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Abstract

The design of new materials and chemicals derived entirely from computation has

long been a goal of computational chemistry, and the governing equation whose so-

lution would permit this dream is known. Unfortunately, the exact solution to this

equation has been far too expensive and clever approximations fail in critical situa-

tions. Quantum computers offer a novel solution to this problem. In this work, we

develop not only new algorithms to use quantum computers to study hard problems

in chemistry, but also explore how such algorithms can help us to better understand

and improve our traditional approaches.

In particular, we first introduce a new method, the variational quantum eigen-

solver, which is designed to maximally utilize the quantum resources available in a

device to solve chemical problems. We apply this method in a real quantum photonic

device in the lab to study the dissociation of the helium hydride (HeH+) molecule.

We also enhance this methodology with architecture specific optimizations on ion trap

computers and show how linear-scaling techniques from traditional quantum chem-

istry can be used to improve the outlook of similar algorithms on quantum computers.

We then show how studying quantum algorithms such as these can be used to un-

derstand and enhance the development of classical algorithms. In particular we use

a tool from adiabatic quantum computation, Feynman’s Clock, to develop a new dis-

crete time variational principle and further establish a connection between real-time
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quantum dynamics and ground state eigenvalue problems. We use these tools to de-

velop two novel parallel-in-time quantum algorithms that outperform competitive al-

gorithms as well as offer new insights into the connection between the fermion sign

problem of ground states and the dynamical sign problem of quantum dynamics.

Finally we use insights gained in the study of quantum circuits to explore a general

notion of sparsity in many-body quantum systems. In particular we use developments

from the field of compressed sensing to find compact representations of ground states.

As an application we study electronic systems and find solutions dramatically more

compact than traditional configuration interaction expansions, offering hope to extend

this methodology to challenging systems in chemical and material design.
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1
Introduction

1.1 Background and motivation

To frame the themes and goals of this work, it is appropriate to begin with a famous

quote by the renown physicist Paul Dirac [60],

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

The physical law being referred to here is, of course, the Schrödinger equation, which

governs non-relativistic quantum mechanics. The implication is that with sufficient
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computational power, one could predict the whole of chemistry, ranging from small

molecule synthesis to enzymatic catalysis and photosynthetic light harvesting. An

efficient solution to this equation would revolutionize the computational design of

drugs and materials and change the tools we have available to understand the physi-

cal world. Unfortunately, as alluded to by Dirac, the exact solution of these equations

has remained practically untenable. Dirac finished his quote by saying,

It therefore becomes desirable that approximate practical methods of ap-
plying quantum mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems without too
much computation.

And indeed, much progress has been made in approximate solutions of the Schrödinger

equation. Many classes of systematically improvable wavefunction methods such as

complete active space methods, configuration interaction, perturbation theory, cou-

pled cluster, and density matrix renormalization group methods have been developed

and used with great success [13, 17, 45, 84, 102, 107, 173, 192, 217, 249]. Simultane-

ously methods based entirely on the density, namely density functional theory, have

continued to develop and progress to new heights of accuracy and cost effectiveness,

in spite of the lack of obvious routes towards systematic improvement [62, 126, 194].

Despite these advances in approximation methods, there are still some cases where

the accuracy that is feasibly attainable remains lacking.

Even today, the difficulty of accurately calculating the interactions of atoms in the

simple exchange reaction O2 + O → O + O2, has led to great confusion in interpret-

ing its dynamics [203, 235, 258, 259]. The inaccuracies of this potential surface have

led to a decade long debate including attempts to identify features such as “Reef-like”

structures, and using the presence or absence of such structures to ascertain the qual-
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ity of the surface. Moreover, such interpretations have led to erroneous conclusions of

the basic physics, independent of the accuracy of quantitative assessment. This high-

lights the crucial need to make additional advances in this area. Without accurate

determination of such surfaces, gaining a deeper understanding of the physical phe-

nomena can be extremely challenging if not impossible.

It was Feynman who first suggested [70] that the difficulty arising in solving such

equations might stem from the fact that we are trying to represent fundamentally

quantum systems with classical ones. Consequently, a more natural solution might be

to use quantum systems to represent quantum systems. This modest suggestion rep-

resents the foundation of what we know today as quantum computation, simulation,

and information. The development of this field has led to many fundamental insights

into the nature of quantum mechanics as well as new algorithms for problems seem-

ingly unrelated to quantum mechanics, such as factoring large numbers [215].

Among the many developments in the general field of quantum computation, it

was discovered that instances of the molecular Schrödinger might be solvable exactly

(within a basis and to a fixed energetic precision), in a time that is exponentially

faster than current classical algorithms as a function of the system size [6]. Since

the initial proposal of the idea, there have been numerous proof of principle quan-

tum experiments demonstrating its feasibility as well as many algorithmic extensions

and variations [8, 111, 136, 166, 196, 209, 242, 261]. In fact, at present it is believed

that the solution of the molecular Schrödinger equation may represent one of the

first practical uses of a quantum computer that exceeds the computational capacity

of modern classical supercomputers [82].

The work of this thesis began at this foundation in understanding how one might

use a quantum computer to better understand and simulate chemistry at a fundamen-
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tal level. From this cornerstone, we developed a new quantum algorithm capable of

utilizing any quantum device to its maximum capability in studying quantum eigen-

value problems [196]. We then helped to extend this algorithm to new architectures

as well as import ideas from traditional quantum chemistry to further enhance its ef-

ficacy [166, 261]. In the study of quantum algorithms, we gained new insight into the

traditional methods of simulating quantum chemistry. From these insights, we were

inspired to write down a new quantum variational principle connecting time dynam-

ics to ground state eigenvalue problems [167]. This formulation facilitated not only

the development of time-parallel algorithms, but a new way to stochastically sam-

ple space-time paths with a discrete form of quantum Monte Carlo [165]. In study-

ing the performance of this algorithm, we were inspired to consider a different ap-

proach to the traditional simulation of electronic structure problems. This method

uses compressed sensing techniques to find simple representations of electronic wave-

functions [164]. The continuous cross-pollination between quantum computation and

classical computation has offered numerous insights into both fields, and this is not

a phenomenon likely to stop soon. We have learned much in navigating this bridge

between two fields, and believe there is much yet to be learned.

In this dissertation, we begin with a short introduction of the problems of quan-

tum mechanics as well as the notation and background required for understanding

this work. We then give a brief outline of each of the subsequent chapters, putting

each into the context of the greater theme. This is followed by the detailed research

chapters, representing the publications on these topics we have made throughout the

duration of this thesis research. Finally we conclude by tying the works together and

discussing the outlook for the bridge between quantum computation and quantum

chemistry.
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1.2 Technical background and notation

1.2.1 Quantum states and the enormity of Hilbert space

In non-relativistic quantum mechanics, the state of a physical system is represented

by a vector in a complete vector space V equipped with an inner product, or Hilbert

space [53]. This vector is also called the wavefunction of the physical system, and con-

tains all possible information about that physical system. Throughout this work we

will make use of the Bra-Ket notation of Dirac, where state vectors are denoted |Ψ〉,

and the inner product with another state vector |Φ〉 is denoted 〈Φ|Ψ〉. Observable

quantities are given by Hermitian operators Ô, and the expectation value of an oper-

ator a state vector |Ψ〉, or average value expected upon repeated measurement of the

observable, is given by 〈Ψ| Ô |Ψ〉.

After choosing an orthonormal basis B = {|φi〉}i, i.e. 〈φi|φj〉 = δij , for the vector

space of the physical system V , one can express any state of the physical system |Ψ〉

in terms of this basis as

|Ψ〉 =
∑

i

ci |φi〉 (1.1)

where ci ∈ C and one may write the matrix representation of a linear operator Ô as

O =




〈φ1| Ô |φ1〉 〈φ1| Ô |φ2〉 〈φ1| Ô |φ1〉 ...

〈φ2| Ô |φ1〉 〈φ2| Ô |φ2〉 〈φ2| Ô |φ3〉

〈φ3| Ô |φ1〉 〈φ3| Ô |φ2〉 〈φ3| Ô |φ3〉
...

. . .




(1.2)
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or more succinctly [O]ij = 〈φi| Ô |φj〉.

Suppose that we have a quantum system that belongs to a space V with basis B =

{|φi〉}i and another that belongs to a space V ′ with basis B′ = {|φ′i〉}i. This situation

is common when considering many-particle quantum systems, where each particle

has a well defined Hilbert space such as V . The composite system lives in the tensor

product space V ⊗ V ′, and is spanned by the basis B ⊗ B′ = {|φi〉 ⊗ |φ′j〉 = |φi〉 |φ′j〉 =

|φiφ′j〉}ij . As such, any state of the composite system can be written in terms of this

basis as

|Ψ〉 =
∑

ij

cij |φiφ′j〉 (1.3)

where cij = c is a complex two-index tensor completely defining the quantum state.

We will sometimes call this the defining or coefficient tensor of the state. Note that

cij is typically subject to the constraint of normalization and all physical observables

are independent of the global phase. As such, if V has dimension M and V ′ has di-

mension M ′, the tensor cij contains 2MM ′ − 2 real degrees of freedom.

Before generalizing to N particles, we consider an example of two qubits, which

are simply two-level quantum systems. Equivalently these may be thought of as 2

spin-1
2 particles or 2 qubits. Each qubit has a standard basis, sometimes called the

computational basis, given by

|0〉 =




1

0


 (1.4)

|1〉 =




0

1


 . (1.5)
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In this case, V = V ′, and any state of the two qubit system may be written as

|Ψ〉 = c00 |00〉+ c10 |10〉+ c01 |01〉+ c11 |11〉 =
∑

ij

cij |ij〉 (1.6)

As in the more general case, the state |Ψ〉 is, of course, defined completely by the ten-

sor c. A property of tensors such as c that will be important throughout this work,

is the concept of canonical- or separation-rank [66, 88, 92, 125, 127]. The separation-

rank is the minimal r such that we may express the tensor as a sum of products of 1

index tensors. For the two-qubit example given here, this is denoted

c =
r∑

k

akvk1 ⊗ vk2 (1.7)

where vji ∈ CM and ak ∈ C. In the case of two subsystems (or indices in c), the

separation rank is exactly equivalent to the more familiar matrix rank, however this

concept will generalize naturally to an arbitrary number of indices. To make this de-

composition more concrete, consider the following two states of our two-qubit system

|Ψs〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) =

∑

ij

cijs |ij〉 (1.8)

|Ψe〉 =
1√
2

(|00〉+ |11〉) =
∑

ij

cije |ij〉 . (1.9)

In this case, we may write the defining tensor of |Ψs〉, or cs as

cs =
1

2

(
1 1

)
⊗
(

1 1

)
(1.10)

Thus it has separation-rank r = 1, or is a separable tensor. A separable defining
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tensor is the hallmark of what is more typically referred to as a separable state in

quantum computation and quantum information, and has the physical property that

projective measurement on any subsystem (such as a single qubit) will not affect the

probability of measurement outcomes on the other subsystem [183]. A quantum sys-

tem that is not separable is called entangled, and is equivalently defined as a tensor

with separation rank r > 1. Consider for example the decomposition of the defining

tensor of |Ψe〉, ce,

ce =
1√
2

(
1 0

)
⊗
(

1 0

)
+

1√
2

(
0 1

)
⊗
(

0 1

)
(1.11)

which has separation rank r = 2, and is entangled. A defining physical property of en-

tangled states is that projective measurement on one subsystem may affect the mea-

surement outcome probabilities for other subsystems.

Moving now to a more general system of N qubits, one finds that the quantum

state lives in the vector space
⊗N

i=1 Vi and any state may be written as

|Ψ〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN |i1i2...iN 〉 (1.12)

where the defining tensor of the state c now has N indices, and for a simple 2-qubit

system has on the order of 2N complex entries. This brings us to the central problem

in the simulation and study of many-body quantum systems, the enormous size of c

for an N particle system. Consider a simple collection of 256 qubits. The size of the

tensor c in this case is roughly 2256 ≈ 1080 which is on the order of the number of

particles in the known universe. Even if one could enumerate 1 quadrillion entries per

second, it would take orders of magnitude longer than the current age of the universe
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(which is estimated to be ≈ 1017 seconds) to write down an arbitrary state, much less

perform meaningful computation on it.

The central goals of this work will be concerned with making progress in the study

of many body quantum systems, despite the daunting size of c. A central guiding phi-

losophy and strategy for such work, is that the universe may not prepare arbitrary

quantum states, and instead the subspace of physical states (sometimes called the

physical corner of Hilbert space), may be small enough to be tractable [65, 79, 199].

In classical simulation methods, one attempts to find efficient approximations to the

tensor c, such as the low rank decomposition described before. In quantum simula-

tion, one takes a novel approach, which is to forfeit detailed knowledge of the tensor c

and allow a different quantum system (perhaps a quantum computer) to naturally ex-

plore this gargantuan space. It is likely that both approaches will have some strengths

and some weaknesses, and only by further study will we come to understand them.

Despite the strong promises of quantum computers, it is perhaps prudent to keep in

mind the wisdom of renowned mathematician John von Neumann,

Truth [...] is much too complicated to allow anything but approximations.

1.2.2 The Schrödinger Equation and (Imaginary) Time Evolution

The central equation governing the dynamics of quantum systems is the time-dependent

Schrödinger equation, which in atomic units (~ = 1) is written

i∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 (1.13)

where H(t) is a Hermitian operator called the Hamiltonian and is the generator of

time dynamics. In the special case where H(t) is time-independent, the time-dependence

9



can be separated from the equation to yield the time-independent Schrödinger equa-

tion,

H |χk〉 = Ek |χk〉 (1.14)

which is an eigenvalue equation for the operator H, where |χk〉 are the eigenvectors

(or eigenstates) and Ek are the eigenvalues (or eigenenergies). One often orders the

eigenvalues by their value, such that E0 < E1 ≤ ...Ek. The eigenvectors corresponding

to the few lowest eigenenergies are frequently of primary interest, as physical systems

at thermal equilibrium tend to predominantly occupy the lowest state and those rea-

sonably accessible at thermal energy scales, i.e. Ek − E0 < kbT , which is roughly 0.59

kcal/mol at room temperature.

