
Addressing Underspecified Lineage Queries on
Provenance

Citation
Margo, Daniel, Peter Macko, and Margo Seltzer. Addressing Underspecified Lineage Queries on
Provenance. Harvard Computer Science Group Technical Report TR-01-12.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017257

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017257
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Addressing%20Underspecified%20Lineage%20Queries%20on%20Provenance&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=046f69edf0b597e7f59751c42ba05cd8&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Addressing Underspecified Lineage Queries on

Provenance

Daniel Margo, Peter Macko, and Margo Seltzer

TR-01-12

Computer Science Group
Harvard University

Cambridge, Massachusetts

Addressing Underspecified Lineage Queries on
Provenance

Daniel Margo
Harvard University

Cambridge, Massachusetts

dmargo@eecs.harvard.edu

Peter Macko
Harvard University

Cambridge, Massachusetts

pmacko@eecs

Margo Seltzer
Harvard University

Cambridge, Massachusetts

margo@eecs

ABSTRACT
State-of-the-art provenance systems accumulate data over
time, creating deep lineage trees. When queried for the lin-
eage of an object, these systems can return excessive results
due to the longevity and depth of their provenance. Such
a query is underspecified: it does not constrain its result to
a finite span of history. Unfortunately, specifying queries
correctly often requires in-depth knowledge of the data set.
We address the problem of underspecified lineage queries

on provenance with techniques inspired by Web search. We
present two metrics, SubRank and ProvRank, that measure
the frequency of a particular result across the space of all
possible lineage queries. We then use these metrics to de-
fine a subset of the lineage with which to respond to a query.
These metric-defined result sets closely approximate a user’s
conceptual view of relevant history. We evaluate our tech-
niques on diverse workflows ranging from Wikipedia revision
data to fMRI processing.

1. INTRODUCTION
Provenance is metadata that describes the history of a

digital object: where it came from, how it came to be in its
present state, who or what acted upon it, etc. The study of
provenance is an emerging research field with applications
in diverse areas such as computational science and trust.
Provenance increases the value of its corresponding objects;
for example, the results of an experiment are more valuable if
their provenance shows how they were obtained. Provenance
is often represented as a directed acyclic graph in which the
nodes are objects and the edges are historical relationships.
This metadata can be orders of magnitude larger than its
corresponding data; the MiMI protein structure data set [5]
contains 270MB of data and 6GB of provenance.
An important class of queries on provenance are lineage

queries of the form, “What is the lineage of this object?”
Such a query can be represented as a graph traversal starting
from the object in question and passing through the objects
that participated in its creation. Unfortunately, a simple

Harvard School of engineering and Applied Sciences January 24, 2012
Harvard TR-01-12.

lineage query can potentially return the entire depth of the
provenance graph. For example, the first query of the first
and second provenance challenges [9, 15] was, “Find every-
thing that caused Atlas X Graphic [an object node] to be as
it is.” A pedantic system might respond with the complete
history of the operating system: “Three years ago, you in-
stalled Linux...” Though this result is literally correct, the
majority of it is unlikely to be useful or otherwise relevant.
Conversely, a curt response such as “Atlas X Graphic came
from the convert program” is relevant, but incomplete.

The fundamental problem is that this lineage query is un-
derspecified : it does not constrain its result to a finite span
of relevant history. A “good” result should constrain itself
to exactly that part of the lineage in which the user is im-
plicitly interested, but the query does not convey this con-
straint. Instead, it is only the limitations of the provenance
system that constrain the result at all. An omniscient sys-
tem might respond, “Thirteen-point-seven billion years ago,
there was the Big Bang...” Provenance systems that col-
lect constrained data necessarily return constrained query
results, but as the data grows the system must inevitably de-
cide how to respond meaningfully to underspecified queries.
While it is tempting to simply require more precise queries
from users, one should recall that provenance data is diverse,
large, and accumulates with time. Correctly specifying such
queries demands unsustainable knowledge about the details,
history, and structure of large and often technical data sets.

We address this problem with techniques inspired by Web
search, a field in which underspecified graph queries are of
fundamental concern. We hypothesize that the relevance
and importance of a given result depends on several prop-
erties; in particular, its frequency within the space of all
possible lineage query results. For example, the provenance
of the operating system is not often relevant because it is
present in most objects’ lineage; its presence is obvious and
trivial. Conversely, a result that is unique to one object’s
lineage is both highly descriptive of that object and most
likely unknown to the user. Frequency within query results
is a function of graph and query structure, and Web search
offers us tools to assess and quantify this property.

