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Three Aspects of Biostatistical Learning Theory

ABSTRACT

In the present dissertation we consider three classical problems in biostatistics and statistical learning
— classification, variable selection and statistical inference.

Chapter 2 is dedicated to multi-class classification. We characterize a class of loss functions which
we deem relaxed Fisher consistent, whose local minimizers not only recover the Bayes rule but also
the exact conditional class probabilities. Our class encompasses previously studied classes of loss-
functions, and includes non-convex functions, which are known to be less susceptible to outliers.
We propose a generic greedy functional gradient-descent minimization algorithm for boosting weak
learners, which works with any loss function in our class. We show that the boosting algorithm
achieves geometric rate of convergence in the case of a convex loss. In addition we provide numerical
studies and a real data example which serve to illustrate that the algorithm performs well in practice.

In Chapter 3, we provide insights on the behavior of sliced inverse regression in a high-dimensional
setting under a single index model. We analyze two algorithms: a thresholding based algorithm
known as diagonal thresholding and an L1 penalization algorithm — semidefinite programming,
and show that they achieve optimal (up to a constant) sample size in terms of support recovery in
the case of standard Gaussian predictors. In addition, we look into the performance of the linear
regression L. ASSO in single index models with correlated Gaussian designs. We show that under cer-
tain restrictions on the covariance and signal, the linear regression LASSO can also enjoy optimal
sample size in terms of support recovery. Our analysis extends existing results on LASSO’s variable
selection capabilities for linear models.

Chapter 4 develops general inferential framework for testing and constructing confidence inter-
vals for bigh-dimensional estimating equations. Such framework has a variety of applications and
allows us to provide tests and confidence regions for parameters estimated by algorithms such as
the Dantzig Selector, CLIME and LDP among others, non of which has been previously equipped
with inferential procedures.

iii



4

Contents

INTRODUCTION

FisHER CONSISTENCY AND APPLICATIONS IN A MULTI-CLASS SETTING

2.1 Introduction . . . . .. ...
2.2 Fisher Consistency for a general class of loss functions . . . . .. ... ... ...
2.3 Generic Algorithm for Constructing the Classifer . . . . .. .. ... ... ...
2.4  Numerical Studiesand DataExample . . . . ... ... ... ... ...
2.5  Discussion . . . . . . . . e e e e

SUPPORT RECOVERY FOR SLICED INVERSE REGRESSION IN HiGH DIMENSIONS

31 Introduction . . . . ... e
32 MainResults . . . . ...
3.3  Numerical Results . . . . . . . . . .. ... ... ..
3.4 Proofof Theorem3.2.3 . . . . . . . . . . . .. . ...
3.5 Proofof Theorem3.2.5 . . . . . . . . . . . . ... ..
3.6 Towards a Robust Support Recovery with Correlated Gaussian Design . . . . . .
3.7 Discussion . . . . . .. e e e

33

A UNIFIED THEORY FOR INFERENCE IN HIGH-DIMENSIONAL ESTIMATING EQUaA-

TIONS

41 Introduction . . . . . . ...
4.2 High Dimensional Estimating Equations . . . . . .. .. .. ... ........
43 General Theoretical Framework . . . . . . . ... ... ... ... .. .....
4.4 DantzigSelector . . .. ... L o
4.5  Edge Testing in Graphical Models . . . . . ... ... ... ... .. ......
4.6 Sparse LDA with the LDP algorithm . . . . . ... ... ... .. .. ... ..
4.7  Stationary Vector Autoregressions . . . . . . . . ... ...
4.8 Quasi-Likelihood . . . . ... ... ... o
4.9 Numerical Studies . . . . . ... .. ...
430 Discussion . . . . . .. e e e e

iv



s CONCLUSION 148

ArPENDIX A PROOFS FOR CHAPTER 2 151
AprPENDIX B PROOFS FOR CHAPTER 3 170
Ba  SIRrelatedproofs . . . ... ... .. 170
B2 Verification of the DT/SDP Constants . . . . . . . . . v v v v v v v v v v v 188
Bz Collectionof Useful Lemmas . . . . . . . . . ... .. . ... ... 195
B.4 Covariance Thresholding . . . . . ... ... ... .. ... .. ... .. ... 196
B.s  LASSOSupportRecovery . . ... ... ... ... ............... 197
ArPENDIX C PROOFS FOR CHAPTER 4 205
Ci  Proofsofthe General Theory . . . . . .. ... ... ... .. .. .. ...... 206
C2  Proofs for the Dantzig Selector . . . . . . ... ... ... .. .. .. ...... 216
C3 ProofsforEdge Testing . . . . . . .. ... ... ... ... 230
C.4 Proofsforthe LDPInference . . . . . . . . . . . . . . . . . ... 246
C.s ProofsforSVA . . . . . . e 259
C.6  Proofs for the Quasi-Likelihood . . . . .. ... ... ... ... ... .. 265
REFERENCES 282



2.1

3.1
3.2
3.3
3.4

4.1
4.2
43

Listing of figures

Loss Functions Comparison . . . . . ... ... ... ... ... ... .. .. 3
DL s=/P - o 52
DT, s =10g(D) . - -« v o o 53
SDP,s =10g(P) - -« v o o 54
Linear Regression LASSO, s = \/p . . .. ... ... ... ... ....... 82
Power Comparisons for the Linear Models . . . . ... ... ........... 143
CLIME EE vs Graphical Lassodesparsity . . . . . .. ... ... ......... 145
Nonparanormal CLIMEEEPower . . . . . ... ... ... ... ........ 146

vi



'To MY PARENTS — SONYA AND NEYKO.

vii



Acknowledgments

I would like to extend many thanks to Professor Tianxi Cai, for she was always there to help in
my continuous academic struggles, and was supportive in giving me the freedom to work on various
exiting problems. Her help consisted not only of passionate discussions on statistics, but also of
friendly chats and her marvelous yearly parties. During my time at Harvard I took the most classes
with Professor Jun S. Liu as a lecturer. It is not that much of the class material’, than the philosophy
of statistics that I learned from Jun, for which I will always be indebted to him. His critical thinking
helped me develop the instincts of a researcher and I hope to carry the torch he lit for a long time. I
am also truly thankful to Professor Xihong Lin, for patiently listening to all of my presentations and
offering her insights, many of which were often opening entirely new horizons.

My discussions with Dr Qian Lin, were as fun as they were enlightening, and I owe him spe-
cial thanks for his consistent help and encouragements. I was also very lucky to have the opportu-
nity to collaborate with Professor Han Liu and Dr Yang Ning, so they have my full admirations.
During my last semester I had several brief but extremely helpful chats with Professor Andrea Rot-
nitzky, which helped me understand the geometry of statistical inference, so thanks Andrea! I owe
thanks to Professor Noureddine El Karoui, whom I randomly bumped into while purchasing dou-
ble espressos, for providing me with his great insights into my problems. Thank you also to Rajarshi
Mukherjee for organizing the student led seminars on statistics — the place to discuss cutting edge
research and learn from your fellow students.

Next I want to mention several people, to whom I owe thanks from the bottom of my heart,
because they directly or indirectly have motivated me, helped me and supported me throughout the
years. I would like to thank Aleksandar Lishkov, for being a wonderful friend for almost my entire
life. Thank you Lishke, without you going to Harvard would have been as impossible as surviving
the years here. I also want to thank Rossen Kralev, a Harvard graduate himself, who hosted me in
his NYC flat many times when I, for one reason or the other, were left homeless in Boston. Many
fun summers would not have been the same if Ivaylo Boyadzhiev was not around the Boston area,
so thanks Ivo! Kossyo Kokalanov, I thank you for bringing some amazing art in my dull academic
life. Thank you Kiril Boyadzhiev for being an incredibly inspirational figure to me ever since 5th
grade! Thank you Vlado Djonev, for keeping the good music flowing when I was working at the late
hours of the Bulgarian night. My foosball skills were sharp due to years of extensive training along
side with Petar Tashev, and enabled me and Caleb Miles to win the GSAS foosball tournament.

*Although, I definitely learned some of the class material as well ©

viii



Thank you Petar and Caleb! Ivan Topalov’s sporadic visits to Boston, quickly turned into mini-
adventures every time, so thanks Topalke for all the fun. Thank you Yered Pita-Juarez for driving
me to IKEA, fixing my sink when it wouldn’t stop running, moving me several times, driving me

to IKEA again, but most of all I thank you for staying a true friend. I would also like to thank all
students in the Biostatistics Department at Harvard, and in particular all students from my cohort,
for asking hard questions in class, being easy-going out of class, and for contributing to the great and
relaxed atmosphere in the Department. Thank you also goes to Seth Macfarlane, J. G. Quintel and
Matt Groening for keeping my spirits up with their amusing TV shows.

This thesis would have been completely impossible if not for the help of the amazing Yuanyuan
Shen. She was the one to get me out of my personal crisis, the one who was there for me at moments
when everything seemed impossible. Thanks Ms Shen for the awesome dinners, but even better
breakfasts. You showed me that traveling around the world can be a great way of letting statistics
problems take a break from me, but even better — you taught me that living the PhD life can cer-
tainly be made a much more pleasurable experience, if we were to move Harvard to the Caribbean.
Pura Vida!

Needless to say, I wouldn’t have been in the position of writing these lines without the help and
love from my family — Neyko, Sonya and Nadya Neykovi. It is due to them that I grew up to be
naturally curious and was motivated to pursue the best education.

Last but not least, during my s years here, many people have pondered what exactly biostatistics
is and why am I pursuing a PhD in this mysterious subject. While a definite answer would require a
refinement of the question, one response that I have always been compelled to give is — “A career in
biostatistics is completely justified in my case as my mom Sonya is a biologist and my dad Neyko is
statistician.” To you I dedicate this dissertation.

ix



He who loves practice without theory is like the sailor
who boards ship without a rudder and compass and

never knows where he may cast.

Leonardo da Vinci

Introduction

Classification, variable selection and statistical inference are important areas in classical statistics. In
this dissertation we place these fields in “modern” settings and provide some insights.

Chapter 2 is dedicated to classification. In particular, we focus on multi-class classification, which
has been an active area of research. Accurate classification of categorical outcomes is essential in a
wide range of applications. Due to computational issues with minimizing the o/1 loss, Fisher con-

sistent losses have been proposed as viable proxies. However, even with smooth losses, direct min-



imization remains a daunting task. To approximate such a minimizer, various boosting algorithms
have been suggested. For example, with exponential loss, the AdaBoost algorithm** is widely used
for two-class problems and has been extended to the multi-class setting®. Alternative loss func-
tions, such as the logistic and the hinge losses, and their corresponding boosting algorithms have also
been proposed‘°3’88. In chapter 2, we demonstrate that a broad class of losses, including non-convex
functions, can achieve Fisher consistency. While non-convex Fisher consistent losses have been pre-
viously discussed in the literature ®7°, the functions from our class possess the further property to re-
cover the exact conditional probabilities. In addition, we provide a generic boosting algorithm that
is not loss-specific. Having multiple boosting algorithms with different choices of loss functions,
motivates a cross validation (CV) procedure to further improve the robustness of the proposed pro-
cedures. Simulation results suggest that the proposed boosting algorithms could outperform exist-
ing methods with properly chosen losses and the CV aggregation generally leads to classifiers with
performances similar or better than any classifier with a pre-selected loss.

In Chapter 3 we look into high-dimensional variable selection in single index models, which we
refer to as support recovery. Throughout the majority of the this chapter we explore support recov-
ery algorithms based on Sliced Inverse Regression (SIR). SIR is a dimension reduction tool, which
leverages information of an outcome variable, to project the predictor variables on a lower dimen-
sional space containing all necessary information for prediction of the outcome. We study the be-
havior of SIR in a high-dimensional setting with p > n under the assumption that the low di-
mensional space has dimension one. In particular, we provide two algorithms inspired by sparse
principal component analysis (PCA) — diagonal thresholding (DT) and semidefinite programming
(SDP), which achieve optimal sample size for support and signed support recovery correspondingly,
up to a proportionality constant, under the assumption that the predictor matrix X ~ N(0,I). In
contrast, it is known that DT and SDP are sub-optimal in the PCA setting?. In addition, in chap-

ter 3 we also explore two more algorithms — Covariance Thresholding (CT) and Linear LASSO’s



performances in single index models. Under a slightly different set of assumptions to those in the
SIR framework, we prove that CT can also provide signed support recovery in optimal (up to a con-
stant) sample size. We also show that the Linear LASSO can recover the support of the single index
model with a Gaussian predictor matrix X ~ N (0, X), given that certain restrictions on ¥ are met.
The last complements existing results for the Linear LASSO support recovery87, and can be viewed
as a partial solution towards support recovery for predictor matrices with generic covariances.

In Chapter 4 we propose a novel inferential framework of testing hypotheses and constructing
confidence regions for high-dimensional statistical models that can be fitted by solving a system
of regularized estimating equations. Such an estimating equation based inferential framework is
quite general and can be used for a wide variety of regularized estimators, including penalized M-
estimators, constrained Z-estimators, and even greedy estimators. The key ingredient of this frame-
work is a test statistic constructed by projecting the fitted estimating equations to a sparse direction
obtained by solving a large-scale linear program. For hypothesis tests, we derive the limiting dis-
tribution of this proposed test statistic under both null and local alternative hypotheses. For con-
fidence regions, we develop uniformly valid confidence intervals for low dimensional parameters
of interest, and show their optimality under scenarios when the estimating equation is based on a
log-likelihood function. To illustrate the usefulness of this framework, we further apply it to con-
duct inference for several constrained Z-estimators which have not been equipped with inferential
power before, including the Dantzig selector for high-dimensional regression, the LDP estimator
for high-dimensional discriminant analysis, the CLIME estimator for high-dimensional graphical
models, and a regularized transition matrix estimator for high-dimensional vector autoregressive
models. Compared with existing methods, our framework is the only one that is applicable for the
latter three applications. We provide thorough numerical simulations and real data experiments to

back up the developed theoretical results.



Inanimate objects can be classified scientifically into three
magjor categories: those that don’t work, those that break

down and those that get lost.

Russel Baker

Fisher Consistency and Applicationsin a

Multi-Class Setting

2.1 INTRODUCTION

Accurate classification of multi-class outcomes is essential in a wide range of applications. To con-

struct an accurate classifier for the outcome C' € {1, ...,n} based on a predictor vector X, the



target is often to minimize a misclassification rate, which corresponds to a o/1loss. We assume that
the data (C, XT)7T is generated from a fixed but unknown distribution . Specifically, one would

aim to identify £ = {f1(-), ..., fn(-)} that maximizes the misclassification rate
L(f) = E[I{C # ct(X)}] :P{C#Cf(X)}*, (2.1.1)

under the constraint ) ; f;(X) = 0, where (-) is the indicator function and for any f, c¢(X) =
argmax; [j(X). Obviously, fie, = {frej(1) =P(C =4 |:) — n~1,j = 1,...,n} minimizes
(2.1.1). In practice, one may approximate the Bayes classifier cg,, ., (-) by modeling P(C' = j | )
parametrically or non-parametrically. However, due to the curse of dimensionality and potential
model mis-specification, such direct modeling may not work well when the underlying conditional
risk functions are complex. On the other hand, due to discontinuity, direct minimization of the
empirical o/1loss is often both computationally and statistically undesirable.

To overcome these challenges, many novel statistical procedures have been developed by replac-
ing the o/1 loss with a Fisher consistent loss ¢ such that its corresponding minimizer can be used
to obtain the Bayes classifier. Lin*® showed that a class of smooth convex functions can achieve
Fisher consistency (FC) for binary classification problems. Zou et al. “°# further extended these re-
sults to the multi-class setting. Support vector machine methods have been shown to yield Fisher
consistent results for both binary and multi-class settings #***. Relying on these FC results, boost-
ing algorithms for approximating the minimizers of the loss functions have also been proposed for
specific choices of losses. Boosting algorithms search for the optimal solution by greedily aggregat-
ing a set of “weak-learners” G via minimization of an empirical risk, based on a loss function ¢. The
classical AdaBoost algorithm** for example is based on the minimization of the exponential loss,

¢(z) = e~ ", using the forward stagewise additive modeling (FSAM) approach. Hastie et al. *°

“Here the expectation is taken with respect to unknown true distribution IP.



showed that the population minimizer of the AdaBoost algorithm corresponds to the Bayes rule

1 100

Cfyayes () fOI the two-class setting. Zhu et al. ™ extended this algorithm and developed the Stagewise

Additive Modeling using a Multi-class Exponential (SAMME) algorithm for the multi-class case.

Most existing work on Fisher consistent losses focuses on convex functions such as ¢p(z) = e
and ¢(x) = |1 — z|4+. However, there are important papers advocating the usage of non-convex loss
functions, which we will briefly discuss here. In* inspired by Shen et al.”* the authors explore SVM
type of algorithms with the non-convex “ramp” loss instead of the typical “hinge” loss in order to
speed up computations. In®, the authors study the concept of “classification calibration” in the two-
class case. Classification calibration of a loss can be understood as uniform Fisher consistency, along
all possible conditional probabilities on the simplex. They demonstrate that non-convex losses such
as1 — tan(kx),k > 0 can be classification calibrated in the two class case. More generally, Tewari
and Bartlett7° extend classification calibration to the multiclass case, and provide elegant character-
ization theorems. We will draw a link between our work and the work of Tewari and Bartlett7° in
Section 2.2..

Asymptotically, procedures such as the AdaBoost based on these losses would lead to the opti-
mal Bayes classifier, provided sufficiently large space of weak learner set G. However, in finite sam-
ples, the estimated classifiers are often far from optimal, and the choice of the loss ¢ could greatly
impact the accuracy of the resulting classifier. In this chapter, we consider a broad class of loss func-
tions that are potentially non-convex and demonstrate that the minimizer of these losses can lead
to the Bayes rules for multi-category classification, and in fact can be used to explicitly restore the
conditional probabilities. Moreover, we define an iteration which leads to local minimizers of these
non-convex losses, which as we argue, can also recover the Bayes rule. The last observation has im-
portant consequences in practice, as global minimization of non-convex losses remains a challenging
problem. On the other hand, non-convex losses, although not commonly used in the existing liter-

ature, could be more robust to outliers’®. The rest of the chapter is organized as follows. In section



2.2 we detail the conditions for the losses and their corresponding FC results. In settings where the
cost of misclassification may not be exchangeable between classes, we generalize our FC results to
a weighted loss that accounts for differential costs. In section 2.3, we propose a generic boosting al-
gorithm for approximating the minimizers and study some of its numerical convergence aspects.
Since the choices of ¢ would affect the classification accuracy in finite sample, we also propose a
cross validation (CV) based procedure to construct an aggregated classifier to further improve the
robustness of our procedures. In section 2.4 we present simulation results comparing the perfor-
mance of our proposed procedures to that of some existing methods including the SAMME. We
apply our proposed algorithms to identify subtypes of diabetic neuropathy with EMR data from
the Partners Healthcare. These numerical studies suggest that our proposed methods, with prop-
erly chosen losses, could potentially provide more accurate classification. Additional discussions are

given in section 2.5. Proofs of the theorems are provided in Appendix A.

2.2  FISHER CONSISTENCY FOR A GENERAL CLASS OF LOSS FUNCTIONS

In this section we characterize a broad class of loss functions which we deem relaxed Fisher con-
sistent. This class encompasses previous classes of loss functions, provided in**#, but also admits

non-convex loss functions.

2.2.1 FISHER CONSISTENCY FOR o/1 LOSs

Suppose the training data available consists of IV realizations of (C, XT)T, 2 = {(C;, X])T,i =
1,..., N}. We assume that the data is drawn from a fixed, but unknown distribution P, and all

expectations throughout the chapter are taken with respect to P. Moreover, we assume throughout



that:
min }]P’(C = j|X) > 0 : Palmost surely in X. (2.2.1)

Assumption (2.2.1) states that there any class C has a chance to be drawn for all X, except on a set
of measure 0, where determinism in the class assignment is allowed. For a given C, define a cor-
respondingn X lvector Yo = (I(C = 1),...,I1(C = n))T. Under this notation, clearly

Y f(X) = fco(X). For identifiability the following constraint is commonly used in the existing

literature (e.g. see*»'°+°° among others):
n
Z fi(-) =0. (2.2.2)
i=1

To identify optimal f(+) to classify C based on f(X), we consider continuous loss functions ¢ as

alternatives to the o/1 loss and aim to minimize

n

Ly(f) = E[¢{YZE(X)}] = Elp{fc(X)}] = D _Ep{f(X)IPC =7 X). (223)

j=1

under the constraint (2.2.2). The loss function ¢ is deemed Fisher consistent (FC) if the global mini-

mizer (assuming it exists) fy = argminf:zj £,=0 Lo () satisfies

e, (X) = TCfxsayes (X). (2.2.4)

Hence, with a FCloss ¢, the resulting argmax f4 () has the nice property of recovering the opti-
mal Bayes classifier for the o/1loss. Clearly, the global minimizer f () also minimizes E[¢{ fo(X)} |

X = z|foralmost all z. With a given data &, we may approximate f by minimizing the empirical

«__»

TFormally the in (2.2.4) should be understood as “C”. For the sake of simplicity, we keep this slight

abuse of notation consistent throughout the chapter.



loss function

~ LN LN LN
Ly(f) = N D HYLE(X))} = N > o(fe (X)) = N D) s(f(X)IC = ),
i=1 i=1 j=1 i=1

~

in f = argmin Ly(f).
to obta ArgMINe. 5= f;=0 s(f)

Existing literature on the choice of ¢ focuses almost entirely on convex losses, important excep-
tions being®7°. Here, we propose a general class of ¢ to include non-convex losses and generalize
the concept of FC as we defined in (2.2.4). Specifically, we consider all continuous ¢ satisfying the

following properties:
d(x) — p(2) > (g(x) — g(2'))k(z") foralz e R,a’ € S={z € R:k(2) <0}, (22s5)

where g and k are both strictly increasing continuous functions, with g(0) = 1,inf,cr g(z) =
0,sup,er 9(z) = +00,k(0) < Oandsup,cg k(z) > 0. This suggests* that p{g 1 ()} is
continuously differentiable and convex on the set g(S) = {g(z) : z € S}. However, ¢ itself is
not required to be convex or differentiable. Extensively studied convex losses such as ¢p(x) = e
and ¢(z) = log(1l + e~7) both satisfy these conditions. For ¢(x) = ™%, (2.2.5) would hold

if welet g(z) = €¥and k(x) = —e 2%, For the logistic loss ¢(z) = log(1 + e~%), we may let
g(z) = e and k(x) = —{ce®*(1+€%)} ! for any positive constant ¢ > 0. Alternatively, g(z) =
e (1+¢)/2 and k(z) = —2{e®(1+¢7)(1+2¢7)} " would also satisfy (2.2.5) for the logistic loss.
Our class of losses also allows non-convex functions. For example, ¢(z) = log(log(e™ + €))isa
non-convex loss and (2.2.5) holds if g(z) = e® and k(z) = —{e*(e**! 4 1)log(e™® +¢)} L. On
an important note, we would like to mention that all three examples above can be seen to fall into

the general class of classification calibrated loss functions in the two class case, as defined by® and

FWe provide a formal proof of this fact in Appendix A under Lemma A.o.1.



hence are FC in the two-class case. We will see a more general statement relating condition (2.2.5) to
the two class classification calibration (see Remark 2.2.5 below).
Next, we extend the FC property (2.2.4), to allow for more generic classification rules. For a loss

function ¢, if there exists a functional H such that the minimizer of (2.2.3) has the property:

argmax H{ fy ;(X)} = cgy,, (X), (22.6)
J

then we call it 7elaxed Fisher consistent (RFC). Obviously, the REC property would still recover the
Bayes classifier. Moreover FC losses are special cases of the RFC losses with an increasing H.

We will now point out a connection between RFC and multiclass classification calibration as
defined by Tewari and Bartlett7°. Re-casting the definition of multiclass classification calibration to

our framework, it requires that for any vector w on the simplex, the minimizer (assuming it exists):

F(w) = argmin Z P(Fj)w; satisfies argmax ’H(d)(ﬁj)) = argmax wj, (2.2.7)
FZ] Fj:() i=1 J J

for some functional H. In words, classification calibration ensures that regardless of the conditional
distribution of C'| X, one can recover the Bayes rule. In contrast, RFC requires this to happen for
the distribution at hand C'| X, for (IP almost) all X. This subtle but important distinction makes a
difference. Example 4 in7® shows that if ¢ is positive and convex the conditions in (A.0.4) cannot be
met for all vectors w on the simplex, when we have at least 3 classes. On the contrary, in the present
chapter we argue that in fact condition (A.0.4) remains plausible for both convex and non-convex
losses, provided that we require the assumption that the points w are not allowed to be verteces of
the simplex (i.e. w; > 0 for all j), which relates back to assumption (2.2.1).

The next result justifies that the proposed losses satisfying (2.2.5) are REC with H(z) = Hy(z) =

g(x)k(x). We first present in Theorem 2.2.1 the property of a general constrained minimization

10



problem, which is key to establishing the RFC.

Theorem 2.2.1. For a loss ¢ satisfying (2.2.5), consider the optimization problem with some given
w; > 0:
n n
min Fiw; der th traint F;)=1. 2.8
Fn)T;d)( j)w;  under the constrain Hg( ) (2.2.8)

( IR =1

Assume that there exists a minimum denoted by F = (F1, ..., F,)T. Then the minimizer F must

satisfy
H¢(ﬁj)wj =C forsomeC < Q. (2.2.9)

Moreover, if the function Hy(-) is strictly monotone there is a unique point with the property de-

scribed above.

~

This result indicates that H (F7) is inversely proportional to the weight w;. Now, consider
g(z) = exp(x), w; = P(C = j|X = z),and Fj = f;(x), where we hold z fixed, as in the boost-
ing framework. Then we can recover cg,, . () by classifying C' according to argmax;{ — H, ¢(ﬁ Nl =
argmax; H ¢(ﬁj) (the negative sign comes in because C < 0), which implies that ¢ is RFC. Note
that when Hy(-) is not increasing, Theorem 2.2.1 does not immediately imply that ¢ is a Fisher

consistent loss according to definition (2.2.4), because the Bayes classifier need not be recovered

by argmax; ]?'J Nevertheless, we have the following:

Proposition 2.2.2. Assume the same conditions as in Theorem 2.2.1. Then in addition to (2.2.9) we
have:

argmax Fj = argmax wyj,
]6{1 ----- n} ]6{17771’}

and hence ¢ is also FC in the sense of (2.2.4).
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The validity of Proposition 2.2.2 can be deduced from Theorem 2.2.1 and an application of
Lemma 4 of 7%, but for completeness we include a simple standalone proof in Appendix A. While
Proposition 2.2.2 states that ¢ is FC, Theorem 2.2.1 suggests that one can additionally recover the

exact conditional probabilities by calculating:

(2.2.10)

RN £:7103))
L {H(Fy)}

It is also worth noting here that the constraint in (2.2.8), generalizes the typical identifiability con-
straint (2.2.2), and the two coincide when g(-) = exp(-). We proceed by formulating a sufficient
condition for the optimization problem in Theorem 2.2.1 to have a minimum without requiring the

convexity or differentiability of ¢.

Theorem 2.2.3. The optimization problem in Theorem 2.2.1 bas a minimum if either of the follow-

ing conditions holds:

i. ¢ is decreasing on the whole R and for all ¢ > 0:
o9~ (2) + ¢(g (&' ™™)) T o0, asx |0, (2.2.11)

ii. ¢ is not decreasing on the whole R.

Remark 2.2.4. It follows that in any case, problem (2.2.8) has a minimum when the loss function is

bounded from below and unbounded from above.

Remark 2.2.5. Take g = exp to match the constraint in (2.2.8) with the constraint considered by
Bartlett et al.. It turns out that a loss function obeying (2.2.5) and either i. or ii. is classification cali-

brated in the two class case. See Lemma A.0.3 in Appendix A for a formal proof of this fact.
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Figure 2.1: Loss Functions Comparison
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Clearly, by Remark 2.2.5, problem (2.2.8) would have a minimum for all three losses suggested
earlier — the exponential, logistic (for both g(z) = €“*, and g(z) = €”* %), and log-log loss.

Finally we conclude this subsection, by noting that the assumptions in both Theorem 1 and 2
in'** can be seen to imply that the assumptions in Theorems 2.2.1 and 2.2.3 hold, thus rendering
these theorems as consequences of the main result shown above. For completeness we briefly recall
what these conditions are. In Theorem 1, Zou et al. °°# require a twice differentiable loss function ¢

such that ¢/(0) < 0and ¢” > 0. In Theorem 2 these conditions are slightly relaxed by allowing for

part linear and part constant convex losses.

2.2.2 FISHER CONSISTENCY FOR WEIGHTED o/1 LOsSs

Although the expected o/1loss or equivalently the overall misclassification is an important summary
for the overall performance of a classification, alternative measures may be preferred when the cost

of misclassification is not exchangeable across outcome categories. For such settings, it would be
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desirable to incorporate the differential cost when evaluating the classification performance and
consider a weighted misclassification rate. Consider a cost matrix W = [W (4, 7)|nxn with W (4, )

representing the cost in classifying the 7™ class to the 5™ class. Then, the optimal Bayes classifier is

n
cfp (X) = argmin »_ W (j, ))P(C = 5| X). (2.2.12)
J =1
Setting W = 1 — T corresponds to the o/1loss and clc’:ayes = Cfyyyee» Where 7 is the identity matrix.
Without loss of generality, we assume that W (j, 7) > 0. For ¢ satisfying (2.2.5) and the condition
in Theorem 2.2.3, we next establish the FC results for the weighted o/1 loss parallel to those given in

Theorems 2.2.1 and 2.2.3.

Proposition 2.2.6. Define the weighted loss ((Fy) = 37"y ¢(F;)W (j, 7). Then the optimization

problem:

n

min L(F)P(C = 9| X), -
F:(Fl,...,Fn)T;H;l_lg(FJ):l]:Zl ( ]) ( ‘ ) ( )

has a minimizer Y = (Y, ..., E)T which satisfies the property that:
H¢(ﬁjw)ij =C for some C <0, (2.2.14)

where w}(\’ = z;‘zl W (4, 9)P(C = | X) assuming that wJW > 0.

Proof of Proposition 2.2.6. This proposition is a direct consequence of Theorem 2.2.1, after exchang-

ing summations:

n n n

Z Z P(F)W (4,9)P(C = 3| X) = Z‘ﬁ(Fj)w}/\}-

]:1 ]:1 ]:1
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Remark 2.2.7. Note that the above result hints on how one can relax assumption (2.2.1) by using
the loss € constructed with W = 1 — 1. Using this particular U, Proposition 2.2.6 simply requires

w}/v > 0, which would be satisfied if we required:

max P(C = j|X) < 1:P almost surely in X,
je{l,...,n}

which is indeed weaker than (2.2.1). If we wanted to recover the probabilities simply note thar P(C' =

JjIX)=1- w;-/v, and hence the probabilities can be recovered by:

()
Z?:1{H¢(FJW)}_1

P(C =j|X)=1—

The result also suggests that using the modified loss ¢, we can attain the optimal weighted Bayes

classifier c‘f’:ayes (X) based on argmin, H, (ﬁ 7).

2.3 GENERIC ALGORITHM FOR CONSTRUCTING THE CLASSIFER

In this section we provide a generic boosting algorithm, based on the explicit structure (2.2.5) that
the RFC loss functions posses, and analyze certain numerical convergence aspects of the algorithm
in the special case when g = exp. We finish the section with a suggestion for aggregating boosted

classifiers based on different loss functions.

2.3.1 A GENERIC BOOSTING ALGORITHM

The properties of ¢ and the results in Theorem 2.2.1 and 2.2..3 also lead to a natural iterative generic

boosting algorithm to attain the minimizer.
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A CONDITIONAL ITERATION

In this subsection, we provide an iterative procedure, conditional on X = =, which eventually
leeds to a generic boosting algorithm. The usefulness of this conditional iteration is based on the

following result.

Theorem 2.3.x. Assume that ¢ satisfies (2.2.5) and the condition in Theorem 2.2.3. Starting from

FO =0, ie F j(o) = 0 for all j, define the following iterative procedure:

Fm+Y) —  argmax Z{Q(Fj(m)) — g9(Fj) Y (Fj)w;. (2:31)
F:[[g(Fy)=1 ;2

This itevation is guaranteed to converge to a point F'™* with the following property:
& g 24 'y

9(F}Yk(F})wj = Hy(F})wj = C < 0. (2.32)

Remark 2.3.2. On an important note, careful inspection of the proof of Theorem 2.3.1, implies that in

fact any iteration having F" Y such that, k(Fj(mH)) SRS | ) g(Fj(mH)) =1, and:
g m m+1 m+1
D Ao (E™) = a(F" ) (E D)y > 0,
j=1

will converge to a point with the property (2.3.2). This is important, as it implies that even if problem
(2.3.1) is difficult to solve in practice, one can solve the simpler problem above, and will still arrive at a

local minimum satisfying (2.3.2).

In the theorem above, the iterations are defined conditionally on X = z, and F; can be under-
stood as fj(x). If Hy(-) turns out to be monotone, the procedure above will converge to the global
minimum, as we can conclude straight from Theorem 2.2.1. Even if the procedure does not converge

to a global minimum, because of the property of the point that it converges to, F'* can be used to
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recover the Bayes classifier. This observation is particularly useful for minimizing non-convex loss
functions as in such cases it is often hard to arrive at the global minimum. Moreover, as before the
point F'* can be used not only for classification purposes, but also to recover the exact probabilities
wj.

In practice, the procedure described in (2.3.1) can be used to derive algorithms for boosting. How-
ever, an unconditional version of (2.3.1) is needed since w; are unknown in general. Noting that the

expectation of I(C' = j) given X is wj, we have
E (Y [olF™ (X)) = g{E (X} R{EH(X) by
j=1

=5 | 3 [ol (X0} - g{F(X)}] B (X)}(C = j)

J=1

=E ([g{¥2F™(X)} - g{¥IF(X)}| HYIF(X)}) (233)

where Yo = (I(C = 1),...,I(C = n))T. We next derive a boosting algorithm iterating based on

an empirical version of (2.3.3).

THE BOOSTING ALGORITHM

To derive the boosting algorithm, welet G = {G}(+),b = 1, ..., B} denote the bag of weak learners
with G(X) € {1, ..., n} denoting the predicted class based on learner G. For the bth classifier in G,

define a corresponding vectorized version of Gy, Fy = (Fp1, ..., Fiy, ), with
Fyj(X) = C- + I{Gy(X) = j}(Cy — C-),

where C_ < OandCy > 0are chosen such that []7_; g(Fp;) = 1. Obviously, Y Fy() =

C_ +I(Gp(-) = O)(Cy —C_). Let G* = {Fp(-),b = 1, ..., B} denote the bag of vectorized
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classification functions corresponding to the classifiers in G.

We next propose a generic iterative boosting algorithm that greedily searches for an optimal
weight and for which weak learner to aggregate at each iteration. The loss function ¢ is not directly
used, and instead we rely on the g(-) and k(-) functions as specified in (2.2.5). Specifically, initialize

FO = 0andletC® = 0. Thenform = 1, ..., M with M being the total number of desired
iterations, we obtain the maximizer of
N

> gYEF (X} 1 - Y EF(X0)Y | k (97 oY F (X o{ YO F (X)) )
=1

with respect to F' € G* and 8 > 0, denoted by Fand B . Then we update the classifier coordinate-

wise as Fj(m) =gt {g(Fj(m_l))g(ﬁj)B)} so that we have the following
g{YIF™} = g(YIF" D)g{YIFY’,

holding for all C'. This will ensure that the property [[7_, g(F. j(m)) = 1 continues to hold through-

out the iterations. Thus at each iteration, we would be greedily maximizing:
G YLF (X)) - oYL F (X0} b {YLF (X0) |
i=1

which is exactly the empirical version of (2.3.3).
For illustration, consider g(z) = e” with ¢ being differentiable and hence we may let k(z) =
¢(x)e*. In this special case the update of F(™) simplifies to F(™) = F(m=1) 1 BF. Therefore

following the iteration described above we have:

N
argmin > —{e YEFX) — 1o{yT FmU(X,) + BY F(Xi)} (23.4)
Feg*, 320 ;=
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Note here, the apparent similarity between a coordinate descent (or gradient descent in a func-
tional space) as proposed in ° and*#, and the above iteration. Finally, we summarize the algorithm

as follows.

Algorithm 1 Generic Boosting Algorithm

. Set F(O =0,
2. Form=1,..., M:

(a) Maximize

ZQ{Y&F(m_l)(Xi)} [1— g{YLF(X,)}7] x

k(g7 [g{YSF ™ (X)) o{ Y, F (X)) (2.3:5)

with respect to F' € G*, 5 > 0 to obtain Fand E

~

(b) Update F™ coordinate-wise as Fj(m) = gfl{g(F}(m_l))g( j)B)}.

3. Output F) and classify via argmax; H¢(FJ-(M) )s

2.3.2  NUMERICAL CONVERGENCE OF THE ALGORITHM WHEN ¢(+) = exp(-)

In this subsection we illustrate how algorithm 1 performs in finite samples, if we let it run until con-
vergence (using potentially infinitely many iterations). We specifically study the properties of the
iteration above in the case when g(z) = exp(z), or in other words we are concerned with the iter-

ation given by (2.3.4). In addition we also want to explore the relationship between iteration (2.3.4)
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and the following optimization problem:

N
inf Y] F(X; 3.6
Fe;;;ng*;ﬁf)( ¢ F (X)) (2.3.6)

To this end we formulate the following:

Definition 2.3.3 (Looping closure). Ler 7 be a permutation of the numbers {1, ..., n} into {my,...,m}.
Consider the following “loop” functions, such that for alli = 1,...,n: 10(x;) = m;, 10 (m;) =

T, (B () = 1IOAFED()), where the indexingis mod n, and k = 1,...,n — 15, We say

that a classifier bag G is closed under “looping” if there exists a permutation T such that for all G € G

z'tfollowytlmtl(k) oGeGforallk=0,...,n—1

In practice, closure under looping can easily be achieved if it is not already present, by adding
the missing classifiers to the bag. Similar bag closures have been considered in the two class case in
Mason et al. ®°. We start our discussion with the following proposition, providing a property of the

algorithm, at its limiting points.

Proposition 2.3.4. Suppose that the loss function ¢ is decreasing, continuously differentiable, bounded
[from below and satisfies (2.2.5) with g = exp. Furthermore assume that, the classifier bag is closed
under looping (see Definition 2.3.3). Then iterating (2.3.4), using possibly infinite amount of iterations

until a limiting point F(°°) is reached, guarantees that the following condition holds:

N
SYLF(X) (YL F) (X)) =0, (237)
=1

forall F € G,

SNote that the loop functions depend on the permutation 7, but we suppress this dependence for clarity
of exposition.
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Clearly, all examples of loss functions we considered satisfy the assumptions in Proposition 2..3.4.
In the case when ¢ is convex, (2.3.7) shows that by iterating (2.3.4) we would arrive at an infimum of
(2.3.6). This can be easily seen along the following lines. Assume that the Fisa point of infimum of

(2.3.6) over the span of G*. By convexity of ¢ we have:

N N N
Y SYLF(X:) = Y ¢(YLF™(Xi) 2 Y YLIF(X:) - FO(X)|H(YLF™) (X)) = 0.
=1

i=1 i=1
The last equality follows from (2.3.7) and the fact that F — F(®) isin the span of classifiers.

In the case when ¢ is not convex, condition (2.3.7) remains meaningful, though it doesn’t guar-
antee convergence to the infimum. In order for us to relate condition (2.3.7) to equation (2.2.10)
in the general (non-convex loss) case, and make it more intuitive, we consider a simple and illustra-
tive example. We restrict our attention to the two class case (n = 2), but the example can easily be
generalized.

First note that the classification rule (2.2.10) in the two class case with g = exp becomes
{p(Y]F>) ()} *

ATGMAXje (1,9} T30t ()13 (D (Y] F (@))] 1" Consider a (disjoint) partition of the
predictor support: X' — X1, ..., Xp. Construct classifiers based on that partition in the following
manner:

1, ifze X,
Gb (iL') - )

2 otherwise

and close them under looping. It is easily seen that, under this framework the vector F(*) () is

)

constant forx € A}, for a fixed b. Denote this value with F; b(oo . Plugging in the b classifier in

equation (2.3.7) we obtain: Nbg.b(YlTFb(oo)) —(N-— Nb)gzlﬁ(YzTFb(oo)) = 0, where N, is the number
(Y F>)) ! _
{S(YTF ) 1+ {o(Y] By ™))}

of observations correctly classified by the b classifier, or in other words:
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%,5 which evidently is an estimate of the probability that P(C = 1|X € A}), whichin turnisa
proxy to the Bayes classifier. Moreover note that this completely agrees with the classification rule

yielded by equation (2.2.10).

CONVERGENCE ANALYSIS

In the convex loss function case, property (2.3.7) will be matched by a gradient descent methods

in the function space (such as AnyBoost°® e.g.). This motivates us to consider the question of the
convergence rate of the newly suggested algorithm — is it slower, faster or the same as a gradient
descent in the convex loss function case? At first glance the rate might appear to be slower as we are
not using the “fastest” decrease at each iteration using simply the exp function. In the end of this
subsection we establish a geometric rate of convergence under certain assumptions, which matches
the convergence rate for gradient descent under similar assumptions.

As we argued in the previous subsection, in the case of a convex loss ¢, (2.3.7) guarantees that
iteration (2.3.4) converges to the infimum of problem (2.3.6). Let Y(E_F () (X;) be the limiting
(allowed to be +00) values achieving the infimum above. Before we formalize the convergence rate
result, we will characterize the behavior of YCTi F)(X;).

This question is of interest in its own right, as this characterization remains valid regardless of
what boosting algorithm one decides to use to obtain the minimum/infimum. For what follows we
consider a loss function ¢, which satisfies a mildly strengthened condition (2.2.11). Namely, let ¢ be

decreasing and for any «v, ¢ > 0 it satisfies the following condition:

() + cp(—ax) T +ooasx T 400 (2.3.8)

9Here we assume that (;S(YJT Fb(oo)) # 0,7 € {1,2}, which can be ensured if ¢ is unbounded from

above
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It is worth noting that if condition (2.2.11) is satisfied for all n2 (recall that g = exp here) this would
imply (2.3.8). Denote with B the total number of weak learners in the bag. Let D = {Y[, F;(X;)};.
be the B x N matrix, each entry of which is either C; or C_. Again, we assume that the bag is
closed under looping. Let v € RY be a vector. Consider the equation DTax = v for some vec-
tora € Rg . with non-negative coordinates. Note that because of the looping closurel the linear
equation above has solution iff the equation DTax = v has a solution with @ € R5, since with-
out loss of generality we can add a large positive constant to the coordinates of cv. It follows that the
equation DTax = v withox € Rg 4 hasasolution iff v € row(D).

To see the connection between the linear equation above and optimization problem (2.3.6) con-
sider the following simple example. The function Zfil gb(Zf:l o; Y], Fj(X;)) cannot have a
minimum, if there exists a vector v € RY with strictly positive coordinates, such that the equation
DT = v hasasolution — & € Rg - To see this, suppose the contrary, take an arbitrary constant

R > 0and note that:

N B N
Yo Ra;YLF(X0) =) ¢(Ru).
=1 j=1 i=1

Take the limit R — 00, and it is clear that the infimum N ¢(+00) is achieved. It follows that if we
want to have a solution smaller than N ¢(+00) — D cannot have rank V. Denote the rank of D
with r.

More generally, our next result provides a characterization of how many (and which) of the values
YCTiF(OO) (X;) are set to +00 at the infimum of (2.3.6). Consider the perp space of the row space of
the matrix D — E := row(D)=*. Out of all possible bases of E including the 0 vector, select the
oneey,...,es(s = min(N, B) — r + 1) for which the vector e; has the most strictly positive

entries at I coordinates and zeros at the rest” . We have the following:

ILooping closure (Definition 2.3.3) gives us the the column sums of D are 0.
“We allow I = 0, in which case e; would simply represent the 0 vector.
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Proposition 2.3.5. Let ¢ be a decreasing loss function satisfying (2.3.8). Set M := N — I, where

I€{0,...,N}. We bave that:

(N — M —1)¢(0) + (M + 1)¢(+00) < inf Z (YL F(X;)) < (N — M)¢(0) + M (+00).
Féespan G* 4
Moreover, exactly M of the values YCTZF (°)(X;) (i will be corresponding to the O coordinates of €1)

will be set to 400 at the infimum.

Proposition 2.3.5 characterizes the cases when one should expect problem (2.3.6) to have a mini-
mum. In fact, in the cases where I > 0, we can simply delete the observations corresponding to the
rows of e; thatare 0, and solve the optimization only on the set of observations left, as it can be seen
from the proof.

We next formulate the speed of the convergence of the algorithm we suggested, in the case when
the function ¢ is convex. For simplicity we assume that the matrix of classifier entries — I, is such
that there is a strictly positive vector in the perp of the row space of D. If that is not the case as ar-
gued we can delete observations that will be set to +00 at the maximum, and work with the rest.
Denote with S = {v : DTae = vwitha > 0, 3% ¢(v;) < N(0)}. Proposition 2.3.5 then

implies that, the set S is bounded coordinate-wise. Next we formulate the result:

Theorem 2.3.6. Let the convex, decreasing loss function ¢ be strongly convex with Lipchitz and

bounded derivative on any compact subset of R, and satisfies (2.3.8) and (2.2.5) with g = exp. Fur-
thermore, assume that there is a stricly positive vector in vow (D)L, and define the set S as above.

Let F* € span G* achieves the minimum in problem (2.3.6). Denote with €, = Ziil H(YZ,F*(X;))—

Zi]\il (YL F (M)(X;)), where F™) is produced iteratively using (2.3.4). Then there exists a con-
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stant K < 1 depending on the matrix D), the sample size N and the set S, such that:
Em+1 < 6mI{-

As we can see from Theorem 2.3.6 if we use this algorithm in the convex loss function case, we
wouldn’t lose convergence speed to gradient descent (see®” Theorem 2.1.14), but in the non-convex
function case which still obeys (2.2.5) this algorithm will be converging to a local minimum. In the

latter case we will still be capable of recovering the Bayes classifier, as indicated by equation (2.3.7).

2.3.3 AGGREGATING BOOSTED CLASSIFIERS VIA CROSS-VALIDATION

The performance of the boosting algorithm is likely to be dependent on the choice of ¢ for a given
dataset. An optimal ¢ can be selected via procedures such as the CV. On the other hand, optimally
combining information from multiple boosting algorithms trained with different ¢ to further im-
prove the robustness of our predictions in terms of outliers would be valuable. We propose a simple
approach to address this by optimally combining predicted probabilities recovered from multiple
boosting algorithms as illustrated in (2.2.10). Similar CV based aggregation approach has been previ-
ously proposed to select or linearly combine multiple learners to optimize an Lo loss7+*".

