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Drying suspensions often leave behind complex patterns of particulates, as might
be seen in the coffee stains on a table. Here, we consider the dynamics of periodic
band or uniform solid film formation on a vertical plate suspended partially in a
drying colloidal solution. Direct observations allow us to visualize the dynamics of
band and film deposition, where both are made of multiple layers of close packed
particles. We further see that there is a transition between banding and filming when
the colloidal concentration is varied. A minimal theory of the liquid meniscus motion
along the plate reveals the dynamics of the banding and its transition to the filming
as a function of the ratio of deposition and evaporation rates. We also provide a
complementary multiphase model of colloids dissolved in the liquid, which couples
the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate
flows and the transition from a dilute suspension to a porous plug. This allows us
to determine the concentration dependence of the bandwidth and the deposition rate.
Together, our findings allow for the control of drying-induced patterning as a function
of the colloidal concentration and evaporation rate. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4930283]

I. INTRODUCTION

Colloidal self-organization occurs in systems such as opals,1 avian skin,2 photonics,3–5 and
tissue engineering.6 An approach to colloidal patterning is via evaporation-driven deposition of uni-
formly dispersed particles in a volatile liquid film.7–15 The basic mechanism of evaporation-driven
patterning involves vapor leaving the suspension more easily along the liquid-air-substrate triple
line (the contact line), resulting in a singular evaporative flux profile. The combination of the contact
line pinning and a singular evaporative flux generates a fluid flow that carries the dissolved particles
towards the edge of the film.10,11 The advected colloids then get arrested near the contact line to
form patterns such as continuous solid films, or regular bands,16–20 that are laid down along the sub-
strate. Variants of these experiments include evaporation in a capillary rise in a Hele-Shaw cell:21,22

by pumping the suspension out of the reservoir, the dynamics of deposition led to additional transi-
tions from periodic bands of multilayered colloidal packing to noncontinuous monolayer films.

In most of these studies, the propagation rate of the interface separating the liquid and the
colloidal deposit is controlled by the local particle concentration in the solution (Fig. 1(a)) and
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FIG. 1. Schematics of a drying suspension on a vertical substrate. (a) A schematic of the geometry and variable definitions for
banding on a vertical substrate. (b)–(e) The evolution of the meniscus deformation while leaving behind a colloidal deposit
and the corresponding variable definitions. Gray full line indicates the location of the solid-liquid interface, while the red
curves represent the local thickness of the solid deposit.

the velocity of the viscous capillary flow transporting the colloids. During this process, the liquid
meniscus pinned to the edge of the deposit deforms as a function of the rate of particle transport
and evaporation, in turn dictating the formation of either a continuous film or a periodic band
(Figs. 1(b)–1(e) and Figs. 2(a)–2(f)). As a result, the particles self-organize into various forms of
ordered and disordered states23 as a function of the deposition speed and the local evaporation
rate.8,24 An additional complexity is that the fluid flow regime changes dramatically over the course
of the drying process. Initially, we have flow in a thin film that is characterized by the Stokes regime
away from the deposition front where the particle concentration is low. Near the deposition front,
the liquid enters a porous region that is itself created by the particulate deposits at the solid-liquid
interface, leading to a Darcy regime. The interplay between evaporation-induced flow and the tran-
sition from the Stokes to the Darcy regimes in fluid flow requires a multiphase description of the
process such that the particle and liquid velocities can be different. Early models10–13,16,17,19,25–28

focused on understanding the singular evaporative flux and the related particulate flux, leaving
open mechanisms for the filming-banding transition, the deposition front speed that sets the rate of
patterning, and the Stokes-Darcy transition.

Here, we use a combination of experimental observations and theoretical models of the inter-
face growth and colloidal patterning to understand the dynamics of periodic banding, and its tran-
sition to the deposition of a continuous, close-packed multilayer film as a function of the particle
concentration. The assembly of these uniform films are evaporation driven and have direct applica-
tions as in the case of manufacturing inverse opals.7 In our setup, the motion of the liquid-deposit
interface and the overall meniscus deformation stems only from liquid evaporation. Based on our
observations, we formulate two complementary theories: (1) A coarse-grained two-stage model,
which consists of a hydrostatic stage until the meniscus touches down the substrate, followed by
rapid contact line motion terminated by its equilibration. This minimal model allows us to explain
the geometry of the periodic bands and the dynamics of their formation as a function of the depo-
sition rate. Previously, a static geometrical model was developed to explain the spacing between
adjacent bands and its weak dependence on the thickness of the colloidal bands.20 (2) A detailed
multiphase model of the drying, flowing suspension allows us to account for the Stokes-Darcy tran-
sition and couples the evaporation rate, fluid flow, the meniscus height, the distribution of particle
concentration, and the dynamic interface velocity as a function of the initial particle concentration.
This theory leads to explicit predictions for the deposition rate and the banding-filming transition in
good quantitative agreement with the measurements.

The present study is organized as follows: Experiments are described in Sec. II. Based on exper-
imental evidence, we develop the minimal two-stage model in Sec. III. This model is complemented
by the multiphase model in Sec. IV. Concluding remarks are given in the final section of the paper.
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FIG. 2. Periodic bands and uniform films of colloidal deposits on a silicon substrate placed vertically, as a function of
the colloidal volume fraction (375 nm PMMA spheres, evaporation at 65 ◦C). The volume fraction of colloids inside the
suspension are (a) Φb = 8×10−6, (b) Φb = 2×10−5, (c) Φb = 6×10−5, (d) Φb = 1.6×10−4, (e) Φb = 2.4×10−4, and (f)
Φb = 4×10−4 (uniform film). In (a)–(f), the scale bars are 200 µm. (g) Band spacing d (■) and bandwidth ∆d (◦) are
plotted with their error bars, as a function of the colloidal volume fraction. The wavelength is given by d+∆d. (h) Layer
number is plotted as a function of the colloidal volume fraction.

