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Abstract
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections,

can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal

models. Recent investigations suggest that microglia, the resident immune cells of the

brain, provides a link between neurotransmission, immune cell activation, brain inflamma-

tion and neuronal dysfunction seen with the offspring. Relatively little is known about how

reduction of brain inflammation and restoration of glial function are associated with diminu-

tion of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expres-

sion and the long-lasting excitotoxic effects of the neurotoxin during brain development are

associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR

and how they regulate glial function and inflammatory processes in mice prenatally exposed

to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychi-

atric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5

during 5 weeks reduced expression of classic inflammation marker PBR in many brain

areas and that this molecular association was not present in LPS-exposed offspring. The

post-mortem analysis revealed that the down regulation of PBR was mediated through acti-

vation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defec-

tive in a mouse model of the psychiatric deficit offering a novel insight of mGluR5

involvement to brain related disorders and PBR related imaging studies. In conclusion,

mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR

(cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could

be associated with neuropsychiatric disorders in offspring.
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Introduction
In recent years, metabotropic glutamate receptor subtype 5 (mGluR5) has been a growing
topic in research for its role in several central and peripheral diseases [1]. Its signaling is
mainly associated to Gq/G11 and activates phospholipase C, resulting in hydrolysis of
phosphoinositides and generation of inositol 1,4,5-triphosphate and diacylglycerol. This typ-
ical pathway leads to calcium mobilization and activation of protein kinase C [2]. The
mGluR5 is found on postsynaptic terminals of neurons and in glial cells [3]. The molecular
pathways associated to neuronal mGluR5 and its therapeutic potential in different patholo-
gies such as schizophrenia, anxiety and Parkinson’s disease are largely reviewed in the litera-
ture [4–8].

The expression of mGluR5 profusely increases in glial cells activated by inflammatory
stimulus [9, 10]. The glial mGluR5 activation is known to play a role in gliotransmission trig-
gering the intercellular communication between neurones and glial cells [11]. Pathophysiolog-
ical impairments of glial mGluR5 are associated with the development of behavioral disorders
[12–15]. The underlying mechanism is related to decreased glutamate reuptake and suppres-
sion of mGluR5 dependent synaptic plasticity leading to enhanced astroglial loss. Transient
up-regulation of mGluR5 in microglia and astrocyte was observed in different neurodevelop-
mental and neuroinflammatory models and associated with behavioral abnormalities in adult-
hood [12–15]. The activation of mGluR5 reduces the amount of reactive glial cells, brain
inflammation and neurotoxicity [10, 12, 16, 17]. These anti-inflammatory properties are asso-
ciated with a lower level of brain degeneration and a reduction of behavioral deficits. This led
to hypothesis of the possible underlying interaction between mGluR5, inflammation and glial
function.

Peripheral benzodiazepine receptor (PBR, also called translocator protein (TSPO) 18 kDa)
is a potent target for mGluR5 to modulate glial function. PBR is a small protein primarily
localized in the outer mitochondrial membrane of glial cells (microglia and astrocytes) [18]. It
plays a key role in the transport of cholesterol into mitochondria and in neurosteroidogenesis
[19–21]. Recently, PBR has received attention as a potent inflammatory marker in many ani-
mal models of brain pathology [7, 22–25], since it is expressed in glial cells activated by an
inflammatory process. Moreover, pharmacological activation of PBR decreases the inflamma-
tion in glial cells [26]. The preclinical studies have promoted the development of PBR markers
to image brain inflammation in humans and animals by positron emission tomography (PET)
[27]. In humans, imaging studies targeting PBR have reported a specific increase in the
regions affected in neurodegenerative diseases such as Alzheimer’s [28, 29] and Parkinson’s
disease [30, 31], and in other neurological pathologies like ischemic stroke [32] and multiple
sclerosis [33, 34]. These studies have supported the idea that PBR is a sensor of brain injury or
defect, and the recovery of the brain function can be quantitatively detected by PET imaging
[18, 35].

The aim of this study was to investigate the effect of mGluR5 activity on PBR expression
and astrocyte activation in the mice prenatally exposed to LPS. The LPS was administered into
the mother (dose of 120 μg/Kg i.p.) [36] to induce brain inflammation in the fetus [37]. The
pharmacological effect of mGluR5 modulation was evaluated using adult offspring treated dur-
ing 5 weeks with mGluR5 agonist (CDPPB, 10mg/kg) or antagonist (MTEP, 3mg/kg). Both of
these drugs are known to cross the blood brain barrier [38, 39] and the used doses are known
to be effective at a behavioral level [5, 40–43]. Finally, the obtained results of mGluR5 and glial
activation in the brain were verified with ex vivo analyses.
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Materials and Methods

Animals
Altogether 30 pregnant C57BL/6 mice were purchased from Charles River Laboratories (Wil-
mington, Massachusetts), handled in our in-house breeding facility and kept in ventilated
cages under standard laboratory conditions. Experimental studies were conducted in 92 pups.
The animal studies were approved by the Subcommittee on Research Animals of Massachu-
setts General Hospital and the Harvard Medical School and carried out by the Guide of the
National Institute of Health for the Care and Use of Laboratory Animals.

