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Abstract

The Direct Access File System (DAFS) is a 

distributed file system built on top of direct-access 

transports (DAT). Direct-access transports are 

characterized by using remote direct memory access 

(RDMA) for data transfer and user-level networking. 

The motivation behind the DAT-enabled distributed 

file system architecture is the reduction of the CPU 

overhead on the I/O data path.   

In collaboration with Duke University we have 

created and made available an open-source 

implementation of DAFS for the FreeBSD platform.  In 

this paper we describe a performance evaluation study 

of DAFS that was performed with this software. The 

goal of this work is to determine whether the 

architecture of DAFS brings any fundamental 

performance benefits to applications compared to 

traditional distributed file systems.  In our study we 

compare DAFS to a version of NFS optimized to 

reduce the I/O overhead. 

We conclude that DAFS can accomplish superior 

performance for latency-sensitive applications, 

outperforming NFS by up to a factor of 2. Bandwidth-

sensitive applications do equally well on both systems, 

unless they are CPU-intensive, in which case they 

perform better on DAFS. We also found that RDMA is 

a less restrictive mechanism to achieve copy avoidance 

than that used by the optimized NFS. 

1. Introduction

The Direct Access File System (DAFS) [1] is 

a new distributed file system designed to take 

advantage of direct-access transports (DAT) [13]. 

Direct-access transports allow for efficient and 

lightweight data transfer between the nodes in a 

distributed system through the use of remote 

direct memory access (RDMA) and user-level 

networking.  By utilizing direct-access transports 

DAFS aims to increase the performance and 

efficiency of network-attached storage systems. 

The DAFS protocol is based on the Network File 

System (NFS) protocol version 4 [4], with built-in 

support for RDMA.  

 While DAFS uses new technology to build a 

distributed file system, conventional distributed 

file systems (such as NFS) have evolved as well. 

The research community has continuously 

addressed performance problems associated with 

conventional network storage systems, and, as a 

result, these systems have improved [6, 9, 10, 11, 

12].  In the face of recent improvements in the 

performance of these systems, it is of interest to 

determine whether the DAFS architecture 

provides any fundamental performance benefits to 

applications compared to conventional network 

storage systems. This is the research question that 

we address in the current work.  

 In collaboration with Duke University we 

have created and made available an open-source 

implementation of the DAFS kernel server and the 

user-level client for the FreeBSD platform.  In this

paper we describe a performance evaluation study 

of DAFS that we performed with this software. As 

open source platforms become more common for 

supporting multi-tier applications, understanding 

the performance characteristics of the underlying 

file system alternatives will allow systems 

designers to construct high-performance 

platforms.

 Our study makes the following contributions: 

We use microbenchmarks to understand the 

fundamental performance characteristics of 

DAFS.  We conclude that the degree to which an 

application can benefit from DAFS largely 

depends on the characteristics of the application.  

We establish these characteristics and develop a 

simple framework that helps reason about an 

application’s performance on DAFS without 

actually running the application. We evaluate the 

predictive power of our framework on a TPC-C 

database benchmark.  We compare the 

performance of DAFS to an implementation of 

NFS modified to avoid data copies in the kernel 

(NFS-nocopy). 



The rest of the paper is organized as follows: 

In section 2 we discuss related work. In sections 3 

and 4 we give an overview of DAFS and of NFS-

nocopy. In section 5 we present the 

microbenchmarks.  In section 6 we discuss the 

application characteristics that determine the 

performance on DAFS, and derive the 

performance-predicting framework.  In section 7 

we evaluate our framework on the TPC-C 

benchmark.  We conclude in section 8.

2. Related work 

The current work is an extension of a 

performance evaluation study of DAFS performed

at Harvard and Duke universities [7]. It expands

this study by experimenting with a wider range of 

application workloads and by developing the

framework for reasoning about an application’s

performance on DAFS.  Some of the experiments 

demonstrated in this paper have also appeared in a 

paper presented at the 2002 USENIX conference

[7]. We present these experiments here again for 

completeness. We include a reference to the 

original paper next to the figures. 

Recent work has explored performance of 

database systems on direct-access transports.

Zhou studied performance of Microsoft SQL 

Server that communicated with a storage system

over a DAT network [17].  Scott performed a

similar study with DB2 [18].  This work presents 

a general study of the file system built on top of

direct-access transports. 

3.  DAFS 

We first give an overview of remote direct 

memory access (RDMA) and user-level

networking – the enabling technologies behind 

DAFS. We then proceed to describe their

respective roles in the DAFS architecture. 

3.1. RDMA 

RDMA is a direct transfer of data between

memory buffers on two hosts.  It avoids the

copying of data that is normally required when

sending data over conventional mechanisms such

as remote procedure call (RPC). RDMA also 

implies offloading the execution of the transport 

protocol code to the network device. RDMA, 

therefore, decreases host CPU overhead involved 

in I/O.