II. EXPERIMENTS

A. Methods

Our experiments were performed by partly immersing a vertical unpatterned silicon and glass
substrates in a dilute colloidal suspension of colloidal spheres (see Fig. 1(a) for the schematics
of the experimental setup). Silicon (Figs. 2 and 3) and glass substrates (Fig. 4) were used for
evaporative colloidal coating. They were first cleaned in a mixture of sulfuric acid and hydrogen
peroxide (3:1) at 80 ◦C for 1 h. They were then rinsed with deionized water thoroughly and treated
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FIG. 3. Periodic bands on a silicon substrate left behind a drying dilute suspension (Φb = 6×10−5, 375 nm PMMA spheres,
evaporation at 65 ◦C). (a) and (b) Optical micrographs show periodic bands at different magnifications ((a) scale bar: 1 mm,
(b) scale bar: 200 µm). The vertical arrow in (a) indicates the direction of meniscus movement during evaporation. (c)
Optical image of a single band (scale bar: 40 µm). The profile of the band is asymmetric with significant differences between
the advancing (gradual transition to a thicker layer and ordered packing) and receding side (abrupt transition and random
packing). (d)–(f) SEM images at different locations of the colloidal deposit in (c) (scale bar: 2 µm). (g) Cross-sectional
profile of the band shown in (c). Position z is scaled with the width of the band ∆d. The meniscus moves from left to right.

with oxygen plasma for 1 min immediately before use. Colloidal particles were either synthesized
(375 nm PMMA spheres, used in Figs. 2 and 3 and Movie S229) by using surfactant-free emulsion
polymerization30 or purchased from Life Technologies (1 µm latex spheres, used in Fig. 4 and
Movies S1 and S329). Before the evaporative deposition, particles were centrifuged four times and
were re-dispersed in deionized water. The substrate was mounted vertically and immersed partially
in a vial containing the colloidal suspension. Water was evaporated slowly over a period of ∼12 h to
2 d in an oven that was placed on a vibration-free table. The solvent evaporation rate was controlled
by the temperature of the oven (20 ◦C to 70 ◦C) and was measured by putting a second vial filled
with colloidal suspension but without the substrate. The colloidal volume fraction was measured
by taking 1 ml of particle suspension and comparing its initial weight with the weight after the
solvent has fully evaporated. To measure the critical volume fraction Φc at the transition from
banding to filming, a series of vials with various particle concentrations was placed in the oven at
the same experimental conditions (e.g., contact angle of the substrate and evaporation rate). Then,
Φc was identified for the sample with the lowest volume fraction where periodic bands did not
form. Images of the band structures and colloidal packing were taken by both optical microscopy
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FIG. 4. Real-time observations of periodic banding (Φb = 6×10−4,1 µm latex particles, evaporation at 20 ◦C). (a)–(d) A
sequence of snapshots shows the meniscus break-up and the subsequent contact line motion during the formation of a
new band on a vertical glass substrate in a suspension (scale bar: 20 µm). (e) A close-up of the red box in (a) shows the
interference fringes associated with the meniscus approaching the substrate (scale bar: 20 µm). (f) The meniscus profile
h(z, t) at t − tc =−1.6,0.3,4.3 s (respectively, blue, red, and magenta) extracted from the interference patterns, along the
black dashed line in (e). The critical time of meniscus touchdown is denoted by tc. The frames in (a)–(e) are extracted from
Movie S3.29

(Leica DMRX) and scanning electron microscopy (SEM) (Zeiss Ultra). A custom-built side view
microscope (Olympus BX) was also used to image the in situ movement of meniscus and colloids
(1 µm latex particles) during the band formation on glass substrates, as shown in Fig. 4 and Movies
S1 and S3.29

B. Results and discussion

As evaporation proceeds, two types of patterns are observed near the contact line. When
the bulk volume fraction Φb inside the reservoir is bigger than a critical value Φc, a continuous
film of particles was deposited by the receding contact line (Fig. 2(f) and Movie S129). However,
when Φb < Φc, the contact line retreated leaving behind a periodic pattern of colloidal bands
(Figs. 2(a)–2(e), Figs. 3(a) and 3(b), and Movie S229). The bands are oriented locally parallel to
the receding contact line; the small curvature of each band in Fig. 3(a) results from the finite size
of the substrate. In Fig. 2(g), we show the values of the width ∆d of a single band and the spacing
between adjacent bands d, against Φb. The transition from continuous films to periodic bands when
Φb is lowered was also observed in evaporating suspensions of 0.1 µm silica spheres in pure water
or ethanol.20

High magnification optical images of a typical colloidal band (Fig. 3(c)) show a range of inter-
ference colors that correspond to deposits with 1 (magenta), 2 (green), and 3 (orange) particle layers
at Φb = 6 × 10−5. The deposits have a strongly asymmetric cross-sectional shape, as evidenced by
scanning electron microscopy (SEM): as the meniscus recedes, gradual deposition of wide, well
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ordered colloidal layers takes place (Figs. 3(d) and 3(e)). When the band stops, a region of randomly
packed particles with a sharp deposition front terminates the colloidal band left behind the moving
liquid meniscus (Fig. 3(f)). In this region that is only a few particles wide, the packing is disordered
(Fig. 3(f)). The transition from the ordered to the disordered packings is attributed to the rapidity
of flow at the end of a deposition cycle, not leaving time for the colloids to anneal into an ordered
structure.8 Once a deposition cycle is complete, the resulting cross-sectional profile of the deposit
at Φb = 6 × 10−5 is shown in Fig. 3(g). The number of maximum layers increases as a function
of Φb, as demonstrated in Fig. 2(h). The asymmetry of the deposit profiles has previously been
observed.19,20 In Ref. 20, the layer number was found to be systematically higher than the values
presented in Fig. 2(h) for a given Φb, since the particle size was smaller than the ones used here.

