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Leukemia/lymphoma-related factor (LRF) is a POZ/BTB and Krüppel (POK) transcriptional

repressor characterized by context-dependent key roles in cell fate decision and

tumorigenesis. Here we demonstrate an unexpected transcription-independent function for

LRF in the classical non-homologous end joining (cNHEJ) pathway of double-strand break

(DSB) repair. We find that LRF loss in cell lines and mouse tissues results in defective cNHEJ,

genomic instability and hypersensitivity to ionizing radiation. Mechanistically, we show that

LRF binds and stabilizes DNA-PKcs on DSBs, in turn favouring DNA-PK activity. Importantly,

LRF loss restores ionizing radiation sensitivity to p53 null cells, making LRF an attractive

biomarker to direct p53-null LRF-deficient tumours towards therapeutic treatments based on

genotoxic agents or PARP inhibitors following a synthetic lethal strategy.
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T
he ability to maintain a stable genome is crucial for normal
cell function, and genomic instability may underlie many
developmental disorders and human diseases, including

cancer1. DNA double-strand breaks (DSBs) are perhaps the
most deleterious threat to genomic stability. Cells use two
main pathways to repair DSBs: non-homologous end
joining (NHEJ) and homologous recombination (HR)2. These
two pathways are largely distinct from one another. HR
is particularly effective in S and G2 phases when the break is
repaired using genetic information from a sister chromatid,
whereas NHEJ can be effective at all times in the cell cycle,
yet it is often error prone3. The DNA-dependent protein kinase
(DNA-PK) complex, including catalytic subunit DNA-PKcs
and DNA-binding subunits Ku70/80, is a key component of
the classical non-homologous end joining (cNHEJ) apparatus.
The physical interaction between DNA-bound Ku (Ku70/Ku80),
in particular the C-terminal tail of Ku80, and DNA-PKcs at
sites of DNA breaks defines a functional DNA-PK complex
that concomitantly bridges the broken DNA ends and activates
the DNA repair machinery through the phosphorylation of
specific downstream targets4,5.

LRF (formerly known as POKEMON6, FBI-1 (ref. 7) or
OCZF8) is encoded by the ZBTB7A gene, and is a member of the
POZ/BTB and Krüppel (POK) family of transcription factors.
POK transcription factors can bind DNA through a Krüppel-
like-DNA-binding domain and repress transcription by recruiting
co-repressor complexes through the POZ (Pox virus and Zinc
finger) domain9. POK transcription factors have been recognized
as critical developmental regulators and have been directly
implicated in human cancer10. For example, BCL6 (B-Cell
Lymphoma 6) and PLZF (Promyelocytic Leukemia Zinc Finger)
are critical players in the pathogenesis of Non-Hodgkin’s
Lymphoma and acute promyelocytic leukemia, respectively11,12.
LRF shares structural similarities with BCL6 and PLZF and plays
critical context-dependent role in embryonic development,
haematopoiesis and tumorigenesis6,13–19.

In this work, we identify a novel and transcriptional
independent function for LRF in the maintenance of genomic
stability by regulation of cNHEJ. Mechanistically, we demonstrate
that LRF is rapidly recruited on the sites of DNA damage where,
by binding DNA-PKcs, it stabilizes the DNA-PK complex, in turn
promoting DNA-PKcs kinase activity and efficient DSB repair.
Importantly, LRF downregulation, a frequent hallmark of
different types of human cancer, restores radiation sensitivity
in p53 null cells, thus becoming a new potential biomarker of
remarkable therapeutic relevance.

Results
LRF is required for maintenance of genomic integrity. LRF is a
critical repressor of the tumour suppressor gene Arf, and cells
such as mouse embryonic fibroblasts (MEFs), which lack Lrf
become refractory to oncogenic transformation and undergo
premature senescence6. In an effort to identify new functions
of LRF unrelated to Arf regulation through a clean genetic
approach, we compared the effects of acute Lrf deletion in
Lrfflox/flox or Arf� /� Lrfflox/flox MEFs through infection with a
Cre recombinase-containing retrovirus. Although Cre expression
in both wild-type and Arf� /� MEFs had no effect on cell
proliferation (Supplementary Fig. 1a), and Cre-mediated deletion
of Lrf in Lrfflox/flox MEFs triggered the expected growth
suppression through Arf-dependent cellular senescence6