To transfer data with RDMA, a client sends

to the server an RPC request, telling it what data it 

needs and the memory address where the data

should be placed on the client. The server then 

tells its network interface controller (NIC) to 

initiate the RDMA. The NIC takes the data from

the server memory and puts it on the wire (note no 

copying or host CPU involvement). When the data 

arrives at the other side of the wire, the NIC on

the client machine deposits the data directly into 

the memory buffer that had been allocated by the

client (again, there is no data copying or host CPU 

involvement). Figure 1 illustrates the difference

between the DAFS client that uses RDMA and a

conventional file system client that uses RPC for 

data transfer. 

Figure 1. NFS client vs. DAFS client 

Note that to make RDMA available to a file 

system service, some protocol provisions are

necessary. In particular, a service that is using 

RDMA must be able to pass the address of a

memory buffer where the RDMA data should be 

placed to the remote host. Unlike the NFS

protocol, the DAFS protocol has such support for 

RDMA. It is this protocol support that makes

DAFS DAT-ready, and makes the DAFS

architecture fundamentally different from that of 

traditional distributed file systems.

3.2 User-level networking 

Another characteristic of direct-access

transports is user-level networking. User-level

networking allows the user program to interact 

directly with the network interface controller



(NIC), bypassing the kernel. The NIC exposes an 

array of connection descriptors to the system’s 

physical address space.  At connection setup time, 

the kernel NIC driver maps a connection 

descriptor into the process virtual address space, 

giving the process a direct way to communicate 

with the NIC by simply writing and reading the 

descriptor memory.   

To perform a data transfer using such a NIC, 

the user program must register with the NIC a 

memory buffer, which will serve as the 

destination for the incoming data.  During 

registration the kernel pins the buffer in physical 

memory, and the NIC sets up a virtual-to-physical 

translation of the buffer’s address in its internal 

page table. Once the buffer is registered, the 

RDMA transfer can proceed into the buffer 

without the kernel involvement. 

User-level networking reduces CPU 

overhead for applications, by allowing an 

application to initiate I/O without system calls.  

3.3. The DAFS architecture 

DAFS has been envisioned and specified by 

a group of more than 85 companies led by 

Network Appliance. Network Appliance has 

released a commercial implementation of DAFS; 

several non-commercial implementations have 

been developed at universities [7]. The DAFS 

client and server implementations that we use 

have been developed by research groups at 

Harvard and Duke Universities [7, 23]. 

Although DAFS could be implemented in the 

kernel, just like traditional file systems, RDMA 

and user-level networking enable a user-level file 

system structure for DAFS.  The DAFS client that 

we use is implemented at user-level, and the 

server is in the kernel.  The client has an 

asynchronous event-driven design and implements 

the full DAFS client API [2], which is similar to 

the POSIX API.  Although the client has been 

extended to support caching [8], the version used 

for the experiments in this paper does not include 

any caching or pre-fetching. 

 RDMA and user-level networking require 

special support on the NIC. The Virtual Interface 

(VI) architecture [5] defines a host interface and 

API for NICs supporting such features. Our DAFS 

implementation runs on top of a VI-capable NIC 

(Giganet cLAN 1000). 

 The DAFS server is currently a self-

contained kernel module that does not require any 

core kernel changes.  It will eventually be a part 

of the FreeBSD kernel distribution and is already 

available in source form as a FreeBSD 4.6 kernel 

module.  It works with Myrinet GM 2.0 (alpha 

release) and VI-GM 1.0, which is also open-

source software. 

4.  NFS-nocopy 

NFS-nocopy1 is an implementation of the 

standard NFS protocol modified to reduce the 

overhead on the I/O data path by avoiding data 

copies.

In the traditional kernel NFS client, there are 

two data copies that have to be made on the 

incoming I/O data path: the copy between the 

network stack and the kernel buffer cache, and 

then the copy between the buffer cache and the 

application buffers (see Figure 1). NFS-nocopy 

avoids these copies by using two techniques: 

header splitting and page flipping. Header 

splitting and page flipping are the traditional 

methods of copy avoidance, variants of which 

have been used with TCP/IP protocols in the past 

[6, 10, 11, 12].  The idea behind these techniques 

is to arrange for the NIC to deposit the data 

payload (the file block) page-aligned in one or 

more physical page frames. These pages can then 

be inserted into the kernel buffer cache by 

reference (page flipping). To do this, the NIC first 

strips off any transport headers and the NFS 

header from each message and places the data into 

a separate page-aligned buffer (header splitting). 