One can use the knowledge that we are often only interested in the lowest few

eigenstates to design specialized algorithms for finding and describing them. One

such algorithm is imaginary time evolution [29, 52, 94, 139, 208, 238]. Consider the

time-dependent Schödinger equation with a time-independent Hamiltonian after a

transformation t → iτ . This transformation is sometimes called a Wick rotation into

imaginary time, and the new equation is given by

∂τ |Ψ(τ)〉 = −H |Ψ(τ)〉 (1.15)

and has a formal solution

|Ψ(τ)〉 = e−Hτ |Ψ(0)〉 (1.16)

To see how this equation can be used to find the lowest energy eigenstate, consider
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an arbitrary initial wave function |Ψ(0)〉. Any state of the system may be formally

decomposed into the eigenstates of the Hamiltonian, such that

|Ψ(0)〉 =
∑

i

ai |χi〉 (1.17)

and by using the property that for an analytic function f of an operator H with

eigenstate and eigenenergy |χk〉, Ek, f(H) |χk〉 = f(Ek) |χk〉, we see that evolution

of this state in imaginary time is given by

ψ(τ) = e−Hτ |Ψ(0)〉

= e−Hτ

(∑

i

ai |χi〉
)

=
∑

i

aie
−Eiτ |χi〉 (1.18)

such that in the limit τ → ∞, we find |Ψ(τ)〉 → |χ0〉. Thus if one can find a method

to evolve a state in imaginary time, eventually it will converge to the ground state,

assuming the initial state was not strictly orthogonal to it. A number of methods

have been developed to achieve this in practice, and for discrete quantum systems a

popular approach is the repeated use of the linearized short-time propagator [269].

That is, one makes the identification

e−Hτ =

N∏

i=1

e−H
τ
N ≈

N∏

i=1

(
I −H τ

N

)
(1.19)

and then finds a prescription for application of the linearized short time propagator
(
I −H τ

N

)
. This formulation is convenient in that it only requires knowledge of how

to apply the Hamiltonian to a quantum state, and results in a final state (τ → ∞)
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that is totally unbiased from the linearization under some loose conditions on the

time step τ
N relative to the spectrum of the system. This prescription is the basis for

the imaginary time evolution used in both the Clock Quantum Monte Carlo [165] and

NOMAGIC [164] algorithms described later in this dissertation.

1.2.3 Canonical Decompositions and Matrix Product States

In the previous section, we showed briefly for two-qubits a form of the canonical rank

decomposition, sometimes called the CANDE-PARFAC or CP decomposition [66, 88,

92, 125, 127]. We will now consider the generalization to N particles, and instead of

focusing on the coefficient tensor, we can write this decomposition in a more famil-

iar way with bra-ket notation of tensor products of single particle states. Consider a

quantum system with M possible single particle states, and N copies of that system.

Suppose that we have a basis for the single particle system denoted by {|χi〉}i, and we

fashion single particle states of the form

|φki 〉 =
∑

j

bjik |χj〉 . (1.20)

We can write the canonical decomposition of an N particle state |Ψ〉 of rank r as

|ΨCP 〉 =
r∑

k=1

ak |φk1φk2...φkN 〉 (1.21)

As before, we call a state separable if r = 1 and entangled if r > 1. We will use this

form of the CP decomposition in the construction of the NOMAGIC method, and also

later specify it to the case of indistinguishable systems.

This particular decomposition has not received as much attention as orthogonal ex-
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pansions or tensor-network decompositions in general quantum physics. For that rea-

son, we quickly highlight the connection between the CP decomposition and matrix

product states, which are the implicit ansatz of the density matrix renormalization

group method [45, 249]. The connection is quite straightforward and noted abstractly

in tensor references [92] but does not seem to be well recognized in physics or chem-

istry literature. Consider the expansion of |ΨCP 〉 into its canonical tensor representa-

tion, and for simplicity of notation absorb the coefficients ak into the state such that

|ΨCP 〉 =

r∑

k=1

|φk1φk2...φkN 〉 (1.22)

=

r∑

k=1

M∑

j1,j2,...,jN

bj11kb
j2
2k...b

jN
Nk |χj1χj2 ...χjN 〉 (1.23)

Define a trivial diagonal matrix Bi
j as

Bi
j =




bij1 0 0 ...

0 bij2 0

0 0 bij3
...

. . .

bijr




(1.24)

which is a square matrix of dimension r. We may rewrite the above state using these

matrices as

|ΨCP 〉 =
∑

j1j2...jM

Tr
[
Bj1

1 B
j2
2 ...B

jN
N

]
|χj1χj2 ...χjN 〉 (1.25)

which is exactly the definition of a finite matrix product state with uniform bond di-
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mension r. Recall that matrix product states are invariant under a transformation by

an invertible matrix X, such as Bi
jB

k
j+1 → Bi

jXX
−1Bk

j+1. Thus, states which can

be decomposed with separation rank r are equivalent to matrix product states with

bond dimension r that can be made totally diagonal by invertible transformations X.

Moreover, this form helps to highlight the lack of geometric dependence in the CP de-

composition, as although diagonal matrices that are not multiples of the identity do

not commute with all matrices, they do commute with eachother.

1.2.4 Antisymmetric Systems

Until this point, we have considered the most general quantum systems possible. Now

it is prudent to spend some time specializing to the case of a set of N indistinguish-

able, antisymmetric particles. This is, of course, crucial to the study of electrons in

molecules.

The wavefunction of N electrons must be totally antisymmetric with respect to

the exchange of particles. We will consider the state of the electron to be represented

by single particle functions {|φi〉}i expressed in a basis of M single particle functions

{|χij〉}ij . A number of approaches can be used to enforce the desired antisymmetry in

the wavefunction. For example, we may write the state with a standard tensor expan-

sion

|ΨA〉 =
∑

i1,i2,...,iN

ci1i2...iN |χ1
i1χ

2
i2 ...χ

N
iN
〉 (1.26)

under the constraint that ci1i2...iN is totally antisymmetric under exchange of indices.

This approach has the advantage that makes clear the relation between the space of

N distinguishable and N antisymmetric particles. Namely, that the space of antisym-
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metric particle is a subspace of the space of distinguishable particles. However, work-

ing with this construction in practical calculations can be somewhat cumbersome.

One alternative to this approach is to work in a basis of antisymmetric component

functions. That is, much like the CP decomposition before, we have an antisymmetric

CP decomposition

|ΨCP
A 〉 =

r∑

k=1

akA
(
|φk1φk2...φkN 〉

)
(1.27)

where A is the antisymmetrization operator. These antisymmetrized tensor products

are taken to be so-called Slater Determinants, and the manipulation of such objects

is well studied in quantum chemistry. We will use these antisymmetric component

functions in the implementation of the NOMAGIC algorithm for electronic systems

later in this work.

1.2.5 Quantum computation in brief

First conceptualized by Richard Feynman [70], quantum computation is the idea of

encoding and processing information with a quantum system. The number of pos-

sible physical systems one could use to encode and process this information is enor-

mous [183], ranging from entangled photons [8] and ions [95] to superconducting cir-

cuits [58]. As such, to make progress algorithmically, it is beneficial to abstract away

the physical implementation and speak in the language of qubits, the quantum coun-

terpart of bits.

A qubit is defined as a controllable two level quantum system, with basis states |0〉
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and |1〉. A convenient vector representation for these states is given by

|0〉 =




1

0


 (1.28)

|1〉 =




0

1


 . (1.29)

Ideal, reversible actions on qubits are called gates, and transformations of the qubits

are unitary as dictated by evolution under the time-dependent Schrödinger equation.

Unitary operators are generated by the algebra of antihermitian operators, and as

such any single qubit gate can be parametrized by

U = exp

(
−i
∑

i

αiσi

)
(1.30)

where αi are real numbers and σi are the standard Pauli matrices that constitute a

basis for 2× 2 Hermitian matrices.

σ0 = I =




1 0

0 1


 (1.31)

σ1 = X =




0 1

1 0


 (1.32)

σ2 = Y =




0 −i

i 0


 (1.33)

σ3 = Z =




1 0

0 −1


 (1.34)
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where in defining the Pauli matrices, we have also given their common designations

when used as single qubit gates X, Y , and Z. A few other useful single qubit gates

that play a prominent role in the construction of circuits are the Hadamard gate H,

the T -gate, and rotation gate R(θ),

H =
1√
2




1 1

1 −1


 (1.35)

T =




1 0

0 eiπ/4


 (1.36)

R(θ) =




cos θ sin θ

− sin θ cos θ


 (1.37)

In order to perform useful computations, it is also necessary to perform conditional

actions on qubits based on the states of other qubits. The simplest of such gates (con-

ceptually), is the controlled-NOT or CNOT gate. This gate performs a NOT (or X)

gate on a target qubit based on the state of the control qubit. It has operator and

matrix representations given by

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(1.38)

A gate set is called universal, if by successive application of the gates in the set on

different qubits an arbitrary unitary on n qubits can be performed to a specified pre-

cision. The gate set {H,T,CNOT} is one such universal set. A convenient notation
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|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ)

· · ·
Figure 1.1: An example quantum circuit diagram. These diagrams are read from left to right,
where horizontal lines denote a particular qubit, boxes represent a quantum gate, and lines shows
the control relationship for multi-qubit gates. Shown here is a series of one-qubit rotations pa-
rameterized by an angle theta, R(θ), followed by CNOT gates, where the solid dot represents the
control bit and the cross represents the target bit.

that can be used to express algorithms are quantum circuit diagrams, an example of

which is depicted in Fig. 1.1.

1.2.6 Electronic Hamiltonians

While the aim of almost all the methods in this work is to be generally applicable

to all quantum systems, electronic and chemical Hamiltonians are an application of

special interest. A non-relativistic system composed of Nn nuclei and Ne electrons

neglecting weak spin-spin interactions is defined by a Hamiltonian composed of the

the kinetic energy and Coulomb interactions of the charged particles. In atomic units

we write this Hamiltonian as

H =

Ne∑

i=1

−∇2
ri

2
+

Nn∑

i=1

−∇2
Ri

2Mi
+

Nn∑

i,j<i

ZiZj
|Ri −Rj |

−
Nn,Ne∑

ij

Zi
|Ri − rj |

+

Ne∑

i,j<i

1

|ri − rj |
(1.39)

where Ri,Mi, Zi are nuclear positions, masses, and charges respectively, and the elec-

tronic positions are given by ri. Due to the differences in mass and time scales be-
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tween the electrons and nuclei, this Hamiltonian can be well-approximated (in non-

dynamical problems) by assuming that the nuclei are fixed classical point charges.

This approximation is known as the Born-Oppenheimer approximation, and yields a

purely electronic Hamiltonian that depends only parametrically on the position of the

nuclei as

H =

Nn∑

i,j<i

ZiZj
|Ri −Rj |

+

Ne∑

i=1

−∇2
ri

2
−
Nn,Ne∑

ij

Zi
|Ri − rj |

+

Ne∑

i,j<i

1

|ri − rj |
. (1.40)

It is also known, both from experimental inference and later the spin-statistics the-

orem of quantum field theory, that electrons must be antisymmetric with respect to

exchange. One way of dealing with the antisymmetry is through explicit constraints

on wavefunctions, as in previous sections where we references antisymmetric coef-

ficient tensor constraints or antisymmetric components. Another way is to include

antisymmetry in the Hamiltonian through the use of second quantization. In second

quantization one makes use of the operator algebra of fermion creation and annihila-

tion operators, a†i and aj , to account for antisymmetry. Defining the anti-commutator

{A,B} := AB +BA, these satisfy the fermion anti-commutation relations

{
a†i , a

†
j

}
= 0 (1.41)

{ai, aj} = 0 (1.42)
{
a†i , aj

}
= δij (1.43)

Suppose that we discretize the electronic Hamiltonian in a single particle basis

19



{|ϕi〉}i. The Hamiltonian in this basis, now including antisymmetry, may be written

H =
∑

ij

hija
†
iaj +

1

2

∑

ijkl

hijkla
†
ia
†
jakal (1.44)

where the coefficients of the operators are defined as integrals of the interaction terms

over this single particle basis. More explicitly,

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑

i

Zi
|Ri − r|

)
ϕq(σ) (1.45)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(1.46)

where σi now contains the spatial and spin components of the electron, σi = (ri, si).

This form of the electronic Hamiltonian has been particularly useful in the devel-

opment of correlated electronic structure calculations. In this work, we will use it to

help formulate the electronic structure problem on quantum computers. In order to

do this, we first need to map this problem, which is in the language of indistinguish-

able fermions, to the language of qubits, or distinguishable two-level systems. There

are now at least 3 known isomorphisms that may be used to accomplish this task, the

Jordan-Wigner, Parity, and Bravyi-Kitaev mappings [35, 112, 209]. In this disserta-

tion, we primarily utilize the Jordan-Wigner transformation that is defined by

a†p = (
∏

m<p
σzm)σ+

p (1.47)

ap = (
∏

m<p
σzm)σ−p (1.48)

σ± ≡ (σx ± iσy) /2 (1.49)

As a result, the electronic Hamiltonian becomes highly non-local in terms of the Pauli
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operators {σx, σy, σz} in the distinguishable qubit basis. However, an important as-

pect of this transformation that will be used later, is that despite this non-locality,

the number of terms in the Hamiltonian is conserved up to a constant factor. Thus if

there are O(M4) terms in the original fermionic Hamiltonian, where M is the number

of single particle basis functions used to discretize the Hamiltonian, then there will be

O(M4) terms in distinguishable qubit representation of the Hamiltonian.

1.3 Chapter outline and summaries

1.3.1 Chapters 2, 3, and 4

In the first chapters of this thesis, we will describe, and subsequently improve upon, a

new quantum algorithm for the study of quantum chemistry with minimal experimen-

tal requirements. This method is called the Variational Quantum Eigensolver [196],

and can be applied to general eigenvalue problems on a quantum computer, but our

specific application goals at the time were focused on quantum chemistry.

Almost all quantum algorithms to date have been developed agnostic to the avail-

able hardware. That is, the approach is write down the best possible algorithm with

regards to cost for attaining the result one desires, assuming that one day a quantum

device will be capable of running that algorithm. However, many of the algorithms

that perform optimally in the asymptotic limit of size require extraordinary resources

for systems of interest.

For this reason, we proceeded with a different, co-design approach to quantum com-

putation. We consider both the problem and the available architecture simultane-

ously, to achieve an optimal solution for the given hardware. This is done by separat-

ing the algorithm into components that exploit the strengths of a quantum computer
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and components that can be trivially performed on a classical computer, so as not to

waste expensive quantum resources.