Light microscopy study allows us to monitor the movement of the meniscus imposed by the
evaporation. Figs. 4(a)–4(d) and Movie S329 show that while the deposition front advances, the
meniscus approaches the substrate, as evidenced by the emerging skewed interference rings behind
the contact line (Fig. 4(e)). Once the meniscus touches the bare substrate and dewets, it breaks up
and separates into two moving dynamic contact lines (Fig. 4(b)). One of these retreats towards the
just formed colloidal band (Fig. 4(c)), which wicks the fluid, dries, and changes its optical contrast
(Fig. 4(d)), while the other contact line slips until its dynamic contact angle θD re-equilibrates on
the substrate over a time scale TD (see Table I). Colloidal particles then flow towards the stabilized
contact line and start to build a new band at that location. Interference patterns allow us to measure
the height of the fluid film from the substrate, as shown in Fig. 4(f) in the frame of the deposit-liquid
interface.

To explain the experimental results, we must account for the dynamics of meniscus deforma-
tion and break-up, the subsequent receding of the contact line, the role of particulate flow, and the
transition from a dilute to a dense suspension in the vicinity of the deposition front. Thus, we first
build a minimal model of the periodic banding and uniform filming, and then complement it with a
multiphase approach.

III. MINIMAL MODEL FOR BANDING AND FILMING

To quantify the dynamics of the filming-banding transition and the deposit height as a function
of the relative magnitude of evaporation and particle deposition rates, we must account for the
kinetic effects associated with the meniscus deformation, break-up, and the subsequent contact
line motion. Thus, we first develop a minimal hydrostatic model of the periodic band formation.
This model also explains the termination of each band by a sharp deposition front, as observed
in experiments. Although the meniscus break-up starts as a localized event below the maximum
of the forming, convex band (see Fig. 4), it then spreads laterally across the plate, resulting in a
well-defined periodic banding pattern (see Figs. 3(a) and 3(b)). Therefore, we will limit ourselves to
shapes and motions in a two-dimensional x − z plane (Fig. 1).

The liquid meniscus deforms hydrostatically when the capillary forces, proportional to the sur-
face tension γ of the liquid-air interface, dominate over the viscous hydrodynamic forces µv f . Here,

TABLE I. Quantitative comparison of structural variables between the experiments and theoretical models. The measure-
ments in the experiments were obtained for the bulk colloidal volume fraction Φb ∼ 10−4, referring to the data from Fig. 2.
The bulk evaporation rate in the reservoir is E0∼ 10−6 m/s for water in atmospheric pressure and room temperature. For
Φb ≈ 6×10−4, the deposition height is H ∼ 1 µm. The outputs of the minimal model correspond to ϵ =H/ℓ = 0.01 (Table II)
and the dimensionless deposition rate β ≡C/E0= 0.3. The results of the multiphase model are given for ϵ = 0.01 and
Φb = 2×10−3. The wavelength is given by d+∆d.

Bandwidth
∆d (µm)

Spacing
d (µm)

Period
T (s)

θe restoration
time TD (s)

The deposition
speed C (m/s)

Critical concentration
Φc

Experiment 70 100 500 10 <E0 3.2 ± 0.8 × 10−4

Minimal model 100 150 200 6 0.3E0 . . .
Multiphase model 55 . . . 200 . . . 0.3E0 6.8 × 10−3
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TABLE II. List of parameters. Length scales, time scales, and dimension-
less numbers (above), and auxiliary physical parameters (below).

Parameter Definition Magnitude

ℓ ≡
√

2ℓcap Length scale ∼10−3 m
ℓcap≡


γ/ρg Capillary length ∼10−3 m

τ ≡H/E0 Time scale 1 – 10 s
ϵ ≡H/ℓ Aspect ratio 10−2

Ca≡ µE0/γ Capillary number ∼10−8

Pe≡ E0ℓ/Ds Péclet number 102

ν ≡H/

kµ Scaled deposit thickness 1

α ≡ ϵ3/ν3Ca Scaled inverse capillary number 102

γ Surface tension 0.1 N/m
ρ Density of water 103 kg/m3

g Gravitational constant 10 m/s2

H Deposit thickness 10−6 – 10−5 m
E0 Evaporation rate 10−6 m/s
µ Dynamic viscosity of water 10−3 Pa s
Ds Diffusion constant 10−11 m2/s
k Permeability 10−9 – 10−7 m2/Pa s

µ is the dynamic viscosity of the liquid, and v f is its evaporation-induced upward flow velocity in
the vicinity of the substrate. Away from the far edge of the deposit on the plate, v f is in the order
of E0, the evaporation rate at the level of the bath. The condition for quasistatic meniscus evolution
then becomes Ca ≡ µE0/γ ≪ 1, where Ca is the capillary number (Table II). In this regime, the
diverging evaporative flux at the contact line alters solely v f near the singularity; it has no effect
on the overall meniscus evolution. Then, the hydrostatic meniscus profile h(z, t) is determined by
the equilibrium condition p = p0, where p0 is the atmospheric pressure, and the pressure p at the
meniscus is given by

p = −γκ − ρg [z − L(t)] + p0. (1)

Here, κ ≡ ∂ (sin θ) /∂z is the curvature of the liquid-air interface, where the local angle θ = θ(z)
is defined as tan θ ≡ ∂h/∂z, the density of the suspension is denoted by ρ, and the gravitational
acceleration by g.

