
Application Performance on the Direct Access File
System

Citation
Fedorova, Alexandra, Margo Seltzer, Kostas Magoutis, and Salimah Addetia. 2003. Application
Performance on the Direct Access File System. Harvard Computer Science Group Technical
Report TR-01-03.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017124

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017124
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Application%20Performance%20on%20the%20Direct%20Access%20File%20System&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8afb2f6af2bb35905a4f50aba361ab9d&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

�✂✁✄✁✄☎✝✆✟✞✡✠☞☛✌✆✎✍✑✏✓✒✕✔✗✖✙✘✚✍✑✖✜✛✢✠✣✏✤✞✡✔✥✍✦✏✧☛✌★✤✔✪✩✫✆✟✖✙✔✬✞✭☛
�✂✞✡✞✡✔✗✮✯✮✱✰✲✆✎☎✎✔✴✳✶✵✷✮✸☛✹✔✬✛

✺✼✻✾✽❀✿✣❁✭❂❄❃❆❅❇❁❉❈❆✽✯❃❄❊✭❅❋❊✙●❍❁
■ ❁❍❅❑❏✡❊▼▲✬✽✹✻❖◆❋P✯✽✸❅
◗ ❊❙❘❚◆❯❁❍❘ ■ ❁❱❏✡❊❙❲☞◆❇❳❨❘

❁✭❂❄❃
▲☞❁✭✻❨❳✾❩❬❁✭❭❪✺✕❃❄❃❆✽❫◆❇❳❴❁

❵✲❛❝❜❡❞✣❢❣❜❡❞❙❤

✐ ❊❙❩▼❥✣❲☞◆❋✽✸❅✲▲❧❦✸❳✾✽✯❂❄❦✸✽♥♠✕❅❋❊❙❲❆❥
♦ ❁❱❅❑●❍❁❱❅❇❃q♣✼❂❄❳❖●✡✽✯❅❋❘❑❳r◆❡s

✐ ❁✭❩❉t❄❅❇❳✾❃❆❏❙✽✭✉ ■ ❁✭❘❑❘❇❁❍❦❯❭❧❲❄❘✈✽❫◆❑◆❣❘

Application Performance on the Direct Access File System

Alexandra Fedorova, Margo Seltzer, Kostas Magoutis and Salimah Addetia

Harvard University

Abstract

The Direct Access File System (DAFS) is a

distributed file system built on top of direct-access

transports (DAT). Direct-access transports are

characterized by using remote direct memory access

(RDMA) for data transfer and user-level networking.

The motivation behind the DAT-enabled distributed

file system architecture is the reduction of the CPU

overhead on the I/O data path.

In collaboration with Duke University we have

created and made available an open-source

implementation of DAFS for the FreeBSD platform. In

this paper we describe a performance evaluation study

of DAFS that was performed with this software. The

goal of this work is to determine whether the

architecture of DAFS brings any fundamental

performance benefits to applications compared to

traditional distributed file systems. In our study we

compare DAFS to a version of NFS optimized to

reduce the I/O overhead.

We conclude that DAFS can accomplish superior

performance for latency-sensitive applications,

outperforming NFS by up to a factor of 2. Bandwidth-

sensitive applications do equally well on both systems,

unless they are CPU-intensive, in which case they

perform better on DAFS. We also found that RDMA is

a less restrictive mechanism to achieve copy avoidance

than that used by the optimized NFS.

1. Introduction

The Direct Access File System (DAFS) [1] is

a new distributed file system designed to take

advantage of direct-access transports (DAT) [13].

Direct-access transports allow for efficient and

lightweight data transfer between the nodes in a

distributed system through the use of remote

direct memory access (RDMA) and user-level

networking. By utilizing direct-access transports

DAFS aims to increase the performance and

efficiency of network-attached storage systems.

The DAFS protocol is based on the Network File

System (NFS) protocol version 4 [4], with built-in

support for RDMA.

 While DAFS uses new technology to build a

distributed file system, conventional distributed

file systems (such as NFS) have evolved as well.

The research community has continuously

addressed performance problems associated with

conventional network storage systems, and, as a

result, these systems have improved [6, 9, 10, 11,

12]. In the face of recent improvements in the

performance of these systems, it is of interest to

determine whether the DAFS architecture

provides any fundamental performance benefits to

applications compared to conventional network

storage systems. This is the research question that

we address in the current work.

 In collaboration with Duke University we

have created and made available an open-source

implementation of the DAFS kernel server and the

user-level client for the FreeBSD platform. In this

paper we describe a performance evaluation study

of DAFS that we performed with this software. As

open source platforms become more common for

supporting multi-tier applications, understanding

the performance characteristics of the underlying

file system alternatives will allow systems

designers to construct high-performance

platforms.

 Our study makes the following contributions:

We use microbenchmarks to understand the

fundamental performance characteristics of

DAFS. We conclude that the degree to which an

application can benefit from DAFS largely

depends on the characteristics of the application.

We establish these characteristics and develop a

simple framework that helps reason about an

application’s performance on DAFS without

actually running the application. We evaluate the

predictive power of our framework on a TPC-C

database benchmark. We compare the

performance of DAFS to an implementation of

NFS modified to avoid data copies in the kernel

(NFS-nocopy).

The rest of the paper is organized as follows:

In section 2 we discuss related work. In sections 3

and 4 we give an overview of DAFS and of NFS-

nocopy. In section 5 we present the

microbenchmarks. In section 6 we discuss the

application characteristics that determine the

performance on DAFS, and derive the

performance-predicting framework. In section 7

we evaluate our framework on the TPC-C

benchmark. We conclude in section 8.