To describe how we formulate this approach, we return to the variational principle

of quantum mechanics. This principle states that for a Hermitian operator H with

eigenvectors and eigenvalues |Ψi〉 , Ei ordered by value, that any approximate wave-

function |ΨT 〉 (obeying necessary symmetries) satisfies

〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉

≥ E0 (1.50)

Thus if we can create some state |ΨT 〉 based on a set of parameters {θi}, we can im-

prove the quality of the approximation to the ground state by choosing parameters

that minimize the expectation value of the energy.

The preparation of complex quantum states based on some set of parameters is an

area where quantum computers excel. Indeed any parametrizable sequence of gates

or repeatable sequence of quantum operations can be considered as a valid trial state

preparation. We call this general idea, the “quantum hardware ansatz”, and it allows

one to use the available hardware to define the limits of the simulation. On a theoret-

ical side, we have investigated the preparation of parameterizable ansatz states that

we believe to be both high-quality and not efficiently prepared or sampled from on a

classical computer. We believe multi-reference unitary coupled cluster [225] to be a

strong candidate in this regard.

Once a state is prepared, one needs a way to evaluate the energy in order to im-

prove the parameterization. One potential solution is to use quantum phase estima-

tion, but this returns us to techniques which are, at the time of writing, experimen-

tally inaccessible. Instead, one can use the linearity of quantum mechanics to write
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the expectation value of the electronic Hamiltonian as

〈ΨT |H |ΨT 〉 ≡ 〈H〉 =
∑

ij

hij 〈a†iaj〉+
∑

ijkl

hijkl 〈a†ia
†
jakal〉 (1.51)

=
∑

iα

giα 〈σiα〉+
∑

ijαβ

gijαβ 〈σiασ
j
β〉+ ... (1.52)

where the first line shows that the energy is explicitly obtainable through the two-

electron reduced density matrix, weighted by the precomputed values of the electronic

integrals. The second line is obtained through any of the aforementioned transfor-

mations(e.g. Jordan-Wigner or Bravyi-Kitaev) from fermions to qubits and demon-

strates that the energy may be efficiently evaluated through a weighted sum of Pauli

measurements on the system. Here the Greek indices denote the type of Pauli ma-

trix (I,X, Y, Z) and the Roman index runs over the number of qubits. Recall that the

number of terms in sum on the second line scales the same as the number of terms in

the first with respect to the number of spin orbitals, and only a partial tomography of

the quantum system is ever required.

Based on the value of the energy, a new set of parameters for the state preparation

can be determined through some non-linear minimization scheme, such as Nelder-

Mead simplex method or simulated annealing [73, 180]. Classical computers are well

optimized to perform tasks like adding together the measurements and deciding on

new parameters in a non-linear optimization, suggesting a hybrid approach.

The approach can be qualitatively outlined as

1. Prepare a quantum state on a quantum device based on an established protocol

that depends on a set of parameters {θi}i.

2. Evaluate the energy, 〈H〉, by partial quantum tomography of the state and
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weighted summation on a classical computer.

3. Use a classical computer to decide a new set of parameters {θi}i that lowers the

energy, and repeat until convergence.

This procedure takes advantage of a quantum computer’s ability to prepare and

efficiently sample select elements from complex quantum states, while offloading mun-

dane tasks such as addition and multiplication of scalars to a classical computer. In

doing so, we conserve precious quantum resources for what they do best. We call

this technique the variational quantum eigensolver and this is the subject of Chap-

ter 2, which includes an experimental implementation on a photonic quantum chip.

Since its initial formulation, we have done some work in optimizations for ion traps

in Chapter 3. Finally, we imported technology from classical quantum chemistry in

Chapter 4, and showed how the use of the appropriate basis could offer dramatic sav-

ings, not only in this method, but all those currently being considered for quantum

chemistry on quantum computers.

1.3.2 Chapters 5 and 6

The potential of quantum computers to help accelerate our simulations and under-

standing of chemistry are great, however this eventual promise is not the only reason

to study quantum computation and quantum information in chemistry. The knowl-

edge gained in this field has now helped to bolster both our understanding and method-

ology in both general physics and chemistry. In these Chapters we introduce another

such knowledge transfer from quantum computation to classical simulation of quan-

tum systems stemming from a tool known as Feynman’s Clock [70, 123, 167].
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The gate model of quantum computation, built from qubits and sequences of uni-

tary gates is only one model of quantum computation currently under consideration.

Another model of interest is that of adiabatic quantum computation [68]. In this

model, one encodes the solution to a problem in the ground state of some Hamilto-

nian Hp, and prepares the ground state to this problem Hamiltonian through a slow

adiabatic evolution from a simple starting Hamiltonian HD, whose ground state is

easy to prepare. By the adiabatic theorem, if the evolution of the Hamiltonian from

HD to Hp is slow enough, one remains in the ground state and the solution to the

problem is found. This is often written as a simple linear schedule between the two

Hamiltonians parameterized by a real number s ∈ [0, 1] as

H(s) = (1− s)HD + sHp. (1.53)

In order to unify this approach with the gate model, Kitaev, building off the work

of Feynman, developed the clock Hamiltonian, which encodes the result of a gate

model computation into the problem Hamiltonian Hp.

To perform this mapping, one attaches an ancilla quantum register that keeps

track of time, called the clock register. If one only has access to qubits then some

effort must be made to keep the clock states valid, however for classical computing

purposes, it suffices to use a d−dimensional qudit, with orthonormal basis states

〈i|j〉 = δij . Given an initial state |Ψ0〉 and an ordered sequence of quantum gates

{Ui}i, the Clock Hamiltonian encoding the full evolution of the quantum state under
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these operations as its ground state is

Hc =
∑

t

1

2

(
I ⊗ |t〉 〈t| − Ut ⊗ |t+ 1〉 〈t| − U †t ⊗ |t〉 〈t+ 1|+ I ⊗ |t+ 1〉 〈t+ 1|

)

+ (1− |Ψ0〉 〈Ψ0|)⊗ |0〉 〈0| . (1.54)

where the final projector is penalty term that breaks the degeneracy of the ground

state to the unique evolution desired. The properties of this Hamiltonian have been

studied extensively, and it is known that it is frustration-free and has a spectral gap

that decreases as 1/T 2 where T is the total number of discrete time steps under con-

sideration [33, 34, 49]. The ground state of this Hamiltonian is the history state,

|ΦH〉, which contains the entire quantum trajectory as

|ΦH〉 =
1√
T

∑

t

|Ψt〉 |t〉 (1.55)

where |Ψt〉 is the state of the quantum system after the application of the first t − 1

gates. The eigenvalue of this state is 0 by construction, though it may be adjusted

through a constant shift factor if desired.

In Chapter 5, we show that this can be derived from a more general discrete time

variational principle, and that recasting a dynamics problem as an eigenvalue problem

in this manner can have practical computational benefits on a classical computer. In

particular, we show that it makes parallel-in-time dynamics possible through use of

a proper preconditioner. Moreover the proposed algorithm demonstrates an advan-

tage over the current standard Parareal algorithm [14, 143] for the quantum dynamics

problems studied.

In Chapter 6 we take this idea further and show how a method for describing corre-
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lated many-body systems, namely the Full Configuration Interaction Quantum Monte

Carlo (FCIQMC) [26, 27, 29, 128, 213, 220], technique can be applied to time dy-

namics problems with this connection. It suggests a close link between the fermion

sign problem experienced in the simulation of electronic ground states and the dy-

namical sign problem arising in the simulation of quantum dynamics. We introduced

a rotating basis methodology capable of mitigating the sign problem through approxi-

mate pre-computation and demonstrated the method’s capabilities in parallel compu-

tation of quantum circuits.

1.3.3 Chapter 7

The simulation of explicit wavefunctions has pushed forward by exploiting expert

knowledge of physics to identify structure and reduce the complexity of the prob-

lem to be solved. For example, the use of symmetry or knowledge that an interac-

tion is relatively weak with regards to another in perturbation theory facilitates fast,

accurate approximations. Recently a technique has emerged in the field of signal pro-

cessing that attempts to exploit a different kind of structure, namely sparsity. These

techniques are generally referred to as compressed sensing methodologies [193, 232].

A Hamiltonian governing many non-interacting particles may be written as the sum

of the non-interacting pieces

H =
∑

i

Hi (1.56)

where each Hi acts only on the i’th particle. Such a Hamiltonian has a ground state
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given by a rank 1 quantum state

|Φ〉 = |φ1〉 |φ2〉 ... |φN 〉 (1.57)

where Hi |φi〉 = Ei |φi〉 and as a result H |Φ〉 = (
∑

iEi) |Φ〉. If one introduces some

weak coupling between the subsystems, we conjecture that one does not expect the

rank of the state to change dramatically and as such the state may be well described

by a CP-decomposition with rank r << D = MN . If this conjecture is true, the

practical question is how to obtain this type of sparse representation without first

knowing the full state. Moreover, once the technique is developed, one would like to

examine what kind of systems exhibit such a decomposition.

In Chapter 7 we discuss the application of a method from the field of compressed

sensing, namely orthogonal matching pursuit combined with imaginary time evolution

to find exactly these types of compressed wavefunctions. The methodology we build

is general in the sense that it does not require that one use a specific type of ansatz

or apply it to a particular type of quantum system. As an example application we

consider the electronic structure of molecules, using an antisymmetric low rank de-

composition. We find solutions that are dramatically more compact than traditional

orthogonal CI type expansions.
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If you find that you’re spending almost all your time on

theory, start turning some attention to practical things;

it will improve your theories. If you find that you’re

spending almost all your time on practice, start turning

some attention to theoretical things; it will improve your

practice.

Donald Knuth

2
A variational eigenvalue solver on a photonic

quantum processor∗

Abstract

Quantum computers promise to efficiently solve important problems that are intractable

on a conventional computer. For quantum systems, where the physical dimension

grows exponentially, finding the eigenvalues of certain operators is one such intractable

∗Alberto Peruzzo†, Jarrod R McClean†, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’Brien. A new variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5(4213):1-7, 2014.
† These authors contributed equally to this work.

29



problem and remains a fundamental challenge. The quantum phase estimation algo-

rithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent

evolution. We present an alternative approach that greatly reduces the requirements

for coherent evolution and we combine this method with a new approach to state

preparation based on ansätze and classical optimization. We implement the algorithm

by combining a highly reconfigurable photonic quantum processor with a conventional

computer. We experimentally demonstrate the feasibility of this approach with an ex-

ample from quantum chemistry—calculating the ground state molecular energy for

He–H+. The proposed approach drastically reduces the coherence time requirements,

enhancing the potential of quantum resources available today and in the near future.

2.1 Introduction

In chemistry, the properties of atoms and molecules can be determined by solving the

Schrödinger equation. However, because the dimension of the problem grows expo-

nentially with the size of the physical system under consideration, exact treatment

of these problems remains classically infeasible for compounds with more than 2–3

atoms [229]. Many approximate methods [102] have been developed to treat these sys-

tems, but efficient exact methods for large chemical problems remain out of reach for

classical computers. Beyond chemistry, the solution of large eigenvalue problems [206]

would have applications ranging from determining the results of internet search en-

gines [191] to designing new materials and drugs [86].

Recent developments in the field of quantum computation offer a way forward for

efficient solutions of many instances of large eigenvalue problems which are classi-

cally intractable [22, 78, 89, 98, 122, 182, 183]. Quantum approaches to finding eigen-
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values have previously relied on the quantum phase estimation (QPE) algorithm.

The QPE algorithm offers an exponential speedup over classical methods and re-

quires a number of quantum operations O(p−1) to obtain an estimate with precision

p [1, 2, 6, 8, 136, 251]. In the standard formulation of QPE, one assumes the eigenvec-

tor |ψ〉 of a Hermitian operator H is given as input and the problem is to determine

the corresponding eigenvalue λ. The time the quantum computer must remain coher-

ent is determined by the necessity of O(p−1) successive applications of e−iHt, each of

which can require on the order of millions or billions of quantum gates for practical

applications [111, 251], as compared to the tens to hundreds of gates achievable in the

short term.

Here we introduce an alternative to QPE that significantly reduces the require-

ments for coherent evolution. We have developed a reconfigurable quantum processing

unit (QPU), which efficiently calculates the expectation value of a Hamiltonian (H),

providing an exponential speedup over exact diagonalization, the only known exact

solution to the problem on a traditional computer. The QPU has been experimentally

implemented using integrated photonics technology with a spontaneous parametric

downconversion single photon source and combined with an optimization algorithm

run on a classical processing unit (CPU), which variationally computes the eigenval-

ues and eigenvectors of H. By using a variational algorithm, this approach reduces

the requirement for coherent evolution of the quantum state, making more efficient

use of quantum resources, and may offer an alternative route to practical quantum-

enhanced computation.
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Figure 2.1: Architecture of the quantum-variational eigensolver. (Algorithm 1): Quantum states
that have been previously prepared, are fed into the quantum modules which compute 〈Hi〉, where
Hi is any given term in the sum defining H. The results are passed to the CPU which computes
〈H〉. (Algorithm 2): The classical minimization algorithm, run on the CPU, takes 〈H〉 and deter-
mines the new state parameters, which are then fed back to the QPU.

2.2 Results

2.2.1 Algorithm 1: Quantum expectation estimation

This algorithm computes the expectation value of a given Hamiltonian H for an input

state |ψ〉. Any Hamiltonian may be written as

H =
∑

iα

hiασ
i
α +

∑

ijαβ

hijαβσ
i
ασ

j
β + ... (2.1)

for real h where Roman indices identify the subsystem on which the operator acts,

and Greek indices identify the Pauli operator, e.g. α = x. Note that no assump-

tion about the dimension or structure of the hermitian Hamiltonian is needed for this

expansion to be valid. By exploiting the linearity of quantum observables, it follows
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that

〈H〉 =
∑

iα

hiα 〈σiα〉+
∑

ijαβ

hijαβ 〈σiασ
j
β〉+ ... (2.2)

We consider Hamiltonians that can be written as a number of terms which is polyno-

mial in the size of the system. This class of Hamiltonians encompasses a wide range

of physical systems, including the electronic structure Hamiltonian of quantum chem-

istry, the quantum Ising Model, the Heisenberg Model [147, 153], matrices that are

well approximated as a sum of n-fold tensor products [188, 189], and more gener-

ally any k−sparse Hamiltonian without evident tensor product structure (see Sup-

plementary Information for details). Thus the evaluation of 〈H〉 reduces to the sum

of a polynomial number of expectation values of simple Pauli operators for a quan-

tum state |ψ〉, multiplied by some real constants. A quantum device can efficiently

evaluate the expectation value of a tensor product of an arbitrary number of simple

Pauli operators [188]. Therefore, with an n-qubit state we can efficiently evaluate the

expectation value of this 2n × 2n Hamiltonian.