In this paper, we introduce the problem of underspeci-
fied lineage queries and explore a solution. We present two
metrics, SubRank and ProvRank, which measure the fre-
quency of an object across the space of all possible lineage
queries. We incorporate these metrics into an algorithm that
constrains lineage queries to an appropriate span of history.
Our approach relies entirely on graph topology and is widely
applicable; we demonstrate its effectiveness on diverse work-

flows ranging from Wikipedia revisions to fMRI processing.
This paper is structured as follows. In Section 2 we iden-

tify related work. Section 3 models the underspecified lin-
eage query problem. Section 4 introduces our metrics and
their usage. We discuss our evaluation in Section 5, future
work in Section 6, and conclusions in Section 7.

2. RELATED WORK
The underspecified lineage query problem is not yet fully

recognized. One system that experiences this problem is
the Provenance-Aware Storage System [10], which collects
provenance at the Linux system call level. PASS also pro-
vides an API for applications to report provenance to the
PASS database; thus, PASS can aggregate provenance from
many sources. At this scale, underspecification becomes a
serious concern. Other provenance systems such as ES3 [3],
Panda [4], and VisTrails [2] are substantially different from
PASS and from each other, but all of them encounter this
problem at sufficient time scales.
The most common provenance access and query meth-

ods are path-oriented query languages such as SPARQL,
XQuery, the Provenance Query Protocol [7], PQL [14], or
programmatic traversals such as neo4j [11]. In such lan-
guages it is the responsibility of the user to form a precise
query that will return the desired result. However, on a
large, diverse data set the identification and specification of
appropriate constraints requires in-depth knowledge of the
data set and query locale. Ontologies such as the Open
Provenance Model [8] and Provenir [17] define a standard
representation that can make query writing easier for users,
but only if the data is already in that representation and
the query can be easily expressed in terms of its elements.
The purpose of our research is to develop widely-applicable
methods to appropriately constrain results without relying
on user input, a formal ontology, or other external knowl-
edge of the data set.
In prior work, Ré and Suciu [16] identified the problem of

unconstrained lineage in probabilistic databases (a subset
of provenance). They addressed this problem by omitting
objects that did not significantly contribute to results. How-
ever, their concept of a “contribution” is tightly linked to
their domain, in which lineage is used for forensic inference
and lineage relationships are probabilistic. In this context
one can make assertions about an object’s probabilistic con-
tribution to its resulting inferences; however, this method
does not obviously apply to general provenance.
Underspecified graph queries are an important subject of

research in the field of Web search. Algorithms such as Page-
Rank [13] and Kleinberg’s HITS [6] use graph structure to
make probabilistic assertions about the relevance of pages
with respect to searches. In particular, PageRank simulates
an agent searching the Web graph via random link traversal;
the PageRank of a page is the probability that it is visited
at a random step in this traversal process. Traversal pro-
cesses are typical in graph query and are the basis of many
provenance access methods. We use a similar approach to
simulate the behavior of the class of lineage queries; to the
best of our knowledge, this is a novel application of such
simulations. PageRank and HITS can both be calculated
from the eigenvectors of transition matrices and belong to a
field of mathematics known as spectral graph theory.

query

truncate

S

S

S

Sn n

Figure 1: Lineage traversal is truncated at nodes in
S(n) (gray nodes).

3. PROBLEM STATEMENT
We begin by formally stating the underspecified lineage

query problem and outlining our solution. Intuitively, when-
ever the user asks a lineage query there is a set of provenance
objects within its result that the user considers irrelevant,
obvious, or otherwise “unworthy” of further provenance de-
scription. In response to such a query we would like to
determine those objects and return a query result that ter-
minates at them. Thus, our result will be constrained within
the region of worthwhile objects.

Provenance graphs can be represented in many ways. We
assume the representation is a directed acyclic graph in
which the nodes are provenance objects and edges point
from newer objects to their historical predecessors. This
means edges point in the direction of history, but opposite
to the direction of data flow. Let G be such a provenance
graph. Let L(n) be the connected subgraph of G that con-
tains all nodes reachable from node n: that is, the complete
lineage of n. Let S(n) be the aforementioned set of “unwor-
thy” nodes in L(n). Our goal is to find T (n), a connected
subgraph of L(n) such that:

T (n).nodes = L(n).nodes− {L(s).nodes− s ∀ s ∈ S(n)}.

That is, T (n) contains all of L(n) except the provenance
of objects in S(n) (though it includes those objects them-
selves). We call T (n) the truncated result of L(n) (see Fig-
ure 1 for an example).

It should be clear that L(n) is just the transitive closure of
n, and T (n) is just a traversal of L(n) that halts at s ∈ S(n).
The problem of finding transitive closures in graph query is
both elementary and well-studied, and while important to
lineage query in general, is not the focus of our research.
Rather, we are concerned with the problem of finding the
set of “unworthy” objects S(n), which represents the missing
constraints on an underspecified lineage query.

4. METRICS AND USAGE
We propose that “unworthy” objects in S(n) satisfy the

following two properties: high frequency and frequency dis-
similarity. We begin by discussing these properties in detail.
We then present two metrics that measure frequency, and
an algorithm to find S(n) that exploits these properties.