Prenatal immune challenges
Bacterial infection was induced in pregnant mice by one intraperitoneal (i.p.) injection of LPS
(E.coli serotype 0111:134, 120 μg/kg/day; 0.05 ml/g; Sigma-Aldrich, Missouri, USA). Equivalent
volume (0.05 ml/g) of sterile saline solution was used for the control treatment. Treatments
were administered during the late stage of gestation, i.e. between GD15 and GD17 (Fig 1). Note
that doses and delivery modes were chosen based on the current literature according to the
known impact in inducing neuroinflammation in foetal brain after one injection within the
same time window as in our studies [13, 37]. This prenatal immune challenge model was cho-
sen for three reasons; first, it produced a transient upregulation of mGluR5 expression during
development [13], confirming a physiological alteration of this receptor by the inflammatory
processes; second, pups prenatally exposed to this treatment showed a delay in the develop-
ment of sensorimotor reflex [13]; and third, psychiatric symptoms (anxiety impairments and
pre-pulse inhibition deficit) in adult offspring were reported in rodents prenatally exposed to
LPS in late pregnancy [14, 37, 44, 45]. The two last points confirm that this prenatal immune
challenge interfere sufficiently with the development process to induce behavioral changes
later.

Drug treatment
Mice received a daily intraperitoneal injection (at 9 am) from the postnatal day 56 (PnD56) to
PnD91 during 5 weeks, see Fig 1. Negative allosteric modulator of mGluR5, 3-((2-methyl-
4-thiazolyl)ethynyl)pyridine (MTEP), (2 mg/ml, 3 mg/kg animal, Tocris, Cat. No. 2921) and
positive allosteric modulator of mGluR5, 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benza-
mide (CDPPB), (6.66 mg/ml, 10 mg/kg animal, Tocris, Cat. No. 3235) solutions were prepared
with the same dissolving solution (accordingly to manufacturer’s recommendation). Drug
preparation was made so that each animal received equivalent volume (1.5 μl/g animal). Equiv-
alent volume of dissolving solution was used for the control treatment. Fresh solutions were
prepared every 2–3 days and preserved at 4°C. The CDPPB and MTEP doses used in this study
are known to be active at the behavioral and cellular level [5, 40–43]. Since mGluR5 is known
to play a function during the cerebral development and in the adult brain, the treatment was
started in adulthood to exclude the effect of mGluR5 on development and, consequently, limit-
ing the present results to the effect of mGluR5 in mature/adult brain.

PET Ligands and Imaging
PET imaging included studies of mGluR5 using [18F]FPEB ([18F]fluoro-5-(2-pyridinylethynyl)
benzonitrile) and studies of inflammatory response using [11C]PBR28 ([11C]peripheral benzo-
diazepine receptor 28) as radiolabeled ligands. For the imaging studies, animals were anesthe-
tized with isoflurane/oxygen (1–1.5% isoflurane at 1 L/min oxygen flow). Catheterization of
tail vein was done for the administration of the radiolabeled ligands. The animal was adjusted
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into the scanner (Triumph II, Trifoil Imaging Inc). The level of anesthesia and vital signs were
monitored throughout the imaging with the monitoring system of the scanner. For the PET
imaging studies, radiolabeled ligand ([18F]FPEB or [11C]PBR28, 0.2 mCi, specific activity of
1900 mCi/μmol for [18F]FPEB and 600–1000 mCi/μmol for [11C]PBR28) was injected into the
tail vein and dynamic volumetric data were acquired for 60 minutes. After the PET data acqui-
sition, computed tomography (CT) imaging was done to obtain data for attenuation correction
and anatomical information.

PET data were reconstructed with an algorithm based on maximum likelihood estimation
using 30 iterations. CT data was reconstructed with a modified Feldkamp algorithm using
matrix volumes of 512×512×512 and pixel size of 170 μm. The regions of interest including
striatum, frontal cortex, hippocampus, hypothalamus, cerebellum, olfactory bulb and whole
brain were drawn on all coronal and axial levels using co-registered axial, sagittal, and coronal
CT-PET images of the brain. Activity per unit volume, percent activity of the injected dose and
the ligand concentration were calculated.

Kinetic analysis to determine binding potential of [18F]FPEB was done using PMOD 3.208
software (PMOD Technologies LTD, Zurich, Switzerland) and reference tissue method with
the cerebellum data as an input function. Since the expression of mGluR5 in cerebellum is min-
imal [46] and the radioactivity emitted by the [18F]FPEB ligand is similar between cerebellum
and blood after 60 minutes [47], the input function can be processed from the cerebellum data
in calculating regional maps for binding potential. This approach is more reliable than using
only a percent of the injected activity per cm3 since the background is removed. Concerning
[11C]PBR28, cerebellum cannot be used as a reference tissue, since inflammation is not brain
area specific. The binding for [11C]PBR28 was determined as a, percent of the injected activity
per cm3. Binding of the ligand to the receptor is an indication of the activity of the receptor
since the ligand only binds to membranous receptors.