2. Related work

The current work is an extension of a

performance evaluation study of DAFS performed

at Harvard and Duke universities [7]. It expands

this study by experimenting with a wider range of

application workloads and by developing the

framework for reasoning about an application’s

performance on DAFS. Some of the experiments

demonstrated in this paper have also appeared in a

paper presented at the 2002 USENIX conference

[7]. We present these experiments here again for

completeness. We include a reference to the

original paper next to the figures.

Recent work has explored performance of

database systems on direct-access transports.

Zhou studied performance of Microsoft SQL

Server that communicated with a storage system

over a DAT network [17]. Scott performed a

similar study with DB2 [18]. This work presents

a general study of the file system built on top of

direct-access transports.

3. DAFS

We first give an overview of remote direct

memory access (RDMA) and user-level

networking – the enabling technologies behind

DAFS. We then proceed to describe their

respective roles in the DAFS architecture.

3.1. RDMA

RDMA is a direct transfer of data between

memory buffers on two hosts. It avoids the

copying of data that is normally required when

sending data over conventional mechanisms such

as remote procedure call (RPC). RDMA also

implies offloading the execution of the transport

protocol code to the network device. RDMA,

therefore, decreases host CPU overhead involved

in I/O.

To transfer data with RDMA, a client sends

to the server an RPC request, telling it what data it

needs and the memory address where the data

should be placed on the client. The server then

tells its network interface controller (NIC) to

initiate the RDMA. The NIC takes the data from

the server memory and puts it on the wire (note no

copying or host CPU involvement). When the data

arrives at the other side of the wire, the NIC on

the client machine deposits the data directly into

the memory buffer that had been allocated by the

client (again, there is no data copying or host CPU

involvement). Figure 1 illustrates the difference

between the DAFS client that uses RDMA and a

conventional file system client that uses RPC for

data transfer.

Figure 1. NFS client vs. DAFS client

Note that to make RDMA available to a file

system service, some protocol provisions are

necessary. In particular, a service that is using

RDMA must be able to pass the address of a

memory buffer where the RDMA data should be

placed to the remote host. Unlike the NFS

protocol, the DAFS protocol has such support for

RDMA. It is this protocol support that makes

DAFS DAT-ready, and makes the DAFS

architecture fundamentally different from that of

traditional distributed file systems.

3.2 User-level networking

Another characteristic of direct-access

transports is user-level networking. User-level

networking allows the user program to interact

directly with the network interface controller

(NIC), bypassing the kernel. The NIC exposes an

array of connection descriptors to the system’s

physical address space. At connection setup time,

the kernel NIC driver maps a connection

descriptor into the process virtual address space,

giving the process a direct way to communicate

with the NIC by simply writing and reading the

descriptor memory.

To perform a data transfer using such a NIC,

the user program must register with the NIC a

memory buffer, which will serve as the

destination for the incoming data. During

registration the kernel pins the buffer in physical

memory, and the NIC sets up a virtual-to-physical

translation of the buffer’s address in its internal

page table. Once the buffer is registered, the

RDMA transfer can proceed into the buffer

without the kernel involvement.

User-level networking reduces CPU

overhead for applications, by allowing an

application to initiate I/O without system calls.

3.3. The DAFS architecture

DAFS has been envisioned and specified by

a group of more than 85 companies led by

Network Appliance. Network Appliance has

released a commercial implementation of DAFS;

several non-commercial implementations have

been developed at universities [7]. The DAFS

client and server implementations that we use

have been developed by research groups at

Harvard and Duke Universities [7, 23].

Although DAFS could be implemented in the

kernel, just like traditional file systems, RDMA

and user-level networking enable a user-level file

system structure for DAFS. The DAFS client that

we use is implemented at user-level, and the

server is in the kernel. The client has an

asynchronous event-driven design and implements

the full DAFS client API [2], which is similar to

the POSIX API. Although the client has been

extended to support caching [8], the version used

for the experiments in this paper does not include

any caching or pre-fetching.

 RDMA and user-level networking require

special support on the NIC. The Virtual Interface

(VI) architecture [5] defines a host interface and

API for NICs supporting such features. Our DAFS

implementation runs on top of a VI-capable NIC

(Giganet cLAN 1000).

 The DAFS server is currently a self-

contained kernel module that does not require any

core kernel changes. It will eventually be a part

of the FreeBSD kernel distribution and is already

available in source form as a FreeBSD 4.6 kernel

module. It works with Myrinet GM 2.0 (alpha

release) and VI-GM 1.0, which is also open-

source software.

4. NFS-nocopy

NFS-nocopy1 is an implementation of the

standard NFS protocol modified to reduce the

overhead on the I/O data path by avoiding data

copies.

In the traditional kernel NFS client, there are

two data copies that have to be made on the

incoming I/O data path: the copy between the

network stack and the kernel buffer cache, and

then the copy between the buffer cache and the

application buffers (see Figure 1). NFS-nocopy

avoids these copies by using two techniques:

header splitting and page flipping. Header

splitting and page flipping are the traditional

methods of copy avoidance, variants of which

have been used with TCP/IP protocols in the past

[6, 10, 11, 12]. The idea behind these techniques

is to arrange for the NIC to deposit the data

payload (the file block) page-aligned in one or

more physical page frames. These pages can then

be inserted into the kernel buffer cache by

reference (page flipping). To do this, the NIC first

strips off any transport headers and the NFS

header from each message and places the data into

a separate page-aligned buffer (header splitting).

