4) 
0.005(3x10-

4) 
0.007(4x10-

4) 
0.007(4x10-

4) 
  5x10-

8 
0.008(4x10-

4) 
0.008(4x10-

4) 
0.005(3x10-

4) 
0.004(3x10-

4) 
0.005(3x10-

4) 
0.003(3x10-

4) 
0.005(3x10-

4) 
0.005(3x10-

4) 
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Table S.1.15 (Continued) 

 

 

M Prev α ATT 
Liability 

MLM 
Liability 

ATT ATT+PCs LogR LogR +PCs MLM LTMLM 

10000 50% 0.05 0.713(0.015) 0.72(0.015) 0.653(0.016) 0.652(0.016) 0.652(0.016) 0.651(0.016) 0.656(0.016) 0.657(0.016) 

  0.001 0.535(0.017) 0.551(0.017) 0.427(0.017) 0.428(0.017) 0.422(0.017) 0.426(0.017) 0.432(0.017) 0.433(0.017) 

   1x10-

6 
0.356(0.016) 0.365(0.016) 0.245(0.015) 0.244(0.015) 0.238(0.015) 0.237(0.015) 0.248(0.015) 0.245(0.015) 

  5x10-

8 
0.306(0.015) 0.311(0.016) 0.187(0.013) 0.191(0.013) 0.181(0.013) 0.178(0.013) 0.190(0.013) 0.189(0.013) 

  0.05 0.058(3x10-

4) 
0.058(3x10-

4) 
0.057(3x10-

4) 
0.057(3x10-

4) 
0.056(3x10-

4) 
0.057(3x10-

4) 
0.057(3x10-

4) 
0.056(3x10-

4) 
  0.001 0.004(9x10-

5) 
0.004(9x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(8x10-

5) 
0.003(8x10-

5) 
  1x10-

6 
0.001(4x10-

5) 
0.001(4x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
  5x10-

8 
0.001(4x10-

5) 
0.001(4x10-

5) 
0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

  25% 0.05 0.725(0.015) 0.726(0.015) 0.635(0.017) 0.633(0.017) 0.635(0.017) 0.632(0.017) 0.635(0.017) 0.635(0.017) 

  0.001 0.529(0.017) 0.538(0.017) 0.440(0.017) 0.438(0.017) 0.438(0.017) 0.437(0.017) 0.448(0.017) 0.445(0.017) 

  1x10-

6 
0.352(0.016) 0.362(0.016) 0.266(0.015) 0.261(0.015) 0.256(0.015) 0.254(0.015) 0.270(0.015) 0.267(0.015) 

  5x10-

8 
0.303(0.015) 0.309(0.016) 0.209(0.014) 0.206(0.014) 0.198(0.014) 0.197(0.014) 0.215(0.014) 0.216(0.014) 

  0.05 0.057(3x10-

4) 
0.057(3x10-

4) 
0.056(3x10-

4) 
0.056(3x10-

4) 
0.055(3x10-

4) 
0.056(3x10-

4) 
0.056(3x10-

4) 
0.055(3x10-

4) 
  0.001 0.004(9x10-

5) 
0.004(9x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
0.003(7x10-

5) 
  1x10-

6 
0.001(5x10-

5) 
0.001(5x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
0.001(3x10-

5) 
  5x10-

8 
0.001(4x10-

5) 
0.001(4x10-

5) 
0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 
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Table S.1.15 (Continued) 

 

 

Table S.1.15. Percentage of SNPs achieving alpha levels for real genotypes and simulated phenotypes.  Results include results for Table 4, but we also 
report results for ATT and MLM computed using the underlying liability.   