The effect of different postnatal treatments on the binding values of [18F]FPEB and [11C]
PBR was determined by comparing to the binding values obtained after the control treatment.
Each binding value in different brain areas and different treatments was divided by the average
value obtained of the same brain structure of mice, which received the same prenatal treatment
but a control solution as postnatal treatment (solvent without active compound). Since postna-
tal treatment is the changing factor in this ratio, the value what is significantly different from

Fig 1. Time lines of the experiments. Pregnant mice received an injection of 120 μg/kg of LPS or an equivalent volume of saline between GD15 to GD17.
Expression of mGluR5 (PnD37-PnD39) and PBR (PnD42-PnD44) in the brain of the offspring prenatally exposed to LPS or saline were evaluated by PET
imaging. Animals of both groups (LPS or saline) were then exposed to treatment during 5 weeks (from PnD56 to PnD91). Three types of treatments were
tested: CDPPB (10 mg/kg; mGluR5 agonist), MTEP (3 mg/kg; mGluR5 antagonist) and control (solvent alone). Finally, the in vivo expression of mGluR5
(PnD117-119) and PBR (PnD125-127) were re-evaluated after the treatments and the animals were sacrificed a few days after the last imaging session
(PnD128-130) for post-mortem analysis. Abbreviations: GD, gestational day; [11C]PBR28, peripheral benzodiazepine receptor 28; [18F]FPEB, [18F]fluoro-5-
(2-pyridinylethynyl)benzonitrile; PnD, postnatal day.>>

doi:10.1371/journal.pone.0142093.g001
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the value of one confirms the effect of the treatment. A significant result over the value of one
means that the postnatal treatment increases the binding potential of the quantified receptor,
whereas if the value is significantly below the value of one, the treatment decreases the binding
potential. This normalization confirms only the variations induced by the postnatal treatments
(agonist or antagonist of mGluR5) and simplifies data presentation.

Tissue preparation
Perfusion was done under deep anesthesia with ketamine (Vetalar, Bioniche, Ontario, Canada)
and xylazine (Bayer, Ontario, Canada) (i.p. injection of 10 and 0.1 mg/kg, respectively). Brains
were extracted and snap frozen on dry ice. The entire right hemisphere was used for western
blot analyses.

Protein extraction and western immunoblotting
For post mortem analyses, 8 volumes of lysis buffer (150 mMNaCl, 10 mMNaH2PO4, 1% Tri-
ton X-100, 0.5% SDS, and 0.5% deoxycholate) containing CompleteTM protease inhibitor
cocktail (Roche, Indianapolis, USA), 10 mg/ml of pepstatin A, 0.1 mM EDTA and phosphatase
inhibitors (1 mM each of sodium vanadate and sodium pyrophosphate, 50 mM sodium fluo-
ride, Sigma-Aldrich, Missouri, USA) were added to frozen brain samples (entire right hemi-
sphere), sonicated (3 x 10 sec), centrifuged at 100,000 g for 20 min at 4°C and the supernatant
was collected.

The protein concentration in the supernatants was determined using a BCA protein assay
kit (Pierce, Illinois, USA) according to manufacturer’s protocol. Equal amounts of protein per
sample were diluted in Laemmli’s loading buffer. The samples were then heated for 5 min at
95°C, before loading to a SDS-PAGE gel. Proteins were transferred onto PVDF membranes
(Millipore, Massachusetts, USA), before blocking in 5% non-fat dry milk and 1% bovine serum
albumin (BSA) in PBS-0.1% Tween20 for 1 hour. Membranes were immunoblotted with
appropriate primary and secondary antibodies followed by chemiluminescence reagents
(Lumiglo Reserve, KPL, Maryland, USA). Band intensities were quantified using a KODAK
Image Station 4000 MMDigital Imaging System (Molecular Imaging Software version 4.0.5f7,
Carestream Health, New York, USA). For this study the following antibodies were used: goat
polyclonal anti-Iba1 (ionized calcium binding adaptor molecule-1, cat. number: NB100-2833,
1:500, Novus Biological), mouse monoclonal anti-GFAP (glial fibrillary acidic protein, cat.
number: G3893, 1:10000, Sigma-Aldrich), rabbit polyclonal anti-mGluR5 (cat. number:
AB5675, 1:1000, Millipore), rabbit anti-CD68 (cluster of differentiation 68, cat. number:
16192-1-AP, 1:500, Proteintech) and mouse monoclonal anti-actin (cat. number: G043,
1:5000, abm). Note that specific denaturating conditions were necessary to dissociate the
dimerization of mGluR5 [48, 49]. Consequently, the dimeric form of mGluR5 was quantified,
as previously reported and published [13, 48].