High Frequency. Unworthy objects appear in the re-
sults of too many lineage queries. At one extreme, every-
thing is a consequence of the Big Bang (or first OS install),
so its inclusion in a query result provides no additional infor-
mation. At the other, an object present in only one lineage
uniquely identifies that lineage and is also likely to be novel
to the user. This use of frequency is reminiscent of the in-
formation retrieval concept of inverse document frequency:

p

given node

Figure 2: SubRank. There are 5 lineages containing
p (including p itself). If the user asks for one random
L(n), then the probability that query returns p is 5/8.

the significance of a provenance object is diminished if that
object is frequent within the corpus of lineage query results.
Frequency Dissimilarity. Not only is the absolute fre-

quency of an object important, but its frequency relative to
the objects around it is also important. For example, while
the Big Bang is unlikely to contribute meaningful informa-
tion to most lineage results, it may be the only relevant
member in a query for the lineage of the universe. In a
different context, when querying for the lineage of a core
system utility such as mkdir, the operating system is more
relevant than when querying for the lineage of a user’s doc-
ument. Frequency dissimilarity (or similarity) is a function
of a particular query locale and exploits our knowledge of
the particular query that the user issued.
Our hypothesis is that high frequency and frequency dis-

similarity are good measures of the importance of results to
a given query. If an object is rare with respect to the query
locale, then it is important and worthy of inclusion in lineage
query results; otherwise it is “unworthy”. We can measure
these properties without further input from users, because
they are entirely functions of the graph structure and query.
We now turn the problem of measuring object frequency

in the space of lineage query results.

4.1 SubRank
One way to measure frequency within the space of lineage

query results is directly: that is, for each provenance object,
simply count the number of lineages in which it appears. Let
D(p) be the set containing p and those objects for which p
is in their lineage, defined recursively maas:

D(p) = p ∪ {D(n) | (n, p) ∈ G.edges}

Then, the SubRank of p is defined as:

SubRank(p) =
|D(p)|

|G.nodes|

That is, SubRank(p) is equal to the “reverse” transitive clo-
sure of p (i.e., the closure formed by following edges in their
reverse direction), normalized by the size of the graph. This
is equal to the probability that, if one were to query for one
random L(n), p would be in that L(n) (see Figure 2).
The problem with this method is that |D(p)| can be incon-

venient to measure. Depending on the provenance graph’s
size and means of storage, the “reverse” transitive closure
of p may take a long time or otherwise be inconvenient to
compute. This is especially true if one wishes to precompute
|D(p)| for the entire graph. While computing transitive clo-
sures on graph databases is a well-researched problem, it is
also recognized as a nontrivial one; we would like to find a
faster way to measure result frequency.

4.2 ProvRank
An alternative to measuring frequency is via theoretical

simulation; that is, to construct and solve a model of query
behavior. One classic example of this approach is Page-
Rank [13], in which a theoretical agent queries the Web by
clicking random links. This process is represented by a tran-
sition matrix that can be solved to find the probability that
the agent is at a given Web page at a random instant. This
probability reflects the frequency with which each page is
visited by the agent and is thus a measure of the page’s
frequency within the space of random browsing.

Similarly, ProvRank is a measure of an object’s frequency
in the space of random lineage queries. It reflects the fre-
quency with which an object appears in the result of a ran-
dom lineage query, in which the user begins at some node
and computes its transitive closure, thereby traversing recur-
sively through all objects that participated in its creation.
These queries occur on acyclic provenance graphs and there-
fore terminate; consequently, query restarts (called “telepor-
tation” in PageRank) are needed only when encountering a
node with no outgoing edges. This process can be modeled
as a transition matrix, which we construct as follows:

Let M be a transition matrix such that:

M [n][p] =

1, if (n, p) ∈ G.edges;

1/|G.nodes|, if 6 ∃(n, v) ∈ G.edges;

0 otherwise.

That is, there is a 100% probability of transitioning from a
node n to the objects that participated in its creation and
an equal probability of transitioning from a node with no
such objects to any other node, thereby “restarting” the
query. The matrix’s principle left eigenvector represents the
probability that each node is considered at a random instant
in a random lineage query process of infinite duration. We
call the entry in this eigenvector corresponding to node n
the ProvRank of n.

In practice, ProvRank, like PageRank, is efficiently ap-
proximated by simulating many transitions, rather than by
explicitly solving for its eigenvectors. With each step of the
simulation, each node adds its current value to that of its
neighbors. Contrast with SubRank, whose cost is propor-
tional to the size of each node’s reverse transitive closure.

4.3 Usage
After computing either metric on a graph, we determine

the contents of a truncated lineage T (n) as follows: we tra-
verse the untruncated lineage L(n) starting from node n,
following only edges with a small difference in the ranks of
the two nodes (see Figure 3). That is, we follow an edge
(u, v) only if Rank(v)−Rank(u) ≤ threshold for some pre-
determined threshold, the choice of which we will describe
in the rest of this section. T (n) is the set of visited nodes.