  

M Prev α ATT 
Liability 

MLM 
Liability 

ATT ATT+PCs LogR LogR +PCs MLM LTMLM 

 10% 0.05 0.752(0.014) 0.756(0.014) 0.711(0.015) 0.711(0.015) 0.709(0.015) 0.706(0.015) 0.713(0.015) 0.715(0.015) 

  0.001 0.597(0.016) 0.603(0.016) 0.519(0.017) 0.528(0.017) 0.518(0.017) 0.523(0.017) 0.520(0.017) 0.517(0.017) 

  1x10-

6 
0.437(0.017) 0.438(0.017) 0.329(0.016) 0.330(0.016) 0.322(0.016) 0.322(0.016) 0.328(0.016) 0.336(0.016) 

  5x10-

8 
0.380(0.016) 0.388(0.016) 0.281(0.015) 0.275(0.015) 0.266(0.015) 0.264(0.015) 0.283(0.015) 0.284(0.015) 

  0.05 0.061(3x10-

4) 
0.06(3x10-4) 0.059(3x10-

4) 
0.059(3x10-

4) 
0.058(3x10-

4) 
0.059(3x10-

4) 
0.058(3x10-

4) 
0.058(3x10-

4) 
  0.001 0.005(1x10-

4) 
0.005(1x10-

4) 
0.004(8x10-

5) 
0.004(8x10-

5) 
0.003(8x10-

5) 
0.003(8x10-

5) 
0.004(8x10-

5) 
0.004(8x10-

5) 
  1x10-

6 
0.001(5x10-

5) 
0.001(5x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
  5x10-

8 
0.001(5x10-

5) 
0.001(5x10-

5) 
0.001(4x10-

5) 
0.001(3x10-

5) 
0.001(4x10-

5) 
0.001(3x10-

5) 
0.001(4x10-

5) 
0.001(4x10-

5) 
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Table S.1.16. Proportion of SNPs achieving alpha levels for WTCCC2 MS data set. The number of known associated SNPs that are significant for LTMLM 
but not MLM (or vice versa) after controlling for λGC are 3(0) at α = 0.05, 1(1) at α = 0.001, 1(0) at α =1x10-6 , 0(0) at α =5x10-8.. 

 

  

Category Controlling λGC α ATT ATT+PCs LogR LogR+PCs MLM LTMLM 
Genome 

Wide 
No 0.05 0.093(5x10-4) 0.068(4x10-4) 0.093(5x10-4) 0.067(4x10-4) 0.067(4x10-4) 0.07(4x10-4) 

Genome 
Wide 

No 0.001 0.006(1x10-4) 0.003(9x10-5) 0.006(1x10-4) 0.003(9x10-5) 0.003(9x10-5) 0.003(1x10-4) 

Genome 
Wide 

No 1x10-6 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

Genome 
Wide 

No 5x10-8 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

Published No 0.05 0.747(0.050) 0.733(0.051) 0.747(0.050) 0.747(0.050) 0.707(0.053) 0.747(0.05) 

Published No 0.001 0.427(0.057) 0.387(0.056) 0.427(0.057) 0.387(0.056) 0.387(0.056) 0.360(0.055) 

Published No 1x10-6 0.107(0.036) 0.080(0.031) 0.107(0.036) 0.067(0.029) 0.080(0.031) 0.093(0.034) 

Published No 5x10-8 0.053(0.026) 0.040(0.023) 0.053(0.026) 0.027(0.019) 0.027(0.019) 0.053(0.026) 

Genome 
Wide 

Yes 0.05 0.053(4x10-4) 0.053(4x10-4) 0.053(4x10-4) 0.053(4x10-4) 0.053(4x10-4) 0.053(4x10-4) 

Genome 
Wide 

Yes 0.001 0.002(7x10-5) 0.002(7x10-5) 0.002(7x10-5) 0.002(7x10-5) 0.002(7x10-5) 0.002(7x10-5) 

Genome 
Wide 

Yes 1x10-6 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

Genome 
Wide 

Yes 5x10-8 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 

Published Yes 0.05 0.720(0.052) 0.693(0.053) 0.720(0.052) 0.707(0.053) 0.693(0.053) 0.733(0.051) 

Published Yes 0.001 0.320(0.054) 0.347(0.055) 0.320(0.054) 0.333(0.054) 0.347(0.055) 0.347(0.055) 

Published Yes 1x10-6 0.040(0.023) 0.053(0.026) 0.040(0.023) 0.067(0.029) 0.040(0.023) 0.053(0.026) 

Published Yes 5x10-8 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013) 
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SNP Set  ATT PCA MLM LTMLM 