(Fig. 1a), surprisingly, loss of Lrf caused a profound growth
suppression in the Arf� /� MEFs as well (Fig. 1a). The
growth defect of Arf� /� Lrf deleted (Arf� /� Lrff/f cre) MEFs
was accompanied by evidence of chromosome breakage, as shown

by Giemsa staining of metaphase chromosome spreads (Fig. 1b).
Telomere Fish fluorescent in situ hybridization staining
of chromosome spreads also indicated accumulation of
chromosome breaks, aneuploidy, polyploidy and abnormal
chromosomes in Arf� /� Lrf deleted MEFs (Supplementary
Fig. 1b). Accordingly, neutral comet assay showed a significant
accumulation of DNA DSBs in Lrf deleted MEFs (Fig. 1c), and
immunofluorescence and western blot studies confirmed a
marked increase in g-H2AX staining (Fig. 1d,e). To further
characterize this phenotype, we assessed whether LRF conditional
inactivation triggers unrepaired DNA damage in vivo. Villin-Cre
and Mx1-Cre transgenes were used to delete floxed Lrf in the
mouse intestine and hematopoietic systems, respectively20,21.
Importantly, in LRF conditional knockout intestine and
spleen the downregulation of LRF (Supplementary Fig. 1c) was
associated with a significant increase of g-H2AX levels (Fig. 1f),
suggestive of persistent DNA damage in these cells22.

LRF deficiency sensitizes cells to ionizing radiation. Since LRF
inactivation results in persistent DNA damage and genomic
instability, we used clonogenic survival assays to assess the
sensitivity of Arf� /� and Arf� /� Lrf deleted MEFs to different
types of DNA-damaging agents. These included g-radiation, the
radiomimetic drug phleomycin, the Topoisomerase II inhibitor
ICRF-193, the Topoisomerase I inhibitor Camptothecin, and the
DNA cross-linking agent, mitomycin C. Compared with Arf� /�

control MEFs, Arf� /� Lrf deleted cells revealed hypersensitivity
to g-radiation, phleomycin and ICRF-193 (Fig. 2a,b and
Supplementary Fig. 2a), but no alteration in mitomycin C and
Camptothecin sensitivity (Fig. 2c, and Supplementary Fig. 2b).
Furthermore, upon treatment with phleomycin at various
concentrations, Arf� /� Lrf deleted MEFs displayed a significant
increase of comet tail DNA content and g-H2AX levels
(Fig. 2d,e). We then further tested in vivo whether Lrf null
mutants are hypersensitive to ionizing radiation (IR). Constitutive
Lrf inactivation results in embryonic lethality6, while conditional
Lrf inactivation in the adult hematopoietic system (‘Lrf cKO’),
using Mx1-Cre and pIpC induction, is compatible with a normal
lifespan14. After a single dose of whole-body g-irradiation
(7.5 Gy), all Lrf cKO mice died within 16 days, while all
wild-type control mice remained healthy for 2 weeks after
irradiation (Fig. 2f). After irradiation, Lrf cKO bone marrow cells
accumulated much more unrepaired DNA damage (shown by
g-H2AX staining) and became apoptotic (by cleaved caspase
3 staining). Lrf cKO mice were found to have died from acute
bone marrow failure (Supplementary Fig. 2c).

LRF participates in Xrcc4-dependent NHEJ. To directly test
whether a specific DSB repair process requires LRF function, we
next took advantage of selective DSB repair reporter assays
(Fig. 3a, and Supplementary Fig. 3c)23. Notably, siRNA-mediated
knockdown of LRF caused a significant decrease in NHEJ repair
efficiency as shown by decreased I-SceI-induced GFP expression
in NHEJ reporter cells (Fig. 3b). Classical NHEJ (cNHEJ) is a
rapid and efficient process, requiring DNA Ligase IV and XRCC4.
In cells lacking either of these genes, rejoining of DSBs occurs
through a slower, highly error-prone process termed ‘alternative
end joining’ (aEJ)4,5,24–26. Using biallelically deleted Xrcc4
(here termed Xrcc4D/D) NHEJ reporter ES cells, we observed
only a modest and statistically insignificant decrease of
NHEJ efficiency after Lrf knockdown (Fig. 3c). Similarly,
pharmacological inhibition of DNA-PKcs activity (NU7441)
combined with siRNA-mediated knockdown of LRF showed
only a mild and statistically insignificant reduction of
NHEJ efficiency in Xrcc4 proficient ES cells when compared
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with DNA-PKcs inhibition alone (Supplementary Fig. 3a)23.
On the other hand, depletion of LRF had no impact on rejoining
of I-SceI-induced DSBs in human U2OS cells carrying a reporter
of micro-homology-mediated end joining27 (Supplementary
Fig. 3b), a frequent mediator of aEJ27,28. We found that LRF is
also dispensable for HR, based on experiments performed using
mouse ES and U2OS cells carrying an HR reporter29 (Fig. 3d and
Supplementary Fig. 3c,d).