According to the second property of “unworthy objects”,
frequency dissimilarity (see Section 4), objects are most rel-
evant within a locale of similar objects. We should be less
concerned with the absolute frequency of nodes and more
with their frequency relative to their surroundings. Thus,
rather than placing a threshold on the ranks of nodes, we
threshold the relative change in rank when crossing edges.

A well-chosen threshold should partition L(n) into dis-
tinct sets of relatively low and high-frequency objects, the
former of which is T (n). One general technique is to sam-

ple a range of thresholds and search for an “exceptional”
one. Starting from zero, we increase the threshold and count
how many nodes are assigned to T (n). In practice the size
of T (n) does not increase at a steady rate, but rather in
jumps. This is because the traversal will often encounter
an especially frequent object (such as the operating system)
that represents an unprecedented increase in frequency over
previously seen objects. To incorporate such an object into
T (n), the threshold must increase proportionally; if it does
so, it may not only incorporate the object in question but
many others as well, resulting in a jump in the size of T (n).
In practice this behavior limits our selection of meaningful
thresholds to a small number of discrete choices, each corre-
sponding to such a jump. See Figure 4 for a visual example,
and Figure 10 in our evaluation for a real-world example.
We can test all possible thresholds in one pass over L(n)

as follows. Starting with a threshold of zero, we traverse the
lineage of n until we encounter an edge from u to v such
that Rank(v) − Rank(u) > threshold. At that point we
record the current threshold and the size of T (n), increase
the threshold to Rank(v)−Rank(u), and continue. In order
to detect all possible thresholds, we traverse deterministi-
cally in the order of ascending differences in node-to-node
rank. We continue until we have traversed all of L(n), at
which point we have a complete list of thresholds and their
corresponding |T (n)|’s.
We then choose the most “exceptional” threshold from

this list. Currently, we default to the threshold that corre-
sponds to the largest relative jump in |T (n)|, but the user is
free to choose any other from the list. Our experience sug-
gests that different thresholds correspond to different “reso-
lutions” of provenance and are valid for different purposes.
For example, we might observe that one threshold corre-
sponds to the start of a single experiment, a second might
correspond to a collection of similar experiments, and a third
to the compilation of tools used by those experiments. Con-
sequently, the threshold selection scheme has an impact on
the practical uses of the resulting truncation. Investigating
this behavior and the properties of different thresholding
schemes is an important part of our future work.

5. EVALUATION
Evaluating underspecified query results is inherently sub-

jective because one must make qualitative claims. There-
fore, we have identified several provenance data sets in which

queue← [(0, n)]
T ← empty set()
threshold← best threshold(n)
while queue is not empty do

(δ, u)← queue.pop()
T.add(u)
if δ ≤ threshold then

for v in u.parents do
queue.insert((v.rank − u.rank, v))

end for
end if

end while
return T

Figure 3: The algorithm for computing T (n), the
truncated lineage.

u

10

v

100

w

110
90 10

threshold=1

Figure 4: Choosing a threshold. Suppose we are at
u with a threshold of 1. Consider the transition u
to v where Rank(v) − Rank(u) = 90. If we raise our
threshold to 90, we will not only add v, but also
nodes beyond v such as w. Thus, there are a fi-
nite selection of thresholds, each associated with a
“jump” in result size. We choose the threshold just
prior to the largest relative jump in size.

a “good” truncated result is relatively well-defined. These
include a Wikipedia revision history of the “Barack Obama”
page and two traces collected by PASSv2 [10]: the first
provenance challenge [9] and the compilation of the BSD
automounter utilities (amutils) v6.1.5 [1].

For each data set, we construct a hand-tuned “oracle”
that defines a good truncated result for a subset of lineage
queries. We then evaluate our methods on those queries
with respect to each oracle. We define the “goodness” of a
particular result T (n) to be the absolute difference between
the cardinality of that result and the oracle’s result for ob-
ject n. We use this criterion because it allows us to compare
the relative sizes of T (n), the oracle, and their difference
with respect to the total sizes of objects’ lineages and the
provenance graphs.

We implement both metrics and our thresholding algo-
rithm in C++ and Python. We compute SubRank using the
Floyd-Warshall transitive closure algorithm [18]. To com-
pute ProvRank, we iteratively approximate the principle left
eigenvector of the graph’s |G.nodes| × |G.nodes| transition
matrix with a typical PageRank-like score-pushing loop. We
evaluate on an Intel Core2 Duo 2.8GHz system with 4GB of
RAM, running 64-bit Ubuntu 10.04 Linux v2.6.32-24.