One might attempt this using a classical computer by separately optimizing all re-

duced states corresponding to the desired terms in the Hamiltonian, but this would

suffer from the N -representability problem, which is known to be intractable for both

classical and quantum computers (it is in the quantum complexity class QMA-Hard [145]).

The power of our approach derives from the fact that quantum hardware can store a

global quantum state with exponentially fewer resources than required by classical

hardware, and as a result the N -representability problem does not arise.

As the expectation value of a tensor product of an arbitrary number of Pauli oper-

ators can be measured in constant time and the spectrum of each of these operators is

bounded, to obtain an estimate with precision p of an individual element with coeffi-
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cient h, which is an arbitrary element from the set of constants {hij...αβ...}, our approach

incurs a cost of O(|h|2 p−2) repetitions. Thus the total cost of computing the expecta-

tion value of a state |ψ〉 is bounded by O(|hmax|2 M p−2), where M is the number of

terms in the decomposition of the Hamiltonian and hmax is the coefficient with maxi-

mum norm in the decomposition of the Hamiltonian. The advantage of this approach

is that the coherence time to make a single measurement after preparing the state is

O(1). Conversely, the disadvantage of this approach with respect to QPE is the scal-

ing in the total number of operations as a function of the desired precision is quadrat-

ically worse (O(p−2) vs O(p−1)). Moreover, this scaling will also reflect the number of

state preparation repetitions required, whereas in QPE, the number of state prepara-

tion steps is constant. In essence, we dramatically reduce the coherence time require-

ment while maintaining an exponential advantage over the classical case, by adding a

polynomial number of repetitions with respect to QPE.

2.2.2 Algorithm 2: Quantum variational eigensolver

The procedure outlined above replaces the long coherent evolution required by QPE

by many short coherent evolutions. In both QPE and Algorithm 1 we require a good

approximation to the ground state wavefunction to compute the ground state eigen-

value and we now consider this problem. Previous approaches have proposed to pre-

pare ground states by adiabatic evolution [6], or by the quantum Metropolis algo-

rithm [226, 262]. Unfortunately both of these require long coherent evolution. Algo-

rithm 2 is a variational method to prepare the eigenstate and, by exploiting Algo-

rithm 1, requires short coherent evolution. Algorithms 1 and 2 and their relationship

are shown in Figure 2.1 and detailed in the Supplementary Information.

It is well known that the eigenvalue problem for an observable represented by an
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Figure 2.2: Experimental implementation of our scheme.(a) Quantum state preparation and
measurement of the expectation values 〈ψ|σi ⊗ σj |ψ〉 are performed using a quantum photonic
chip. Photon pairs, generated using spontaneous parametric down-conversion are injected into the
waveguides encoding the |00〉 state. The state |ψ〉 is prepared using thermal phase shifters φ1−8

(orange rectangles) and one CNOT gate and measured using photon detectors. Coincidence count
rates from the detectors D1−4 are passed to the CPU running the optimization algorithm. This
computes the set of parameters for the next state and writes them to the quantum device. (b) A
photograph of the QPU.

operator H can be restated as a variational problem on the Rayleigh-Ritz quotient [204,

205], such that the eigenvector |ψ〉 corresponding to the lowest eigenvalue is the |ψ〉

that minimizes

〈ψ|H |ψ〉
〈ψ|ψ〉 . (2.3)

By varying the experimental parameters in the preparation of |ψ〉 and computing the

Rayleigh-Ritz quotient using Algorithm 1 as a subroutine in a classical minimization,

one may prepare unknown eigenvectors. At the termination of the algorithm, a sim-
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ple prescription for the reconstruction of the eigenvector is stored in the final set of

experimental parameters that define |ψ〉.
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Figure 2.3: Finding the ground state of He-H+ for a specific molecular separation R = 90 pm.
(a) Experimentally computed energy 〈H〉 (colored dots) as a function of the optimization step j.
The color represents the tangle (degree of entanglement) of the physical state, estimated directly
from the state parameters {φji}. The red lines indicate the energy levels of H(R). The optimiza-
tion algorithm clearly converges to the ground state of the molecule, which has small but non zero
tangle. The crosses show the energy calculated at each experimental step, assuming an ideal quan-
tum device. (b) Overlap | 〈ψj |ψG〉 | between the experimentally computed state |ψj〉 at each the
optimization step j and the theoretical ground state of H, |ψG〉. Error bars are smaller that the
data points. Further details are provided in the Methods section and in the Supplementary Infor-
mation.

If a quantum state is characterized by an exponentially large number of parame-

ters, it cannot be prepared with a polynomial number of operations. The set of effi-

ciently preparable states are therefore characterized by polynomially many parame-

ters, and we choose a particular set of ansatz states of this type. Under these condi-
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tions, a classical search algorithm on the experimental parameters which define |ψ〉,

needs only explore a polynomial number of dimensions—a requirement for the search

to be efficient.

One example of a quantum state parametrized by a polynomial number of parame-

ters for which there is no known efficient classical implementation is the unitary cou-

pled cluster ansatz [225]

|Ψ〉 = eT−T
† |Φ〉ref (2.4)

where |Φ〉ref is some reference state, usually the Hartree Fock ground state, and T is

the cluster operator for an N electron system defined by

T = T1 + T2 + T3 + ...+ TN (2.5)

with

T1 =
∑

pr

trpâ
†
pâr (2.6)

T2 =
∑

pqrs

trspqâ
†
pâ
†
qârâs (2.7)

and higher order terms follow logically. It is clear that by construction the operator

(T − T †) is anti-hermitian, and exponentiation maps it to a unitary operator U =

e(T−T †). For any fixed excitation level k, the reduced cluster operator is written as

T (k) =

k∑

i=1

Ti (2.8)

In general no efficient implementation of this ansatz has yet been developed for a clas-

sical computer, even for low order cluster operators due to the non-truncation of the
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BCH series [225]. However this state may be prepared efficiently on a quantum de-

vice. The reduced anti-hermitian cluster operator (T (k) − T (k)†) is the sum of a poly-

nomial number of terms, namely it contains a number of terms O(Nk(M−N)k) where

M is the number of single particle orbitals. By defining an effective Hermitian Hamil-

tonian H = i(T (k) − T (k)†) and performing the Jordan-Wigner transformation to

reach a Hamiltonian that acts on the space of qubits, H̃, we are left with a Hamilto-

nian which is a sum of polynomially many products of Pauli operators. The problem

then reduces to the quantum simulation of this effective Hamiltonian, H̃, which can

be done in polynomial time using the procedure outlined by Ortiz et al. [188]. We

note that while this state preparation procedure utilizes tools from quantum simu-

lation, the total effective time of evolution is fixed by the expansion coefficients trspq.

This is in contrast to normal difficulties encountered in quantum phase estimation,

where simulations must be carried out for times that are exponential in the desired

final precision.

While there is currently no known efficient classical algorithm based on these ansatz

states, non-unitary coupled cluster ansatz is sometimes referred to as the “gold stan-

dard of quantum chemistry” as it is the standard of accuracy to which other meth-

ods in quantum chemistry are often compared. The unitary version of this ansatz is

thought to yield superior results to even this “gold standard” [225].

2.2.3 Prototype demonstration

We have implemented the QPU using integrated quantum photonics technology [186].

Our device, shown schematically in Figure 2.2 is a reconfigurable waveguide chip that

can prepare and measure arbitrary two-bit pure states using several single qubit ro-

tations and one two-qubit entangling gate. This device operates across the full space
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of possible configurations with mean statistical fidelity F > 99% [210]. The state is

path-encoded using photon pairs generated via a spontaneous parametric downcon-

version process. State preparation and measurement in the Pauli basis is achieved by

setting 8 voltage driven phase shifters and counting photon detection events with sili-

con single photon detectors.

The ability to prepare an arbitrary two-qubit separable or entangled state enables

us to investigate 4 × 4 Hamiltonians. For the experimental demonstration of our al-

gorithm we choose a problem from quantum chemistry, namely determining the bond

dissociation curve of the molecule He-H+ in a minimal basis. The full configuration
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Figure 2.4: Bond dissociation curve of the He-H+ molecule. This curve is obtained by repeated
computation of the ground state energy (as shown in Figure 2.3) for several H(R). The magni-
fied plot shows that after correction for the measured systematic error, the data overlap with the
theoretical energy curve and importantly we can resolve the molecular separation of minimal en-
ergy. Error bars show the standard deviation of the computed energy, as described in the Methods
section.
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interaction Hamiltonian for this system has dimension 4, and can be written com-

pactly as

H(R) =
∑

iα

hiα(R)σiα +
∑

ijαβ

hijαβ(R)σiασ
j
β (2.9)

The coefficients hiα(R) and hijαβ(R) were determined using the PSI3 computational

package [56] and are tabulated in the Supplementary Table II.

In order to compute the bond dissociation of the molecule, we use Algorithm 2 to

compute its ground state for a range of values of the nuclear separation R. In Fig-

ure 2.3 we report a representative optimization run for a particular nuclear separa-

tion, demonstrating the convergence of our algorithm to the ground state of H(R)

in the presence of experimental noise. Figure 2.3a demonstrates the convergence of

the average energy, while Figure 2.3b demonstrates the convergence of the overlap

| 〈ψj |ψG〉 | of the current state |ψj〉 with the target state |ψG〉. The color of each en-

try in Figure 2.3a represents the tangle (absolute concurrence squared) of the state at

that step of the algorithm. It is known that the volume of separable states is doubly-

exponentially small with respect to the rest of state space [223]. Thus, the ability to

traverse non-separable state space increases the number of paths by which the algo-

rithm can converge and will be a requirement for future large-scale implementations.

Moreover, it is clear that the ability to produce entangled states is a necessity for

the accurate description of general quantum systems where eigenstates may be non-

separable, for example the ground state of the He-H+ Hamiltonian has small but not

negligible tangle.

Repeating this procedure for several values of R, we obtain the bond dissociation

curve which is reported in Figure 2.4. After the computed energies have been cor-

rected for experimental errors, the determination of the equilibrium bond length of
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the molecule was found to be R = 92.3±0.1 pm with a corresponding ground state

electronic energy of E = -2.865±0.008 MJ mol−1. Full details of the correction for

systematic errors and estimation of the uncertainty on E are reported in the Sup-

plementary Information. The corresponding theoretical curve shows the numerically

exact energy derived from a full configuration interaction calculation of the molec-

ular system in the same basis. More than 96% of the experimental data are within

chemical accuracy with respect to the theoretical values. At the conclusion of the op-

timization, we retain full knowledge of the experimental parameters, which can be

used for efficient reconstruction of the state |ψ〉 in the event that additional physical

or chemical properties are required.

2.3 Discussion

Algorithm 1 uses relatively few quantum resources compared to QPE. Broadly speak-

ing, QPE requires a large number of n-qubit quantum controlled operations to be per-

formed in series—placing considerable demands on the number of components and

coherence time—while the inherent parallelism of our scheme enables a small num-

ber of n-qubit gates to be exploited many times, drastically reducing these demands.

Moreover, adding control to arbitrary unitary operations in practice is difficult if not

impossible for current quantum architectures (although a proposed scheme to add

control to arbitrary unitary operations has recently been demonstrated [272]). To give

a numerical example, the QPE circuit for a 4 x 4 Hamiltonian such as that demon-

strated here would require at least 12 CNOT gates, while our method only requires

one. We note that the resource saving provided by Algorithm 1 incurs a cost of poly-

nomial repetitions of the state preparation, as compared to the single copy required

41



by QPE. In many cases (for example our photonic implementation), repeated prepa-

ration of a state is not significantly harder than preparation of a single copy, requiring

only a polynomial overhead in time without any modification of the device.

In implementing Algorithm 2, the device prepares ansatz states that are defined by

a polynomial set of parameters. This ansatz might be chosen based on knowledge of

the physical system of interest (as for the unitary coupled cluster and typical quan-

tum chemistry ansätze) thus determining the device design. However, our architecture

allows for an alternative, and potentially more promising approach, where the device

is first constructed based on the available resources and we define the set of states

that the device can prepare as the “device ansätze”. Due to the quantum nature of

the device, this ansatz can be very distinct from those used in traditional quantum

chemistry. With this alternative approach the physical implementation is then given

by a known sequence of quantum operations with adjustable parameters—determined

at the construction of the device—with a maximum depth fixed by the coherence time

of the physical qubits. This approach, while approximate, provides a variationally op-

timal solution for the given quantum resources and may still be able to provide qual-

itatively correct solutions, just as approximate methods do in traditional quantum

chemistry (for example Hartree Fock). The unitary coupled cluster ansatz (Eq. 2.4)

provides a concrete example where our approach provides an exponential advantage

over known classical techniques. For this ansätze, with as few as 40 − 50 qubits, one

expects to manipulate a state which is not efficient to simulate classically, and can

provide a solution superior to the classical gold standard, non-unitary coupled cluster.

We have developed and experimentally implemented a new approach to solving

the eigenvalue problem with quantum hardware. Algorithm 1 shares with QPE the

need to prepare a good approximation to the ground state, but replaces a single long
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coherent evolution by a number of shorter coherent calculations proportional to the

number of terms in the Hamiltonian. While the effect of errors on each of these cal-

culations is the same as in QPE, the reliance on a number of separate calculations

makes the algorithm sensitive to variations in state preparation between the sepa-

rate quantum calculations. This effect requires further investigation. While the local

Hamiltonian problem is known to be QMA-complete [119] in its entirety, under the

assumption that a good approximation to the state can be prepared, both QPE and

our method can efficiently estimate the energy of the state, and it is in this setting

that we compare them. In Algorithm 2, we experimentally implemented a ground

state preparation procedure through a direct variational algorithm on the control pa-

rameters of the quantum hardware. The prepared state could be utilized in either

Algorithm 1 or QPE if desired. Larger calculations will require a choice of ansatz, for

which there are two possibilities. One could experimentally implement chemically mo-

tivated ansätze such as the unitary coupled cluster method. Alternatively one could

pursue those ansätze that are most easy to implement experimentally—creating a new

set of device ansätze states which would require classification in terms of their overlap

with chemical ground states. Such a classification would be a good way to determine

the value of a given experimental advance—for ground state problems it is best to

focus limited experimental resources on those efforts that will most enhance the over-

lap of preparable states with chemical ground states. In addition to the above issues,

which we leave to future work, an interesting avenue of research is to ask whether

the conceptual approach described here could be used to address other intractable

problems with quantum-enhanced computation. Examples that can be mapped to the

ground state problem, and where the N -representability problem does not occur, in-

clude search engine optimisation and image recognition. It should be noted that the
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approach presented here requires no control or auxiliary qubits, relying only on mea-

surement techniques that are already well established. For example, in the two qubit

case, these measurements are identical to those performed in Bell inequality experi-

ments.