Collectively, these results clearly define LRF as a novel
important player in Xrcc4/DNA-PK-dependent cNHEJ pathway
of DSB repair. In future experiments, it will be instructive
to define more fully the structure-function analysis of LRF-
DNA-PKcs interaction as well as the epistatic relationships
between LRF inactivation and the loss of other c-NHEJ genes.

LRF is known to act as a transcription factor. We therefore
used microarray analysis in wild-type and Lrf conditional
knockout MEFs to decrypt its activity in DSB repair

(Supplementary Tables 1 and 2). Surprisingly, Lrf knockout cells
did not display significant alterations in the expression of genes
known to be essential for cNHEJ either at early (Supplementary
Table 2) or at late passages (Supplementary Fig 3e,f). Only the
expression of MRE11, implicated in both aEJ and cNHEJ, resulted
downregulated in Lrf null cells compared with wild-type
(Supplementary Tables 1 and 2). Although MRE11 mild
downregulation could explain the slight reduction in the
efficiency of aEJ noted in Fig. 3c, the much more pronounced
impact on the cNHEJ pathway in LRF-depleted cells (Fig. 3b)
suggests a more fundamental role of LRF in this mechanism of
DSB repair. Strongly supporting this hypothesis, chromatin
immunoprecipitation (ChIP) experiments demonstrated the
binding of LRF to site-specific DSBs generated by I-SceI
(Fig. 3e), while an in vivo imaging approach proved the ability
of LRF to localize to the vicinity of DSBs generated by laser
damage (Fig. 3f, upper panel), with a kinetic closely comparable
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to other cNHEJ proteins, such that of Ku80 and DNA-PKcs30.
Importantly, LRF recruitment to DSBs is not dependent on
DNA-PKcs or Ku80 (Fig. 3f, lower panels-middle/right).

Taken together, these results point to a transcriptional
independent role for LRF in cNHEJ, a conclusion consistent
with the observation that Lrf-deleted cells are hypersensitive to
IR, phleomycin and ICRF-193, but not to mitomycin C and
camptothecin.

LRF interacts with DNA-PKcs and regulates DNA-PK function.
To determine the transcriptional independent role of LRF in
cNHEJ, we first assessed whether LRF could associate with DSB
repair protein complexes. To this end, LRF-associated proteins
were isolated through tandem affinity purification from HeLa
cells stably expressing human LRF tagged with Flag and
haemagglutinin (HA) epitopes and analysed by mass spectro-
metry. Importantly, we found LRF associated with the DNA-PK
protein complex, including DNA-PKcs, Ku70 and Ku80
(Supplementary Fig. 4a). Mass spectrometry data were then

validated in pull-down experiments with overexpressed FLAG/
HA tagged LRF (Supplementary Fig. 4b, and Supplementary
Table 3), as well as through the reciprocal co-immunoprecipita-
tion of endogenous LRF with DNA-PKcs, Ku70 or Ku80 (Fig. 4a).
The association between DNA-PKcs and the Ku70/Ku80
heterodimer is DNA dependent31. We therefore determined
whether the association between LRF and DNA-PKcs or Ku
requires DNA. Endogenous co-immunoprecipitations in the
presence of ethidium bromide (50 mg ml� 1), which disrupts
DNA-dependent interactions, indicated that the association
between LRF and Ku is strictly dependent on the presence of
DNA, while the interaction between LRF and DNA-PKcs,
although favoured by DNA, persists in its absence (Fig. 4b).
Furthermore, in vitro binding with FLAG-tagged LRF and
purified DNA-PK components also indicated that the binding
of LRF to Ku70 and Ku80 requires DNA, while DNA bridging
is not necessary for the interaction between DNA-PKcs and
LRF (Fig. 4c). Interestingly, we observed that, in the absence of
Lrf, the mobilization of DNA-PKcs to the chromatin fraction
following DNA damage, is significantly decreased (Fig. 4d, and
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Supplementary Fig. 4c). Furthermore, significantly less
DNA-PKcs was co-immunoprecipitated with Ku antibodies in
LRF-depleted cells compared with controls (Fig. 4e and
Supplementary Fig. 4d,e). Defects in the formation and
stabilization of the Ku/DNA-PKcs/DNA complex may predict
impaired DNA-PKcs kinetics in response to DNA damage. To