The dynamics of the meniscus deformation is driven by two processes that act simultaneously.
First, evaporation-induced flow results in the deposition of the solute near the contact line with a
speed C(Φb, t), moving the liquid-deposit wall where the meniscus is attached (Fig. 1(a)). Second,
the level of fluid inside the container descends with a constant speed E0 (Fig. 1(a)). Defining
L ≡ L(t) as the distance between the vertical level of the bath and the deposition front (Fig. 1(a)),
which move relative to each other, L(t) changes at a rate given by

dL
dt
= E0 − C, E0,C > 0. (2)

When the bulk volume fraction is smaller than the critical volume fraction (Φb < Φc), the depo-
sition happens slower than the descent of the liquid level inside the bath (C < E0) and L(t) in-
creases over time (dL/dt > 0). As the evolving L(t) changes the curvature of the concave meniscus
due to the gravity when p = p0 (see Eq. (1)), the dynamic contact angle θe(t) becomes smaller
than the equilibrium contact angle θe,0, and decreases monotonically in time (dθe/dt < 0, see
Figs. 1(b)–1(e)). Then, the meniscus touches down on the substrate at a location zc behind the depo-
sition front (Fig. 1(e)). This causes the meniscus to break to form two contact lines, one that moves
towards the deposit and another that recedes rapidly until it eventually re-equilibrates at a distance
where the contact angle regains its equilibrium value θe,0. As the process repeats, periodic bands are
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formed. Conversely, when Φb > Φc, C > E0, so that dL/dt < 0. Then, θe > θe,0 and dθe/dt > 0, so
that the meniscus moves away the plate everywhere and a continuous deposition film will be laid
out by the deposition front in this regime. The transition between the banding and filming happens
at Φb = Φc where the evaporation and deposition speeds are matched, i.e., E0 = C(Φc). In this case,
the size of the domain will always be equal to its equilibrium value L = L0.

In the frame comoving with the deposit-liquid wall at a dimensionless deposition speed β ≡
C/E0, the wall is always at z = 0 (Fig. 1(a)), where θ = θe(t) (Fig. 1(c)). In order to calculate the
height of the fluid film h(z, t), Eq. (1) needs two boundary conditions: (i) ∂h/∂z → ∞ at z = L(t)
and (ii) h(z = 0, t) = hi(t) in the moving frame, where hi(t) is the time dependent height of the
solid-liquid interface (Fig. 1(d)). In the rest frame, hi satisfies ∂hi/∂t = 0, since the deposit is
assumed to be incompressible. In dimensional units, this condition is rewritten in the moving frame
as

∂h
∂t
= C

∂h
∂z

����z=0
. (3)

Eq. (3) satisfies the local conservation of the solute mass when the particle concentration at the
interface is a slowly varying function in space and time.

We describe our model in dimensionless units for convenience, indicated using tildes, by
z ≡ ℓ z̃, h ≡ Hh̃, L ≡ ℓL̃, and t ≡ τt̃ (see Table II for the definition of ℓ,H , and τ). Using the bound-
ary condition ∂ h̃/∂ z̃ → ∞ at z̃ = L̃(t̃) (equivalent to θ → π/2), dropping the tildes, and integrating
the dimensionless form of Eq. (1) when p = p0 yields the first-order equation

sin θ = 1 − (z − L)2, where θ = tan−1
(
ϵ
∂h
∂z

)
. (4)

Similarly, Eq. (2) in dimensionless units may be written as

dL
dt
= ϵ(1 − β), (5)

where ϵ ≡ H/ℓ (Table II) and the dimensionless deposition speed is β ≡ C/E0. From Eq. (4), the
distance between the deposition front at z = 0 and the liquid level inside the bath is obtained as
L(t) = 

1 − sin θe(t). The time evolution of L(t) is determined by imposing its equilibrium size
as the initial condition, which is given by L0 ≡ L(0) = 

1 − sin θe,0.31 In dimensionless units, the
boundary condition given in Eq. (3) is rewritten in the moving frame as

∂h
∂t
= ϵ β

∂h
∂z

����z=0
. (6)

In the banding regime, Eqs. (4)–(6) determine altogether the meniscus touch-down location
zc ≡ L(tc) − 1 (tc is the instant of touch-down), which is followed by the formation of two contact
lines with vanishing contact angles. For simplicity, here we neglect the effect of disjoining pressure
which may result in a finite contact angle at the meniscus break-up. Unless the substrate is perfectly
wetting (when θe,0 = 0), these contact lines are out of equilibrium and so start to move with a
velocity U; one runs into the porous deposit, while the other moves with a dynamic contact angle θD
until it is restored to its equilibrium value θD = θe,0. For a dynamic contact line with θe,0 ≪ 1, the
velocity is given by31–33

U =
U∗

6ξ
θD(θ2

e,0 − θ
2
D), (7)

where U∗ ≡ γ/µ (U∗ ∼ 70 m/s in water) and ξ ≡ log(ℓ/a) ∼ 5 is a dimensionless constant, with a ≡
b/θa (logarithmic cutoff). Here, b is the slip length with a molecular size and θa is the apparent
contact angle, measured at x = a31,32 (b ∼ 10−10 m, θa ∼ 10−5 which is extracted below, then a ∼
10−5 m and thus ξ ∼ 5). The travel time of the dynamic contact line TD can be roughly estimated
as follows: When θe,0 ≈ 15◦ and θD ≪ θe,0, assuming that the distance dD traveled by the contact
line is nearly equal to the spacing between adjacent bands, TD ≈ dD/U ≈ 100 µm/(U∗θDθ2

e,0/6ξ) ∼
0.1 s, where we have assumed θD ∼ 1◦. Eq. (7) is evaluated more precisely by assuming a wedge-
shaped liquid border such that h = xθD (i.e., κ = 0).31 Assuming θe,0 ≫ θa and using ξ ≡ log(ℓθa/b),
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FIG. 5. Minimal model of periodic band and uniform film formation. (a) After a time period T , a single band has formed
with the width ∆d (projected length of the deposit shown by the red curve), spacing d (turquoise line), and the maximum
deposition height hmax (green line). The left-over tail of the receding meniscus is demonstrated by the black dashed line (ℓcap
is the capillary length, see Table II). The scaled dependence of (b) the period T , and (c) the maximum band height hmax
(green line in (a)), (d) the bandwidth ∆d, and (e) the spacing between bands d on the dimensionless deposition front speed
β ≡C/E0, where τ ≡H/E0 is the time scale (Table II). All curves in (a)–(e) are numerical solutions to the Eqs. (4)–(7) with
ϵ = 0.01, β = 0.3, θe,0= 15◦.