 We use an Alteon Tigon II Gigabit Ethernet

NIC whose firmware has been modified to

perform header splitting for the incoming NFS

read response messages. Once the data payload

has been deposited into page-aligned buffers in

the kernel buffer cache, the data is delivered to the

application buffers without copying, by simply re-

mapping the physical pages into the application’s

address space (page flipping). The copy into the

application buffers can only be avoided if the

application has provided page-aligned buffers for

the data.

1 The NFS-nocopy system that we use in our

experiments has been implemented at Duke University.

While this approach does not reduce system

call overhead, it does not require changing or re-

linking the applications. It does, however, require

kernel modification and proper NIC support. We

picked NFS-nocopy as a system to compare to

DAFS because it is representative of a

conventional network file system with overhead-

reducing optimizations.

5. Microbenchmarks

In this section we describe how we used

microbenchmarks to understand the performance

characteristics of DAFS. We begin with simple

experiments, and then gradually increase the

complexity of the benchmarks in order to improve

our understanding of the system. We compare the

performance of the benchmarks on DAFS and

NFS-nocopy. Since the compared systems are

targeted at improving performance on the client

side, we focus on benchmarking the clients.

Our system configuration consists of two

Pentium III 800 MHz client and server machines.

The client and the server are equipped with 256

MB and 1GB of RAM respectively, on a 133

MHz memory bus. All systems run patched

versions of FreeBSD 4.3. DAFS uses VI over

Giganet cLAN 1000 adapters. NFS uses UDP/IP

over Gigabit Ethernet, with Alteon Tigon-II

adapters. In some cases we also compare the

systems to regular NFS. Experiments with the

standard NFS implementation use the standard

Tigon-II driver and vendor firmware. UDP

checksum computation is offloaded to the NIC.

Table 1 shows the raw one-byte roundtrip

latency of these networks. The Tigon-II has a

higher latency. The bandwidths are comparable,

but not identical. Disparity of the interface

characteristics sometimes makes it difficult to

compare the results of the experiments. Therefore,

whenever appropriate we report the results

normalized to the maximum bandwidth

achievable by the underlying interface. In some

cases we analytically derive the numbers that we

would receive if identical networks were used. It

would have been desirable to perform the

measurements with identical networks. This was

not possible, because both DAFS and NFS-

nocopy needed to have special feature support on

the NIC. DAFS needed a NIC that supported

RDMA and user-level networking. NFS-nocopy

needed a NIC capable of performing header

splitting. We could not get a single NIC that

would provide all of these features.

VI/cLAN UDP/Tigon-II

Latency 30 µs 132 µs

Bandwidth 113 MB/s 120 MB/s

Table 1. Baseline network performance

5.1. Simple file access

The key motivation behind the architecture of

DAFS is to reduce CPU overhead on the I/O data

path. This is likely to decrease latency of I/O

operations. Our first goal, therefore, was to test

this by experimenting with a latency-sensitive

workload. A latency-sensitive workload is a

workload whose running time is dominated by the

latency of individual I/O operations, rather than

by the throughput achievable by the link. An

example of a latency-sensitive workload is an

application that reads small chunks at random

offsets in a file. The significance of using small

chunks is that the latency of issuing and

responding to I/O, rather than the time that the

data spends on the wire, dominates the execution

latency of this application. The significance of

random access is to make sure that the client file

system does not perform read-ahead, which could

make the workload sensitive to the link

throughput.

Some applications, however, are able to hide

the latency of individual I/Os by performing

aggressive read-ahead and using large transfer

size. Such workloads have a potential to saturate

the underlying link and become limited by its

bandwidth. These are bandwidth-sensitive

workloads. To determine whether or not such

workloads would benefit from running on top of

DAFS, we also evaluate the performance of a

bandwidth-sensitive workload.

Our first set of experiments involves reading

a large file from the file server. The entire file fits

into the server memory, and we read the file into

the server memory prior to running the

benchmark. Therefore, this experiment measures

only the network transfer speed that can be

achieved using the compared systems. We also

include results for the non-optimized NFS client.

5.1.1. The latency-sensitive workload

To construct a latency-sensitive scenario we

configure a benchmark that reads randomly

chosen blocks from the file. We vary the transfer

block size. When the block size becomes large,

the workload effectively becomes bandwidth-

sensitive. We configure the NFS client for

maximum performance (the block size matches

the application block size up to 32 KB, and the

read-ahead is disabled).

0.00

40.00

80.00

120.00

4 8 16 32 64 128 256 512

block size (KB)

re
a
d
 b

a
n
d
w

id
th

 (
M

B
/s

)

DAFS

NFS-nocopy

NFS

Figure 2. Read throughput. No read-ahead. [7]

Figure 2 shows the throughput in MB/s

achieved by the systems. DAFS outperforms both

NFS systems for small block sizes. This is due to

the lower network latency (see Table 1) and lower

protocol overhead. Note that since the application

provides page-aligned read buffers, NFS-nocopy

is able to avoid copies between the kernel and

user space as well as the network to buffer cache

copy (see discussion in section 4). The dashed

curve above the NFS-nocopy curve was derived

analytically to demonstrate the results that would

be achieved if the NIC used with the NFS-nocopy

system had the same latency as the NIC used with

DAFS. Additionally, recent work has confirmed

that DAFS outperforms the optimized NFS2 in the

latency-sensitive scenario when both systems are

run on top of identical NICs [22].

When the block size becomes large, the

application is able to fill the network pipe with

data and saturate the link. At this point DAFS and

NFS-nocopy become limited by the maximum

throughput achievable by the underlying network

interfaces (113 MB/s for cLAN and 120 MB/s for

Tigon II, see Table 1). Regular NFS delivers

lower performance because it saturates the local

CPU due to copying overhead.