Letw!(X) denote the estimate of w; (X) = logitP(C' = j | X)) based on the boosting
algorithm with the ™ Joss function, for ¢ = 1, ..., L, where L is the total number of losses un-

der consideration. Then an improved estimate of w;(X') can be obtained by fitting a multinomial
regression with C; being the outcome and {w]m (X;),j=1,..,n—1,£=1,..., L} being the pre-
dictors. To overcome over-fitting and potentially high collinearity between {@(X) and 1*)(X)
when ¢ # ¢/, we employ the CV with a simple ridge regularization in the multinomial regression

fitting. Specifically, we partition the data into /X parts, {D(“), k=1,.,K}Fork = 1,..,K,

we use data not in D) to train the L algorithms and obtain the corresponding {@][(] ()}, denoted
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by {ZJJL?_K) (-)}. Then combining initial fittings from all IC partitions, we construct synthetic data
with C}; being the outcome and @; = {1,@J[.Z(7m)(Xi),j =1,..,n—1,¢=1,..., L} being
the covariate vector, where &; is the index such that the ith observation belongs to D) We fita
multinomial ridge regression P(C; = J | ©0;) = Gig(Y] @) with the synthetic data and obtain

coefficients 7, where gy is the anti-logit function. The final classification combining information

from all L algorithms is then based on argmax, { g(¥]=)}.

2.4 NUMERICAL STUDIES AND DATA EXAMPLE

In this section we validate empirically the performance of the generic boosting algorithm developed
in the previous section, comparing it to popular classification algorithms such as SVM and SAMME
on synthetic data. We further apply the algorithm to a electronic medical record study on diabetic

neuropathy conducted at the Partners Healthcare.

2.4.1 SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of our proposed procedures com-
pared to existing methods and examine how the choice of ¢ may impact the classification accuracy.
For each dataset generated from each of the configuration described below, we evaluated our pro-

% and

posed boosting algorithm based on (i) ¢(x) = log(1 + e~*) (Logistic) with g(z) = e
k(x) = —{ce(1 + e®)} L forc = 0.1;(ii) p(z) = log(log(e™® + e)) (LogLog) with
g(x) = e®and k(z) = {e*(e®1 + 1) log(e ™ +e)} . We also compare each of these algorithms
to the CV aggregated algorithm (CV) as well as to the commonly used LASSO and SVM proce-
dures. The SVM was trained with RBF kernel where the tuning parameter for the kernel function

was chosen via the sigest function of ksvm library. The sigest procedure outputs three quan-

tiles — 0.1, 0.5, 0.9 of the distribution of | X — X"||?> where X and X are two predictors sampled
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from the matrix X, and we take the mean of these quantiles as the tunning parameter in the RBF
kernel for robustness. The fitting was performed with the kernlab R package implementation —
ksvm which uses the “one-against-one”-approach to deal with multi-class problems see** for exam-
ple. The LASSO procedure with X being the predictors was based on an ¢1 penalized continuation
ratio logistic regression #, where the tuning was selected based on s-fold CV.

Across all configurations, we generate X = (X1, ..., X50)7, so that each X is marginally dis-
tributed as U(—1, 1), and overall they have exchangeable correlation, with the off diagonal of the
correlation matrix being .4. To achieve this, we first generate normal variables Z ~ N (0, ©) and
we invert them by applying X = F(Z) coordinate-wize, where F' is the cdf of the standard normal
distribution. We use a sample size of Ny = 200 for training and N,, = 3000 for independent valida-
tion. A large validation size is chosen so that the variation observed in the classification performance
in the validation set is reflecting the variability of different algorithms obtained with the training set.
All boosting algorithms were performed based on 5o iterations. Across all settings, we letn = 3 for
generating the outcome and summarize results based on so replications.

For a given X, we generate C' from multinomial with success probabilities for C' = 1,C = 2
beingp; = .7 — .6 min(R*, 1) and p2 = .1 + .6 min(R*, 1), respectively, where we consider

different scenarios for choosing R:

(1+sign(X; —1/3))/2, Setting (I)
sign(acos(Xsa)/m — 1/4))/3 + (1 + sign(X; — 1/3))/3, Setting (II)
R= 5+ cos(X3)/4 + sign(X; — 1)/4, Setting (I1I)

3 4 cos(X3)/4+sign(Xy — 3)/4+1/8 302 sign(Xy — 1/4),  Setting (IV)

| 5+ cos(X3)/4 +sign(X1 — 3)/4+1/8 S Xy, Setting (V)
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The signals are very sparse and non-linear in settings I-IIL. Settings in IV and V are less sparse with
setting IV being mostly non-linear and setting V being a mixture of linear and non-linear signals.
Across all these settings, X is unrelated to the probability of being in class 3.

For all the boosting algorithms, we create a bag of weak learners based on “decision stumps”,
where for each predictor variable X4, we choose a sequence of threshold values =1 < z41 <
-+ < xgpr < 1and for each pair {Z gy, Tam }> we create a classification of C based on the three
regions defined by { % gy, Zgm/ }. To improve the classification and computation efficiency, the bag
for constructing the boosting algorithms consists of all decision stumps that yield at least 45% cor-
rect classifications on the training set.

To quantify the performance of each of the algorithm, we use the misclassification error rate rel-
ative to that of the oracle Bayes rule. The average relative error along with the standard deviation of
the error rates across so replications are reported in Table 2.1. Across all configurations, the Logistic
and LogLog losses from our proposed algorithms perform better than the SAMME algorithm pro-
posed in**°. Interestingly, the LogLog loss performs the best among all three losses with lower mis-
classification rates and lower variability. This could in part due to the fact that the non-convexity of
the LogLog loss is less sensitive to outliers*®. In addition, our proposed CV aggregation procedure
seems to perform well in combining information from all 3 losses, producing classifications that are
almost always at least as accurate as those from the best of the 3 boosting algorithms. Comparing to
the LASSO and SVM, our boosting algorithms based on the LogLog loss or CV aggregation always
outperform these commonly used methods. This could in part be due to the fact that the signals are

sparse and non-linear, under which case neither LASSO or SVM are expected to work well.

2.4.2 DATA EXAMPLE

To illustrate our proposed generic boosting algorithm and demonstrate the advantage of having

multiple losses, we apply our procedures to an electronic medical record (EMR) study, conducted at
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Table 2.1: The average (standard deviations) relative misclassification rate for the 5 settings. The misclassification
rates are 30%, 31%, 35%, 34% and 35% for settings |, II, 11, IV, and V, respectively.

Settingl ~ Setting I~ Setting III ~ Setting IV Setting V

SVM  1.43(0.09) 1.48(0.07) 129(0.05) 1.30(0.06) 1.29(0.07)
LASSO 117(0.07) 130(0.10) 114(0.08) 115(0.06) 1.18(0.10)
SAMME 124 (oa1) 1.37(0.08) 118(0.06) 1.21(0.07) 1.21(0.08)
Logistic  1.19 (0.08) 1.29(0.06) 1I5(0.05) 1.18(0.07) 1.18(0.08)
( )

)

Loglog 110(0.06) 1.20(0.05) 109(0.05) 1LII(0.06) 1LI2(0.08
CV  1.06(0.06) 119(0.07) 1.09(0.06) rIiI(0.06) 1I13(0.12

the Partners Healthcare, aiming to identify patients with different subtypes of diabetic neuropathy.
Diabetic neuropathy (DN), a serious complication of diabetes, is the most common neuropathy in
industrialized countries”". It is estimated that 20 million people worldwide are affected by symp-
tomatic diabetic neuropathy. Growing rates of obesity and the associated increase in the prevalence
of type 2 diabetes could cause these figures to double by the year 2030. The prevalence of DN also
increases with time and poor glycemic control*®. Although many types of neuropathy can be asso-
ciated with diabetes, the most common type is diabetic polyneuropathy and pain can develop as a
symptom of diabetic polyneuropathy?7?%. Pain in the feet and legs was reported to occur in 11.6% of

insulin dependent diabetics and 32.2.1% of noninsulin dependent diabetics™**

. Unfortunately, risk
factors for developing painful diabetic neuropathy (PDN) are generally poorly understood. PDN
has been reported as more prevalent in patients with type 2 diabetes and women®. Prior studies have
also reported an association between family history and PDN, suggesting a potential genetic predis-
position to PDN*°To enable a genetic study of PDN and non-painful DN (nPDN), an EMR study
was performed to identify patients with these two subtypes of DN by investigators from the infor-
matics for integrating biology to the bedside (i2bz), a National Center for Biomedical Computing

based at Partners HealthCare ¢,

To identify such patients, we created a datamart compromising 20,000 patients in the Partners
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Healthcare with relevant ICDg (International Classification of Diseases, version 9) codes. Two
sources of information were utilized to classify patients’ DN status and subtypes: (i) structured
clinical data searchable in the EMR such as ICD9 codes; and (ii) variable identified using natural
language processing (NLP) to identify medical concepts in narrative clinical notes. Algorithm devel-
opment and validation was performed in a training set of 611 patients sampled from the datamart.
To obtain the gold standard disease status for these patients, several neurologists performed chart
reviews and classified them into no DN, PDN and nPDN. To train the classification algorithms, we
included a total of 85 predictors most of which are NLP variables, counting mentions of medical
concepts such as “pain’, “bypersensitivity”, and “diabetic neuropathy”.

We trained boosting classification algorithms to classify these 3 disease classes. We used simple
decision trees as weak learners. They only have two nodes with the first node deciding between class
C1 vs C5 and C3 and the other node deciding between C vs Cs, where {C, Co, C3} is a permuta-
tion of {noDN,PDN,nPDN}. In order to illustrate the algorithms we sample 350 observations and
use them as a training set and the rest 361 patients we set off as a test set.

We report the percentage mis-classifications:

Table 2.2: Percent mis-classifications

% incorrect

SVM 32.%
LASSO 30%
SAMME 27%
Logistic 26%
LogLog 26%
Cv 27%

The boosting results show a modest improvement, as compared to standard methods. We can

also see that the generic boosting algorithm performs slightly better than SAMME in this situation
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with both the logistic and the loglog losses. It warrants further research whether picking richer tree

structures would yield an even better performance on this dataset.

2.5 DiscussioN

For multi-category classification problems, we described in this paper a class of loss functions that at-
tain FC properties and provided theoretical justifications for how such loss functions can ultimately
lead to optimal Bayes classifier. We extended the results to accommodate differential costs in misclas-
sifying different classes. To approximate the minimizer of the empirical losses, we demonstrated that
a natural iterative procedure can be used to derive generic boosting algorithms for any of the pro-
posed losses. To further improve the robustness of the proposed boosting algorithms, we proposed
a CV based aggregation procedure to combine information from boosting classifiers from multiple
losses. Simulation results suggest that non-convex losses could potentially lead to algorithms with
better performance and our CV aggregated algorithm almost always achieve the lowest error rate
when compared to other boosting algorithms.

Our proposed algorithm not only depends on the choice of ¢ but also the associated g(+) and
k() functions as indicated in (2.2.5). We can think of ¢ as a positive deformation of the real line
and even with the same ¢, changing g could also change the classifiers. Most existing boosting al-
gorithms correspond to g(x) = €7, in which case the constraint [[7_; g(Fj) = 1 simplifies
to the commonly seen condition ) | ; Fj = 0. Moreover if ¢ is smooth and convex, one may let
k(z) = ¢(x)/e*. Thus, under convexity, Hy(2) = ¢(z) = de(2)/dx is an increasing function
and ¢ is Fisher consistent in the traditional sense. We also saw, that even when ¢ is not convex, our
suggested losses are Fisher consistent in the standard sense. Moreover, we argued that loss functions
satisfying (2.2.5), can be used to recover the exact conditional probabilities. It would be interesting

to develop adaptive boosting procedure where we use different g functions in the process of boost-
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ing adaptively. For example, in the suggested logistic loss boosting with g(z) = e“*, we can adap-
tively select the parameter ¢, for better convergence results of the algorithm which will potentially
result in a better classification results. We were provided a property of the limiting point of the algo-
rithm in the case where ¢ = exp. Furthermore, we characterized when the problem has a minimum
in the finite sample case under certain assumptions on ¢. The resemblance of the proposed generic
boosting algorithm with coordinate descent, helped us to establish geometric rate of convergence in
the convex loss function case. The consistency of the algorithm under conditions such as finite VC

dimension of the classifier bag, warrants future research.
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He uses statistics as a drunken man uses lamp-posts—for

support rather than illumination.

Andrew Lang

Support Recovery for Sliced Inverse

Regression in High Dimensions

3.1 INTRODUCTION

In this chapter we study the Sliced Inverse Regression (SIR) procedure in a high-dimensional set-

ting. The SIR was suggested in the seminal paper*°. SIR is the supervised counterpart of principal
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component analysis (PCA)*7». SIR is a dimension reduction tool, projecting the data onto a lower
dimensional space, but in contrast to PCA, SIR leverages information for an outcome of interest Y.

The original SIR procedure was designed to handle models of the sort:

Y = f(BIXMBgX) . '7ﬂ;X75)7

where 3 is a p-dimensional vector, € is random noise independent of X, f is an unknown func-
tion, and 7 is the number of linear components participating in the model. If 7 turns out to be small
compared to p we would gain insights for the data if we are able to estimate the vectors 3;, 1 <

i < r,bya projection of the predictor on the sufficient dimension reduction (SDR) space =
span{fi, ..., By }. SIR operates by slicing the outcome Y into cuts, averaging the predictors, and
performing a singular value decomposition on the weighted conditional covariance matrix. Under
certain assumptions SIR provably recovers the SDR space, in the low dimensional regime when

p < n,eg. see*>®  The most notable of the assumptions required for SIR to work is the assump-
tion of linearity in expectation, i.e. E[bT X |51 X, ..., 81 X] = Y7, ¢;3] X, for any b, or in other
words the conditional expectation for any direction b is linear in terms of the projections on SDR
directions. This property is satisfied by all elliptical distribution families.

Recently many papers studying sparse PCA procedures have emerged, starting with the seminal
papers by Johnstone and Lu 7, , where the authors showed that PCA can be inconsistent in the
regime p/n — ¢ > 0. This analysis was further strengthened in”°, where a stronger inconsistency
result appeared. This justified the need to consider scenarios where the principal eigenvectors are
sparse. The algorithm Diagonal Thresholding (DT) was suggested by ¥, to deal with the spiked-
covariance model. It was later analyzed in3 to show that support recovery is achieved by DT in the
sparse PCA spiked covariance model case when . 2> s? log(p). In? the the authors further showed

an information theoretic obstruction showing that no algorithm can recover the support of the
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principle eigenvector if n S slog(p). An algorithm that succeeds in support recovery with high
probability as longasn 2 slog(p), but is computationally prohibitive, is exhaustively scanning
through all (g ) subsets of the coordinates of the principal eigenvector. For that purpose, in? the
authors studied a semidefinite programming (SDP) estimator originally suggested by d’Aspremont
etal.”” — and showed that under the assumptions n 2 slog(p) and if the SDP has a rank 1 solution
this solution can recover the signed support with high probability. Surprisingly, however#, showed
that the rank 1 condition, does not hold if s? log(p) = n = slog(p).

In the SIR literature, when p is fixed, the first asymptotic results appeared in the important paper
by Hsing and Carroll®. Later on, p was allowed to diverge slowly with n, e.g. when p = o(n'/?)
asymptotic results were established in Zhu et al. ™. In the super high-dimensional setting where
p > n,several algorithms, hinging on regularization such as LASSO7? and Dantzig Selector™*
were proposed by Li and Nachtsheim 48 Yuetal. %, but these algorithms are not concerned with
support recovery. Moreover, the algorithm suggested in ** did not come with theoretical guarantees,
and in Yu et al. #* the authors did not allow s to increase with p and n. A generic variable selection
procedure, was suggested in?, with guarantees of support recovery, in a more general setting than
our presentation in this chapter, but with a much more restrictive relationship p = o(n'/2) than
the one we consider.

In this chapter we study the DT and SDP algorithms applied to SIR and show that in fact both
algorithms can achieve support recovery aslongasn 2 slog(p), in contrast to the PCA case,
and furthermore we show an information theoretic obstruction as in Amini and Wainwright?
which shows that in fact support recovery with high probability is impossible in the case when
n < slog(p). This implies that in the SIR setting, the computational and statistical tradeoffs phe-
nomenon does not appear in contrast to the PCA case. To the best of our knowledge, we provide
the first result in the SIR literature allowing the sparsity s to diverge with p and n. We also provide

numerical studies which confirming our findings.
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3..1 SETUP AND NOTATION

In this chapter we are only concerned with a SIR setup with one dimensional SDR, or in other

words our model takes the form:

Y = f(87X,e), (3.1.1)

where the error distribution € is independent of X. This setup is related to the single index model.
Sparse single index models have been considered in Alquier and Biau?>. Our framework is differ-
ent from the one considered by Alquier and Biau?, in many ways, most notably — our model is
more generic, and we are interested in recovering the support of /3, whereas Alquier and Biau ?

are concerned with estimation, and therefore the methods considered by us are completely difter-
ent than the methods in?. Similarly to other papers concerned with support recovery in the PCA

setting, e.g. >, we assume a stylized setting with 3 being a p-dimensional sparse unit vector” with

Bi = :I:% fori € supp(8) = {i : B; # 0}, forsomes € N. We will use Sg := supp(f3) and
S§ = supp(B)¢ = {i : ; = 0}, asashorthand notations. Since 3 is a unit vector, we clearly
have [Sg| = sand 8; = Ofori € S§. We further assume that X ~ N(0,L,xp). While the latter
is a rather simplifying assumption, we believe it is an important first step for studying the support
recovery in SIR without the complications of how a covariance structure would modify the of spar-
sity in the 3 vector. Note that such X satisfies the linearity condition trivially. We observe n samples
from this model, with potentially n < pand even n < p. We are interested in studying approaches
inspired by the SIR procedure, for support recovery and estimation purposes.

The procedures we study are concerned with the scenario where we slice the support of Y in H

equally sized slices, with m observations in each slice. In other words, if {Y{1), . .., ¥(y,)} are the

order statistics of the Y sample, the h™ slice consists of the observations with Y values in the set —

"Without loss of generality, we consider /3 being a unit vector for identifiability.
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Y(h=1)ym+1)» - - > Y((h—1)m) }- Equivalently, the h slice consists of points, whose Y values are
located in the following interval (Y{(5,—1)m); ¥{nm)]- Denote for the ease of notation the points in
the h™ slice as (Yh,is Xpi) withi = 1,...,m, where Y}, ; = Y{(,—1)m-) (We use the notation for
Y interchangeably). Potentially removing several observations at random, we can always assume for
simplicity that n = mH. We will denote with superscript coordinates of the predictor vectors, with
subscripts reserved to indicate, slice and observation indications.

The classical SIR procedure relies on constructing the conditional covariance matrix for the

within sliced means estimator — V, where the 7, k™ element of V is given by Vik,

PRV B RO LSy
V=g 2 2 ) G K )
h=1 =1 =1

Note that since our data is assumed to be centered at 0, we do not need to further center at this step.
This differs slightly with the originally proposed SIR estimate, which centers the data, but we show
that we can handle that case as well (see e.g. Corollary 3.2.4).

We proceed with defining several helpful notations, which will make the presentation easier later

on. Let X3, g = b Sies Xiwhere S € {1,2,...,m},j = 1,...,p. IS = {1,2,...,m}
.. . ] 1 j
we omit it from the notation, i.e. X7, = -~ >, X}]m-.

In terms of this notation we can rewrite the variance estimator as:
1 ul i —k
Vik = — E XX, (3.1.2)
H h=1

Let S = (Y{(h—1)m), Yoy, 1 < h < H,and Sy = (Y((zr—1)m), +00), denote the random
intervals whose end points are the (b — 1)m and hm order statistics of the Y sample correspond-
ingly (with ¥(g) = —0o0). Denote with ,u% = E[X7|Y € Sp). Furthermorelet m; (V) = E[X|Y]

denote the j™ coordinate of the so-called centered inverse regression curve. To this end note that
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conditionally on the values Y((,_ 1)) and Y{3,,,,) the quantities S;, and ,u{l become constants.

If M € R4 52 matrix, by double indexing with two subsets 51 C R%and Sy ¢ R? —
Mg, s,, we mean taking the sub matrix corresponding to entries M;; withi € S, j € So. Further-
more, we will use several different norms of vectors and matrices, which are briefly defined below.
For a vector v, let ||v||,, denote the usual £, norm for 1 < p < o0 (using the usual extension for
p = 00), and by ||v||o we denote | supp(v)]|.

Furthermore, forad x d matrix Mgy g, let || M ||max = max;y, | M| denote the entry-wise sup
norm. Moreover, let || M||p g = supjjy|,—1 ||Mv]|q denote the £, and {4 induced norm on M. In

particular in the special cases when p = ¢ = 2 and p = ¢ = 00, we have:
[M][22 = max {o3(M)},
i=1,...,d

where o; (M) represents the i™ singular of M, and:

d
M = max M;:|.
Ml = a3 M

For a real valued random variable X, define the following Orlicz norms:

[ X[y, = Sup d~'2[E| x|, (3.13)

11X ||, = supd ™~ [E[X |44, (3.1.4)
d>1
Finally, let F,(z) = 13" | I(Y; < ) denote the empirical distribution of the Y sample. We
also use the standard notations ® and ¢ to refer to the cdf and pdf of a standard normal random
variable.

Chapter 3 is organized as follows: in Section 3.2 we present our main results, in Section 3.3 we
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present numerical confirmations of the predictions of our main results, in Section 3.2.1 we analyze
some of the conditions required for the main results, and in the next Sections — Section 3.4, 3.5 we
show our main results. In Section 3.6 we study a support recovery from a slightly different angle,
allowing us to generalize the assumption ¥ = [, and show the consistency of the linear regression
LASSO algorithm, provided that certain restrictions on the covariance 3 are met, most notably
the irrepresentable condition. Finally Section 3.7 is left for a brief discussion. Some of the technical

arguments are deferred to Appendix B.

3.2  MaIN REsuLTs

In this section we consider two procedures for support recovery, and show the asymptotic consis-
tency of the procedures, under the assumption that m > (2 for alarge enough €. Further-
more, we derive a lower bound on the sample size as a function of the sparsity s and the dimen-
sion p under which scenario, support recovery with high-probability is impossible. Before we go

to the procedures we formulate some technical assumptions which we will need. We comment on
the achievability of these assumptions in Section 3.2.1. Though we could have directly imposed the
sufficient conditions provided in Section 3.2.1 instead of looking into the somewhat convoluted
assumptions below, we believe that making these assumptions makes the intuition more explicit.
Throughout the rest of the chapter we assume that Y is a continuously distributed random variable
(exception being Section 3.6).

We proceed to define an assumption on the inverse regression curve:

Definition 3.2.1. We call the pair (f, €) sliced stable iff there exist constants| < 1, K > 1, M > 0,
such that for any H € N, H > M, and all partitions of R = {a1 = —o0,...,ag41 =

+oo} with% < Plap <Y < apy1) < % there exist two constants 0 < (I, K, M) < 1,
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C(l, K, M) > 0 such that for all j € Sg:
H
> Var[m;(Y)lan <Y < apga] < C(LK,M)H M Varlm; (V)] (321)
h=1

The sliced stability assumption, is an implicit assumption on the function f and the error dis-
tribution €. If & = 0, the condition means that the cumulative relative variability of the inverse
regression curve is bounded for all slicing schemes with sufficiently small slices. If & > 0 the cu-
mulative relative variability of the inverse regression curve is allowed to scale sub-linearly with the

number of slices.

Remark 3.2.2. It should be expected that the sliced stability is a mild assumption. Notice that if k
was allowed to be 1, then (3.2.1) is trivially satisfied with C' = 1/ for any H large enough, since we

have:

H H
ZVar[mj(Y)]ah <Y <apy1] < ZE[m?(Y)]ah <Y <apyi]
h=1 h=1

Var[m;(Y)]
~ miny IP’(ah <Y < ah+1) ’

Finally note that P(ap, <Y < apq1) > % Hence, sliced stability requires a little more than the

trivial bound above to be satisfied so that the inequality will hold with an exponent k < 1.

We further assume, that the variance of the inverse regression curve Var[m;(Y')] o %, forj €
S, or more concretely, for some Cy > 0:

Cv . .
Var[m;(Y)] = — forj € Sg. (3.2.2)
s

This assumption was originally inspired by the linear model (i.e. Y = BTX + ¢), but as we show
in Section 3.2.1, it turns to be a generic assumption holding for a broad class of models. Note that
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Var[m;(Y)] = Ofor j & Sp, asin that case X7 is independent of Y.

The last observation, provides further the key intuition behind the method that we propose to
investigate next — Diagonal Thresholding (DT). DT was suggested first by Johnstone and Lu ¥,
and further studied by Amini and Wainwright? in the sparse PCA setting. We motivate the study of
DT in the SIR setting, through the fact that under the assumption (3.2.2) there is a gap between the
theoretical values of the variances, and we should be able filter out the non-informative predictors by
sorting out the variances Var[m;(Y)].

The DT algorithm can be formulated easily along the following lines:

Algorithm 2 DT algorithm for SIR
Input: (Y;, X;)? ,: data, H: number of slices, s: the sparsity of 3

1. Calcluate V%9, j = 1,..., p - according to formula (3.1.2);
2. Collect the s highest V9 into the set S ;

3. Output theset {j : V¥ € §}

Of course the above procedure is dependent on knowing the sparsity of the 3 vector. Therefore

it is not realistic to use this algorithm in practical settings. Hard-thresholding can be more useful in

Cy

practice, and as we show later thresholding with values in the range [%, 5w

] will work with high
probability, provided that n is large enough. Next, we provide a theorem for the DT in the SIR

framework.

Theorem3.2.3. Lets = O(plf‘;)for some 0 > 0. Assume that the distribution of Y is continu-

ous, that the pair (f,€) is sliced stable (3.2.1) bolds with constants (C, 1, K, M, k) and the variance
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condition (3.2.2) with a constant Cy. Given that:
n > Qslog(p — s), (3.2.3)

for a suitably large QU(C, 1, K, M, k, Cv) depending solely on constants from the sliced stability and
variance assumptions, the support is recoverable by DT algorithm with probability converging to 1.

Furthermore, the number of slices H, can be held fixed (again depending on C, 1, K, M, K, Cy ).

Corollary 3.2.4. Ler X ~ N (i, 1pxp). Construct the “classical” SIR estimates Vii = + Z}IL{:I (Yﬂ—
X)2,5 = 1,...,p. Under the same assumptions as in Theorem 3.2.3, it suffices for (3.2.3) to bold in

order to recover the support using DT, and in addition the number of slices can also be held fixed.

The proof of Corollary 3.2.4 can be found in the appendix, and is a simple consequence of The-
orem 3.2.3. Clearly the DT algorithm does not recover the signed support of 5 standalone. One can
imagine applying the SIR procedure e.g. and taking the sign of the principle eigenvector, after ap-
plying DT in order to recover the signed support of 3.

This motivates us to explore a procedure that has been suggested for the sparse PCA case in™®
and studied in detail by Amini and Wainwright?. The idea comes from the following well known

characterization of the eigenvalues of a symmetric positive definite matrix:

Amax(A) =  max 2T Az
z€R:||z||2=1

Since we would like to require the principal eigenvector to be sparse, it would be meaningful to add
the additional constraint ||z||g < s. However this would be computationally prohibitive, and

hence a reasonable formulation would be to replace the constraint with the following relaxation:

argmax 2zl Az — A\n||2||1.
z€R:|z||2=1
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However the above problem is maximizing a non-concave function, and thus optimization is daunt-

ing. Therefore a relaxation was suggested by d’Aspremont et al. , solving the following:

P
Z = argmax tr(AZ) — A\, Z | Zij]. (3.2.4)

tr(Z)=1,ZeS%. ij=1

Since this is a semidefinite program (as in this case we are looking for a maximum in the cone of
the positive semidefinite matrices?), we refer to the optimization approach above as SDP, in future
references. If the solution to the aforementioned program happens to be a rank 1 solution, then it is
of the form Z = 227 and thus we can easily obtain an estimate of the principal eigenvector.

We summarize the signed support recovery, SDP algorithm (3.2.4) in terms of the SIR framework

below.

Algorithm 3 SDP algorithm for SIR
Input: (Y;, X;)? ,: data, H: number of slices, s: the sparsity of 3

1. Calcluate the matrix V' - according to formula (3.1.2);
2. Obtain the matrix Z by solving (3.2.4), with A = V/;
3. Find the principle eigenvector Z of 7

. Outputsign(Z).

N

We note that this algorithm, recovers the signed support, up to multiplication by +1. We study

the above algorithm in the SIR case, in the regime log s = o(log p) below:

Theorem3.2.5. Letlogs = o(logp). Assume further, that the distribution of Y is continuous,
that the pair (f,€) is sliced stable (3.2.1) with constants as in Theorem 3.2.3. Then there exist a value

of the tuning parameter N, < * so that Algorithm 3 recovers the signed support with probability

43



converging to 1, i.e. P(sign(z) = sign(B)) — 1, when:
n > Qslog(p — s), (3.2:5)

for a large enough constant Q(C, 1, K, M, K, Cy).

Corollary 3.2.6. Assume thar X ~ N (u,1). Construct the “classical” SIR estimate V with Vit =
+ Zthl(Yj - Y])(Yz - yk) Apply the SDP algorithm ro V' to obtain an estimate % Then
under the assumptions of Theorem 3.2.5 if (3.2.5) bolds for a large enough Q, we have ]P’(Sign(?) =

sign(f8)) — 1.

We note that unlike Theorem 3.2.3, in Theorem 3.2.5 the number of slices H cannot be held fixed,
and has to diverge slowly with p — o0c. The proof of Corollary 3.2.6 can be found in the appendix.
Finally, we provide a lower bound on the sample size, under which support detection is not possi-

ble. We summarize our findings in the result below.

Theorem 3.2.7. Let the variance condition (3.2.2) and the pair (f, €) is sliced stable with constants as

in Theorem 3.2.3. Then if

1-Cy

n < 2slog(p — s+ 1),

the probability of any algorithm making an error on the support recovery is at least & asymptotically.

This theorem can be seen as a converse to the previous two theorems, showing that the two algo-
rithms are in fact achieving support recovery with an optimal sample size, up to a constant factor.

We conclude this section, by contrasting our results to the results in the sparse PCA setting, ob-
served in Amini and Wainwright?®. Theorem 3.2.3 presented here, shows that DT algorithm achieves
an optimal rate in some sense in the SIR setting in contrast to the result in Amini and Wainwright?.

Furthermore, Theorem 3.2.5 shows that the SDP algorithm in SIR setting can deal with a slightly
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more general regime than s = O(log(p)), and more importantly, it does not rely on the rank one

_n__

condition, which was shown to not hold in the regime s 2 o)

by Krauthgamer et al. #'.

3.2.1 ANALYZING ASSUMPTIONS (3.2.1) AND (3.2.2)

In this section we provide sufficient conditions which ensure that (3.2.1) and (3.2.2) hold.

VARIANCE CONDITION (3.2.2)

In this section we consider, a generic class of pairs of functions and errors ( f, €) satisfying the vari-

ance condition (3.2.2). Consider the following:

Lemma3s.2.8. Ler Z ~ N(0,1). Let Fao = {(f,e) : Var(E[Z|f(Z,¢)]) > A}, be a subset of
all pairs (f,€) such that f : R? — Rande € R be any random variable, where 0 < A < 1.
If (f,e) € Fa,andY = f(B7X,¢) (where 5; = :I:ﬁfori € Sp and 0 otherwise), then

? < Var(m;(Y)) < L for j € Sg, where s = |Sg).

Proof of Lemma 3.2.8. First note that by symmetry 3;m;(Y) = 5;m;(Y) foranyi,j € Sg. Next

observe that:

Var(E[fTX[Y]) = Y E[B8:8;mi(Y)m;(Y)] = Y Var(mi(Y)).  (3:26)

i,jESﬂ iGSB

Combining the observation above with the following two inequalities:
A <Var(E[fTX|Y]) < Var(fTX) =1,

gives the desired result. O
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Remark 3.2.9. As we can see from equation (3.2.6), if assumption (3.2.2) bolds then Var(E[fTX|Y]) =
Cv. This fact implies that it is necessary for a function f satisfying (3.2.2) to belong to all classes F a,
with0 < A < Cy.

We can thus see that the condition (3.2.2) is mild, as it simply requires the random variable E[Z| f(Z, ¢)]
to not be a constant. It is clearly implied if for example E[Z f(Z,¢)] # 0. To see this assume
the contrary, i.e. E[Z|f(Z,€)] = Oas.butE[Zf(Z,¢)] # 0. Thenwehave E[Zf(Z,¢)] =
E[E[Z|f(Z,e)]f(Z,€)] = 0, which is a contradiction.

To present the above abstract framework in a more illustrative fashion, we consider several exam-

ples. We start with the following simple model:

Y = f(TX +¢) withe ~ N(0,0?), (3.2.7)

where f is a univariate, continuous monotone function. Let Z = fT7X ~ N(0, 1). Looking into:

1,
E(Z|f(Z+e)=c| =E[Z|Z+e=f1c)] = f~ ()

= T5 o2 (3.2.8)

where the last equality follows from the multivariate normal distribution properties. Thus:

Var(E[Z|f(Z +©)) = Var(Z+¢) =

1
(1+0?)

1402

To see a slightly different example, consider a setting which is a special case of the single index model:
Y = f(B7X) + ¢, where f : R — Ris a continuous and increasing function with inf,cg f(2) =
—o0 and sup,¢cp f(2) = +00, and the random variable || has a bounded support by M > 0. In

this setting it is clear that the random variable E[Z| f(Z) + €] is non-constant as

fHe=M) <E[Z|f(Z) +e=d < [T e+ M).
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Thereforeif ¢ < —M and ¢ > M itfollows that E[Z|f(Z) + ¢ = ¢] < E[Z|f(Z) + e = ]. Of
course, clearly the condition in this example is far from being necessary.

As a counter-example to the variance condition consider f(Z,¢) = g¢(Z), where g is some
even function. Then we have E[Z|g(Z)] = 0, and thus we can’t claim that the variance will be of
order % In fact it is clear that detection based on conditional variance in this case is impossible, as
(3.2.6) in fact gives us that Var[m;(Y")] = 0 for all j, and therefore the variance of the sliced inverse

regression curve, contains no information on the support of 3.

SLICED STABILITY (3.2.1)

We start this section by showing that the simple example (3.2.7) considered in the section 3.2.1 satis-

fies (3.2.1). Using (3.2.8) we immediately get:

f N an) <V < fHap) |

1 1Y)
S;V&I’ I: 1 —|—0‘2

1 14
Y < :7§ Var | ——
s ‘ah“] (1+0%)s 4 ar[ T+o7

where V = f1(Y') ~ N(0,1+ o?). Itis clear that out of all sets of probability g the set giving the
maximal variance for the truncated normal distribution is the one symmetric about 0. Therefore,

using the truncated normal distribution properties, we can bound the expression above by:

B (1 207 (L Do(e(d + g»)
(1+0?%)s ’

where ¢ = maxj, P (%%hz) <Z< %\/%ng)),wich ~ N(0,1). In the appendix we show

the following:

Lemma3j.2.a0. Forq € [0,29(r) — 1), for some r > 0 we have the following bound:
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Thereforeif ¢ < & 77 We have by Lemma 3.2.10 that, for H > M = ﬁ, for some r > 0:

K r1
(1+02)8¢(r) s

ZVar[ )

ap <Y < ah+1} <

In other words this model satisfies the sliced stability condition with (I, K, M) = 0,C(l, K, M) =
a +02)8 ¢ / Cy . Note furthermore, that in this special case sliced stability holds with { = 0.

Next, we proceed to formulate a more generic sufficient condition implying sliced stability. We
borrow ideas from Hsing and Carroll #, and show that their well accepted sufficient conditions im-
ply sliced stability, with a slight modification (see Remark 3.2.12).

Let A (l, K),with K > 1,0 < [ < 1, denote all partitions of R of the sort { —00 = a; <
az < ... < ag41 = 400}, such that % <Plap <Y <ap41) < %

Moreover, for any fixed B € R, let II,.(B) denote all possible partitions of the closed interval

[—B, B]into r points —B < by < by <...<b, < B.

Define the normalized version of the centered inverse regression curve m(y) = L(y),
Var(m;(Y))
and let m satisty the following smoothness condition:
lim sup rY/(H0) Z |m(b; bi—1)| =0, (3.2.9)

r—00 bEHT(B)

forany B > 0 for some fixed £ > 0. Note that as mentioned in Hsing and Carroll *, assumption
(3.2.9) is weaker than the assumption that m is of bounded variation, and furthermore the bigger
the { the more stringent this assumption becomes. In addition assume that, there exists By > 0 and

anon-decreasing function m : (Bp, 00) — R, such that:

im(x) = m(y)| < [Fllal) = mlly))]. fora,y € (o0, Bo) or (Bo, o), (3:2:10)

and moreover, E[|(]Y[)|2+9)] < oo (where in the expectation we set m(y) = 0 for |y| < Bo).
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Remark 3.2.1. We note that without loss of generality we can consider the function m to be non-
negative, at the price of potentially shrinking the interval (B, o) to (Bo + €,00) by any € > 0. To
see this fix an € > 0, and define m' (x) = m(x) — m(By + ¢€) forx € (By + €,00). Then since

(3.2.10) holds on (—oo, —By) U (B, 00), clearly:

Im(x) = m(y)| < |m'(Jz]) — W/ ({y])], for z,y € (00, —Bo — €) o (Bo + €, +00).

By the convexity of the map x — 1T we bave m/ (x)*7¢ < 27 (m(2)2¢ + m(By + €)?1%)
and bence B[/ (|Y))| 9] < oo. Finally by definition W/ is non-negative and non-decreasing
on (By + €,00). From now on we will consider m to be non-negative on (B, 00) without further

reference.

Remark 3.2.12. The moment inequality implies a tail condition, i.e. |m(y)|*tOP(|Y] > y) — 0.
A tail condition is assumed in% of the sort m* (y)P(|Y| > y) — 0 wheny — oo, We note that

this tail condition is just slightly weaker than assuming thar E[m*(|Y])] = [~ m*(y)dP(]Y| <

y) < 00. To see this, from the previous equation it’s clear that E[m*(|Y])] < oo implies m* (y) P(|Y| >

y) — Osince [7°m*(y)dP(|Y| < y) > m*(2)P([Y| > z) for any z. On the other hand, the
fact that m* (y)P(|Y| > y) — 0 implies u'P(m(]Y|) > u) — 0, asu — m(+00) (since

P(m(|Y|) > m(y)) < P(|Y| > y)) Using the representation:

Emi=¢(|Y]) = /00(4 — w3 P(m(|Y]) > u)du
0

o ulP(m u
§(4—e)+/1 TEpLEL ﬂf'b Jdu < oo.

Hence, we conclude that Em*=<(|Y'|) < oo for any small e > 0.

The degree 4 was selected in*, because they were seeking 1/n consistency, which is not required in our
setting. Hence our condition requires a less stringent degree.
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We are now in a position to formulate the following:

Proposition 3.2.13. Assume that the standardized centered inverse regression curve satisfies properties

(3.2.9) and (3.2.10) for some § > 0. Then we bave that for any fixed 0 < 1 <1 < K:

H

|
I ST Varm(Y)|ap < Y < ~0. 2.
P T ; ar[m(Y)|a, <Y < api4] (3.2.11)

We defer the proof of Proposition 3.2.13 to the Appendix. It is clear however that (3.2.11) implies
the existence of constants M, C(I, K, M) such that (3.2.1) holds, with kK = ﬁ <1

We conclude this section, by recalling several remarks mentioned in Hsing and Carroll #, re-
garding the mildness of their conditions, which as we saw imply sliced stability. Firstly, condi-
tion (3.2.9) is weaker than requiring that m has bounded variation. Secondly, in the case when
m is a continuous and increasing function, we can selectm(z) = |m(|z|)|, and provided that

E|m(|Y])|**¢ < oo this readily implies both (3.2.9) and (3.2.10).

3.3 NUMERICAL RESULTS

In this section we consider several models to evaluate the predictions of Theorems 3.2.3 and 3.2.5

numerically. We consider the following scenarios:

Y =sin(87X) + U(0,1), (33.1)
Y = (67X)* + N(0,1), (332)
Y = (87X + N(0,1))°, (333)
Y = TX + N(0,1). (3:3.4)

Note that these models do not necessarily fall into the same class of sliced stability and variance
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assumptions. Therefore we would not expect to see the phase transition, described in Theorems
3.2.3 and 3.2.5, to occur at the same places for all models.

We first explore the predictions of Theorem 3.2.3. Even though we provide theoretical values of
the constants H and m, we ran all simulations with H = 10 slices. We believe this scenario, is still
reflective of the true nature of the DT algorithm, as the theoretical value of H we provide is not
optimized in any fashion.

In figure 3.1, we present DT results from plots for different p values in the regime s = /p.
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Figure3.1:DT,s = |/p
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The plots in the case s = /P, are really similar to the corresponding plots in the regime s =

log(p), which can be seen in figure 3.2
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Figure 3.2: DT, s = log(p)
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This similarity is in concordance with the predictions from our theoretical results. We can dis-

tinctly see the phase transition occurring in approximately the same place regardless of the values of

the dimension p, that we use.

Finally, we present the corresponding results for algorithm 3. We used the code from an efficient

implementation of the program (3.2.4), as suggested by Zhang and Ghaoui?”. The code was kindly

provided to us by the authors of 7. In figure 3.3 we provide the four models for the case when s =



log(p) (and hence log s = o(log(p))).

Figure 3.3: SDP, s = log(p)
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Here we have again used H = 10 in all scenarios, for simplicity. We observe that phase transi-
tions are occurring in all of the models with the signed support being correctly recovered for large

enough values of ) n

SToa(r=5)" We note that the phase transition for SDP does not seem to occur at the

same values as the phase transition for DT. Observe that our results do not contradict this fact.
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3.4 PROOF OF THEOREM 3.2.3

We first present the high level outline of the proof. Note that for vectors with j & Sg, we have
that X Zj are completely independent of the slicing scheme on Y and therefore the element V737 ~
T X

We would thus expect, to be able to filter out unrelated variables, by selecting the highest values
of the diagonal elements. Our argument shows that in fact V4 > 1 Var[m;(Y)], forall j € Sg

with high probability. To achieve this we would like to control the quantity:

H
, 1 N2
Vi~ Varlm, (V)] = | 5 Y- (%3)" = [ mi )y iy (54
h=1
We will show below (see (3.4.5)), that the above expression is well approximated by:
g 1L 2 A
VI —Varm; (V)] = | = 30 (X0) =D )PY €80, Ga)
h=1 h=1
under sliced stability (where Y(g) = —0o0). Our proof then controls (3.4.2), by rigorously exploring

the intuitive facts that P(Y € Sj) ~ % and YiL ~ M{L. To deal with the former approximation we
use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see Massart ), and we develop a new con-
centration inequality based on Bernstein’s inequality to deal with the latter one. We now proceed to
rigorously show the result.

Note that the probability P(Y" € S},) is a random variable, where the randomness comes from
the two ends Y/, (4—1)) and Y{;,,p,) of the interval Sj,. Recall that F;, is the empirical distribution

function of Y, based on the sample Y;. Since we are assuming Y is coming from a continuous distri-
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bution, we have:

h—1 h
=P| —<F,(Y) < —
("F =m0 =g).

where with abuse of notation (Y{g) = —00). Conversely we also have:

P(Y € Sp) > P(EFn(Yinh-1)) < Fa(Y) < Fu(Yinn)))

:P(fl;ll<Fn(Y)<g>.

Now using the DKW inequality, we have that P(supy |F,(Y) — F(Y)| > €) < 2exp(—2ne?),
which in conjunction with the fact that Y comes from a continuous distribution, implies that for all

h we have:

h—1 h 1
< <)<= 4.
7 < < F(Y) < )_ 7 26 (43)

1 h—1 h
— < - — | <
26_1@( < F,(Y) < > IP<

on an event with probability at least 1 — 2 exp(—2ne?). Let the event where this bound holds is S.
We now describe two different ways that we can use to generate a data from the SIR model. The
straightforward way to generate data from the SIR model (3.1.1) is the “forward” way — by first
generating X ~ N(0, I), next independently generating some random noise € from its corre-
sponding distribution, and finally generatinga Y = f(87.X, ¢). In doing so notice that the Y’
values will be generated in no particular order. In the second approach, we describe a two-step gen-
eration procedure. In the first step consider generating values of Y coming from the joint distri-
bution of the order statistics — (Y{(n); Y(2m), - - - » Y((Fr—1)m))- We can then, conditionally on the

(Yim)> Y2m)s - - - » Y((H—1)m)) Values, generate corresponding predictors (X (), X(2m)s - - - » X (H—-1)m))
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and random noise (&), €(2m)> - - - » €((H—1)m)) independently, with each pair (X (1), €(mh))
coming from the conditional joint distribution (X, €)|f (87X, €) = Y(;,p). In the second step,
for each interval S}, we can use rejection sampling by generating X ~ N (0, I) and independently
random noise ¢ and accepting X ift Y{,,(n—1)) < f(B7X,¢) < Ypup),1 < h < H — land
Yim-1)) < f(B7X,€)forh = H — 1. We will do so for each of the intervals until we accept
m — 1 points in the first H — 1 intervals and m points in the last one. Once we have the X and ¢
values it’s straightforward to calculate the remaining Y values.

The second data generation mechanism which we described above, gives us the insight that con-
ditionally on the values (Y(;,,), Y(2m)5 - - - » Y{(z7=1)m)) the sample means Yi,l:(mfl) have corre-
sponding population mean — ,u?l forh = 1,..., H — 1 and the sample mean Yiq has a mean of
,u%. To be consistent with the notations of the other slices, let us randomly select a point in the H™
slice and discard it from the means. With a slight abuse of notation we will denote the average of the
remaining points in the H™ slice qu’l:(m_l) and the discarded point X ,,, keeping in mind that
this point need not be the m™ point, but was chosen arbitrarily, so that the mean is still equal to
,ugq. We next formulate the following key concentration result for the sliced means, which we show

in the appendix:

Lemma3.4.1. On the event S, forn > 0 we have the following:

P (jekS'g,}LIé?f..‘,H} ‘Xh,lz(mfl) - Mh) > 77) <

1 2(m—1
2sH exp | —= n(m — 1) 7 (3.4.4)

n+Cy + Coy/—log (1) +C3 (—1log (%) q)

with @, i = 1,2,3 being fixed constants, and q = % — 2¢ (assuming that H is sufficiently large so

that ¢ < 2 —2®(1/v/V2 — 1)),
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Denote with S the event on which we have

max X, <.
jeSg,he{l,...,.H} h,1:(m—1) — My n

By (3.4.4), (3.4.3) and the union bound we have that:

~ 2 _
P(S) > 1 — 2sHexp | —+ n(m—1)

2+ Cr + Coyf~log (§) + Cs (~ log (§) a)

— 2exp(—2née?).