test this hypothesis, we expressed YFP-tagged DNA-PKcs or
Ku80 constructs in control and shLRF stable U2OS cells.
Strikingly, in a context where the kinetics of recruitment/release
of Ku80 were not affected by LRF (Supplementary Fig. 4f), we
observed that the retention time, but not the recruitment time, of
DNA-PKcs on the laser-induced breaks was significantly
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Supplementary Fig. 3c). Differences in the amount of GFP-positive siLuc and siLRF transfected cells are not statistically significant. Data from 4 independent

experiments are presented as mean values±s.e.m. Associated P value calculated by Student’s t-test analysis is indicated. (e) Recruitment of Lrf to

site-specific DNA breaks generated by I-SceI. ChIP analysis indicates the significant recruitment of LRF to DNA breaks induced by I-SceI. Average values of

n¼ 3 independent experiments are shown as mean values±s.d. Associated P value calculated by Student’s t-test analysis is indicated. (f) GFP-LRF

recruitment to DSB sites generated by a multiphoton laser system. LRF kinetics of recruitment to DSBs were evaluated in wild-type, DNA-PKcs� /� and

Ku80� /� cells. Average values of n¼ 20 independent acquisitions are shown as mean values±s.d. Scale bar, 1mm
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decreased in LRF knockdown compared with control cells
(Fig. 4f). Endogenous DNA-PKcs autophosphorylation on
serine 2056, a known correlate of DNA-PK activity32–36, was
significantly reduced in LRF knockdown compared to control
cells following treatment of cells with bleomycin (Fig. 4g). In
keeping with these findings, in an in vitro assay using purified
DNA-PKcs protein and extracts from wild-type and Lrf-deleted
MEFs, we observed a substantially lower DNA-PKcs kinase
activity in the absence of Lrf compared with controls (Fig. 5a).

LRF loss restores IR sensitivity in p53 null cells. A characteristic
feature of p53 null cells is their resistance to IR37. This effect
is reported to require normal DNA-PK function and loss of
DNA-PKcs, Ku70 or Ku80 can restore the radiation sensitivity
of p53 null cells38. We therefore tested whether LRF loss,
which is observed in advanced cancers15,17,18, could restore IR
sensitivity in p53-deficient cells. Indeed, Lrf loss restored
IR-induced apoptosis of p53 null MEFs (Fig. 5b and
Supplementary Fig. 4g).

a c

DNA-PK + +
+++

+
+
–

––
– +

LRF     10
%

 in
pu

t

–EtBr + EtBr

DNA-
PKcs

Ku80

Ku70

LRF

DNA-
PKcs

LRF

Ku70

Ku80

Ig
G

LR
F

Ku7
0

Ku8
0 DNA-

PKcsIP:

2%
 in

pu
t – EtBr

b

Ig
G

LR
F

Ku7
0
Ku8

0 DNA-

PKcs

2%
 in

pu
t + EtBr

DNA-PKcs

Dt Rn Chr Dt Rn Chr Dt Rn Chr Dt Rn Chr

–Phleomycin(Ph) +Ph –Ph +Ph

Lrf +/+ Lrf –/–

d
IgG Lrff/fcon Lrff/fcre

IP

Input

e

γ-H2AX

LRF

α-tubulin

Histone H4

DNA-PKcs

DNA-PKcs

LRF

LRF

KU70

KU70

IP: Ku70 

gf

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Before DNA damage After DNA damage

Y
F

P
-D

N
A

-P
K

cs

R
el

at
iv

e 
flu

or
es

ce
nt

si
gn

al
 in

te
ns

ity
 

Time after DNA damage (min)

shCtr

shLRF

YFP-DNA-PKcs kinetics

LRF

GAPDH

DNAPKcs

pS2056

Bleomycin Unt 6 h 12 h 24 h

Bleomycin 6 h 12h 24  h

R
el

at
iv

e 
am

ou
nt

 o
f

pS
20

56
 D

N
A

P
K

cs
 1

0.8
0.6

0.4
0.2

0

P=0.014 P=0.010 P=0.012

50

75

kDa

250

75

50

75

kDa

250

75

75

75

kDa

250

50

50

50

kDa

250

20

20

50

75

kDa

250

50

75

kDa

250

250

50

kDa

250

37

ShC
tr

ShC
tr

ShC
tr

ShC
tr

ShL
RF

ShL
RF

ShL
RF

ShL
RF

Figure 4 | Interaction of LRF with DNA-PKcs and Ku70/80. (a,b) Endogenous interaction between LRF and DNA-PKcs/Ku70/Ku80 in the absence