Quantum simulators with only a few tens of qubits are expected to outperform the

capabilities of conventional computers, not including open questions regarding fault

tolerance and errors/precision. Our scheme would allow such devices to be imple-

mented using dramatically less resources than the current best known approach.

2.4 Methods

2.4.1 Classical optimization algorithm

For the classical optimization step of our integrated processor we implemented the

Nelder-Mead (NM) algorithm [180], a simplex-based direct search (DS) method for

unconstrained minimization of objective functions. Although in general NM can fail

because of the deterioration of the simplex geometry or lack of sufficient decrease, the

convergence of this method can be greatly improved by adopting a restarting strat-

egy. Although other DS methods, such as the gradient descent, can perform better

for smooth functions, these are not robust to the noise which makes the objective

function non-smooth under experimental conditions. NM has the ability to explore

neighboring valleys with better local optima and likewise this exploring feature usu-

ally allows NM to overcome non-smoothnesses. We verified that the gradient descent

minimization algorithm is not able to converge to the ground state of our Hamilto-

nian under the experimental conditions, mainly due to the Poissonian noise associated
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with our photon source and the accidental counts of the detection system, while NM

converged to the global minimum in most optimization runs.

2.4.2 Mapping from the state parameters to the chip phases

The set of phases {θi}, which uniquely identifies the state |ψ〉, is not equivalent to the

phases which are written to the photonic circuit {φi}, since the chip phases are also

used to implement the desired measurement operators σα ⊗ σβ. Therefore, knowing

the desired state parameters and measurement operator we compute the appropriate

values of the chip phases on the CPU at each iteration of the optimization algorithm.

The algorithm for finding the phases an arbitrary two-qubit state is described in the

Supplementary Information.

2.4.3 Experimental Details

Estimation of the error on 〈H〉

We performed measurements of the statistical and systematic errors that affect our

computation of 〈H〉.

Statistical errors

Statistical errors due to the Poissonian noise associated with single photon statistics

are intrinsic to the estimation of expectation values in quantum mechanics.

These errors can be arbitrarily reduced at a sublinear cost of measurement time

(i.e. efficiently) since the magnitude of error is proportional to the square root of the

count rate. We experimentally measured the standard deviation of an expectation

value 〈Hi〉 for a particular state using 50 trials. The total average coincidence rate
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was ∼1500 s−1. The standard deviation was found to be 37 KJ mol−1, which is com-

parable with the error observed in the measurement of the ground state energy shown

in Figure 2.4.

The minima of the potential energy curve was determined by a generalized least

squares procedure to fit a quadratic curve to the experimental data points in the

region R = (80, 100) pm, as is common in the use of trust region searches for min-

ima [55], using the inverse experimentally measured variances as weights. Covariances

determined by the generalized least squares procedure were used as input to a Monte

Carlo sampling procedure to determine the minimum energy and equilibrium bond

distance as well as their uncertainties assuming Gaussian random error. The uncer-

tainties reported represent standard deviations. Sampling error in the Monte Carlo

procedure was 3× 10−4 pm for the equilibrium bond distance and 3× 10−8 MJ mol−1

for the energy.

In Figure 4, the large deviations from the theoretical line result from the coinci-

dental impact of noise resulting in premature optimization termination. These points

could have been rerun or eliminated using the prior knowledge of smoothness of the

dissociation curve. However to accurately portray the performance of the algorithm

exactly as described, with no expert interference, these points are retained.

Systematic errors

In all the measurements described above we observed a constant and reproducible

small shift, ε = 50 KJ mol−1, of the expectation value with respect to the theoretical

value of the energy. There are at least three effects which contribute to this system-

atic error.

Firstly, the down-conversion source that we use in our experiment does not pro-
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duce the pure two photon state that is required for high-fidelity quantum interfer-

ence. In particular, higher order photon number terms and, more significantly, photon

distinguishability both degrade the performance of our entangling gate and thus the

preparation of the state |ψ〉. This results in a shift of the measured energy 〈ψ|H |ψ〉.

Higher order terms could be effectively eliminated by use of true single photon sources

(such as quantum dots or nitrogen vacancy centers in diamond), and there is no fun-

damental limit to the degree of indistinguishability which can be achieved through

improved state engineering.

Secondly, imperfections in the implementation of the photonic circuit also reduce

the fidelity with which |ψ〉 is prepared and measured. Small deviations from designed

beamsplitter reflectivities and interferometer path lengths, as well as imperfections

in the calibration of voltage-controlled phases shifters used to manipulate the state,

all contribute to this effect. However, these are technological limitations that can be

greatly improved in future realizations.

Finally, unbalanced input and output coupling efficiency also results in skewed two-

photon statistics, again shifting the measured expectation value of 〈H〉.

Another systematic effect that can be noted in Figure 4 is that the magnitude of

the error on the experimental estimation of the ground state energy increases with R.

This is due to the fact that as R increases, the first and second excited eigenstates of

this Hamiltonian become degenerate, resulting in increased difficulty for the classical

minimization, generating mixtures of states that increases the overall variance of the

estimation.
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Count rate

In our experiment the mean count rate, which directly determines the statistical er-

ror, was approximately 2000-4000 twofold events per measurement. The expectation

value of a given Hamiltonian was reconstructed at each point from four two-qubit

Pauli measurements. For the bond dissociation curve we measured about 100 points

per optimization run. In the full dissociation curve we found the ground states of 79

Hamiltonians. The full experiment was performed in about 158 hours.

State preparation is relatively fast, requiring a few milliseconds to set the phases

on the chip. However 17 seconds are required for cooling the chip, resulting in a duty-

cycle of ∼ 5%. The purpose of this is to overcome instability of the fibre-to-chip cou-

pling due to thermal expansion of the chip during operation. This will not be an issue

in future implementations where fibres will be permanently fixed to the chip’s facets.

Moreover the thermal phase shifters used here will also likely be replaced by alterna-

tive technologies based on the electro-optic effect.

Brighter single photon sources will considerably reduce the measurement time.

2.5 Supplemental Information

2.5.1 Quantum eigenvector preparation algorithm

Below we detail the steps involved in implementing Algorithm 2.

1. Design a quantum circuit, controlled by a set of experimental parameters {θi},

which can prepare a class of states. Using this device, prepare the initial state

|ψ0〉 and define the objective function f({θni }) = 〈ψ({θni })|H |ψ({θni })〉, which

efficiently maps the set of experimental parameters to the expectation value of
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the Hamiltonian and is computed in this work by Algorithm 1. n denotes the

current iteration of the algorithm.

2. Let n = 0

3. Repeat until optimization is completed

(a) Call Algorithm 1 with {θi} as input:

i. Using the QPU, compute 〈σiα〉, 〈σiασjβ〉, 〈σiασ
j
βσ

k
γ〉, ..., on |ψn〉 for all

terms of H.

ii. Classically sum on CPU the values from the QPU with their appro-

priate weights, h, to obtain f({θni })

(b) Feed f({θni }) to the classical minimization algorithm (e.g. gradient de-

scent or Nelder-Mead Simplex method), and allow it to determine {θn+1
i }.

2.5.2 Second Quantized Hamiltonian

When taken with the Born-Oppenheimer approximation, the Hamiltonian of an elec-

tronic system can be generally written [102] as

H(R) =
∑

pq

hpq(R)â†pâq +
∑

pqrs

hpqrs(R)â†pâ
†
qârâs (2.10)

where â†i and âj are the fermionic creation and annihilation operators that act on the

single particle basis functions chosen to represent the electronic system and obey the

canonical anti-commutation relations {â†i , âj} = δij and {âi, âj} = {â†i , â
†
j} = 0.

R is a vector representing the positions of the Nuclei in the system, and is fixed for
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any given geometry. The constants hpq(R) and hpqrs(R) are evaluated using an ini-

tial Hartree-Fock calculation and relate the second quantized Hamiltonian to the first

quantized Hamiltonian. They are calculated as

hpq =

∫
dr χp(r)

∗

(
−1

2
∇2 −

∑

α

Zα
|rα − r|

)
χq(r) (2.11)

hpqrs =

∫
dr1 dr2

χp(r1)∗χq(r2)∗χr(r1)χs(r2)

|r1 − r2|
(2.12)

where χp(r) are single particle spin orbitals, Zα is the nuclear charge, and rα is the

nuclear position. From the definition of the Hamiltonian, it is clear that the num-

ber of terms in the Hamiltonian is O(N4) in general, where N is the number of sin-

gle particle basis functions used. The map from the Fermionic algebra of the second

quantized Hamiltonian to the distinguishable spin algebra of qubits is given by the

Jordan-Wigner transformation [112], which for our purposes can be concisely written

as

âj → I⊗j−1 ⊗ σ+ ⊗ σ⊗N−jz (2.13)

â†j → I⊗j−1 ⊗ σ− ⊗ σ⊗N−jz (2.14)

where σ+ and σ− are the Pauli spin raising and lowering operators respectively. It is

clear that this transformation does not increase the number of terms present in the

Hamiltonian, it merely changes their form and the spaces on which they act. Thus

the requirement that the Hamiltonian is a sum of polynomially many products of

Pauli operators is satisfied. As a result, the expectation value of any second quantized

chemistry Hamiltonian can be efficiently measured with our scheme.

For the specific case of He-H+ in a minimal, STO-3G basis [102], it turns out that
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full configuration interaction (FCI) Hamiltonian has dimension four, thus a more com-

pact representation is possible than in the general case. In this case, the FCI Hamilto-

nian can be written down for each geometry expanded in terms of the tensor products

of two Pauli operators. Thus the Hamiltonian is given explicitly by an FCI calculation

in the PSI3 computational package [56] and can be written as

H(R) =
∑

iα

hiα(R)σiα +
∑

ijαβ

hijαβ(R)σiασ
j
β (2.15)

The coefficients hiα(R) and hijαβ(R) are tabulated in Supplementary Table ??.

2.5.3 Finding excited states

Frequently, one may be interested in eigenvectors and eigenvalues related to excited

states (interior eigenvalues). Fortunately our scheme can be used with only minor

modification to find these excited states by repeating the procedure on Hλ = (H−λ)2.

The folded spectrum method [154, 241] allows a variational method to converge to the

eigenvector closest to the shift parameter λ. By scanning through a range of λ val-

ues, one can recover the eigenvectors and eigenvalues of interest. Although this opera-

tion incurs a small polynomial overhead —the number of terms in the Hamiltonian is

quadratic with respect to the original Hamiltonian— this extra cost is marginal com-

pared to the cost of solving the problem classically.

2.5.4 Application to k−sparse Hamiltonians

The method described in the main body of this work may be applied to general k−sparse

Hamiltonian matrices which are row-computable even when no efficient tensor decom-
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position is evident with only minor modification. A Hamiltonian H is referred to as

k−sparse if there are at most k non-zero elements in each row and column of the ma-

trix and row computable if there is an efficient algorthim for finding the locations and

values of the non-zero matrix elements in each row of H.

Let H be a 2n × 2n k−sparse row-computable Hamiltonian. A result by Berry et

al. [21] shows that H may be decomposed as H =
∑m

j=1Hj with m = 6k2, Hj being

a 1−sparse matrix and each Hj may be efficiently simulated (e−iHjt may be acted on

the qubits) by making only O(log∗ n) queries to the Hamiltonian H. Alternatively, a

more recent result by Childs et al. [47] shows that it is possible to use a star decom-

position of the Hamiltonian such that m = 6k and each Hj is now a galaxy which

can be efficiently simulated using O(k + log∗N) queries to the Hamiltonian. Either

of these schemes may be used to implement our algorithm efficiently for a general

k−sparse matrix, and the choice may be allowed to depend on the particular setup

available. Following a prescription by Knill et al. [124], the ability to simulate Hj is

sufficient for efficient measurement of the expectation value 〈Hj〉. After determining

these values, one may proceed as before in the algorithm as outlined in the main text

and use them to determine new parameters for the classical minimization.

2.5.5 Computational Scaling

In this section, we demonstrate the polynomial scaling of each iteration of our algo-

rithm with respect to system size, and contrast that with the exponential scaling of

the current best-known classical algorithm for the same task. Suppose that the algo-

rithm has progressed to an iteration j in which we have prepared a state vector |ψj〉

which is stored in n qubits and parameterized by the set of parameters {θji }.

We wish to find the average value of the Hamiltonian, 〈H〉 on this state. We will
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assume that there are M terms comprising the Hamiltonian, and assume that M is

polynomial in the size of the physical system of interest. Without loss of generality,

we select a single term from the Hamiltonian, Hi that acts on k bits of the state, and

denote the average of this term by 〈Hi〉 = h 〈σ̃〉 where h is a constant and σ̃ is the

k−fold tensor product of Pauli operators acting on the system. As the expectation

value of a tensor product of an arbitrary number of Pauli operators can be measured

in constant time and the spectrum of each of these operators is bounded, if the de-

sired precision on the value is given by p, we expect the cost of this estimation to be

O(|h|2 p−2) repetitions of the preparation and measurement procedure. Thus we esti-

mate the cost of each function evaluation to be O(|hmax|2M p−2). For most modern

classical minimization algorithms (including the Nelder-Mead simplex method [180]),

the cost of a single update step, scales linearly or at worst polynomially in the num-

ber of parameters included in the minimization [73]. By assumption, the number of

parameters in the set {θji }, is polynomial in the system size. Thus the total cost per

iteration is roughly given by O(nr|hmax|2 M p−2) for some small constant r which

is determined by the encoding of the quantum state and the classical minimization

method used.