Next we move on, to show that (3.4.1) is close to (3.4.2) on the event .S, as well as we collect two

straightforward inequalities in the following helpful:

Lemma 3.4.2. Assume that the sliced stability condition (3.2.1) bolds. Then we have the following

inequalities holding on the event S, for large enough H, and small enough €:

H H
. 1 N2 .
VI = Varlm; (V]| < | = 3 (K1) = Y)Y € 8) (5.43)
h=1 h=1
CH" l 5
+ 5 H+ el,
B
H Cy CH" 1
; = T (*—I—Qe)
())? < == s \H : (3.4.6)
h=1 " (%_26)
B>
L )
] < X2 u (3-47)
2.1 329

Bs

Note. We refer to the constants from (3.2.1) as C and k, dropping the dependence on K and M for
brevity, and in fact C = C(l, K, M)Cly.
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Note that by an elementary calculation — using (3.4.3) and Lemma 3.4.2, on the event S we get:

i 1 < —i\2_ (m—1)° 72
VI —Varlm; (V]| < 2 30 |(Fh) = () (3.4
h=1
1 (m—1)2
+ 2€+H_Hm2) BQ+Bl,

where we used (3.4.5), the triangle inequality and (3.4.6). Consider the following:

Lemma3.4.3. There exists asubset S C S such that P(S\ S) < s exp(—%n72),ﬁr any fixed

T € [0, 1) on which we have the following bound for any j € Sg:

H
1 —=i\2 (m—1)?
EZ (Xi) -3 (17)?] < (3.4.9)
h=1
1 2v/1
(1+7) 2V1+7 o2 4202 42 0y B8
m vm H H

We defer the proof of this lemma till the appendix.
Next, we provide exact constants, such that each of the six terms in inequalities (3.4.8) and (3.4.9)
bounding |V — Var[m;(Y)]| are < 10—2‘;, and the probability of the event S still converges to

1. The remarkable phenomenon here is that the number of slices H, can be selected so thatitisa

constant, which might seem counterintuitive. Select the constants in the following manner:

1
12CK\ 1+ K 1
H = M, 2 exp(1), , 4

m”‘{ (&) oot s 1>1/2>>} Br410)
(K-11-1 1 o)
€= MmN o T e o 3.4.11
- @ ( )
n= 7 3.4.12

Cy Cs
m > 104 + max ¢ 2— (1 + ), — p smax(log(s + 1), log(p — s)), (3.4.13)

C? Cv
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where 7y > 0 is any positive constant, and 6’0 = 1 =/ Cvy, 64 = 6’04—5’1 +6'2\ / —log ﬁ +
484/ 1+ -5

12

Cs(—log(£) B Y and C5 = 1224(1 + 7)(% + L + 4). We show in Appendix B.2 that these
constants keep P(S) — 1, and satisfy the requirement that [V — Var[m;(Y)]| < S, and
therefore give us the following bound with high probability: Vii > %/ . Note that we have made
no effort whatsoever to optimize any of these constants and they are just an example, which can
easily be bettered.

Finally we need to deal with the variables V3J for j & S5. We make usage of the following tail

bound, for x? random variables which we take from Laurent and Massart ** (see Lemma 1):

XH> 2x <
IP’(H 1+2”H H> exp(—z).

Note that, V77 ~ ﬁ X3 forj € S5. Thus applying the bound above we have

1 1 2 T 2z

< = o 4.
mHXH ol V= e = (3.4.14)

with probability at least exp(—x). We select z in such a manner so that we make sure  — log(p —

s) — 400 which will guarantee by the union bound that all bounds will hold with high proba-

bility. Moreover, we require each of the three terms on the RHS of (3.4.14) to be bounded by %,

which will ensure that each of the V%7 for j € S¢  will be bounded from above by Y and we will
Cyn

be able to threshold by choosing a cutoft of V. By choosing z = S %, we can ensure that all three

terms will satisfy the requirement we imposed above, since (3.4.13) gives * = gX " > 1and thus

the maximum term of the three is 723: § Fmally if we have:
Cy
VRS9 _
or s og(p — ),
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it will follow that with probability tending to 1 we can separate the signals. We conclude that if:

4
n > max (Hm, —Sslog(p — S)) ;
Cy

detection is possible. Of course the last inequality is n > Qs log(p — s) asymptotically in the regime
s = O(p'~9), where @ = max(HC, %) with C' determined through (3.4.13). This is what we

wanted to show.

3.5 PROOF OF THEOREM 3.2.§

In this section we show that under the assumption log s = o(log p), the SDP relaxation will have a
rank 1 solution with high probability and moreover this solution will recover the signed support of
the vector 3. For the analysis of the algorithm we set the regularization parameter \,, = %

To this end, we restate Lemma 5 from Amini and Wainwright?, which provides a sufficient con-
5 S g p

dition for a global solution of the SDP problem:

Lemma 3.5.1. Suppose there exists a matrix U satisfying:

sign(Z)simn(), i35 £ 0
Uij = (351)
€ [-1,1], otherwise.

Then if Z is the principle eigenvecror of the matrix A — \yU, ZZ7 is the optimal solution to problem

(3.2.4).
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Recall that the SIR estimate of the variance-covariance matrix has entries:

H m m
Vik = lz (12){]’ > <1ZX’“.> :
H = \""" = " mia "

Denote with V = V — \,,U, where U is to be defined matrix from Lemma 3.5.L

We furthermore consider the decomposition of V into blocks — 175[375[3, ‘732735, ‘75[«:3755. Here,
these three matrices are sub matrices of the matrix V' restricted to entries with indexes in the sets Sg
or 5§ correspondingly.

We first focus on the Vg, g, matrix. We calculate the value of the covariance of two coordinates

J.k € Sg:

Covlm; (¥),mi(Y)] = Efm; (V), m(¥)] (3:52)
— sign(;) sign(BEm(Y)]

= BiBCv,

where we used that sign(3;)m;(Y') = sign(8)m(Y"), which follows by noticing that the distri-
bution of X7|Y is the same as the distribution of X*|Y" except the potential difference in the signs
of the coefficients, because of the symmetry in the problem.

We proceed with formulating a bound similar to Lemma 3.4.3, but for the covariance:
Lemma3j.s.2. On the event S as defined in Lemma 3.4.3, for j,k € Sg and j # k, we bave the

Jfollowing inequality:

; 1 (m —1)? B3
k
V7 Cov(mj(Y),mk(Y))‘ < <26 + I7 Hm? > By + By +4n

4147) 4/1+71 By
22 + 2= + 4n?. 5.
t— NG \20°+ 2 +4n (3.5.3)
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Lett = log (igggg) + 1, and note thatt — oo withp — oo sincelog s = o(log p). Choose

the constants in the following manner:

1
12CKt\ 1+ K 1
H = Ma ' o 1 ) ) e
max{ ( Cv ) 5 exp(1) 2(1 — d((v2 — 1)_1/2))} (35-4)
K11 l (59
‘= 2H ° 2H 4H(1+12t) [’ 355
VCOyl
= o T (35.6)
412t +1)\/s
1+ 7)48%st% (L + 2+ 4
m> max{( +7)48%st? (51 + 7 + 1) (3.5.7)
Cy
165(12t + 1)2tlog(sH)(C" + Cav/Tog H)
120y
e 4(12tl+ 1) }

where the constant C” is defined in the supplement. It is not hard to see, using the fact thatlog s =
o(log p) (shown in the supplement), that using the updated constants above we can get the follow-

ing bound

; C
sup |VI% — Cov(m;(Y), mp(Y))| < Q—V, (3.5.8)
j,keSg st

on S , with the probability of S tending to 1. The idea for the constant selection here is identical
to the one in the DT case, but we required each of the 6 terms in (3.5.3) to be smaller than % We
note that in the case of the SDP algorithm, we need to let H diverge to infinity. Furhtermore we

note, that elementary calculation shows that mH is of lower order than s log(p), using the fact that

log(s) = o(log(p)).
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Having in mind the above inequality we consider the matrix Vg, g,

. Oy
VSB,SB = TﬁSBﬁ;B + N’

where N is some symmetric noise matrix. Note that by (3.5.2), (3.5.8) gives a bound on || V|| max-
We next verify that the matrix NV satisfies the conditions of Lemma 6 in Amini and Wainwright?.
Take any s-dimensional unit vector ||v||2 = 1, and calculate:

Cv Cy

0TV < ol BV e < 5250l = 52

which converges to 0, as p — 00, by the definition of t. This implies that || N||22 — Oasp — oo,

since || N|2,2 = |Amax(IN)| as N is symmetric. Next consider bounding the norm:

Cy

||V |oo,00 —maX Z [Nij| < —-- or

jESﬂ

Obviously the last quantity becomes smaller than %’ as required in Lemma 6 from Amini and

Wainwright?. Thus we conclude that:
c oy = )\max(‘N/) — CV and, the second largest eigenvalue of V— Y2, converges to o.

* The corresponding principal eigenvector of V— Zg,, satisties the following inequality:
stﬁ Bsg H = 2\[

Next we show that the rest of the sign matrix U, i.e. USE’ Ss and U, 55,55 can be selected in such a
~ ~ . L
way, so that the blocks Vsévsﬁ and VSE’ 55 are 0. For this purpose we select U, 55,55 = EVS&SB and

U. 5,55 = %VSE’ S5- Since it is clear that the vector (,szﬁ , OSE) is the principle eigenvector of V/, if
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U is a sign matrix, Lemma 3.5.1 will conclude that — (zgﬁ , O;fg )T (5;6 , ng;) is the optimal solution
to the optimization problem, which will in turn conclude our claim.
It remains to show that the specified U is indeed a sign matrix. Note that by Cauchy-Schwartz for

k € Sjandany j, we have:
VIE < VVIINV VR, (35.9)

From (3.5.8) if j € S, we have that high probability: V77 < % + % < %

Hence, it is sufficient to select m, H large enough so that: Vkk < %9/, forallk € S/g. Going

back to (3.4.14) it can be easily seen that by selecting x = g(g;/ , we can ensure (after applying (3.5.7))

that V¥ < %{ forall k € S%, by requiring:

nCy

Vs 91og(p — 5
365 2> og(p — s), (3.5.10)

from the union bound. This combined with (3.5.9) shows that the so defined matrix U is indeed a

sign matrix, which concludes the proof.

3.6 TowARDS A ROBUST SUPPORT RECOVERY WITH CORRELATED GAUSSIAN DESIGN

In this section we consider several non-SIR based algorithms for dealing with support recovery in
single index models. We will partially address the question of support recovery with generic covari-

ance by studying the linear regression LASSO’s performance.
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3.6.1 COVARIANCE SCREENING UNDER & = E[X XT] =1

In this section we present another idea for signed support recovery. Let us observe n iid observations
from a single index model Y; = f(X]f,¢;), wheree; L X;and E[X;] = 0,E[X,;X]] =
I To this end we recall the linearity of expectation definition (which we briefly mentioned in the

introduction), used in 474,

Definition 3.6.1. A p-dimensional random variable X is said to satisfy linearity of expectation in

the direction 3 if for any direction b € RP:
E[XTo|XTB] = o, XTB + ay,

where ay, ¢y € R are some real constants which might depend on the direction b.

Remark 3.6.2. Nore that if additionally E[X| = 0, then by taking expectation it is clear that ap, =
0.

Evidently, linearity of expectation is direction specific by definition. However, elliptical distribu-
tions™, are known to satisfy the linearity in expectation uniformly in all directions. We recall that
a p-dimensional random variable is elliptically distributed iff its characteristic function can be writ-
ten in the form e"HW(¢T5t) forallt € RP, for some 1 € RP and a positive definite symmetric
¥ € RP*P_ The function W is referred to as the characteristic generator of the elliptical distribution.
One advantage of the method that we layout in this section over the SDP approach is that it
doesn’t require complicated optimization procedures. It requires however slightly different set
of assumptions, and hence can be considered as a complement to the theory we have developed

throughout this chapter. Consider the average:

1 n
n <
=1
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which is simply a vector estimating the covariance between Y and the vector X. We will study a
screening procedure based on the above average, taking the s biggest absolute values of the coordi-
nates with their corresponding signs in terms of signed support recovery.

The motivation for considering this average is by Theorem 2.1 of#7. An application of this theo-
rem, gives us that if X satisfies the linearity in expectation, then minimization of the problem (pro-

vided that a minimizer exists):

argmin B(Y — bTX)? = ¢p3, for some ¢y € R. (3.6.1)
b

Under the assumption E[X X T] = I, this population version problem clearly has a unique solution
of the form [EX XT]"!EY' X = EY X and hence we conclude that this vector is proportional to
the true 3. To be self-contained we include a standalone proof of this simple but important observa-

tion.

Lemma3s.6.3. Let X € RP be a mean zero random vector, which satisfies the linearity in expecta-
tion for a direction 3 such that E[(XTB)?] > 0. Assume also that > = E[XXT| = 1, and let

Y = f(X75,¢) for some f ande 1L X. Then we have E[Y X| = co3, where ¢y = %ﬁw
2

a random variable Z ~ X75,7 1 e.

Proof of Lemma 3.6.3. Takeany b L 3. Note that by the linearity of expectation:
E[BTXXTH| XS] = cp( XTH)2.
Taking another expectation above, we conclude that E[3T X XTb] = ¢,E[(XT3)?]. However

E[BTX XTb] = BT =0,
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and hence ¢;, = 0. Thus we showed thatif b L 5 we have E[XTb|XT/] = 0. Next, forany b L /3
we have:

E[Y XTb] = E[E[Y XTb|XT8]] = E[E[Y|XTAE[XT6|XT8]] = 0.

Hence E[Y X] oc 3. Finally, a projection on f3 yields the final conclusion:
col |BII3 = E[Y XTB] = E[f(Z,¢)Z],

where Z = XT7J. ]

Remark 3.6.4. The statement of Lemma 3.6.3 is readily generalizable to the situation where Y =
[(X78,€), bmt E[IXXT] =X > 0 with ¥ # 1. This is equivalent toY = f(XTR-1281/23 ¢),

and we conclude that E_I/QE[YX] = 0021/26, where co = %, where Z ~ XTJ.

From Lemma 3.6.3 it follows that under the assumption Ef(Z,¢)Z # 0, where Z ~ X7, the
proportionality constant ¢y # 0. For identifiability we will assume that || 5||2 = 1, so that ¢g is
simply Ef(Z,e)Z # 0.

While in general, the assumption Ef (Z,€)Z # 0% is dependent on the particular direction 3,
note that in the case when X comes from a spherical distribution*” (such as the normal) the pro-
jections X Tu have precisely the same distribution, where u is any unit vector. Recall that a random
variable is spherically symmetric if it is elliptically distributed with ¥ = 1. As we mentioned earlier,
spherical distributions automatically satisfy the linearity property. We will assume henceforth that
X has a spherical distribution.

In addition to the requirement of X having a spherically symmetric distribution, we will require

that the coordinate-wise X has sub-Gaussian distributions. This requirement is equivalent to re-

*Here, and throughout, observe that if this condition does not hold for the original function f(Z, ) it
might hold for some transformation of that function. If g is such a transform, our methods will work for
g(Y) instead of Y.
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quiring that the characteristic generator of the spherical distribution ¥(t) < exp(—Ct) forall

t € RT, forsome C' > 0. Since we are assuming X has mean 0, by property 4 in Lemma 5.5 of *
under the assumption that ¥ (¢) < exp(—Ct),t € R we can easily conclude that coordinate-wise
the distributions are sub-Gaussian in the case when ¥ = 1. Such assumptions clearly include the
case when X ~ N (0, I), but are more generic.

Finally under regularity conditions on f and € we will assume that the variable f(Z, €) is sub-
Gaussian, where Z ~ XTu with u being any unit vector. This assumption differs from the ones
we assumed when analyzing the SIR approaches, and can be viewed as a disadvantage of this frame-
work. Nevertheless, sub-Gaussianity encompasses many relevant examples — such as the linear
regression, and examples where Y has finite support such as the logistic regression, which otherwise
are not covered by our previous analysis due to the requirement of Y having a continuous distribu-

tion. We are now ready to state, the following simple covariance thresholding result.

Proposition 3.6.5. Let X be a spherically distributed p dimensional random variable with E[X] =
0, Var[X| = L and characteristic function U(t7t),t € RP, ¥ : R — R, such thar ¥(t) <
exp(—Ct) for some C > 0 forallt € RT. Let us observe n iid copies from a single index model
Y = f(XTB,e), where||Bll2 = Land B € {Jz, — 7=, 0} forall j € {1,...,p} and some

s € N. Assume that the function f and random variable € satisfy E[f(Z,e)Z] = co # 0, where

Z has a characteristic function U (t?),t € R, and the random variable f(Z,€) is sub-Gaussian.

Assume also that for a fixed £ > 2

2

2
n > op slogp,
0

where C is an absolute constant, and K = max;eq1, . oy |[Y X7 ||y, Then the absolute value

SFor formal definitions of 11 and ¢)3 norms please see definitions (3.1.3), (3.1.4) in Chapter 3 or (4.1.2) and
(4.1.3) in Chapter 4.
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correlation screening recovers the signed mppon‘J with asymptotic probability 1.

Proof of Proposition 3.6.5. Denoteby Sg := {j : 37 # 0} the support of the vector 3. We have
S| = s.

Using the fact that for any two random variables S, T', we have || ST ||y, < 2[[S]|y, || T[], we
can conclude that the vectors Y; X are coordinate-wise sub-exponentially distributed. Denote by

K = maxjeq1, py |[Y X7||y,. An application of Proposition 5.16 of ** and the union bound then

P >t <2 ¢mi nt” nt
exp |—cmin | —, —
= > 2pexp KK )
oo

where ¢ > 0 is some absolute constant. This inequality then gives us that

give us that:

1 n
=S VX - E[Y X]
n

i=1

V2K [logp
ve Von

1 & ) .
=3 VX! — B[V X]

n -
=1

sup <

je{1,...p}

with probability at least 1 — 2p~* for values of n, p such that IOT% P is small enough. Note that, by

Lemma 3.6.3 this inequality implies that if:

2K 1
@>Q\f ogp

Vs ve Von

forany Q > 2,

there will be a gap in the absolute values of the coefficients of ‘% Yo VX zj |forj € Spgand

J & Sp. This is because:

9K 1 2 N1 2K 1
@_xf~ og;JKDZ(Q_l)Kﬁ~ ogp>xf~ ogp.
Vs o VeV on Vel n ve Von

This also shows that the coefficients will achieve the correct sign. We conclude that as long asn >

9By signed support we mean recovering the signed support of sign(co3).
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2
Q?QEK s log p, sign detection is possible. 0
0

RELAXING THE SUB-GAUSSIANITY OF Y = f(Z,¢)

In what follows we look into relaxing the requirement on sub-Gaussianity on the Y distribution, to
allow for more heavy tailed distributions of the outcome. In order to do so, we will impose a more
stringent restriction on the X distribution, namely we will assume that X ~ N(0, I). Next we

proceed to show:

Proposition3.6.6. Ler X ~ N(0,1) be a p dimensional random variable. Let us observe n iid

copies from a single index model Y = f(XTB,¢), where ||B|l2 = 1 and 7 € {%, —%, 0}

forallj € {1,...,p} and some s € N. Consider the a function f and random variable e such

that B[f (Z,e)Z] = co # 0, where Z ~ N(0,1), and let % := E(f(Z,¢)?) < oo, n :=

Var(f2(Z,¢€)) < oo and~y = Var|f(Z,e)Z] < co. Then as long asn > %(02 + 1)slogp the
0

absolute value correlation screening recovers the signed support with asymptotic probabiliry 1.

Proof of Proposition 3.6.6. We follow the same steps as the proof of Proposition 3.6.5. We will use the

following Lemma which we show in the appendix:

Lemma3.6.7. Let us observe n data points from the model described in Proposition 3.6.6 with 3

being an arbitrary unit vector. Then we bave that with probability at least 1 — ﬁ)‘gz - ;2) the following

event bolds:

||8]lscv/1og 1 log p
NENeoV 0 2 4 oy /(02 4+ 1) =25,
N +24/(c2+1) .

1 n
-3 YiXi_E[YX]H <
n

i=1

Using the fact that E[Y X | = ¢/ in our case and that || 5||oc = %, we have thatif:

|colv/n > 44/logn + 8V o2 + 14/slogp,
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there will have a gap between the coefficients. Note that this condition holds if 16 logn < (0% +
1)slog p, by our assumption. If this doesn’t hold then the inequality above holds trivially for large

enough n. O

3.6.2 A SoLUTION TOowARDS A GENERIC COVARIANCE STRUCTURE

In this section we will consider the more general problem, where we observe n samples Y; = f(X]3*, ¢;),
i = 1,...,n,butthe distribution X; ~ N (0, X) where the covariance matrix ¥ is unknown. We
will use matrix notation. For convenience we denote with bold script the n X p matrix X whose
rows are the vectors X, i = 1,..., n. By indexing the matrix withaset A C {1,.. ., p} (includ-
ing a single index) X 4 we mean taking only predictors corresponding to the set A and concatenat-
ing them. We denote with Y the concatenation of values Y;,7 = 1,...,n.
Under certain sufficient conditions, our goal is to show that the LASSO algorithm recovers the
support of the vector 5 with asymptotic probability 1. For identifiability we will work under the
scenario 8*TX3* = 1. In this section we prefer working slightly more generally and we will not
require each of the signals in 3 to be of the same magnitude. Inspired by Section 3.6.1 we define the

observed residual:

w =Y — X%,

where just as before we have:

co == RE[YXTB*] = E[f(Z,&)Z], for Z ~ N(0,1) (3.6.2)

Note that w is not mean 0, but on the other hand by Remark 3.6.4 we have E[XTw| = 0. In terms
of the w notation, we can also write trivially Y = ¢oX3* + w. In this section we are interested

in studying the support recovery properties of a vector obtained through solving the following pro-
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gram:

~ . 1
B = argmin [ — X33 + /|l (.63)
BERP n

also known as Linear Regression LASSO.
The most detailed results regarding the support consistency of the LASSO in the linear model
up to date, to the best of our knowledge can be found in 87, Seminal analysis of the problem was

62,98

performed by °>°°. We would like to stress the fact that we are dealing with a more general problem,
with the data being generated through a single index model rather than the usual linear model.

Next we summarize a primal dual witness (PDW) construction which we borrow from®”. The
PDW construction lays out steps allowing one to prove sign consistency for L1 constrained quadratic
programming (3.6.3). We will only provide the sufficient conditions to show sign-consistency, and
the interested reader can check®” for the necessary conditions. We note that the proof of the PDW
construction is generic, in that it does not rely on the distribution of w, and hence extends to the
current framework.

Foravectorv € RP let S(v) = {i : v; # 0}, and let S = S(B*) for brevity. As we mentioned
we are interested, more generally, in signed support recovery. Define the signed support S (v) =
{sign(v;)}r_; wheresign(0) = 0.

Recall that a vector z is a subgradient of the L1 norm evaluated ata vectorv € RP (ie. z €
O||v||1) if we have z; = sign(v;),v; # Oand z; € [—1, 1] otherwise. It follows from Karush-

Kuhn-Tucker’s theorem that a vector B\ € RP is optimal for the LASSO problem (3.6.3) iff there

exists a subgradient Z € 9| B ||1 such that:

1 ~ 1
EXTX(B —cof*) — EXTW + Az =0. (3.6.4)
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We will assume that the matrix Xng is invertible, even though this is not required by the PDW.

The PDW method constructs a pair (53, 2) € RP x RP by following the steps:

+ Solve:

. 1
= in —|[Y -X 24\
Bs arg min, ol sBsllz + AllBs| |1,
where s = |S|. This solution is unique under the invertibility of X} Xg. Set Bge = 0.
« Choose Zg to be in 9||Bs||1.

* Forj € S%setZ; := XJT[XS(XEXS)flés + PXS% (;V—n)]”,where ng =1-
X (XL Xg) ' XT is an orthogonal projection. Checking that |Z;| < 1forallj € S¢
ensures that there is a unique solution 3 = (3%, BL.)T satisfying S(3) C S(coB*). Verify-

ing that | Z;| < 1 is referred to as verifying strict dual feasibiliry.

* To check sign consistency we need Zg = sign(co3%). For each j € S, define:
Aj = e}(n_ngXg)_l [n'XLw — Asign(coB%)],”

where e; € R? is a unit vector with 1 at the j position. Checking 5 = sign(co3%) is

equivalent to checking:
sign(coB; + A;) = sign(coS)), Vi € S.

To this end we require several restrictions on the covariance matrix. We partition the covariance

) Ygs  Xgse )
matrix > = , where ¥ gg corresponds to the covariance of Xg.

ESCS ESCSC

1Z ; are derived by simply plugging in Band Zg and solving (3.6.4) for Zge.
™A can be seen to be equal to 3; — cof for j € S, when Zg = sign(cof*).
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Assumption 3.6.8 (Irrepresentable Condition). Assume that:

185c5 555 lsc,00 < (1= k),

for some Kk > 0.

Assumption 3.6.9 (Bounded Spectrum). Ler

A < Bgg <A

min max’

for some fived 0 < XS, < A5 < oc.

min —

Next, we define several shorthand notations which we will use in our main result. Let:

Yiges 1= Ygege — YgesEgsDsse, (3.6.5)
1/2 —1/2 1/2
pOO(ES{S') = ||ZSS/ HOO,ooHESgv Hoo,om (3.6.6)

. . . - /2 .
be the conditional covariance matrix of X gc|Xg, and the condition number of ¥ S/S with respect to

|| - |00,00 correspondingly.

Furthermore we will need the following quantities:

o2 :=E[f(Z,¢)?], n := Var[f*(Z,¢)], v := Var[f(Z,¢)Z] (3.6.7)

& =E[(f(Z,e) — coZ)?], 0 := Var[(f(Z.¢) — coZ)?] (3.6.8)

where Z ~ N (0, 1). In order for all these moments to be well defined we need the following:
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Assumption 3.6.10 (Bounded 4™ Moment). W assume that:
E[f(Z,2)"] < co. (3.6.9)

Assumption 3.6.10 guarantees that all of the shorthand notations defined in (3.6.7) and (3.6.8)
are well defined and finite. Finally, successful support recovery will depend on the strength of the
minimal signal in 8*. Let || 5*||min := min;eg |3}, be the minimal non-zero signal in the vector
3+

We are now ready to provide sufficient conditions for the LASSO signed support recovery, in the

setting of single index models:

Theorem 3.6.1. Assume that Assumptions 3.6.8-3.6.10 hold. LetY; = f(8*TX;, &) with X; ~
N(0,%),i = 1,...,n, be iid data generated from a single index model. Let B be the solution to
the optimization program defined in (3.6.3), with \ being a tuning parameter. Assume furthermore

s = O(p'™%) for some w > 0. Then we have the following sufficient conditions:

i If

2
410g(p - S)dmaX(ESC|S) ()\gs §>\—51)
n > min

K2

~

then S(B) C S(coB*), with probability at least 1 — -2 — & — 2exp(—s/2).

it. There exist some absolute constants Qg, 21, Q2, Q3 > 0 which may depend on cq, o such that

2 /slog(p — s) e /logn]
n n

* —1/2 1/2 *
18 [min > 158" 211%.06A20 + poo(ZH) 15" |loo

—1/2 log s
11255 o ooy =~
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-~

we have S+ (B) = S+ (coB*) with probability at least 1 — 12 exp(—C2 min(s, log(p —

s))) — 6exp(—s/2) — # - p%s -8 217(7);1, where Co > 0 is an absolute constant.

Before we proceed with the proof of our statement we would like to mention a few remarks on
our sufficient conditions, in particular the ones suggested in ii.

Remark 3.6.12. Observe thar ﬁ < |18%]]2 < /\% Hence the value of || 3*||min i of asymptoti-

cally “largest” order when || 8*||min =< ||8%|]o0 = % Setting

4CTdmax (X geig) 1 _
A= )\T: \/(52_'_1) T 22( S |S> Og(}; 8)7

Jfor some Cr > 1 gives us that the condition from i. is equivalent ro:

n > 16dmax(ESC|S)
Toglp 31~ (1- G,

Note that due to positive definiteness: dmax(Xges) < NS o and bence is a bounded quantity by
assumption. Assume additionally HEE;/QH?)QOO = 0(1), poo(E;/;) = O(1), and let || 5*||min =<

1 . o . . e .
7 Using the same X\ = A\t we can clearly achieve the sufficient condition in ii. by potentially over-

n

SToa(p—s): On the other hand, this scaling can no longer be guaranteed if

scaling the ratio berween

HB*Hmin = ﬁﬁllf to hold.

Proof of Theorem 3.6.11. Our proof follows Theorem 3 in®”. For completeness and to increase read-
ability, we will provide a full proof of this theorem, while explicitly stating where modifications of

the original argument were required.

VERIFYING STRICT DUAL FEASIBILITY

For j € S° decompose XJT = EjSEE;}Xg + E]T, where the elements of the prediction error vector

E; € R" areiid with Ejj ~ N (0, [Xge|s]jj),7 = 1,.. ., n. Following the definition of Z; gives us
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that Z; = A; + Bj, where:

1. W
Aj = E]T [XS(XEXS) lzg + PX§ ()\—n)] , (3.6.10)
Bj := Ejs(zss)_lég. (3.6.11)

Under the irrepresentable condition, we have that maxjcge |Bj| < (1 — k). Conditional on X g
and € (which determine w = Y — ¢oX3*) we have that the gradient Zg is independent of the
vector E; because the gradient is deterministic after conditioning on these quantities . We have

that Var(Ejj) < dmax(E Sel 5), and thus conditionally on X g and € we get:

2
) < c tXs)7lz o H
Var(Aj) < dmaX(ZS \S) HXS(XSXS) zS +PX§ </\n> 2

1]

Next we formulate a lemma which is a slight modification of Lemma 4 in®. The reason for this

. sT(XT -1z w
= dmax(ZSC\S) [zS(XSXS) Z5 T+ HPXé_ ()\TL)

modification is that in our case W is no longer ~ N (0, o2I).

Lemma3.6.13. Assume that 2 < %6' Then we bave:

s
n

4s £ 4+1
) < c
%%§Var(A]) < dmax(Zse|s) (Aiinn + 2n )’
M

with probability at least 1 — 2 exp(—s/2) — %

Now since conditionally on X g and € we have A; ~ N (0, Var(A;)), using a standard normal

' Observe that by (3.6.4), we have 25 = —%X;XS(,BS —cof*) + X)\;nw

78



tail bound and the union bound we conclude:

2

Plunax 4] > 1) < 2(p — ) exp(—?/(20) + 2exp(—s/2) +

We need to select M so that the exponential term is decaying in the above display. A sufficient con-

dition for this is 52 /(2M) > 2log(p — s). The last is equivalent to:

2
4log(p — $)dmax(Sse|s) (;}@S + g;gl)

min
2

n >
K

VERIFYING SIGN CONSISTENCY

The last part shows that the LASSO has a unique solution B which satisfies S(8) € S(coB*) with
high probability. Now we need to verify the sign-consistency, in order to show that the supports will

coincide. We have the following:

max Al < A H(n_ngXs)_l sign(coﬁfg)Hoo + H(XgXS)_ngw‘ }OO :

11 I2

To deal with the first term we need the following:

Lemma 3.6.14. There exist positive constants K1, Co > 0, such that the following holds:

P(I > AK1 |55 2|12 no) < dexp(—Cy min(s, log(p — 5))),
The proof of this lemma is part of the proof of Theorem 3 in®. Next we turn to bounding the
term Jo. This is where our proof departs substantially from the proof in®’, as I no longer has a sim-
ple structure required in the original argument. In our case w depends on X g, and it is not mean 0.

We will make usage of the following result, whose proof is provided in the appendix:
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Lemma3.6.as. Ler ||5*||2 = 1. We bave n iid observations Y = f(5*TX, ) from a single index
model, where X ~ N (0,lsxs), with s < n. Then there exist some absolute constants 1, Qa, Q3 >

0 (depending on o and |co|), such that:

_ « N slog(p — s . logn
IXTXITXTY — o8l < 018"y 2L 4 /12

log s
+Q3 5 )
n

with probability at least 1 — 8 exp(—Cy min(s, log(p — 5))) — 4exp(—s/2) — & — 8 9117

n s logn’

where Cy > 0 is the same absolute constant as in Lemma 3.6.14. Denote for brevity the RHS of the

inequality as §(|| 5|00, 1, S, D).

While Lemma 3.6.15 is stated in terms of standard multivariate normal distribution N (0, I), we
can easily adapt it to more general situations where we observe non-standard normal random vari-
ables N (0, X gg). Next recall that the rows of X g are distributed as N (0, Xg55), Y; = f(87X;, €),
and 3 5255 Bs = 1. Denote with Z = Z_l/ 2XT Then we have the following inequality, with

high probability:

I = [|[XIXs] ' XLY — coB]|oo = |58/ 2[ZTZ] 7 ZTY — o8]0

<1258 oo l[ZTZ) T ZTY — o 43 85 oo

—-1/2

1/2
<1258 Moo .oo8 (|54 Bl oos 8,12, D).

The last two inequalities imply that:

—1/2 —1/2 1/2
max | Ai] < MK |S535 2o oo + 115537 loo.000 (1| 5l5 85 loor 5.7, p)-
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Hence as long as for || 8| |min = min{|3| : i € S} we have:

—1/2 —1/2 1/2 *
lol|B]lmin = AK1][S 58 1% 00 + 115548 o000 (|| e ool 18| loos 5, 7, 1),

the LASSO will recover the support with high-probability. This concludes the proof. O]

NUMERICAL RESULTS

To support our theoretical claims, and in particular Theorem 3.6.11 we provide brief numeric analy-
sis in this section. We consider the same 4 models as in the case of SIR — models (3.3.1), (3.3.2), (3.3.3)
and (3.3.3).

We used a Toeplitz covariance matrix for the simulations with ¥;; = ﬁ The vector 5*
was selected so that 5*TX 3" = 1, the entries were equal, with the first one having a negative sign,
and the rest being positive. Note that Toeplitz matrices can be seen to satisfy the requirements we
impose in Section 3.6.2.

We did not tune the tuning parameter A, but rather the selection was based on selecting the vec-
tor 3 on the solution path of the LASSO which contains exactly s elements. This method is justified

as our theory shows the existence of a A on the solution path recovering the correct support.

In figure 3.4, we present results of signed support recovery for different p values in the regime

s =/p.
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Figure 3.4: Linear Regression LASSO, s = \/f)
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These plots illustrate different phase transitions occurring for the four different models. We ob-
serve empirically that the value of the phase transition parameter can be quite large, and hence we

might be able to appreciate the effect of the scaling provided in Theorem 3.6.11 only asymptotically.
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3.7 DiscussioN

In this chapter we studied support recovery for SIR in a high dimensional setting, under the as-
sumption that X ~ N (0, I). We showed that two algorithms DT and SDP, originally suggested
in the sparse PCA literature, recover the support with an optimal sample size up to a multiplicative
constant. To the best of our knowledge, this phenomenon has not been pointed out in the present
literature. We furthermore, pointed out interestingly that the number of slices H does not need to
diverge to 0o as long as it is large enough for the DT algorithm to work.

We note that the rather restrictive assumption X ~ N (0, X), can be easily extended to cover ma-
trices 3, which have X5, 5, = Isxs, 23&32 =0, Amax(Esg,Sg) < 1. A more refined extension
of the covariance structure, is not straightforward however, and warrants future research. Other ex-
tensions of this work, that we are currently working on, include more than one-dimensional SDR
spaces. Our results are also motivating us to study the minimax rate for SIR under similar condi-
tions.

In addition we considered non-SIR based approaches for support recovery, such as the covariance
thresholding and the linear regression LASSO algorithm. We showed that under slightly different
assumptions covariance thresholding can produce signed support recovery with a sample size of the
same order as SIR. In addition, we saw that the linear regression LASSO works for variable selec-
tion with correlated Gaussian designs, even under the more general setting of single index models,

provided that certain sufficient conditions (most notably the irrepresentable condition) are met.
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1 only believe in statistics that I doctored myself.

attributed to Winston Churchill by Joseph Goebbels

A Unified Theory for Inference in

High-Dimensional Estimating Equations

4.1 INTRODUCTION

We are given n independent and identically distributed random samples { X; € R},—; , froma

statistical model P = {Pg : B € Q}, where 3 € R is an unknown parameter with d > n.
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Assume that the true parameter 3* can be determined uniquely by solving an equation system
Eh(X,3) = 0, whereh : RY x R? — R%isa system of estimating equations and X ~ Pg-.
When d > n, directly solving a sample version of these estimating equations is an ill-posed problem
. To avoid this problem, a popular approach is to impose sparsity assumption on 8*, which moti-

vates large families of constrained Z-estimators in a generic form™:

n
B = argmin ||B]|1, subject to ‘ n~! Zh(XZ,ﬁ)HOO <A, (4.1.1)
i=1

where A is a regularization parameter controlling the bias and variance tradeoff. Let 3 = (6,~7)7,
where 6 is a univariate parameter of interest and 7y is a (d — 1)-dimensional nuisance parameter. We
aim to to test the hypothesis Hy : §* = 0 and obtain valid confidence regions for 6*.

As an example, consider the special case when h((Y, Z),3) = Z(ZTB — Y), where X =
(Y, ZT)T withY € R being the response and Z € R being the predictor variables. In this
case formulation (4.1.1) reduces to the Danzig Selector estimator*#. While both oracle properties
Bickel et al. ?, Candes and Tao ™, Koltchinskii et al. #> and model selection consistency results Gai
etal.”, Ye and Zhang®', Wainwright 87 have been established for the Dantzig Selector, hypothesis
testing and construction of confidence regions for the parameters have not been well explored. The
main challenge in these two inferential problems, in contrast to the conventional fixed d setting,
is the fact that the dimension of the nuisance parameter 7y can be very high especially in the case
d > n. In this chapter we argue that it is indeed possible to achieve the two inferential goals under
some further sparsity assumptions of a certain covariance operator on the X distribution.

Such a generic framework has surprisingly many applications. For instance, consider the setting
when the true parameter can be determined through minimizing a convex and sufficiently smooth
loss function ¢ : R? x R? = R,ie. B* = argming E((X, ) with X' ~ Pg-. In such cases

one can equivalently solve the equation Eh(X,3) = 0 whereh = %, and hence infernce on
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many high-dimensional M-estimators can be addressed through our framework. Moreover, there
are a lot of existing constrained Z-estimators, which naturally belong in our framework. Such esti-
mators include the Dantzig Selector'#, the CLIME estimator for inverse covariance matrices, sparse
linear discriminant analysis (LDA) with the LDP algorithm™ and vector autoregressive models*.
Performing inference for the CLIME estimator has implications in graphical modeling. If the data

is Gaussian, then such hypothesis testing is equivalent to edge testing in the graph structure. More
generally our framework can be used to perform inference for Transelliptical graphical models, sug-
gested by Liu et al. *. To the best of our knowledge, non of the aforementioned algorithms has been
equipped with inferential procedures.

In order for us to construct test statistic and confidence regions, we project the estimating equa-
tion onto a certain sparse direction. We demonstrate that in doing so, one eliminates the influence
of the nuisance parameter and the test statistic achieves asymptotic normality under the null hy-
pothesis. Under more stringent conditions, we further establish uniform weak convergence to a
normal distribution over a sufficiently sparse parameter set, given the null hypothesis holds. More-
over, we study the local power of our prosed test statistic and demonstrate that the same transition
as in the low dimensional case occurs. In order to construct confidence regions, we suggest a cor-
rected version 8 of the estimator 8. We show that the asymptotic distribution of 0is asymptotically
normal, and in addition the asymptotic variance of the estimator coincides with the one used to nor-
malize the test statistic. This demonstrates the asymptotic equivalence of the suggested confidence
regions and hypothesis tests. Furthermore, in settings when h = g—é with £ being the log-likelihood
function, our estimator 0 achieves the optimal lower bound on the variance of over all unbiased

estimates.
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4.1.1  CONNECTIONS WITH RELATED WORK

In a parallel line of work, where a likelihood function is available in a high dimensional parametric
model, one could opt for estimating the sparse parameter 3 through a penalized likelihood. The
archetypical example of such approach in the linear model is the LASSO7®. The theoretical prop-
erties of the LASSO have also been successfully studied in the literature, and the interested reader
can look into®™*, to name a few references. More generally, theoretical guarantees for solving
penalized M-estimators can be found in*®. Although estimation of 3 has been studied well in the
high-dimensional setting, the question how to perform inference remains largely unanswered. In
particular, Knight and Fu* showed that the asymptotic distribution of the LASSO estimator is not
normal even in settings where d < n. There have been several different propositions how to address
this question in the linear model case. P-values and confidence intervals based on sample splitting
and subsampling were suggested by Meinshausen et al. 64 Meinshausen and Bithlmann %, Shah
and Samworth 72, Wasserman and Roeder**. For the LASSO estimator, Lockhart et al. ¥, Taylor
etal.”, Lee etal. #* suggested conditional tests based on covariates which have been selected by the
LASSO. We stress the fact that this type of tests are of fundamentally different nature compared

to our work. In the linear and logistic model cases”* proposed an instrumental variable and dou-
ble selection procedures correspondingly to produce asymptotically normal estimators. Coming
from a different reasoning Zhang and Zhang *°, Javanmard and Montanari*, van de Geer et al. *°
proposed a low dimension projection estimator, debiasing and desparsifying correction methods
correspondingly, for constructing confidence intervals in high dimensional models with the L
penalty. Recently in a related framework, Ning and Liu 69 proposed a projected score test in a semi
parametric high dimensional setting, which works for a wider class of penalty functions. A different
score related approach is considered by Voorman et al. , which is testing a null hypothesis depend-

ing on the tunning parameter, and hence differs philosophically from our work. Asymptotically
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normal tests were proposed by Fan and Lv *°, Bradic et al. *°

, in the low-dimensional regime, rely-
ing on oracle properties. Oracle properties require strong conditions, such as the minimal signal
condition which cannot be evaluated in practice. In contrast, our work does not rely on oracle prop-
erties or variable selection consistency and can work in high-dimensional settings. Moreover, all of
the above propositions, rely on the existence of a likelihood, or more generally on the existence of
aloss function. As we commented earlier, every sufficiently smooth convex loss function can easily
be translated into the estimating equation framework. Hence our procedure provides alternative
confidence regions and hypothesis tests, which are optimal and asymptotically equivalent to the
ones considered some settings above, in cases where the likelihood function is available and is suffi-
ciently smooth. However, the distinctive feature of our procedure, is that it handles the estimating
equation directly, enabling us to perform inference in many examples which could not be addressed
with any of the existing methods. For instance in the paper¥, the authors describe a novel proce-
dure for testing and confidence regions for inverse covariance estimation. This procedure, based on

the graphical LASSO estimator* is inspired by van de Geer et al. 8 while in our case the CLIME

procedure immediately falls under the umbrella of the generic framework we are proposing.

4.1.2 ORGANIZATION OF THE CHAPTER

This chapter is organized as follows. In Section 4.2 we briefly review the framework of conventional
estimating equations, and summarize our generic testing procedure for high dimensional equations.
In Section 4.3, we layout the foundations of the general theoretical framework. Section 4.4 is ded-
icated to applying the procedure to the Dantzig Selector. In Section 4.5 we study testing in high-
dimensional graphical models. Section 4.6 deals with testing parameters in the sparse LDA. Autore-
gression models are considered in Section 4.7. Section 4.8 discusses Quasi-Likelihood equations
with a canonical link function. Numerical studies are presented in Section 4.9, and a discussion is

provided in Section 4.10.
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4.1.3 NOTATION

The following notations are used throughout the chapter. Fora vector v = (vy, ..., vd)T € R4,
lee[|v]ly = (5, vf) /9,1 < g < oo, [|v]lo = | supp(v)|, where supp(v) = {j : v; # 0}, and
| A| denotes the cardinality of a set A. Furthermore let ||v||oo = max; |v;] and v¥? = vvT. Fora
matrix M denote with M ; and M j, the j th column and row of M correspondingly. Furthermore,
let | M||max = max;; [Mj], | M|, = max,|,—1 [Mov||, forp > 1. If M is positive semidefi-
nite let Apax (M) and Apin (M) denote the largest and smallest eigenvalues correspondingly. For a
set. S C {1,...d}letvg = {v; : j € S} and S be the complement of S. We denote with ¢, &,
the pdf, cdf and tail probability of a standard normal random variable correspondingly.

Recall that a random variable is called sub-exponential if there exists a constant K1 > 0 such that

P(|X| > t) <exp(l —t/K)forallt > 0. We denote the sub-exponential norm
[ Xy, = SuPp_l(E‘X‘p)l/p- (4.1.2)
p>1

Similarly, a random variable is called sub-Gaussian if there existsa K5 > 0 such that P(| X | > ¢) <

exp(1 — t2/K3) forall t > 0. We denote the sub-Gaussian norm
[ X [y, = Sg€p71/2(E|X|p)l/p. (4.13)
P>

Finally we recall a definition taken from Bickel et al. ?, referred to as the restricted eigenvalue (RE)

assumption.

Definition 4.1.1 (RE). We say that the symmetric positive semi-definite matrix My, j, possesses the

restricted eigenvalue property if:

u

u'M
RE = i in{ ——— ueR\ {0 ell1 < > 0.
(s, = minmin TG0 € RO (0] sl < Els]) |
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4.2 HiGH DIMENSIONAL ESTIMATING EQUATIONS

In this section we introduce our generic framework and notations. We review basic properties of
standard Z estimators conceded with the case when d < n is fixed, and contrast them to Z estima-

tion when the dimension d is high.

4.2.1 CONVENTIONAL Z ESTIMATION

In this subsection, we briefly review the conventional Z estimators. For a more thorough review,

we direct the interested reader to®**. Assume that we observe n iid copies X1, ..., X, of a g-
dimensional random variable X. Let h : R? x R? — R? be a vector valued smooth function. The
function h defines the following equation Eh(X, 8) = 0, and assuming that this equation has a
unique solution in the parameter space 3 € 2 C R?, it follows that the function h determines a
“true” parameter value which we denote with — 3*. In the conventional framework, the dimension
d is typically held fixed, and the sample size is allowed to diverge to co. In order for us to estimate

3%, itis natural to translate the population version of the equation into the finite sample version:
1 n
- E h(X;,8) = 0. (4.2.7)
i=1

When the dimension d is assumed to be fixed, it can be shown, that under certain regularity con-
ditions on h and X the above equation produces an estimate ﬁ, which is consistent, and asymp-
totically normal, e.g. see Van der Vaart® (Sections 5.3 and 5.4) for more details. Note, that it is es-
sential that the dimension d < n, as otherwise the finite sample equation can have multiple so-
lutions. Assume that h is continuously differentiable, and let H : R? x R? — R? x R?be

H(X,B) = w The intuition behind the normality of 3, can be seen along the lines of the
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following Taylor expansion:
I « ~ . 1 <& §
7 Y H(X;,8)(8 -8 = ey > h(X;,B%),
i=1 i=1

where 8 = vB —+ (1 — v)B* for some v € [0, 1]. Under regularity conditions first term on the RHS
can be seen to converge to a normal distribution, and the term % o H(XG, 5) can be shown to

be consistent for EH(X;, 8*). These facts suggest the following weak convergence result:
V(B - ") = N0, %),

where

T = [EH(X, 6%)]'E[h(X, 8")h" (X, )| [EH(X, )] .

To this end note that from estimation perspective, in cases when we have a likelihood function avail-
ableand h = %, such an estimating equation is optimal in the sense that the estimator B achieves
the Cramer-Rao lower bound and has minimum variance.

The above reasoning not only gives us the intuition behind the normality of the Z estimator —
B, but also suggests a way to test whether certain coordinate of the vector 3 is 0. Let us assume that
the vector B = (0,~7)T, and we are interested in testing whether the one-dimensional component
Hy : 6 = 0versus the non-restricted alternative i 4 : 6 # 0. Throughout this chapter, we will
assume without loss of generality that 6 is the first component of 3. In this scenario the parameters
4 are nuisance.

One possibility to test in the parameter 6 in this situation is to conduct a so-called “Wald” test,
relying on the asymptotic distribution of /n (6 — 0). Such a test compares the value of /1 (6 —0)

2

to a quantile of N (0, 52), where 2 is a consistent estimate for 02 = 33.