(a) or presence (b) of ethidium bromide (EtBr) (50mg ml� 1). (c) In vitro LRF and DNA-PK binding assay. FLAG-tagged LRF was purified by

immunoprecipitation with Flag antibody affinity resin then washed with high salt buffer (500 mM NaCl). Purified DNA-PK components were added in the

absence or presence of EtBr and the association of Ku70, Ku80 or DNA-PKcs with LRF was assessed by western blotting. (d) LRF stabilizes DNA-PKcs on

chromatin in response to DNA damage. p53 � /� Lrfþ/þ and p53 � /� Lrf�/� cells were fractionated into detergent extractable (Dt), RNase

extractable (Rn) and RNase-resistant chromatin (Chr) compartments. (e) Ku70 co-immunoprecipitation performed in control (p53� /� Lrff/f ctr) and LRF

conditional knockout (p53� /� Lrff/f cre) MEF. (f) YFP tagged DNA-PKcs was expressed in stable shCtr and shLRF U2OS cells. Association and dissociation

kinetics of YFP-DNA-PKcs recruitment to DNA damage foci are shown. Average values of 20 cells are presented as mean values±s.d. Scale bar, 1mm.

(g) Relative amount of phosphoSerine2056-DNA-PKcs in stable shCtr and shLRF U2OS cells treated with Bleomycin for 6, 12 and 24 h is shown. Average

values of n¼ 3 independent experiments are presented as mean values±s.d. Associated P value calculated by Student’s t-test analysis is indicated.
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Discussion
The human genome encodes B60 POK family proteins16,19,39,
containing an amino-terminal POZ domain and several
carboxy-terminal C2H2 Zinc finger domains. POK family
proteins have been implicated in embryogenesis, the
pathogenesis of cancer and other diseases primarily as
transcriptional regulators of gene expression, although ZBTB1
has been recently shown to exert transcription-independent
functions intriguingly associated with DNA repair40. Even though
originally characterized as a proto-oncogene6, human ZBTB7A
is located at 19p13.3, a chromosomal region that is frequently
lost in different types of human cancer, including prostate
cancer18,41,42. Interestingly, LRF has been recently characterized
as a potent context-dependent tumour suppressor through
the transcriptional repression of oncogenic pathways and
glycolytic metabolism15–18. Here we identify LRF, a bonafide
member of the POK family of proteins, as an important regulator

of the DNA-PK complex required for the maintenance of genome
integrity, which is a novel and unexpected function that LRF
exerts independently of its transcriptional function. DNA-PKcs is
the largest known protein kinase in the cell, which belongs to the
phosphatidylinositol-3 (PI-3) kinase-related-kinase (PIKK)
super-family based on primary structure. In current models,
Ku association with DNA ends initiates a complex DNA-
PKcs-dependent signalling pathway through phosphorylation of
downstream effectors responsible for DSB repair43. Importantly,
this study unravels a novel and unexpected transcriptional
independent function of POK family of proteins into the
critical cellular processes of DNA-PK function and cNHEJ.
Notably, BCL6 (B-cell lymphoma-6), a further member of the
POK family and a key oncogenic driver in B-cell lymphoma44,
has been demonstrated to physically bind LRF45 thus suggesting a
possible role of BCL6 in the regulation of NHEJ. Importantly,
LRF downregulation, caused by genetic loss or other mechanisms,
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has been recently reported to characterize specific subgroups of
cancer patients15,17,18,46,47. As a novel component of the DNA-
PK complex and regulator of DNA-PK stability and activity
(Fig. 5c), LRF represents an attractive biomarker with important
therapeutic implications since its downregulation might serve to
identify those tumours that are particularly dependent on NHEJ
activity, such as for instance a subset of p53-null cancers, towards
therapeutic treatments based on genotoxic agents, radiation, or
PARP inhibitors following the synthetic lethality paradigm.