Contrasting this to the situation where the entire algorithm is performed classi-

cally, a much different scaling results. Storage of the quantum state vector |ψj〉 us-

ing currently known exact encodings of quantum states, requires knowing 2n complex

numbers. Moreover, given this quantum state, the computation of the expectation

value 〈σ̃〉 = 〈ψj | σ̃ |ψj〉 using modern methods requires O(2n) floating point opera-

tions. Thus a single function evaluation is expected to require exponential resources

in both storage and computation when performed on a classical computer. Moreover,

the number of parameters which a classical minimization algorithm must manipulate
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to represent this state exactly is 2n. Thus performing even a single minimization step

to determine |ψj+1〉 requires an exponential number of function evaluations, each of

which carries an exponential cost. One can roughly estimate the scaling of this proce-

dure as O(M 2n(r+1))

From this coarse analysis, we conclude that our algorithm attains an exponential

advantage in the cost of a single iteration over the best known classical algorithms,

provided the assumptions on the Hamiltonian and quantum state are satisfied. While

convergence to the final ground state must still respect the known complexity QMA-

Complete complexity of this task [119], we believe this still demonstrates the value of

our algorithm, especially in light of the limited quantum resource requirements.
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It has today occurred to me that an amplifier using semi-

conductors rather than vacuum is in principle possible.

William Shockley

3
From transistor to trapped-ion computers for

quantum chemistry∗

Abstract

Over the last few decades, quantum chemistry has progressed through the develop-

ment of computational methods based on modern digital computers. However, these

methods can hardly fulfill the exponentially-growing resource requirements when ap-

plied to large quantum systems. As pointed out by Feynman, this restriction is in-

∗Man-Hong Yung, Jorge Casanova, Antonio Mezzacapo, Jarrod R McClean, Lucas
Lamata, Alán Aspuru-Guzik, and Enrique Solano. From transistor to trapped-ion computers
for quantum chemistry. Scientific Reports, 4(3589):1-7, 2014.
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trinsic to all computational models based on classical physics. Recently, the rapid ad-

vancement of trapped-ion technologies has opened new possibilities for quantum con-

trol and quantum simulations. Here, we present an efficient toolkit that exploits both

the internal and motional degrees of freedom of trapped ions for solving problems in

quantum chemistry, including molecular electronic structure, molecular dynamics, and

vibronic coupling. We focus on applications that go beyond the capacity of classical

computers, but may be realizable on state-of-the-art trapped-ion systems. These re-

sults allow us to envision a new paradigm of quantum chemistry that shifts from the

current transistor to a near-future trapped-ion-based technology.

3.1 Introduction

Quantum chemistry represents one of the most successful applications of quantum

mechanics. It provides an excellent platform for understanding matter from atomic to

molecular scales, and involves heavy interplay of experimental and theoretical meth-

ods. In 1929, shortly after the completion of the basic structure of the quantum the-

ory, Dirac speculated [60] that the fundamental laws for chemistry were completely

known, but the application of the fundamental laws led to equations that were too

complex to be solved. About ninety years later, with the help of transistor-based

digital computers, the development of quantum chemistry continues to flourish, and

many powerful methods, such as Hartree-Fock, configuration interaction, density func-

tional theory, coupled-cluster, and quantum Monte Carlo, have been developed to

tackle the complex equations of quantum chemistry (see e.g. [148] for a historical re-

view). However, as the system size scales up, all of the methods known so far suffer

from limitations that make them fail to maintain accuracy with a finite amount of
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Figure 3.1: Simulating quantum chemistry with trapped ions. (a) Scheme of a trapped-ion setup
for quantum simulation, which contains a linear chain of trapped ions confined by a harmonic po-
tential, and external lasers that couple the motional and internal degrees of freedom. (b) Transi-
tions between internal and motional degrees of freedom of the ions in the trap. (c) The normal
modes of the trapped ions can simulate the vibrational degrees of freedom of molecules. (d) The
internal states of two ions can simulate all four possible configurations of a molecular orbital.

resources [100]. In other words, quantum chemistry remains a hard problem to be

solved by the current computer technology.

As envisioned by Feynman [70], one should be able to efficiently solve problems of

quantum systems with a quantum computer. Instead of solving the complex equa-

tions, this approach, known as quantum simulation (see the recent reviews in Refs. [8,

117, 264]), aims to solve the problems by simulating target systems with another con-

trollable quantum system, or qubits. Indeed, simulating many-body systems beyond

classical resources will be a cornerstone of quantum computers. Quantum simula-

tion is a very active field of study and various methods have been developed. Quan-

tum simulation methods have been proposed for preparing specific states such as

ground [2, 6, 136, 140, 200, 260] and thermal states [24, 141, 201, 226, 263, 264, 268],

simulating time evolution [43, 50, 116, 135, 146, 256, 266], and the measurement of

physical observables [115, 142, 161, 254].

Trapped-ion systems (see Fig. 3.1) are currently one of the most sophisticated tech-
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nologies developed for quantum information processing [95]. These systems offer an

unprecedented level of quantum control, which opens new possibilities for obtain-

ing physico-chemical information about quantum chemical problems. The power of

trapped ions for quantum simulation is manifested by the high-precision control over

both the internal degrees of freedom of the individual ions and the phonon degrees of

freedom of the collective motions of the trapped ions, and the high-fidelity initializa-

tion and measurement [95, 138]. Up to 100 quantum logic gates have been realized for

six qubits with trapped ions [135], and quantum simulators involving 300 ions have

been demonstrated [36].

In this work, we present an efficient toolkit for solving quantum chemistry prob-

lems based on the state-of-the-art in trapped-ion technologies. The toolkit comprises

two components i) First, we present a hybrid quantum-classical variational optimiza-

tion method, called quantum-assisted optimization, for approximating both ground-

state energies and the ground-state eigenvectors for electronic problems. The op-

timized eigenvector can then be taken as an input for the phase estimation algo-

rithm to project out the exact eigenstates and hence the potential-energy surfaces

(see Fig. 3.2). Furthermore, we extend the application of the unitary coupled-cluster

method [225]. This allows for the application of a method developed for classical nu-

merical computations in the quantum domain. ii) The second main component of our

toolkit is the optimized use of trapped-ion phonon degrees of freedom not only for

quantum-gate construction, but also for simulating molecular vibrations, represent-

ing a mixed digital-analog quantum simulation. The phonon degrees of freedom in

trapped-ion systems provide a natural platform for addressing spin-boson or fermion-

boson-type problems through quantum simulation [42, 43, 81, 133, 170, 176]. It is

noteworthy to mention that, contrary to the continuous of modes required for full-
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Figure 3.2: Outline of the quantum-assisted optimization method. (a) The key steps for quantum
assisted optimization, which starts from classical solutions. For each new set of parameters λ’s,
determined by a classical optimization algorithm, the expectation value 〈H〉 is calculated. The po-
tential energy surface is then obtained by quantum phase estimation. (b) Quantum measurements
are performed for the individual terms in H, and the sum is obtained classically. (c) The same
procedure is applied for each nuclear configuration R to probe the energy surface.

fledged quantum field theories, quantum simulations of quantum chemistry problems

could reach realistic conditions for finite bosonic and fermionic mode numbers. Conse-

quently, trapped ions can be exploited to solve dynamical problems involving linearly

or non-linearly coupled oscillators, e.g., spin-boson models [137, 175], that are difficult

to solve either analytically or numerically with a classical computer. Furthermore, we

have also developed a novel protocol to measure correlation functions of observables

in trapped ions that will be crucial for the quantum simulation of quantum chemistry.

3.2 Trapped ions for quantum chemistry

Quantum chemistry deals with the many-body problem involving electrons and nuclei.

Thus, it is very well suited for being simulated with trapped-ion systems, as we will

show below. The full quantum chemistry Hamiltonian, H = Te + Ve + TN + VN + VeN ,

is a sum of the kinetic energies of the electrons Te ≡ − ~2
2m

∑
i∇2

e,i and nuclei TN ≡

−∑i
~2

2Mi
∇2
N,i, and the electron-electron Ve ≡

∑
j>i e

2/ |ri − rj |, nuclei-nuclei VN ≡
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∑
j>i ZiZje

2/ |Ri −Rj |, and electron-nuclei VeN ≡ −
∑

i,j Zje
2/ |ri −Rj | potential

energies, where r and R respectively refer to the electronic and nuclear coordinates.

In many cases, it is more convenient to work on the second-quantization represen-

tation for quantum chemistry. The advantage is that one can choose a good fermionic

basis set of molecular orbitals, |p〉 = c†p |vac〉, which can compactly capture the low-

energy sector of the chemical system. This kind of second quantized fermionic Hamil-

tonians are efficiently simulatable in trapped ions [43]. To be more specific, we will

choose first M > N orbitals for an N -electron system. Denote φp (r) ≡ 〈r| p〉 as the

single-particle wavefunction corresponding to mode p. The electronic part, He(R) ≡

Te + VeN (R) + Ve, of the Hamiltonian H can be expressed as follows:

He(R) =
∑

pq

hpqc
†
pcq +

1

2

∑

pqrs

hpqrsc
†
pc
†
qcrcs, (3.1)

where hpq is obtained from the single-electron integral

hpq ≡ −
∫
drφ∗p (r) (Te + VeN )φq (r) , (3.2)

and hpqrs comes from the electron-electron Coulomb interaction,

hpqrs ≡
∫
dr1dr2φ

∗
p (r1)φ∗q (r2)Ve (|r1 − r2|)φr (r2)φs (r1) . (3.3)

We note that the total number of terms in He is O(M4); typically M is of the same

order as N . Therefore, the number of terms in He scales polynomially in N , and the

integrals {hpq, hpqrs} can be numerically calculated by a classical computer with poly-

nomial resources [6].

To implement the dynamics associated with the electronic Hamiltonian in Eq. (3.1)
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with a trapped-ion quantum simulator, one should take into account the fermionic na-

ture of the operators cp and c†q. We invoke the Jordan-Wigner transformation (JWT),

which is a method for mapping the occupation representation to the spin (or qubit)

representation [188]. Specifically, for each fermionic mode p, an unoccupied state

|0〉p is represented by the spin-down state |↓〉p, and an occupied state |1〉p is repre-

sented by the spin-up state |↑〉p. The exchange symmetry is enforced by the Jordan-

Wigner transformation: c†p = (
∏
m<p σ

z
m)σ+

p and cp = (
∏
m<p σ

z
m)σ−p , where σ± ≡

(σx ± iσy) /2. Consequently, the electronic Hamiltonian in Eq. (3.1) becomes highly

nonlocal in terms of the Pauli operators {σx, σy, σz}, i.e.,

He −→
JWT

∑

i,j,k...∈{x,y,z}

gijk...

(
σi1 ⊗ σj2 ⊗ σk3 ...

)
. (3.4)

Nevertheless, the simulation can still be made efficient with trapped ions, as we shall

discuss below.

In trapped-ion physics two metastable internal levels of an ion are typically em-

ployed as a qubit. Ions can be confined either in Penning traps or radio frequency

Paul traps [138], and cooled down to form crystals. Through sideband cooling the

ions motional degrees of freedom can reach the ground state of the quantum Har-

monic oscillator, that can be used as a quantum bus to perform gates among the

different ions. Using resonance fluorescence with a cycling transition quantum non

demolition measurements of the qubit can be performed. The fidelities of state prepa-

ration, single- and two-qubit gates, and detection, are all above 99% [95].

The basic interaction of a two-level trapped ion with a single-mode laser is given

by [95], H = ~Ωσ+e
−i(∆t−φ) exp(iη[ae−iωtt + a†eiωtt]) + H.c., where σ± are the

atomic raising and lowering operators, a (a†) is the annihilation (creation) operator
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of the considered motional mode, and Ω is the Rabi frequency associated to the laser

strength. η = kz0 is the Lamb-Dicke parameter, with k the wave vector of the laser

and z0 =
√
~/(2mωt) the ground state width of the motional mode. φ is a control-

lable laser phase and ∆ the laser-atom detuning.

In the Lamb-Dicke regime where η
√
〈(a+ a†)2〉 � 1, the basic interaction of

a two-level trapped ion with a laser can be rewritten as H = ~Ω[σ+e
−i(∆t−φ) +

iησ+e
−i(∆t−φ)(ae−iωtt + a†eiωtt) + H.c.]

By adjusting the laser detuning ∆, one can generate the three basic ion-phonon in-

teractions, namely: the carrier interaction (∆ = 0), Hc = ~Ω(σ+e
iφ + σ−e

−iφ), the red

sideband interaction, (∆ = −ωt), Hr = i~ηΩ(σ+ae
iφ − σ−a†e−iφ), and the blue side-

band interaction, (∆ = ωt), Hb = i~ηΩ(σ+a
†eiφ−σ−ae−iφ). By combining detuned red

and blue sideband interactions, one obtains the Mølmer-Sørensen gate [174], which is

the basic building block for our methods. With combinations of this kind of gates,

one can obtain dynamics as the associated one to He in Eq. (3.4), that will allow one

to simulate arbitrary quantum chemistry systems.

3.3 Quantum-assisted optimization

Quantum-assisted optimization [196] (see also Fig. 3.2) for obtaining ground-state en-

ergies aims to optimize the use of quantum coherence by breaking down the quantum

simulation through the use of both quantum and classical processors; the quantum

processor is strategically employed for expensive tasks only.

To be more specific, the first step of quantum-assisted optimization is to prepare a

set of quantum states {|ψλ〉} that are characterized by a set of parameters {λ}. After

the state is prepared, the expectation value Eλ ≡ 〈ψλ|H |ψλ〉 of the Hamiltonian H
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will be measured directly, without any quantum evolution in between. Practically, the

quantum resources for the measurements can be significantly reduced when we divide

the measurement of the Hamiltonian H =
∑

iHi into a polynomial number of small

pieces 〈Hi〉 (cf Eq. (3.4)). These measurements can be performed in a parallel fash-

ion, and no quantum coherence is needed to maintain between the measurements (see

Fig. 3.2a and 3.2b). Then, once a data point of Eλ is obtained, the whole procedure

is repeated for a new state {|ψ′λ〉} with another set of parameters {λ′}. The choice of

the new parameters is determined by a classical optimization algorithm that aims to

minimize Eλ (see Methods). The optimization procedure is terminated after the value

of Eλ converges to some fixed value.

Finally, for electronic Hamiltonians He(R), the optimized state can then be sent

to a quantum circuit of phase estimation algorithm to produce a set of data point

for some R on the potential energy surfaces (Fig. 3.2c shows the 1D case). After

locating the local minima of the ground and excited states, vibronic coupling for the

electronic structure can be further studied (see Supplementary Material).