2 The system used in this work [22] employs different

(and likely more efficient) copy-avoidance mechanism

than NFS-nocopy.

Figure 3 shows the CPU usage reported as

the number of milliseconds used per MB of

transferred data. The CPU usage for non-

optimized NFS remains constantly high,

saturating the client CPU. With DAFS, the CPU

usage falls as the block size increases, because

fewer network requests are issued. The interesting

observation here is that for NFS-nocopy the CPU

usage remains constant with increasing block size.

This is due to the page-flipping cost, which is a

function of the number of pages and is

independent of the block size.

0.00

0.04

0.08

0.12

0.16

0.20

4 8 16 32 64 128 256 512

block size (KB)

C
P

U
 m

s
 p

e
r

M
B

NFS-nocopy

NFS

DAFS

Figure 3. CPU ms per MB. No read-ahead.

5.1.2. The bandwidth-sensitive workload

The bandwidth-sensitive scenario involves

issuing read-ahead for the blocks in the file. For

NFS, we cause the read-ahead to happen in the

kernel by requesting sequential file access. With

DAFS, the read-ahead is done by the application,

using the DAFS asynchronous API. We configure

the NFS client for maximum performance (the

read block size is 32 KB, maximum read-ahead is

enabled). Figure 4 shows the throughput achieved

by the systems. The throughput numbers are

normalized to the maximum throughput

achievable by the underlying interface.

Both DAFS and NFS-nocopy achieve the

wire speed bandwidth. Standard NFS delivers

lower throughput, because of the copying

overhead that saturates the local CPU. Figure 5

shows the CPU usage in milliseconds per MB of

transferred data. With DAFS, the CPU usage falls

for large block sizes; with NFS-nocopy it stays

constant because of the page-flipping overhead.

0.00

0.20

0.40

0.60

0.80

1.00

4 8 16 32 64 128 256 512

block size (KB)

n
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t

NFS

DAFS

NFS-nocopy

Figure 4. Normalized read throughput. Read-

ahead. [7]

0.00

0.04

0.08

0.12

0.16

0.20

4 8 16 32 64 128 256 512

block size (KB)

C
P

U
 m

s
 p

e
r

M
B

NFS-nocopy

NFS

DAFS

Figure 5. CPU ms per MB. Read-ahead.

5.1.3. Summary

In this section we showed that both DAFS

and NFS-nocopy are able to perform at the wire

speed in the bandwidth-sensitive scenario,

although DAFS uses less CPU in doing so.

Therefore, we conclude that bandwidth-sensitive

applications can do equally well on both systems,

unless they are CPU-bound. For the latency-

sensitive scenario DAFS outperforms NFS-

nocopy due to lower per-I/O overhead.

The applications used in this section were

quite simple: they did not even touch the data that

they read. In the next section we attempt to repeat

the experiments of this section with more complex

applications. We set up a latency-sensitive and a

bandwidth-sensitive application, expecting to get

similar results. We find that higher complexity of

the applications affects the behavior of the

experiments, leading us to get the results that we

did not expect.

5.2. Berkeley DB

All of the experiments that we describe in

subsequent sections use Berkeley DB [3].

Therefore we take a moment to describe it here.

Berkeley DB (db) is an open-source

embedded database library that provides support

for transactional concurrent storage and retrieval

of key/value pairs. Db manages its own buffering

and caching, independent of caching in the

underlying file system buffer cache. Db can be

configured to use a specific page size, a unit of

caching, locking and I/O (usually 8 KB), and

buffer pool size.

In our experiments, db acts as a user

application that reads files from a remote server

either through DAFS or NFS-nocopy. We chose

db as a workload generator for the experiments

because it can be easily configured to produce

various application workloads.

5.3. Latency-sensitive scenario: a real

application

In this experiment we compare db

performance over DAFS to NFS-nocopy using a

synthetic workload composed of read-only

transactions, each of which accesses one small

record uniformly at random from a B-tree. The

workload is single-threaded and read-only, and

there is no logging or locking. In all experiments,

after warming the db cache we performed a

sequence of transactions long enough to ensure

that each record in the database was touched twice

on average. The results report throughput in

transactions per second. The db is configured

with a page size of 16 KB, so this is the unit of

I/O. This is a latency-sensitive configuration.

We vary the size of the database in order to

change the bottleneck from local memory, to

remote memory and then to remote disk I/O. We

compare DAFS and NFS-nocopy clients each

running on a machine with 265 MB of RAM. In

both cases the server is configured with 1GB of

memory. Since we did not expect read-ahead to

help in the random access pattern considered here,

we disable read-ahead for NFS-nocopy and use a

transfer size of 16 KB. The db user-level cache

size is set to the amount of physical memory

expected to be available for allocation by the user

process (190 MB). The DAFS client uses about 36

MB for communication buffers and statically

sized structures leaving about 190 MB for the db

cache. To facilitate comparison between the

systems, we configure the cache identically for

NFS-nocopy.

Figure 6 reports throughput in transactions

per second. For database sizes up to the size of

the db cache (190 MB), the performance is

determined by local memory access as db satisfies

the requests entirely from the local cache.

Therefore, for this segment of the graph both

systems achieve identical performance.

Figure 6. Berkeley DB. The effect of double

caching and remote memory access. [7]

Once the database size exceeds the size of the

client cache (the 3rd and subsequent data points),

performance degrades as both systems start

accessing remote memory. We expected that

DAFS would perform slightly better than NFS-

nocopy since this is what we saw in the latency-

sensitive experiment of section 5.1.