Methods
Antibodies and reagents. Anti-Ku70 antibody (1mg, BD Biosciences #611892),
Anti-Ku80 antibody (1 mg, Cell Signaling Technology #2753S), anti-DNA-PKcs
antibody (1 mg, Bethyl Laboratories #A300-517A), and anti-LRF antibody (1 mg,
Bethyl Laboratories #A300-548A) were used for immunoprecipitation. Anti-Ku70
antibody (1:3,000, Cell Signaling D10A7 #4588), Anti-Ku80 antibody (1:3,000, Cell
Signaling Technology #2753S), anti-DNA-PKcs antibody (1:3,000, Santa Cruz G4
#sc-5282), and Anti-LRF antibody (1:1,000 13E9, Pandolfi lab), and anti
phosphoS2056-DNA-PKcs (Cell Signaling Technology #4215S), b-actin (1:5,000,
Abcam #ab8226), Rad51 (Scully lab; 1:1,000), Brca1 (Scully lab; 1:1,000), LRF
(13E9, Pandolfi lab; 1:1,000), Mre11 (Novus #NB100-142; 1:1,000), Xrcc4
(Santa Cruz #sc-8285; 1:1,000), anti-g-H2AX antibody (1:5,000 Cell Signaling,
20E3) were used for immunoblot. Anti-g-H2AX antibody (1:50 Cell Signaling,
20E3), anti-LRF antibody (1:50, 13E9 Pandolfi lab), anti-cleaved caspase-3
antibody (1:50, Cell Signaling, 5A1E) were used for immunohistochemistry.
Bleomycin, Phleomycin, Mitomycin C, ICRF-193, and Camptothecin were
purchased from Sigma. Purified DNA-PK complex was purchased from Promega.

Retrovirus transduction of mouse embryonic fibroblast. All animal procedures
have been approved by the Beth Israel Deaconess Medical Center and Harvard
Medical School institutional review board. Lrfþ /� , Lrfflox/flox, Arf� /� and p53� /�

mice are previously described6,14,48,49. p53� /� and p53� /� Lrf� /� MEF were
prepared from E13.5 mouse embryos obtained from the intercross of p53� /�

Lrfþ /� mice. To generate primary Lrfflox/flox and Arf� /� Lrfflox/flox MEF, Arfþ /�

Lrfflox/flox mice were intercrossed. MEFs were transduced with MSCV-PIG-Cre or
empty control vector retrovirus for 2 days at passage 2, and then selected with
2mg ml� 1 puromycin for 2 days before use in subsequent experiments.

Microarray analysis. Lrfflox/flox MEFs were transduced with MSCV-PIG-Cre or
empty control vector retroviruses for 2 days at passage 2. After selection with
puromycin for 2 days, total RNAs were purified using the RNAeasy Mini Kit
(Qiagen) and treated with RNase-free DNase set (Qiagen). RNAs from two
independent experiments were labelled and hybridized using Affymetrix GeneChip
HT Mouse Genome 430 arrays by the Beth Israel Deaconess Medical Center
Genomics and Proteomics Center. Genes with normalized data values differing by
a factor greater or less than 1.5-fold were selected and further evaluated statistically.

Cell growth assay. Cells were seeded in 12-well plates at a density of 104/well,
then left to grow for 4 days. Cells were fixed by paraformaldehyde at each time
point, and the cell number determined by crystal violet staining as described 50.

Comet assay. DNA lesions were assessed using a single-cell gel electrophoretic
comet assay kit (Trevigen). Cells were combined with low melting point agarose
and pipetted onto a slide. The cells were lysed, then subject to electrophoresis at
20 V for 30 min in TBE buffer. Following electrophoresis, slides were washed,
dehydrated and stained with SYBR Green I. Images were taken with a fluorescent
microscope and scored by CometScore software (TriTek Corporation).

G-banding and telomere FISH of metaphase chromosome. Metaphase chro-
mosome spreads were prepared from exponentially growing cells after treatment
with demecolcine. For G-banding, the metaphase chromosomes were then treated
with trypsin and stained with Giemsa according to standard procedures.
Telomere FISH was performed using a Cy3-labelled peptide nucleic acid probe
(Cy3-(CCCTAA)3) in metaphase chromosome spreads. Both the probe and the
slides were heat denatured (80 �C for 5 min) and hybridized at 37 �C for 2 h. Slides
were counterstained with DAPI. Images were captured using Zeiss microscope
equipped with a CCD camera.

Protein complex purification and mass spectrometry. Procedures for LRF-
associated protein complex purification have been described in detail previously51.
Briefly, FLAG-HA tandem tagged human LRF was stably expressed in HeLa
cells, then nuclear extracts were sequentially immunoprecipitated with anti-FLAG
and anti-HA beads. The LRF binding proteins were separated using SDS–
polyacrylamide gel electrophoresis (SDS–PAGE), and protein bands were identified
by mass spectrometry.