5.1 Wikipedia Revisions
We created a provenance graph of Wikipedia’s “Barack

Obama” article [12] from its revision history as follows. Us-
ing the first 19,560 revisions of the article, we determined the
inter-revision text dependencies of each revision by building
a word-by-word diff patch for each revision. The nodes in
our graph are thus revisions, and the edges are direct text

tea quark

bruin faux

the quick

brown fox
L4ZY D0G

RUL35!1

1 2

3

4

1 1

2 3

1

2 3

4

Figure 5: Wikipedia revision provenance begins
with a node corresponding to the original document
(1). Later revisions (2,3) depend on the text they
modify. If vandalism destroys the text (4), then the
vandalism depends on all previous revisions and all
subsequent revisions must depend on the vandalism.

 1

 10

 100

 1000

 10000

 100000

 0 4000 8000 12000 16000 20000

D
iff

er
en

ce
 fr

om
 O

ra
cl

e
(o

bj
ec

ts
)

Trial (sorted by difference)

Max Difference
ProvRank
SubRank

Figure 6: Difference from the oracle for 19,251
queries on the “Barack Obama” Wikipedia revision
history in sorted order, log scale.

dependencies (see Figure 5). The graph consists of 19,560
nodes and 49,713 edges.
Analysis of the article’s edit history reveals that text is ini-

tially created in large segments (such as sections and para-
graphs), then edited iteratively in increasingly finer detail.
This proceeds until a large edit rewrites most (if not all) of
the page. Afterwards, all future edits proceed from the most
recent large edit; relationships across large edits are triv-
ially implied. Consequently, large edits separate regions of
normal editing activity, forming natural truncation points.
In the case of the “Barack Obama” page, the overwhelm-
ing majority of large edits are due to vandalism or rever-
sions; we can approximately identify both by searching for
the phrase “revert” in editors’ comments. Thus, our oracle
defines a good result as truncating at all revisions prior to
the most recent “revert”. “Reverts” are sufficiently common
such that this oracle is defined for all but 309 nodes.
Figure 6 plots the difference in cardinality from the ora-

cle for the following three cases: truncation using SubRank,
truncation using ProvRank, and the maximum error sce-
nario (which corresponds to either no truncation or immedi-
ate truncation, depending on the size of the oracle’s result).
The maximum possible error is large for all queries, because
revision lineages are deep, but reversions are common. In
constrast, our algorithm behaves identically to the oracle on
about half the queries, and closely on many more.
Across all queries, the average difference between the or-

acle and our thresholding is 23.99 and 45.06 nodes using
SubRank and ProvRank, respectively. However, mean aver-
ages are of course misleading: 81.62% and 82.39% of queries
are below the mean, and mode averages are both just one
node. If we were to discard the top 5% of high-error queries
from SubRank and ProvRank, then the average difference
would become 10.66 and 11.94 nodes, respectively. In short,
much of our error is caused by a small number of patholog-
ical cases; overall our methods are quite comparable to the
oracle, especially with respect to the size of objects’ lineages.
Our methods work well on this data set because of the

depth of the graph and its iterative structure. When our
threshold selection algorithm encounters the first transition
from a small edit to a large edit, there is a jump in relative
frequency because large edits, unsurprisingly, have more re-
sulting sub-edits. If the algorithm were to accept this jump

as the new threshold, then it would also have to accept every
similar jump in history: consequently, it would be forced to
add many “large edit cycles” to T (n), exploding its size. As
intended, the algorithm rejects this scenario and truncates
at the first small-to-large edit transition. In summary, the
structure of the Wikipedia data set maps very well to the
scenario for which our algorithm was designed.

5.2 The First Provenance Challenge
The first provenance challenge [9] is a simple fMRI pro-

cessing workflow proposed by the members of the commu-
nity at the International Provenance and Annotation Work-
shop in 2006. For our purposes, the challenge is noteworthy
because it is associated with a conceptual graph of the work-
flow proposed by its authors (available online at the citation,
and reproduced in our appendix for convenience), which we
can directly use as our “oracle”. Any node not featured in
this drawing is outside of the authors’ conception of their
workflow and therefore a good truncation point for lineages
of the workflow’s contents.

We ran from 1 to 30 repetitions of the challenge workflow
on a PASSv2 [10] kernel, which captures provenance auto-
matically. The resulting provenance contains much of the
history of the system in addition to the workflow, including
the lineages of the executables used in the workflow – such
as the compilation of the Automated Image Registration
(AIR) suite. The graph of one run consists of 8,038 nodes
and 32,337 edges, including the compile. For comparison,
the conceptual graph has only 45 nodes.

If we collect provenance on only one run of the workflow,
our algorithm can do very little to truncate the query results.
For one run, the truncated query results using SubRank and
ProvRank differ from the oracle by an average of 100.2 and
42.98 objects, respectively. The reasons for this high error
are demonstrative of the meaning, limitations, and strengths
of our methods. We observed that the differences between
our methods and the oracle were not erratic, but very con-
sistent, because our methods truncate almost every query
at the same place: a set of header files used in the toolchain
compile. Excluding that compilation, the difference between
the truncated result and the oracle would only be about 15
nodes for both metrics.