Contrary to what we expected, the

throughput achieved with DAFS is several orders

of magnitude higher. The reason lies in the

structure of the NFS kernel client. With NFS-

nocopy, reading through the file system cache

creates competition for physical memory between

the user-level and file system caches, which

happens because in 4.3 FreeBSD the VM cache

and buffer cache are unified, meaning that the VM

system and the buffer cache draw physical pages

from the single memory pool. As a result, the file

system cache grows and the user-level cache is

paged out to disk causing future page faults. We

call this the double caching effect3. The DAFS

client avoids this effect by maintaining a single

cache.

For database sizes larger than 1GB that

cannot fit in the server cache, both systems are

disk I/O bound on the server.

We were also interested in measuring the

client CPU usage of each system. In Figure 7 we

report the CPU seconds used per 1000

transactions. As expected, DAFS uses many fewer

CPU cycles per transaction than NFS-nocopy.

0

0.07

0.14

0.21

0.28

1
2

8

2
0

0

2
4

0

3
5

0

5
0

0

7
0

0

9
0

0

working set (MB)

C
P

U
 (

s
e
c
/1

0
0
0
 t

x
n
) DAFS

NFS

Figure 7. Berkeley DB. CPU seconds per 1000

transactions.

This experiment has unexpectedly

demonstrated to us a benefit of the user-level file

system architecture: applications running on top

of DAFS can disable file system caching when it

is not needed. While it is possible to disable

caching in the NFS kernel client by making a

small change to the kernel, this is not a general

solution. Disabling caching for the NFS client

would affect all processes that use that system,

some of which may want caching enabled. While

this experiment has demonstrated to us the

benefits of the user-level file system architecture,

it has also directed us to think about its

limitations. Consider a scenario of a naïve

application that does not perform its own caching

but could benefit from the caching traditionally

3 Double caching could be avoided if the db cache were

pinned in physical memory using the mlock() system

call. However, most operating systems limit how much

memory can be pinned.

performed by the file system clients. Such an

application can suffer from poor performance

when run on top of a simple DAFS client that

does not support caching. We demonstrate this

scenario in the following section.

5.4. Flipping the coin: Kernel caching

In this section we simulate a naïve user

application that does not perform its own caching,

but can potentially benefit from the caching

performed by the kernel file system client. The

application performs a sequence of read-only

transactions, each of which retrieves a small

record from a B-tree selected uniformly at

random. Db’s logging and locking are disabled.

This time we set the db cache to a small size of 50

MB. The client machine has 256 MB of physical

RAM. We use a database of size 191 MB. The

server has 1 GB of RAM. We perform several

runs, each with an increasing number of

transactions.

0

5000

10000

0 500 1000

1000 of transactions

th
ro

u
g

h
p

u
t
(t

x
n

/s
)

DAFS

NFS-nocopy

Figure 8. Berkeley DB. The effect of kernel

caching.

Figure 8 shows the results. On the x-axis we

report the number of transactions performed in the

run, on the y-axis we report the throughput in

transactions per second. We start with a warm

server cache and, a cold db cache, and, in case of

NFS, a cold client file cache.

When a small number of transactions is

performed, both systems have to read data from

the server memory. DAFS outperforms NFS due

to lower per-I/O latency. Since the client machine

has plenty of RAM and there is no double

caching, we are able to repeat the result of the

latency-sensitive benchmark in section 5.1 where

DAFS achieved about twice the throughput of

NFS-nocopy for 16 KB transfer size.

As the number of transactions in the run

increases, the application starts accessing the

records that have already been accessed. Since the

db cache is small in comparison to the working

set, and the access pattern is random, DAFS

performance remains the same. However, the

NFS-nocopy client benefits from the kernel

caching on the client, and eventually its

performance exceeds DAFS as all file requests of

the application are satisfied from the local buffer

cache.

The DAFS user-level client can certainly

implement its own caching [8], however it is

difficult to design a user-level cache that is shared

among separate untrusting processes.

5.5. Bandwidth-sensitive scenario: a real

application

Getting back to our original plan to repeat

simple experiments of section 5.1 with more

complex applications, we construct a bandwidth-

sensitive application scenario. We modified

Berkeley DB to perform read-ahead when the

application access patterns are known. By issuing

read-ahead the db application is able to keep a

high number of outstanding I/O requests, creating

a bandwidth-sensitive workload.

In this experiment an application uses db to

compute a simple equality join. The result of the

join produces a list of keys, whose corresponding

data records are fetched from the database. We

have modified db to perform asynchronous pre-

fetching on this list of keys using DAFS

asynchronous API or POSIX aio API in the case

of NFS-nocopy. In Figure 9 we compare the

throughput achieved with DAFS and NFS-nocopy

without pre-fetching (NO_PREFETCH) and with

pre-fetching (PREFETCH).

The results displayed in Figure 9 demonstrate

that, just like in the experiment of section 5.2,

there is a benefit from application-initiated pre-

fetching when using either of the compared

systems. In section 5.2, we also saw that when

pre-fetching both systems achieve similar

throughput and achieve wire speed performance.

This is not the case here. Neither system saturates

the link because the application we run here uses

more CPU than the simple bandwidth benchmark.

0

2000

4000

6000

8000

DAFS NFS-nocopy

T
h

ro
u

g
h

p
u

t
re

c
s

/s
e

c

NO-PREFETCH

PREFETCH

Figure 9. Bandwidth-sensitive application.

Another notable difference is that NFS-

nocopy achieves lower throughput than DAFS.