Statistical analyses
Statistical comparisons between groups were performed according to normality of distribution
and variance equivalences between the groups. In cases of equal variance and normal distribu-
tion we used an unpaired Student’s t-test to compare 2 groups (Fig 2, S1 Fig). Nonparametric
Mann-Whitney test was used to compare groups in which the distribution was not confirmed.
When the variance was unequal, groups were compared using a Welch’s correction. For
matched values, paired t-test (parametric) or Wilcoxon matched pairs test (nonparametric)
was performed. When a parameter was normalized to the relevant population, a one-sample t
test (parametric) or Wilcoxon signed-rank test (nonparametric) was used. The effects of
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Fig 2. Effect of aging and different prenatal treatments onmGluR5 expression investigated with PET imaging using [18F]FPEB. PET imaging
revealed a significant increase of [18F]FPEB binding during maturation (from PnD37-39 to PnD 117–119) in the striatum and the whole brain of the mice
prenatally exposed to saline (A), while in the LPS-exposed offspring the [18F]FPEB binding increased in the cortex, hippocampus, striatum and the whole
brain during the samematuration period (B). During the adolescence (PnD37-39) we observed a lower binding of [18F]FPEB in the striatum and the whole
brain of the LPS-exposed offspring compared to the saline-treated offspring (C). However, [18F]FPEB binding was similar in both groups at PnD117-119 (D).
(E) Coronal slices of hippocampal and striatal level of [18F]FPEB in offspring prenatally exposed to saline or LPS at PnD 37–39 and PnD 117–119. Values
are expressed as mean ± SEM. Abbreviations: [18F]fluoro-5-(2-pyridinylethynyl)benzonitrile; Ctx, cortex; Hip, hippocampus; Hth, hypothalamus; OB,
olfactory bulb; PnD, postnatal day; Str, striatum; W, whole brain. *p < 0.05, **p < 0.01 >>

doi:10.1371/journal.pone.0142093.g002
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postnatal treatment were analyzed by dividing each value with the average of the group receiv-
ing the same prenatal treatment (Figs 3 and 4, S2 and S3 Figs). A value significantly different of
one meant that the treated group was different from the control group. We used also an analy-
sis of variance (ANOVA) followed by Dunnett post hoc test to compare each treatment with a
control/reference group (Fig 5B and 5C). Finally, the effect of gender was verified for each com-
parison and both sexes were analyzed separately, only when the difference was observed. The
statistics were not protected by multiple comparisons. All statistical analyses were performed
using JMP (version 9, SAS) and prism (version 4.0, GraphPad Software Inc.).

Results

[18F]FPEB binding potential was altered during maturation of LPS-
exposed offspring
During maturity, we observed an increase of [18F]FPEB binding potential in the striatum and
the whole brain of saline-exposed offspring (Fig 2A and 2E). Statistical analyses (Table 1) were
performed using paired t-test (olfactory bulb (OB), cortex (Ctx), hippocampus (Hip), striatum
(Str) and whole brain (W)) or Wilcoxon matched pairs test (hypothalamus (Hth)).

In mice prenatally exposed to LPS, the binding potential of [18F]FPEB decreased in the OB
during maturation, but increased in the Ctx, Hip, Str and W (Fig 2B and 2E). Statistical analy-
ses were done using paired t-test (OB, Hip and Hth) or Wilcoxon matched pairs test (Ctx, Str
and W). Prenatal immune challenge significantly reduced the binding potential of [18F]FPEB
in the striatum and the whole brain of adolescent mice (PnD37) compared to the control mice
(prenatally saline-exposed offspring, Fig 2C and 2E), while no difference was observed between
the adult mice (PnD119; Fig 2D and 2E). Unpaired Student’s t-test (OB, Hip andW of panel C;
OB and Hip of panel D), Welch t-test (Ctx and Str of panel C; Hth of panel D) and Mann-
Whitney test (Hth of panel C; Ctx, Str and W of panel D) were used to compare the effects of
the prenatal treatments. The number of animals was 9–10 (PnD37-39) and 14 (PnD117-119)
for the saline-exposed offspring, whereas it was 7–8 (PnD37-39) and 10–11 (PnD117-119) for
the LPS-exposed group.

Aging and prenatal treatment did not influence [11C]PBR28 accumulation
Quantification of [11C]PBR28 accumulation showed a significant increase during maturation
in the cerebellum of saline-exposed mice (S1A and S1E Fig) without significant change in mice
prenatally exposed to LPS (S1B and S1E Fig). No difference of [11C]PBR28 accumulation was
observed between mice prenatally exposed to saline or LPS at PnD35 (S1C and S1E Fig) and
PnD120 (S1D and S1E Fig).

Effects of postnatal MTEP treatment on [18F]FPEB binding potential
MTEP treatment reduced [18F]FPEB binding potential in hypothalamus of saline-treated mice
at PnD119 (S2A Fig), but had no effect on mice prenatally exposed to LPS (S2B Fig).

[11C]PBR28 accumulation was not changed after MTEP treatment
The binding potential of [11C]PBR28 in different brain structures was not changed by MTEP
treatment in mice prenatally exposed to saline or LPS (S3A and S3B Fig).