θD = θa at t = tc is extracted numerically from Eq. (7) by replacing U with E0, as the velocity of the
contact line at the meniscus touchdown will be equal to the rate of decrease of the liquid level inside
the container. Then, the distance d and time TD at which the contact line travels from the instant of
break-up (t = tc ≡ t(θa)) to the moment of re-equilibration at θD = θe,0 are given by dD =

 t(θe,0)
t(θa) Udt

and TD =
 t(θe,0)
t(θa) dt, respectively. In the frame of the contact line, local mass conservation at x = a

yields

a
dθD
dt
− θDU = 0. (8)

Defining dD ≡ ℓd̃D, a ≡ ℓã, TD ≡ τT̃D, U ≡ ŨU∗/6ξ, and dropping the tildes of the dimensionless
quantities, Eq. (8) gives the following dimensionless travel distance and time of the contact line:

dD = a
 θe,0

θa

dθD
θD

and TD =
aA
ϵ

 θe,0

θa

dθD
UθD

, (9)

where A ≡ 6ξE0/U∗ ∼ 5 × 10−7. Then, the spacing between two adjacent bands is given by d =
dS + dD. The length dS of the static left-over tail of the meniscus forms when the meniscus touches
down and leaves behind a small fluid tail (shown by the dashed curve in Fig. 5(a)). This tail
evaporates completely over time and its length contributes to the band spacing d. Substituting the
numerical values into Eq. (9) and switching back to real units, the travel distance and time of the
contact line are found as dD ∼ 100 µm and TD ∼ 6 s, in good agreement with experiments (Table I).
The difference in the precise value of TD with the rough estimation of TD ∼ 0.1 s is due to the fact
that the contact line spends a lot of time to increase its speed when θD ∼ θa, as there is a singularity
at θD = 0 in Eq. (7).31–33
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Although the time TD and the length dD compare well to measurements, Eqs. (7) and (8) do
not fully capture the dynamics of contact line motion at early times. To see this, we note from
Fig. 4(f) that the contact line speed following break-up and close to equilibration is at the same
order. However, when θD ≪ θe,0 at early times, the combination of Eq. (7) and local mass conser-
vation at x = a yields dU/dt = U2/a, which implies that the initial growth of the speed shows a
power law behavior. A more detailed theory34–37 that accounts for the transient behavior of the
meniscus profile, its curvature, and viscous dissipation would clearly resolve this, but would make
the problem formulation more complex than the simple picture outlined here.

Given the ratio of the deposition front speed to the evaporation rate β = C/E0, the height of
the fluid film h(z, t) until touch-down is calculated by solving Eq. (4) subject to the boundary
condition in Eq. (6), while the dynamics of L is obtained by solving Eq. (5). Once the meniscus
touches the substrate, a single band with a width ∆d has formed (Fig. 1(e)). From that instant on, the
dynamics of the contact line is governed by Eq. (7) until θD = θe,0, resulting in a spacing d between
bands. When contact line motion ceases at θD = θe,0, one cycle is complete. The resulting shape
of the band, the associated structural quantities, and the instantaneous meniscus profile are shown
in Fig. 5(a). Our model also predicts the termination of the band by a sharp front as observed in
experiments, since the deposition growth vanishes when the meniscus breaks up.

Our minimal theory of banding is in quantitative agreement with experiments, for example,
β ∼ 0.3 (Table I). Furthermore, we show the dependence of T, hmax, and ∆d in Figs. 5(b)–5(d) for
the range of β between 0 and 1, which diverge when β → 1. To investigate the scaling behavior of
these quantities when β → 1, we first integrate Eq. (5), which yields L(t) as

L(t) = L0 + ϵ(1 − β)t. (10)

At t = tc ≡ T − TD, the critical time of meniscus touchdown, L(t), should always stay finite as a
function of β. This leads to the scaling form of tc,

lim
β→1

tc ∼ (1 − β)−1, (11)

such that when β → 1, L(tc) > L0 and is finite. Thus, T also diverges with (1 − β)−1. Similarly, the
bandwidth is given by ∆d = ϵ βtc, which, when β → 1, leads to

lim
β→1
∆d ∼ ϵ β(1 − β)−1. (12)

In the limit β → 1, we can derive a scaling relation for the maximum band height hmax as well.
While a single band is forming around hmax, θe ≈ ϵ∂h/∂z ≪ 1. Then evaluating Eq. (4) in this limit,
and substituting the result in Eq. (6) at z = 0 in the moving frame, we obtain the interface condition,

∂h
∂t

����h=hmax
= βθe(t), where θe(t) = 1 − L2(t). (13)

Integrating Eq. (13) over time, and in the limit β → 1, we obtain

hmax ∼ (1 − β)−1. (14)

That is, as β → 1, the time instant at which hmax forms should scale again with t ∼ (1 − β)−1.
Eqs. (11), (12), and (14) manifest a continuous transition between the formation of uniform

solid deposits and periodic bands. However, the spacing between bands d, shown in Fig. 5(e),
depends only weakly on β, a consequence of the fact that this is controlled solely by the left-over
fluid tail (the dashed line in Fig. 5(a)) when the meniscus touches down. A weak dependence of
band spacing on β, and thus Φb, is also measured in experiments (Fig. 2(g)), which qualitatively
shows the same trend as in Fig. 5(e). Similarly, a weak dependence of the band spacing on the
number of layers in the colloidal deposit and in turn on Φb was measured in Ref. 20.