To this end, note that the following expression has exactly the same asymptotic distribution as
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n_1/2V*T Z h(sz B*)a

i=1
by the CLT, where v*7 = [EH(X, 8*)].!. The above expression can be viewed as a projec-
tion of the estimating equation, evaluated at the true parameter. Hence if we are able to consis-
tently estimate the expression above, we will achieve an asymptotically equivalent test to the Wald
test. In the low dimensional framework a natural candidate for such an estimate under the null is

n=29T S h(X;, Bo), where B = (0,37)T and v = [n~' 2" H(X;, B)] 7. Below

*

we consider a natural extension of this framework in the growing d with 7 case.

4.2.2 HiGH-DIMENSIONAL FRAMEWORK

As we mentioned in Section 4.2.1, in the case when d > n, conventional Z estimation fails as one
has more parameters than samples. To deal with such situations, we borrow ideas from the Dantzig
Selector™. Assuming that the underlying true parameter 3* is sparse, instead of solving (4.2.1) pre-

cisely, we will solve the following optimization problem:

B = argmin ||B]|1 s.t

Ly . g)” < (42.2)
=1 o0

Following the conventional Z estimation approach, we define the following projected test func-

tion:
5(8)= > 9" h(X;,8),

=1

where the vector V is defined as the solution to the optimization problem:

<\. (4.2.3)

o0

V = argmin ||v||; st

1< PN
—Y VIH(X;,B) e
n

i=1
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Here, € is a d-dimensional row vector (1,0, . .., 0), where the position of 1 corresponds to that

of # among 3. Note here that the matrix H(X;, 3) = (311(826(;,[3)’ R Bh%)[g;,ﬂ)) need not be
symmetric in general. The population version of V is as defined in the previous Section: v* =
[EH(X, 8%)] 1—*1,T. One of the crucial assumptions for the test which we present below to work
is that the row vector v*7 and the true parameter 3* are sufficiently sparse.

In order to perform a test in the high-dimensional framework, one needs to evaluate n'/2 3 (,@0),
and compare the value to a N (0,52) random variable, where a consistent estimate 52 of 0% =
Var(v*Th(X, 3*)) needs to be given. Here By = (0,47)T, is an estimate of 3* under the null

hypothesis. We summarize the calculation of the test statistic for high dimensional estimating equa-

tions in the following:
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Algorithm 4 Test Statistic for High-Dimensional Linear Equations

Input: Data { X;}? ,, h; Tuning parameters A, X',

1. Calculate the optimization problem (4.2.2), to obtain an estimate 3:

B = argmin || B]|; s.t

1 n
‘Eth,ﬂ)H <N\
=1 o

2. Calculate the projection direction vT through the following optimization based on

(4.23):
- 1 & .
V = argmin ||v||; s.t ||— ZVTH(XZ-,,B) —e|l <\
n“
i=1 oo
3. Output the sparse projected test function:
1 n
a ST
58) = 39" h(X..p)
=1
4.3 GENERAL THEORETICAL FRAMEWORK
Assume that we observe n iid copies X1, ..., X, of X In this section we provide sufficient con-

ditions to guarantee that Algorithm 4 will provide us with a statistic which we can use to test Hy :
0 = 0vs Hy : 0 # 0. Our results show that if properly normalized the output statistic from Algo-
rithm 4 will converge weakly to a standard normal random variable. Furthermore, we show how to
use our framework to construct confidence intervals.

We will denote with [P the probability measure corresponding to the distribution of X; gener-

ated with a parameter 3. We will use the shorthand notation P* = P+, to indicate the measure
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corresponding to the true parameter 3*.

4.3.1 WEAK CONVERGENCE UNDER THE NULL HYPOTHESIS

Below we make several assumptions which are needed to establish the weak convergence. Note that
the true parameter under the null distribution has the form 3* = (0,4*7)? and the two will be
used interchangeably. Denote with By = (0,77)T, where 4 is the estimate of nuisance parameter

part from Algorithm 4.

Assumption 4.3.1 (Consistent Estimation).

Jim P8~ 7l < () = 1, (43.)
Jim PV — vl < ra(n) = 1, (432)

where r1(n),r2(n) = o(1).

Assumption 4.3.2 (Noise Condition).

Jim_ P (H; ;h(Xi,B*)HOO < 7“3(?%)) =1 (43.3)
- 1~y P _
Jim PP <V§[3,°u - ;V [H(Xz,ﬁu)}_l HOO < m(n)) =1 (43.4)

where, by [-| -1 we mean dropping the first column, r3(n),ra(n) = o(1), and B, = vBy + (1-—
v)3*.
Next we show a theorem which gives us an influence function expansion of our test function S.

Theorem 4.3.3. Suppose assumptions (4.3.1), (.3.2), (4.3.3) and (4.3.4) bold in such a way so that

n'2(r1(n)ra(n) + r2(n)rs(n)) = o(1) (435)
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Then under Hy we bave the following influence function expansion:
~ 1 <&
1/2 _1/2 * _ «T et
n'28(By) = n'2S(6%) + 0p(1) = 75 Zl v7Th(XG, 87) + 0p(1)
The proof of this Theorem can be found in Appendix C.1.

Assumption 4.3.4 (CLT).

1
(V*TEV*)

172,172 ZV*Th(Xu B%) ~ N(0,1), (4.3.6)
i=1

where & = Cov h(X, 8%), and it is assumed that v*TEv* > C > 0

Corollary 4.3.5. Assume the same assumptions, as in Theorem 4.3.3, and in addition assume condi-

tion 4.3.4. We have that:

nl/2

»)

(Bo) ~ N(0,1)

This Corollary follows immediately from the influence function representation in Theorem 4.3.3
and thus we omit the proof. It is clear that in practice we cannot use the above as a test statistic since
we do not know the precise values of v* or 3. If a consistent estimate of v Tyv: —52is pro-

vided, the following is an immediate consequence of Slutsky’s theorem:

Proposition 4.3.6. Assume that G2 is any consistent estimator of V1 Sv*. We then have that for

nl/2 5

ﬁn: z S(BO)-'

lim [P*(U, <t)—®(t))| =0.
n—o0
We now provide generic sufficient conditions for constructing such a consistent estimate. Define

=1 Yo h(X, B)®2. A great candidate for an estimate of v*7 £ v* seems to be the “plugin”

)
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nl/2

vy

estimator: 52 = Vv V. Define the statistic: U,, = S(Bo). We are interested in showing

that U, converges weakly to a standard normal distribution. To this end we define the following

assumption:

Assumption 4.3.7 (Variance Consistency). Assume that the following bolds:
lim P*([|2 — 2 |max < 75(n)) = 1,
n—o0

where r5(n) = o(1).

Proposition 4.3.8. Assume the same assumptions as in Corollary 4.3.5 plus Assumption 4.3.7. Fur-
thermore if we assume that || X max = O(1), |V E|sor2(n) = o(1) and ||v*||2r5(n) = o(1),

then for any t € R we bave:

lim [P*(U, < t) — ®(t))| = 0.

n—o0

The proof of Proposition 4.3.8 can be found in Appendix C.1.

Remark 4.3.9. Note that Proposition 4.3.8, justifies testing using the statistic (7“ In other words,

testing based on the following rule:

0, i |Un] < @7Y(1 = a/2),

L, if|Un] > @711 = a/2),

where we reject iff Ty, = 1, has an asymptotic size o under the null.
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4.3.2 UNIFORM WEAK CONVERGENCE UNDER THE NULL

In the previous section we established that if 3* = (0, v*) with «* being held fixed, the output
of Algorithm 4, properly normalized to (,Afn will have the correct size asymptotically. In this Section
we strengthen the assumptions to provide a result which guarantees that the size will be correct uni-

formly over the following parameter space:

Qo ={(0,7) : Ivllo < 57}

We restrict our attention to £2g since we need the parameter v to be sufficiently sparse in or-
der for us to estimate consistently the parameter 3. We now introduce the uniform versions of the
assumptions in the preceding Section. Let 8y = (0, ’yT)T. Of course when 3 € €2 we have

Bo = 3, but this distinction will become more apparent in the next section.

Assumption 4.3.10 (Uniform Consistent Estimation).

lim inf Pg(||B — B < =1 3
Aim | nf 3(]8 = Bl <ri(n)) =1, (437)
nlgﬂgoﬂleng Pa(lv —vlli <r2(n)) =1, (4.3.8)

where ri(n),ro(n) = o(1). Denote the events gf’ = {H,@— Bllh < r(n)}, mdgé’ =
{Iv = vl <ri(n)}

Assumption 4.3.11 (Uniform Noise Condition).

l N lnf ]P) E XZ; < 1 — 1 4.3.9
hnl lnf IP SUP E 4(7,7 /61/ S T4 1 4.3.10
n—)ooﬁeﬂo <I/€[0]] |: )j| -1 HOO (n)> ( )
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where r3(n),r4(n) = o(1) and B, = Vﬁo+(1—u)ﬁo. Denote with g§ = { LS h(X;, Bo)

< 7“4(”)}-

o0

r3<n>} nd G = {supye[o,u

Lot [He A |

o
Assumption 4.3.12 (Uniform CLT).
1 n
i, sup v [P 3o nG) 1) - 000 =0 (aom)
i=1

where 3 = Cov h(X, B), and it is assumed that inf gcq, vIsv>C>o.

Assumption 4.3.13 (Uniform Variance Consistency). Assume there exists an estimator 5> of vIZv,
such that:

lim inf Pg(|6% — vIBv| < —1
Aim inf Pp(lo” —viv|<7(n) =1,

where 7(n) = o(1). Let G? = {[52 —vT'Sv| < r(n)}.

We next formulate a theorem which strengthens Proposition 4.3.6. Its proof can be found in

Appendix C.1.

Theorem 4.3.14. Under Assumptions 4.3.10 — 4.3.13, and the further assume that:

n!2(r1(n)ra(n) + ra(n)rs(n)) = o(1),

1/2 =

Define U, = =L25(0,7). Then we bave:

c

lim sup sup ‘]P),B([/jn <t)—d(t))| =0.
n—oo ﬁeQO t

2

Next we provide a sufficient conditions, so that the plugin estimate 6° = VI3V satisfies as-

sumption 4.3.13.
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Assumption 4.3.15 (Plugin Variance Consistency). Assume that the following holds:

lim inf Pg(||Z -3 <rg(n)) =1
nl—>ngoﬁlenﬂo 5(“ Hmax_re’(n)) ’

where r¢(n) = o(1).
We then have the following:

Theorem 4.3.16. Under Assumptions 4.3.10 — 4.3.12 and 4.3.15, and the further assume that Supgeqy, ||| max =

O(1), supgeq, [V Blloora(n) = o(1) and supgegq, [Virs(n) = o(1):
n'2(ry(n)ra(n) + ra(n)rs(n)) = o(1),

we have:

lim sup sup |[Pg(U, < t) — ®(t))| = 0.
n—oo ﬁEQo t

Theorem 4.3.16 is provided without proof, as it follows from Theorem 4.3.14, upon recognizing

2

that under the sufficient conditions the plugin estimate 52 = v ¥ satisfies Assumption 4.3.13.

The assumptions we consider in this Section are clearly stronger than the corresponding assump-
tions in Section 4.3.1. The reason for strengthening these conditions, is in order to show uniform

convergence in contrast to the weak convergence provided in Proposition 4.3.8.

4.3.3 LocaL PowEer

In this section we analyze the power of the suggested test with respect to a sequence of local alterna-

tives. To this end we define the following parameter space, which is of interest:
Qi (K, ¢) == {(0,7): 0 =Kn %, ||v]lo < s*},

I00



where s* = ||v*||0,and ¢ > 0is a parameter determining how fast the alternative is approaching

the null. Note that intuitively, as ¢ grows it will become harder to distinguish the alternative from

the null. Next we define assumptions in analogue to the one in the previous Section. All events

gf’,z‘ =1,...,baredefined as in Section 4.3.2.

Assumption 4.3.17 (Uniform Consistent Estimation).

lim inf Pg(GP) =1,
n—00 Be (K.6) @)

lim inf Pg(GP) =1,
n—00 BE (K,6) ﬁ( 2)

where ri(n),r2(n) = o(1).

Assumption 4.3.18 (Uniform Noise Condition).

lim inf Pg(GP) =1
n—r00 B (K,0) (G5)

lim inf Pg(GP) =1
n—r00 B (K,0) (G5)

where rz(n),r4(n) = o(1).

Assumption 4.3.19 (Uniform CLT).

1 n
lim su sup |Pg| ———F+—+ vin(X;,B8)<t|—®t)| =0
i [P VI8 <) ~00)

where X = Covh(X, 3), and it is assumed that inf geq, (k.4 v Bv > C > 0.

Assumption 4.3.20 (Uniform Variance Consistency). Assume that the following holds:

lim  inf Pg(GP) =1,
n—00 B (K,0) /3( 5)
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where T(n) = o(1).

Assumption 4.3.21 (Uniform Local Approximation). Assume that the following holds:

lim  inf P S(0,~) — S(0,~) — 6] < =1,
Jim it Ba(vAlS(9.7) - S(0.7) ~ 6] < ro(m)

where r¢(n) = o(1). We denote with gg = {/n|S(0,v) — S(0,~v) — 0] < re(n)}.
We are now in position to formulate a theorem for the local power.

Theorem 4.3.22. Assume that the Assumptions 4.3.17 — 4.3.21 hold and that furthermore we have

n2(r1(n)ra(n) + ro(n)rs(n)) = o(1). Define Uy, as in Theorem 4.3.14. Then we have

lim sup sup ‘Pﬁ(ﬁn <t)-— @(t)' =0, ifp>1/2 (4.3.17)
"0 Be(K.9)

K

lim  sup sup‘IF’ U, <t —<I><t+
plta<?) NTSv

N0 Be (K,p) U

> ‘ =0, fp=1/2 (4.3.18)
and for a fixed t € R and K # 0 we bhave:

lim  sup Pg(|ﬁn| <t)=0, ifp<1/2 (4-3.19)
1T BEM (K 9)

Below we provide a sufficient condition to obtain a consistent estimate of vIyv.

Proposition 4.3.23 (Uniform Plugin Variance Consistency). Assume that the following holds:

. . A_ * < —
Jim g B8 e < () = 1

where r7(n) = o(1). Furthermore, assume thar Assumptions 4.3.17 — 4.3.19 hold, and in addition

we have supgeq || X ||lmax = O(1), supgeq, VT S|scr2(n) = 0(1) and supgeq, |[vI[ir7(n) =
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o(1) and

nY2(ry(n)ry(n) + ro(n)rs(n)) = o(1).
Then 62 = VISV satisfies Assumption 4.3.20.

The proof of Proposition 4.3.23 is similar to the proof of Proposition 4.3.8 and we omit it.

4.3.4 ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

Next we consider, an approach which will allow us to construct confidence intervals for a parameter
of interest — . Note that in general, the estimate 0 of § cannot be expected to be regular, and hence
weak convergence to a normal distribution cannot be guaranteed. We can make usage of a principle
known as a one-step estimator (see Van der Vaart*), to define a modified version of 8 which achieves
asymptotic normality. The intuition behind this estimator is based on a Taylor expansion of the test

statistic, about a “nice” estimator:

2 ~

8(0,79) = 5(0.7) + 5550,7)(0 - 9).

If we could treat S (6,7) as 0 the above expansion would give raise to the following estimator:

~ o~ _1 o~
§=- (556.7) 56.3) (43:20)

The above estimator has the following explicit form (assuming that 6 is located at first position of

the vector 3):

SO n T e
=0 — ZZZI v h(X’UIB) (4321)

S VTH(X, B)a
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Below we formulate several sufficient conditions needed to establish the normality of 6. Let B¢+« =

4"

Assumption 4.3.24 (Noise Condition). Assume that

i P (Hn;hm,ﬁ | <) =1 e
1 — ~
lim P*( sup ||— VI H(X;, 8, H < r4(n ) =1, (4.3.23)
n—o00 <U€[0,1} n ; |: ( )]—1 00 4( )

where r3(n), r4(n) = o(1), and B, = VB + (1-v)B"

Assumption 4.3.25 (Stability). Assume that:

lim P* ( sup ;i@T [H(Xi7ﬁu):|*1 - 1' < 7“5(”)) =1,
i=1

n—oo IJE[O,l]

where r5(n) = o(1), and B, = VB + (1-— V)B@*.
We are now ready to identify the asymprtotic distribution of /2 (60 — 6%).

Proposition 4.3.26. Assume that Assumptions 4.3.1, 4.3.4, 4.3.24 and 4.3.25 hold. Assume further-
more thar n*/?(r1(n)ry(n) + ro(n)rsz(n)) = o(1) and n1/2]§— 0*|r5(n) = op(1). Then we

have:

nl/2

WTEv

The proof of the Proposition can be found in Appendix C.1.

(0 — 6°) ~ N(0,1)

Remark 4.3.27. As it becomes evident from Corollary 4.3.5 and Proposition 4.3.26 the asymptotic
distributions of the suggested test and the test based on the one-step estimator are asymprotically equiv-

alent.
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Remark 4.3.28. Observe that in cases when the estimating equation comes from a log-likelibood, i.e.

h = %, under regularity conditions we have v*1 Sv* = (371) 11, since in this case the expected
information equals —EH(X , 8*) = Covh(X, 8%). In such situations the score equations lead to
efficient estimators”, and the variance (2_1)11 coincides with the optimal one, hence our estimator

is optimal.

Remark 4.3.29. Assuming that there exists a consistent estimator 52 for v TSV, it is evident that

we can construct ov-level confidence intervals of 0* of the form 0+ 0 11— a/2)5/yn.

4.3.5 SIMPLIFICATIONS FOR LINEAR ESTIMATING EQUATIONS

In the remaining of this section, we construct Z estimators, based on estimating equations with
h(X,8) = Ay(X)B — By(X), where A, : RY + R and B, : R? — R? are some
deterministic functions.

Assuming that (EA, (X)) ! exists that the true parameter 3 is defined through:
B" = (EA)(X)) " (EBy(X)),

in this linear case. The last assumption is equivalent to assuming uniqueness of 3* when the param-

eter space © = R% Moreover in this framework v*7 = (EA4, (X)),
Note that one of the significant simplifications in the linear case is that the function H(X, 3) =

Ap(X), and hence does not depend on the parameter . One immediate implication of this fact is

that conditions (4.3.4), (4.3.23) (4.3.10) and (4.3.14) reduce to corresponding assumptions on \". In

particular (4.3.4) and (4.3.23) can equivalently be expressed as \' = O(r4(n)), (4.3.10) can be stated

assupgeq, A = O(r4(n)) and (4.3.14) is equivalent to supgeq, (k,p) ' = O(r4(n)).
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Furthermore, in Assumption 4.3.25, we have:
1 n
- ZGTAb(Xi)*l — 1| <X,
=1

and thus we can express this assumption as A’ = O(75(n)). Furthermore, note that in the proof of
Proposition 4.3.26, the term I; = 0, and hence the condition n1/2|§ — 0*|r5(n) = op(1) is not

necessary in the linear case.

4.4 DANTZIG SELECTOR

In this section we will consider an application of the theory developed in Section 4.3 to the linear

model. Assume that we have n iid draws from the usual linear regression model with:

y=XTp"+e=X 10"+ XT\v" +¢

where €, is a random variable with E(¢) = 0and Var(e) > C. > 0. We assume that ¢ is sub-
Gaussian, with |||, = K. Note that the last implies that Var(e) < 2K2. We further assume that
each of the coordinates of the vectors X are sampled from a sub-Gaussian distribution, or in other
words we are assuming that Kx = supjeq1,.. a4y | X7 ||y, < oco. Note that throughout we will
consider K x as a fixed constant regardless of the increasing dimension d. Furthermore we are as-
suming that X is sampled independently of the error €. In addition we denote the second moment
matrix of X with £ x = EX®2 and assume that ¥ x > &, where § > 0 is a fixed constant re-
gardless of the increasing dimension d. As before we observe 7 iid samples from the linear regression
(Y;, X;)",. Assuming that 8 = (6, ), we are concerned with testing whether the first compo-

nent of B3 is zero, i.e. we are concerned with testing Hy : 00 = 0vs Hy : 6 # 0.

As mentioned in Section 4.3.5, the true parameter 3* clearly solves the d equations: E(h((y, X), 3))
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0O whenh((y, X),8) = X(XTB — y). In other words we have 4;((y, X)) = X®2and

~

By((y, X)) = yX. Thus in the linear regression case, S(3) reduces to

5(8)= - T X(XT B - V),

i=1

where

< \.

vV = argmin ||v||; s.t

1 n
— Z VTXZ-®2 —e
i

Recall that the population version v* is defined through equation (4.2.3), which in this case re-

max

duces to:

1T
vi=3Xye'.

It is essential for our test statistic to produce asymptotically normal results, that the vectors v*
and B are sparse. Denote with s and sy, the sparsities of the vectors 3* and v* correspondingly.
Next we proceed to formulate a theorem on the asymptotic normality of n!/25(3) under the null

hypothesis § = 0.

Theorem 4.4.1. Assume that the noise distribution is sub-Gaussian, the covariate distribution is sub-
Gaussian with o norms as specified above. Furthermore, assume that the smallest eigenvalue of the
second moment matrix Apin(Xx) > 6 > 0 bounded away from 0. Let ||3*||o = s and

IV*[lo = Sv. Under the assumption that max(sy, s)||[v*||1 h\)gfd 0(1), and large enough tuning

parameters with X < 4/ % and N = ||v*||1 10g , we have the following asymptotic influence

[function expansion of the test statistic:
n'/25(0,7) 1/2 ZV*TX Iy = Vi) +0,(1).
Remark 4.4.2. Note here that it is implied that ' = o(1) and bence since |v*||1 > 2K5> it
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Jollows that \ = o(1) as well.

Remark 4.4.3. Observe that |V*||1 < /sv||[V*|l2 < /Sv0, as we verify in Remark 4.4.4. This
yields sufficient conditions by substituting |V*||1 with \/Sy. We note moreover, that under the as-
sumption that v*T X is sub-Gaussian, we can further relax the requirements on sparsity sy dimen-

sion d and number of observations n.

The proof of this Theorem can be found in Appendix C.2, as the rest of the proofs from this

Section. Denote with A := v*T' X xv* Var(e).

Remark 4.4.4. We note that A > (2;(1)1168 > (Ex,n)_lca > 2%2 > 0. Furthermore
X

observe that (£3 )11 = VTS xv* > 6||v¥|3 > 6(E% ). Hence A < 2K257L,
Next we have the following:

Corollary 4.4.5. Under the same assumptions as Theorem 4.4.1, and the additional assumptions

3/2
Sv/

iz = o(1), we have that:

nl/2
VA

In order for the test we developed above to be applicable in practice, we further need to find con-

5(0,7) ~ N(0,1).

sistent estimators for A. The proposition below provides us with a consistent estimator of A, and

thus enables testing in practical settings.

Proposition 4.4.6. Let

n

Z (V' X;)? Zm - X/ By

=1 7,':]_

[>>
3\*—‘

Under the assumptions of Theorem 4.4.1, and the following additional assumption:

log d
V24 =2

= o(1),
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we have that:

31 —p A.

Remark 4.4.7. Let Ay = Vyn~! Yo (Y — XZTB\)2 Under the assumptions of Theorem 4.4.1, we

have A1 —), A.
We furthermore suggest an alternative plug-in estimator in the following:

Proposition 4.4.8. Under the assumptions of Theorem 4.4.1, and the following additional assump-

tions:

logd
8= log(nd) [v* [ = o(1),

o log(nd)
bvn

vl

= o(1),

we have that:

A== "X;(X]B-Y))* =, A
i=1

S|

Remark 4.4.9. Note that the assumption of the estimator in Proposition 4.4.8 are slightly stronger

than the assumptions in Proposition 4.4.6 which in turn are stronger than the ones in Remark 4.4.7.

The last propositions suggest two estimates which satisfy the condition in Proposition 4.3.6, and
thus the two statistics based on them will provide results with correct size under the null distribu-

tion. Hence we can state the following:

Theorem 4.4.10. Assume all assumptions in Corollary 4.4.5, and construct estimates of A — 31,

82 and 33 based on Proposition 4.4.6, Remark 4.4.7 or Proposition 4.4.8 under their corresponding

"y . . T 1250 & .
conditions. Then the statistics Uy, = "—5 (0,7) satisfy:

lim [P*(U: <t)—®(t))] =0, i=1,2,3.

n—o0
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Remark .4.11. In fact, carefully inspecting the proof of Theorem 4.4.10, shows that the uniform as-
sumptions from Section 4.3.2 are satisfied, and bence under the same assumptions as in Theorem

4.4.10, we bave:

lim sup sup |IP’,3(I/]\,’1 <t)—®(t)]| =0, i=1,2,3,
n—)OOl@eQO t

where Qg = {(O,’yT)T Slvllo < s}

Finally to conclude this section we present a result on the local power of the proposed test. Recall

the definition of the parameters space:
(K, ¢) ={(0,7")":0=EKn"? |lv]o < s}

Theorem 4.4.12. Under the same assumptions as in Theorem 4.4.10, and Kn=?||v*||1sy+/log(d) =

o(1), we bave that fori = 1,2, 3:

lim  sup sup‘[[’)g( flgt)—q)(t)‘:O, ifp > 1/2,

N0 Be (K,p) U
lim sup sup P@(ffé <t)—o
N0 Be (K,9) t

/N

K
t+— | =0, ifp=1/2,
T5)|Foe=y
and for a fixed t € R and K # 0 we have:
lim  sup Pg(|UL <t)=0, ifp < 1/2.
0 Be(K,9)

The proofs of Theorem 4.4.12 can be found in Appendix C..
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4.4.1 ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

Following Section 4.3.4 it’s easy to see that the one-step estimate in Section 4.3.4, the Dantzig selec-

tor case takes the following form:

F_g. TV X(XTB-Y)

0 4.
ST X Xy (4.4.1)

We proceed to identify the asymptotic distribution of /2 (6 — 6%).

Corollary 4.4.13. Assume the same assumptions as in Corollary 4.4.5. We then have:

@(5— 6*) ~ N(0,1)

VA

Proof. Using Proposition 4.3.26 it is sufficient to prove that \' = 0,(1). However as we argued in

Lemma C.2.5, we can select \' = C'||v* |1 % =

o(1), for alarge enough C, and this finishes the
proof. O

Remark 4.4.14. As it becomes evident from Corollaries 4.4.5 and 4.4.13 the asymptotic distributions of
our proposed test and the one-step estimator based test are asymptotically equivalent. As mentioned in
Remark 4.3.28 this estimator is also optimal. Moreover in this case this also implies that the estimator

is semi-parametrically efficient®.

Remark 4.4.15. Clearly we can use the plugin estimators suggested in Proposition 4.4.6, Remark 4.4.7
and Proposition 4.4.8, to construct confidence intervals, or test the parameter using the one-step esti-

mator approach suggested above.
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4.5 EDGE TESTING IN GRAPHICAL MODELS

There are many existing procedures for graphical models such as the neighboring pursuit®*, graphi-
cal LASSO?»%, graphical Dantzig Selector** and CLIME® among others. The majority of the liter-
ature focuses on estimation rather than inference with a few recent exceptions e.g.*. In this section

we consider applications of our general procedures described in Sections 4.2 and 4.3 to Graphical

Modeling and inverse covariance estimation.

4.5a1 CLIME

We first turn our attention to the CLIME estimator, suggested in the paper by Cai et al. ®. We briefly
recall the setup here. Assume that X1, ..., X, are iid copies of X with E(X) = 0and Cov(X) =
¥ x. Denote Q* = (Xx) ~1, When X are coming from a Gaussian distribution the matrix £2*
encodes the conditional independence structure of the Gaussian graphical model, i.e. an edge is
present between nodes j and k iff X7 1 X*| X —{9k} which is equivalent to 27, = 0. See for
example’® where this fact is shown in a more general setting. This motivates the need for estimation
of Q*. Let X3, = % D oic1 )(Z-®2 be the sample covariance of X1, ..., X,. The CLIME estimator of

O is given by:

~

Q = argmin || Q|1, st || L2 — Lj|lmax < A (4.5.1)

In this section we are interested in testing whether a precision matrix element £27,, = 0. In the case
when X; are coming form a Gaussian distribution this test translates to a test of whether there is an

edge between nodes 1 and m in the conditional independence graph. Let 3* := €, , be the m™
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column of £2*. Then, the CLIME reduces to

ﬁ: argmin || 3|1, st ||X2,3 —eplloe < A

Note that here e, is a column vector. In other words, if we phrase this problem in the terminology
of Section 4.3.5, we have A4,(X) = X®2,and By(X) = el,. According to the formulation of our

test statistic, we have:

S(B) =vI(z.8 —el),

where

v = argmin |v]|1, st [vIE, — e1lse < N.

Remark 4.5.1. Notice here that due to the apparent symmetry, it suffices to simply solve the CLIME
optimization (4.5.1) once in order for us to perform inference, as B = Qup and v = Q,1, provided

that X\ and N can be selected to be the same.

Similarly to the Dantzig Selector case, we assume that the coordinates of the covariates have sub-
Gaussian distributions with sup; | X?||y4, < Kx,and furthermore that the m™ column of Q* is
B* with ||3*||o = s. Denote the 1** column of Q* with v* and assume that ||[v*||o = sy. Below we

provide an influence function expansion, similar to the one in the Dantzig Selector case:

Theorem 4.5.2. Assume that the covariate distribution is sub-Gaussian, with 1o norms as speci-
fied in the Dantzig selector case. Furthermore, assume that the smallest eigenvalue of the covariance
matrix Amin(Ex) > 6 > 0 bounded away from 0. Denote with s and s the sparsities of

the vecrors B3* (B] = 0 = 0, B, = ~*)and v* correspondingly. Under the assumption that

log

max(sy, s)||[v*|1]|8*|1 \/ﬁd = 0(1), and large enongh tuning parameters with \ < ||3*|| 1,/ 224

n

and N =< ||[v*||14/ 105 4 we have the Sfollowing asymptotic influence function expansion of the test
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statistic:

an = 1 * g *
W 25(0.5) = S (Z X!y - ﬁ) +op(1)
=1

Remark 4.5.3. Note bere that the quantities \ and ' are gnaranteed to be o(1), since ||v*|; >
(23(1)11 > (EX,ll)_l > (2K§()_1 > 0, andsimilarly Hﬂ*Hl > (ZX711)_1.
The proof of Theorem 4.5.2 can be found in Appendix C.3.1. Next we provide a weak conver-

gence result, whose proof is also deferred to Appendix C.3.1.

Corollary 4.5.4. Under the same assumptions as in Theorem 4.5.2, (svs)'2 o(1) and the follow-

nl/2
ing assumption on the X distribution:
Var(v*T X ®23*)
" " > tmin > 0, (4.5.2)
18+ 11311v*]I3 -

we have

TLI/2 I =~ *T 5w R2 g%

75(077) e N(O7 1)7 A= Var(v X 16 ) (4-5'3)

VA
Note. B* = (0,v*1)T.

Remark 4.5.5. Here we discuss the variance assumption (4.5.2), in the case when X ~ N(0,3). By

Isserlis’ theorem, for any two vectors § and 0 we have:

Var(¢" X#20) = (£7¢)(6"20) + (¢7'26)°

> Xin(D)IIEN310113,

which clearly implies (4.5.2). Furthermore, we note that in our setting assumption (4.5.2) is equivalent
to Var(vT X®23%) > Viyin > 0, as we know from Remark 4.4.4 |[v*||2, ||B* |2 < 6L and

IVl = [viy| > (2K%) ™ and similarly |32 > (2K%) 7"
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Obviously, there are two intuitive plugin type of estimators for the variance A, as defined in
N, . 1y (ST w®2 212 AN, — 1y (5Tw®23 _ STATH2
(4.53) — Ay == 3 30 (VX — En)B) and Ay = 30, (VI X778 — Vie,)7,
where we recall that e is a row unit vector. Next we show both estimators are consistent under

certain conditions, starting with the former one.

Proposition 4.5.6. Under the assumptions from Theorem 4.5.2, and the following additional as-

sumptions:

logd
n

max (s |[v*{|1, s[|B[[)[Iv*][]87[l1 log(nd) = o(1),

Var |:(V*TX®2,8*)2] = o(n),

we have that the plugin estimator 31 is consistent for A, as defined in (4.5.3).

Remark 4.5.7. The alternative estimator Ay is also consistent, under same assumptions as in Proposi-

tion 4.5.0.

Remark 4.5.8. The variance condition in Proposition 4.5.6 is trivially satisfied if the variance is finite.

Note that by Cauchy-Schwartz this is true if:
E(v7TX)® <00, E(B7TX)" < oo,

which is in turn trivially satisfied if v*T X and B*1 X are sub-Gaussian, and is obvious in the case

when X is multivariate normal.

The proofs of Proposition 4.5.6 and Remark 4.5.7 are provided in Appendix C.3.1. Proposition
4.5.6 and Remark 4.5.7 suggest estimates 31 and 32 satisfy the condition in Proposition 4.3.6, and
hence the two statistics based on them will provide results with correct size under the null distribu-

tion. Hence we can state the following:
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Theorem 4.5.9. Assume all assumptions in Corollary 4.5.4, and construct estimates of A — 31 and

32 based on Propositions 4.5.6 and Remark 4.5.7 under their corresponding conditions. Then the

. . TF 2 G/n &~ .
statistics U}, = g (0,7) satisfy:
VA

lim [P*(U. <t)—®(t)| =0, i=1,2.

n—oo

Proof of Theorem 4.5.9. The proof of this theorem follows from the previous statements in this

Section showing that the conditions of Proposition 4.3.6 are satisfied. O

Next we proceed to formulate a uniform weak convergence result. To this end for a fixed M >

0 > 0, define the following parameter space of covariance matrices:

So(L8) = {8:8 = 57,0 <5 < 2, [Sfmae < M, Dy = 0,21 < L max [S51o < 5},
(2
Remark 4.5.10. Observe that for a matrix X € So(L, ) we have max; |2 |2 < 67, since:

(=D =35"E3E > 25130 > (5770,

0

IF(Z7Y2 = 0 in the above inequality, trivially we have | |2 = 0. Otherwise, it follows
\|2;i1 llo < 6L, Moreover (E;(l)ii > M~ as we argued in Remark 4.4.4, and hence by Cauchy-

Schwartz L < \/s61. Also obviously M < Ls.
We have the following theorem in terms of uniform convergence:

Theorem y.5.u. Let X belong to a sub-Gaussian distribution with sup; || X ||y, < Kx, for some

(M/2)Y? < Kx < 00 and Cov(X) = Bx € So(L,s). Let @ = (X x) ™" and denote with
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B = Qum, and v = Q1. We assume the following moment conditions on the X distribution:
Var(vI X®28) > Vipin > 0,  Var((v? X®?8)?) < Vipax < 00. (4.5-4)

Then under the following conditions:

3
st B — o), o2\ bognd) —o(1), o =oll) (a9

we have:

lim  sup sup \]P’;;(A,i <t)—®(t) =0,i=1,2.
N0 B xeSo(L,s) t

Remark 4.5.12. Note that the sub-Gaussian assumption on X implies that ||E||max < 2K%, bence

the requirement on K x with respect to M.

Next we formulate a result on the local power. Similarly to above we construct the following

parameter space:
Si(K, ¢, L,s) ={2: 2 =2",0 <6 < ||Zlmax < M, Z1pn = Kn~?, |71 < L, max [|Z;|o < s}.
1

We then have the following:

Theorem 4.5.3. Let X belong to a sub-Gaussian distribution with sup; | X ||y, < Kx, for some
(M/2)Y? < Kx < oo andCov(X) = Bx € S1(K, ¢, L, s). Furthermore assume that

the moment conditions (4.5.4). Under the assumption max(1, Ms)K Ln=%\/logd = o(1), and
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assumptions (4.5.5 ), we bave that fori = 1, 2:

lim sup sup ‘Pg(ﬁﬁ <t)-— @(t)‘ =0, ifp >1/2,
NS xeSI(K ¢,Lys)

g K
lim sup sup’IP’ (Uﬁgt)—@(t—i—)‘zo,igt:l/l
N0 5w eS1(K,b,L,s) t g VA 7

and for a fixed t € R and K # 0 we have:

lim sup IP,@(|(7,’1| <t)=0, if¢p<1/2.
N0 % x €851(K,4,L,5)

The proof of this theorem is left to appendix C.3.1.

ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

Following Section 4.3.4, we can define the one-step estimator as (assuming WLOG j = 1):

0—0— i’\T(EHB\_ e%)
VI im XiXia/n

Next we show the following:

Corollary 4.5.14. Under the assumptions of Corollary 4.5.4, we bave:

Lnl/Q n_ px ~
20— 0%) = N(O.1)

where A is defined as in (4.5.3).

Proof. This simply follows from Proposition 4.3.26, upon noting that X' < ||[v*||;

o(1).

n
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Remark 4.5.15. As it becomes evident from Corollaries 4.5.4 and 4.5.14 the asymptotic distributions of

the suggested test and the one-step estimator test (based on 0) are asymptotically equivalent.

Remark 4.5.16. Clearly we can use the plugin estimator suggested in Proposition 4.5.6, to construct

confidence intervals, or test the parameter using the one-step estimator approach suggested above.

4.5.2 TRANSELLIPTICAL GRAPHICAL MoODELS wiTH CLIME

In this subsection we consider a related framework to the CLIME example above, namely we con-
sider the transelliptical graphical models (TGM), proposed by Liu et al. **. We recall several defini-

tions before we proceed.

Definition 4.5.17 (elliptical distribution Fang etal. ). Let pn € R? and = € R We say that the
d-dimesnional vector X has an elliptical distribution, and we denote it with X ~ ECq(p, 3, §)
if X 4 p + EAU, where U is a random vector uniformly distributed on the unit sphere in RY,
§ > 0 is a scalar random variable independent of U, A € RI%4 s 4 deterministic matrix such that

AAT = 3.

Definition 4.5.18 (transelliptical distribution Liu et al. **). We call the continuous random vector
X = (XY, .., XYT vanselliptically distributed, and we denote it with X ~ TEy(2,&; f1,. .., fa),
if there exists a set of monotone univariate functions f1,. .., fq and a non-negative random variable

& withP(§ = 0) = 0, such that:
(fl(Xl)7 s 7fd(Xd))T ~ ECd(O, 275)7

where 3 is symmetric with diag(2) = 1 and 3 > 0 in a positive-definite sense. Here X is called

the “latent generalized correlation matrix”.
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It is worth mentioning that the family of transelliptical distributions (TD) is a broad family of
distributions, subsuming the family of nonparanormal distributions e.g., the definition of which
can be found in Liu et al. %",

The graphical structure in TGMs can then be defined through the notion of the “latent gener-
alized concentration matrix” — € = 37! ie. an edge is present between two variables X . &
ift €23, # 0. Such a construction extends, classical results from the Gaussian graphical models (for
more details see Lemma 3.2 and Lemma 3.3 in Liu et al. %),

To construct an estimate of €2, Liu et al. > suggest estimating the correlation matrix 3 first. This
can be done by using a non-parametric estimate of the correlation such as Kendall’s tau statistic, and

transforming it back, to obtain an estimate of 3.

Assume again that X1, . .., X, are iid copies of X . Kendalls tau statistic is a matrix whose jk™
element is:
~ 2 : j i xk k
= o) D S ((x? - xo)(xt - x5)).
1<i<i’'<n

To get an estimate of the correlation matrix we then transform the 7. Note that it is clear from the

definition of 7j, that it is an unbiased estimator of:
e = B((Y7 ~ ¥I)(YE ¥4 > 0) - (Y7 - ¥ (¥F - ¥ <0)

where Y, Y’ ~ X are iid random variables. Define:

It can be seen that :S'\;'k consistently estimates 3 (see Theorem 4.5.19 below). Let Q* = 371, The
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TGM estimator with CLIME is given by:

Q = argmin || Q)1, st |72 — Lj|lmax < .

To test whether the element of the matrix 27,, = 0, we can apply the same approach as in CLIME.

Denote with 3 = €2,,,,. Then, the CLIME with TGM reduces to
B = argmin B2, st 1578 — e [loo < A
According to our formulation of the test statistic we have:
S(B) =v"(5"B—e),

where

v = argmin ||v])1, st [v78" —ejfo < V.

We note that the structure in the TGM with CLIME is slightly different than the one we suggested
in Section 4.3.5, due to the U-statistic structure of S” as compared to estimating equations before
which had iid structure. Nevertheless, we can still show that the asymptotic theory goes through in
this case.

We will show the normality of the our test statistic in this setting below. Note that we can no
longer use the lemmas from the CLIME case, as the estimator of 3 is constructed in a completely
different manner. Furthermore, the vector X, coming from a nonparanormal family need not be
sub-Gaussian. Fortunately enough, Liu et al. " provide a theorem stated below, with the help of

which we can show the normality:

121



Theorem 4.5.19 (Liu 2012). For any n > 1 with probability at least 1 — 1/d, we have

~ logd
[S7 — Xllmax < 2.457 i . (4:57)

While this theorem is defined within the framework of nonparanormal models, the proof doesn’t
utilize the fact that the family is nonparanormal, and thus extends to the transelliptical case. As we
can see from the theorem, the rate of Kendall’s tau estimate (4.5.7), is no different than the one using
the sample covariance matrix, provided in Lemma C.2.2.

We are now in position to formulate the influence function expansion of the test statistic in the

TGM with CLIME:

Theorem 4.5.20. Assume the covariate distribution follows a nonparanormal model with a function
[ and correlation matrix 3. Furthermore, assume that the smallest eigenvalue of the correlation
matrix satisfies Ain(3) > 6 > 0 s bounded away from o, and diag(¥) = 1. Ler ||3*||o = s

and ||[v*||o = Sy . Under the assumption tbatmax(sv,s)Hv*HlHB*Hl% = o(1), and large

logd

n 2

enough tuning parameters with X < ||3*(|1 % and N = ||[v¥||; we have the following

asymprotic influence function expansion of the test statistic:
n'25(0,7) = n'/2v*T (§Tﬂ* - e%) +0p(1)

Note. B* = (0,v*T)T, with the 0 being on the 1% place.

Proof. The proof is identical to the one for the CLIME, up to usages of Lemma C.3.6 instead of

Lemma C.2.5 and thus we omit it. ]

Next we formulate a theorem akin to Corollary 4.5.4. The proof of this theorem is technical and

we defer it to Appendix C.3.2. The proof relies on the Héjek projection approach and Hoeftding’s
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U-statistic inequality, and is different in spirit to Corollary 4.3.5, as the U-statistic structure no

longer allows the simple iid decomposition, which we had before.

Theorem 4.5.21. Assume the same assumptions as in Theorem 4.5.20, and furthermore, assume that

(vl _ (1), Y2184 _ 1) und thar:

ni/2 ni/2

Var(v7'08%) = tmin| [V (BIIB*(3,  tmin >0
where © is a d X d random matrix with entries © jj, = T cOS (%Tjk) Tj};, where:

= [P(Y7 - Y)Y —Y™") > 0]Y) - P(Y7 - Y)Y - Y™) <0]Y) - ml,

with Y, Y are iid copies of ~ X (and all Tj}; being a random variable depending on'Y" ).

Then we have that:

1/2
%S(O, ) ~ N(0,1), where A = Var(v*T03*). (4.5.8)

Remark 4.5.22. As in the CLIME case, we can show that the condition Var(vT O8*) > tmin||v*||3]18%(13

is equivalent to Var(V*T@,B*) > Vinin.

Next we turn our attention to consistent estimation of A as defined in (4.5.8). To this end define

the following matrices — o'

" 1 . j j k k ~
= S st (X7 - XI)(XE - X))~ 7
i
o~ PN i
i = T Cos (E’Tj ) Tk

Note that @; ;. is symmetric by definition. Define the estimator A = % > (VTO!B)?. We have
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the following:

Proposition 4.5.23. Under the same assumptions as in Theorem 4.5.21, and the additional assump-

tions:

N . log(nd
v z18* 12y 280 — o),

n

logd

= o(1),

Var((v©8*)%) = o(n),

Iv*[118* (I max(sy, 5)

we have that A —p A

Remark 4.5.24. As we saw before ||v*||2, |3*|l2 < 1. Since the elements of © are bounded by

21 we have VT OB*| < 672, /sys2m. Hence a sufficient condition for the variance condition is

(svs)

= 0(1). Note that this bas already been assumed.

nl/2 5

Let ﬁn = ﬁs (0,7%). Combining the results from Proposition 4.5.23 and Theorem 4.5.9, we

get the following:

Theorem 4.5.25. Assume all assumptions in Proposition 4.5.23 and Theorem 4.5.9. Then the statistic

nl/2 5

U, = \/ES(O,'?) satisfies:

lim |P*(U, <t)— ®(t))| =0.

n—o0

Furthermore, similarly to the CLIME section above, we can show the following two results uni-

form weak convergence and local power. Before that we define two classes of correlation matrices, in
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analogy to the CLIME case:

So(L,s) ={2: 2 =%T0<6 <, diag(E) =1, T, = 0, [ =71 < L, max [|E;|o < s},
7

Si(K,¢,L,s) ={2: =37 0< 6<%, diag(X) = 1,81, = Kn ™%, |71 < L,max | o < s}
(2

Theorem 4.5.26. Let X ~ TE4(p,X,€) with¥® € go(L, s). where © is defined in Theorem

4.5.21. Assume furthermore that X satisfies the following moment conditions:

Var(vT@B) > Vinin > 0, Var((VT@/6>2) < Vinax < 09, (4-5:9)
and
Y2 = o(1), slog(d)n™? = o(1), sL?log(d)n"'/? = 0(1), (4.5.10)
L log(nd) =o(1), Ls logd _ o(1), (4.5.11)
n n
we have:

lim  sup sup|Pg(U, <t)— ®(t)| = 0.
"7 meSo(L,s)

The result on local power is formulated below.

Theorem 4.5.27. Assume the same assumptions as in Theorem 4.5.26 and in addition sK Ln=%\/logd =

o(1). Then we have:

lim sup sup ‘Pg(ﬁn <t)-— @(t)‘ =0, ifp > 1/2,
n—oo =~ t
Y x€S1(K,¢,L,s)

lim sup sup ‘Pg(ﬁn <t)— o
oo S x eS8 (K,¢,L,s) ¢

7N\

t+\§%)‘=0, iFp=1/2,
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and for a fixed t € R and K # 0 we have:

lim sup  Pa(|Un] <t) =0, ifp < 1/2.
oo S x €81 (K,¢,L,s)

ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

Analogously to the CLIME case (4.5.6), we have the following one step estimator on the TGM with
CLIME case:
V(578 —el)

g=0— —2F _"m/ 4.5.12

where S7; is the first column (the one corresponding to the position of § in 3*) of 7. We next

show an equivalent result to Corollary 4.5.14 in this case:

Corollary 4.5.28. We have that:

nl/2
ﬁ(e —0") ~ N(0,1), (4-5.13)

where A is defined as in (4.5.8).
Proof. The proof is identical to the proof of Corollary 4.5.14, so we omit it. O

Remark 4.5.29. Under the assumptions of Theorem 4.5.25 one can use A in the place of A to con-
struct confidence interval in practice, and the weak convergence described in Corollary 4.5.28 still

bolds.
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4.6 SPARSE LDA wiTH THE LDP ALGORITHM

Another example we consider in this section, is the direct estimation for sparse LDA suggested in
Cai and Liu ™. We briefly review the problem setup below. Let X and Y are d-dimensional random
vectors, coming from the same distribution centered at different means — g1 and po correspond-
ingly, but sharing the same covariance matrix — 3. We are interested in classifying observations in
population 1 or population 2. This setup has been studied extensively in the low dimensional situa-
tion. It is well known (e.g. see Mardia et al.”” Theorem 11.2.1) that, in the case when the distribution
is a multivariate normal distribution and ge1, 42, 3 are known, and we are drawing a new observa-
tion with equal prior probability from population 1 or 2, then the Bayes classification rule for a new

observation Z, takes the form:

$(2) = 1((Z — )25 > 0),

where pt = (1 + p2)/2,8 = (1 — p2) and @ = X1, The classification rule ¢ classifies the
observation Z in population 1iff (Z) = 1.