The problem is that when both the compile and exper-
iment are run only once, they form competing thresholds.
The input files of the experiment produce many more files
and therefore are highly frequent relative to their locale;
however, the header files of the compile are also input files
that produce many more files and have similarly high fre-
quency. The inputs of the experiment are thus not as prolific
as the inputs of the compile; consequently, when searching
for the best threshold, our method chooses the inputs of
the compile. There is nothing in our single-run setup that
privileges the experiment over its compile; in fact, one could
reasonably argue that if the tools are used in only one exper-
iment, then their construction is “part” of the experiment.

In a more realistic setup, the compile would be run only
once (or infrequently), but experiments involving the tools
might be run many times. We investigated how this would
affect our results by running a series of trials in which we
compiled the toolchain only once, but executed the exper-
iment repeatedly. Figure 8 shows the difference from the
oracle for SubRank and ProvRank on an increasing number
of experiment repetitions; we also plot the scenario exclud-

anatomy1.img anatomy1.hdr anatomy3.hdranatomy2.hdr reference.hdr anatomy4.hdr anatomy4.imganatomy2.img anatomy3.imgreference.imgalign_warp

reslice

softmean

fakeslicer

warp1.warp

align_warp

warp2.warp

align_warp

warp3.warp

align_warp

ld.so.cache

warp4.warp

align_warp

resliced1.img

reslice

resliced1.hdr resliced2.img

reslice

resliced2.hdr resliced3.img

reslice

resliced3.hdr resliced4.img

reslice

resliced4.hdr

atlas.img

softmean

atlas.hdr

atlas-x.pgm

fakeslicer

Figure 7: Truncated provenance of atlas-x.pgm, the final output of the challenge, in a 2-repetition workflow
using SubRank with a threshold of 0.0015. Colored nodes correspond to those in the authors’ conceptual
representation, which is reproduced in the appendix for convenience. Although this threshold emerges after
2 repetitions, it is not favored as the ”best” threshold until 10 repetitions.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

D
iff

er
en

ce
 fr

om
 O

ra
cl

e
(o

bj
ec

ts
)

Workflow Repetitions

ProvRank
SubRank

ProvRank (compile excluded)
SubRank (compile excluded)

Figure 8: Average difference from the oracle ver-
sus repetitions of the experiment for the first prove-
nance challenge. In the “compile excluded” sce-
narios, the toolchain compile is excluded from the
provenance data set. About about 10 repetitions,
SubRank begins truncating out the compile and
stopping at the same place as if the compile were
excluded. After about 20 repetitions, ProvRank be-
gins truncating close to the oracle itself.

ing compilation (that is, only the provenance of the exper-
iment). We observe that thresholding with SubRank con-
verges to the scenario in which we exclude compilation after
10 iterations, while ProvRank converges to the oracle (the
author’s conceptual drawing) after about 20 repetitions.
In short, thresholding can truncate quite accurately on

this data set, given certain assumptions. In particular, when
choosing between high-frequency thresholds, there should
be a structural reason to pick one over another. If both the
compile and experiment are run only once, there’s no reason
to privilege the inputs of the experiment over those of the
compile; the authors choose the experiment, and our meth-
ods choose the compile. However, in the more realistic sce-
nario where the experiment is run more frequently than the
compile, the experiment is the structurally-preferred choice
and our methods converge with the authors’ intent.
Note that a threshold corresponding to the authors’ intent

very clearly emerges with just two repetitions of the exper-
iment (see Figure 7 for a compelling visual example). It is
simply not the “best” threshold by our current definition. A
different threshold selection scheme, or a user presented with
a choice of several thresholds, could produce more immedi-
ate results. As previously mentioned, this is one example of
how different thresholds correspond to different granularities
of provenance (experiment vs. compile), and how different
thresholds might be valid for different purposes. A compu-
tational scientist trying to understand why her results had
unexpectedly changed might be more interested in her tools’
provenance than a scientist just trying to manage her exper-
imental data. The selection and use of truncation thresholds
for different tasks is an interesting topic for future work.

5.3 amutils
Our final workflow is a compilation of the BSD auto-

mounter utilities (amutils) v6.1.5 [1] . This is a large, multi-
stage compile that produces many executables; the prove-
nance graph consists of 83,447 nodes and 183,444 edges.
While this workflow is fairly heterogeneous, one recurring
theme is the transformation of a collection of inputs – li-
braries, headers, and source files – into a single output ex-
ecutable. These inputs seem like obvious truncation points
for a compile; therefore, our oracle truncates the lineages of
the outputs of the compile (a total of 3, 947 nodes) at .so

(library), .h (header), and .c (source) files.
Figure 9 plots the result size difference from the oracle

for truncation using both SubRank and ProvRank and for
the maximum error scenario. Across all 3, 947 queries, Sub-
Rank and ProvRank average a difference of 29.84 and 39.29
nodes respectively. As in the first provenance challenge,
the reasons for this initial error are quite informative. Our
threshold selection scheme often truncates too aggressively
due to the following two complimentary effects. First, the
compiler (cc) is a highly frequent object that is always en-
countered just prior to the input files, forming a competing
threshold. Second, though there usually exists a threshold
corresponding to the input files, the inputs are not far re-
moved historically from the start of the compile; thus, the
jump from truncating at inputs to simply not truncating at
all is relatively small.