This minimal model captures the essential features of banding and filming, as well as relevant
time and length scales. However, this can only be done in terms of the dimensionless deposition
rate β = E0/C, which is a free parameter. Therefore, a more sophisticated model is required to
determine the dependence of the front propagation speed C = C(Φb, t) on the bulk volume fraction
Φb and thence β. This will further allow the determination of the bandwidth ∆d as a function of Φb,
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as well as the experimentally observed concentration Φc associated with the transition between the
two patterns.

IV. MULTIPHASE FLOW MODEL FOR BANDING AND FILMING

To determine β = C(Φb, t)/E0 and the bandwidth ∆d in terms of the bulk volume fraction Φb,
as well as the critical concentration Φc at the banding–filming transition, we develop a multiphase
flow model of colloids dissolved in a container of liquid. This approach couples the inhomogeneous
evaporation at the meniscus and the height of the deposit to the dynamics inside the suspension, i.e.,
the fluid flow and the particle advection. An essential component of this dynamics is the change
in the particulate flow from the Stokes regime at low colloidal concentrations away from the depo-
sition front to a porous flow characterized by the Darcy regime in the vicinity of the deposition
front. The porous region is itself created by the particle advection towards the contact line as the
suspension turns first to a slurry and eventually a porous plug over the course of drying.

In a meniscus that forms on a vertical plate dipped in a suspension or liquid, there exist
two qualitatively different flow regimes when evaporation is present.38,39 Near the contact line,
the thickness of the liquid film is much smaller than its lengthwise dimension. In this regime (I
in Fig. 6(a)), there is a capillary-driven viscous shear flow which extends partially into the bulk
solution and compensates for the liquid lost by evaporation. In the bulk of the liquid, the meniscus
thickness tends to infinity towards the level of the bath. In this region (II in Fig. 6(a)), there is a
recirculation flow where the transverse component of the flow is dominant.38,39 These two regions
are separated by a stagnation curve which terminates at a surface stagnation point h(R),R < L on
the liquid air-interface. For small capillary numbers Ca ≪ 1 (Table II), we suppose that in region
II, namely, between R and L, the distortion of the fluid-air interface due to the recirculating fluid
flow is negligible, resulting in a local hydrostatic profile. This may be justified using the method of
matched expansions for Ca ≪ 1.40 Thus, the value h(R) of the meniscus height h(z, t) is determined
by hydrostatics at z = R (see Eq. (4)).

For h(R) ≪ ℓcap, the viscous forces in the z–direction are balanced by the pressure gradi-
ents along the slender film in the domain z ∈ [0,R] (region I), and the forces in the transverse
direction are negligible. This simplification of the Navier-Stokes equations is known as the lubri-
cation approximation.41 In this limit, the problem becomes one dimensional by averaging the
local particle volume fraction φ(x, z, t), local solute velocity vs(x, z, t), and local solvent veloc-
ity v f (x, z, t) over the meniscus height h(z, t). Then, the depth-averaged solute volume fraction
is given by Φ(z, t) ≡ h−1

 h

0 φ(x, z, t)dx, the depth-averaged solvent volume fraction is 1 − Φ(z, t),
the depth-averaged solute velocity Vs ≡ h−1

 h

0 vs(x, z, t)dx, and the depth-averaged liquid velocity
Vf ≡ h−1

 h

0 v f (x, z, t)dx. Furthermore, we assume that the deposition front speed C(t) only varies
temporally, whereas the evaporation rate is a function of space alone, i.e., E = E(z). In a frame
comoving with the deposition front, the depth-averaged equations of local mass conservation for the
fluid and solvent are

∂

∂t
[(1 − Φ)h] + ∂

∂z
�(1 − Φ)h �Vf − C

��
= −E(z)


1 + (∂zh)2, (15)

∂

∂t
[Φh] + ∂

∂z
[Φh (Vs − C)] = ∂

∂z


Dsh

∂Φ

∂z


, (16)

where Ds is the diffusion constant of the solute (Table II). In Eq. (15), we note the presence of an
evaporative sink on the right-hand side, with E(z) = E0/


z/ℓ + ∆d(t) being the singular functional

form of the local evaporation rate along the meniscus.10,11 Here, ∆d(t) is the distance of the wall
from the edge of the deposit at a given instant, so that the position of the far edge is given by
zd = −∆d(t) in the moving frame. In Eq. (16), we note the right side associated with the diffusion
of particles (that prevents the formation of an infinitely sharp deposition front); experiments suggest
that diffusion is dominated by advection,15,22 so that the Péclet number Pe ≡ E0ℓ/Ds ≫ 1 (Table II).
In addition to the dimensionless quantities introduced in the minimal model of Sec. III, we now
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FIG. 6. Multiphase model for deposition on a vertical plate in a suspension. (a) Schematic of the meniscus on the substrate
(dark gray). The stagnation point (black dot) lies at the coordinate (R,h(R)). The stagnation line (red dashed curve) divides
the domain into two flow regimes: (I) capillary-driven viscous shear flow and (II) recirculation flow. The light gray arrows
indicate the evaporation profile. (b) and (c) The meniscus height h(z, t) in the moving frame of the deposition interface for
small and large initial colloidal concentrations, in the domain z ∈ [0,R], as shown by the red rectangle in (a). (d) and (e) The
evolution of the depth-averaged colloidal concentrationΦ(z, t) corresponding to (b) and (c), respectively. These results follow
from Eqs. (4), (17), (18), and (21), subject to the boundary conditions given by Eqs. (22)–(24) at z = R and Eqs. (26)–(28) at
z = 0. In (b)–(e), the grayscale changes from dark to light with increasing time.

define the additional dimensionless numbers α ≡ ϵ3/ν3Ca and ν ≡ H/


kµ, where k is the perme-
ability of the porous plug (Table II). The dimensionless evaporation rate is given by Ẽ(z) ≡ E(z)/E0.
Then, dropping the tildes, Eqs. (15) and (16) in dimensionless form are rewritten as