Clearly in practice one would never expect to know 41, pe2 or €2, and this renders the need for
estimates of these quantities in order for the classification rule to be useful. Let us observe 11 and ng
samples from population 1 and population 2 correspondingly — X1, ..., X, and Y7,...,Y,,.

1 1

Define the sample means X =1 2?211 X;andY = L 2?221 Y, and the sample covariances

ni na
Sx = nil S (X — X)®?and Sy = n% >2.(Y; — Y)®2. Furthermore let s, =
%E x + %Ey.
In the high-dimensional setting with d >> n, estimates of £ can be unstable, given the fact

that the sample covariance is not invertible. Noting that the classification rule solely depends on

B* = 9, Cai and Liu"™ suggest estimating the product of the two directly, rather than having to
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estimate both of them separately. Their estimated classification rule can be summarized along the

following lines:

WZ)=1(Z - (X -Y)/2)TB > 0), where

B = argmin{[|B]l1 : |8 — (X — V)|l < A} (4.6.1)
BERA

In their paper Cai and Liu™, study the properties of the classification rule ¢)(Z). Below we are inter-
ested in testing whether a certain entry of the parameter 3% is 0.

Define v as the solution:
v = argmin ||v|)1, st VI, — el < N.

with e being a unit row vector with 1 at the position corresponding to the entry in 3 we are testing.

Define the projected test statistic in the following manner:
8(8) =v1(Zu8— (X -Y)).

Without loss of generality assume that we are interested in testing whether B*! = 6 = 0. Construct

the test statistic S (0,4), where B = ({/9\, AT . We will assume that:

X=wm+U,
Y =wm+U,
where U = (U?,...,U%)T is a d-dimensional random vector, coming from a zero centered sub-

Gaussian distribution as defined in the Dantzig selector section, with sup; ||U"||y, = Ky, with
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covariance matrix 3. We can then represent the data of the two populations as X; = pq1 + Uy, i =
1,...,n1andY; = po + Ujyy,,7 = 1,...,n2. Armed with this notation, we proceed to
formulate the influence function expansion for sparse LDA.

We can see again, as in Section 4.5.2, that due to the special structure of the Sparse LDA estima-
tor, it doesn’t quite fall into the framework of Theorem 4.3.3. However, since the difference is only
through adding two means — X and Y, we can still can handle the asymptotics, as we demonstrate

below.

Theorem 4.6.1. Assume that A\yin(X) > & > 0, and that the two populations are coming from
the same but shifted sub-Gaussian distribution as specified above. We further assume that the samples
[from the two populations are of comparable size n1 <X no X n. Denote with s and sy the sparsities

of the vectors (3* and v* correspondingly. Under the assumption that max(sy, s)||v*||1(||8*[1 V

1)1(\)%1 = 0(1), and large enongh tuning parameters with X\ < (||3*(|1 V 1) logd g N =

n

Iv*]l1 losd, we have the following asymptotic influence function expansion of the test statistic:
n'/25(0,7) = ﬁzn: UP2B* — (1 — o) + | —1(i < ny) — —1(i > ny)| U; | +o,(1)
Y = /2 < 1 i M1 — K2 " S 9 1 i p(l).
1=

Remark 4.6.2. As before we have that v* > 2K, and hence we are guaranteed to have max(sy, s)(||8*(|1V

1)1055 = o(1).

The proof of Theorem 4.6.1 can be found in Appendix C.4. Akin to the CLIME case we next

discuss the following corollary:

Corollary 4.6.3. Assume the same assumptions as in Theorem 4.6.1, and in addition assume that
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there exists 0 < o < 1 such tharny — na = o(1), and:

V1 V2

agfar(v*TU@,B* +a 'vTU) + (1 - a) Var(vTU®?8* — (1 — o) v7TU)

> Vauin (1B 131v7113 + [v7]13) > 0. (4.62)

Furthermore ler (s;ﬁ# = o(1). Then we have:

1/2
%S(Oﬁ) — N(0,1), A=aVi+(1-a)Vh (4.63)

Remark 4.6.4. Note that a sufficient condition for (4.6.2) to hold is condition (3.5.2) to hold. To see

this first note that:
Vi + (1 — a)Va = Var(vTU®?*B*) + o« 'E(vTU)? + (1 — o) 'E(VTU)%
Since we are assuming thar v:TEUS*v* > §||v*||3, we bave:
aVi + (1 — a)Va > Var(vTU®?8*) + §(a L + (1 — o) 1) ||v*|)3.

Therefore if condition (4.5.2) holds with a constant V.. we bave:

min

aVi + (1= a)Ve = min(Viggn, 8(a™" + (1= ) 7)) (B BIv*(I3 + [v*[13)-

As we saw in Remark 4.5.5, this implies that (4.6.2) holds for a multivariate normal distribution.

Moreover, also showed that A > §(a™! + (1 — o) )||v¥||3 > d(a™ + (1 — a)"H4K;* > 0.
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Below we propose an estimator of the variance A. Define:

n “ ni
=1
S el S (2ern)
— v — —V -
n. 2 !
1=n1+1 i=ni1+1

Proposition 4.6.5. Under the same conditions as in Corollary 4.6.3, and the following additional

assumptions:

lisr = pal3 1V [1sv A" = o(1),
Nyl VI8l (A + llr = pr2loo) Jog(nd) 1 — pallee = o(1),
[v* (11 log(nd)sA[IB*[[1(L + svA') = o(1),

18%[ (k1 = pr2llo + A) N (V/1og(nd) + || lloc + | 12ll0c) = o(1),
Var((vTU)?) = o(n), Var(vTU®?8*) = o(n),

we bave that A —p A
Let l{jn = %g (0,%). Combining the results from Proposition 4.6.5 and Theorem 4.6.1, we get
A
the following for a fixed ¢ € R:

Theorem 4.6.6. Assume all assumptions in Proposition 4.6.5 and Theorem 4.6.1. Then the statistic

U, = n2 5(0,9) satisfies:

VA

)

lim [P*(U, <t) = ®(t))] =0,

n—o0

for any fixedt € R.
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4.6.1  ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

It is easy to see that the one-step estimator, take the form:

/\T X -~ x> c 7
i_a_Y (EnB—A(X—Y))_ .
TSR (4.6.4)

We now formulate the following:

Corollary 4.6.7. Assume the same conditions as in Corollary 4.6.3. Then we have

nl2
ﬁ(e—e )~ N(0,1),

where A\ is defined as in (4.6.3)
Proof. The proof is identical to the proof of Corollary 4.5.14, so we omit it. O

Remark 4.6.8. Under the assumptions of Proposition 4.6.5, we can use /\ as a consistent estimate to

construct confidence intervals in practice.

4.7 STATIONARY VECTOR AUTOREGRESSIONS

In a recent paper by Han et al. %, the authors proposed a new estimator for transition matrices in
high dimensional vector autoregressions. The idea of their estimator is similar to the CLIME idea,
and hence it fits in the framework discussed throughout this chapter. In this section we complement
their theory with developing inferential procedures.

For convenience we will only consider the case of a lag 1 models. As mentioned in Han et al.*?,
lag p models can be accommodated in the framework of lag 1 models, and thus we are not losing any

generality in doing so. We review some basic notations for autoregressive processes below.
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Let (X¢)°_ . bea stationary sequence of 0 mean random vectors in R? with covariance matrix

3. The sequence (X)52 _ . is said to follow a lag 1 autoregressive model iff:

—00
X, =ATX, 1+ Z,, tel.

The matrix A is called transition matrix. It is further assumed that the noise vectors Z; are indepen-
dent and identically distributed with Z; ~ N (0, ¥). Moreover it is assumed that Z; is indepen-
dent of the history (Xs)s<¢. Under the additional assumption that det(I; — ATz) # 0 forall
z € Cwith |z] < 1, it can be shown that the ¥ can be selected so that the process is stationary, i.e.
forallt: X; ~ N(0,X).

Let 3;{(X¢)} = Cov(Xp, X;), so that o {(X¢)} = X. Asimple calculation in the lag 1 case

leads to the Yule-Walker Equation below:
Si{(X0)} = So{(Xy) A"
A trivial consequence of the latter equation is that:

A= (So{(X)}) ' Zu{(X0)}-

Realizing this, Han et al. > propose to solve the following optimization problem in the high-dimensional

setting:

A= argmin Z | M|, subjectto ||[SoM — S1|[max < A, (4.7.1)
MeRdxd T
1 T—1

where A > 0isa tunning parameter, Sp = = 2?:1 X&and S = 7t Yoy X X[ are

estimates of X and X1 correspondingly and 7 is the number of observations of the time series.
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The above formulation bares similarity to the CLIME procedure, and similarly to CLIME it can
be decomposed into subproblems for each column of A. Let 3* = A, be the m™ column of A.
If one is interested in only the estimate of 3* from (4.7.1), instead of solving the whole problem one

can only solve the corresponding subproblem:

B = argmin || 3|1, subject to [[SoB — S1 sm|lmax < A, (4.7.2)
BeRd

In??, the authors showed that procedure (4.7.1) consistently estimates A under certain sparsity
assumptions on A. Along the way they developed concentration bounds for Sp and St, which we
use in the present development. In this section we propose a testing procedure for testing Hy :
At = 0vs Hy @ A1y, # 0, where as usual 1 is selected without loss of generality. To this end we

consider the following optimization problem:
vV = min ||v||;, subject to vESy — €|lmax < N,
vERd
where ¥ is intended as an estimate of v = Y0,+1. Next we define the test statistic:
3 ~T
S(B) =v" (SoB — S1).

Note that this framework differs from the general procedures developed in Section 4.3, in that
there is dependency between the observations, and furthermore Sov — S1 4 = 0is not a typical
estimating equation described in (4.2.1). Nevertheless using similar ideas we can make the theory go
through in this case.

To this end we define several quantities which play important role in our analysis. Let My € R
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be a constant which is allowed to scale with (7', d). We next define a class of matrices:
M(s, My) = {M € R4 max ||Myllo < s, ||M]||1 < Md}
1<j<d

From now on we will assume that the transition matrix A € M(s, My). Next we define two im-

portant Complexity measures:

32|30 |2 max; (Xo,55)
min; (Xo,55) (1 — [|A]l2)”

Kq(S0, A) := Kq(%o, A) := K4(30, A)(2Mg + 3).

We will furthermore assume that the vector v* is sparse with || v* || = sy.

We then proceed to formulate an influence function expansion.

Theorem 4.7.1. Set A = IN(d(EQ,A) lo%d and N = w,yzalul < /% _1_2\/;).

Assume that

A=o0(1), XN =o(1), VTmax(sy,s)|Zy 1N\ = o(1). (4.7.3)
If additionally T > 6log(d + 1) and d > 8 we have the following:
VTS(0,7) = VTV (So" = Stem) + 0p(1).

The proof of Theorem 4.7.1 can be found in Appendix C.s. Next we provide a weak convergence

result.

Theorem 4.7.2. Assume the assumptions from Theorem 4.7.1. Furthermore assume the following
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regularity conditions:

B3 8* N M,
U, vISovt >0 >0, E—0 = o(T), =o(VT), (4.7.4)
\Ilmm ( ) \/‘I’mmV*TE()V*T ( )
v 2 )\/
IVl =o(1). (4.7:5)

VIV 1S5ty

Then we have:
T'/25(0,7)

VO VT N gvE

As before, in practice we need a consistent estimate of the variance A = W,V T Eov*. For

~ N(0,1).

that purpose we consider the following:

Proposition 4.7.3. Let A= (So,mm — ETSOB) (VI'SoWV). Assume the notation and assumptions of

Theorem 4.7.1. Under the following additional assumptions:

N max(|IBg 1T 155 1) = o(1), - 4s]|35 H 1AMg max(|[Sollmax, 1) = o(1)  (4.7.6)

logd
Amax(Mg, 1) = o(1), MyKq(So, A <\/3 o8 > —o(1), (47.7)

(N)2svlISg L =o(1),  (47.8)

we have A —p A

The proof of Proposition 4.7.3 is deferred to Appendix C.s. It enables testing in practical setting.

We have the following Corollary which we formulate without a proof:

Corollary 4.7.4. Assume all assumptions in Theorems 4.7.1 and 4.7.2 and Proposition 4.7.3. Then

the statistic Up = 52§ (0,7) satisfies:

VA

lim [B*(T, < ¢) — B(1))| =0,

n—oo



for any fixedt € R.

4.7.1  ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

It can be seen that the one-step estimator take the following form:

o~ T A—
0—0— v (SOIB Sl,*m)

vT'S0 41

Next we can formulate the following:

Corollary 4.7.5. Assume the same conditions as in Corollary 4.7.4. Then we have

a2
TR0 = N0,

Remark 4.7.6. Under the assumptions of Proposition 4.7.3, we can substitute /\ with A not changing

the weak convergence to enable confidence interval construction in practical settings.

4.8 QUASI-LIKELIHOOD

In this section we consider an extension to quasi-likelihood equations. Let us observe 7 iid samples
(Yi, X;). A general quasi-likelihood equation is based on two moments Ey = p,and Var(y) =
v(p)a"t(¢), and on a link function g which links the mean to the linear component g(u) =
XT'83. For simplicity we will consider the special case when ¢'(p) = v(p) tanda(¢) = 1
corresponding to the case where the link function ¢ is the canonical link. Notice that canonical links
are by definition strictly increasing and let f = ¢~ ! denote the inverse link function such that

p = f(XTB). Wewill also assume that f is continuously differentiable. In this special case the
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quasi-likelihood equation becomes:
n~t Z f(XIB)-v)X;=o.
Hence according to our framework we will determine the estimate of 3 through:

B = argmin || 3]]1, subject to H Z F(XTB)-Y)Xi|| <A

As usual we are interested in testing Ho : 0 = 0vs H4 : § # 0, where 0 is the first component of 3.
We will use the statistic S(3) = n'v7 S0 (F(XIB) — Y;) X,;. Here V, based on the following

program:

Vv = argmin ||v||1, subject to

n S VT P(XTB)XE? - eH <N

i=1 >
For brevity define &, 1y = n~ 2> 7 | f/(XTB*) X P2, and the population version By =
Ef/(XTH) X

To this end we formulate:

Assumption 4.8.1. Assume that the covariates are bounded, i.e. there exist constants K, K' > 0
such that | X oo < K, |BTX| < K and |Y — BT X| < K’ hold with probability 1. Further-
more assume that for any x,y € [—2K,2K] we bave | f'(x)— f'(y)| < Clz—y| and | f'(z)| < C
for some fixed C > 0.

It is clear that these assumptions are stronger than the sub-Gaussian assumptions we have made
so far. They can be relaxed to sub-Gaussian assumptions, but we believe that adopting Assumption
4.8.1 makes the presentation cleaner, while preserving the innate difficulty of the problem. Consider

the following:



Theorem 4.8.2. Let Assumption 4.8.1 hold and in addition assume Sy > 6 > 0. Set X =

2K'K 10gd, and

3
X = v (8(i+f§ )) fc;(a/logd>
min w

Further, assume that the following relationships bold:
VN Amax(sy,s) = o(1), As? = o(1), A=o0(1), N = o(1).
Then we have the influence function expansion:

VnS(Bo) = v/nS(B") + op(1).

Remark 4.8.3. Note that the assumptions in this theorem are more stringent than the theorem for

the linear model. The strengthening is required because of the dependence on (3 of the Hessian matrix
—n ' X P(XT D).
The proof of Theorem 4.8.2 can be found in Appendix C.6. We next provide an appropriate

standardization to show the CLT. Denote with A := vy v*. We have:

Corollary 4.8.4. Under the same assumptions as in Theorem 4.8.2, and in addition s / nl/? =

o(1), we have that:
nl/2

VA

Next we provide consistent estimates for A. In this case, one obvious candidate for such statistic

5(0,7) ~ N(0,1).

is Ay = V1. Furthermore we can use Ay = n ! Z?Zl(VTXiyf’(XZTB\) orAg=n~1 S (VTX)A(Yi—
F(XTB))%

Proposition 4.8.5. Assume:
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1. the assumptions of Lemma C.6.6 and X' sy = o(1),

2. L and N ||v*||1 = o(1),

5 1, X8|V} = 0(1) and |[v¥[31/ 182 = o(1).

Under assumption i. fori = 1,2, 3, we have:
31‘ —p A.

The proof of Proposition 4.8.5 can be found in Appendix C.6. Given Proposition 4.8.5 the fol-

lowing Theorem is an implication of Slutsky’s theorem:

Theorem 4.8.6. Assume all assumptions in Corollary 4.8.4, and construct estimates of A — ﬁz
i = 1,2, 3 based on Proposition 4.8.5 under their corresponding conditions. Then the statistics f]\fl =
1/2 ~

TZS(O,"Y) Sﬂfi{fj’.’
lim [P*(U: <t)—®(t))] =0, i=1,2,3.

n—00

Remark 4.8.7. Note that the assumptions of Lemma C.6.6 are already implied by the assumptions of

Corollary 4.8.4, and hence a variance estimator which requires no new assumptions is /\1.

4.8.1 ONE-STEP ESTIMATOR AND CONFIDENCE INTERVALS

It can be seen that the one-step estimator take the following form:

i_g VELXi(f(X[B) V)
VIS X2 P(XTB)]w

Next we can formulate the following:
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Corollary 4.8.8. Assume the same conditions as in Corollary 4.8.4. Furthermore let:
n'2X\s = o(1).

Then we have:
nt/2

— (0 —60") ~ N(0,1).
i) - N0

The proof Corollary 4.8.8 can be found in Appendix C.6.

Remark 4.8.9. Under the assumptions of Proposition 4.8.5, we can substitute /\ with Bi, i=1,2,3

not changing the weak convergence to enable confidence interval construction in practical settings.

4.9 NUMERICAL STUDIES

In this section we present our numerical evidence in support to our theoretical claims.

4.9.1 LINEAR MODEL

In this section we compare our results to two existing methods — the desparsity*® and the debias*
methods. We stress the fact that these two methods, are different from the one we are currently sug-
gesting, in that both of them are based on using the LASSO as initial estimator rather than solving
the estimating equation with a Dantzig Selector.

Our simulation setup is the following: we generate n = 150 observations X ~ N(0,Xx),
where X x is a Toeplitz matrix with ¥ x ;; = pli=il i, =1,...,d. We consider several scenarios
for the correlation p € {0.25,0.4,0.6}. Furthermore, we have 3 possible values of the dimension
d = 100,200, 500. To asses the size of the three procedures we generated 3* under two settings.

In the first setting 3*was held fixed 3* = (1,1,1,0,...,0)7T, and for the second setting 3* =
d—3
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(Ur,Us, U3, 0,...,0)" where U; ~ U([0,2]),i = 1,2,3. The former setting is labeled as “Dirac”
———

d—3
and the latter as “Uniform” in Table 4.1 below. The outcome value y = X7 3* + ¢, wheree ~

N (0, 1). Each of the simulations is repeated soo times.

The tuning parameter A was selected by a 10-fold cross validation. The parameter N was manu-

ally set to 51/ '%5%. We discovered that the test is robust with respect to the choice of \'.
*

A summary of the size results can be found in the table below, for the test Hy : 37 = 1vs

Hy : B} # lin the firstsetting and Hy : 81 = B vs Hy : 81 # B in the second one.

Table 4.1: Size in the Linear Model

Dirac Uniform

d method p=o025 p=o04 p=0.6 p=o025 p=0.4 p=0.,6

our 0.054 0.056 0.056 0.056 0.052 0.062

100 desparisty  0.056 0.052 0.052 0.052 0.054 0.046
debias 0.06 0.052 0.06 0.052 0.054 0.06

our 0.048 0.058 0.048 0.05 0.052 0.054

200 desparisty  0.038 0.064 0.048 0.044 0.064 0.054

debias 0.05 0.054 0.058 0.05 0.048 0.060
our 0.058 0.052 0.046 0.042 0.058 0.05
soo  desparisty 0.052 0.058 0.054 0.046 0.058 0.056

debias 0.058 0.048 0.056 0.054 0.06 0.036

For power analysis we used 3* = (,£,&,0, . ..,0)T where ¢ took values in the interval [.1, .55].
——

d—3
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Figure 4.1: Power Comparisons for the Linear Models
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We tested Ho : 3] = Ovs Hp : B] # 0 and assessed the power for the three algorithms. The
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power plots can be found in figure 4.1.
As we can see from the power plots, our proposed test statistic performs very similarly to the
ones proposed in the two other papers in the linear model. This is to be expected as all of the three

statistics are asymptotically optimal and hence the powers should be equivalent.

4.9.2 GRAPHICAL MODELS

In this section we compare our CLIME-based procedure to the custom desparsifying algorithm

defined by Jankova and van de Geer ¥, based on the graphical LASSO. We took one of the examples
considered in their paper, and transformed it into a power comparison. We considered a tridiagonal
precision matrix Q with Q;; = 1,0 =1,...,dand Q; ;41 = Qj41;, =03fori =1,...,d — 1.

We considered d = 80, and n = 250 as in Jankova and van de Geer*. The A tunning parameter

logd
n

log d

> for our

was set equal to 0.5 in both algorithms, while we discovered that the A’ =
method gave a more precise size results, although the choice was fairly robust. Below we present the

size results of testing 212 = 0 under this scenario.

CLIMEEE  desparsity

d =80 0.050 0.056

Below we are attaching the power plots under the same scenario, where we are ranging the signal

strength p € [0.05,0.3].
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Figure 4.2: CLIME EE vs Graphical Lasso desparsity
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In another experiment we generated data through the following procedure, inspired by Liu
etal. #. The latent generalized concentration matrix 2* was generated in the same way as in our
previous example, but then was normalized so that 3* = Q*~!, satisfies diag(X*) = 1. Thena
normally distributed data was generated through X; ~ N(0,%*),i = 1,...,n, and was trans-

formed through the following marginal transformations.

Definition 4.9.1 (Symmetric Power Transformation, Liu etal. ). Ler f be:
f(t) = sign(t)[¢[*,

where o > 0 is a parameter of the transformation. We then define the power transformation of the

3™ dimension as:

f(XY)

S P dt

These transformations are designed to preserve the marginal mean and standard deviation. In

7’ = gi(X7) =

our experiment we used a value of @« = 5. The observed data consistentof Z;,¢ = 1,...,n. We
assessed the size for the three procedures — the desparsity procedure based on Graphical LASSO,

the CLIME based procedure and the nonparanormal procedure with CLIME. We set p = 0.3 and
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tested Hy : Q12 = Qiyvs Ha @ Qo # Q7. Asexpected the former two procedures could

not give a correct size despite our efforts to select different ranges for the tuning parameters, as they
are designed to test the parameter for the covariance of Z which has a different covariance structure
than X, and is not even coming from a sub-Gaussian distribution. The nonparanormal procedure

with CLIME however performed quite well. Below we summarize the size results:

CLIMEEE desparsity nonparanormal CLIME EE

d = 8o - - 0.050

The tuning parameters were selected in exactly the same way as we selected the tunning param-
eters for the CLIME testing procedure in our previous example. Below we present a power plot of

the nonparanormal procedure.

Figure 4.3: Nonparanormal CLIME EE Power
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We varied the signal p € [0.05, 0.3] range and tested for Hy : 212 = 0vs Hy : Q12 # 0. As we
can see from the power plot the nonparanormal with CLIME procedure performs quite well in this

setting.



4.10 DiscussioN

In this chapter we proposed a generic procedure for testing linear Z estimators in a high-dimensional
setting. We provided a general framework, and showed several important applications including in
Linear Models and Graphical Models. We demonstrated through simulations, that our framework
performs as well as previously suggested algorithms, but has the advantage of having a broader scope
and covering many applications.

Much remains to be done in the current framework. In our future work, we will consider han-
dling models with missing data and/or sampling bias, and extending our testing procedure to the
non-linear case. Moreover, we plan on extending the one-dimensional testing to the multi-dimensional
case. We note that the latter extension is not trivial. One possible approach is to use the multiplier

bootstrap.
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One never notices what has been done; one can only see

what remains to be done.

Marie Curie

Conclusion

In this dissertation we discussed three important problems — classification, variable selection and
statistical inference.

In Chapter 2 we expanded existing classes of loss functions that achieve Fisher consistency, and
showed that non-convex loss functions should not be excluded from consideration for multi-class
classification. Via simulations we showed that such non-convex losses can have similar and in cases

better performances compared to convex loss functions which are typically used in practice, such as
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the exponential loss and the logistic losses. We proposed a generic boosting algorithm, which can

be used with any loss function from our class of relaxed Fisher consistent losses. We proved that

this boosting algorithm converges to the global minimum, when the loss function is convex at a
geometric rate. In terms of future directions, a lot remains to be done. We conjecture that in cases
with non-convex loss functions, the boosting algorithm will have geometric rate of convergence to
local minimizers, and that furthermore such local minimizers can be used to consistently recover

the Bayes rule provided that the classifier bag is rich enough. Our Fisher consistency results strongly
suggest that such a statement indeed holds, and we anticipate that it can be established with the help
of tools from empirical process theory.

Chapter 3 discussed the behavior of sliced inverse regression in a high-dimensional setting. We
demonstrated that diagonal thresholding and semidefinite programming can be used with SIR to
recover the support of single index models with uncorrelated Gaussian predictors. We also derived
alower bound on the sample size in terms of the sparsity of the signal and the ambient dimension,
of any algorithm which recovers the support with high-probability. Our results indicated that this
lower bound is achieved (up to a constant) by the DT and SDP algorithms, and we backed up these
theoretical claims with thorough simulations. To the best of our knowledge, this phase transition
phenomenon has not been previously observed in the literature. Moreover, in a slightly more restric-
tive setting, when the predictor is correlated with the outcome, we showed that covariance thresh-
olding can also achieve such an optimal sample size when the predictors are coming from a standard
Gaussian ensemble. We also addressed the question of what can we do when the predictor matrix
has a correlated Gaussian distribution, by showing that a linear regression LASSO can enjoy opti-
mal sample size provided that the signal and the covariance satisfy certain sufficient conditions. This
discussion leaves us with many standing questions that remain to be explored. One such question
is: can we approach the general covariance problem directly in terms of the SIR algorithm? A solu-

tion could be estimating the covariance at a “good enough” rate and using the two algorithms we
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discussed. Furthermore, can we construct direct non-convex penalization approaches to recover the
support without the restrictive irrepresentable condition on the covariance matrix that the LASSO
requires? Another important question is how to generalize our work for multi-index model.

In Chapter 4 we presented a novel framework for inference in high-dimensional estimating equa-
tions. We used our framework to equip many popular high-dimensional estimating procedures such
as the Dantzig Selector, CLIME and LDP with inferential frameworks. Throughout this chapter,
our theory focused on testing a one-dimensional component of the parameter of the estimating
equation. Our framework can trivially be extended to cases where we are interested in testing finitely
many components of the parameter of interest. A more interesting generalization, would be an ex-
tension allowing for the number of parameters to scale (at even exponential rates) with the sample
size. Such an extension might indeed be possible, with the help of recent results on conditional mul-
tiplier central limit theorems. Furthermore, we have failed to address how would the properties of
our inferential procedure change in cases of model mis-specification. In another train of thought, it
will be interesting to consider different assumptions instead of the sparsity of the covariance opera-
tor that we are currently assuming.

We hope to address all of the open questions listed above in our future work. With this the dis-

sertation is concluded.
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Proofs for Chapter 2

Lemma A.o.t. Assumption (2.2.5) implies that the function ¢(g~1(2)) is continuously differentiable

and convex for all z € ().

Proof of Lemma A.o.1. Setz := g(x), 7 := g(2’) in (2.2.5). When z, 2’ € S we have z, 2’ € ¢(5)

and vice versa. Now (2.2.5) can be rewritten as:

391 (2)) = dlg™1(2) = (2 = 2)k(g™ (). (A.0.)
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Changing the roles of z and 2’ and using the fact that both z, 2’ € g(.S) we obtain:

$g71(2) = dlg™1(2)) = (2 = 2)k(g7" ().
The above two inequalities give that for any z # 2/, z, 2’ € g(5) we have:

min{k(g=(2)), kg~ ()} < PIED ZAITCD (o (), k(g™ ()}

2 —Z

(A.0.2)

By the continuity of k and g we have that the composition k(g~!(+)) is also continuous. Taking
the limit 2/ — 2z in (A.0.2) shows that the function ¢(g~1(2)) is differentiable on g(S) with a

continuous derivative equal to k(g™ (2)). Now the convexity of ¢(g~1(2)) follows from (A.o.1).

O]

~

Proof of Theorem 2.2.1. To show that Hy(Fj)w; = CforsomeC < 0,defineQ) = {F =

(F1,...,F,) : Fj€ 8,7 =1,...,n}, whererecall that S = {z € R : k(z) < 0}. From (2.2.5),

n n

> o(Fpw; =Y (Fpw;+ Y {9(F) — g(Fj)e(Fj)w; forany F € Q. (Aos3)
j=1

]:1 ]:1

Since F' minimizes Z;’L:I o(Fj)wj, (A.o.3) implies that
Zg(Fj)k(Fj)wj > Zg(ﬁj)k‘(Fj)wj forany F' € Q. (A.o.4)
j=1 j=1

For any given constant C < 0, let ﬁCj be the solution to g(ﬁj)k(ﬁcj)wj = C or equivalently
ﬁcj = k! [C/{g(ﬁj)wj}]. Obviously Fz € QforallC < 0. We next show that there ex-
istsCo < Osuch that [}, g(ﬁ’coj) = [Ij—, g(k_l[Co/{g(ﬁj)wj}]) = 1.Sincegand k

are continuous and strictly increasing functions, it suffices to show that H;L:1 9(Fo;) > land
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[1}-, g(F¢j) < 1forsomeC. Obviously [T/ g(Fp;) > Lsince g{k~1(0)} > g(0) =

1. NowletC; = k(0) max;{g(Fj)w;} < 0. Thenforall j,C1/{g(F;)w;} < k(0)and
thus g(k~1[C1/{g(Fj)w;}]) < g(0) = 1. Then by continuity of g and k, there exists Cy €
[C1,0) such that [T}, g(Fg,;) = 1. Thus, the constructed Fg, possesses several properties: (i)
9(Fj)k(Fey5)w; = Co; (i) [T7—; 9(Feos) = 1; and (iii) k(Fg,;) < 0and hence Fg, € Q. It then

follows from the AM-GM inequality that

> g(Feg){—k(Feop)Yw; = n | [ [ 9(Feo){—F(Feos) hw; =n | [T 9(EN{—F(Feoj) hw;
j=1 j=1 j=1
= —nCo,

where we used the fact that [[}_, g(Fe, i) = Il g(F ) = 1. This, together with (A.0.4),

implies that
nCo > Y g(Fo;k(Fogs)ws > > g(Fy)k(Fey;)w; = nCo

and hence nCo = >°7_; g(Fe, j)k(fco j)w;. Thus, the equality holds in the AM-GM inequality
above, which also implies that g(ﬁcoj)k(ﬁcoj)wj = Cp. Since g(ﬁ’j)k‘(ﬁcoj)wj = Co, k(ﬁcoj) #

0 and g is strictly increasing, we have g(F ) = g(Fe, ;) and hence F = ﬁco ;- Therefore,
9(Fk(Ej)w; = Hy(Ej)w; = Co.

Obviously if Hy(+) is strictly monotone then F j=H (;1 (Co/wj) which is unique. O

Proof of Proposition 2.2.2. The function ¢ is decreasing on the set S, as from (2.2.5) forany x <
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2, x, 2’ € S we have:

Furthermore, it follows from Theorem 2.2.1, that F. j € S'since k(ﬁ ) < O forall j. Next we show

thatif w, > w; we must have gf)(ﬁj) < gb(}?’]) This observation follows since:
O(Fy)w, + ¢(Fj)w; < (F))w; + ¢(Fj)w,,

or else F' cannot be a minimum of (2.2.8), as we can swap }?’] and ﬁ] to obtain a strictly smaller value
while still satisfying the constraint. Furthermore by Theorem 2.2.1, w, # w; implies that ﬁ} #* ﬁj
because otherwise Hd)(ﬁ ) = H ¢(ﬁj) and hence w; = w; by (2.2.9). Since ¢ is strictly decreasing
on S it also implies qb(]:—'\J) # qb(l?'j) Hence w, > w;j implies qb(ﬁj) < qb(ﬁj) Finally, the last

observation gives:

argmin qﬁ(ﬁ]) = argmax wj.
je{l,...,n} je{l,...,n}

The fact that ¢ is decreasing on .S’ completes the proof. O

Proof of Theorem 2.2.3. To show that a finite minimizer F' exists, it suffices to show that g(F}) is
finite and bounded away from 0, for j = 1, ..., n. To this end, we note that the condition (2.2.11) is

equivalent to,

lim c1d(g7 @) + cad(g (@™ YY) = +00  foralleg, e > 0. (A.0.5)

We next show that at the minimizer F', i = min; g(l?’j) = g(}?’j*) is bounded away from 0, where

Jj* = argminjg(ﬁj). Since 1 = []}_, g(ﬁj) > g(ﬁj)ﬁln_l,we have ﬁj < g Y m~ (V) for
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Jj =1,...,n.If ¢ is decreasing over R, then

$(0)> “w; > > (F)w; = wig{g (M)} + D> w;p(F))
=1 =1 5

> wir g (M)} + Y wid{g~ (m~ ")},
J#I*
From (A.o.5) withc; = wj«andcy = ) i+ Wj> we conclude that m must be bounded away
from O since Z?:l (b(ﬁ’])wj — ooif m — 0. Thus, there exists mo > 0 such thatm > mg and

consequently

0<mg< g(ﬁj) < ma(nfl) <oo, j=1,..,n.

Now, if ¢ is not decreasing on the whole R, then there must exist F* < oo such that k(F™*) = 0
since ¢ is strictly decreasingon S = {z : k(z) < 0}.

Now we show that F € Q = {F = (F1,....F,) : F; € S,j = 1,...,n} as defined
in Theorem 2.2.1. To this end, we note that ¢ is strictly decreasing on S and (—o0,0] C S. We
next argue by contradiction that F j € S orequivalently ﬁ’] < F*forall j. Forany F' > F*,
$(F) — ¢(F*) > {g(F) — g(F*)}k(F*) = Oby (2.2.5). Let A = {j : F; > F*}and F} =
I(je A)F*+1(j ¢ A)F\j. If A'is not an empty set, then 307, (b(}?’;‘)wj <> (b(FA’j)wj and
| g(ﬁ;) < 1. Since g(F™) > 1, there must exist some ﬁ;‘* with F™* > ﬁ;‘* > }/5] forj ¢ A
and F\J** = ["forj € Asuchthat[[}_, g(ﬁ;‘*) = land F* > F\J** > 1?’3 forsomej ¢ A.
Since ¢ is strictly decreasingon S, 377, qﬁ(ﬁ;‘*)w]— < i gi)(ﬁ;‘)wj <> qb(ﬁj)wj, which
contradicts that F is the minimum. Therefore, Feq.

Thus ﬁj < F*and g(ﬁj) < g(F*) =m1 € (0,00). On the other hand, since [ ]}, g(ﬁj) =

1, we have g(ﬁj) > ml_(n_l) and thus g(l?'j) is also bounded away from 0 and finite.

Remark A.o.2. As a useful remark we mention that the same argument shows that given any finite
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vector F', the vectors F with Y. FOF N w; < 32 gb(ﬁj)w] are located on a compact set (provided

that F i < F* for all j in the second case).
O

Lemma A.o.3. Any loss function ¢ satisfying (2.2.5) with g = exp, and either i. or ii. from Theo-

rem 2.2.3 is classification calibrated in the two class case.

Remark A.o.4. Recall that a loss function ¢ is classification calibrated in the two class case if, for any
point wy + wo = 1 with wy # % and w1, wo > 0, we have:

(wig(z) + wad(-w)) > inf = (wio(z) + w2 (-2)).

inf
z€R z:x(2w; —1)<

Proof of Lemma A.0.3. Denote the two (distinct) class probabilities with wy + wo = 1. With-
out loss of generality we distinguish two cases: w; > w2 > Oandw; = 1,wy = 0. First,
consider the case when wq > wsg > 0. Since the conditions of Theorem 2.2.3 hold, we know
that the optimization problem (2.2.8) has a minimum, and hence by Proposition 2.2.2 we have that
argmax;eq 2} ﬁj C {1}. Hence it follows that F > 0, Fy < 0 at the minimum. This implies
that inequality in Remark A.o.4 is strict.

Next assume thatwy = 1,wp = 0. This case is not covered by our results as we assume that
the probabilities are bounded away from 0. As we argued earlier ¢ is strictly decreasing on the set .S,

where by assumption (—o0, 0] € S. Thus:

F = argming. g, p,—0 w10(F1) + wed(F2) = argming. g, | p,— ¢(F1),

we must have F| > 0 and hence ¢(0) > ¢(F}). This finishes the proof. O

Lemma A.o.5. Let F(™) be defined as in iteration (2.3.1) starting from FO) = 0. Then we must

have F(™) ¢ Q for all m, where Q = {F = (Fy,...,F,) : F; € S,j=1,...,n}.
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Proof of Lemma A.o.5. We show the statement by induction. By definition F(©) € Q. Assume that
Fm=1 ¢ Q for somem > 1. We now show that F("™) € Q. To arrive at a contradiction, assume
the contrary. Let A = {j : F»(m) > F*} £ (. DeﬁneF%(m) =1(j € A) ](m Dy I(5 ¢
A)F™ . Since F"D € Qi follows that F*™ € Qand [T7_, g(F;"™) < 1. More
importantly, observe that for all j € A we have:

0= (g(F" V) — g(FF "N k(E "y > (g(F V) = g(F)kR(E™ w;,

asg(F\" V) < g(F*) < g(F\™) and k(F\") > k(F*) = 0, and hence:

D (a(E™ ) = (BT RCES g > () = ()™

i=1 :

Define the indexset B = {j : F ( ) < F(m 2 }. Since [T5_; g(F; (m)) < land Fm=D € Qit
follows that B is not empty and A N B = (). Next for A € [0, 1] define for all :

FiA = [1(G € A)+1(j ¢ AL ¢ BIF"™ + 1(j € B)(1 - NF™ 4 AF" ),

(m),0

Note that when A = 0, we have F; = ™ Now we show that for any A € [0, 1] the

following inequality holds:

S (gFE™D) — g(F)R(ES Z Dy — g (B k(FS ™ ;.

(A.0.6)

Forany A € (0,1]: F;(m)’A #* F;(m)’/\ iff j € B. Nextnote that for any j the function

(g(Fj(m_l)) — g(x))k(x)wj is an increasing function for x < F(m_l). The last two observations

imply (A.0.6). Finally since [ T7_; g(F; Frm)0 ) = T}y 9(F; (m)) < land [T, g ](m)7l) >

157



| g(Fj(mfl)) = 1, by the continuity of g there existsa A € [0, 1] such that [7_; g(F;(m)’)‘) =
1. These facts and inequality (A.0.6) imply that F’ (™) would not be a maximum in the iteration

which is a contradiction. O

Proof of Theorem 2.3.1. By construction we have that on the m™ iteration the value F'(™) satisfies

H;nzl g(F j(m)) = 1, and Lemma A.o.5 guarantees that F'™) € Q for all m. Hence, since F j(m) are
(m+1)

viable values for F] , the iteration also guarantees that:

Z{¢ m+1 }w > Z{g F(m _ (F;erl))}k(Fj(erl))wj > 0.

Now, from Remark A.o.2, I j(mH) lie on a compact set for all 7, since for our starting point we have
Fj(o) = 0 € Q. Therefore there must exist a subsequence {my, ¢ = 1, ...} such that F (me)

converges coordinate-wise on this subsequence, and denote with F™* its limit.

The function ¢ is continuous and hence we have that 3 77, ¢(F-(ml))wj—zj 1 O(F) Fmery) Jw; —

(F{mer)

0. However by the construction of our iteration, the sequences =1 ¢ w; are decreasing

for all £. Therefore we have that: ", ¢(Fj(m Jwj — > ¢( ](m—H))wJ — 0 holds for all m,

not only on the subsequence. But this implies that >3, (g ( ) g(F m+1)))k(Fj(m+1) Jw; —
0, which again by the construction is non-negative for all m. Take my in place of m in the limit
above, and let L be the set of all limit points of F(™¢+1). By our construction we have the following

inequality holding for any point F' e L:
0=> {9(F}) - g(F = Z{g F) Ye(F )y, (Ao)
j=1

forany F' € Q with H;'L:I g(F;) = 1.]Justasin the proof of Theorem 2.2.1 select F so that



g(F;)k:(ﬁj)wj = C forall j for some C < 0. By the AM-GM inequality we get:

n-1 n=1

Y (ED{—k(F))}wj = n Hg Fpywi | =n | ] oFE){=k(F))}w;
j=1 J=1
—Zg }w] —nC.

Now by (A.o.7) it follows that equality must be achieved in the preceding display, which implies
that g(F¥)k(Fj)w; = C = g(F;)k(Fj)w; and yields F;; = F forall j. Hence g(F})k(F} )w; =
C forall j.

Thus we showed that on subsequences the iteration converges to points satisfying the equal-
ity described above. We are left to show, that all these subsequences converge to the same point.
Next, take equation (A.o0.7). By what we showed it follows that for any F! ¢ L, wehave that

g(Fjl)k(Fjl)w] = C! for some C! < 0. Then we have:

n=1 n~1

> 9(FD{=k(F))}w; > n HQF*{k 7)}w; =n | [T 9(FD{=k(F))}w;
7j=1
= 3 Gk (F by = —nC
j=1

Equation (A.o.7) implies that the above inequality is in fact equality which shows that:

9(F))k(F}) = g(F)k(F}) forall j.

Thus since k(Fjl) = 0 (recall that all values on the iteration F(™ € Q) we conclude that g(Fy) =
g(FJZ ), and hence F* = F'. This shows that for any converging subsequence 1, the limiting value

coincides with that of the sequence m, + 1, which finishes our proof.
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Proof of Proposition 2.3.4. Itis sufficient to show that for all F' € G* we have:
ZYCTF )A(Y F*)(X;)) > 0.

The condition above is sufficient, because of the looping closure of G. Writing the inequality for
all “looped” versions of F', and noting that the sum up to 0, gives us that the inequality is in fact an
equality.

Note that with each iteration (2.3.4), we decrease the value of the target function. This can be

seen by the following inequality:

N N N
Y S(YEF" V(X)) - (YL F™(X Zexp BYZ,F(X0)—1]o(Y] F™ (X)) > 0,
i=1 i=1 i=1

where F(™) = F(m=1) 1 BF. Asa remark, the inequality in the preceding display holds, since ¢ is
decreasing, and thus by (2.2.5) we have S = R.

Take a limiting point™ F(°°) of iteration (2.3.4), where it is possible having coordinates of F(°)(X)
equal to £00 for some ¢. Since ¢ is bounded from below, by our previous observation we have that

forany 8 > 0and F' € G*:

N N

Y H(YLFX(X) = > ¢(YEF)(X,) + BYL F(X;)) <0.

i=1 i=1

*The existence of a limiting pointis guaranteed as any sequence contains a monotone subsequence.
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Let. A= {i: \YgiF(oo)(Xi)| # 00}. Then the latter inequality also implies that:

> (YL FN(X) =Y (Y F)(X;) + BY] F(X;)) < 0.
icA icA

Applying inequality (2.2.5) the above implies:
D _lexp(=BYJ F (X)) — o(YSF(X0) + BYLF(X.) <0,
icA

and after a Taylor expansion of the exponent, and division by 5 > 0 we get:

> Y1 F(X)d(Y] F™)(X;))
€A
+3 " YEF(X) (Y] F) (X)) + BY] F(X))) — d(Y] F(X)))]
€A
B) " G(YEF(X,) + BYL F(X;)) < 0.
€A

Letting 3 — 0, by the continuity of ¢ we get:

> YEF(X)$(YS F(X)) > 0. (A0.8)
icA
Next we argue that ¢(+00) = limy_, oo ¢() = 0. As stated in the main text p(z) = k(x)e”
Let K = infyep ¢(z). Foranye > 0, take any point 2’ so that ¢(z’) — K < e. Then for any
z € R, by (2.2.5):

e 2 ¢(af) - ¢(x) = (" — e")k(),

and thuse — e k(x) > —d(x) > 0. Taking the limitz — 400 and letting e — 0 shows that

TObserve that since ¢ is bounded from below the values of ¢ at singular points i.e. ¢(+00) have to be
bounded.
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$(+00) = 0.
Now consider two cases for ¢. Suppose that ¢ is unbounded from above. We argue that YCIi F() (X,) #
—oo for all 4. Since we start form the point 0, and as we argued we are decreasing the target function

we have that:

X)) = m?w(Y&F(OO)(Xi)) + (N - 1K,

||Mz
“i
N
\8,

and hence max; ¢(YCIZ_F(°°) (X;)) < N¢(0) — (N — 1)K. Since ¢ is decreasing and unbounded
from above it follows that YCTiF ()(X;) # —oo foralli. In the second case suppose that ¢ is
bounded from above, and let M = sup, g ¢(). We show that ¢)(—o0) = 0. Forany ¢ > 0 take

x sothate > M — ¢(z). Applying (2.2.5) for any 2’ € R yields:
e > ¢(a) — d(z) = (e — €e")k(2).

This gives € — e k(z) > —¢(x) > 0. Taking 2/ — —oo gives thate > —¢(z) > 0 for any z such
thate > M — ¢(z). Since ¢ is decreasing we are allowed to take the limit z — —o0, and taking
€ — 0 shows that (Z)(—oo) = 0. In any case, all of the above arguments imply that we can substitute

Ain (A.0.8) to the whole index set {1, ..., N}, to finally conclude:
N .
> Y F(X)6(YE F (X)) > 0,

=1

forall F € G*. Asargued in the beginning the looping closure gives us that in fact the “>” can be

replaced with “=". This concludes the proof.

Proof of Proposition 2.3.5. First consider the case when I = N. Denote with e],e?,. .., e}
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the positive coordinates of e1. For any vector v which is a solution to DTax = v we must have
Zﬁ\;l e’i v; = 0. Clearly then, if v is non-zero then some of the v; need to be negative. Let I =
min v;. We know that [ < 0. This immediately implies an upper bound on the maximal positive v;
— max; v; < |l [Ef\il e}/ min; e} — 1]. We now show that |[| is bounded, for all vectors v such
that S, 6(vr) < N(0). Note that S, ¢(v) = 6(0) + (N — V(UL e/ ming ef —
1]), and thus (2.3.8) gives that |{| is bounded. This in turn shows that all v; are bounded as well.

We next consider the case where I < NN. Without loss of generality, upon rearrangement,
we can assume that the positive coordinates of e are located at the first I places. Let Enys =
(e1,...,€5). Let E(N_I) x (s—1) denote the sub-matrix corresponding to the 0 entries of €1 (ex-
cluding e1) (see (A.0.9) for a visualization). Note that the matrix E cannot be of full column rank,
because otherwise we would have that a vector with positive coordinates is inside the column space
which is a contradiction (we can always scale it by a small number and add to e1). Thus we can elim-
inate all extra columns that do not contribute to the rank of E, by doing a linear manipulation on
the columns of the whole matrix E (see (A.0.9)). In doing so, we can eliminate extra columns of the
matrix E so that we end up with a E matrix where the number of non-zero columns matches the
rank, and some columns of E have 0 coefficients on the lower part. Here, observe that the columns
of E with 0 sub-columns in E, are part of the space row(D_)", where D_ corresponds to the
matrix D with observations corresponding to 0s of €1 removed.