Immunoblotting and immunoprecipitation. Cells were lysed in buffer (50 mM
Tris, pH8.0, 150 mM NaCl and 0.5% NP-40). Protein concentrations of the lysates
were measured by Bradford assay. The lysates were then resolved by SDS–PAGE
and immunoblotted with the indicated antibodies. For immunoprecipitation, 1 mg
of cell lysate was incubated with the appropriate antibodies for 3–4 h at 4 �C
followed by 1-h incubation with protein A beads (Santa Cruz). Immuno-complexes
were washed with buffer (20 mM Tris, pH8.0, 100 mM NaCl, 1 mM EDTA and
0.5% NP-40) before being resolved by SDS–PAGE and immunoblotted with the
indicated antibodies. Uncropped scans of the most important blots are supplied as
Supplementary Information.

Cell fractionation. p53� /� Lrfþ /þ and p53� /� Lrf� /� cells were incubated
with 100 mM phleomycin for 1 hour at 37 �C. The cell pellet was resuspended in
buffer (150 mM NaCl, 50 mM Hepes PH7.5, 1 mM EDTA, 0.1% Triton X-100,
protease and phosphatase inhibitor) for 10 min on ice. Lysates were pelleted, and
detergent extractable supernatant collected. The pellet was further extracted with
buffer (150 mM NaCl, 50 mM Hepes pH 7.5, 1 mM EDTA, 200 mg ml� 1 RNaseA,
protease and phosphatase inhibitor) for 30 min at 25 �C. Then the RNase-resistant
chromatin pellet was resuspended and sonicated in buffer (150 mM NaCl, 25 mM
Tris pH 7.5, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) before boiling in
laemmli sampling buffer and immunoblot analysis.

DNA repair reporter assay. 2� 105 ES cells stably integrated with NHEJ or HR
reporter23,29 were transfected in suspension with 0.5 mg pcDNA3b-myc NLS-I-SceI
or control pcDNA3b plasmid together with 20 pmol siRNA by using Lipofectamine
2000 (Invitrogen). In the U2OS HR reporter experiments, 1� 105 cells were
transiently transfected with 0.5 mg pcDNA3b-myc NLS-I-SceI or control pcDNA3b
plasmid together with 20 pmol siRNA. In the U2OS NHEJ assays, 2� 104 cells
were first transfected with 30 pmol siRNA in Lipofectamine RNAiMAX on day
zero, then received adeno-I-SceI (MOI of 5) 48 h later (with or without the
DNA-PKcs inhibitor), with readout by FACS 72 h after adeno-I-SceI transduction.
Transfection efficiency was measured simultaneously by parallel transfection with
wild-type GFP expression plasmid, at an amount one-tenth of the I-SceI expression
vector. GFP-positive cell frequencies were measured 3 days post transfection by
flow cytometry in independent replicates and corrected for transfection efficiency.

siRNAs. Sequences of siRNAs are as follows: LRF-1: GAACCGACGACAAGG
GCGU; LRF-2: GUAUAUAGAAUGCGGAUCA; LRF-3: CUACAGGCCUUU
CGAGAUU. Brca1, Rad51, Xrcc4, hLRF are ON-TARGETplus siRNA – SMART
pool (Dharmacon). siCtrl: siGENOME Non-Targeting siRNA #2 (Dharmacon)

Laser-induced DNA damage and fluorescence data collection. Microirradiation
with a pulsed 365 nm nitrogen laser (Spectra-Physics; 365 nm, 10 Hz pulse) was
used to induce DSBs in the nuclei of U2OS cells. The laser system was directly
coupled (Micropoint Ablation Laser System; Photonic Instruments, Inc.) to the
epifluorescence path of the microscope (Axiovert 200M (Carl Zeiss MicroImaging,
Inc.) for time-lapse imaging and focused through a Plan-Apochromat � 63/NA
1.40 oil immersion objective (Carl Zeiss MicroImaging, Inc.). Laser output was set
at 75% of the maximum power, equivalent to the minimal dose required to induce
detectable accumulation of YFP-DNA-PKcs in living cells. Time-lapse images were
acquired with an AxioCam HRm (Carl Zeiss MicroImaging, Inc.). DNA-PKcs and
Ku80 kinetics were calculated as previously described52: fluorescence value of an
undamaged spot in the same nuclei was subtracted from the fluorescence intensity
of the laser-irradiated spot for every cell at each time point in order to eliminate the
fluorescence background of the nucleus. Relative fluorescence intensity at each time
point (RF(t)) was calculated as RF(t)¼ (INt� INpreIR)/(INmax� INpreIR), where
IN, fluorescence intensity; INpreIR, IN of the micro-irradiated area before laser
damage; INmax, maximum IN in the micro-irradiated area.