Genome Wide AVERAGE 1.38 1.16 1.14 1.17 

Genome Wide LD Score INTERCEPT 1.29 1.09 1.08 1.10 

Published SNPs AVERAGE 11.64 9.97 9.92 10.59 

Published SNPs/Genome Wide Average 8.44 8.61 8.67 9.03 

Published SNPs/LD score INTERCEPT 9.06 9.17 9.20 9.66 

 

Table S.1.17: Results on WTCCC2 MS data set with calibration via LD Score regression. We report the genome wide χ2 averages using 10,034 individuals 
over 360,557 SNPs and the average across 75 published SNPs standardized by the genome wide average and LD Score regression intercept.   

 

SNP Set N ATT MLM LTMLM LTMLM 
REML 

Genome Wide AVERAGE 8188 1.16 1.11 1.14 1.14 
Published SNPs AVERAGE  8.94 8.26 8.76 8.82 
Published SNPs/Genome Wide Average  7.73 7.45 7.71 7.73 
Genome Wide AVERAGE 10034 1.38 1.14 1.17 1.24 
Published SNPs AVERAGE  11.64 9.92 10.59 11.04 
Published SNPs/Genome Wide Average  8.44 8.67 9.03 8.92 
Genome Wide AVERAGE 15633 3.95 1.23 1.08 1.50 
Published SNPs AVERAGE  18.54 11.30 5.76 13.76 
Published SNPs/Genome Wide Average  4.69 9.20 5.32 9.15 

 

Table S.1.18: Results on WTCCC2 MS data set at different levels of QC. We report results for stringently matched (N = 8,188), partially matched (N = 
10,034) and unmatched (N = 15,633) data sets (see main text). The additional column is for the LTMLM REML statistic calculated using the REML estimate of 
h2. LTMLM using the REML estimate for h2 produces inflated test statistics and it is not recommended.   
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N 

Liability 
HE 

 
REML 

Observed 
HE 

 
REML 

8188 0.363 (0.0017) 0.260 (0.001) 0.979 (0.005) 0.702 (0.003) 

10034 0.704 (0.009) 0.279 (0.001) 1.901 (0.025) 0.753 (0.002) 

15633 2.792 (0.010) 0.293 (0.001) 7.543 (0.0266) 0.792 (0.002) 

 

Table S.1.19: Heritability parameter estimates on WTCCC2 MS data set at different levels of QC.   We report results for stringently matched (N = 8,188), 
partially matched (N = 10,034) and unmatched (N = 15,633) data sets (see main text).  
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Appendix 2 Supplemental Figures for Chapter 2 
 

M N Sibling Set Prevalence HE HE Cut-off REML REML Cut-
Off 

50000 1000 Unbiased 50% 0.372(0.023) 0.55(0.014) 0.332(0.021) 0.517(0.015) 
   10% 0.317(0.011) 0.493(0.008) 0.276(0.011) 0.509(0.01) 
   1% 0.332(0.008) 0.41(0.007) 0.329(0.008) 0.489(0.014) 
  Concord 50% 1.000(set) 1.000(set) 1.571(0.000) 1.000(set) 
   10% 1.000(set) 1.000(set) 1.052(0.000) 1.000(set) 
   1% 0.961(0.002) 1.000(set) 0.552(0.000) 0.552(0.000) 
  Discord 50% -2.789(0.002) -3.039(0.002) 0.000(0.000) 0.000(0.000) 
   10% -1.863(0.002) -2.03(0.002) 0.000(0.000) 0.000(0.000) 
   1% -0.974(0.001) -1.064(0.001) 0.000(0.000) 0.000(0.000) 
 5000 Unbiased 50% 0.354(0.008) 0.549(0.006) 0.311(0.008) 0.512(0.006) 
   10% 0.312(0.005) 0.506(0.003) 0.277(0.005) 0.514(0.004) 
   1% 0.343(0.004) 0.458(0.004) 0.365(0.004) 0.493(0.009) 
  Concord 50% 1.000(set) 1.000(set) 1.007(0.000) 1.000(set) 
   10% 1.000(set) 1.000(set) 0.673(0.000) 0.692(0.000) 
   1% 0.871(0.003) 1.000(set) 0.352(0.000) 0.362(0.000) 
  Discord 50% -2.154(0.002) -3.028(0.001) 0.000(0.000) 0.000(0.000) 
   10% -1.439(0.001) -2.028(0.001) 0.000(0.000) 0.000(0.000) 
   1% -0.748(0.001) -1.064(0.000) 0.000(0.000) 0.000(0.000) 