The performance of quantum-assisted optimization depends crucially on (a) the

choice of the variational states, and (b) efficient measurement methods. We found

that the unitary coupled-cluster (UCC) states [225] are particularly suitable for being

the input state for quantum-assisted optimization, where each quantum state |ψλ〉

can be prepared efficiently with standard techniques in trapped ions. Furthermore,

efficient measurement methods for He are also available for trapped ion systems. We

shall discuss these results in detail in the following sections.
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3.4 Unitary coupled-cluster (UCC) ansatz

The unitary coupled-cluster (UCC) ansatz [225] assumes electronic states |ψ〉 have the

following form, |ψ〉 = eT−T
† |Φ〉, where |Φ〉 is a reference state, which can be, e.g., a

Slater determinant constructed from Hartree-Fock molecular orbitals. The particle-

hole excitation operator, or cluster operator T , creates a linear combination of ex-

cited Slater determinants from |Φ〉. Usually, T is divided into subgroups based on the

particle-hole rank. More precisely, T = T1 +T2 +T3 + ...+TN for an N -electron system,

where T1 =
∑

i,a t
a
i c
†
aci, T2 =

∑
i,j,a,b t

ab
ij c
†
ac
†
bcjci, and so on.

Here c†a creates an electron in the orbital a. The indices a, b label unoccupied or-

bitals in the reference state |Φ〉, and i, j label occupied orbitals. The energy obtained

from UCC, namely E = 〈Φ| eT †−THeT−T † |Φ〉 is a variational upper bound of the

exact ground-state energy.

The key challenge for implementing UCC on a classical computer is that the com-

putational resource grows exponentially. It is because, in principle, one has to expand

the expression H̃ ≡ eT
†−THeT−T

†
into an infinity series, using the Baker-Campbell-

Hausdorff expansion. Naturally, one has to rely on approximate methods [131, 225]

to truncate the series and keep track of finite numbers of terms. Therefore, in order

to make good approximations by perturbative methods, i.e., assuming T is small,

one implicitly assumes that the reference state |Φ〉 is a good solution to the problem.

However, in many cases, such an assumption is not valid and the use of approximate

UCC breaks down. We explain below how implementing UCC on a trapped-ion quan-

tum computer can overcome this problem.
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Simulating Quantum Chem-
istry

Implementation with Trapped
Ions

Hamiltonian transfor-
mation:

The fermionic (electronic) Hamil-
tonian He is transformed into a
spin Hamiltonian through the
Jordan-Wigner transformation.

The spin degrees of freedom in
He are represented by the internal
degrees of freedom of the trapped
ions.

He →
∑

i,j,k,···∈{x,y,z}
gijk···

(
σi1 ⊗ σj2 ⊗ σk3 · · ·

)
≡

m∑
l=1

Hl

Simulation of time
evolution:

The time evolution operator e−iHet

is split into n small-time (t/n)
pieces e−iHlt/n through the Suzuki-
Trotter expansion.

Each individual term e−iHlt/n

can be simulated with
trapped ions through the use
of Mølmer-Sørensen gates
UMS. Explicitly, e−iHlt/n =
UMS

(−π
2
, 0
)
Uσz (φ)UMS

(
π
2
, 0
)
.

e−i
∑m

l=1Hlt ≈ (e−iH1t/ne−iH2t/n · · · e−iHmt/n)n

Obtaining average
energy:

The average energy 〈He〉 of the
Hamiltonian can be obtained
through the sum of the individual
terms 〈Hl〉, which reduces to the
measurement of products of Pauli
matrices.

For any prepared state |ψ〉, aver-
age values of the products of Pauli
matrices Jijk... ≡ σi1 ⊗ σj2 ⊗ σk3 · · ·
can be measured by first applying
the pseudo time evolution oper-
ator e−i(π/4)Jijk··· to |ψ〉 and then
measuring 〈σz1〉.

Measuring eigenvalues: The eigenvalues of the Hamil-
tonian can be obtained through
the phase estimation algorithm.
Good trial states can be obtained
through classical computing,
or the unitary coupled-cluster
method.

The phase estimation algorithm
can be implemented through the
simulation of controlled time
evolutions.

Molecular vibrations: The inclusion of vibrational de-
grees of freedom is necessary
for corrections on the Born-
Oppenheimer picture in the
electronic structure of molecules.

The vibrational degrees of freedom
are represented by the quantized
vibrational motion of the trapped
ions.

Table 3.1: Using trapped ions to simulate quantum chemistry
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3.4.1 Implementation of UCC through time evolution

We can generate the UCC state by simulating a pseudo time evolution through Suzuki-

Trotter expansion on the evolution operator eT−T
†

[146]. To proceed, we consider an

N -electron system with M , where M > N , molecular orbitals (including spins). We

need totally M qubits; the reference state is the Hartree-Fock state where N orbitals

are filled, and M −N orbitals are empty, i.e, |Φ〉 = |000...0111...1〉. We also define an

effective Hamiltonian K ≡ i
(
T − T †

)
, which means that we should prepare the state

e−iK |Φ〉 .

We decompose K into subgroups K = K1 + K2 + K3 + ... + KP , where P ≤

N , and Ki ≡ i(Ti − T †i ). We now write e−iK =
(
e−iKδ

)1/δ
for some dimension-

less constant δ. For small δ, we have e−iKδ ≈ e−iKP δ...e−iK2δe−iK1δ. Since each

Kj contains N j(M −N)j terms of the creation c† and annihilation c operators, we

will need to individually simulate each term separately, e.g., e
−i
(
tc†aci−t∗c†i ca

)
and

e
−i
(
tc†ac

†
bcjci−t

∗c†i c
†
jcbca

)
, which can be implemented by transforming into spin opera-

tors through Jordan-Wigner transformation. The time evolution for each term can be

simulated with a quantum circuit involving many nonlocal controlled gates, which can

be efficiently implemented with trapped ions as we shall see below.

3.4.2 Implementation of UCC and simulation of time evolution with

trapped-ions

Our protocol for implementing the UCC ansatz requires the simulation of the small-

time t/n evolution of non-local product of Pauli matrices of the form: e−iHlt/n, where

Hl = glσ
i
1σ

j
2σ

k
3 · · · for i, j, k ∈ {x, y, z}. Note that for any N -spin interaction, the

e−iHlt/n terms are equivalent to eiφσ
z
1σ
x
2σ

x
3 ···σxN through local spin rotations, which are
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simple to implement on trapped ions. Such a non-local operator can be implemented

using the multi-particle Mølmer-Sørensen gate [43, 176]:

UMS(θ, ϕ) ≡ exp
[
−iθ(cosϕSx + sinϕSy)

2/4
]
, (3.5)

where Sx,y ≡
∑

i σ
x,y
i is a collective spin operator. Explicitly,

eiφσ
z
1σ
x
2σ

x
3 ···σxN = UMS

(−π
2 , 0

)
RN (φ)UMS

(
π
2 , 0
)

. (3.6)

Here RN (φ) is defined as follows: for any m ∈ N, RN (φ) = e±iφσ
z
1 for N = 4m±1, and

(ii) RN (φ) = eiφσ
y
1 for N = 4m, and (iii) RN (φ) = e−iφσ

y
1 for N = 4m− 2.

It is remarkable that the standard quantum-circuit treatment (e.g. see Ref. [251])

for implementing each e−iHlt/n involves as many as 2N two-qubit gates for simulat-

ing N fermionic modes; in our protocol one needs only two Mølmer-Sørensen gates,

which are straightforwardly implementable with current trapped-ion technology. Fur-

thermore, the local rotation RN (φ) can also include motional degrees of freedom of

the ions for simulating arbitrary fermionic Hamiltonians coupled linearly to bosonic

operators ak and a†k.

3.5 Measurement of arbitrarily-nonlocal spin operators

For any given state |ψ〉, we show how to encode expectation value of products of Pauli

matrices 〈σi1 ⊗ σj2 ⊗ σk3 ⊗ · · · 〉 ≡ 〈ψ|σi1 ⊗ σj2 ⊗ σk3 ⊗ · · · |ψ〉, where i, j, k ∈ {x, y, z}, onto

an expectation value of a single qubit. The idea is to first apply the unitary evolution

of the form: e−iθ(σ
i
1⊗σ

j
2⊗··· ), which as we have seen (cf Eq. 3.6) can be generated by

trapped ions efficiently, to the state |ψ〉 before the measurement. For example, defin-
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ing |ψθ〉 ≡ e−iθ(σ
x
1⊗σx2⊗···) |ψ〉, we have the relation

〈ψθ|σz1 |ψθ〉 = cos(2θ) 〈σz1〉+ sin(2θ) 〈σy1 ⊗ σx2 ⊗ · · ·〉 , (3.7)

which equals 〈ψ|(σy1 ⊗ σx2 ⊗ ...)|ψ〉 for θ = π/4. Note that the application of this

method requires the measurement of one qubit only, making this technique especially

suited for trapped ion systems where the fidelity of the measurement of one qubit is

99.99% [177].

This method can be further extended to include bosonic operators in the resulting

expectation values. For example, re-define |ψθ〉 ≡ e−iθ(σ
i
1⊗σ

j
2⊗··· )⊗(a+a†) |ψ〉 and con-

sider θ → θ
(
a+ a†

)
in Eq. (3.7). We can obtain the desired correlation through the

derivative of the single-qubit measurement:

∂θ 〈ψθ|σz1 |ψθ〉|θ=0 = −2〈(σy1 ⊗ σx2 ⊗ · · ·) (a+ a†)〉. (3.8)

Note that the evolution operator of the form e−iθ(σ
i
1⊗σ

j
2⊗··· )⊗(a+a†) can be generated

by replacing the local operation RN (φ) in Eq. 3.6 with e±iφσ
i
1(a+a†). This technique

allows us to obtain a diverse range of correlations between bosonic and internal de-

grees of freedom.

3.6 Probing potential energy surfaces

In the Born-Oppenheimer (BO) picture, the potential energy surface Ek (R) + VN (R)

associated with each electronic eigenstate |φk〉 is obtained by scanning the eigenval-

ues Ek (R) for each configurations of the nuclear coordinates {R}. Of course, we can

apply the standard quantum phase estimation algorithm [118] that allows us to ex-
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tract the eigenvalues. However, this can require many ancilla qubits. In fact, locating

these eigenvalues can be achieved by the phase estimation method utilizing one extra

ancilla qubit [140] corresponding, in our case, to one additional ion.

This method works as follows: suppose we are given a certain quantum state |ψ〉

(which may be obtained from classical solutions with quantum-assisted optimiza-

tion) and an electronic Hamiltonian He(R) (cf. Eq. (3.1)). Expanding the input state,

|ψ〉 =
∑

k αk |φk〉, by the eigenstate vectors |φk〉 of He(R), where He (R) |φk〉 =

Ek (R) |φk〉, then for the input state |0〉 |ψ〉, the quantum circuit of the quantum phase

estimation produces the following output state,
(
1/
√

2
)∑

k αk
(
|0〉+ e−iωkt |1〉

)
|φk〉,

where ωk = Ek/~. The corresponding reduced density matrix,

1

2




1
∑

k |αk|2eiωkt
∑

k |αk|2e−iωkt 1


 , (3.9)

of the ancilla qubit contains the information about the weight (amplitude-square)

|αk|2 of the eigenvectors |φk〉 in |ψ〉 and the associated eigenvalues ωk in the off-diagonal

matrix elements. All |αk|2’s and ωk’s can be extracted by repeating the quantum cir-

cuit for a range of values of t and performing a (classical) Fourier transform to the

measurement results. The potential energy surface is obtained by repeating the proce-

dure for different values of the nuclear coordinates {R}.

3.7 Numerical investigation

In order to show the feasibility of our protocol, we can estimate the trapped-ion re-

sources needed to simulate, e.g., the prototypical electronic Hamiltonian He =
∑
hpqa

†
paq+

(1/2)
∑
hpqrsa

†
pa
†
qaras as described in Eq. (3.1), for the specific case of the H2 molecule
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Figure 3.3: Digital error 1 − F (curves) along with the accumulated gate error (horizontal lines)
versus time in h11 energy units, for n = 1, 2, 3 Trotter steps in each plot, considering a protocol
with an error per Trotter step of ε = 10−3 (a), ε = 10−4 (b) and ε = 10−5 (c). The initial state
considered is |↑↑↓↓〉, in the qubit representation of the Hartree-Fock state in a molecular orbital
basis with one electron on the first and second orbital. Vertical lines and arrows define the time
domain in which the dominant part of the error is due to the digital approximation. d) Energy of
the system, in h11 units, for the initial state | ↑↑↓↓〉 for the exact dynamics, versus the digitized
one. For a protocol with three Trotter steps the energy is recovered up to a negligible error.

in a minimal STO-3G basis. This is a two-electron system represented in a basis of

four spin-orbitals. The hydrogen atoms were separated by 0.75 Å, near the equilib-

rium bond distance of the molecule. The Hamiltonian is made up of 12 terms, that

include 4 local ion operations and 8 non-local interactions. Each of the non-local

terms can be done as a combination of two Mølmer-Sørensen (MS) gates and local

rotations, as described in Table 3.1. Therefore, to implement the dynamics, one needs

16 MS gates per Trotter step and a certain number of local rotations upon the ions.

Since π/2 MS gates can be done in ∼ 50µs, and local rotations can be performed in

negligible times (∼ 1µs) [95, 135], the total simulation time can be assumed of about

800 µs for the n = 1 protocol, 1.6 ms and 2.4 ms for the n = 2 and n = 3 protocols.

Thus total simulation times are within the decoherence times for trapped-ion setups,

of about 30 ms [95]. In a digital protocol performed on real quantum systems, each

gate is affected by an error. Thus, increasing the number of Trotter steps leads to an

accumulation of the single gate error. To implement an effective quantum simulation,
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on one hand one has to increase the number of steps to reduce the error due to the

digital approximation, on the other hand one is limited by the accumulation of the

single gate error. We plot in Fig. 3.3a, 3.3b, 3.3c, the fidelity loss 1−|〈ΨS |ΨE〉|2 of the

simulated state |ΨS〉 versus the exact one |ΨE〉, for the hydrogen Hamiltonian, start-

ing from the initial state with two electrons in the first two orbitals. We plot, along

with the digital error, three horizontal lines representing the accumulated gate error,

for n = 1, 2, 3 in each plot, considering a protocol with an error per Trotter step of

ε = 10−3 (a), ε = 10−4 (b) and ε = 10−5 (c). To achieve a reasonable fidelity, one has

to find a number of steps that fits the simulation at a specific time. The vertical lines

and arrows in the figure mark the time regions in which the error starts to be domi-

nated by the digital error. Trapped-ion two-qubit gates are predicted to achieve in the

near future fidelities of 10−4 [121], thus making the use of these protocols feasible. In

Fig. 3.3d we plot the behavior of the energy of the system for the initial state | ↑↑↓↓〉

for the exact dynamics, versus the digitized one. Again, one can observe how the en-

ergy can be retrieved with a small error within a reduced number of digital steps.