There are two reasons for this. The first is that

NFS-nocopy uses more CPU cycles than DAFS

(see section 5.1) and, given the additional CPU

requirements of the application, CPU becomes the

bottleneck, preventing efficient link utilization.

The second reason, further contributing to the

CPU bottleneck, is that the application running on

top of NFS-nocopy does not enjoy the full

benefits of copy avoidance in this experiment,

since db reads data into unaligned buffers (see

section 4), and it would require non-trivial amount

of work to modify db to use page-aligned buffers.

This demonstrates that RDMA is a more general

copy avoidance method for applications than that

employed by NFS-nocopy.

In this section we presented an experiment

with a sophisticated application that was modified

to do its own pre-fetching. It is also interesting to

look at a scenario of a naïve application does not

perform its own pre-fetching, but that could

benefit from the pre-fetching usually provided by

the kernel file system clients. Such an application

could suffer from poor performance when running

on top of a simple DAFS client that does not do

read-ahead. We demonstrate such a scenario in

the next section.

5.6. Flipping the coin: kernel pre-fetching

The following experiment demonstrates a

scenario in which the NFS kernel client delivers

higher performance than DAFS, in this case, due

to pre-fetching initiated by the NFS client when

the sequential file access pattern is detected. The

DAFS client does no pre-fetching.

To trigger kernel pre-fetching, we configure

the application to use the “queue” data structure

available in the db library and perform a

sequential traversal of the queue, which requires

sequentially reading the file containing the data

structure. The client host is configured with 256

MB of RAM, and the db cache is set to 50 KB.

Since we perform a single traversal, touching each

page in the file exactly once, there is no need for a

large cache. We vary the size of the records

populating the database, in order to vary the

amount of computation performed by the

application.

Figure 10 shows the throughput in MB/s

achieved by the application depending on the

record size. For all record sizes the NFS-nocopy

delivers higher throughput due to kernel pre-

fetching, but the effect of pre-fetching is small

when the application is CPU-bound due to the

overhead of processing of small records.

0.00

20.00

40.00

60.00

80.00

64 128 256 512 1024 2048

record size (bytes)

 t
h

ro
u

g
h

p
u

t
M

B
/s

NFS-nocopy

DAFS

Figure 10. The effect of kernel pre-fetching.

While a DAFS client could be easily

extended to perform pre-fetching like the kernel

client, this result demonstrates the point that when

migrating applications to DAFS, special care must

be taken to find out exactly what assumptions the

application makes about the underlying file

system and whether or not these assumptions are

satisfied by the DAFS client.

6. Reasoning About Application Performance

In the previous section we presented several

experiments that helped us understand what

factors affect the performance of applications

running on top of DAFS. In this section we

summarize the results of the experiments and

describe a framework that helps us reason about

the performance of an application on DAFS.

Previous work has looked into building

models for predicting the exact latency of

application execution. Smith tackled the problem

of predicting application performance on local file

systems in his Ph.D. thesis [14]. He used a

combination of vector-based and trace-based

techniques developed by M. Seltzer and her

colleagues [16]. Zhang used similar techniques to

predict the performance of Java Virtual machines

[15]. We believe that it would be difficult to

directly apply these techniques here because, as

we will see in the next section, performance of an

application may depend on the degree of

concurrency in the file system access exhibited by

the application. Therefore, instead of building a

model for predicting the exact latency, we simply

relate the results of the microbenchmarks to the

application characteristics in a way that helps us

reason about how an application would perform

on DAFS.

As we saw from the results presented in the

previous section, the performance of an

application on DAFS largely depends on the

characteristics of the application. Therefore, in

order to reason about an application’s

performance we need to categorize applications

based on their characteristics. To facilitate such

categorization in the infinite application space we

point out three groups of application

characteristics are key in determining the

performance on DAFS:

1) I/O characteristics: Is the application latency-

sensitive or bandwidth-sensitive?

In the experiments of section 5.2 we saw that

a latency-sensitive application is likely to see a

performance benefit from the low per-I/O

overhead of DAFS. Bandwidth-sensitive

applications, on the other hand, can achieve

comparable performance on DAFS and NFS-

nocopy, unless they are CPU-bound.

2) CPU characteristics. Is the application CPU

bound?

DAFS uses fewer CPU cycles per I/O

operation. This is an important consideration for

CPU-bound applications, as we saw in section 5.5

with the Berkeley DB join application. If an

application is subject to the CPU bottleneck on the

client machine it may achieve better performance

with DAFS, because DAFS uses fewer CPU

cycles for I/O, leaving more CPU cycles for the

application.

3) Application structure: Is the application

structured in a way that allows it to reap the

benefits offered by the compared file systems?

 Application design aspects that may affect

the performance include the use of page-aligned

buffers, implementation of custom caching or lack

thereof, and reliance on pre-fetching provided by

the file system.

 By describing an application’s characteristics

with respect to the three characteristic groups

defined above, we can predict how the application

will perform on DAFS compared to NFS-nocopy.

 Before we proceed with evaluation of our

framework, we take a moment to point out several

limitations imposed on applications by the

architecture of DAFS. Although these limitations

do not directly affect performance, they may turn

out to be important to consider when making

decisions about a file system choice:

a) When migrating applications to DAFS,

they must be modified or re-linked.

There is no such need when migrating to

an optimized NFS client.

b) Since DAFS has a user-level

architecture4 it is difficult to design a

client cache for DAFS that can be shared

by multiple untrusting processes. Many

high performance systems, however,

have a single-process architecture that

does not depend on sharing a file system

cache with other processes. For such

systems the limitations of the user-level

cache architecture do not present a

serious problem.