Table S2.1. The h2 estimates for simulated genotypes and phenotypes using varying levels of ascertainment bias, number of individuals, and family 
ascertainment.   
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M N Input 
h2narrow 

Set ATT MLM LT-Fam LTMLM 

10000 1000 0.5 Causal 69.951(2.567) 34.12(1.294) 50.106(1.938) 61.185(2.428) 
   Null 1.5(0.002) 0.742(0.001) 0.999(0.001) 1.333(0.002) 
   All 1.569(0.004) 0.775(0.002) 1.048(0.003) 1.392(0.004) 
   All GC 1.509(0.004) 0.745(0.004) 1.006(0.005) 1.337(0.012) 
  0.25 Causal 70.219(2.546) 34.154(1.276) 49.922(1.896) 63.001(2.511) 
   Null 1.499(0.002) 0.746(0.001) 0.998(0.001) 1.334(0.002) 
    All 1.568(0.004) 0.779(0.002) 1.047(0.003) 1.396(0.004) 
   All GC 1.507(0.003) 0.75(0.003) 1.003(0.005) 1.342(0.014) 
  0.4 Causal 65.094(2.281) 31.086(1.117) 45.903(1.676) 50.333(1.977) 
   Null 1.499(0.002) 0.734(0.001) 0.999(0.001) 1.265(0.002) 
   All 1.563(0.004) 0.764(0.002) 1.043(0.003) 1.314(0.003) 
   All GC 1.503(0.004) 0.737(0.003) 0.998(0.005) 1.272(0.015) 
  0.6 Causal 66.751(2.466) 32.239(1.218) 47.241(1.835) 55.73(2.235) 
   Null 1.496(0.002) 0.737(0.001) 0.996(0.001) 1.298(0.002) 
   All 1.561(0.004) 0.768(0.002) 1.043(0.003) 1.352(0.003) 
   All GC 1.505(0.004) 0.74(0.003) 1.004(0.005) 1.3(0.013) 
  0.75 Causal 69.296(2.435) 33.636(1.221) 49.247(1.822) 58.542(2.279) 
   Null 1.497(0.002) 0.74(0.001) 0.997(0.001) 1.305(0.002) 
   All 1.564(0.004) 0.773(0.002) 1.045(0.003) 1.362(0.003) 
   All GC 1.503(0.004) 0.744(0.004) 0.995(0.005) 1.315(0.014) 

 

Table S2.2 Above is a comparison of concordant simulated sibling at a prevalence of 1% with all different values of the input h2
narrow, where the true value is 

0.50.   
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GRM 
cut-off 

Controls Cases Total Category 
 

ATT MLM LT-Fam 

0.05 1778 339 2144 mean χ2 1.044(0.002) 1(0.002) 1.019(0.002) 
    λGC 1.056(0.008) 1.011(0.006) 1.029(0.007) 
 1318 339 1684 mean χ2 1.135(0.002) 0.95(0.002) 0.995(0.002) 
    λGC 1.144(0.01) 0.958(0.005) 1.003(0.009) 
 1778 94 1900 mean χ2 1.236(0.002) 0.973(0.002) 0.994(0.002) 
    λGC  1.239(0.01) 0.979(0.007) 0.995(0.008) 
 1318 94 1440 mean χ2 1.337(0.002) 0.82(0.001) 0.98(0.002) 
    λGC 1.336(0.013) 0.822(0.005) 0.98(0.009) 
0.025 1778 339 2144 mean χ2 1.044(0.002) 1(0.002) 1.019(0.002) 
    λGC 1.056(0.008) 1.011(0.006) 1.03(0.007) 
 968 339 1335 mean χ2 1.241(0.002) 0.921(0.002) 1.034(0.002) 
    λGC 1.253(0.018) 0.926(0.005) 1.044(0.015) 
 1778 206 2012 mean χ2 1.087(0.002) 0.998(0.002) 1.016(0.002) 
    λGC 1.092(0.008) 1.003(0.005) 1.02(0.007) 
 968 206 1202 mean χ2 1.233(0.002) 0.901(0.001) 0.96(0.002) 
    λGC 1.233(0.013) 0.903(0.005) 0.957(0.01) 