 We use an Alteon Tigon II Gigabit Ethernet 

NIC whose firmware has been modified to 

perform header splitting for the incoming NFS 

read response messages. Once the data payload 

has been deposited into page-aligned buffers in 

the kernel buffer cache, the data is delivered to the 

application buffers without copying, by simply re-

mapping the physical pages into the application’s 

address space (page flipping).  The copy into the 

application buffers can only be avoided if the 

application has provided page-aligned buffers for 

the data.

1 The NFS-nocopy system that we use in our 

experiments has been implemented at Duke University. 



While this approach does not reduce system 

call overhead, it does not require changing or re-

linking the applications. It does, however, require 

kernel modification and proper NIC support. We 

picked NFS-nocopy as a system to compare to 

DAFS because it is representative of a 

conventional network file system with overhead-

reducing optimizations.   

5.  Microbenchmarks 

In this section we describe how we used 

microbenchmarks to understand the performance 

characteristics of DAFS. We begin with simple 

experiments, and then gradually increase the 

complexity of the benchmarks in order to improve 

our understanding of the system. We compare the 

performance of the benchmarks on DAFS and 

NFS-nocopy.  Since the compared systems are 

targeted at improving performance on the client 

side, we focus on benchmarking the clients. 

Our system configuration consists of two 

Pentium III 800 MHz client and server machines.  

The client and the server are equipped with 256 

MB and 1GB of RAM respectively, on a 133 

MHz memory bus. All systems run patched 

versions of FreeBSD 4.3. DAFS uses VI over 

Giganet cLAN 1000 adapters. NFS uses UDP/IP 

over Gigabit Ethernet, with Alteon Tigon-II 

adapters. In some cases we also compare the 

systems to regular NFS. Experiments with the 

standard NFS implementation use the standard 

Tigon-II driver and vendor firmware. UDP 

checksum computation is offloaded to the NIC.   

Table 1 shows the raw one-byte roundtrip 

latency of these networks.  The Tigon-II has a 

higher latency. The bandwidths are comparable, 

but not identical.  Disparity of the interface 

characteristics sometimes makes it difficult to 

compare the results of the experiments. Therefore, 

whenever appropriate we report the results 

normalized to the maximum bandwidth 

achievable by the underlying interface. In some 

cases we analytically derive the numbers that we 

would receive if identical networks were used.  It 

would have been desirable to perform the 

measurements with identical networks. This was 

not possible, because both DAFS and NFS-

nocopy needed to have special feature support on 

the NIC.  DAFS needed a NIC that supported 

RDMA and user-level networking. NFS-nocopy 

needed a NIC capable of performing header 

splitting.  We could not get a single NIC that 

would provide all of these features. 

VI/cLAN UDP/Tigon-II 

Latency 30 µs 132 µs 

Bandwidth 113 MB/s 120 MB/s 

Table 1. Baseline network performance 

5.1.  Simple file access 

The key motivation behind the architecture of 

DAFS is to reduce CPU overhead on the I/O data 

path.  This is likely to decrease latency of I/O 

operations.  Our first goal, therefore, was to test 

this by experimenting with a latency-sensitive

workload. A latency-sensitive workload is a 

workload whose running time is dominated by the 

latency of individual I/O operations, rather than 

by the throughput achievable by the link. An 

example of a latency-sensitive workload is an 

application that reads small chunks at random 

offsets in a file. The significance of using small 

chunks is that the latency of issuing and 

responding to I/O, rather than the time that the 

data spends on the wire, dominates the execution 

latency of this application.  The significance of 

random access is to make sure that the client file 

system does not perform read-ahead, which could 

make the workload sensitive to the link 

throughput.  

Some applications, however, are able to hide 

the latency of individual I/Os by performing 

aggressive read-ahead and using large transfer 

size. Such workloads have a potential to saturate 

the underlying link and become limited by its 

bandwidth. These are bandwidth-sensitive

workloads. To determine whether or not such 

workloads would benefit from running on top of 

DAFS, we also evaluate the performance of a 

bandwidth-sensitive workload.  

Our first set of experiments involves reading 

a large file from the file server. The entire file fits 

into the server memory, and we read the file into 

the server memory prior to running the 

benchmark. Therefore, this experiment measures 

only the network transfer speed that can be 

achieved using the compared systems.  We also 

include results for the non-optimized NFS client.  