Effects of postnatal CDPPB treatment on [18F]FPEB binding potential
Postnatal treatment with CDPPB did not change the binding potential of [18F]FPEB in prena-
tally saline-exposed offspring (Fig 3A and 3C). However, the binding potential of [18F]FPEB
decreased in the cortex and hippocampus of LPS-exposed offspring after 5-week CDPPB treat-
ment (Fig 3B and 3C).

[11C]PBR28 accumulation was decreased in saline-exposed offspring after postnatal
CDPPB treatment, but not in offspring prenatally exposed to LPS

Loss of mGluR5 Function on PBR
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Fig 3. Effects of postnatal CDPPB treatment on [18F]FPEB binding potential. CDPPB treatment did not change the [18F]FPEB binding potential in the
quantified brain region of the offspring prenatally exposed to saline solution (A). However, the LPS-exposed offspring had a lower [18F]FPEB accumulation in
the cortex and hippocampus following CDPPB treatment (B). (C) Axial view of a representative mouse from each group. Values are expressed as
mean ± SEM. Abbreviations: CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide; [18F]FPEB, [18F]fluoro-5-(2-pyridinylethynyl)benzonitrile; Ctx,
cortex; Hip, hippocampus; Hth, hypothalamus; OB, olfactory bulb; PnD, postnatal day; Str, striatum; W, whole brain. *p < 0.05, **p < 0.01. Statistical
analyses were performed using one-sample t test (all comparisons of panel A; OB, Hip, Str, Hth andW of panel B) or Wilcoxon signed-rank test (Ctx of panel
B). The number of animals was 10–11 for the saline group and 12 for the LPS-exposed group. >>

doi:10.1371/journal.pone.0142093.g003
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Fig 4. Postnatal CDPPB treatment decreased [11C]PBR accumulation in saline-exposed offspring, but
not in offspring prenatally exposed to LPS. Postnatal CDPPB treatment decreased the accumulation of
[11C]PBR in the olfactory bulb, cerebellum, hippocampus, striatum, hypothalamus and the whole brain of the
offspring prenatally exposed to saline solution (A). However, [11C]PBR accumulation did not change in any
quantified brain region of the LPS-exposed offspring (B). Axial PET images of [11C]PBR accumulation at the
midbrain level illustrate the decreased accumulation after CDPPB treatment in the prenatally saline-exposed
offspring while there is no significant change in the brain of CDPPB treated mice prenatally exposed to LPS
(C). Values are expressed as mean ± SEM. Abbreviations: CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-
5-yl)benzamide; [11C] PBR28, peripheral benzodiazepine receptor 28; Ctx, cortex; Crbl, cerebellum; Hip,
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CDPPB treatment decreased the binding potential of [11C]PBR28 in olfactory bulb, cerebellum,
hippocampus, striatum and hypothalamus of saline-exposed offspring (Fig 4A and 4C), but
had no effect on LPS-exposed offspring (Fig 4B and 4C). Statistical analyses were performed
using one-sample t test (all comparisons of panel A; Crbl, Hip, Str, Hth and W of panel B) or
Wilcoxon signed-rank test (OB and Ctx of panel B). The number of animals was 9 for the saline
group and 8–9 for the LPS group.

Effects of prenatal and postnatal treatments on mGluR5 expression and
markers of activated glial cells in the brain
Prenatal exposure of LPS did not change mGluR5, iba1, CD68 or GFAP expression in the
homogenized whole brain of 128/130-day old animals (Fig 5A). Postnatal CDPPB treatment
reduced GFAP expression in saline-exposed offspring, without any change in iba1, CD68 or
mGluR5 expression (Fig 5B). No molecular change was observed following MTEP treatment in
animals prenatally exposed to saline solution (Fig 5B). Neither treatments (CDPPB or MTEP)
changed iba1, CD68, GFAP or mGluR5 expression in the homogenized whole brain of LPS-
exposed offspring (Fig 5C). Statistical analyses were performed using unpaired t-test (panel A)
or one way ANOVA followed by Dunnett post hoc tests (panel B and C). The number of sam-
ples was 7–8 for each group.

Discussion

During maturation [18F]FPEB binding modulated in many brain
structures of offspring prenatally exposed to LPS
Several epidemiological [50–52] and preclinical studies [45, 52, 53] have provided strong evi-
dence that prenatal infections significantly increase the risk for various brain-related develop-
mental disorders [54], including several neurological and neuropsychiatric diseases. We have
recently demonstrated that inflammatory processes induced by an infection during gestational
period alters expression of glial mGluR5, and the degree of this alteration is associated with
many brain-related disorders as a delay in the reflex development of young pups [13], deficits
in social behavior and working memory of adolescent offspring [12] and hypoanxious pheno-
type in young adults [14]. These studies support an idea that modulation of glial mGluR5
expression during development is one factor involved in the brain-related behavioral disorders
which are associated with inflammatory processes during development.