DNA-damaging agents clonogenic survival assay. Four hundred cells were
seeded in six-well plates 24 h before treatment with the indicated drugs. g-radiation
was supplied with a Cesium-137 source. After 10 days, colonies were stained with
crystal violet and scored. A colony was defined as a cluster of more than B50 cells.
Cells without drug treatment were used as control. Survival ratio¼ sample/
control� 100%. Results were reported as mean±s.e.m. from three independent
experiments.

DNA-PK kinase assay. DNA-PK kinase activity was measured using the
SignaTECT DNA-Dependent Protein Kinase Assay System (Promega). Total cell
lysates were extracted using a buffer containing 1%NP-40, 150 mM NaCl and
50 mM Tris (pH8.0). Endogenous DNA of cell lysates was removed using
Sepharose fast flow (GE Healthcare). For each reaction, 2 mg of cell lysates were
used, reactions were incubated at 30 �C for 10 min, and then the supernatant
was spotted onto a SAM membrane. DNA-PK protein kinase activity was
calculated as the incorporation of 32P into the peptide using a phosphoimager.
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Immunofluorescence. Cells were seeded in 24-well plates containing round glass
coverslips at the density of 2� 104/well. 24 h after plating, cells were fixed with
paraformaldehyde, permeabilized in 0.1% Triton-X-100/phosphate buffered
sulphate (PBS). Coverslips were then incubated with primary antibody diluted in
1% BSA/PBS for 1 h. After washing, coverslips were incubated in secondary
antibody diluted in 1% BSA/PBS for 1 h. Coverslips were washed, stained with
DAPI, mounted and analysed by confocal microscopy (Zeiss).

Flow cytometry. Cells were trypsinised, fixed with 4% formaldehyde and
permeabilised with 90% methanol. Cells were then incubated with Alexa Fluor 647
conjugated g-H2AX antibody (Cell Signaling Technology) in 0.5% BSA /PBS for
1 h at room temperature. Cells were washed with 0.5% BSA /PBS then analysed by
flow cytometry (LSR II, BD Biosciences). Data was analysed with FCS Express V3
software.

Chromatin immunoprecipitation assay. ChIP was performed using ES cells
stably integrated with NHEJ reporter. 12 h after I-SceI expression, ES cells were
trypsinised, cross-linked with 1% formaldehyde at 37 �C for 10 min, and stopped in
0.125 M glycine. DNA was sonicated and incubated with indicated antibodies.
Following reverse cross-linking, the associated DNA was extracted and detected by
PCR using primers that locate 0.2 kb to I-SceI sites (p04.52, 50-TGGTGAGCAAG
GGCGAGGAGC-30 ; p04.53, 50-TCGTGCTGCTTCATGTGGTCG-30) and 28 kb to
I-SceI cutting sites (p07.52, 50-TGTCATCATAGGCCCAATTTC-30 ; p07.53,
50-CCCAGTTTAAGGATGGTGGTT-30). Using Hotstart (Qiagen) enzyme, PCR
condition: 95 �C 15 min then 94 �C 30 s; 58 �C 30 s; 72 �C 30 s for 35 cycles.
Samples were separated on a 2% agarose gel. ImageJ software was used to quantify
the band intensity. The band intensity of PCR with IgG without I-SceI was set as
1, and the relative ratio of PCR bands (using primers locate 0.2 kb to I-SceI site)/
PCR bands (using primers locate 28 kb to I-SceI site) are shown using data from
three different experiments.

RT-qPCR Primers. Total RNA was extracted with TRIzol Reagents (Invitrogen)
according to the provided protocol. 1 mg total RNA was reversed transcribed
with iScript cDNA Synthesis Kit (Bio-Rad). Real-time quantitative PCR was
performed using diluted cDNA, SYBR Green JumpStart Taq ReadyMix (Sigma)
and appropriate primers in StepOnePlus Real-Time PCR System (Applied
Biosystems). Primers sequence is reported in Supplementary Table 4.

Statistical analysis. Results are expressed as mean±s.d or s.e.m as noted.
Comparisons between groups were assessed using Student’s t-test analysis. Pr0.05
was considered significant.
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