Table S2.3 Genome wide include analysis of all SNPs was performed to test the calibration of the different statistics. Real genotypes and phenotypes from JHS 
T2D samples with different family ascertainment bias (note there are 28 individuals with unknown status which is why the total isn’t just the sum of cases and 
controls).  To mimic family based ascertainment: controls that were related to cases were removed, cases that did not have a case relative were removed, or both.  
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GRM cut-off Controls Cases Total HE HE Cut-Off REML REML Cut-
Off 

0.05 1778 339 2144 0.277 0.257 0.357 0.313 
 1318 339 1684 1.000 1.000 1.525 1.000 
 1778 94 1900 1.000 1.000 2.798 1.000 
 1318 94 1440 1.000 1.000 4.017 1.000 
0.025 1778 339 2144 0.277 0.222 0.357 0.921 
 968 339 1335 1.000 1.000 1.294 1.000 
 1778 206 2012 0.766 0.865 0.910 1.000 
 968 206 1202 1.000 1.000 1.726 1.000 

Table S2.4 JHS T2D h2 estimates on the liability under the same family based ascertainment as described in table 1. 
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Appendix 3 Chapter 3 Detailed proof of the 2-Step 
BMA method and Algorithm Steps  

 
Step 1: 

The posterior samples of (αx, γ, αy, β) are obtained by iteratively sampling from P(αx| X, C), P(γ| 

αx, X, C), P(αy|D, f(αx, γ) ),  and P(β | αy, D, f(αx, γ)). Where our observed data in a retrospective 

model consists of D=(X,C,Y).  

] 

𝑃(𝛼𝑥, 𝛾 |𝐷, 𝛽, 𝛼𝑦 ) =  𝑃(𝛼𝑥, 𝛾 |𝑋, 𝐶 ) 

A1: (Y, β, αy) are independent of (αx, γ) given PS 

Let’s define D*=(X,C) to denote the data in the PS model, now invoking Bayes rule we can set up 

the posterior predictive distributions of αx and γ.  

𝑃(𝛼𝑥, 𝛾 |𝐷∗ ) =  
𝑃(𝐷∗ |𝛼𝑥, 𝛾)𝑃(𝛾|𝛼𝑥)𝑃(𝛼𝑥)

𝑃(𝐷∗)
~𝑃(𝐷∗ |𝛼𝑥, 𝛾)𝑃(𝛾|𝛼𝑥)𝑃(𝛼𝑥) 

The posteriors for αx and γ are then iteratively estimated drawn using MCMC. We assume a flat 

prior on P(αx).  

Step 2: 

The outcome model is then conditional on the posterior predictive distribution of the PS 

and A1. The posterior predictive distribution of the PS is a deterministic function of the posterior 

distributions of of αx and γ ( PS = f(αx ,γ) ) as seen in the equation above.  For simplicity, we can 

now assume that all of our distributions are conditional on the observed data, the exposure and 

set of confounders.  
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𝑃(𝛼𝑦, 𝛽, 𝑓(𝛼𝑥𝛾), 𝑋, 𝐶|𝑌 ) =
𝑃(𝑌|𝛼𝑦, 𝛽, 𝑓(𝛼𝑥,𝛾), 𝑋, 𝐶)𝑃(𝛼𝑥, 𝛾|𝑋, 𝐶)𝑃(𝛽|𝛼𝑦 , 𝑋, 𝐶)𝑃(𝛼𝑦|𝑋, 𝐶)

𝑃(𝑌)
 

We’ve factored the priors into it’s different terms. 