4 Although DAFS can also be implemented in the

kernel, we consider the user-level architecture here, as

explained in section 2.

c) Since the DAFS user-level library is

embedded into the application address

space, a buggy application can

inadvertently overwrite the memory

belonging to the file system client.

d) DAFS requires registering the

application buffers used for I/O with the

NIC (see section 3). Registration of the

buffers means that the buffers are pinned

in the physical memory. This can result

in an unfair use of operating system

resources by a DAFS application in a

multi-process environment.

On a positive note, the DAFS user-level

structure offers opportunities for the

customization of the file client for the application-

specific needs.

7. TPC-C

In this section we test the effectiveness of our

framework in predicting performance of a

complex application. The application we use is

the TPC-C benchmark.

TPC-C is a standard database benchmark

specified by the Transaction Processing

Performance Council [19]. It is an online

transaction-processing workload that involves a

mixture of read-only and update intensive

transactions that simulate the activities of order-

processing warehouses. A conventional TPC-C

set-up is a complex multi-tier system that consists

of transaction clients that issue transaction

requests by sending messages to a message server,

that eventually forwards these requests to a

database server (see Figure 11). In our

configuration, the database server stores its

database files on a network-attached storage

system running either DAFS or NFS file server.

Therefore, the database server uses either the

DAFS or the NFS-nocopy file system client to

access the files. We were interested in comparing

the performance of the database server on these

two file systems.

Sun Microsystems graciously shared with us

their database-benchmarking tool, which

implements the database-independent part of

TPC-C [20]. We ported the Sun’s implementation

of TPC-C for Informix to run on top of Berkeley

DB. We implemented the database server as a

collection of one or more server processes that

receive transaction requests from the message

server and execute queries against Berkeley DB.

Although we have ported the tool in its entirety, in

the experiment described here, the transaction

workload is not generated by transaction clients –

it is generated locally on the machine running

database servers. We do this in order to simplify

our understanding of the experiment.

Figure 11. Our TPC-C configuration.

Implementing the TPC-C benchmark

required careful tuning of the database schema

and transactions in order to minimize database

lock contention [21]. In the process of tuning we

also discovered that we were limited by the

inadequate disk I/O system that was at our

disposal. We only had regular 10000-RPM SCSI

disks available to us, while conventionally, the

TPC-C benchmark is run with powerful RAID

storage systems on the back-end that achieve

hundreds of megabytes in disk throughput [19].

We simulate the availability of a more powerful

disk I/O system by disabling synchronous writes

to disk and by configuring the file server machine

with 1 GB of physical RAM in order to fit the

entire database in memory. The client machine

hosting the database server has enough physical

RAM to accommodate the db cache, configured to

100 MB (1/7 of the database size). We pinned the

db cache in memory in order to avoid the

undesirable double caching effect we described in

section 5.3.

To apply our framework for predicting the

behavior of TPC-C, we first need to establish the

I/O, the CPU, and the application structure

characteristics of the benchmark that will be

important in predicting its behavior.

The I/O characteristic of the TPC-C

benchmark depends on how many concurrent

database server processes are running. When only

one process is running, the application is latency-

sensitive so we expect it to have better

performance on DAFS. When multiple servers

processes are running simultaneously, they can

issue a number of simultaneously outstanding I/O

requests. This creates a potential for saturating

the link and making the workload bandwidth-

sensitive. As we showed in section 5.2 bandwidth-

sensitive applications do equally well on both

systems unless they are CPU-intensive. Each

TPC-C transaction involves traversing several

database indices. We, therefore, anticipated that

the benchmark would be CPU-intensive and

expected that it would do better on DAFS. We

also expected that TPC-C over DAFS would scale

better as the number of concurrent server

processes increased, because of lower CPU

requirements of the DAFS client.

The application structure of the benchmark is

poorly suited for NFS-nocopy because Berkeley

DB uses unaligned buffers for I/O transfer,

preventing NFS-nocopy from completely avoiding

data copies. It is, however, well suited for the

simple DAFS client that we used: since Berkeley

DB implements its own caching the benchmark’s

performance would not suffer from the lack of

caching in the DAFS client. Since the access

pattern is random, we did not expect pre-fetching

to be helpful.

Figure 12 shows the combined throughput (in

transactions per second) achieved by all the

database server processes as the function of the

number of processes.

As we expected, DAFS outperform NFS-

nocopy in all cases. When two database server

processes are running concurrently, the systems

deliver better throughput compared to the case

when a single server process is used, because of

the improved utilization of the system resources.

When more server processes are added, both

systems experience negative scaling because of

the adverse effect of database lock contention.

0

200

400

600

800

1000

1 2 3 4 5

number of server processes

th
ro

u
g

h
o

u
t
(t

x
/s

)

DAFS

NFS-nocopy

Figure 12. TPC-C: total throughput as a function

of a number of concurrent server processes.

DAFS uses CPU more efficiently: both

systems achieve the same CPU utilization of

about 80%, but since DAFS offers higher

throughput, it uses fewer CPU cycles per

transaction.

We incorrectly anticipated that the

benchmark would be CPU-intensive and would

therefore scale better with DAFS than with NFS-

nocopy. Contrary to what we expected, the

benchmark does not create CPU pressure. Even

though we eliminated the disk I/O bottleneck and

heavy lock contention points, there was still some

amount of database lock contention that prevented

the benchmark from saturating the CPU. Such

lock contention is expected in the face of

concurrent database access.