In this study, we demonstrated the similar [18F]FPEB binding in the adults which were
either prenatally exposed or not exposed to LPS, suggesting that prenatal treatment did not
influence mGluR5 expression in the adult mice. [18F]FPEB binding potential between adoles-
cent and adult mice prenatally exposed to saline solution was similar, proposing that mGluR5
expression is stable at PnD37. In the contrary, prenatally LPS-exposed adolescent mice showed
a lower level of [18F]FPEB binding than adult mice proposing an instability or incomplete mat-
uration in the expression of mGluR5 at the age of PnD37. The reason of this decrease is uncer-
tain, since mGluR5 is expressed in glial cells and in neurons [3] and many other physiological
parameters effect on mGluR5 expression during development (splice variant expression,
mRNA, protein modifications and regional expression) [55–57]. Our data supports the idea
that mGluR5 could be a target in the treatment of brain-related developmental disorders and
to diagnose neurodevelopmental abnormalities by imaging approaches.

hippocampus; Hth, hypothalamus; OB, olfactory bulb; PnD, postnatal day; Str, striatum; W, whole brain.
*p < 0.05, **p < 0.01 >>

doi:10.1371/journal.pone.0142093.g004
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Fig 5. Astrocytic marker was decreased in the brain of prenatally saline-exposed offspring, but not in the offspring prenatally exposed to LPS,
following pharmacological activation of mGluR5. A prenatal administration of LPS did not change the brain expression level of iba1, CD68, GFAP or
mGluR5 in 4-month-old mice (A). Postnatal CDPPB treatment reduced the GFAP level, without effect on iba1, CD68 or mGluR5 in the mice prenatally
exposed to saline solution. The quantified molecular markers did not change in the brain of mice treated with MTEP (B). No change in iba1, CD68, GFAP or
mGluR5 was observed in the brain of the mice prenatally exposed to LPS (C). Values are expressed as mean ± SEM. Abbreviations: MTEP, 3-((2-methyl-
4-thiazolyl)ethynyl)pyridine; CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide; CD68, cluster of differentiation 68); iba1, ionized calcium binding
adaptor molecule-1; GFAP, glial fibrillary acidic protein; mGluR5, metabotropic glutamate receptor subtype 5; ROD, relative optical density. **p < 0.01 >>

doi:10.1371/journal.pone.0142093.g005
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Table 1. Statistical values. The statistical methods used and obtained p-values in each treatment group and brain region.

Statistics U, T, F or W value / p value Statistics U, T, F or W value / p value

Fig 2. (FPEB quantification)

Brain panel A panel B

region Saline-exposed offspring (PnD37-39 vs PnD117-119) LPS-exposed offspring (PnD37-39 vs PnD117-119)

OB Paired T-test T (8) = 0.872 / p = 0.409 Paired T-test T (7) = 4.729 / p = 0.002

Ctx Paired T-test T (8) = 1.755 / p = 0.117 Paired T-test T (6) = 4.155 / p = 0.006

Hip Paired T-test T (9) = 1.183 / p = 0.267 Paired T-test T (6) = 3.984 / p = 0.007

Str Paired T-test T (8) = 2.848 / p = 0.022 Paired T-test T (6) = 5.823 / p = 0.001

Hth Paired T-test T (9) = 0.064 / p = 0.951 Paired T-test T (7) = 1.498 / p = 0.118

W Paired T-test T (8) = 2.629 / p = 0.030 Paired T-test T (7) = 4.044 / p = 0.005

Brain panel C panel D

region PnD37-39 (saline vs LPS prenatal exposition) PnD117-119 (saline vs LPS prenatal exposition)

OB Unpaired T-test T (15) = 1.562 / p = 0.139 Unpaired T-test T (23) = 1.234 / p = 0.230

Ctx Welch's correction T (11) = 1.856 / p = 0.090 Mann-Whitney Test U (180, 145) = 75.00 / p = 0.935

Hip Unpaired T-test T (15) = 2.001 / p = 0.064 Unpaired T-test T (23) = 0.396 / p = 0.696

Str Welch's correction T (10) = 2.500 / p = 0.031 Mann-Whitney Test U (198, 127) = 61.00 / p = 0.396

Hth Mann-Whitney Test U (100, 71) = 35.00 / p = 0.697 Welch's correction T (20) = 0.765 / p = 0.453

W Unpaired T-test T (15) = 2.251 / p = 0.040 Mann-Whitney Test U (188, 112) = 57.00 / p = 0.464

Fig 3. (FPEB binding potential)

Brain panel A panel B

region Effect of CDPPB in saline-exposed offspring (PnD117-119) Effect of CDPPB in LPS-exposed offspring (PnD117-119)

OB One sample t test T (10) = 0.437 / p = 0.671 One sample t test T (11) = 1.015 / p = 0.332

Crbl ——— ——— ——— ———

Ctx One sample t test T (10) = 1.580 / p = 0.145 One sample t test T (11) = 2.901 / p = 0.014

Hip One sample t test T (9) = 0.049 / p = 0.962 One sample t test T (11) = 2.888 / p = 0.015

Str One sample t test T (9) = 0.398 / p = 0.700 One sample t test T (11) = 1.496 / p = 0.163

Hth One sample t test T (10) = 0.813 / p = 0.435 One sample t test T (11) = 1.193 / p = 0.258