We next note that if we discard the observations corresponding to 0 coordinates in €1, and op-

timize the problem on the rest of the observations we will obtain some optimal solution v =

(V1,...,0r)T, the entries of which are bounded as argued in the first case. We next show that we
can populate the vector v with positive numbers p1, ..., py_rtov = (V1,...,07,p1,...,PN-1)T,

so that v is “perpendicular” to the matrix F (i.e. ETv = 0), and thus can be written in the form

DT Moreover, we will show that py, ..., py—_r, can become arbitrarily large, which will com-



plete the proof.

e e ... €g e ... él-i—l gl+2 A
el e!
G
I
E = ef - el (A.0.9)
0 0 0 0
N-1I E E
0 0 0 0

Note that the only part of the matrix E that would be potentially non-zero upon multiplica-
tion by v would be the part corresponding to the non-zero parts of E’, because as we argued earlier
the columns of E with 0 sub-columns in E belong to row(D_)* and on the other hand v €
row(D_). Denote with E (N—1)x1 the full-rank sub-matrix of E, where L is the rank of E, and let
G'1y; be the sub-matrix of E above E (see (A.0.9)). Clearlyl < N — I as otherwise there is a pos-
itive vector in the column space, and we argued previously that would be a contradiction with the
maximality property of e1. We need to find a positive vector p such that (E (N=1)x1)TP(N=1)x1 =
—(Grx1)™wrx1 = Kjxi. Therefore the proof will be completed, if we can find arbitrary large
positive vectors p solving the system ETp = K,wherel < N — I and ET has the property that
any non-zero linear combination of its rows results into a vector with at least one positive and one
negative entry.

Since ! < N — I, the linear system ETp = K has a solution. Consider the homogeneous system
E ! p = 0. We will show that the homogeneous equation admits arbitrary large positive solutions,
which would complete the proof. Fix the value of the i® parameter to be 1. The system then be-

T ~
comes E_;p_; = —e;, where by indexing with —% we mean removing the i™ column or element



~ =T

and €; is the i*? column of E . Next we apply Farkas’s lemma to show that the last equation has a

non-negative solution. Assume that there is a vector y; 1 such that E —iy > 0(coordinate-wise)
=T =

and —e; y < 0. This is clearly a violation with the property that E satisfies. Therefore by Farkas’s

~T ~

lemma the equation E_;p_; = —e; has a non-negative solution. Since we can achieve this for any
~T

index %, averaging these solutions yields a positive solution to the homogeneous system E p = 0,

and thus this system admits arbitrarily large positive solutions.

Proof of Theorem 2.3.6. Without loss of generality for the purposes of the proof we will consider
C+ =1landC_ = —1/(n — 1) (it’s equivalent to rescaling the /3 in the iteration).

By the iteration’s construction we know:

N
—BYS F(Xi) _ 1\ iy T p(m)(x T :
Em — Em41 = 5>%1%}ég* Z{e Ci 1}o{Ye FU™(X5) + Y F(X)}-

Note that we have the following simple inequality holding for exp(—xz) < 1 — z + 22 for values of
—1/2 < x < 1/2. Since |YCT@F(XZ)] < C4 = 1and ¢ is decreasing, for valuesof 0 < 3 < 1/2

we have that:

N

3 e PEFCD _11g{YI FUY(X,) + BY] F(X,)}

=1 N

> = (BY] F(X;) — B2){YL F (X;) + BY] F(X,)}.

=1

Let L denote the Lipschitz constant of ¢ on the set S. Consequently we have:



N
=Y (BYLF(X;) - B)${YL FU™(X;) + BYJ F(X;)}

1

i

~(BYZLF(X;) — B2)o{ YL F™ (X;)}

I
M= L

<.
I

M= 0

(BYZF(X:) = B2)[{Y], F™ (X) + BY F(X0)} — o{ Y FU (X0))] >
1

-
Il

~(BYLF(X;) - BHYI F™) (X)) - L|BYL F(X,) - 32| | BYd F(X,)| =

'MZ

-
Il
—

~(BYEF(X) ~ BPIHYEF (X))~ SING.

'Mz

I
—

(2

Thus we have established:
Em — Em+1 = B (Z(_YCTZF(XZ) + B)gb{YCT,ZF(m)(XZ)} — 2LNB> ,
=1

forany 0 < 8 < 1/2. We select 3 so that we maximize the RHS in the expression above. It turns

out that this happens for:

3 i YO F(X) (Y F™ (X))

N N Y GV F (X))

Since ¢ is always negative and as we mentioned Y(,Ii F(X;)| < 1, provided that the numerator
is < 0, we have that 0 < Gy < 1/2.

Then we would have:
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N
1 .
em —emi1 2 —5f0 Y YL F(X)${YLF™ (X))}, (A-0.10)
i=1

Next we show that there exists a classifier, such that the above expression is strictly positive, which
will also ensure that 0 < By < 1/2isin the correct range. Denote with B the total number of
classifiers in the bag. Consider the representation F*(-) — F(™)(.) = Zle a; F;(-). Here the
o vector is any vector that yields a correct representation (note that we will have many possible o
vectors, in the case when B > N).

By convexity of ¢ we have:

Mz

N
—em =Y WYL F*(X3) — ¢(YLF™ (X)) > Y Y F*(X;) - YL F™ (X)) (Y] F™(X;))
=1

1

.

N
> Y] V(YL F™ (X)),

=1

Il
Mm

Il
—

J

By the pigeonhole principle it is clear that there exists an index j € {1,..., B} such that:

N
5m gm . .
< - . YIF(X)dYT F™(X)).
Bman|Ozj| — B|aj| = Slgn(a]); C; ]( 1)¢( C; ( z))
Now if sign(cj) = 1 we already have a “decent” lower bound. Otherwise if sign(a;;) = —1,

using the fact that the loop closed classifiers wrt to F; sum up to o, we can claim that for one of the

looped classifiers FJZ we would have a bound:

€m

B(n — 1) max; |a]| -

ZYT F}(X)o(Y],F (X))

=1



So that in both cases we established the existence of a classifier such that /' € G* and:

Em

B(n — 1) max; |aj;| —

M=

Y] F(X,)$(Y] F™ (X))
=1

We then know from (A.o.10) that:

N
1 .
em —emi1 2 — 50 Y YA F(X)o{YLF™ (X))}
=1
z
>

1
4B2(n — 1) max; a2(3LN — SN | ${YI Fm(X,)})

Notice that the derivative is bounded on the set S and therefore collapsing all constants above into

one constant say 1" we get the following:

2

€m

Em — Emtl > .
T max; 04]2

Here T' depends on the number of classifiers, number of classes, and the bound on the first deriva-
tive ¢ on the set S. We will proceed to bound the max; a? for some of the representations from

above.

Because on the set S, ¢ is also strongly convex (with a constant say ), we have the following:

N N
em =Y o(YILF™(X;)) =Y o(Y] F*(X5))
=1 =1

WE

Y2 FU™(X3) - YO FX(X)]o(YZ F* (X))
1

%

N
+1Y
=1 i

2

a; Y7 Fj(X)
1

B
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The expression Zf\il [YCTiF(m) (X;) — YCTVZF*(XZ)]QZ)(YCTVZF* (Xi))is 0,as F™* is the mini-
mum, ¢ is convex and the classifier bag is closed under looping. Let D = {Y F;(X;)};y; is the
B x N matrix, each entry of which is either C; or C_. Let the rank of Disr < min(N, B).

We then have vazl (Z}B:l ;Y7 Fj (XZ)) . aTDDTa. Since, all the bounds above are
true for any of the o representations, we could have picked the representation corresponding to
ther X N sub matrix of D, D), with rank r for which the smallest eigenvalue of D, D/ is the
largest. Let this eigenvalue be A, > 0. For this eigenvalue and this choice of a we clearly have
aTDDTa = oD, Dfa > A\ ||a]|3 > A\ max; a?. (in the second equality we abuse notation

deleting zeros from the a). Consequently we get:

Em > I\, maxoz?-.
J
Thus:
2
Em
Em+1 <é&Em— 2
T max; o

I
<em(1-22).

Since both €y, 41, € > 0 we must have 1 — D‘TT > 0. Furthermore, by construction we have
D‘T’“ > 0, which of course concludes the proof of the geometric rate.

O

Remark A.0.6. It can be seen that even if we only assume that gb is Lipschitz on S without the first

derivative being bounded we can still obtain a geometric rate of convergence.



Proofs for Chapter 3

B.1 SIR RELATED PROOFS

Proof of Lemma 3.2.10. Here we deal with the expression, given in the sliced stability example. We

start with the following observation:

ok
ok | ~—

o1 (3
<g>2 @2 (@1 2(;-1-

)
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Which follows after an application of the mean value theorem, and noting that %@—1 (x) =

L4+2(2 7 (x))® > 0. Thus for g € [0,2®(r) — 1) for some r > 0 we have:

L2 G D@ G D)) e @ (5 +9)
‘ S 8e(et (34 9))
g r
=800

Proof of Proposition 3.2.13. First note thatif Y has a bounded support, this propositionosition
clearly follows from assumption (3.2.9) alone. Thus, without loss of generality we assume that Y’
has unbounded support (from both sides, as if one of them is bounded we can handle it in much the
same way as the proof below).

Let By = By + 1, for some small fixed 7 > 0. Fix any partitiona € Ag(l, K). Let Sy =
{h : a, € [~Bo, Bo]},and let h,, = min Sy, hyy = max Sp. Note that the following simple

inequality holds forany h > 2, h < hy, —20orh > hyr +1,h < H — 1:

Varim(Y)|ap, <Y < apy1] < el inf ]E[(m(Y) —m(t))?an <Y < apii]
€(ah,an41

< sup (m(y) —m(1)?
Y,t€(an,an41]

< (m(|anl) = m(lans1]))*.

This gives us the following inequality:

hm—2 hm—2
3 Varm(Y)lan <Y < apr] € Y Gillan)) = millan]))? (B
h=2 h=2

< (m(Jaz]) — m(lan,, -11))?,
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where the last inequality holds since m is non-decreasing. Similar inequality holds for the other tail
as well.

Using a similar technique we get the following bound on the interval: [—Eo, Eg]:

har—1 har—1
Z Var[m(Y)|ap <Y < apq1] < Z E[(m(Y) —m(ap))?|an <Y < apy1]
h=hm h=hm

har—1

<Y s (mly) - ma)

h=hm yE(an,ant1]

Notice further that:

Varim(Y)l|ap,,—1 <Y < ap,,] < sup (m(y) — m(—DBy))?

YE(Ahyy, —1,0hyy, ]

< sw o (ml)-m(-Bo)?+  sw  (mly) - m(~Bo))
y€(anyy, —1,—Bo] y€[—Bo,ah,, ]

And a similar inequality holds for Var[m(Y')|ap,, <Y < ap,,+1]. Thus:

hat hy—1
Z Var[m(Y)lap <Y < apq1] < Z sup  (m(y) —m(ap))?
h=hpm—1 h=hm y€(an,ant1]

I

+ sup  (m(y) —m(=Bo))’+ sup  (m(y) —m(—By))
y€(an,, —1,—Bo] y€[—Bo,an,,]

I I3
+  sup (m(y) —m(Bo)*+ sup  (m(y) —m(Bo))*.
y€[Bo,an,+1] y€(an ,, »Bo]

~~ ~~

14 15
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We have:

2|So|+3
h+L+I<  sup Y (m(b)—m(bi1)) (B.r.2)
bellysq +3(Bo) =2
2(So|+3 2
< sup [ fmi(b) —mi(bia)]
belly)s4)+3(Bo) i=2
To see this, consider a partition containing the points by = —Bo, b3 = Ay -+ 5 025141 =

Ay s b2So|+3 = By, and by, = argmax (m(y) —m(ba_1))? (note that if the max

Y€ (bak—1,b2k41]

doesn’t exist we can take a limit of partitions converging to it).

Next, we control Io:

L= suwp _ (m(y) —m(-Bo))* < (ilan,—1) - 7(Bo))*.
yE(ahm—h—BO}

with the last inequality following from (3.2.10). Combining this bound with (B.r.1) we get:
(M(|as|) = M(|an,,—1]))* + I < (M(|az]) — 7 (Bo))*. (B.13)
Similarly, for 14 and the other bound in (B.1.1) we have:

(m(lag|) — W(|any 1)) + I < (M(|ax]) — W(Bo))>. (B.L.4)
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Finally, we deal with the tail part:

Var[m(Y)|Y < as] < E[(m(Y) —m(az2))*|Y < as] (B.s)
< E[(m(|Y]) = m(laz]))*Y < ao]
< E[@(Y])IY < a)

< AE[R(YDIHY < a))¥/2H
as 2/(2+¢€)
4 ( | ptularey < e < a2>—1)

= o(D)P(Y < ap)~ %49,

where we used the fact that E[|7(|Y'])|?+¢] is bounded by assumption, and the o(1) is in the sense
of |ag| — 0o . We can show a similar inequality for the other tail — Var[m(Y)|Y > apy].

Combining (B.r.1), (B.r.3), (B.1.4), (B.r.2) and (B.1.5) we have:

H 2|So[+3 2
> Var[m(Y)lap <Y <appa] < sup ( > Imibs) — m(b,-l))
h=1

bElly 5y 43(Bo) \ =2
+o(DP(Y > ay) Y@ 4 o(1)P(Y < ap) ¥/ 2F0

+ (m|az]) = m(Bo))* + (m(larl) — m(Bo))*.

Since (7(|as])—(Bo))? < 4(i(|az]))?, and we know that f(|az )2+ < (|aa])2HP(Y <
ag) — 0, this means that (| az|) s5/fzre; — 0. Furthremore o(1)P(Y < ag)~%/(+8) 1t =

o(1). Finally we recall that by (3.2.9) we have:
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2|So|+3 2/So|+3
sup | D> |m(b) —m(bia)| | < sip > m(b) —m(bi)|
belly|g,1+3(Bo) =2 bellysq +3(Bo) =2

—0 <‘50,2/(2+£)) .

However | So| < P(—By < Y < By)H/l + 1 and thus:

Sup > mbi) —mbioa)| | =o <H2/(2+€)> ’
bElly 5o +5(Bo) \  i=2
which finishes the proof. .

Proof of Lemma 3.4.1. Before we go to the main proof of the lemma we first formulate a key result,

which enables us to prove this lemma. We note that this result might be of independent interest.

LemmaB.r1. Let A(X,v) € {0, 1} be any acceptance rule such that P(A = 1) > q, where
X ~ N(0,1) and v be any random variable. Let X1, . .., X, be an iid samples of the distribution

X|A(X,v) = 1. Denote with jn = E[X;]. Then we bave:

P(IX — p| > ¢)

< inf 2 —= n

=0 P T 2 9 _ q 2 _ Y
Me+26xp(M2) M?2 + 2k M log (4) + (2k) C%( log (1) %)

o-1(1-4 exp(r)—1—r
A Q) d €, = SR
2

where k = o)

Remark B.1.2. The constant k here can be shown to be < \/2r Jfor all values q satisfying % <1-—

<1>( T{l).
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1
We assumed that H and € are specified so that (quite arbitrary) £ Xc1- d(1/VV2 1),
so we can select £ = 2 and we select M = 1. By (3.4.3) we know that P(Y € Sp,) > % — 2¢eon S,
1 _

thus setting ¢ = 77 — 2¢, by Lemma B.1.1 conditionally on {Y(mh) :h=1,...,H — 1} we have
forall j € Sgandall h:

P (‘Yi,ls(mfl) - M%‘ > 77)

1 2(m —1
< 2exp —5 - (m )
1+ 2exp(2) [1 + 4m+ 16Cy (—log (2) g)}
1 2(m —1
=2exp | —= - (m )

21+ C1 + Coy/—log (4) + C5 (~log (£) q)

where C; = 2exp (2), Cy = 8exp (2) and C3 = 32C exp (2) are absolute constants.

Note that Lemma B.1.1 is applicable in this case, as the statistics X' i , are conditionally indepen-
dent on Y(;,(4—1)) and ¥{;,1,) as we noticed when we described the second data generation proce-
dure in the main text, and therefore we can set the acceptance rule A(X, ¢) = 1(f(57X,¢) €
Sh). Furthermore, notice that the above inequality holds regardless of the values of {Y{;,1) : h =
1,...,H — 1}, ontheevent S.

Finally, using union bound across the slices and the indexes j € Sg, we have that this holds for all
slices or in other words

F (jGS@,gé?f...,H} ‘Yivlz(m‘l) B uﬂ’ - 77) =
n°(m — 1)

1
2sH exp 5 G T L (2 s . ;
1+ Cr+ Cay/—log (§) + C3 (—log (3) q)

on the event S. This is precisely what we wanted to show. O
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Proof of Lemma B.1.1. Before we go to the main proof of the lemma let’s consider the following

simple proposition, which is the key to show the bound:

Proposition B.1.3. Ler A(X,v) be any acceptance rule with P(A(X,v)) > q, and M be any fixed

constant, and X ~ N(0,1). Consider the random variable X = [X|A(X,v) = 1]. Then we have:

L+ 0@ (1-9) - @ (1 -9+ )

Elexp(|X|/M)] < exp <2J\142>

Proof of Proposition B.1.3. We first show that Elexp(|X|/M)] < Elexp(|X|/M)||X| > &1 —
q/2)]. Clearly we have:

Efexp(|X|/00) = 3 EUXIAM)] 'X'/M 1,
=0

Note that, P(|X| > t) < HIXI26AXM=1) o 2-20()
gl - -~ q < q

. Note that the last estimate is trivial when

t < ®71(1— %) (i.e. the RHS is bigger than 1).

Now using the following well known formula, forz > 1:

- o] . . @71(1_2) ) o0 2_9p )
E[|X|] :/ P(|X]| 2t)z't1_1dt§/ ’ itz_ldtJr/ 22200 i gy
0 0 e-1(1-1) q

=E[X["|X] > ®7(1 - ¢/2)].

Where we applied the expectation formula in the last expression again. Finally summing up over i,

gives the desired result:

iw<i [(X|/M) )| X] > 21 (1~ q/2)]

7! -

7!

=0

= Efexp(|X|/M)|IX] > @7'(1 - q/2)].
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Note that we have, E[exp (| X |/M)||X| > ®~1(1—¢/2)] = Elexp(X/M)|X > &~ 1(1—¢q/2)].

Using the mgf of a truncated normal distribution, we get the following:

. 1 [1-2@'1-9) )
Elexp(X/M)|X > & (1 — q/2)] = exp <2M2> ; 2) M
The propositionosition now follows after a Taylor expansion. O

By the definition of k we have (@ (1 — 4)) = x,/—log(%)4. Therefore we have:

Elexp(| X |/M))
[ - o Ky "ToeD3))
o (L) | do@T - g + w, o)
P\ 2nr2 g

202 g
B 2
1\ [$+ 30@7 01— 9)+Cp (5ry/-los(D)3)
< exp e % ,

exp(r)—1—r

where we used the fact thatexp(z) — 1 — 2 < Cra?forall0 < z < 7 where C,, = = ,

which can be checked easily by noting that C,. is an increasing function of 7, and further that /— log(z)z <

1forall 0 < z < 1. So what this discussion gives us is that:

Elexp(|X|/M)] < exp (21]\/[2> [1 + % —log (%) + (M)QC% (—log (%) g)} :

Recall that a version of Bernstein’s inequality requires the following moment condition: E[|Z|™] <

m—2
m!M 5— form > 2, (e.g. see® Lemma 2.2.11). By a Taylor expansion it can be easily seen that this

condition is implied by Eexp(|Z| /M) — 1 — |Z|/M|M? < v/2.
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Obviously we have E[exp(| Z|/M) — 1 — | Z|/M]M? < E[exp(|Z|/M)]M? and therefore if
we can find a v such that v > 2E[exp(]|Z|/M )] M? we will be able to apply Bernstein’s inequality.

Note that for our random variables we have:

Elexp(|X — ul/M)|M? < Elexp(|X|/M + |u|/M)]M*

< Elexp(2|X|/M)| M.

The last inequality following from a double Jensen’s inequality, upon noticing that the function

exp(| - |) is convex, and then putting the square inside the expectation.

Efexp(2|X|/M)]M? < exp (];2> [M2 +26M |~ log (g) +(26)? Ce (— log (g) g)] .

Finally applying Bersntein’s inequality and taking inf with respect to M gives the desired result. [J

Proof of Remark B.1.2. We show the remark here. Using the well known fact that forallz > 0:

p(z) < (1 — ®(z)) (z+ 1), we have that ¢(z) < r(1 — ®(z))z, forz > \/7}_71 Thus for values
of g/2 < 1—®(/-25),r > 1, wehave:

o@l1-9) _ ¢'(1-9

—log(4)4 v —1log(q/2) )

Var

where the last inequality follows from ¢/2 = 1 — ®(z) < exp(—x?/2) (for z > 0, or equivalently

q/2 < 3,but we obviously have ¢/2 < 1 — @ (\/:TJ < b)andthus (1 - ¢/2) = = <

V2y/—1log(q/2). O
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Proof of Lemma 3.4.2. Using the sliced stable condition, for large H we get:

n

Varm;(Y)] = Y _(1)°B(Y € Sp)

i=1

= ZVar m;(Y)|Y € Sp]P(Y € Sp)

CHH +2
- s H )

This shows (3.4.5). Consequently we have:

and we are done.
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Proof of Lemma 3.4.3. Note that on the event S we have the following chain of inequalities:

1, m—1—; 2 (m=1)2?, .,
<X,]l,m + th71:(m_1)> - T('M%) (B.1.6)

1 - 732 2(m —1) 2 j j
< D (X0 S DX+ )
h=1 h=1
H
1 (m—1)2 ;
g 2l + )
h=1
11 " H
S%EZ(Xﬂ)QJer DX 2> (2 + (1))
r=1 r=1 h=1
2 n
2B
042

where we used that we are on the event S in the first inequality, and (3.4.7), Cauchy-Schwartz and
the trivial bounds =1 < 1, 1 Zthl(X]im)Q <1 Z?Zl(Xﬂ)Q ~ X2 /n in the second one.

Using a x? tail bound provided in?, we have:

1, 3 1
P(gxn >147)< exp(—Em— ), T €10, 5)

Hence we infer that there exists aset S C S failing with probability at most s exp(—%n7?), such

that % Yoy (XTJJ)2 < 1+ 7forall j € Sg. Therefore continuing the bound on the event g, we

get:
(1—|—’7’) 21+ 71 By 2 B3
B.1.6) < 22 +2— 2n—
(B.1.6) < M e Nl 2
where we used (3.4.6). This finishes the proof. 0

Proof of Corollary 3.2.4. Note that we can clearly rewrite Vii = + Zthl (Y;L —p?)?— (Yj —u)2
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For the first term we can use the proof Theorem 3.2.3 to conclude that Vil > V forj € Sgand
Vil < 4—‘3’ for j € S§ on an event with asymptotic probability 1. Next we show that (X P ) is
asymptotically negligible. Clearly - p? ~ N(0,n~1). Hence by a standard normal tail bound
P(|Yj — 17| > z) < 2exp(—nx?/2), and thus by a union bound:

1 —
P <max |X] — ] > 20g(ps)> <2s(p—s)"t=0(1).
JES, n

Thus max;gs, (Yj — )2 < QIOg(g_S) < & with probability not smaller than 1 — 2s(p — 5) 7%,

Henceif Q > 160‘;1 e.g., we will have Vi > %for]’ € S, while Vii < Vi< %for

J & S with probability converging to 1, which completes the proof. O

Proof of Lemma 3.5.2. We first note that the following inequality holds:
\W’“ — sign(8;) sign(By) ‘ _

1L
7\2
< H;(Xh) -

LN C
Z — sign(8;) sign(ﬁk)sv|

h:

v 1 ]
= w;w

sian(5;)7, — sign(8) X7

where the LHS equals, the LHS of (3.5.3) after using (3.5.2). Fortunately (3.4.8) and (3.4.9) already
give bounds on the first term on the event S . We now show that the second term is small on the

same event. Note that the following identity holds:

|Mm

‘Xh‘ ‘51gn B])Xh — Slgn(ﬁk)Xh‘

A PR 1
1 ,
TXh,lz(m—l) + EX;z,m

|~

) —i m—=1
sign(8;) X}, — *——= sign(G)

h=1

m—1 . . —k
+ sign (k) s, — sign(By) X, -
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Thus on the event S :

1

H
—il . - . —k
51 > | [sien(8,) %, — sign(50 %
h=1
H
33 (e 2ol (e i+

where 15, = |,ugl| |12F |, and we used that 1 < 1, and the fact that on S we have |Xh Li(m—1) "
,u?l] < nand similarly | XF L(m—1) ~ (5| < . Next we have:

: Ty |10,
hﬂ)@“wﬁﬁﬁ+mkwo

j k
H fjl,m| + |Xh,m|) + 2772
h=1

H H H H
n j 1 732 1 J3\2 1 Eo\2
+ mH Z |Xh m’ + hZ:l(Xh,m) + om2 H Z(Xh,m) + 2m2H Z(Xh,m) ’

h=1 h=1

where we used the simple inequality ab < (a? + b%) /2. Luckily we have already controlled all of the
above quantities. Using Lemma 3.4.3 and (3.4.8) we get

where we heavily relied on the fact that on S we have LS (X 7)2 < 1+ 7, therestof

the bounds can be seen in the proof of Lemma 3.4.3. (For the term note — > 7~ | X]

1 H J
= h7m’ <
m\/Zh 1 (X )2/ H < \ﬁ\/zr L(XT)2/mH).
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Finally noting that 2%

V\/liT <n?+ HT gives the desired result. O

Proof of Corollary 3.2.6. Note that we can rewrite Vik = =3 LS (X3, X — ) (Y: —uF) — (Yj -

W) (X — b

25 exp(—nax?/2). Then we have max;es, \Yj — 7| <

). Similarly to the proof of Corollary 3.2.4 we have P(max;egs, |Yj — W >1x) <

10g(5f) with probably no less than

1 —2t~1. This implies that:
log(s ) <O 1log s +logt

X_
ma(X — ) < = SO T

Therefore using bound (3.5.8), we get:

o~ Cy Q7 llog(st)
sup |VIF — Cov(m;(Y),mp(Y))| < == + ——="2
jkeSs (m; (Y), mi(Y)) 2st  slog(p — s)

B(s)

It is easily seen that the fact that log s = o(log p) implies that sB(s) = o(1), and hence all bounds
from the first part of the proof of Theorem 3.2.5 hold in this setting as well.

Next we move on to show that the matrix U, defined in (3.5.1), can be selected so that the blocks
vsé 53+ Vs s are o, where 1V = V — S2U. Note that since VFE <V for all k € S5, we will just

show the bound for V77 ,J € Sp. We have:
XA/jjg—V—i—B(s)g—
with the last inequality holding asymptotically as we saw before. Hence the rest of the proof of The-

orem 3.2.5 is valid and we are done. [

Proof of Theorem 3.2.7. In this proof we show the lower bound on n, such that detecting the sup-
port of 3 is impossible, with probability at least % We follow closely the approaches showed in?,

and rely on using Fano’s inequality, which in turn is a standard approach for showing minimax
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16,86,90,92

lower bounds (e.g. see among others). For simplicity of the exposition we will assume that

the vector /3 has only non-negative entries (i.e. all non-zero entries are ﬁ) The proof extends in
exactly the same way in the case when the entries of 3 are not restricted to be positive.

As we saw in Section 3.2.1, the space of models satisfying conditions (3.2.1) and (3.2.2), include
models of the form Y = f(8TX + ¢), where f isa monotone function,ande ~ N(0,02).

Note that if 02 is specified in such a manner that Cy = we have that f = Id, satisfies

condition (3.2.2). Hence, our conditions include the simple linear regression with Gaussian noise

as a subset. The lower bound then cannot be bigger than the one for the linear regression model.

A lower bound on support recovery for sparse linear models can be found in®*® in a more generic
setup than what we consider here, but we present a simpler proof with a slightly better constant, for
completeness.

Let [p] = {1,...,p}. Denote with S C 2[P, the set of all subsets of [p] with s elements. Clearly,
S| = (). Let S (RPYH™ - Sbe any potentially random function, which is used to recover the
support of 3, based on the sample { (Y3, X;)}7_;. Under the o-1loss the risk equals the probability
of error:

LS Py, (8 # 59, (B17)
(2) ’

SﬁES

where by Ps,, we are measuring the probability under a dataset generated with supp(/3) equal to
the index of the measure Pg,.

Instead of directly dealing with the sum above, we first consider the p — s + 1 element set S =
{§eS:{l,...,s—1} C S}, and we bound the probability of error, on any function S (even if

given the knowledge that the true support is drawn from g) If U is a uniformly selected subset of S



we then have by Fano’s inequality that:

I(U; (Y, X)") +log(2)
log S|

P(error) > 1 —

where I(U; (Y, X)") is the mutual information between the sample U and the sample (Y, X)".
Note now that for the mutual information we have I(U; (Y, X)") = I(U; (X8 4+ ¢,X)") <
nH((XB8+¢,X)) —nH((XB + e, X)|U)", where the last inequality follows from the chain
inequality of entropy.

We therefore need an upper bound on nH (X3 + €, X)) — nH((XB + €, X)|U). We can
readily calculate H ((X 3 + €, X)|U) as conditioning on the places of the non-zero coordinates of 3
(WLOG assume they are the first s coordinated, as by a symmetric argument all configurations lead

to the same result) we know that the data is normally distributed with covariance matrix given by:

[ 2 1 1 1 i
1
7 1 0 . 0 0 .0
1
7 0 1 0 O 0
Ay =
1
7 0 o ... 1 0 ... 0
0 0 0 0 1 0
0 0 O ... 0 0 ... 1

“Here we use H to denote the entropy, not to be confused with the number of slices.
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Using the following simple fact:

det = det T

we have that | det Ay| = 02, Therefore we have that H((X3 + ¢, X)|U) = %(1 + log(2m)) +
1 log(a?).

We next bound nH ((X 5 + €, X)). Note that unconditionally on U, the first coordinate is ac-
tually a mixture of normal distributions. Obviously however the data has mean 0, and furthermore,

the covariance can be calculated upon noting that Cov(X 5 + €, X)) = E[Cov(X 5 + €, X|U)] +
Cov(E[(X B + €, X)|U]). Thus the covariance is given by:

v

0
[ 2 1 1 1 1 1]
1+ % & 7 otV GestDve
1
7 1 0 0 0 .. 0
L
7 0 1 0 0 0
A= )
1
7 o o0 ... 1 0 o 0
1
m O 0 DR 0 1 PR 0
1
L m 0 O DY O O DY ]. i
where the number of % is s — 1. Direct evaluation of the determinant yields | det(A)| = o2 +

1 1

s~ 5pp—s71)- Therefore by the inequality log(1 + x) < x, since the entropy is actually bounded

by the entropy of a normal distribution with the same mean and covariance matrix we have that

H((XB +¢,X)) < B (1 +log(2m)) + §log(o” + § — 5symy) < 5+ (1 + log(2m)) +



+log(0?) + # (% - 5(17—715+1)> . This finally yields the following upper bound on the mutual

information:

% o s(p:Lerl) . 1-Cy % o s(p:Lerl)
202 Oy 2 '
1-Cy n

The above bound is of course < v 1 whenp > s + 1, which is clearly true in the case when

s = O(p'°). Thereforeif n < 195‘/ 2slog(p — s + 1) we will have errors with probability at

least %, asymptotically.
To finish the conclusion, note that the sum (B.1.7), can be split into ( P 1) terms, by the following

s—

operation:

1. Repeat each setin S — s times, and denote this superset by s x S

2. Foreach S of the ( < 1), subsets of [p] with s — 1 elements, collect p — s+ 1 distinct elements

of s X S containing S

3. Apply the % error bound obtained from above to this local sum.

1 (sgl)

In the end we get that the probability of error by selecting S C S uniformly is at least: ¢ @)

S

(r—
s—i—l)%:%. O

B.2  VERriricaTioN ofF THE DT/SDP CONSTANTS

B.21 DT CONSTANTS

In this section we show that the constants defined in (3.5.4), (3.5.5), (3.5.6) and (3.4.13) satisfied the

conditions so that the probability of the event S goes to 1, and further the 6 terms are bounded by

oy
v,
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We first start by verifying the probability requirements. Notice that by the definitions of H and €

— (3.5.4), (3.5.5) — we have H > M, % + 2¢ < %, % — 26> % — 2& > i
Letr = max(log(s + 1),log(p — s)) for brevity. Note that by definition n?(m — 1) >

2C4(1 + ~)r. Recall that ¢ = + — 2¢. Note that:

~ ~ ~ ~ 1 ~ K\ K
Cy=Co+Ch +02\/—10gﬁ+03 (—log <2H> H>

> @60 ronl 6 (<on (2) ),

where we used Cyp > 1, /—log  is decreasing and the function — log(x/2)z is increasing on

(0, %), but we have % < % by the definition of H (3.5.4). The above bounds clearly give:

sH exp —1 n*(m 1)
2774—5’1—1—62 —log(%) —1-63 (—log(%)q)

< sHexp(—(1+4+~)r).
The above clearly goes to o, with p — oo. Since n = mH, H is fixed and m — oo, we have:

exp(—2ne?) < exp (—22 (min {(K —1)/2, % 1/54}>2> 0.

Furthermore, s exp(—3/16n72) — 0. Asn >> s the above convergence poses no issues. This

covers the probability bounds.

Next we deal with showing that each of the 6 terms defined in inequality (3.4.8) and Lemma 3.4.3

is < % We start with

H s H— S — 125’

CH* ( 1 ) CH*K CKH:+!' Oy
2¢ | < — < < —
S



as promised. We proceed with bounding

il ) P ((JV+OV)

G2 “F-2ls 1
<2H @—l-& , (B.2.1)
s 12s

where the last inequality follows from % — 2e > ﬁ Next we consider the term:

C K
(26+1_ (m—1)2> THEE(+2) 2 <CV+CV>

H Hm?2 (%—26) - %—26 s 12s

(m=1?\ (Cv , Cv
+2<1 — RETHE

where we used (B.2.1) in the last line. Since € < ﬁ we have that 2626 < 2—16. Thus the first term:
1_

2¢ (C’\/+Cv> < Cy
s 12s

%—26 = 245"

For the second term notice that m > 104 and thus (1 — (77177;721)2> < 5% This and (B.2.1) imply

that:

(m - 1)2 CV Cv CV
- 7 o )< =
2 (1 m? s 125 ) = 24

This confirms that:

CEEUE AL S

TH T Hm (L —2) 125

12

1+7 as we can see thatm > =%s > ==s. Next notice that
Cv Cy

; L4 Cy
We proceed with the term: < e
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obviously, by the definition of 77 (3.5.6):

< —. (B.2.2)

Next we deal with:

2 2+2— o

CH”( +26) <2\/1+T\/C’V+ Cy Cy
- m 65

(% — 2¢) TS

WH¢¢

Where we used (B.2.1) and (B.2.2). Notice now that 4/ Cs = 12 (2\/1 + 74/ % + % + 4). This

implies:

2\/1+T 22+270V+CHN( +26)< Cy
(4 — 2€) = 125/

as recall m > g—ésr. This is even a little smaller than promised.

Finally, we investigate the last term:

Cv 4 CHK L 4 9¢
%1¢ G429 Q+1yw
H (H — 2e) 12

1 \/\7, which gives:

Note thatn =
48

7

LWETE G g

Ty (% — 26) ~ 12s°
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B.2.2 SDP CoNSTANTS

We start by verifying that the probability bounds converge to o, so that asymptotically the support is

recovered with probability 1. We begin with:

p1 = sHexp L n°(m —1)
21+ Cot Coy/~log (8) + Cs (~ log (§) a)

Recall that ¢ = - — 2e. Just as before we have the bound:

~ ~ ~ [ 2H = 2H\ K
~ ~ qa = q
Z?7+C1+C2U—log§+03 (—log <§) q).

where we used 6’6 =! ‘42‘/ > 1, /—log x is decreasing and the function — log(x/2)x is increas-

ing on (0, 2), but we have % < 2 by the definition of H. Furthermore note that: log(z) < z,
and thus (log (%) %) < 2. Moreover, since vVa+ b < y/a + /b, we have V0eg(2H /1) <
/10g(2/1) + \/log(H). Define the constant ' = 5’6 + C + Cy1/10g(2/1) + 2C5, and we have:

C'+Cy log(H) 277+51+C~’21/—10g%+53 (—log(g)q).

Note that by the definition of m, the following holds:

- 16(12t + 1)2(log(s) + log(H))(C' + Cy log(H)),
m > S ZQC'V .

Thus:
m 16(12t + 1)2(log(s) + log(H))(C’ + Ca+/log(H))

— - — 00,

s 12Cy
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which readily implies that p; — 0.

Next we need to control:

p2 = exp(—2ne?) < exp (-23 (min {(K -1)/2, 1 ; l’ i l48t) })2> :

Since we have selected: m > Ht3, we have that po — 0. Finally, it’s clear that s exp(—3/16n72) —

0,asn > s.

Next we turn our attention to showing that each of the 6 terms in the bound (3.5.3) is < Sgt

Before we proceed we observe several useful inequalities which follow immediately from the defini-

tions:

Lo, ol
H “~“HH

Su

+2e <

Moreover, obviously we have that¢ > 1.
1

Since: H > <%‘/Kt) I_K,we have:

K K k—1
CH <1 )SCHK<CKH _Cv

— 19 .
s H+6 s H — s — 12st

: 1 .
Next, since € < T 120 Ve have:

% 4 I8 (4 20)

H HY /1
2€ 18 < 2e— (OV ¢ < + 26)>
(ﬁ — 26) l s s H

H/C, Cy

<9et (VL EV

s 267 ( s 12st>

< Gv

— 24st

193



Next, using the fact that > 4(12¢ + 1) we have:

L mo12\ (42 2 OV+Q
H m? (% — 2¢) ~ml 125t
< v
— 24st

. (1+47)48st CAltT Cy
Since m > e have: 4 T < ol

Note that it follows from the definition of 7 that < %, and hence:

Cv
12st

4n* <

Next, consider:

4WIT+T 2772” CH™ (L + 2¢) 4\/14-7'\/ L 20v
vm (& — 2¢) - st 1 s
Cy
— 12st

where the last inequality holds since:

1 2 1
482$t2 (24t + 1 + l67t)

m>(147) Cr ,

by the definition of m, and since t > 1.

Finally, we investigate the last term:

WWEHEE G2 (o o
TH (%—26) — 1 s 12st
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where the last inequality holds since:

<L ey
=4yt I/s’

by definition. With this the verification of the constants is complete.

B.3 CoirLEcTION OF USEFUL LEMMAS

In this section, for convenience of the reader, we restate several lemmas that we use often in our

analysis.

Lemma B.3.1 (Lemma s*). Consider a fixed nonzero vector z € R® and a random matrix Ay s,

whose entries are iid standard normal random variables. There are positive constants Cy and Co

such that for allt > 0:
P (H[(n*lATA) — Lsxs)2||oo > CleHOO) < 4exp(—Cy min(s,log(p — s))),

1 —
where C1 = %;;S), for some absolute constant C3 > 0.

Lemma B.3.2 (Corollary 5.35%¢). Let Ay, x s matrix whose entries are iid standard normal random

variables. Then for every t > 0, with probability at least 1 — 2 exp(—t2/2) one has:

f_\/g_tg Smin(A) < Smax(4) < \/ﬁ‘i’ \/§+t>

where Smin(A) and smax(A) are the smallest and largest singular values of A correspondingly.
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B.4 COVARIANCE THRESHOLDING

Proof of Lemma 3.6.7. Note that, exponential concentration bounds do not apply in this case.

However, observe that by the properties of the multivariate normal distribution projecting X in the
space 3+ by (I — B8T)X makes it independent of Y. Clearly, the random variable Y (I — 38T) X

has mean 0. Note that conditionallyon Y;,7 = 1,...,nforanyj € {1,...,p} wehave that
LS V(- BET)X ~ N(0,n=2 S0 Y2 [(I - B8T),,). Clealy we have,
n~? Z Yi2 (I - BﬁT)]jj <n~? Z Y;zv
i=1 =1

for all j. Thus by a standard Gaussian tail bound:

(

where Y2 = n~! 3" | V2. By Chebyshev’s inequality P(|Y2 — 02| > r) < -1, Hence

= n,r.Q'

Y2

1 n
w2Vl BN,

2
> t‘Y) < 2pexp [—;] ,

o0

selectingr = 4/ 105 ™ will keep the above probability going to 1 at rate % and moreover for
large . we have Y2 <0241, Using this bound in the tail bound above yields that for a choice of
t=24/(c2+1) lo% the tail bound will go to 0 at a rate %, as claimed.

Next consider controlling:

P <||i;Yi55TXi—coﬁ > t) =P <|;;Yi5TXi—CO > t/HBHoo) ;

where E[Y X] = ¢o/3, and ¢ is defined in the main text. Applying Chebyshev’s inequality once
t = [18llo0 V1og
Jn

again we get that suffices to keep the above probability going to 0. By the triangle



inequality we conclude that, with probability going to 1:

1 — V1 1
ZYZ.XZ._E[YX]H SM-F? (02+1)ﬂ‘
=1 00
This is what we claimed. 0

B.s LASSO SurrorT RECOVERY

Proof of Lemma 3.6.13. Note that since Px Lisan orthogonal projection matrix it contracts length

and hence:

w12 _ w3
HPX? (E>HQ = A2n2

Next observe thatw = Y — ¢oX 3" is a vector with non-zero mean. However, by Chebyshev’s

92
>t < —.
=) T nt?

Then setting ¢ = 1 brings the above probability to 0 at a rate % Next:

inequality we have:

" Q\rwrr% e
n

1 125113 1 s

(=207 n T AL (-2

ntzL(n XL Xg) tig < 3

with probability at least 1 — 2 exp(—s/2), where we used Lemma B.3.2. This completes the proof.

O]

Proof of Lemma 3.6.15. First, we note the following decomposition:
[(XTX]IXTY — ¢of8* = (n[XTX] L = Dn ' XTY 4+ (n 7 1XTY — ¢o5%).

Note that the second term is mean 0. Applying Lemma 3.6.7 gives us a bound on the second term.
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We next move on to consider the first term.
Consider a “symmetrization” transformation of the predictor matrix X7 = (I — §*4*T)XT 4
B*B*TX*T, where X, , is an iid copy of X, or in other words the columns of X*: X* ~ N(0,I,,xy,), 7 =

1,..., s and are independent of X.. Note that in doing this construction, we guarantee that X is in-

dependent of XT/3*. We will need the following result:

Lemma B.s.1. Suppose that s, n satisfy 7 < 6i4' The following bound holds:

SO lo
1™ XX~ 07 TR e < 8V (clrw*uoo Hyf 58) ,

with probability at least 1 — 8 exp(—Co min(s,log(p — 5))) — dexp(—s/2) — 2 — 2, where
C1 > 0and Cy > 0 are constants.
Remark B.5.2. The constant C7 = %ﬁlp—s) with C3 > 0 being an absolute constant, can be

chosen to be arbitrary small, for the sake of making n proportionally large comparable to slog(p—s).

Now we further decompose the first term as follows:

(n[XTX]™ =D IXTY = (n[XTX]|™! = 1)B3**Tn 1XTY
+n(XTX]™! = [XTX] 7)1 - "B T)n ' XTY
+ ([XTX]"P =) 1XTY

— (n[XTX]"! = D)B* B TR IXITY.

We next deal with each of these terms separately. For the first and last term we can apply Lemma

B.3.1. Under the same event as in Lemma B.s.1 we have that ||([n ™1 XTX] 71 —1) 8*|| o < C1]8* |00
and ||([n'XTX] 1 —1)5*||cc < C1]|5*||so. Furthermore, 3*TXTY /n is a mean ¢ random vari-

able. Just as in the proof of Lemma 3.6.7 by Chebyshev’s inequality we have that with probability at
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least 1 — -2 we have [8TXTY /n] < Jeo| + /282

B,
Furthermore, notice that ! 3*TX*TY is a mean 0 random variable. Conditionally on Y it has

a N (0,n72 3" Y;?) distribution. With exactly the same argument as in the proof of Lemma 3.6.7

. o1: _.mn 2,
we conclude that with probability atleast 1 — o= — 7

1
In~LBTXITY| < 24/ (02 + 1) 2,
n

Thus, combining these results we get:

1 1
XX D XY [ < <|co| 20+ ) Of’;n)

+[n((XTX] ! = [XTX] (I = 578 T)n X TY |

+|(n[XTX] = D)n ' XTY || oo
To deal with the second first note that:

[n((XTX] ™! = [XTX] (I = 58 T)n ' XTY ||

< Nl (XTX] ! = [(XTX] ) foo,oo (L= 8780 XTY .

Note that the second term is a mean 0 random variable since (I — 8*5*T) X is independent of Y. In
Lemma 3.6.7 we argued that ||(I — B*8*T)n " 'XTY || < 24/(02 + 1)10% with probability at
least 1 — % (this event is in fact a sub-event of the bounds of the first term n ' XTY — ¢y5%).

By Lemma B.5.1 we have that the term ||n([XTX] ™! — [XTX]1)| |so,00 = O(1), which covers
the third term. Note here that by O(1) we mean that this term can be bounded by arbitrarily small

constant with high probability at the expense for making the ratio ﬁ high.

p—s)

Finally to deal with the last term we will make use of the following:
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< 6*14' Then there exists a constant Q) < o > 0, such that the term:

. - 1
In[XTR D KT e < 022,

with probability at least 1 — 2 — 1 — 2 exp(—s/2).