5.1.1. The latency-sensitive workload

To construct a latency-sensitive scenario we 

configure a benchmark that reads randomly

chosen blocks from the file.  We vary the transfer 

block size. When the block size becomes large,

the workload effectively becomes bandwidth-

sensitive. We configure the NFS client for 

maximum performance (the block size matches

the application block size up to 32 KB, and the

read-ahead is disabled).
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Figure 2. Read throughput. No read-ahead. [7]

Figure 2 shows the throughput in MB/s

achieved by the systems. DAFS outperforms both

NFS systems for small block sizes. This is due to 

the lower network latency (see Table 1) and lower 

protocol overhead. Note that since the application

provides page-aligned read buffers, NFS-nocopy

is able to avoid copies between the kernel and 

user space as well as the network to buffer cache

copy (see discussion in section 4).  The dashed 

curve above the NFS-nocopy curve was derived 

analytically to demonstrate the results that would 

be achieved if the NIC used with the NFS-nocopy

system had the same latency as the NIC used with

DAFS. Additionally, recent work has confirmed

that DAFS outperforms the optimized NFS2 in the

latency-sensitive scenario when both systems are

run on top of identical NICs [22].

When the block size becomes large, the

application is able to fill the network pipe with 

data and saturate the link. At this point DAFS and 

NFS-nocopy become limited by the maximum

throughput achievable by the underlying network 

interfaces (113 MB/s for cLAN and 120 MB/s for

Tigon II, see Table 1). Regular NFS delivers 

lower performance because it saturates the local 

CPU due to copying overhead. 

2 The system used in this work [22] employs different

(and likely more efficient) copy-avoidance mechanism

than NFS-nocopy.

Figure 3 shows the CPU usage reported as 

the number of milliseconds used per MB of

transferred data. The CPU usage for non-

optimized NFS remains constantly high,

saturating the client CPU.  With DAFS, the CPU 

usage falls as the block size increases, because

fewer network requests are issued. The interesting

observation here is that for NFS-nocopy the CPU 

usage remains constant with increasing block size.

This is due to the page-flipping cost, which is a

function of the number of pages and is 

independent of the block size. 
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Figure 3. CPU ms per MB. No read-ahead. 

5.1.2. The bandwidth-sensitive workload 

The bandwidth-sensitive scenario involves

issuing read-ahead for the blocks in the file. For

NFS, we cause the read-ahead to happen in the 

kernel by requesting sequential file access.  With 

DAFS, the read-ahead is done by the application,

using the DAFS asynchronous API. We configure 

the NFS client for maximum performance (the 

read block size is 32 KB, maximum read-ahead is 

enabled).  Figure 4 shows the throughput achieved

by the systems. The throughput numbers are 

normalized to the maximum throughput

achievable by the underlying interface.

Both DAFS and NFS-nocopy achieve the 

wire speed bandwidth. Standard NFS delivers 

lower throughput, because of the copying

overhead that saturates the local CPU.  Figure 5 

shows the CPU usage in milliseconds per MB of

transferred data.  With DAFS, the CPU usage falls



for large block sizes; with NFS-nocopy it stays

constant because of the page-flipping overhead.
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5.1.3. Summary

In this section we showed that both DAFS

and NFS-nocopy are able to perform at the wire

speed in the bandwidth-sensitive scenario,

although DAFS uses less CPU in doing so. 

Therefore, we conclude that bandwidth-sensitive

applications can do equally well on both systems,

unless they are CPU-bound. For the latency-

sensitive scenario DAFS outperforms NFS-

nocopy due to lower per-I/O overhead.

The applications used in this section were 

quite simple: they did not even touch the data that 

they read. In the next section we attempt to repeat 

the experiments of this section with more complex

applications. We set up a latency-sensitive and a 

bandwidth-sensitive application, expecting to get

similar results.  We find that higher complexity of 

the applications affects the behavior of the

experiments, leading us to get the results that we

did not expect. 

5.2. Berkeley DB 

All of the experiments that we describe in 

subsequent sections use Berkeley DB [3].

Therefore we take a moment to describe it here.

Berkeley DB (db) is an open-source 

embedded database library that provides support

for transactional concurrent storage and retrieval 

of key/value pairs. Db manages its own buffering 

and caching, independent of caching in the 

underlying file system buffer cache. Db can be

configured to use a specific page size, a unit of

caching, locking and I/O (usually 8 KB), and

buffer pool size.

In our experiments, db acts as a user

application that reads files from a remote server

either through DAFS or NFS-nocopy. We chose 

db as a workload generator for the experiments 

because it can be easily configured to produce 

various application workloads.

5.3.  Latency-sensitive scenario: a real

application

In this experiment we compare db

performance over DAFS to NFS-nocopy using a 

synthetic workload composed of read-only

transactions, each of which accesses one small 

record uniformly at random from a B-tree.  The 

workload is single-threaded and read-only, and 

there is no logging or locking.  In all experiments,

after warming the db cache we performed a

sequence of transactions long enough to ensure 

that each record in the database was touched twice

on average. The results report throughput in

transactions per second.  The db is configured

with a page size of 16 KB, so this is the unit of

I/O. This is a latency-sensitive configuration.