W One sample t test T (10) = 0.566 / p = 0.584 One sample t test T (11) = 1.037 / p = 0.322

Fig 4. (PBR quantification)

Brain panel A panel B

region Effect of CDPPB in saline-exposed offspring (PnD125-127) Effect of CDPPB in LPS-exposed offspring (PnD117-119)

OB One sample t test T (8) = 4.679 / p = 0.002 Wilcoxon signed rank W (30.00, -15.00) = 15.00 / p = 0.426

Crbl One sample t test T (8) = 3.114 / p = 0.014 One sample t test T (8) = 0.111 / p = 0.915

Ctx One sample t test T (8) = 1.438 / p = 0.188 Wilcoxon signed rank W (18.00, -18.00) = 0 / p = 1.000

Hip One sample t test T (8) = 3.126 / p = 0.014 One sample t test T (8) = 0.437 / p = 0.673

Str One sample t test T (8) = 3.352 / p = 0.010 One sample t test T (8) = 0.566 / p = 0.587

Hth One sample t test T (8) = 3.605 / p = 0.007 One sample t test T (8) = 0.144 / p = 0.889

W Wilcoxon signed rank W (5.00, -40.00) = -35.00 p = 0.039 One sample t test T (8) = 0.275 / p = 0.790

Fig 5. (Brain protein level)

Brain panel A panel B

protein Effect of prenatal treatment in brain protein level Effect of postnatal treatment in saline-exposed offspring

mGluR5 Mann Whitney test U (56,80) = 20.00 / p = 0.235 one-way ANOVA F (2, 20) = 2.769 / p = 0.087

CD68 One sample t test T (14) = 0.531 / p = 0.604 one-way ANOVA F (2, 21) = 0.217 / p = 0.807

iba1 One sample t test T (13) = 2.123 / p = 0.055 one-way ANOVA F (2, 20) = 0.364 / p = 0.754

GFAP One sample t test T (14) = 0.247 / p = 0.808 one-way ANOVA F (2, 19) = 6.841 / p = 0.006

Brain panel C

protein Effect of postnatal treatment in LPS-exposed offspring

mGluR5 one-way ANOVA F (2, 20) = 1.150 / p = 0.337

(Continued)
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mGluR5 activity effects on the level of PBR and GFAP in the brain. Our study clearly
demonstrated that mGluR5 activation induced by mGluR5 agonist, CDPPB decreased PBR level,
a marker of activated glial cells [7, 18] in many brain structures (Figs 4A and 5). This is the first
demonstration to show an interaction between these two proteins. To investigate cell type involved
in the downregulation of brain PBR, we have quantified by western blot different molecular mark-
ers, associated specifically with microglia or astrocyte in the whole brain of animals. GFAP is
expressed in astrocytes and its expression is increased in astroglial response [58, 59] whereas the
level of iba1 and CD68, two microglial proteins, increases in activated microglia [60]. We have
observed a lower level of GFAP following CDPPB treatment, without any change in microglial
markers. These results suggested that mGluR5 activity down-regulates PBR level in astrocytes.
Supporting active role of mGluR5 in astrocytes, D’ascenzo et al. showed that glutamatergic synap-
tic function activated mGluR5-dependent astrocytic Ca2+ oscillations and gliotransmission in the
nucleus accumbens of mice [11]. The anti-inflammatory action of PBR in astrocytes was previ-
ously demonstrated in a rat model of neuropathic pain [61]. In this model, authors demonstrated
that pharmacological activation of PBR in a rat model of neuropathic pain prevented GFAP over-
expression, reduced astroglial response and decreased the release of TNF-α, without change in
microglial markers [61]. In addition, they demonstrated the key role of PBR-dependent synthesis
of neurosteroid in the regulation of GFAP expression and astrocyte phenotype [61]. All the data
supports the idea that the regulation of PBR by mGluR5, as demonstrated in this study, is a key
metabolic pathway by which glutamatergic synaptic activity regulates astrocytic functions.

Absence of mGluR5 functional connection effects on PBR and GFAP markers in off-
spring prenatally exposed to LPS. We have observed that mGluR5 agonist treatment did not
change the level of GFAP and PBR in the offspring prenatally exposed to LPS, demonstrating
that the functional connection of mGluR5 is lost in this prenatal immune challenge model (Fig
5). We have previously reported in the same model a transient loss of NeuN (neuronal specific
nuclear protein), mGluR5 and GFAP (astrocytic marker) in the brain of the foetus exposed to
LPS, whereas the brain level of mGluR5 and TNF-α increased [13]. The level of these three
markers returned to baseline level at PnD10 [13]. One hypothesis to explain the uncoupling
link between mGluR5 and GFAP/PBR may be that the end of gestation can be a key period for
the development of inter-cellular link between astrocytes and neurons. The downregulation of
both neuron and astrocyte markers in foetal brain following maternal exposition to LPS in late
gestation supports this later [13]. The recoveries of these two cell-type markers at PnD10 were
partly explained by the very active neurogenic and gliogenic processes in late pregnancy [62].
However, these molecular recoveries did not exclude permanent subcellular abnormalities. A
delay in cell production could cause abnormal connections or reduce cell integration into the
network, and lead to abnormal behavioral phenotypes. Supporting this hypothesis, higher lev-
els of non aligned cells (PnD140-160) [63] and a poor arborization of neurons (PnD60) [64]
are reported in hippocampus of offspring prenatally exposed to LPS in late gestation. In addi-
tion, recent studies associated with mGluR5 and GABA receptors in different psychiatric disor-
ders [65], propose a potent modulatory function of mGluR5 in the excitatory/inhibitory
balance, suggesting that network activity could be modulated by mGluR5 activity.