LemmaB.s.3. Let

s
n

Applying Lemma B.s5.3 we have in conjunction with our previous bounds we get:

_ N . logn logn
XX XY ~ 06 oo < Call 5 loc (\com/ B 202+ 1) )

+16v5 <01||ﬁ*\|oo+4\/1°§8> o+ '

n

oo foEs I g, [ e
n vn n

with probability at least 1 — 8 exp(—C5 min(s, log(p — s))) — dexp(—s/2) — & — & — 2 /E01

which finishes the proof, after grouping terms. O

Proof of Lemma B.s.1. We first compare [n 1 XTX] ! to [n_liTX + B*B*T]~L. Observe that
the latter matrix is invertible wap* 1. Note that nIXTX + BT = (I — B*B*T)n 1XTX +
B*B*T(1 + n~1X*TX), and since the matrix XTX is full rank wap 1 and B*T(I + n~1X*TX) # 0
wap 1, the matrix in question is of full column rank. Using Woodbury’s matrix identity we have:

o1 [IXTX] T A TM [ X TX]
N 1 — BTMn~1XTX]~13* ’

[n~'XTX + B*8*T] 7! — [n ' XTX]

where M = n~!XTX — I — n~!X*TX. Next we handle the term 8*T M [n~tXTX] 1. By the

THere we are recognizing the fact that the events of some probability bounds we derived above, in fact
coincide.
*Here and throughout wap means “with asymptotic probability”.
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triangle inequality have:

18 TM 0™ XTX] oo < |8 T([n ™ XTX] ™ = )[|oc + 18" Tn ™ X TX [0 XTX] 7.

For the first term Lemma B.3.1is directly applicable. Applying this lemma gives us the existence
of constants Cy and Cy such that ||([n ! XTX] ™! — 1)B*||oc < C1]|8*||0o With probability
atleast 1 — 4exp(—Cymin(s,log(p — s))). For the second term, we have that conditionally

on X it has a normal distribution: N (0,2~ (n "1 XTX)~1). Since X is standard normal, we can

2
apply Lemma B.3.2 to claim that ||n(XTX) 7|y < (1\}?15) with probability at least 1 —
2 exp(—nt?/2). Takingt = /% gives us that [|n(XTX) !y < @ with probability at

least 1 — 2 exp(—s/2). Thus conditioning on this event, by a standard normal tail bound we have:

2
P(J|8*Tn ' XX [n ' XTX] oo > 1) < 2sexp (—th <1 - 2\/5) /2) )

Selectingt = 44/ 107% 2, we get the probability above is bounded by % (using \/% < %) So finally

on the intersection event we have:

X _ _ N log s
18TM ™ XX oo < CullB" oo + 4 =2,

with probability atleast 1 — 2 — 2 exp(—s/2) — 4 exp(—C min(s, log(p — s))). Let us now

consider the denominator:

1 - B TMn I XTX] 18" =1 - T - [n ' XTX] Hp* + n 1 TX*TX[n 1 XTX] 1 5*

= BT IXTX] 18" + n 1B TXMTX [ I XTX] T B
Using Lemma B.3.2 we have ||[n 7! XTX] 7| > m > % with the last bound holding un-
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der the condition £ < &;. Hence |3*T[n"'XTX]~!3*| > 13. For the second term just as before,

conditionally on X we have n ™1 *TX*TX [n 1 XTX]718* ~ N(0,n 18*T[n " 1XTX]713%).

logn
n

Then by a standard tail bound we have that the second term is < 4 with probability at least

1-— % Putting everything together we have:

16 1
1— B*TM[TL_IXTX]_lﬁ* > 275 4 Ogn‘
n

The last expression is clearly bigger than % for large enough values of n. Hence we conclude that

with high probability we have:
™' XTX + 57577 = [0 XTX] ™ [oo,0 < 2|0 XTX] 7B 18TM [0 XTX] oo
For the first term, by the definition of matrix || - ||2 norm we further have:

1" XX 3"l < Vsl ™ XTX] 7872 < Vsl |87 l2l[n ™ XTX] 2

1

Combining this inequality with our previous bound we get:

—157 *p¥11—1 -1 -1 2y/s * log s
L I e S = e (CMHOOH\/ s )

Next we show that [niliTX + B*B*T] L is also close to [niliTX]fl. By Woodbury’s matrix
identity we have:

L [TXTX] T M B AT X TX] !

—IXTX * oxT1—1 _IXTX Z ks
p XX 4 58T [ KT R
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where M = n~1XTX — I — n~1XTX. Note that since XT L X 3*, the same argument as before

goes through. Combining the bounds with a triangle inequality completes the proof, using the fact
S 1
that \/% S 3 O

Proof of Lemma B.5.3. We first perform an SVD on the X = UnssDgx sV

s s matrix. Noting that

since multiplying X by a unitary s X s matrix on the right or with a unitary n x n matrix on the left
doesn’t change the distribution of X, we conclude that the matrices U, D and V are independent.
This representation gives us that (n "!XTX) ™! — I = V(nD~2 — I)VT. With this notation we

can rewrite:

(nXTX] ' =D 'XTY =V (nD 2 —Dn" 2D n V2UTY.

w

We recall that by construction X is independent of Y. The elements of the matrix W' can be bounded
in a simple manner. We have ||[W||2 < ||(nD~2 —T)||a|[n~/2D||2, and by Lemma B.3.2, as before
D2 < @ -1< i 2\\/} and ||[n~1/2D||5 < 1—|—2fw1thprob—
ability at least 1 — 2 exp(—s/2). We will condition on the event || ||z < i 2\/~ (1+2/3) <

we have: |[(nD~2 —

9./, with the last inequality holding for /£ < . Since every random variable in the display is
independent from W the distributions of V, U and Y stay unchanged under this conditioning. Let
e; be a unit vector with 1 on the i™ position. Since we are interested in bounding the || - || we will

start with the following:
el (n[XTX]™ = D)n 1XTY = o] W[n V2UTY],

where UZ.T is the i™ row of the matrix V. Condition on the vectors n~/2UTY and Y. Since v; is

independent of n~1/2UTY, Y it follows that the distribution of v; is uniform on the unit sphere in
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R®. We next show that the function F'(v;) = v] W[n~/2UTY] is Lipschitz. We have:

|F(v5) = F(v)] < [Jvi = villol[W ]2l [n2UTY |3

s _
<l = {9y 2017
n
s _
<l = 19y 0 1Y
T

where the last inequality follows from the fact that the vectors u; are orthonormal and hence >;_; (u] Y)? <

Y]|3. Since Y; are assumed to have finite second moment, by Chebyshev’s inequality we have that:

P(ln~ Y2 — 02| > t) < —L |
(n Y IE -2 > 0 < 2

Selectingt = 4/ 10% is sufficient to keep the above probability going to 0, and furthermore for n
large enough guarantees thatn~||Y||3 < 402 and hence n='/2|[Y||2 < 20 (assuming that o
doesn’t scale with ). Thus conditional on this event the function F is Lipschitz with a constant
equal to 180 /. Since the expectation of the function F is 0, by concentration of measure for

Lipschitz functions on the sphere 3, for any ¢ > 0 we have:

_ 2
B(|F(us)] > t0) < 2exp <c53242) |

for some ¢ > 0. Taking a union bound the above becomes:

2
P(max |F(v;)| > to) < 2exp (log(s) - Etn> .

Selectingt = 26/ logi 2, keeps the probability vanishing at rate faster than 2/s and completes the

proof. O
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C

Proofs for Chapter 4



C. Proors oF THE GENERAL THEORY

Proof of Theorem 4.3.3. By the mean value theorem we have:

~

PN 1 & 1 o ~
S(Bo) = > vTh(X;,8) + - > VTH(X:,8,)(Bo - B)
=1 =1

Iy
v % % — v)Th(X;, 3%)
=1
Ip)
Next we control I7:
< \ [VTH<XZ-,BV>} 1Bo— Bl < Op(ra(m)Oy(ri(m).  (Cat)
—1lloco

where by []_1 we mean discarding the first entry (corresponding to ) of the vector. We proceed to
bound Is:

n

=) (X8

=1

(L < [V —=v*lh = Op(r2(n))Op(r3(n)). (Cr2)

o0

Thus using (4.3.5) we have:
n' (0] + | L) < 0?0y (ri(n)ra(n) + ra(n)rs(n)) = op(1),

and we are done. O]

Proof of Proposition 4.3.8. Note that the only thing left to show is the consistency of the plugin esti-

mate VI SV to v*T'Sv*, with the rest of the argument following from Corollary 4.3.5 and Slutsky’s
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theorem. By the triangle inequality we have:

VIEV v T2V < 97 = v 1| ZE = V) oo +2 |V S|V = vl

11 12

+ VIS = Bllma

I3

Next we control I7:

|11] < Op(r2(n)?r5(n) + [ Zmaxr3(n)) = op(1).

Below we tackle I5:

12| < 20,([[v*[ir2(n)rs(n) + [V E]lccr2(n) = 0,(1)

Finally, for I3 we have:

|5 < V10 (rs(n)) = 0p(1).

O
Proof of Proposition 4.3.26. Itis easy to see that, with the help of the mean value theorem, (4.3.21)
can be rewritten as:
[1 13
1 n n
0-0) "> (X, B)| | - [H(X8)] )~ - 9 h(X By
) (007297 (|HXeB)|,| — [HXi B ) =2 ) 9"h(Xi, B
nl/Z(@_g*) _ n1/2 =1 = =1
DAl G )]
n *1
=1
Iy
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where 5,, = VB +(1- V)B@*. By Assumption 4.3.25

02 — 0*)11] < n*/%|8 — 6*|0,(r5(n)) = 0,(1)

Moreover, by Assumption 4.3.25 | 2| = 1+0p(1). By similar arguments to the one we used to show

Corollary 4.3.5, we know that I3 ~» N (0, 1). Hence, putting everything together with Slutsky’s

theorem, we have:

nl/2

— (§—6")~ N(0,1),
W( ) 1

as claimed.

Lemma C.r.x. Under Assumptions 4.3.10 — 4.3.13, we bave:

Jim inf By (’g((),”)?) . S(O,fy)‘ < i (n)ra(n) + Tz(n)rg(n)) —1

Ifin addition n'/?(r1(n)ry(n) + ra(n)r3(n)) = o(1), we have:

a2
Pg (s«w) < t) - @(t)‘ ~0

lim sup sup
n_ﬂ)oﬁEQO t

viyv

(C13)

(Cg)

Proof of Lemma C.1.1. The proof of (C.1.3) is exactly the same as the proof of Theorem 4.3.3, but

uses the uniform convergence assumptions. Note that the bounds, (C.r.1) and (C.1.2) still hold as

long as the event GP = gfm. . .mgf holds. Since infgeq, Pg(GP) > 1—2?:1 SUPgeq, Pﬁ[(gf)C] —

1 by Assumptions 4.3.10 — 4.3.13, this completes the proof of (C.1.3).

Next we show (C.1.4). Let 6(n) = /nC~Y2(ry(n)ry(n) + ra(n)rs(n)), where we recall the
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definition of C: C' = infgeq, vI'Sv > 0. Then we have:

vi¥v vi¥v

nl/2 ni/2 . 3 B
Ps = S(0,7)<t| <Pg 5(0,7) < t,G° | +Pg((G”)%)

nl/2
<Ps (VTEVS(O,')/) <t+ m(n)) +Ps((G°))

The above implies the following inequality:

a2
Pg (WS(O,Q) < t> — B(t)

nl/2
<Ps ( > S(0,9) <t + Fé(n)> — B(t + K(n)) + (B(t + K(n)) — (1)) + Pa((G”)°)

nl/? k(n
<Pg ( VTEVS(O,')/) <t-+ ﬁ(n)) — ®(t+ k(n)) + \/(% +Ps((GP)°),

where we took into account the fact that ® is Lipschitz with constant < . Now taking into

5
3

account Assumption 4.3.12, the fact that £(n) = o(1) and P5((GP)¢) = o(1) we conclude that:

/2
limsup sup supPg 1 S0,9) <t]| —®(t) <0.
n—oo BeQy t VTZV

With a similar argument one can show the reverse, namely:

e n'/2 o
lgglcgfﬁlélgfzo IItlf]P)ﬁ (VTEVS(O,‘}') <t]|-—®(t) >0.

This concludes the proof of (C.1.4). O

Proof of Theorem 4.3.14. Let Ggh = gf‘ Nn...N gf. By Assumption 4.3.13, on the event GP we
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clearly have:

6% —vI'Sv| < 1(n) (Curs)

Note that (C..5) immediately implies that & > \/vI v — 7(n) > /C — 7(n), by assumption.

Hence note that

o — VvTEv| < 7(n) < 7(n) (C.16)

We next investigate the following difference, for some av > 0:

a2 2
Pgs 75(0,7)§t —Pg ﬁs(oﬁ)ﬁﬂra

I
o — VvIXEv| )
—_— >«
o

1 o — VvIXEv|
+Pp( T >

nt/2
<P S(0,5
<Pg ’ e (0,7)

> o

@%.6%) + Pa((0°))
From Lemma C.1.1, we know that for any o (even depending on n or 3):

lim sup sup
n—)OOﬁEQO o

nl/2
Pg (‘\/msmﬁ) > oﬂ) —-P(|Z] > a‘1)>' =0,

where Z ~ N(0, 1), and hence asn — oo:

nl/2 .
P S(0,5
8 > 0,7)
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by a standard tail bound for the standard normal cdf. Next we deal with:

pﬂﬁ—ﬁffw>JQ@SR%CTQM>J>§%G%@>M>

where we used the bound (C.1.6), and we are assuming 7 is large enough so 7(n) < C'/2 e.g. Taking
a = {/7(n) is sufficient to let the above probability converge to 0, while keeping @ — 0. Note fur-
ther that due to Assumptions 4.3.10 — 4.3.13, we have lim;, o0 SUpgeq, Ps((GP)¢) = 0. Hence

we have shown lim sup,,_, ., supgeq, sup; I1 < 0. Finally note that the following decomposition

evidently holds:
/2 nl2
Pg| ——S5(0,7)<t| —d@t) =1 +Pg | ——uS(0,7) <t4+a|—dt+a)tdl) —dt+a).
s | =507 ()1ﬁ\/ﬁ(’7) ( )+ @(t) — O( )
I Iz

Using arguments as in Lemma C.1.1, we can show that lim sup,,_, ., supgegq, sup; max(Iz, I3) <

0, since as we mentioned o« — 0. Hence:

lim sup sup sup [l < 0.
n—oo BeRy t

Analogously we can show that:
liminf inf infl > 0,
n—oo Bey t

which completes the proof. O

Lemma C.x.2. Under Assumptions 4.3.17 — 4.3.19 and Assumption 4.3.21 we bave that:

lim  sup  Pg(v/n|S(0,7) — S(B) + 0] < rs(n) + vnr(n)) =1, (C7)
0 BeQ (K,¢)
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where k(n) = r1(n)ra(n) + ra(n)r3(n). Furthermore, assuming that \/nk(n) = o(1), we have:

lim sup sup

w2
P S(0,7)<t)| —d@t)| =0, ifp > 1/2,
N0 3e0 (K,9) t B < viyv (0.5) Q f /

(C.1.8)
1 o 5(0,7) <I>< K ) 0, ifp =12
im sup sup ) <t] — t+ =0, ifo = ,
n=0 ge0y (K,¢) t p vi¥v K VvISv f
(C.L.9)
and for a fixed t € R and K # 0 we bave:
nt/2
lim sup P ‘S 0,4 ' <t] =0, fo<1/2 (C.r.10)
N0 3eq (K, ¢) p VvTEv (0.5) f /

Proof of Lemma C.1.2. To show (C.1.7) we note that by the triangle inequality:
15(0,7) = 5(8) + 6] < |5(0.%) = S(0.7)| +[5(0.7) — 5(8) + ¢

On the event G# = G2 N G2 N G7 N GP N GP the bounds (C..1) and (C.1.2) derived in Theorem
433 hold. Since inf geq, (1,0) Pa(GP) > 1 — 0, s SUDgcq, (1c.6) Pal(GF)] — 1, we have
that |5(0,5) — 5(0,7)| < k(n), using Assumption 4.3.21 completes the proof of (C.1.7).
Let £(n) = C~Y2(y/nk(n)+rg(n)), where we recall the definition of C: C' = infgeq, (k. ¢) VI BV >

0. Furthermore denote for brevity 1 := \/ﬁ Using (C.1.7) we have:

-~

nl/2
Pg ( 5(0,7) < t) — B(t)

VvIYv

nl/2
<Pg (Ws(ﬂ) <t+&(n)+ Knl/“’u) — Ot +&(n) + Kn'>2u) + P((GP))

+ ®(t+£(n) + Kn'/>=%p) — &(t) (C.L.1)
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Recall that ®(¢ 4 £(n) + Kn'/?~%p) — &(t) < W, and by Assumption 4.3.19, (C.1.11)
gives:

~

1/2
limsup sup supPpg LS(O,’?) <t]|—-2(t) <0
n—oo BeQ(K,p) t vIiYv

Using similar arguments we can obtain the lower bound and conclude the proof of (C.1.8). The
proof of (C.1.9) follows analogously.
Finally we show (C.r.10). Denote with [ := —t — £(n) + Kn'?~®pand L := t + &(n) +

Kn'/?=%y, and similarly to the bound in (C.r.11) we have:

)

S(B) < L) ~PI<Z<L)+P(1<Z<L)+Pg((G")), (Crr)

nl/2
P 5(0,3
o\ | Forsre (0,7)

nl/2

viyv

S]P’ﬁ<l§

where Z ~ N(0,1). Note thatsince ¢ < 1/2,[,L — oo,if K > 0P(l < Z < L) =

b

(L) — ®(1) — 0. Similarlyif K < OwehaveP(l < Z < L) < ®(L) — 0. Moreover by

Assumption 4.3.19 we know that:

limsup sup

Pg |l < S
n—oo  BeQ (K,p) ‘ p ( VvvIsv
which completes the proof. O

Proof of Theorem 4.3.22. Since the proofs of (4.3.17) and (4.3.18) are very similar we will only show
(4.3.18). Note that on the event Ggh = gf N...N g(?, just as in the proof Theorem 4.3.14, we

have that the bounds (C.1.5) and (C.1.6). We have that supgeq, (i) 7(1) = o(1). Set U, :=

\/%g (0,%)and pt := \/\171172‘/ The proof then proceeds similarly to the proof of Theorem
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4.3.14. Decompose:

Pg (ﬁngt) — O (t+ Kp) =Pg (ﬁngt) —Pg(Un <t+a)

Iy

+Pe(Up<t+a)—@(t+Kp+a)+@(t+Kp) —(t+Kp+a).

Ip) I3

Starting from I, for some & > 0 we have :

~ vVvly
sup Iy < Pg(|Up — Up| > a) = IP’g(]Un| 1— %
teR

)

VAZD )
< Pg(’Un| > Ol*l) +]P’,3<’1 — ¥
g

> oc2> (Cn3)
For the first term in (C.1.13), we have:
Pa([Unl 2 a”1) < [Pa(|Unl 2 a~1) = P(Z — K| > a™V)| + P(Z — Ku| > oY),
where Z ~ N(0,1). By Lemma C.1.2:
lim  sup sup|Pg(|Un| > a ') —P(|Z — Ku| >a 1) =0

N0 Be0 (K,p) o

Furthermore, by a standard tail bound:

2 1+ Kp)?
P(1Z - Kyl >a™') < exp (—(O‘W) -0,
V2r(a—t + Kp) 2

as o — 0, where the convergence holds uniformly in 3, because 1 < C' -1 by Assumption 4.3.19.

Showing that the second term in (C.1.13) converges to 0, can be done by choosing @ = {/7(n)
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and using the same technique as the end of Theorem 4.3.14, so we omit it. This implies that:

limsup sup supl; <O0.
n—0o BeQ(K,$) 1

By Lemma C.1.2, we have:

limsup sup supls <0,
n—oo BeM(K,p) ¢

and since I3 < (27) "'/ we get:

limsup sup supPg (ffn < t) —®(t+Kp) <0
n—o0 BeQ(K,¢) 1

Similarly we can obtain the lower bound, and conclude the proof of (4.3.18).
For showing (4.3.19), note that since SUpgeq, (i, ¢) |62 — vI'Sv| = 0,(1) and by assumption
infgeq, (k0 vIZvT > O, we have: SUPgeq, (K,0) |62 /vISv — 1] < 1, for large n. Thus for a

fixed ¢, for large enough n, we have:
P (|Un| < t) = Pg(|Un| < t(7* /v Ev)!/2) < Pa(|U| < V21).
Finally, applying Lemma C.1.2, we get:

lim  sup Pg(]ﬁﬂ <t)< lim  sup Ps(|U,| < V2t) =0,

n=00 Beq, (K,0) n—00 Be (K,0)

which concludes the proof. O
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C.2 PROOFS FOR THE DANTZIG SELECTOR

Proof of Theorem 4.4.1. Assume that X; = (X1, X ZT )T corresponding to the partition of

B = (0,7). The test statistic S(0, ) is
1 n
SO0.5) = 12 IXXIF )
1=

Next we verify the assumptions of Theorem 4.3.3. From Lemma C.2.5, we have that [|[v* —

log d
n

vih = O, (HV* l|l18v , and within the proof of Lemma C.2.6 (see (C.2.9)), we can see

that || 2 5770, Xi(XE—17* -Y;)

n

. logd logd . logd
n'/20, (Hv l1sv/ n) op< n) -0, (Hv ||1svﬁ> —op(1).  (Ca)

Furthermore, by Lemma C.2.7, we have that || 3* — B i =0, <8 log d) , and since we know

n

=0, ( log d) , which implies that:

logd

. for some large constant C' (see Lemma C.2.5), we get

that it suffices to select X' = C|[v* |,

. 5 ~ . logd logd
VN[BT = Bl = VnClv' [y [ —=0p (S . ) = op(1). (Cz22)
Adding up (C.2.1) and (C.2.2) yields condition (4.3.5) from Theorem 4.3.3. Hence, the influence
function expansion of n1/2g (0,7) follows from Theorem 4.3.3. O

Proof of Corollary 4.4.5. The influence function expansion from Theorem 4.4.1, has already given
us a decomposition of n'/28 (0,7) into iid terms with mean o. We next show that the conditions

from Corollary 4.3.5 hold by verifying Lyapunov’s condition for the CLT — which will verify As-
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sumption 4.3.4. We need to show that the following expression converges to 0:

— n
n—3/2

Y ENVTX (X - 1))
i=1

A3/2

Note that we have A%/2 > A\ (Zx)||v* |13 Var(e)®/? = O(1)||v*||3. Therefore it suffices to

consider the following expression:

n_3/2 n X i} 3 B n
g LBV XXy - W) <Y BN (K. 3
2 =1 i=1
< n71/28§/2M, (C.2.3)

where M = (6K K x )3, and the last inequality holding from Lemma C.2.9. This completes the

proof. O

Remark C.2.1. Using the Berry-Esseen theorem for non-identical random variables in combination

with (C.2.3) we can further show:

sup < CppMn~ 1263 = o(1),

t

nl/2
P* (\/KS(O,fy*) < t) —®(t)

where CgE is an absolute constant.

Proof of Proposition 4.4.6. We show that each of the two sums is corresponding to it’s population
counterpart, and then the proof follows upon an application of Slutsky’s theorem. We start with the

first term:

n
< [(GTXl)Q _ (V*TXZ‘)Q] _H V*TEnv* . V*szv* ”
i=1 i=1 I

1 n
- Z(GTXl)Q —V*szv*
n

SRS

I
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L] < IV = V[ ([ZnVloo + [Znv7]oo)-

We know from Lemma C.2.s, that |[v* — V||; = O, <||V l15vy/ lOgd),amd by definition

[Xr¥]soe < 1+ X.Intheproof of Lemma C.2.5 we also show that, || X, v*||cc = 1 +

log d

, with a large enough pro-

O, <||V*H1 bgd) upon appropriately choosing A" =< ||v*||;

portionality constant. Thus since O, <HV*|| Svy/ logd) (2 + O, <HV*||1 107%d>> = op(1)

we have shown |I1| = 0,(1). We next tackle I5:

L] < IVITIZn — Ex lmax-

Lemma C.2.2 gives us that || X, — X x |lmax = Op(4/ losd), and thus because of our extra assump-
. logd
tion we have | Io| = Op(||v*[|21/°5%) = 0,(1).

Now we turn to the second part of the proof:

n

% > (V- X[ B)*—Var(e)| <

’ n n
i=1

S - XTBR - S (- XTI

i=1 i=1

‘ ZE — Var(e

I3 Iy

The term I is clearly 0, (1) because of the LLN (g; are centered and have finite variance as sub-

Gaussian random variables). Thus we are left to deal with I3:

|13

| N

*IIX(B B3+ Z!XTB B*)|leil

IN

1 2 %\ (12 2 2 *
5\|X(5—5 M2+ 5“X(,3—,3 )2

where X, 4 is a matrix, with rows X ZT stacked together. (C.2.11) in Lemma C.2.7 gives us that

%HX(,@— B2 = Op(Sk;L—gd) = o0p(1),and sinceby LLN /1 3™ e2 = O,(1), we have
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|I3] = 0p(1), which shows the consistency of the second estimator and concludes the proof. O

Proof of Remark 4.4.7. In the second part of the proof of Proposition 4.4.6 we showed that nt S (Yi—
x7 ,@)2 is consistent for Var(e). All that is left to show is that under the assumptions of Theorem
4-4.1we have V1 is consistent for v*T X xv = vi. We have |vi —v1| < [[v* = V|1 = O,(N'sy) =

0p(1), by Lemma C.2.s. O

Proof of Proposition 4.4.8. Note that:

As = (B8 —pB)T = > OXPROEXPB - B)+ - > VIXP(B - BV X+ - > (T Xiei)?
=1 =1 i=1
M Ip) I3
4

We first handle I;. We have that:
(B =B M(B" =) < 18" = BN M-
In much the same way as in the proof of Proposition 4.5.6 (see (C.3.1)), we can show that

[M]|oc = Op(log(nd))|[v*]l1-

Thus since H,@ - B*2 =0, <82 logd), we have

n

logd

B - B M@ - B) =0, ( log<nd>> 1"l = op(1),

n

by assumption.
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Next, we take a look at I3.

n n

1< 1
Iy = Var(c) - > FTX)?+ - > (T X)% (e} — Var(e)) .
=1 =1
I3 I32

Note that by the same proof as in Proposition 4.4.6 we can show that I3; —p A. Now we show

that I39 is small.
n

~ 1
[ T2 < |97 max | X anac ;(5? — Var(e)).
By Lemma C.2.8 we have that max; || X% ||max = Op(log(nd)), and furthermore ||V||? =

[v*||# + 0p(1). Thus by Chebyshev’s inequality we have:

I = 0, (uv*r#%gd)) — 0,(1).

where the last follows by assumption. Finally, by Cauchy-Schwartz we have:

1| < 2¢/Ti\/Ts = op(1)0p(1) = 0p(1),

which finishes the proof. O

Proof of Theorem 4.4.12. The proof of this Theorem follows from the general Theorem 4.3.22 upon
verifying the assumptions. Note that in the proof of Theorem 4.4.10, we have verified all assump-
tions except for Assumption 4.3.21 and Assumption 4.3.18 in particular (4.3.14).

In the lines below we verify assumption 4.3.21. First observe that in the special case of a linear

model v does not depend on the parameter 3. Therefore we will write v*. Note that we have the
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following inequality:

VnlS(0,7v) = 5(0,7) — 0] = v/nb

1 [
v r (Z X X1 — EX,*1> ‘

=1

1 n
- Z X Xi1—XYx .
i=1

< Vnb|v

o0

1

Lemma C.2.2 shows that |I| < & log with high probability for a sufficiently large £ > 0. Hence

under our assumption since the RHS is independent of 3 we conclude that:

lim inf Pg (ﬁ\S(Q,Fy) —S5(0,v)+6| < §Hv*\|1n_¢\/@) =1

n—00 BeQ (K,¢)

Next we verify (4.3.14). We have:

1 1
ZX Xy =v)| <=0 Xe +Kn_‘z’HZX1XM
o0 n i=1 0 n i=1 00
While we have a bound on the first term from (C.2.9) — ZZ | Xi€i < ¢ bg for

some &’ > 0, we don’t immediately have a bound on the second term. Using the same idea as in

Ly XXl < Sxallee + O/ 8% <2K% + €y /8d

e}
for some large constant C'. Here we used the bound || X x 41 lc < 2K% which follows by the

Lemma C.2.2 we have that

definition of )5 norm.

This finishes the proof, since by Lemma C.2.5 we have:

ZX 1’7 =0

= 0, (Il En~*+/logd) = 0,(1).

o0
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In what follows we let X, x4 be a matrix, which rows are the X ZT vectors stacked together.

Lemma C.2.2. We have that with probability at least 1 — 2d2(1—ex A%).

n

lZXZ@?—EX

n -
=1

logd
— 2 — Sx|. < 24xK% ] 282

max —

max

Note. The constant cx is a universal constant independent of the X distribution, K x is as defined

in the main text, and Ax > 0 is an arbitrarily chosen constant.

Proof of Lemma C.2.2. First we note that the elements of the matrix — X ®2 are sub-exponential
random variables. This fact can be seen along the following lines. Note that for any fixed p > 1 and
two univariate sub-Gaussian random variables X and Y, by the triangle inequality, and the simple

inequity a® + b* > 2|ab|, we have:

2 2
BRI o (BXPIIETY - (P
P v2p

2p

Hence:
1X X7y, < X712, + IXI, < 2Kk (C24)

Using a Bernstein type of tail bound, for sub-exponential distributions (see Proposition 5.16 in

Vershynin *#) in addition to the union bound we get:
9 . t2n tn
P (Hzn — ZX”max Z t) S 2d exp —2CX min @, @ y

where cx is a absolute constant independent of the distribution of X. Therefore pluggingint =

2Ax K%/ logd, for a large enough constant A x would yield that | X, — x| .. < 24xK% 1/ losd

with probability at least 1 — 2d2—2ex AE(, as claimed. O
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Lemma C.2.3. Assume the same conditions as in Lemma C.2.2, and assume further that the mini-

mum eigenvalne Amin (Xx) > 0and s % < (1-— ﬁ)( Amin (Zx)

6224 K where 0 < k < 1. e

then bave that Xy, satisfies the RE property with REs;, (s,€) > Kk REx, (5,£) > kAmin(Zx) >

0 with probability at least 1 — 2d22ex A%
Proof of Lemma C.2.3. Take a non-zero vector in the cone: u € {|luge||; < &||ugl|1}, with
|S| < s. Note that we have the following:

|uT2nu — uTEXu‘ < Hu||% 12, — x|

max

< (1+8)?[lusl 120 — Bx]|

max

< (14 9)slusll 120 — x o -
The last of course implies:

REEn(Saf) > REEX (37€> - S(l + 5)2 Hzn - 2:)(Hmax'

Now, on the event:

log d
1Z0 — Sxll . < 24x K%/ 282,
n

max —

we have:

logd
REs, (5.€) > RExy (s,€) = s(1 +§)?24x K =

Thusif s % <(1- H)%, for some 0 < Kk < 1 we conclude that:

REs, (5,€) > kREs4 (5,§) > kAnin(Zx) > 0,

where the probability bound on the event follows from Lemma C.2.2.
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Definition C.2.4. Forafixed 0 < k < 1, let RE,(s,&) = k REx, (s, ).

Lemma C.2.5. Assume that — Apin (Xx) > § > 0, sy logd < (1-k) ui{'@%, where
X

0<k<landN > ||v*|124AxK% %. Then we have that |V — v*||; < % with

probability at least 1 — 9q2—2ex A%
Proof of Lemma C.2.5. We start by showing that v* satisfies the Dantzig selector constraint, i.e.

n

1

— ZV*TXEM —e
n <

=1

<X,

[e.9]

with high probability. To this end, note that:

< VI3 — x|l

max

1 n
- § V*TX;-XQ —e
n

=1

o0

. logd
< v h2Ax K ==,

where the last inequality holds with probability at least 1 — 2d2~2¢x A% asin Lemma C.2.2. Thus
for values of X' > [|[v*|[124x K% 1/ %, the above gives us that:

1 n

- Z({; _ V*)TXl®2

n-
=1

<
o0

I 1
LS grxe o +HZV*TXZ,®2_e
ni:l o ni:l

<2). (Ca.s)

o0

Let Sy = supp(v*), with sy = | Sy|. We can therefore conclude that:

Vs, =1Vl = IVl = Vse [l + [[Vsg -
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Furthermore, by the triangle inequality:
Vs lly = [Ivs, I = [[Vs, = v, |-
Combining the last two inequalities we get that:
[Vsg = Vel < [[Vs, —vg, - (C2.6)
Now we evaluate:

SIX© v M3 < B @ = v) oo 1F = v

by (C.2.5),(C.2.6) R
2N (2|Vs, — v, 1)

< AN V/sv||Vs, — v, |2

On the other hand, by Lemma C.2.3, we know that the matrix 33, satisfies the RE condition with

RE(sv, 1), on the same event on which we are working on, provided that sy 1/ % < (1-

)\min(EX)
)(

I m, for some K < 1. This lmphes that:

~IX(E = vI)IIz = REx(sv, )[[Vs, — V&, [

The last inequality gives us that:

. ) R 8\'s
9= vl <2095, - 5, I < 2V 9s, — Vil < g

with probability at least 1 — 2d2—2cx Agf, as claimed. L]

Lemma C.2.6. Assume the same conditions as in Lemma C.2.2 and that logd < C for some
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constant C. Let Sy = supp(3*), and let \ = AK %. Then, with probability at least 1 —
1-__eA?
ed 20HCAXKY _ 9g2(l-exA%) (where c is a universal constant independent of the distribution of

g, K = ||e||yy, and the other constants are defined in Lemma C.2.z) we have:
1Bsg — Biclli < 11Bs, — B 1. (C27)
and:
HZn(ﬂ* . E)HOO <2\ (C2.8)

Proof of Lemma C.2.6. Note that by a Hoeftding’s type of inequality for sub-Gaussian random

variables (see Proposition 5.10%*) and the union bound, we have:

2
> t’X) < edexp ( cnt) , (C.2.9)

1
P(|=X"e —
<Hn K2H2n||oo

logd

- < C, we have that on the event

where c is a universal constant. Under the assumption that

considered in Lemma C.2.2, that || 2, ||max < ||Zx||lmax + ZCAXKgc with probability at least
1 — 2d2(1—ex4%) Note that 1 X x [[max < max;—1 . 4 E(X%)? < 2K§(, by the sub-Gaussian
assumption on X and the definition of ¢ norm. Hence || £, [|max < 2(1 + CAx)K%. Let
Ex = {||Zn]lmax < 2(1 4+ CAx)K%}.

logd

Thus on the event Ex, setting the valuet = A = AK =

, the probability bound (C.2.9)
1— cA?
becomesed 2+CAx)KX  Denote with E = {H %XTEHOO < )\} N Ex, which holds with

1— cA
probability at least 1 — ed 21+CAXKY _ 9q2(1—cx A%) by the union bound.

Note that when E holds, the true parameter satisfies the Dantzig selector constraint and thus
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we can obtain (C.2.7) in the same manner as in Lemma C.2.s. To obtain (C.2.8), note that by the

triangle inequality on the event E we have:

—~ 1 1 —~
=t - B < |ix7e| +|2x7or - xB)|
(e%e] n o n 00
< 2),
1A p) 2
with probability at least 1 — ed 20404 Ky 9g2(1-ex AX) 5 claimed. O

Lemma C.2.7. Assume the same conditions in Lemmas C.2.2, C.2.3 (with & = 1), and C.2.6, so that

35, satisfies the RE assumption with RE, (s, 1) with bigh probability. Set \ = AK/ 105 4 asin
1— cA2?
Lemma C.2.6. Then with probability at least 1 — ed.  *TCAx) K% — 9¢2(1=exA%) ye hape:

= S8AK log d
- * < oie
H/B 16 H]. = REH(S, 1)5 n ) (CZIO)
R 9 1 27172
- * < T 7 4N . odeie
1X(8 =8z < RE, (s, 1)510gd (C2.mr)

Proof. From Lemma C.2.6, we know that on the event £/ (which happens with probability at least
cA?

1 cAZ
1—ed 20+6A0K% _ 942(1-exA%)) we have, that (C.2.7) and (C.2.8) hold. Thus on the event

FE, we have:

1 ~ ~ ~
~[X(8" = B)I5 < [1Zn(8" = B)ll< (8" = Bl
< 2(21|85, ~ Bso )

< 4N5| B, — Bsolle-
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Now note that on the event £ — %XTX = Y., satisfies the RE condition and thus we have:

1 N .
~IX(B8" — BII3 = RE«(s, D)[18E, — Bs, 13-

The last two inequalities yield:

_ W
o < T vV-
HIBSO /BS()HZ = RE,{(S, 1)5

16)\%s

1 * 2\ 112

The last inequality actually gives (C.2.11). To get (C.2.10), note that by (C.2.7) we have:

< S8AK s
' = RE.(s, 1)

18 = 871 < 2[1Bs, — B, |
and we are done. O
Lemma C.2.8. Let {X;}" | are identical (not necessarily independent), d-dimensional sub-Gaussian

vectors with max;—1, . n || X f |l = K. Then we have:
=1,

~,Hllax ||X7i82”max = Op(log(nd))

[ERRE!

Proof of Lemma C.2.8. Note that by the union bound for a fixed ¢ we have:
P(]| Xilloo > t) < dexp(l — ct?/K?),
where ¢ is an absolute constant, by (s.10) in Vershynin *. With yet another union bound we get:

P( max || X;eo >t) < ndexp(l — ct?/K?).
1= n

Ly
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Thusaslongast > C'y/log(nd) for alarge enough C' the above probability will converge to o.

This finishes the proof, as clearly:

_max HX;'XQ”max < ~max ||XZ”C2>O < t2'
i=1,..,n i=1,...,n

=1,...,

Lemma C.2.9. Ler R C {1,...,d} with |R| = r. Then we have the following:
E|(Xe)rll3 < r**(6KKx)®.

Proof. First we use Jensen’s inequality to get:

E|(Xe)rl} < VES |E [ 3 X9

JER

The first term is clearly bounded VEeS < (v/6K)3, by the definition of K. To deal with the

. 3 . 2
(ZjERX]2> < (ZjeR|XJ\3>
r - r ’

which follows from the generalized mean inequality (or monotonicity of the L, norms). Thus by

second term, first note:

the triangle inequality we have:

- oxiz\? xiB\? 16
E Z]GR < E Z]GR’ | < Z E (X;| )
T r JeR r

(V6K x)3. (C2a2)

IN
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Hence

E[(Xe)rl3 < r**(6KKx)®,

as claimed. O

C.3 ProoOFs FOR EDGE TESTING

C3.a Proors For CLIME

Proof of Theorem 4.5.2. To show this theorem, we simply need to verify the conditions of Theorem

4.3.3. Using Lemma C.2.5, we have that [|[v — v*||; = O, <||V*H1Sv\/ logd ) provided that

N o= ||[v*h bg is large enough (see the Lemma for details). Note that Lemma C.2.s, also shows

that the term H Ly X XT v — emH < X with high probability, provided that A =

logd (

7*(l note that ||y*[|1 = [|3%||1) is large enough.

Hence, by assumption we have:

~ N logd
ZX XI v =t 9=l =0y (I lvhsy %5 ) = 1),
o0
Moreover Lemma C.2.5 shows that it sufficicient to select \' < ||[v*||; log , and again by Lemma
C.2.5 we know that || 3 — 3*||; = (H’y Il154/ logd). Hence in our assumed regime:
logd

max(sy, s)[|v*([]lv"[l1 NG = o(1),

we have:

n' 2N (1B — B*|l1 = op(1),

which is condition (4.3.5) from Theorem 4.3.3, and finishes the proof. O
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Proof of Corollary 4.5.4. Similarly to Corollary 4.4.5 we will verify Lyapunov’s condition for the

CLT. It suffices to bound the quantity:

n-3/2

n
3
7 ZE ‘V*TX?2,6* o V*TEX,@*} ,
Iv*1I3118* 136 i=1

where we used assumption (4.5.2). By Cauchy-Schwartz we can bound the above expression by fol-

lowing (up to a constant factor):

n=3/2 ZE [ Vec[(X? — x)s,,5]|
=1

3
2

where by subscripting the matrix we mean setting all elements not in the supports of v* or 3* (Sy,
and S correspondigly) to o, and the operator Vec vectorizes the matrix. Finally using Lemma C.3.2

we conclude that we can control the expression above by:

(SVS)S/Q
nl/2(24K%)3’

and hence the conclusion follows. O

Remark C.3.1. Using the Berry-Esseen theorem for non-identical random variables in combination

with the bound we derived above, we can further show:

where CpE is an absolute constant.

Proof of Proposition 4.5.6. Note that:
RS ST (x®2 2\2 1nAT ®2 312 STy 3)2
B K B0R = S XA - (9750



First we show that V! X, 3 is consistent for v*7 3 x 3*. We have:

|VTEnﬁ - V*TEnﬁ ‘ < |GTanB - V*Tzn:@ | + |V*Tznﬁ - V*Tzn:@ ’

I Ip)

For I7 we have:

] <9 = v lIZaBllse < 119 = v l(1+ ),

using Lemma C.2.5 in the appendix, we have that ||V — v*||; = O, <||V ll15v/ log >, provided

that \' =< ||[v*||; log is large enough (see the Lemma for details), and since we are also taking

=0, <||B* It 10§d> , we have that |I1| = 0p(1), by our assumption. Similarly for I we have:

logd

Lo < 118 = B[V Ea]| = (Hﬂ l1s > Op(1+X) = o(1),

where we used Lemma C.2.5 again. This completes the proof of the consistency of the plugin expec-
tation estimator.

Next, we tackle the second moment plugin estimator:

]. n ~T g ]- - ~
- X®2 2 *TX®2 - Tx®2 *TX®2 *\ 2
n;w D) —E(vTXTA) n; By - (v XE)]
I3
1 ° * * *
;Z TX®2,B (V TX®2B )2
=1
Iy
1 - ~ a3 * 2 1 - * a2 * *
Is| < | =D (T XP2B)° - (v X2B) ‘ S VTIXEEB)? - (v XEB)).
i=1 i=1
I3V1 JED)
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For the first term we have:

o * 1 g EYe) o *
i=1

M

Using Lemma C.2.8, we can handle M in the following way:

RN N e A
[[M [|max < max IIbeszaxg Y BTXPB < Op(log(nd) B 1ZnBllec.  (C3)
i=1

By the definition of B we have: HZnBHOO < (14 ). Hence:

1M [[max < Op(log(nd)(IB* [ + 118 = B[[1)(1 +A)

— 0,(log(nd))||8" 1.

where we used that A =< [|8*[[11/'%% and |8 — B*|1 = O, <||ﬂ*|yls,/10§d>,whichare

quantities going to o, under our assumptions and furthermore || 3*(|1 > (2K%)~! > 0. Thus:

1] < (9 = V7 + 21I¥ = v [l1[[v*[1) Op (log (nd)) 18" 1.

By Lemma C.2.s, ||V —v*|1 = O, <SVHV*H1\/ 10§d>, and since ||V —v*||1 = o(1), we have that:

logd
n

[I31] = Op (Svllv*lfllﬁ*lll 1Og(nd)) = op(1),

by assumption. By a similar argument we can show that 32 is 0, (1). Finally we show that I is
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small. By Chebyshev’s inequality and the finite variance assumption, we have:

1 n *TX®2 *\2
Iy=|= Z(V*TX?QIB*)2 . E(V*TX(X)QB*)Q _ Op (Var((v ﬁ ) )> — Op(]_).
n n
This completes the proof. O]

Proof of Remark 4.5.7. We have that:

1 . ~ 1 ~ JUSEEPNGN ~

=3 FTXPB-vTel)? = =Y (3TXP?B)? -2 (¥'m,B)v el + (¥Tel)?.
n =1 n =1 I‘ IM

2 3

I

As a consequence of the proof of Proposition 4.5.6, we have that I; —, E(v*T X ®23%)2, also that
vI's, B —p v*T'S x 3*. Thus, with the help of the continuous mapping theorem, all it remains

TeT

I is consistent for v*T el

to show is that: V - However this follows from:

Vien —vTen| <[V = v =0y(1),

by Lemma C.2.s5. This completes the proof. O

Proof of Theorem 4.5.11. To prove this theorem note that all bounds we showed in the proof of
Theorem 4.5.9 hold uniformly in the parameter set So(L, s). Note that as both v and 3 are columns
of 2 we have that [|v||o, |Bllo < s, |V||1, |8|l1 < Land M~1 < ||v2,]|Bll2 < 6L These
conditions in conjunction with the assumptions of the present theorem, can be seen to imply the

conditions from Theorem 4.5.9 and this completes the proof. ]

Proof of Theorem 4.5.13. As in the proof of Theorem 4.5.11 it can be seen that the conditions on s
and L imply the conditions of the proofs used to prove Theorem 4.5.9 hold uniformly in S; (K, ¢, L, s).

Thus similarly to Theorem 4.4.12 in the Dantzig Selector case, in this proof it suffices to verify that
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Assumptions 4.3.21 and 4.3.18. We have

VIS (0,%) = 5(0,7) — 0] = V| VT

n
(Z X; X1 — 2X,*1> ‘
i—1

1 n
<Vnl|vi |- ZXiXi,l — Y x 41
n
i=1 o0
T
< nKLn~°I
Lemma C.2.2 shows that || < ¢ % for a sufficiently large £ > 0, and hence:
I inf IP( S(0,7) — 5(0,7) — 0] < EKLn~ /1 d>:1,
Jmn s eesth 1y P8 (VRIS(0:7) = S(0,7) — 0] < K Ln~"log

Next we check (4.3.14). We have:

+ Kn~¢

n
ZXXzﬂ’Y %ZX;XQ,@—GT
i=1

1 n
=3 XiXa
i .

[e.9]

We know that the first term is bounded by &’ L log with high probability. The second term, as

log d

we already argued in the proof of Theorem 4.4.12,is < M + C with high probability which

concludes the proof. O

Lemma C3.2. Let Ry, R C {1,...,d} with |Ry| = rv,|R| = 1. Then we have the following:

E ||Vec[(X®? — Z)p, R]Hg < (rvr)??(24K%)°

Proof. Similarly to Lemma C.2.9 we use the following inequality:

rvr rvr

. 3 . 2
(ZkeRv,jeR(Xka —Ukj)Q) < (ZkeRv,jeR’Xka —Ukj\?’)
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This gives:

IN

. 3
E <Zk€Rv,jeR(Xka - ‘7kj)2>

rvr

. 2
E (ZkeRv,jeR | X kX — Ukj3>

rvr

kEXJi— g6

kERy,jER

Now recall that from (C.2.4) we have || X* X7||,, < 2K%, which implies that || X* X7 —
0jllys < 4K% by the definition of 41 norm (4.1.2). Then again by an application of 11 definition

we have:

>, (\[E <M> < (24K%)? (C33)

2
kE€Ry,jER (rvr)

Hence since:

3
3 A
E||Vec[(X®* — Sx)r,&l|, < | E Z (XEXT —opj)? |
keRv,jJER
we get:
3
E|[Vec[(X®? = £x) g, gl|ls < (rer)?/?(24K% )%,
as claimed. O
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C.3.2 PROOFS FOR TRANSELLIPTICAL MODELS

Proof of Theorem 4.5.21. Note that by the mean value theorem we have the following representa-

tion:

n1/24+T <§Tﬁ* _ ezﬂ) — /2y T <§T _ E) 3*

*gx [ s ~ T . ™
=n!/? Z v B (sm (Tjk§> —sin (Tjkg))
j€Sy,kES
J#k
o ™ T
=n'2 )" viBjcos <Tjk§) 5 (Tjk = Tjr)
jESy,kES
i#k
1/2

n s o [~ TN\ (T 2
- 2 vibisin (Bg) (5 B = m0)

1€Sy,jES
ik

where 7;; is a number between 7;; and 7;;. We will first deal with the first term in the sum above.
Since this term is a linear combination of second order (dependent) U-statistics, we will make usage
of Hdejk’s projection method. A similar approach was used in the celebrated paper of Hoeffding *.