We vary the size of the database in order to 

change the bottleneck from local memory, to

remote memory and then to remote disk I/O. We 

compare DAFS and NFS-nocopy clients each 

running on a machine with 265 MB of RAM.  In 

both cases the server is configured with 1GB of 

memory. Since we did not expect read-ahead to 

help in the random access pattern considered here, 

we disable read-ahead for NFS-nocopy and use a 



transfer size of 16 KB. The db user-level cache

size is set to the amount of physical memory

expected to be available for allocation by the user

process (190 MB). The DAFS client uses about 36 

MB for communication buffers and statically

sized structures leaving about 190 MB for the db

cache. To facilitate comparison between the 

systems, we configure the cache identically for 

NFS-nocopy.

Figure 6 reports throughput in transactions 

per second.  For database sizes up to the size of 

the db cache (190 MB), the performance is

determined by local memory access as db satisfies 

the requests entirely from the local cache.

Therefore, for this segment of the graph both 

systems achieve identical performance.

Figure 6. Berkeley DB. The effect of double 

caching and remote memory access. [7]

Once the database size exceeds the size of the 

client cache (the 3rd and subsequent data points), 

performance degrades as both systems start

accessing remote memory. We expected that

DAFS would perform slightly better than NFS-

nocopy since this is what we saw in the latency-

sensitive experiment of section 5.1.

Contrary to what we expected, the 

throughput achieved with DAFS is several orders 

of magnitude higher. The reason lies in the 

structure of the NFS kernel client. With NFS-

nocopy, reading through the file system cache

creates competition for physical memory between 

the user-level and file system caches, which 

happens because in 4.3 FreeBSD the VM cache

and buffer cache are unified, meaning that the VM

system and the buffer cache draw physical pages

from the single memory pool.  As a result, the file

system cache grows and the user-level cache is

paged out to disk causing future page faults. We 

call this the double caching effect3. The DAFS

client avoids this effect by maintaining a single

cache.

For database sizes larger than 1GB that 

cannot fit in the server cache, both systems are

disk I/O bound on the server.

We were also interested in measuring the 

client CPU usage of each system. In Figure 7 we 

report the CPU seconds used per 1000 

transactions. As expected, DAFS uses many fewer 

CPU cycles per transaction than NFS-nocopy.
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Figure 7. Berkeley DB. CPU seconds per 1000

transactions.

This experiment has unexpectedly 

demonstrated to us a benefit of the user-level file 

system architecture: applications running on top

of DAFS can disable file system caching when it 

is not needed.  While it is possible to disable 

caching in the NFS kernel client by making a

small change to the kernel, this is not a general

solution. Disabling caching for the NFS client

would affect all processes that use that system,

some of which may want caching enabled. While

this experiment has demonstrated to us the 

benefits of the user-level file system architecture,

it has also directed us to think about its 

limitations.  Consider a scenario of a naïve

application that does not perform its own caching 

but could benefit from the caching traditionally

3 Double caching could be avoided if the db cache were

pinned in physical memory using the mlock() system

call. However, most operating systems limit how much

memory can be pinned.



performed by the file system clients. Such an

application can suffer from poor performance 

when run on top of a simple DAFS client that 

does not support caching. We demonstrate this

scenario in the following section.

5.4.  Flipping the coin: Kernel caching

In this section we simulate a naïve user 

application that does not perform its own caching, 

but can potentially benefit from the caching 

performed by the kernel file system client.  The

application performs a sequence of read-only

transactions, each of which retrieves a small

record from a B-tree selected uniformly at 

random. Db’s logging and locking are disabled. 

This time we set the db cache to a small size of 50 

MB. The client machine has 256 MB of physical

RAM.  We use a database of size 191 MB. The

server has 1 GB of RAM.  We perform several

runs, each with an increasing number of 

transactions.
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Figure 8. Berkeley DB. The effect of kernel 

caching.

Figure 8 shows the results. On the x-axis we

report the number of transactions performed in the

run, on the y-axis we report the throughput in

transactions per second. We start with a warm 

server cache and, a cold db cache, and, in case of

NFS, a cold client file cache.

When a small number of transactions is

performed, both systems have to read data from 

the server memory. DAFS outperforms NFS due 

to lower per-I/O latency.  Since the client machine

has plenty of RAM and there is no double

caching, we are able to repeat the result of the 

latency-sensitive benchmark in section 5.1 where 

DAFS achieved about twice the throughput of

NFS-nocopy for 16 KB transfer size.

As the number of transactions in the run

increases, the application starts accessing the

records that have already been accessed. Since the 

db cache is small in comparison to the working 

set, and the access pattern is random, DAFS 

performance remains the same. However, the

NFS-nocopy client benefits from the kernel 

caching on the client, and eventually its 

performance exceeds DAFS as all file requests of 

the application are satisfied from the local buffer 

cache.