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000

D
iff

er
en

ce
 fr

om
 O

ra
cl

e
(o

bj
ec

ts
)

Trial (sorted by difference)

Max Difference
ProvRank
SubRank

ProvRank (no zero)
SubRank (no zero)

Figure 9: Difference from the oracle for 3, 947 queries
on amutils in sorted order, log scale. In the “no
zero” case, thresholds of zero are forbidden.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

N
um

be
r

of
 O

bj
ec

ts

Threshold (log scale)

ProvRank
SubRank

Oracle

Figure 10: Threshold versus objects returned for
amd, an output of amutils. SubRank and ProvRank
exhibit similar behavior, but at different threshold
scales. The “correct” threshold (as defined by the
oracle) is present in both, but is not selected because
of the large jump between 0 and the first threshold.

In particular, the jump in result size from an initial thresh-
old of zero to the input file threshold is often greater than
the jump from the input file threshold to no truncation at
all (see Figure 10). If we simply declare “never choose a
threshold of zero” to reduce aggressive truncation, our re-
sults improve significantly. In this case, across 3, 947 queries
we average a difference from the oracle of 17.19 and 29.42
nodes for SubRank and ProvRank (see Figure 9). After dis-
carding the top 5% of high-error queries, we average 6.256
and 15.14 respectively. However, “never aggressively trun-
cate” is not a good general policy; for example, on the Wiki-
pedia data set aggressive truncation with small thresholds
is often correct.

5.4 Discussion
From our evaluation we can make a number of high-level

observations. First and foremost: in several scenarios our
methods can approximate data set-specific oracles with rel-
atively high accuracy. This is especially significant because
our methods are topological and independent of content,
whereas our oracles are content-sensitive and abuse exter-
nal knowledge. In a large, complex, and unfamiliar data set

in which a well-specified lineage query is difficult to write,
our methods could provide an easy to implement, general al-
ternative. Though SubRank and ProvRank exhibit mild se-
mantic differences on the first provenance challenge, overall
they perform similarly; in practice, ProvRank would proba-
bly be preferred as it is faster to compute and approximate.

Our methods are most effective on the Wikipedia data set,
in which the majority of nodes possess deep and iterative
histories. They are also effective on the first provenance
challenge when the experiment is repeated many times, but
weaken if the experiment is run only once. They are also
weak on the amutils compile, which is broad and shallow,
but improve greatly with a slight thresholding policy change.

We observe our methods work best when there is a large
volume of repetitively structured provenance; this is due to
two effects. Depth and iteration, as in the Wikipedia data
set, helps our threshold selection scheme by creating conse-
quences for setting the threshold too generously; specifically,
too many nodes may be added to T (n). Breadth and rep-
etition, as in the first provenance challenge, also helps our
threshold selection scheme by elevating the frequency of key
truncation points, such as the input files of a repetitive ex-
periment. When provenance is shallow and each workflow
is run only once, our methods perform poorly; however, in
this scenario truncation is also less important.

It bears repeating that in both the first provenance chal-
lenge and the amutils compile there usually exists thresh-
olds corresponding to the oracle, even if they are not cho-
sen as the “best” threshold. Different thresholds correspond
to different jumps in frequency and result set size, and if
the provenance data consists of heterogenous or multigran-
ular subprocesses (e.g., experiments or compile structure),
thresholds will often correspond to the beginnings of those
subprocesses. This line of reasoning leads to interesting
questions about the topology and growth models for large
heterogeneous provenance graphs. In the same way that the
topology and growth of social networks are well-studied en-
tities, we think that studies of the structure of provenance
“in the wild” are a great direction for future research.

6. FUTURE WORK
Although we are encouraged by our results, underspecified

queries on provenance are still a young problem, and there
are many aspects of our approach that are worthy of fur-
ther investigation. In particular, questions of threshold se-
lection and how thresholds correspond to heterogenous and
multigranular processes are important for future research.
Different tasks might demand different thresholds, such as
a scientist reviewing her experiments versus an IT specialist
trying to verify the scientist’s toolchain. One could imag-
ine an interactive query system in which the user requests
lineage at various discrete levels of detail.