~𝑃(𝑌|𝛼𝑦 , 𝛽, 𝑓(𝛼𝑥, 𝛾), 𝑋, 𝐶)𝑃(𝛼𝑥, 𝛾|𝑋, 𝐶)𝑃(𝛽|𝛼𝑦, 𝑋, 𝐶)𝑃(𝛼𝑦|𝑋, 𝐶) 

Then by sampling over the posterior predictive distribution of the propensity score we integrate 

over: 

𝑃(𝛼𝑦, 𝛽|𝑌 )~ ∫ ∑ 𝑃(𝑌|𝛼𝑦, 𝛽, 𝑓(𝛼𝑥𝛾), 𝑋, 𝐶)𝑃(𝛼𝑥𝛾|𝑋, 𝐶)𝑃(𝛽|𝛼𝑦, 𝑋, 𝐶)𝑃(𝛼𝑦|𝑋, 𝐶)𝑑𝛾

𝜶𝒙

 

We again assume a flat prior on P(αy), implicitly using the assumption and cutting the feedback 

between fitting the outcome and PS models. We can sample from the posteriors of αy, β iteratively 

sampling using MCMC methods to get their posterior predictive distributions. Both the priors on 

the sets of coefficients γ and β are flat. 

 
 
Algorithm Steps  

 

The 2-step BMA approach separately fits the exposure and outcome model, where the 

outcome model is estimated conditional on the PS estimates calculated in the exposure model. 

This processes is iteratively computed and then averaged over both the outcome and exposure 

model space to get the desired treatment estimate.  

 
1. Propose a step for the exposure model: 

𝑔𝑥(𝐸[𝑋𝑖|𝐶𝑖]) = ∑  

𝑝

𝑘=0
𝛼𝑥𝛾𝑘𝐶𝑖,𝑘  

 αx
(t)

 -> αx’ by including or excluding a covariate from the propensity score model. 
Criteria for stepping αx

(t+1) = αx’, accept with probability: 
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a. exp(BIC(α(t )) – BIC(α’) ) 
i. BIC is effectively a weighted log likelihood that penalizes for more 

parameters: 𝐵𝐼𝐶~ − 2 ∗ log (𝐿̂) + 2 ∗ 𝑝 ln (𝑛) (Raftery Sociological 
Methodology, 1995; Lefebvre stats in med et al., 2014) 

2. Update the exposure model covariates by running an MCMC regression and taking the 
posterior mean of the new coefficients, γ (t+1). Currently this is done with a probit link and 
regressing on X, implemented with other links possible though. 

a. Use this to calculate the PS(γ ,C|αx
(t+1)) to be included as quintile covariates in the 

outcome model. 
3. Propose a step for the outcome model 

𝑔𝑦(𝐸[𝑌𝑖|𝑋𝑖, 𝐶𝑖]) = 𝛽0 + βX𝑋𝑖 + ℎ(𝑃𝑆(𝛾, 𝛼𝑥, 𝐶𝑖); β) + ∑  

𝑝

𝑘=0
𝛼𝑦βk𝐶𝑖,𝑘 

αy
(t)

 -> αy’ by including or excluding a covariate from model. Criteria for stepping αx
(t+1) 

= αx’, accept with probability: 
a. exp(BIC(α(t )) – BIC(α’) ) 

 
4. Update the outcome model, 

𝑔𝑦(𝐸[𝑌𝑖|𝑋𝑖, 𝐶𝑖]) = 𝛽0 + βX𝑋𝑖 + ℎ(𝑃𝑆(𝛾, 𝛼, 𝐶𝑖); β) + ∑  

𝑝

𝑘=0
𝛼βk𝐶𝑖,𝑘 

 covariates by running an MCMC regression and taking the posterior mean of the new 
coefficients, (β, δ) (t+1) . (Currently this is done logit link and regressing on Y, 
implemented with other links possible though.) 

 
5. Calculate the ACE 

 

𝐴𝐶𝐸̂ =  ∑ {𝑃(𝛼|𝐷𝑎𝑡𝑎) ∗
1

𝑛
(𝑌̂𝑡|𝑋 = 1, 𝐶 = 𝑐) − (𝑌̂𝑡|𝑋 = 0, 𝐶 = 𝑐)}

𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟

𝑡=1
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