Table 1. (Continued)

Statistics U, T, F or W value / p value Statistics U, T, F or W value / p value

CD68 one-way ANOVA F (2, 21) = 0.501 / p = 0.613

iba1 one-way ANOVA F (2, 20) = 2.119 / p = 0.727

GFAP one-way ANOVA F (2, 21) = 3.073 / p = 0.068

doi:10.1371/journal.pone.0142093.t001
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Prenatal immune challenges are models of psychiatric diseases in which a decrease in perfor-
mance of the brain network is suspected to be a key factor in the brain-related behavioral symp-
toms [54, 66]. Our study demonstrated a new downstream pathway of mGluR5 (PBR receptor),
known to modulate of astrocyte functions, but defective in the offspring prenatally exposed to
LPS. The disconnection of mGluR5-PBR pathway in astrocytes suggests a loss of sensitivity of
the astrocytes to detect glutamate, the main excitatory neurotransmitter in brain. This desensiti-
zation might impair the modulation of synaptic activity by astrocytes [64]. The lack of this
inter-cellular regulation might induce network failure, and consequently behavioral disorders.

Relevance to humans
Recently there has been a growing interest for mGluR5 targeted therapeutic approaches in sev-
eral central and peripheral diseases [64]. In schizophrenia, mGluR5 activators are known to
reduce the negative and positive symptoms [3, 67]. Among the suspected mechanisms, potenti-
ating of NMDA response by positive allosteric modulators (PAMs) [68] is suspected to
improve cognitive deficits of this disease [67] while the antipsychotic effects of PAMs could be
the consequence of the modulatory effect on the mesolimbic dopaminergic pathway [3], as sug-
gested by the decrease in the basal dopamine levels in the nucleus accumbens induced by
ADX47273 (mGluR5 PAM) [69]. In counterpart, many preclinical studies have reported an
anxiolytic effect of mGluR5 negative modulator [70–72] and these observations were sup-
ported by a clinical study using fenobam (negative allosteric modulator of mGluR5) [73, 74].
Our studies demonstrate that PET imaging using [18F]FPEB and [11C]PBR28 is a new and
non-invasive approach to evaluate in vivo how mGluR5 focused treatment can modulate PBR
signaling in astrocyte. The developed methods are easily translatable for human studies espe-
cially since the used PET imaging ligands are already in human use.

Methodologic limitations
The methodological limitation is that in vivo quantifications of PBR and mGluR5 are based on
the affinity and specificity of the radioactive ligands to bind the receptor. This technical limit is
valid for all quantifications based on an affinity approach, including the binding of ligand with
its receptor or the ability of an antibody to recognize a molecular structure. [18F]FPEB is devel-
oped from the 2-methyl-6-(phenylethynyl)pyridine (MPEP) scaffold and binds the same site as
MPEP in a fully competitive manner [75]. Many recent studies demonstrated that [18F]FPEB is
currently a ligand of choice to target mGluR5. Receptor autoradiography studies in tissue sec-
tions have confirmed that the regional distribution of [18F]FPEB in mammalian central ner-
vous system is consistent with that of mGluR5 [76]. All of these studies support [18F]FPEB as
an acceptable ligand to image mGluR5 in the brain. Concerning PBR28, recent in vivo studies
demonstrated that specific binding of [11C]PK11195, the most common radioactive ligand to
image PBR over the past 10 years, was approximately 80-fold lower than that reported for
[11C]PBR28 in monkey brain. Another important factor is the pharmacodynamics properties
of the compound. To bind brain receptor, a molecule must cross the blood brain barrier. Since
the brain permeability to [18F]FPEB and [11C]PBR28 was not investigated in normal mice and
mice prenatally exposed to LPS, we cannot exclude pharmacodynamic change. In summary,
the limitations of this study are not different from other studies.

Major conclusions

• The expression of inflammatory marker TSPO/PBR is linked to the activation of mGluR5 in
a mouse model of LPS prenatal immune challenge during maturation.
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• The mGluR5 modulates the astrocyte functions and this pathway is defective in offspring
prenatally exposed to LPS.

• The disconnection of mGluR5-PBR pathway in astrocytes suggests a loss of sensitivity of the
astrocytes to detect glutamate, which might impair the neuronal-astrocyte inter-cellular net-
work and consequently advance the development of behavioral disorders.
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