∂

∂t
[(1 − Φ)h] + ∂

∂z
�(1 − Φ)h �αVf − ϵ β

��
= −E(z)


1 + (ϵ∂zh)2, (17)

∂

∂t
[Φh] + ∂

∂z
[Φh (αVs − ϵ β)] = ∂

∂z


Pe−1ϵh

∂Φ

∂z


. (18)

To complete the formulation of the problem, we need to determine the fluid and particle velocities.
In the bulk of the fluid where Φ = Φb ≪ 1, the solute and solvent velocities should match (Vs ≈ Vf ),
as the particles are advected by the fluid. Beyond the deposition front, the solute velocity Vs must
vanish as with Φ → Φ0, the maximum packing fraction corresponding to the close packing of
particles (Φ0 ≈ 0.74 for hexagonal packing in three dimensions). Given that the two limits of Stokes
flow and Darcy flow are both linear, to correctly account for both limits and calculate Vf and Vs,
first we need to determine the depth-dependent velocities v f and vs. As the particles accumulate
near the contact line, the resulting deposit will serve as a porous medium for the fluid. Then, in the
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lubrication limit, for slender geometries, the transition from the Stokes regime for dilute suspen-
sions (Φ ≪ 1) to Darcy flow through porous medium (Φ ≃ Φ0) is governed by the Darcy-Brinkman
equation42

∂p
∂z
= µ

∂2v f

∂x2 −
�
v f − vs

�
/k, (19)

where the pressure p is given by Eq. (1). When the drag term vanishes (vs = v f ), Eq. (19) reduces
to the usual lubrication balance between pressure gradient and the depth-wise shear gradients. In
the limit when the particle velocity vanishes and the fluid velocity gradients are dominated by shear
against the particles that form a porous plug, we recover the Darcy limit. Since the particle velocity
will become vanishingly small as their packing fraction approaches the close-packing limit, this
suggests a simple closure of Eqs. (17) and (18) vs =


1 − (Φ/Φ0)Γ


v f ,43 which is also valid for

the depth-averaged velocities Vf and Vs. Here, the exponent Γ controls the slope of the crossover
between the two regimes. In combination with the functional relation between v f and vs, Eq. (19)
can be solved analytically, subject to the stress-free and no-slip boundary conditions ∂v/∂x |x=h = 0
and v(x = 0, t) = 0. Then, the depth-averaged speeds are obtained as

Vf =
1

a3µh
∂p
∂z

(tanh ah − ah) , Vs =
�
1 − a2µk

�
Vf , (20)

where a2 ≡ (µk)−1(Φ/Φ0)Γ, with 1/a being the effective pore size. When a → 0 (namely, Φ → 0),
Eq. (20) reduces to the Stokes expression for the depth-averaged velocity, while when a ≫ 1 and
Φ → Φ0, we recover the Darcy limit. Defining Vs, f ≡ (ϵ2γ/µν3)Ṽs, f and dropping the tildes from the
dimensionless velocities Ṽs, f , Eq. (19) becomes

ν3∂p
∂z
=

∂2Vf

∂x2 −
(
Φ

Φ∗

)Γ
Vf , Φ∗ ≡ Φ0

(
kµ
H2

)1/Γ

, (21)

in dimensionless units. Here, Φ∗ is a characteristic scaled volume fraction of the colloids, at which
the Stokes-Darcy transition occurs; we note that this occurs before Φ = Φ0, the close packing
fraction, i.e., when the colloids are still mobile.43

The coupled sixth order system of Eq. (1) in dimensionless form, Eqs. (17), (18), and (21)
constitutes a boundary-value problem and requires the specification of seven boundary conditions in
order to find the height of the free surface h(z, t), the particle (and fluid) volume fraction Φ(z, t), and
the deposition rate β. The first boundary condition is given by Eq. (4) evaluated at z = R,

sin θ
�
z=R
= 1 − (R − L)2. (22)

The second and third boundary conditions at z = R are given by

p = p0, (23)

(see Eq. (1)), and

Φ = Φb. (24)

Eq. (22) and (23) are the consequence of the liquid-air interface deformations beyond R being
hydrostatic. Eq. (24) follows from the fact that Φ must converge to the bulk volume fraction Φb

sufficiently away from the solid-liquid wall.
At z = 0, the solute flux should satisfy the continuity condition across the deposition front,

which is given by

Φh (αVs − ϵ β) − Pe−1ϵh
∂Φ

∂z
= −ϵ βΦ0h, (25)

in the frame moving with speed β. The left-hand side of Eq. (25) is the flux of colloids at the liquid
side of the interface. As the colloids are arrested inside the deposit, the solute flux vanishes as given
by the right-hand side. Eq. (25) then yields the deposition rate

β(t) = 1
ϵ(Φ − Φ0)

(
αΦVs − Pe−1ϵ

∂Φ

∂z

)
. (26)
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FIG. 7. Multiphase model for deposition on a vertical plate in a suspension (continued). For ϵ = 0.01 and θe,0= 15◦, (a) the
deposition rate β(t) and (b) the length of the domain L(tc) between the interface and the level of the container at the time of
the meniscus break-up tc. These results follow from Eqs. (4), (17), (18), and (21), subject to the boundary conditions given
by Eqs. (22)–(24) at z = R and Eqs. (26)–(28) at z = 0. The lines in (a) and (b) correspond to Φb ∈

�
3×10−4∪

�
10−3,0.01

�	

increasing in increments of 10−3 (a) from bottom to top and (b) from top to bottom. (c) The mean dimensionless deposition
speed β̄ as a function of the bulk volume fraction Φb, where the time average is calculated over an interval t/τ ∈ [4,14].
The time when the interface velocity reaches a quasi-steady state is given by t ∼ 4τ. The points in (c) correspond to
Φb ∈

�
3×10−4∪

�
10−3,0.01

�	
increasing in increments of 10−3 from bottom to top. (d) shows the bandwidth ∆d as a function

of Φb. The points in (d) correspond to Φb ∈
�
3×10−4∪

�
10−3,6×10−3�	 increasing in increments of 10−3 from bottom to top.