The DAFS user-level client can certainly

implement its own caching [8], however it is

difficult to design a user-level cache that is shared

among separate untrusting processes.

5.5.  Bandwidth-sensitive scenario: a real

application

Getting back to our original plan to repeat

simple experiments of section 5.1 with more

complex applications, we construct a bandwidth-

sensitive application scenario. We modified

Berkeley DB to perform read-ahead when the

application access patterns are known. By issuing

read-ahead the db application is able to keep a 

high number of outstanding I/O requests, creating 

a bandwidth-sensitive workload. 

In this experiment an application uses db to 

compute a simple equality join. The result of the 

join produces a list of keys, whose corresponding

data records are fetched from the database. We

have modified db to perform asynchronous pre-

fetching on this list of keys using DAFS 

asynchronous API or POSIX aio API in the case

of NFS-nocopy.  In Figure 9 we compare the

throughput achieved with DAFS and NFS-nocopy

without pre-fetching  (NO_PREFETCH) and with 

pre-fetching (PREFETCH).

The results displayed in Figure 9 demonstrate

that, just like in the experiment of section 5.2, 

there is a benefit from application-initiated pre-

fetching when using either of the compared

systems. In section 5.2, we also saw that when 

pre-fetching both systems achieve similar

throughput and achieve wire speed performance.

This is not the case here. Neither system saturates



the link because the application we run here uses 

more CPU than the simple bandwidth benchmark.
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Figure 9. Bandwidth-sensitive application.

Another notable difference is that NFS-

nocopy achieves lower throughput than DAFS. 

There are two reasons for this.  The first is that

NFS-nocopy uses more CPU cycles than DAFS

(see section 5.1) and, given the additional CPU 

requirements of the application, CPU becomes the 

bottleneck, preventing efficient link utilization. 

The second reason, further contributing to the 

CPU bottleneck, is that the application running on 

top of NFS-nocopy does not enjoy the full 

benefits of copy avoidance in this experiment,

since db reads data into unaligned buffers (see 

section 4), and it would require non-trivial amount

of work to modify db to use page-aligned buffers. 

This demonstrates that RDMA is a more general

copy avoidance method for applications than that 

employed by NFS-nocopy.

In this section we presented an experiment 

with a sophisticated application that was modified

to do its own pre-fetching. It is also interesting to

look at a scenario of a naïve application does not

perform its own pre-fetching, but that could 

benefit from the pre-fetching usually provided by

the kernel file system clients.  Such an application

could suffer from poor performance when running

on top of a simple DAFS client that does not do

read-ahead. We demonstrate such a scenario in 

the next section. 

5.6. Flipping the coin: kernel pre-fetching

The following experiment demonstrates a

scenario in which the NFS kernel client delivers 

higher performance than DAFS, in this case, due 

to pre-fetching initiated by the NFS client when 

the sequential file access pattern is detected. The 

DAFS client does no pre-fetching.

To trigger kernel pre-fetching, we configure 

the application to use the “queue” data structure

available in the db library and perform a

sequential traversal of the queue, which requires 

sequentially reading the file containing the data 

structure.  The client host is configured with 256

MB of RAM, and the db cache is set to 50 KB. 

Since we perform a single traversal, touching each 

page in the file exactly once, there is no need for a

large cache.  We vary the size of the records 

populating the database, in order to vary the 

amount of computation performed by the

application.

Figure 10 shows the throughput in MB/s 

achieved by the application depending on the

record size. For all record sizes the NFS-nocopy

delivers higher throughput due to kernel pre-

fetching, but the effect of pre-fetching is small

when the application is CPU-bound due to the

overhead of processing of small records. 
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Figure 10. The effect of kernel pre-fetching. 

While a DAFS client could be easily

extended to perform pre-fetching like the kernel 

client, this result demonstrates the point that when 

migrating applications to DAFS, special care must

be taken to find out exactly what assumptions the

application makes about the underlying file 

system and whether or not these assumptions are

satisfied by the DAFS client.

6.  Reasoning About Application Performance

In the previous section we presented several

experiments that helped us understand what 

factors affect the performance of applications



running on top of DAFS. In this section we 

summarize the results of the experiments and 

describe a framework that helps us reason about 

the performance of an application on DAFS.   

Previous work has looked into building 

models for predicting the exact latency of 

application execution. Smith tackled the problem 

of predicting application performance on local file 

systems in his Ph.D. thesis [14]. He used a 

combination of vector-based and trace-based 

techniques developed by M. Seltzer and her 

colleagues [16]. Zhang used similar techniques to 

predict the performance of Java Virtual machines 

[15].  We believe that it would be difficult to 

directly apply these techniques here because, as 

we will see in the next section, performance of an 

application may depend on the degree of 

concurrency in the file system access exhibited by 

the application.  Therefore, instead of building a 

model for predicting the exact latency, we simply 

relate the results of the microbenchmarks to the 

application characteristics in a way that helps us 

reason about how an application would perform 

on DAFS.