8. Conclusions

In this work we conducted a performance

evaluation study of DAFS using our open-source

implementation for FreeBSD. We addressed the

question whether the DAFS architecture provides

any fundamental performance benefits for

applications compared to conventional network

storage systems. We concluded that the DAFS

architecture does provide fundamental

performance benefits, but whether or not and

application can enjoy these benefits largely

depends on the structure of the application. Using

microbenchmarks we understood the application

characteristics that determine its performance on

DAFS. We summarized the important

architectural limitations of DAFS and compared

DAFS to a competing system: NFS-nocopy. We

concluded that DAFS delivers better performance

for latency-sensitive applications and for

bandwidth-intensive CPU-intensive applications.

We developed a framework for reasoning

about an application’s performance on DAFS.

Even though our framework proved useful for

reasoning about the performance of simple

applications, we found that for complex scenarios

we were not able to correctly describe the

application characteristics, which is the pre-

requisite for the effective use of our framework.

This pre-requisite is difficult to satisfy when

dealing with a complex distributed system.

10. Software availability

 The DAFS and NFS-nocopy software

evaluated in this paper is freely available at

http://eecs.harvard.edu/vino/fs-perf/dafs.html and

http://www.cs.duke.edu/ari/dafs.

11. References

[1] DAFS Collaborative. Direct Access File

System Protocol, Version 0.90, June 2001,

http://www.dafscollaborative.org.

[2] DAFS Collaborative. DAFS API, Version 0.6,

June 2001, http://www.dafscollaborative.org.

[3] Olson, M., Bostic, K., Seltzer, M. “Berkeley

DB”, In Proceedings of USENIX 1999 Annual

Technical Conference, June 1999.

[4] Shepler, S. et al. NFS Version 4 Protocol. RFC

3010, December 2000.

[5] Compaq, Intel, Microsoft, Virtual Interface

Specification, Version 1.0, December 16, 1997.

[6] J. S. Chase, K. G. Yocum, and A. J. Gallatin.

“End-System Optimizations for High-Speed

TCP”, IEEE Communications Special Issue on

TCP Performance in Future Networking
Environments, 39(4):68-74, April 2001.

[7] Magoutis, K., Addetia, S., Fedorova, A.,

Seltzer, M., Chase, J., Kisley, R., Gallatin, A.,

Wickremesinghe, R., Gabber, E. “Structure And

Performance Of Direct Access File System”, In

Proceedings of USENIX 2002 Annual Technical
Conference, Monterey, CA, June 2002.

[8] Addetia, S. User-level Client-side Caching for

DAFS. Technical Report, Harvard University TR-

14-01, March 2002.

[9] Anderson, D., Chase, J., Gadde, S., Gallatin,

A., Yocum, K. “Cheating the I/O Bottleneck:

Network Storage With Trapeze/Myrinet”,

Proceedings of USENIX 1998 Annual Technical

Conference, June 1998.

[10] Brustoloni, J., “Interoperation of Copy

Avoidance in Network and File I/O”, In Proc. Of

18th IEEE Conference on Computer

Communications (INFOCOM’99), New York,

NY, March 1999.

[11] Chu, J. “Zero-copy TCP in Solaris”, In

Proceedings of USENIX 1996 Annual Technical

Conference, San Diego, CA, January 1996.

[12] Thadani, M., Khalidi, Y. “An Efficient Zero-

copy I/O Framework for UNIX”, Technical

Report, SMLI TR95-39, Sun Microsystems Lab,

Inc., May 1995.

[13] DAT Collaborative,

http://www.datcollaborative.org.

[14] Smith, K. “Workload-Specific File System

Benchmarks”, Ph.D. Thesis, Harvard University,

Cambridge, MA, January 2001.

[15] Zhang, X., Seltzer, M. “Hbench:Java: An

Application-Specific Benchmarking Framework

for Java Virtual Machines”, In Proceedings of the

ACM Java Grande 2000 Conference, pp. 62-70,

San Francisco, CA, June 2000.

[16] Seltzer, M., Krinsky, D., Smith, K., Zhang,

X. “The Case for Application-Specific

Benchmarking”, In Proceedings of the 7th

Workshop on Hop Topics in Operating Systems
(HOTOS-VII), pp. 102-107, Rico Rio, AZ, March

1999.

[17] Zhou, Y., Bilas, A., Jagannathan, S.,

Dubnicki, C., Philbin, J., Li. K. “Experiences

with VI Communication for Database Storage”, In

Proceedings of the 29th International Symposium
on Computer Architecture (ISCA), May 2002.

[18] Scott, H., “User-level I/O for Database

Management Systems”, Master’s Thesis, Queen’s

University, Kingston, Ontario, Canada, March

2001.

[19] Transaction Processing Performance Council,

“TPC Benchmark C”, Standard Specification,

Revision 5.0, Februrary 26, 2001,

http://www.tpc.org.

[20] Sun Microsystems, “Dbbench – Database

Benchmarking Tool – Version 2.4 Manual”, 1994.

[21] Fedorova, A., Seltzer, M. Personal

Communication on Optimizing Transactions and

Data Structures in Berkeley DB, Harvard

University, October 2002.

[22] Magoutis, K, Addetia, S., Fedorova, A.,

Seltzer, M., “Making the Most out of Direct

Access Network-Attached Storage”, To appear In

Proceedings of the 2nd USENIX Conference on

File and Storage Technologies (FAST ’03), San

Francisco, CA, 2003.

[23] Magoutis, K., "Design and

Implementation of a Direct Access File

System (DAFS) Kernel Server for FreeBSD",

In Proceedings of USENIX BSDCon 2002

Conference, San Franscisco, CA, February

11-14, 2002.