The dashed lines at Φc = 6.8×10−3 in (c) and (d) denote the phase boundary between banding and filming, namely, when
β̄ = 1. In (d), the red∞ sign represents the unbounded growth of the bandwidth ∆d in the filming regime (β̄ > 1).

The solvent flowing into the deposit at the interface must replenish the liquid lost due to the
evaporation over the solid. In the moving frame, this condition in the differential form becomes

1
ϵ β

∂

∂t
�(1 − Φ)hαVf

�
= −E(z)


1 + (ϵ∂zh)2. (27)

The remaining boundary conditions at z = 0 are given by

h = 1, Φ = Φi ≡ Φ0 − 2 × 10−3, where Φ0 = 0.74. (28)

At the deposit-liquid interface (z = 0), we set the film thickness constant (h(0, t) = 1) in dimen-
sionless units. Note that this boundary condition in Eq. (28) is assumed for simplicity, and a fixed
deposit thickness as a function of Φb is observed in experiments.7 The deviation of Φi from Φ0

ensures the asymptotic determination of β from Eq. (26). Finally, we specify the initial condition of
the meniscus height as a hydrostatic profile (see Eq. (4)) between z ∈ [0,R] and assume the initial
particle distribution Φ(z,0) = (Φi − Φb)exp−z/z0 + Φb underneath the meniscus, where z0 ≪ 1. The
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divergence of the evaporation rate E(z) = 1/


z + ∆d(t) which is present at t = 0 is resolved by
assuming the initial wall distance ∆d(t = 0) = 10−6.

The numerical values of the dimensionless quantities are given in Table II. We choose ν to be
unity (ν = 1) since the effect of bigger ν on the dynamics is unimportant when α ≫ 1 holds. We
choose the domain size R = ℓ/5 to ensure that the capillary-driven viscous shear flow regime is
dominant. We take the exponent Γ as Γ = 4, which models a narrow crossover regime between the
Stokes and Darcy flow regimes as a function of Φ.

Using the COMSOL finite element package,44 we numerically solve Eq. (5) for the distance
between the deposition front and the level of the bath, Eqs. (17) and (18) (the continuity equations),
and the dimensionless form of Eq. (20) (the solution to the dimensionless Darcy-Brinkman equa-
tion), subject to the boundary conditions given by Eqs. (22)–(24) at z = R and Eqs. (26)–(28) at
z = 0, for the height of the free surface h(r, t), the particle volume fraction Φ(r, t), and the deposition
front velocity β(t). In Fig. 6(b), we show the time evolution of the meniscus, which corresponds
to the formation of a single band with Φb = 3 × 10−4. Here, since Φb < Φc, the interface velocity
satisfies β < 1 (Fig. 7(a)), leading to L̇ > 0 (Fig. 7(b)). Therefore, h(R) decreases monotonically,
resulting in an overall decrease in the height of the fluid film along z < R. Hence, the film sur-
face will approach the substrate over time, followed by the meniscus break-up as exemplified in
Fig. 6(b). For Φb = 3 × 10−4, the break-up location is at zc = 0.075 ≈ L(tc) − 1, in agreement with
the global minimum of a quasi-hydrostatic profile. In Fig. 6(c), we show the formation of a contin-
uous deposit for a much larger bulk concentration with Φb = 0.01 > Φc. Here, β > 1 (Fig. 7(a)),
leading to L̇ < 0 (Fig. 7(b)). As a result, the meniscus moves away from the substrate over time. In
this regime, a continuous solid layer forms with a constant thickness as dictated by the fixed height
condition at the solid-liquid boundary.

In Figs. 6(d) and 6(e), the z-dependence of the colloidal volume fraction Φ is demonstrated
inside the meniscus for Φb = 3 × 10−4 and Φb = 0.01. On both sides of the phase boundary (namely,
when β = 1), at Φb = Φc, Φ changes rapidly near the solid-liquid interface, which is a natural result
of the high Péclet number Pe. This behavior shows qualitative agreement with experiments, where
near the interface Φ of the particles is observed to be much lower than Φ0.

The dependence of the mean dimensionless interface speed β̄ ≡ t−1
c

 tc
0 βdt on Φb is shown

in Fig. 7(c), where tc is the time of meniscus touch-down in Fig. 1(e). The bulk volume fraction
Φb at which β̄ = 1 corresponds to Φc (Table I). When hi is constant for all deposition speeds, the
bandwidth ∆d (Fig. 7(d)) depends linearly on Φb when β̄ < 1 and becomes infinite in the filming
regime β̄ ≥ 1. This behavior implies an abrupt transition in terms of Φb, preempting the continuous
transition accompanied by the diverging behavior suggested by the minimal model.

V. CONCLUSIONS

Our direct observations of the dynamics of the meniscus, contact line, and the shape of the
colloidal deposits upon evaporation of dilute colloidal suspensions lead to a simple picture of how
deposition patterns arise in these systems. At low Φb, meniscus pinning, deformation, touch-down,
and depinning leads to periodic bands whose spacing is determined by the relative motion of the
interface and the evaporation rate, as well as the dynamics of the receding contact line. Meniscus
touch-down does not occur at large Φb, leading to a continuous colloidal film.

A minimal and a detailed quantitative theory that complements each other captures the transi-
tion between banding and filming, the corresponding critical volume fraction, the deposit growth
speed, as well as the salient length and time scales, consistent with our observations. Thus, our
work reveals the conditions and the dynamics of the concentration-dependent evaporative patterning
which has various practical applications.6,7,14
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