As we saw from the results presented in the 

previous section, the performance of an 

application on DAFS largely depends on the 

characteristics of the application. Therefore, in 

order to reason about an application’s 

performance we need to categorize applications 

based on their characteristics. To facilitate such 

categorization in the infinite application space we 

point out three groups of application 

characteristics are key in determining the 

performance on DAFS: 

1) I/O characteristics: Is the application latency-

sensitive or bandwidth-sensitive? 

In the experiments of section 5.2 we saw that 

a latency-sensitive application is likely to see a 

performance benefit from the low per-I/O 

overhead of DAFS. Bandwidth-sensitive 

applications, on the other hand, can achieve 

comparable performance on DAFS and NFS-

nocopy, unless they are CPU-bound.  

2) CPU characteristics. Is the application CPU 

bound? 

DAFS uses fewer CPU cycles per I/O 

operation. This is an important consideration for 

CPU-bound applications, as we saw in section 5.5 

with the Berkeley DB join application. If an 

application is subject to the CPU bottleneck on the 

client machine it may achieve better performance 

with DAFS, because DAFS uses fewer CPU 

cycles for I/O, leaving more CPU cycles for the 

application.

3) Application structure: Is the application 

structured in a way that allows it to reap the 

benefits offered by the compared file systems?  

 Application design aspects that may affect 

the performance include the use of page-aligned 

buffers, implementation of custom caching or lack 

thereof, and reliance on pre-fetching provided by 

the file system. 

 By describing an application’s characteristics 

with respect to the three characteristic groups 

defined above, we can predict how the application 

will perform on DAFS compared to NFS-nocopy. 

 Before we proceed with evaluation of our 

framework, we take a moment to point out several 

limitations imposed on applications by the 

architecture of DAFS. Although these limitations 

do not directly affect performance, they may turn 

out to be important to consider when making 

decisions about a file system choice: 

a) When migrating applications to DAFS, 

they must be modified or re-linked.  

There is no such need when migrating to 

an optimized NFS client. 

b) Since DAFS has a user-level 

architecture4 it is difficult to design a 

client cache for DAFS that can be shared 

by multiple untrusting processes.  Many 

high performance systems, however, 

have a single-process architecture that 

does not depend on sharing a file system 

cache with other processes. For such 

systems the limitations of the user-level 

cache architecture do not present a 

serious problem. 

4 Although DAFS can also be implemented in the 

kernel, we consider the user-level architecture here, as 

explained in section 2. 



c) Since the DAFS user-level library is

embedded into the application address 

space, a buggy application can

inadvertently overwrite the memory

belonging to the file system client. 

d) DAFS requires registering the

application buffers used for I/O with the 

NIC (see section 3). Registration of the 

buffers means that the buffers are pinned

in the physical memory. This can result 

in an unfair use of operating system

resources by a DAFS application in a 

multi-process environment.

On a positive note, the DAFS user-level

structure offers opportunities for the 

customization of the file client for the application-

specific needs.

7. TPC-C 

In this section we test the effectiveness of our 

framework in predicting performance of a 

complex application.  The application we use is 

the TPC-C benchmark. 

TPC-C is a standard database benchmark

specified by the Transaction Processing

Performance Council [19]. It is an online

transaction-processing workload that involves a 

mixture of read-only and update intensive 

transactions that simulate the activities of order-

processing warehouses. A conventional TPC-C 

set-up is a complex multi-tier system that consists 

of transaction clients that issue transaction 

requests by sending messages to a message server,

that eventually forwards these requests to a

database server (see Figure 11). In our 

configuration, the database server stores its 

database files on a network-attached storage 

system running either DAFS or NFS file server.

Therefore, the database server uses either the

DAFS or the NFS-nocopy file system client to 

access the files. We were interested in comparing

the performance of the database server on these

two file systems.

Sun Microsystems graciously shared with us 

their database-benchmarking tool, which 

implements the database-independent part of

TPC-C [20]. We ported the Sun’s implementation

of TPC-C for Informix to run on top of Berkeley

DB. We implemented the database server as a

collection of one or more server processes that

receive transaction requests from the message

server and execute queries against Berkeley DB. 

Although we have ported the tool in its entirety, in

the experiment described here, the transaction 

workload is not generated by transaction clients – 

it is generated locally on the machine running

database servers. We do this in order to simplify

our understanding of the experiment.

Figure 11. Our TPC-C configuration.