To this end we define the following notations:

it = sign (X] = X)(XF = XD)) = 7.
' =Bl X
= [P (X7 = X)X} - x*) > 01x,) - P (X7 - X)) (XF - X*) < 01X )| =

SR 1 ZTu"\i
kT — 1 L& ik
i #£i

A T it i’ |4/

13
Wik = Tjk — Tje — Tik
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where in the last line X is held fixed, while X is an independent copy of Xj;. In terms of these

notations we therefore have:

R 2 e 2 i
Tjk—Tjk—n;T;k—Fn(n_l) Z ’U);Zk

1<i<i’<n

This gives us the following identity:

n
% A% TN\ T, _ * Q% ™ ]
n1/2 Z VjBk coSs (Tjk§> 5 (Tjk _ Tjk) = 7N 1/2 Z VjIBk COS (Tjk§) ZT;k
i=1

JESY,KES JESy,kES
J#k J#k
Iy
T * ok ™ i’
+n1/2(n—1) Z VB cos (Tﬁk§) Z Wik
JESy,kES 1<i<i’<n
Jj#k
Iz

We first deal with 17 which can clearly be represented as a sum of iid mean o terms, by verifying

Lyapunov’s condition for the CLT. I can be rewritten as:

n
_ m ;
I =n 12 g E Vv BT cos (TjkE) Tjj - (C3.4)
i=1 jESy,keS
itk
M;

Define the matrix ©% where the
. T . .
K — 7 T
O = mcos (Tjki) Tjk» hence ©F; = 0. (Ca.s)
We can then rewrite M; = v*T©!3* = vgz fgw 5/3%. Calculating the variance of M; gives:

Var(M;) = Ev7T0'8%)2 > tinl[v¥ 13118713
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by our assumption. We proceed to verify Lyapunov’s condition (where we ignore the constant
Lmin > 0):

6T 2 ZE'M P <2 S ) Vee(O, )l
v 2 =1

where the last inequality follows from Cauchy-Schwartz. Finally, notice that each element of O is

bounded [©) .| < 27, and hence || Vec(©, S)Hg’ < (sy5)3/2(27)3. Thus finally:

n=3/2 sv5)3/2(2m)?
E|M; |3 V— =o0(1)
V(311813 18*113 < Z nl/2
The last equality follows from our assumption. This implies that I; ~» N(0,A), with A =
E(V*T@iﬁ*)2.
Next we deal with the second term I5, which is also unbiased, by showing that its (standardized)
variance goes to 0 asymptotically. Before we compute its variance we make several preliminary calcu-

lations:

E(wjiwfl) = By - B, ") — E(rjim, ")

—E( 'L'L|'L W)—FE( m\z rr|r>+E( u\z rr\r)

Tis

U

—]E( ]z;h Tls )—I-E( w!|i rr \r)_’_E( iy ;: |r )

In the expression above we have taken j # k,l # s,r # i # i’ # r # 1’ # i. Notice
now that all elements above are independent and since E(wﬁ:) = E(w}") = 0, we conclude that
E(w;’,;wg/) = 0. Following, the same logic, for j # k,1 # s,i # i’ # r' # i:

E(w;z’;wlz;"’) _ E(T;gﬁigl) N E( ﬁf/Tle‘l) . E(TZZ‘ZTW ) + E( s zr’|z)

J Tis

where all the rest terms are 0, by the same argument as in the first case. Using iterated expectation by
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e

conditioning on Xj; it can be easily seen that all terms become equal to — E(T;Z ‘ZT;Z ‘Z), and we can
w ,ar'y

conclude that E(wjj wig ) = 0.

Since EI5 = 0, we have:

Var(I3) E(13) w2 ™ i

< = E v B3} cos (T‘k*> Wy

Vit < eV IRIPT e VRIE 17 2 B| 2 v *g) s
ik

n * 2 1) 2
_ 73036 (e, IV31)” (e 1871
= D2l VIBIATE

2

m>18sy s — o(1),

o (n - 1)Lmin

. . . . - " ) p st
where in the next to last inequality we used the trivial bound ]wyk\ < ’Tﬁf | + ’T;;lz‘ + \T;Lll | <6.

Thus the term \\//; r((ﬂlji)) = 0(1) and therefore, Chebyshev’s inequality gives us that m =
op(1).
Finally we deal with the standardized version of the last term:
1 nl/2 T T 2
V*,@Z sin (Tjk*> (* (Tjk _Tjk)) . (C.3.6)
Var(v:'OB*) 2 iesg,;'es J 2/ \2
J#k

As we mentioned previously it’s clear that 7y, is a U-statistic, and its kernel is a bounded function
(between —1 and 1). Furthermore, we have that E7j;, = 7. Thus, we can apply Hoeffdings

inequality for U-statistics (see Hoeftding ** equation (5.7)), to obtain that:

- t
P(sup |Tjx — Tji| > t) < 2d? exp <_n4> ) (C3.7)
jk

logd

It follows that selecting ¢ = 94/ === suffices to keep the probability going to 0. Notice that the
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(C.3.6) can be controlled by:

272, /5ys 9 V/svslogd
* * T — i) =0, [ Y2 ) = 0,(1).
89minHV*||2||,3*||2HV 218 HQS}Zp(T]k Tjk) p( nl/2 ) op(1)
This concludes the proof. O

Remark C.3.3. Using the Berry-Esseen theorem for non-identical random variables we can strengthen

weak convergernce Statement to:

sup
t

p* (\% < t> _ @(t)' < Cpn(s95)%2 = o(1).

where CBE 15 an absolute constant. Note that we decomposed our test into I—lA + 0p(1), and hence

this statement is valid more generally for Theorem 4.5.21.

Proof of Proposition 4.5.23. Before we go to the main proof, recall the definition of © (C3.5), where
@;k = mcos (Tj15) T;k Note that in fact EQ? = 0, since ET;k = 0, and thus Var(v*70'3*) =
E(v*T©3*)2. Similarly one can note the simple identity: + "7, ©! = 0. Thus we will in fact
focus on showing that £ % | (VT@iB)2 is consistent for E(v*T'©¢3*)2.

Consider the following decomposition:

% Z(GT@)@B\)Z _ % Z[(GT@zB)Q _ (V*T@ia)Q] + % Z[(V*T@zB\)Q _ (V*T@Z,B*)Q]
i=1 i=1 i=1
I I2

Below we show that Iy is asymptotically negligible.

~ T L . QiRAT Qi (S *
Ilz(v—v)TEZG,BBTG @ +vHT.
i=1
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Note that ||O%|max < 27, and thus:
L] < 9 = v v + vl Bl (2m).

Using the help of Lemma C.3.6, we can get the following:

N . logd
1L = Oy [ IVIIT1B* (13 5v = op(1),
n

by assumption. Similarly we get:

n

N . logd
2| = Op (IIV 118*(13s ) = op(1).

Next, we inspect the following difference:

I3 = — Z[(V*T@Zﬁ*)2 N (V*T@iﬂ*)2].

=1

Before we bound this term recall that we have the following useful inequality ||©||max < 27.

Thus:
[Is| < [V7IIFI18" [F4m max |0 — O umax. (C3.8)

To bound the difference max;—1,_._,, [|©" — ©||max we will use some concentration inequalities.
. . . . . . ’TrAA _ E . E A‘ _ . .
First, since cos is Lipchitz with constant 1 — ‘cos (57'] k) cos (2 T; k) ’ < Z|Tjk — Tjxl, we have:
T

~ . . T e T —~ 1
%, — O%| < ‘cos (§Tjk> — cos (2Tjk)‘ Tl + 7 ‘cos (§T]k>‘ ITike — Tikl

< Tk — ikl + 7T — Tkl
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where we used the simple observation that |7’”j | < 2. Next we have:

Fi—il < TJM > sign (X7 - XJ)(XF - X})) —E [sign (X - X)X} - X5)) 1]
’751 .
5 i
ik
This gives us:
165 — %l < (7° + 7) Sup |7k — k| + 7|0, — 0. (C3.9)
J

Next, note since the terms in (9; ;. are iid conditional on X, and they are in the set {—1, 1} by Ho-
effding’s inequality:

=)

P(@k — 0| > t|Xi) < 2exp <— 5

Of course, it follows that the same inequality holds unconditionally as well, so:

0 i n — 1)t
P(|0%, — 05| > t) < 2exp <_(2)> .

Applying the union bound over all 7, j, k& we get that:

2

IP)(m]a]zc \ij, :k| > t) < 2nd® exp (—

=)

log(nd)

This implies that selectingt = 4 , would keep the probability converging to 0. Recall that

by (C.3.7) we have already observed that:
~ 2 nt2
P(sup |Tjr — Tjk| > t) < 2d%exp | —— | .
jk

j 4
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logd

and similarly as we observed before we can sett = 9 ==, to keep the tail bound converging to 0.

To summarize the above inequalities and (C.3.9) give us:

n

~ i log(nd
mZaX ’@Jk - @jk‘max = Op < ( )> .

Thus using (C.3.8), we get:

1 d
15| = IV 318" 5O, ( stnd) ) = 0,(1).

Finally we asses the difference:

1 <& A _
- Z(V*TGZIB*)Q _ E(V*T@Z,@*)Q.
n

=1

By Chebyshev’s inequality in much the same way as in the last part of the proof of Proposition 4.5.6,
we can show that the expression above is 0, (1) under the assumption Var((v*1©3%)2) = o(n).

O]

Proof of Theorem 4.5.26. Similarly to the proof of Theorem 4.5.11 we simply need to note that our
conditions imply the conditions required by Theorem 4.5.25 and also note that the bounds in the

proofs hold uniformly. O

Proof of Theorem 4.5.27. In this proof we show that the uniform local approximation (Assumption

4.3.21) holds. It is clear that:

VnlS(0,7) — S(0,7) — 0] = ValovT (ST, — £,)]
< VnEn?|v[1 15T — Bl

< VnEn"?L||S" — %/l max.
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Now from Theorem 4.5.19 we can conclude that with high probability the last expression is bounded
by 2.4571Kn~?L+/logd — 0 by assumption.

Next we show (4.3.9). We have:

s~ e < 578 - en]  + en-e 8

o0

We know that the first term is bounded by &' L logd (ich high probability, and for the second

n
logd

term we can argue similarly to the proof of Theorem 4.4.12,is < 1+ C'y/ =2~

with high probability
which concludes the proof. O

Lemma C.3.4. Assume that the minimum eigenvalue Ayin () > 0 and s logd (1 -

n
K) (1\25%, where 0 < k < 1. We then have that ST satisfies the RE property with REg, (s,€) >

KA\min (X) with probability at least 1 — 1/d.

Proof of Lemma C.3.4. Proofis the same as in Lemma C.2.3, but we use Theorem 4.5.19 instead of

Lemma C.2.2. Thus we omit it. O]

Definition C.3.5. Define RE,(s,§) := KREx(s,£) > KAmin(2).

Lemma C3.6. Assume that — A\pin () > 0, sy lof’;d <(1- m)m‘%, where ) < k < 1

and N > ||v*||12.457 logd. Then we have that ||V — v*||1 < % with probability at least

1-1/d.

Proof of Lemma C.3.6. Proof is the same as in Lemma C.2.5, but we use Theorem 4.5.19 instead of

Lemma C.2.2 and we use Lemma C.3.4 instead of Lemma C.2.3. Thus we omit it. O
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C.4 Proors FOR THE LDP INFERENCE

Proof of Theorem 4.6.1. Let BO = (0,47)T. We have the following identity:

n'/27(8,8) — (X = Y)) = nV/RU(E,8 — (X = Y)+n/RTS,(8y — B).

Il 12

Before we proceed with expanding the first term, let us define the following quantity:

ni n2

= 1

o= ) (X — )P+ (Y — )2 (C.41)

n |4 X
=1 =1

We then have the following identity:

L =n'>vT (2,8 — (X - Y))+n'2vT(Z, - £,)8" +n 2@ - v)1(E,8 — (X

-Y)).

111 I12 I3

We proceed with the terms 12 and I3, showing that both terms are small.

* * S ‘S * * logd
2] < 22V 111811 Z0 = Snllmax = (V¥[8 110, (W) = op(1),

where we used (C.4.3) from Lemma C.4.1 (and made usage of the fact that ny < ns). We can con-

trol /13 by the following:

Nl < 029 = VL[ E0B" = (X = V)l

" logd N log d
<n?v* 10, ( : )(IIB ||1v1>op< : )

n

= Op(1)7
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where the next to last inequality follows from Lemma C.4.4 and Lemma C.4.6. We next deal with

Iy:

L] < 02|87 (2,) 1]l llBo — B[

<n'2\|B - B*|h

Snl/zrrv*rlop<\/l°g><uﬂ I v 1)0, ( 1°j‘jd>

= Op(1)>

where ( f]n),l means dropping the first column (the one corresponding to the 0 coefficient in 3*
under the null) of £, as by definition By = (0,47)T and B* = (0,4*1)T under the null. The
second inequality in the preceding display follows from Lemma C.4.4 and Lemma C.4.6. Next we
take a closer look at the term [77:

I = nl/ZV*T(inﬁ* — (1 — p2)) + 02V T(X — 1 — Y + po)

_ /2L Z ( US2B* — (g — po) + | —I(i < ny) — —I(i > nl)} UZ) :

This completes the proof.

Proof of Corollary 4.6.3. First, from Theorem 4.6.1and n1 — na = o(1), it is clear that:

1/25(0 A)/ *TZ U®2 H2)+a71Ui)

+ 17/2V*T Z ®25 (1 — p2) — (1 — @) 'U;) + 0,(1),
1=ni1+1

where implicitly used Chebyshev’s inequality and the fact that Var(v*TU) < 2v*TSv* < 2671
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Next we verify Lyapunov’s condition. The sum of variances of the terms above equals:

niVi +naVz = n(aVi + (1= a)Va)(1 + 0(1) = nVauin (18731113 + [IV*[3) (1 + o(1)),

by (4.6.2). Without loss of generality let’s assume that ™1 > (1 — )7L, It follows then from

Lemma C.4.8, that:

E v TUPB" —v'T (1 — ) + o~ VTU[” < IV I3(Crlsvs)P/ 2B 3 + Caa?sY?),
and similarly:

E[vTU8* v (1 — pa) — (1 — @) v 7TU" < [V [3(Chsvs)? 21873+ Caa353),

where C and C are some absolute constants (see the Lemma for details). Therefore we conclude

that the sum in Lyapunov’s condition, is bounded by:

(%2 GBI+ S5
(L o(U)nl/2 v22(|18%)13 + 1)% '
o(1)
This completes the proof. O

Proof of Proposition 4.6.5. First note that A can be correspondingly decomposed to Aas:

A = aE(vTU®28*)? + o 'E(vTU)?

+ (1= EVTU?B)? + (1 - o) 'EVTU)? = (v (11 — p2))*.
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We start from the last term:

V(X -Y)?=[(/(X-Y))’~ (v'/(X-Y))*+ (V*T(Xv— Y))?.
I

I Iy

We have:

1] < 9 = vl + v (X = Y) %2 ma.

logd
n

Using Lemma C.4.6, we know ||V — v*||1 = O, <HV* |15y ) . We can apply the concentra-

tion inequality (C.4.2) provided in Lemma C.4.1 to claim that:

_ logd
”(X - Y)®2Hmax < H“l - HQHio =+ HP’l - N?Hooop ( n > ’

where we used the triangle inequality || X — Y [joo < || X — p1loo + [|Y — p2]lco + || 101 — 2] 00-

Finally due to our assumptions we have:

. logd
L] = [l — w2300 (IIV [Esvy/ = ) = op(1).

Next we tackle I5:

L= "X -Y)? = (v'" (i1 — p2))* + (v*" (1 — p2))°.
I I2o

In a similar fashion as before, applying the concentration inequality (C.4.2), we can get:

logd
£ ) 121 = azlloe = 0,(1)

|I1] < [v*][70, <
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by assumption. Thus we have shown:

I= (T (1 — p2))? + op(1).

To this end define the following shorthand notations:

v B) = 23 (VX - X)B) L(v.B) = Y (V% ¥)P)”
=1 i=ni1+1

Next we show that Ix + Iy is consistent for E(v*U®?3*)2. We first consider the difference:

Ix(¥,8) + Iy (¥, 8) — Ix(v*, B) — Iy (v*, B)|

<V =V L[V + v 1 M| 8] el Bll1,
where:

M = max{ max ||(X; — X)®?|lmax, max ||(¥;— Y)®2||max} .

i=1,...,n1 i=ni1+1,...,n

Note now that the random variables X; — X and Y; — Y are in fact mean 0 sub-Gaussian variables

since e.g. || X — X ||y, < | X — 1|y + [| X — p1]lg, < 2Ky Thus an application of Lemma

C.2.8, and the fact that ny < ng < n, gives us that M = O(log(nd)). Furthermore we have:

1Z0Blloe <A+ 1X = pallos + Y — pi2loo + [l1 — p2]|co-

An application of (C.4.2), and the way we select A we have:

logd

1Z0Bllce < (I18*1 v 1)O, ( ) + [l — g2l
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Putting the last several inequalities together with Lemma C.4.4 and Lemma C.4.6, we have:

Ix(¥.B) + Iy (¥,B) — ~ Iy (v*, B)|

1 1
< IV 1518 [l 5y log(nd)O, (\/ o ) [(Ilﬂ v 1)0 ( = >+Ilu1 izl
= 0p(1).

by assumption.

Similarly one can show that:

Le(v*, B) + Iy (v, B) = Ix(v", ") = Iy (v*, )|
SHV*hl!ﬂ*lh(l!ﬁ*lhVl)slog(nd)Op( loffd>< vl log)

= op(1).

Define the following notation:

M = max ||UZ®2HmaX'
i=1,...,n

For exactly the same reasons as for M we have M = Op(log(nd)). Next we consider the difference:

n

Tx(v", 8% + I (v, 8% — = 3 (vTU27)°)
=1
1 _ _ 1 _ _
< v L8V (n ST = X)X - X)TB ]+ D TV - V(Y - V)T
i=1 =1

1 = T T
_ ¥ Uz U; * )
o T B |)
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V = max { mas (|(X; = X)% = UP e, max (Vi = V)% - Ui®2||max} .
1=n1 n

-----

Note that by the simple inequality |ab| < (a? + b?)/2, we have, that the expression in the brackets
is bounded by:

<vT(E, +E)v/2+8T(Z, + 2,8 /2.

We have that v*T S, v* < |[v¥[|1 [V E oo = [V¥]1 + [|[V¥]20, <,/1°§d). Similarly since by

(C4:3) 20 = Snllmax = Op (*52) we have thar v*I B, v < [[v* |1 + [v*|30, < logd>.

n n

Similarly one can show that ,B*Tfln,ﬁ* < |B*[[1ll 1 — p2lloo +1[B8*[[1([|B* 1 V1)Op ( 10§d>,
and a similar inequality for ,B*Tin B*.
We next inspect V:

max |(X; = X)® = U flmax < max 20| X ool X = g1l
= 1

i=1,...,n1 =1,...,n

X = pilloo (1 X = paloo + 2([p1]]o0),

and we can similarly bound the other term in V. Note that in Lemma C.2.8 we showed that max;—1,._n, || Xi|locc =

O, (1/log(nd)), and as we argue in (C.4.2), we have || X — p1]joc = O, ( bgd) ,and thus:

n

V=0, (\/ e d) (vIog(nd) + 101 e + a2l )

Hence under our assumptions, we have:

Ix (v 8 + (v, 87 — = 3 (vVTUE7) | = 0,(1)
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Finally we finish this part upon noting that:

S (TUEE) B (v TURE) | = 0,(1)
=1

Under the assumption Var((v? « U®23*)?) = o(n) by Chebyshev’s inequality.

Next we turn our attention to the term:

n o1 2
—— ) (#(X; - X))
ni N i—1

and show it’s consistent for o *E(v*T'U;)2. First note that since e = a1l + 0(2), and we will
show the rest of the expression is O, (1), we will just focus on the average term. We first show the

following difference is small:

nll SIET(X - X))~ (vT(Xi — X)) = | —v) Sx (T +v)T|
=1

<V = VLV = v+ 2V x [loo-

Using the same technique as in the proof of Lemma C.4.1, one can show that | Sx oo < 15 ]leo +

O, < logd>. Since we also know by Lemma C.4.6 that |V — v*[|; = ||[v¥|15vO, ( 10gd>,

we get:
1 - T o\ 2 *T o\ 2 * 12 logd
n Z[(V (Xz_X)) - (V (Xz_X)) I < IV llisvOp n = op(1),
i=1
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by assumption. Next we COIltI'OIZ

ni

=1 =1

< vl — X%
. logd
= Iv'I30, (“2°)

= op(1).

Thus after using Chebyshev’s inequality upon observing that Var((v*TU)?) = o(n), we have

. . . . n 1 n =T - ¥, 2,
shown the desired consistency. Similarly we can also show that ;- 2-> % ) V(Y -Y)) s

consistent for (o — 1) TYE(v*TU;)2. This concludes the proof.

Lemma C.y.1. The following inequality holds:
120 — Blmax < tu(d,n) + t3:(d, n).
with probability at least 1 — 2q2(1—CuAy) _ 26d1_CUA%J, where:

log d ~ logd

and Ay > 0 is an arbitrary positive constant, ¢y and cy are absolute contents independent of the

distribution of U, and Ky is as defined in the main section of the text.

Proof of Lemma C.4.1. We start by showing a concentration bound on || X — p1]|oc and [|Y —
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12|/ so- By proposition s.10 in Vershynin *# and the union bound, we have:

(C.4.2)

_ t2
uwx—mm>wswmq}wm).

Kg

A similar inequality holds for || Y — p2]|ac. Select tyy(d, n) = Ay Ky y /%, where Ay >

0 is some large constant. The triangle inequality yields:
||§n - EHmax S Hﬁn - fJn”max + ||§Jn - EHmaXa
where in is defined as in (C.4.1). Next, we have that:

~ ~ n1 _ N9 _
Hzn - EnHmaX < ;H(X - ﬂ1)®2”max + ;”(Y - H2)®2”max

IN

n = n =,
X = pallo)® + Y~ pzlloo)?

<t (d,n). (C.43)

where the last inequality holds with high probability. Note that by Lemma C.2.2 we have:

~ log d
||En - 23Hmax < 2AAUI(%] &

= ;U(dv n)a

with probability at least 1 — 2d>(1—¢v AB), Adding the last two inequalities completes the proof.

O]

Lemma C.4.2. Assume the same conditions as in Lemma C.4.1, and assume further that the mini-

mum eigenvalne Apin(E) > 0 and s(ty (d,n) + t2,(d,n)) < (1 — k) ’\(‘i‘jﬁé)%), where 0 < k < 1.
We then bave that ﬁn satisfies the RE property with REf:n (5,€) > KAmin(X) with probability at

least 1 — 2d2(1—CuAy) _ 9pgl—cuAis
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Remark C.4.3. In fact this event happens on the same event as in Lemma C.4.1.

Proof of Lemma C.4.2. The proof follows the proof of Lemma C.2.3, but uses Lemma C.4.1 instead

of Lemma C.2.2, hence we omit it. ]

Lemma C.4.4. Assume that — Anin () > 0, s(tyy(d,n) + t3,(d,n)) < (1 — k) )‘(“l‘ilé)%), where
0 <k <1and:

A > (tu(d,n) +t5(d,n)) [|8* 1 + 2ty (d, n).

Then we have that |B — 8* |1 < % with probability at least 1 — 2d2(1—Cu AY) _ 9eql—cu Ay,

Remark C.4.5. In fact this event happens on the same event as in Lemma C.4.1.
Proof of Lemma C.4.4. We start by showing the true parameter 2§ = (3" satisfies the sparse LDA

constraint — || £,8% — (X —Y)||ec < Awith probability at least 1 —2d2(1~UA%) —2¢ql—cu Ay

We have that:

138" = (X = Yoo < 28" = (111 = 12) o +[Z0 = Sllinax 18711 + 1X = pralloc + [V = 2]
0

Collecting the bounds we derived in Lemma C.4.1 we get:
128" = (X =)l < (fu(d,n) + t(d.n)) B + 26w (d, n).

The last inequality implies that if we select A > (?U(d, n) + t3,(d,n)) ||Bl1; + 2tu(d, n), ic will
follow that 3* satisfies the constraint with probability at least 1 — 2d2(1-cuAl) _ geql-cu Ay,
The rest of the proof is identical to the proof of Lemma C.2.5 but instead of using Lemma C.2.3

we use Lemma C.4.2. Thus we omit the proof. O
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Lemma C.4.6. Assume that — Apin(Z) > 0, sy (tr(d, n) +t(d,n)) < (1— k) ’\(TIE()EZ,), where

0 <k <landN > |v*||1(tu(d,n) + t3(d,n)). Then we have that |V — v*||; < %

with probability at least 1 — 2d20—CUAL) — 2¢dl~cuAy,
Remark C.4.7. In fact this event happens on the same event as in Lemma C.4.1.

Proof of Lemma C.4.6. The proof is identical to the one of Lemma C.2.5 but instead of using Lemma
C.2.3 we use Lemma C.4.2, and we use Lemma C.4.1 instead of using Lemma C.2.2. We omit the

proof. O

Lemma C.4.8. We have the following inequality:
BV TU6 v () bev UL < 4w 3018 3 (svs)*> (2415 +el v (VOED)°).
Proof of Lemma C.4.8. First note that:

U6 — (1 — o) = (U2 — )"

Denote with ¢ = (U®? — X)3* for brevity. We have the following by Cauchy-Schwartz and

Jensen’s inequalities:

EvTe + v UP < |[v*3y/Ellés, + cUs, 5.

Using the triangle inequality and the fact that (a + b)? < 2(a? + b?) we have:

Iv* I3 ElIEs, +cUs, 1§ < [v*[13y/8E(IEs, I3 + 2[[Us, [3)°.
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2 2\ 1/2 3,3\ /3
Next, using the fact that (%) < (%) , we get

IIV*IB\/SE(HESVH% +c2|Us, [13)* < IIV*H§’\/16E(||€5V||§ +1ePUs, [13)*.

Finally by a triangle inequality we have:

IIV*II§\/16E(II£SVH§ + el |Us, [3)? < 4llv* |3 <\/E|£sv|!3 +cf’ IEIIUSVIS> :

Now recall that:

VEIEs, I8 = VENU®? - £)87]s,[1§ < 18 3/Ell Vec|(U®2 — B)s, 5]]5

Using (C.3.2) and (C.3.3) from Lemma C.3.2, we get:
E[[€s,1IS < 18*[3(svs)*?(24K5)*.

Finally we deal with, using the same argument as in (C.2.12):

VEIUs, 1§ < s¥*(V6Ky)®.

Putting everything together, we get:
EVTE + v TUP < 4|v*[3(18*13(svs)?/2 (24K + |c]*s5* (VB Kw)?),

as claimed.
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C.s Proors For SVA

Proof of Theorem 4.7.1. Let ,@0 = (0,3™). Note that the proof of Theorem 4.3.3 extends in

this case, as it does not rely on the iid representation. Using Theorem C.s.1 we have |3 — 3*[|1 <

45) %5 |1\ Furthermore || SoB* — S1 4mlloo < A with probability at least 1 — 14d ", as can be

seen in the proof of Theorem C.s.r. Next we inspect |V — v*||; = Op(sy||Z5*[[1\) according to

~

Lemma C.s.2. Furthermore, Lemma C.s.2 also gives us that || [v1 Sp]_1 oo = Op()\'). Combining

these results with the assumptions from the statement completes the proof. O

v TX2?B v T X, X el

Proof of Theorem 4.7.2. First, construct the following sequence {1 = 0, &1 = e =
- mmV* ov*

fort = 1,...,T — 1. We start by showing that the difference between the sequence Zthl &rand

VT—Iv*T (S0B* —S1.um) . . . .
Vs is asymptotically negligible. We have:

T * * — T * *

e VI8 S| TEID SS gl WTXERL

P VO VTS v VI VTSV S ! T —1V¥,mvTEov*
Il 12

By Lemma C.s.2 |[v*T'Sy — e]|oo < A with probability not smaller than 1 — 14d~!. Thus under

the null hypothesis we have:

WVT=D WIB _ (VT=D WMy
VOV IYov: O, v v

with probability at least 1 — 14d~1. Next for I we have:

oyl
IN

o(1),

_ 41|12,

I
2T JT-1

Y

where Z; ~ N(0,1)and Z ~ N (O, %ﬁ?fa*), and hence since % = o(T), Chebyshev’s
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inequality gives Io = 0p,(1). Of course by Slutsky’s theorem the last implies that:

T

Z& \/TV*T(SO,B* - Sl,*m)
. —
p—t VO VT Y gvE

= o0p(1),

provided that Zle & = Op(1), which we show next.
Obverve that the sequence (&)1 forms a martingale difference sequence with respect to the
fileration 7y = o(X1,..., Xy) fort = 1,..., T, as we clearly have E[¢;|F;_] = 0. Furthermore

. L 2 _ (X )2
a simple calculation yields that for ¢ > 2 we have E[&7|F;—1] = T TSyv Thus:

d 2 v - ®2 [v*[IF 1 = ®2

Y E[E|Fi]-1] = Y XE2 -5 vr| < Y xP?-x

2 (&1 Fe1] ' ‘(T—l)v*TZOV* t:l[ t o] v = Ty v T—1t:1[ t ol -
I

Using Theorem C.s.1, it is evident that I < K4(2¢, A)/2 (@ + 2\/;) with probability
atleast 1 — 14d~1, and hence the above quantity converges to 0 in probability.

Having noted these facts, we want to show that Y7 & converges weakly to a N (0, 1) with the
help of a version of the martingale central limit theorem (MCLT)*®. Next we show the Lindeberg
condition for the MCLT. For ¢ > 2 and a fixed § > 0 we have:

(vT X, 1)’E[Z%1(]1Z| > 6C)]

BIEPLIE] 2 0)|Fia] = S T

N|=

where Z ~ N(0,1)and C' = {Mfi’&ézi* } 7 Using the properties of the truncated standard

normal distribution we have that E[Z?|Z > ¢] = 1 + g((i)) ¢, and hence

9(0)
2(c)

E[Z*1(|Z| > ¢)]

20 (c) <1 + c) =2®(c) + 2¢(c)c < 2¢(c) (¢t + ¢),
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where the last inequality follows from a standard tail bound for the normal distribution.

Now notice that by the union bound and a standard bound on the normal cdf we have

P( max_ VT X > u) < 2T exp(—u?/(2v* T Bgv*)).

=1,...,

Selecting u = 2\/ log(T)v*TEgv* gives that with probability at least 1—% we have max; [v*T X;| <

2/log(T)v*TEgv*. Hence on this event we have:

8log TH(6C)((5C) ™ + 6C)

E[E71(|&] > 6)|Fi1] <

(T'—1) 7
where C' = %, and we used the fact that the function ¢(z) (2! +z) is decreasing. Summing
up over t yields:
T ~ ~ ~
> B = 6)|Fima] < 8log T(5C)((50) " + 6C) — 0.
i=1

This shows that the Lindeberg condition holds with probability 1. Hence by the MCLT we can

claim:

T
D &~ N(0,1).
t=1
O

Proof of Proposition 4.7.3. We begin with showing the consistency of \ilmm = S0,mm — ,@TSO ,@ is
consistent for W,,,,,,. First note that @ = Xy — ATy A, and thus ¥,,,,, = X0,mm — B TYy8*.

Then we have:

|‘/I\lmm - lI’mm| < |S0,mm - EO,mm| + |(B\_ /B*)TSDB| + |/6*T(SO§ - 206*”
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Fitstly, by Theorem C.s.1, we have with probability at least 1 — 14d—1:

/6logd /1 -
|SO,mm_EO,mm| < ||SO_EOHII13.X < Kd(EOvA)/2 ( Tg +2 T) = )‘/HEO 1”1 b= 0(1)

Secondly:

(B —B)"S0B| < 1B = BI11(/1S08" oo + 1508 — S8 [|<)

<118 = B 111 Sollmax 18711 + (1508 = St smlloc + 508" = St umlloc)-

On the event of Theorem C.5.1 we further have:

18 = B71111S0llmax 18711 < 450155 [ ALIZollmax + [0 = Zollmax] Ma = o(1).

Furthermore within the proof of Theorem C.s.1, it can be seen that on the event of interest we have

|1S0B* — S14mlloo < A and hence:

18 = B*[11(11508 — St umlloe + [1508" = Stamllso) < 2X|B — B*[l1 = 0p(1).

Lastly,

187 (08 — S08%)| < 187S0(B — B*)| + 187 (So — o) 8]

< 1B%[12A + [|B7[11[11508" = S1,mllmax + [[S1,0m — X1 5m | max]

logd  [2
< M3\ + MK (S, A) (,/3 ‘;g n ,/T) = o(1),

where the last two inequalities hold on the event of Theorem C.s.1, and we used the fact that ||3*]|; <

Mg since A € M(s, My).
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Next, we show that v Spv —p v TS ov*, Similarly to before we have:
WTS(ﬁ — Vv < |(V — V*)TSoﬂ + |V*T(Sg§ — Yov")]
For the firs termt we have:

(V= v)So¥| < [V = v*[[1[¥7 S0 — e]loc + [e(V —v7)]
—1 N2 = *
< dsy|[Xg hN)7 + IV = v loo

< sy |55 (V)2 + 1125 12X = o(1),

with the last two inequalities following from Lemma C.s.2 and holding on the event from Theorem
C.s.1. Recall that e is a unit row vector.

Finally, for the second term we have:
VT (Sov — Sov¥)| < [[vF [N <[5 iX = o(1),

and this concludes the proof. O

Theorem C.s.1 (Theorem 4.1.%). Suppose that (X)1_, from a lag 1 vector autoregressive process
(X1)32 . Assume that A € M(s, My). Let A is the optimum of (4.7.1) with the tunning param-

eter:

~ logd
A = Ka(o, A) z% .

ForT > 6logd + 1 and d > 8, we have, with probability at least 1 — 14d~1:

1A = Ally < 4s]|Z5 " [\
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In fact on the same event (see Lemmas A.1. and A.2.% ), we have:

6logd 1 3logd 2
So—S0llmax < Ka(Zo, A)/2 (w/ = +2,/T>, 181 llmax < Ka(So, 4) (w/ = +,/T)

Lemma C.s.2. Assume the assumptions in Theorem Cs.1. Let X' = |5 ||1 K (S0, A)/2 <\/ % + 2\/;>

Then on the same event as in Theorem Cs.1, we have |V — v*||1 < 45v\|§]61 [FR

Proof of Lemma C.5.2. We first start by showing that v* satisfies the constraint in the V optimiza-
tion problem with high probability. According to Theorem C.s.1, we have with not smaller than

1 — 14d-1L.

Iv*"'So = €lloo = [IV*" (S0 = Z0)lloe < V{11150 — Zollmax
N 6logd 1
< [[v¥[1Ka(Eo, A)/2 (\/?+2\/;> < .

This implies that || V]|1 < ||v¥[|1 < ||Zg"||1, and hence similarly to (C.2.6) in Lemma C.2.5 we can

conclude:

[Vse = Vielli < Vs, — v, Ihh (C5.1)

Next we control ||V — v*|| . We have:

IV = v lloo = (7750 — )35 loo
< 1I1Z5 (97 So = elloo + 9111150 — Zollmax)

< 155 a2y
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Combining the last bound with (C.s.1), we get:
IV = V¥l < 4sy 135 LY,
which is what we wanted to show. L]

C.6 PROOFS FOR THE QUASI-LIKELIHOOD

Proof of Theorem 4.8.2. We verify the conditions from Theorem 4.3.3. Under the conditions of

Lemma C.6.5 we have that H,é\ — B*[|1 = Op(As) and hence by Remark C.6.7 we have that:

V|8 — B sup

vel0,1]

Vin Iy T XP (X B,) — e
=1

= VnO0,(X)Op(As) = 0,(1).

Moreover, Lemma C.6.6 gives us that ||V — v*||1 = O,()\'sy ), and therefore:

n

nt Y (FXTBY) - Y X

i=1

V[V = vl

< VnOy(N'sy)Op(A) = 0p(1),

which completes the proof. O

Proof of Corollary 4.8.4. Asin the linear case we only need to verify Lyapunov’s condition for the
CLT. We have A = v*T Sy v* > ||v*||35, by our assumption. Hence |A[>/2 > ||v*||36%/2. Thus
we need to control:

n-3/2 1

= Y EVTXG(f(X]8Y) - Vi)

||V*”2 i=1

We note that E[v*T X; (f(XT8*) = Y;)[2 < KBK3||v*||3 < K3K3s3/%||v*||3. This completes

the proof provided that 32 /v/n = o(1), which we have assumed. O

Proof of Proposition 4.8.5. We start with the consistency of A1. Ay is an asymptotically consistent
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estimate for vi = v*T v, since [Vq — vi| < [V — v*|l1 = Op(Nsy) = 0,(1) under the
assumptions of Lemma C.6.6 and \'sy = o(1).

Next, we consider Ao. We have:

o= (9 X ) o) 3

i=1

I

Under the assumptions of Lemma C.6.6 we have ||V||; < [|v*||1 with probability at least 1 — 4d 1,
and therefore | I;| < N|[v*||1 = o(1) with probability no less than 1 — 4d~1. On the other hand
as we argued for ﬁl, V1 is consistent for vi if \'sy = o(1) and the assumptions of Lemma C.6.6
hold.

Finally we deal with Ag. First we show that we can substitute the term (Y; — f(X I B\))2 with
(Y; — f(XF3*))?. We have:

o~

Ry =n ' S GTXY: - H(XTBY)
=1

P

+n Y TX)H(A(XTBY) - F(XTB) Y — f(XT B - f(X]B)).
=1

I3

In Lemma C.6.6 we argued that with probability at least 1 — 4d~! we have ||V||; < ||v*||1. Denote
this event by F. To this end recall that we are assuming HB\ — B*|l1 < 1, which enables us to use to

use the following bound

F(XTB) = F(XI'B) = 1F(XIBIXT(B-B8)| < CIXT (B8,
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since \XZT§| < |XZT/@*| + ”XlHoo”B — B*|]1 < 2K. Next for I3 on the event E we have:

Il <7t IVIFKCIXT (B - B7)|21Yi — f(X] 89|+ |CXT (B - 87))

i=1
n n

n=t Y IVIRIB - B 2K K'C Tt Yy IVIREPCRB — 87
i=1 i=1

= Op(As)[V¥[IT = 0p(1),
the last equation following from Lemma C.6.s5, which holds on the event E. Next for I we have:

=0t Y (TX (Y - F(XT ) - f(XT8Y) 12 @ X2 F (X7 8.

~~ ~~

121 122

We first deal with Io;. Note that || X&?||oo|(Y; — f(X7'8%))? — f/(XTB*)| < K*(K™ 4 O).

Thus combining a union bound with Hoeffding’s inequality we get:

(

Selecting t = V6K2(K'? + C logd (e oet that with probability at least 1 — 6d~1:
g n 8 p y

n XY= X - x| t) <2 (- ATy
=1 >

logd

[In| < |[V*|TVEE® (K™ + C) =o(1).

Next from Lemma C.6.1 with probability at least 1 — 2d~! we have that:

< V6OK? logd

max

Y X xI) - 2

=1

n

and hence with probability at least 1 — 4d~! (since | V][ < ||[v*||1 is a sub-event of the event
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above):

logd . ~
[Iaa| < V¥ [PVEOK? |25 4975y,

o(1)
Finally vIZyv = vIEpv* + 2(v — v)ITEpv* + (Vv — v)TZw (Vv — v*). Since
(Vv = v)TZpv*| < IF = v 1| ZwVv*]leo = Op(Nsy)1 by Lemma C.6.6,and (Vv —
V)T (¥ = v*) <[V = V212w lmax = Op((N5y)?) = 0,(1). In the last we used that

|Z|lw < K2C = O(1). This completes the proof. O

Proof of Corollary 4.8.8. Note that we have shown all required properties of Proposition 4.3.26, but
Assumption 4.3.25. By Remark C.6.8 (note that o can be substituted with 6*) we have r5(n) = 2\

(defined in Assumption 4.3.25). Thus by Lemma C.6.s:

~ ~ 8(2+ CK3)\s
1/2)\/9_9* < 1/2)\/ _ * < 1/2)\/ — 1
where the last inequality holds with high probability. This concludes the proof. O

Lemma C.6.1. With probability at least 1 — 2d=Y we have that:

<V6CK? logd.

n

1 n
1§ xesrxr) o
n
=1

max

Proof of Lemma C.6.1. By our assumptions we have max; || X2 /(X[ 8*) |lmax < CK?2. Hence

by Hoeftding’s inequality, and a union bound we have:

1R 502 4/ o T g 2 nt?
P(anx et -z 2e) caden (-0,

max

Setting t = V6CK? \/@ gives the desired result. O
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Lemma C.6.2. Assume that Ayin(Zw) > 0 and s4/ logd < (1-k) (1;\_’83(%, where

0 < K < 1. Then we have that REx,, . (5,§) > kREsy;, (5,&) > kAmin(Bw) with probability

at least 1 — 2d7 1.

Proof of Lemma C.6.2. The proof of this Lemma is identical to the Proof of Lemma C.2.3, so we

omit it. ]
Definition C.6.3. Define RE,(s,£) := kREs, (5,&) > KAmin(Zw).
Lemma C.6.4. Let \ = 2K'K bg . Then with probability at least 1 — 2d~1 we have:

1Bss — Bellr < [1Bsy — B, 1, (C6a)

and on the same event:

_IZ FxTe - fxIe)x| <o (C.6.2)

o0

Proof of Lemma C.6.4. Note that we have max; |Y; — f(X['8%)||X;| < K'K. Hence by Hoeffd-

ing’s inequality we have:

#(r

Selectingt = 2K'K bg , yields that with probability at least 1— E we have

! Z f(XIBY) - X,

nt?
1) <200 (g )

nTt L (F(XTBY) -

<2K'K %. Thus when A = 2K'K % B satisfies the Dantzig Selector con-

o
straint with probability at least 1 — 2d~1. Hence, just as in the proof in Lemma C.2.6, we conclude

Yi) X,
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C.6.1) holds with probability at least 1 — 2d 1. To show (C.6.2) note that:
P y

nt Z F(Xip) (Xz-T@))X

—IZ XTﬁ )X’L

[e.e]

_12 f(xrpn -v)X;

[e.9]

< 2,

with probability at least 1 — 2d~! which completes the proof.

Lemma C.6.s. Suppose that s\/@ < (1- /i)(lf:g;‘;(%, A < land /s < S?QE_:i((;é)),

where X is selected as in Lemma C.6.4 and 0 < k < 1 is a fixed constant. Then with probability at

least 1 — 4d— we have:
8(2+ CK3)\s

18-8 < o)

Proof of Lemma C.6.5. First observe that any point 5 = Z/B + (1 —-v)B*,0 <v <1,lying on the

line segment connecting B\ with 3, satisfies the following foralli = 1,..., n:
0< (B—B)'Xi(f(X]B) — F(X]B) < (B-B) Xi(/(XI'B) — F(X]B").

This inequality holds since f is increasing, and can be easily verified. This fact combined with (C.6.2)

implies that with probability at least 1 — 2d~! for any E as above we have:

Y (BB Xi(f(X]B) - f(XTB) <nt Z B- B Xi(f(X]'B) - f(X]'8Y))
i=1

< |18 - B*[12x.
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Takev = with 7 < 1 in the definition of 3, and note that in this case we have

N S
T+B-8* I
I8 — B*|li = v||B — B*||1 < 7. Next by the mean value theorem we have:

n 'S8 - BT X (F(XTB) - F(XTB7) =~ S (B - BT X f(XIB),

i=1 =1

I

N

where 3 isa point on the line segment between Band B, and thus |3 — B*||1 < ||B—B8*||1 <

We proceed bounding the expression from below:

I=v(B-p8)"Zw(B -8
I

' (B - BT XD (XTB) - £(XTB)).

i=1

Iz

By Lemma C.6.2 we have that I; > v RE,(s, 1) HBSO - Bs, ||3 with probability at least 1 — 2d L.

For I, first note that for any 5’ on the line segment between ,5 and 3* we have:
X7 B < IXTB |+ 1 Xl B = BIh < (1+7)K < 2K.
Hence by the Lipschitz property of f” we have:
n o~ o~ o~
Lz -Cn~ ') |(B- ) X 2 ~Cv?’K®|B - BIl} = ~CK?||B — B* 17>,
i=1

Combining the inequalities above, by a union bound we get with probability at least 1 — 4d—1:

vRE,(s,1)||Bs, — 85|13 < CK3||B — 8|17 + 1B — B*[12\.
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Selecting 7 = V) we obtain:

RE«(s,1)[|1Bs, — 8%, 13 < 2+ CE®)||B — B 1 VANVX+ |8 - B |11)

2(2 + CKY)AV5||Bs, — B ll2 + 42 + CE*)V s Bs, — B, 13,

where we used that on the intersection event we have HB\ — B <2 H,é\go — B%,ll1 by Lemma

. . . . RE,(s,1
C.6.4. Since we are assuming we are in the regime v/As < ng(??), we get:

~ 42+ CK3)\/s
— 3% <
HﬂSO IBSOH2 — RE,{(S, 1) 9
which finally implies:
PN 8(2+ CK3)\s
_3f, < 2= - /77
18- 57l < M
This completes the proof. O

Lemma C.6.6. Assume the same assumptions as in Lemma C.6.5 and that 18 — B%|l1 < 1. Ler

AN > vl (W+[CK2\/E> Then we have:

8N sy

|V —v* Hl_m

with probability at least 1 — 4d~".

Proof of Lemma C.6.6. We start by showing that the v* satisfies the constraint with high probabil-

< v hveoR? 57

Furthermore by the boundedness and Lipschitz assumptions and Lemma C.6.5, we have that the

ity. Note that, by Lemma C.6.1, with probability at least 1 — 2d~1 we have:

n Y XP (X

i=1

V*Tn—l Z X?Qf/(XZT,B*)—
=1

(o] max
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following bound holds with probability no smaller than 1 — 441

8CK3(2+ CK3)\s
RE,(s,1)

< CK®|B - B*|l <

nt ZX@Z FXTEn) - (X))

max

(C.6.3)

Combining the last two inequalities with a triangle inequality gives:

n
V*Tn—l ZX®2f/(XT A) _e
=1

n

. 8(2+ CK3)A log d
< vl <(RE(81; +V6CK? ) )

and thus by the assumption on A\’ we have that v* satisfies the constraint. Hence on the intersection
event, i.e. with probability at least 1 — 4d %, we have ||V||1 < ||v*||1, and similarly to (C.2.6), we
have:

Vsg = Vel < [IVs, = Vi, [

Next we deal with the following expression:

‘ v—v* ZX®2 XTB ) ' < QTn—l ZX;X)QJM(X;TIB*) _
=1 oo i=1 [ee)
1 I
+ Tnfl ZX;X)Zf/(XlTB*) o ‘ )
=1 00

Iz

For Iy, by the triangle inequality we have:

vin ZX XTI — fI(XT B)]H +X
80K3(2 + CK3))s
RE,(s,1)

< [v*lh + X,
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the last inequality holding with probability at least 1 — 4d~! from (C.6.3) and the fact that ||¥]|; <
|v*||1. Furthermore on the same event Iy < |[v*||1v/6CK? %. Adding up the previous
inequalities we get that with probability at least 1 — 4d™!: || I||oc < 2)". We next control |I(V —

v*)|. By Lemma C.6.2 and what we just concluded with probability no less than 1 — 4d ™! we have:
RE,(s,1)|[Vs, = v&,II3 < IE = v < [Iv = v 12X < V/se[[Vs, — V5, [24)"

A simple calculation finishes the proof. O

Remark C.6.7. Let B, = vf3y + (1 — v)B*, where By = (0,37)T and hence || B, — B*||1 <
1B — B*||1 when 6 = 0. Note that the same approach we handled 1, in the proof of Lemma C.6.6,

can be used to show:

<2),

[e.9]

sup
vel0,1]

n
Vin T Y O XPf(XTB,) — e
=1

with probability not smaller than 1 — 4d1,

Remark C.6.8. In addition to the comment in Remark C.6.7 note that when BV = V,@—l— (1— V)BO

we have the same conclusion as || B, — 8|1 < ||B — B*||1 still holds true when 6 = 0.
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