In this paper our approach was to constrain unbounded
query results by introducing artificial constraints to truncate
the result set. There are other ways in which one might re-
duce results, such as coarse-resolution summarizations. For
example, in the first provenance challenge one might express
the provenance of an output as consisting of a “compile” fol-
lowed by “an experiment”, without fine details. Similarly,
in the Wikipedia data set one might not want to truncate
at recent vandalism, but merely to identify and remove it.

We believe that provenance summarization is closely re-
lated to our truncation methods and in particular to thresh-

olding. Our methods can distinguish the compile and the
experiment, or the different edit cycles between vandalism,
by identifying different discrete thresholds. Frequency met-
rics allow us to make statements about what constitutes a
“fine detail” versus a frequent, general object such as an oft-
used executable. In summary, future research into thresh-
olding and the structural properties of provenance graphs
may allow us to exploit our metrics in novel ways.
Topological analysis is, of course, only one of many re-

sources one might use to truncate or summarize provenance.
Object metadata, content analysis, etc. contain valuable
information and are important in application-specific sce-
narios. PageRank and similar topological metrics are only
a few of the tools in the larger toolbox of search engines.
Similarly, we offer SubRank and ProvRank not as definitive
solutions, but as one set of tools for what we hope will be
the broad toolbox of provenance analysis.

7. CONCLUSION
Lineage queries are the fundamental class of queries in

provenance systems. We have observed that many lineage
queries are underspecified. Underspecified lineage queries
fail to constrain their results to a finite span of history and
are instead constrained only by the limitations of the system.
We addressed this problem by truncating results at fre-

quent objects that are “unworthy” of further lineage descrip-
tion. We developed a framework for this problem and then
produced two metrics, SubRank and ProvRank, that mea-
sure the relative frequency of provenance objects in lineage
query results. SubRank measures the frequency of an object
across the space of all possible results; ProvRank measures
the frequency of an object within our query model. We then
applied a simple thresholding scheme to truncate lineages at
the jump between low and high frequency objects.
We evaluated our results on several workloads for which

a “good result” was either structurally transparent (Wiki-
pedia), defined by the authors (the first provenance chal-
lenge), or semantically transparent (the amutils compile).
Our results corresponded well with these oracles under many
conditions, in particular when a large volume of iterative or
repetitive provenance was involved. Opportunities for future
work are diverse, but should focus primarily on the relation-
ship between thresholding and heterogenous/multigranular
provenance, and growth models for provenance graphs.

8. REFERENCES
[1] 4.4BSD automounter utilities. http://www.fsl.cs.

sunysb.edu/docs/am-utils/am-utils.html, March
2011.

[2] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: Visualization
meets data management. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 745–747,
New York, NY, USA, 2006. ACM.

[3] J. Frew and P. Slaughter. Es3: A demonstration of
transparent provenance for scientific computation.
Provenance and Annotation of Data and Processes:
Second International Provenance and Annotation
Workshop (IPAW 2008), Revised Selected Papers,
pages 200–207, 2008.

[4] R. Ikeda, S. Salihoglu, and J. Widom.
Provenance-based refresh in data-oriented workflows.
Technical report, Stanford University, October 2010.

[5] M. Jayapandian et al. Michigan Molecular Interactions
(MiMI): putting the jigsaw puzzle together. Nucleic
Acids Research, 35(Database-Issue):566–571, 2007.

[6] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632,
1999.

[7] S. Miles, L. Moreau, P. Groth, V. Tan, S. Munroe,
and S. Jiang. Provenance query protocol. Technical
report, University of Southampton, 2006.

[8] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil,
P. Groth, N. Kwasnikowska, S. Miles, P. Missier,
J. Myers, B. Plale, Y. Simmhan, E. Stephan, and
J. V. den Bussche. The open provenance model core
specification (v1.1). Future Generation Computer
Systems, In Press, Corrected Proof:–, 2010.

[9] L. Moreau et al. The First Provenance Challenge.
Concurrency and Computation: Practice and
Experience, 20(5):409–418, April 2008. Published
online. DOI 10.1002/cpe.1233.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In
Proceedings of the 2009 USENIX Annual Technical
Conference. USENIX, June 2009.

[11] Neo4j: the graph database. http://neo4j.org, March
2011.

[12] Barack Obama - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Barack_Obama,
March 2011.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[14] PQL - path query language.
http://www.eecs.harvard.edu/syrah/pql/, March
2011.

[15] The Second Provenance Challenge.
http://twiki.ipaw.info/bin/view/Challenge/

SecondProvenanceChallenge, March 2011.

[16] C. Ré and D. Suciu. Approximate lineage for
probabilistic databases. Proc. VLDB Endow.,
1(1):797–808, 2008.

[17] S. S. Sahoo and A. Sheth. Provenir ontology: Towards
a framework for escience provenance management.
Microsoft eScience Workshop, October 2009.

[18] S. Warshall. A theorem on boolean matrices. J. ACM,
9(1):11–12, 1962.

Figure 11: Appendix. The authors’ conceptual drawing of the first provenance challenge.