Implementing the TPC-C benchmark

required careful tuning of the database schema

and transactions in order to minimize database

lock contention [21].  In the process of tuning we

also discovered that we were limited by the 

inadequate disk I/O system that was at our 

disposal.  We only had regular 10000-RPM SCSI 

disks available to us, while conventionally, the 

TPC-C benchmark is run with powerful RAID 

storage systems on the back-end that achieve

hundreds of megabytes in disk throughput [19].

We simulate the availability of a more powerful 

disk I/O system by disabling synchronous writes 

to disk and by configuring the file server machine

with 1 GB of physical RAM in order to fit the

entire database in memory.  The client machine

hosting the database server has enough physical

RAM to accommodate the db cache, configured to 

100 MB (1/7 of the database size). We pinned the 

db cache in memory in order to avoid the 

undesirable double caching effect we described in 

section 5.3.

To apply our framework for predicting the

behavior of TPC-C, we first need to establish the 

I/O, the CPU, and the application structure 



characteristics of the benchmark that will be

important in predicting its behavior.

The I/O characteristic of the TPC-C

benchmark depends on how many concurrent 

database server processes are running. When only

one process is running, the application is latency-

sensitive so we expect it to have better 

performance on DAFS. When multiple servers 

processes are running simultaneously, they can 

issue a number of simultaneously outstanding I/O 

requests.  This creates a potential for saturating

the link and making the workload bandwidth-

sensitive. As we showed in section 5.2 bandwidth-

sensitive applications do equally well on both 

systems unless they are CPU-intensive. Each 

TPC-C transaction involves traversing several

database indices. We, therefore, anticipated that 

the benchmark would be CPU-intensive and 

expected that it would do better on DAFS.  We 

also expected that TPC-C over DAFS would scale

better as the number of concurrent server 

processes increased, because of lower CPU

requirements of the DAFS client.

The application structure of the benchmark is

poorly suited for NFS-nocopy because Berkeley 

DB uses unaligned buffers for I/O transfer,

preventing NFS-nocopy from completely avoiding

data copies.  It is, however, well suited for the

simple DAFS client that we used: since Berkeley 

DB implements its own caching the benchmark’s 

performance would not suffer from the lack of 

caching in the DAFS client.  Since the access

pattern is random, we did not expect pre-fetching

to be helpful.

Figure 12 shows the combined throughput (in 

transactions per second) achieved by all the

database server processes as the function of the

number of processes.

As we expected, DAFS outperform NFS-

nocopy in all cases. When two database server

processes are running concurrently, the systems

deliver better throughput compared to the case 

when a single server process is used, because of

the improved utilization of the system resources.

When more server processes are added, both 

systems experience negative scaling because of

the adverse effect of database lock contention.
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Figure 12. TPC-C: total throughput as a function 

of a number of concurrent server processes.

DAFS uses CPU more efficiently: both 

systems achieve the same CPU utilization of 

about 80%, but since DAFS offers higher 

throughput, it uses fewer CPU cycles per

transaction.

We incorrectly anticipated that the 

benchmark would be CPU-intensive and would 

therefore scale better with DAFS than with NFS-

nocopy. Contrary to what we expected, the 

benchmark does not create CPU pressure. Even 

though we eliminated the disk I/O bottleneck and 

heavy lock contention points, there was still some

amount of database lock contention that prevented 

the benchmark from saturating the CPU.  Such 

lock contention is expected in the face of 

concurrent database access.

8. Conclusions 

In this work we conducted a performance 

evaluation study of DAFS using our open-source

implementation for FreeBSD. We addressed the

question whether the DAFS architecture provides 

any fundamental performance benefits for

applications compared to conventional network 

storage systems.  We concluded that the DAFS

architecture does provide fundamental 

performance benefits, but whether or not and 

application can enjoy these benefits largely 

depends on the structure of the application. Using 

microbenchmarks we understood the application

characteristics that determine its performance on 

DAFS. We summarized the important

architectural limitations of DAFS and compared



DAFS to a competing system: NFS-nocopy. We 

concluded that DAFS delivers better performance 

for latency-sensitive applications and for 

bandwidth-intensive CPU-intensive applications.  

We developed a framework for reasoning 

about an application’s performance on DAFS. 

Even though our framework proved useful for 

reasoning about the performance of simple 

applications, we found that for complex scenarios 

we were not able to correctly describe the 

application characteristics, which is the pre-

requisite for the effective use of our framework. 

This pre-requisite is difficult to satisfy when 

dealing with a complex distributed system.  

10. Software availability 

 The DAFS and NFS-nocopy software 

evaluated in this paper is freely available at 

http://eecs.harvard.edu/vino/fs-perf/dafs.html and 

http://www.cs.duke.edu/ari/dafs. 
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