3.8 Conclusions

Summarizing, we have proposed a quantum simulation toolkit for quantum chemistry

with trapped ions. This paradigm in quantum simulations has several advantages: an

efficient electronic simulation, the possibility of interacting electronic and vibrational

degrees of freedom, and the increasing scalability provided by trapped-ion systems.

This approach for solving quantum chemistry problems aims to combine the best of

classical and quantum computation.
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3.9 Methods

To implement the optimization with the UCC wavefunction ansatz on a trapped-ion

quantum simulator, our proposal is to first employ classical algorithms to obtain ap-

proximate solutions [131, 225]. Then, we can further improve the quality of the solu-

tion by searching for the true minima with an ion trap. The idea is as follows: first

we create a UCC ansatz by the Suzuki-Trotter method described in the previous sec-

tion. Denote this choice of the cluster operator as T (0), and other choices as T (k) with

k = 1, 2, 3, .... The corresponding energy E0 = 〈Φ| eT (0)†−T (0)
HeT

(0)−T (0)† |Φ〉 of the

initial state is obtained by a classical computer.

Next, we choose another set of cluster operator T (1) with is a perturbation around

T (0). Define the new probe state |φk〉 ≡ eT
(k)−T (k)† |Φ〉. Then, the expectation value

of the energy E1 = 〈Φ|eT (1)†−T (1)
HeT

(1)−T (1)† |Φ〉 = 〈φ1|H |φ1〉 can be obtained by

measuring components of the second quantized Hamiltonian,

〈φ1|H |φ1〉 =
∑

pqrs
h̃pqrs 〈φ1|c†pc†qcrcs |φ1〉 . (3.10)

Recall that the coefficients h̃pqrs are all precomputed and known.

In order to obtain measurement results for the operators 〈φ1| c†pc†qcrcs |φ1〉, we will

first convert the fermion operators into spin operators via Jordan-Wigner transfor-

mation; the same procedure is applied for creating the state |φ1〉. The quantum mea-

surement for the resulting products of Pauli matrices can be achieved efficiently with

trapped ions, using the method we described.

The following steps are determined through a classical optimization algorithm.

There can be many choices for such an algorithm, for example gradient descent method,
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Nelder-Mead method, or quasi-Newton methods. For completeness, we summarize be-

low the application of gradient descent method to our optimization problem.

First we define the vector T(k) = (t
a(k)
i , t

ab(k)
ij , ...)T to contain all coefficients in

the cluster operator T (k) at the k-th step. We can also write the expectation value

E
(
T(k)

)
≡ 〈φk|H |φk〉 for each step as a function of T(k). The main idea of the gradi-

ent descent method is that E
(
T(k)

)
decreases fastest along the direction of the nega-

tive gradient of E
(
T(k)

)
, −∇E

(
T(k)

)
. Therefore, the (k+ 1)-th step is determined by

the following relation:

T(k+1) = T(k) − ak∇E(T(k)), (3.11)

where ak is an adjustable parameter; it can be different for each step. To obtain val-

ues of the gradient ∇E
(
T(k)

)
, one may use the finite-difference method to approx-

imate the gradient. However, numerical gradient techniques are often susceptible to

numerical instability. Alternatively, we can invoke the Hellman-Feynman theorem and

get, e.g., (∂/∂tai )E(T(k)) = 〈φk|[H, c†aci] |φk〉, which can be obtained with a method

similar to that for obtaining E(T(k)).

Finally, as a valid assumption for general cases, we assume our parametrization of

UCC gives a smooth function for E
(
T(k)

)
. Thus, it follows that E

(
T(0)

)
≥ E

(
T(1)

)
≥

E
(
T(2)

)
≥ · · · , and eventually E

(
T(k)

)
converges to a minimum value for large k. Fi-

nally, we can also obtain the optimized UCC quantum state.

3.10 Supplementary Material

In this Supplementary Material we give further details of our proposal, including a

thorough explanation of the quantum simulation of molecules involving fermionic and

bosonic degrees of freedom with trapped ions, and electric dipole transition measure-
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ments with a trapped-ion quantum simulator.

3.10.1 Quantum simulation

In general, quantum simulation can be divided into two classes, namely analog and

digital. Analog quantum simulation requires the engineering of the Hamiltonian of a

certain system to mimic the Hamiltonian of a target system. Digital quantum simu-

lation employs a quantum computer, which decomposes the simulation process into

pieces of sub-modules such as quantum logic gates. However, the use of quantum logic

gates is not absolutely necessary for digital quantum simulation. For example, con-

sider the case of trapped ions; we will see that certain simulation steps requires us to

apply quantum logic gates to implement fermionic degrees of freedom, together with

some quantum operations for controlling the vibronic degrees of freedom, which are

analog and will implement bosonic modes.

For simulating quantum chemistry, it is possible to work in either the first-quantization

representation or the second-quantization representation. This work mainly includes

the latter approach, because the number of qubits required is less than that in the

former approach, especially when low-energy state properties are considered. How-

ever, we note that many techniques described here are also applicable for the first-

quantization approach.

3.10.2 Computational complexity of quantum chemistry

To the best of our knowledge, there is no rigorous proof showing that quantum com-

puters are capable of solving all ground-state problems in quantum chemistry. In-

stead, some results indicate that some ground-state problems in physics and chem-
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istry are computationally hard problems [252]. For example, the N-representability

problem is known to be QMA-complete, and finding the universal functional in den-

sity functional theory is known to be QMA-hard. In spite of the negative results,

quantum computers can still be valuable for solving a wide range of quantum chem-

istry problems. These include ground state energy computations [2, 6], as well as

molecular dynamics [148].

3.10.3 Simulating electronic structure involving molecular vibra-

tions

After the potential surface is constructed by the electronic method, we can include

the effect of molecular vibrations by local expansion, e.g. near the equilibrium posi-

tion, as we show below.

Electronic transitions coupled with nuclear motion

We point out that within the Born-Oppenheimer approximation, the molecular vi-

bronic states are of the form, φn (r,R)χn,v (R) where r and R respectively refers to

the electronic and nuclear coordinates. The eigenfunctions φn (r,R) of the electronic

Hamiltonian are obtained at a fixed nuclear configuration. The nuclear wavefunction

χn,v (R), for each electronic eigenstate n, is defined through a nuclear potential sur-

face E
(n)
el (R), which is also one of the eigenenergies of the electronic Hamiltonian.

With a quantum computer, the potential energy surface that corresponds to dif-

ferent electronic eigenstates can be systematically probed using the phase estimation

method. We can then locate those local minima where the gradient of the energy is

zero, and approximate up to second order in δRα ≡ Rα−Rα∗, the deviation of the nu-
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clear coordinate Rα from the equilibrium configuration Rα∗. The energy surface can

be modeled as

E
(n)
el (R) ≈ E(n)

el (R
(n)
∗ ) +

∑

α,β

Dαβ(R
(n)
∗ )δRαδRβ , (3.12)

where Dαβ(R
(n)
∗ ) ≡ (1/2) ∂2E

(n)
el (R=R

(n)
∗ )/∂Rα∂Rβ is the Hessian matrix. With a

change of coordinates for the Hessian matrices, we can always choose to work with

the normal modes x(n) = {x(n)
α } for each potential energy surface, such that

E
(n)
el (x(n)) ≈ E(n)

el (R
(n)
∗ ) +

1

2

∑

α

mαω
(n)2
α x(n)2

α . (3.13)

Most of the important features of vibronic coupling can be captured by considering

the transition between two Born-Oppenheimer electronic levels [162]. In the following,

we will focus on the method of simulation of the transition between two electronic lev-

els, labeled as |↑〉 and |↓〉, when perturbed by an external laser field. The Hamiltonian

of the system can be written as

H = |↓〉 〈↓| ⊗HG + |↑〉 〈↑| ⊗HE , (3.14)

where HG ≡ ∆g + Hg is the Hamiltonian for the nuclear motion in the electronic

ground state and similarly HE ≡ ∆e + He is the nuclear Hamiltonian in the ex-

cited state. Here ∆g and ∆e are the energies of the two bare electronic states. In the

second-quantized representation,

Hg =
∑

k

ω
(g)
k a†kak and He =

∑

k

ω
(e)
k b†kbk (3.15)
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are diagonal, as viewed from their own coordinate systems. However, in general, the

two sets of normal modes are related by rotation and translation, which means that a

transformation of the kind bk =
∑

j skjaj + λk is needed for unifying the representa-

tions (see Secs. 3.10.5 and 3.10.6 in this Supplementary Material).

To illustrate our method of quantum simulation with trapped ions, it is sufficient to

consider one normal mode (for example, linear molecules). For this case, we assume

Hg = ω(g)a†a, He = ω(e)b†b, and b = a+λ where λ is a real constant. From Eq. (3.14),

we need to simulate the following Hamiltonian,

H = HS + Ω (σz) a
†a+ 1

2λω
(e) (I + σz)

(
a† + a

)
, (3.16)

where the term HS = 1
2 (∆g −∆e)σz contains only local terms of the spin, and

Ω (σz) = 1
2

(
ω(g) + ω(e)

)
I + 1

2

(
ω(g) − ω(e)

)
σz represents a spin-dependent frequency

for the effective boson mode.

In order to examine the response of the system under external pertubations, we

consider the dipole correlation function

Cµµ (t) =
∑

n

pn 〈n, ↓| eiHtµe−iHtµ |n, ↓〉 . (3.17)

Under the Condon approximation, assuming real electronic eigenstates, the dipole

operator µ has the form,

µ = µge (|↓〉 〈↑|+ |↑〉 〈↓|) = µgeσx. (3.18)

Thus, the problem of simulating absorption resulting from the coupling of electronic

and nuclear motion in chemistry reduces to computing expectation values of the uni-
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tary operator

Ud = eiHtσxe
−iHtσx, (3.19)

and weighting the final result by pnµ
2
ge. The final spectrum is, of course, obtained

through a Fourier transform

σabs(ω) =

∫ ∞

−∞
dt e−iωtCµµ(t). (3.20)

Simulation of vibronic coupling with trapped ions

The dynamics associated with the Hamiltonian in Eq. (3.16) can be generated eas-

ily with two trapped ions. As HS commutes with the rest of the terms in Eq. (3.16),

it can be eliminated via a change to an interaction picture. Considering a digital

quantum simulation protocol, the remaining task is to implement the interactions

exp[−iΩ (σz) ta
†a] and exp[−iλω(e) (I + σz)

(
a† + a

)
t/2] in trapped ions. The first

one corresponds to the evolution associated with a detuned red sideband excitation

applied to one of the ions (a dispersive Jaynes-Cummings interaction), and a rotation

of its internal state in order to eliminate the residual projective term. To implement

the second term we will use both ions. The term related to the operator σz(a
† + a)

corresponds to the evolution under red and blue sideband excitations applied to one

of the ions (a Jaynes-Cummings and anti Jaynes-Cummings interactions with appro-

priate phases). We will use the second ion to implement the term (a† + a). The latter

can be generated by applying again the same scheme of lasers that generates the in-

teraction σz(a
† + a) where now the operator σz acts on the internal state of the sec-

ond ion. Preparing this state in an eigenstate of σz one obtains the desired effective

Hamiltonian. As we have shown here, one of the main appeals of a quantum simula-
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tion of quantum chemistry with trapped ions is the possibility to include fermionic

(electronic) as well as bosonic (vibronic) degrees of freedom, in a new kind of mixed

digital-analog quantum simulator. The availability of the motional degrees of freedom

in trapped ions, that straightforwardly provide the bosonic modes in an analog way,

makes this system especially suited for simulating this kind of chemical problems.

3.10.4 Electric transition dipoles through weak measurement

Here we sketch the method for obtaining the transition dipole between a pair of elec-

tronic states |g〉 and |e〉. This method is similar, although not identical, to the weak

measurement method using a qubit as a measurement probe. To make the presenta-

tion of our method more general, our goal is to measure the matrix element 〈e|A |g〉

for any given Hermitian matrix A. We assume that a potential energy surface be-

tween these two electronic levels is probably scanned, and the energy levels for higher

excited states can be ignored. Suppose we started with a reasonable good approxi-

mation of the ground state |g〉, and we can prepare the exact ground state using the

phase estimation algorithm. Then, we apply a weak perturbation λ, e.g. e−iλQ, to the

ground state and obtain (to order O(λ)) the state |i〉 ≡ e−iλQ |g〉 ≈ |g〉 + qλ |e〉. Here

λ is a small positive real number. The actual form of the Hermitian operator Q is not

important, as long as 〈e|Q |g〉 ≡ iq 6= 0. Note that the eigenstates are defined up a

phase factor. Therefore, without loss of generality, we can assume q is a positive real

number as well. In fact, the absolute value |q| can be measured with repeated applica-

tions of the phase estimation algorithm.

Now, we prepare an ancilla qubit in the state |+〉 ≡ (|0〉+ |1〉) /
√

2, and apply a

control-UA, where UA ≡ e−iλA. The resulting state becomes (|0〉 |i〉+ |1〉UA |i〉) /
√

2.

The phase estimation algorithm allows us to perform post-selection to project the
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system state to |e〉. The resulting state of the ancilla qubit is ∝ 〈e|i〉|0〉 + 〈e|UA|i〉|1〉.

To the first-order expansion in λ, we have (before normalization)

qλ |0〉+ (q − i 〈e|A |g〉)λ |1〉 , (3.21)

where we used 〈e|i〉 = qλ, and 〈e|UA |i〉 = 〈e|UA |g〉+ qλ 〈e|UA |e〉 = −i 〈e|A |g〉λ+ qλ.

Since the value of q is known, a state tomography on the ancilla qubit state reveals

the value of the matrix element 〈e|A |g〉.

Returning to the case of the electric dipole moment, it is defined as µ ≡ −e∑i ri.

In the second quantized form is µ =
∑

pq upqa
†
paq, where upq ≡ −e

∫
φ∗p (r)rφq (r) dr is

nothing but the single-particle integral. The simulation of the corresponding operator

UA ≡ e−iλA, with A replaced by µ, can be performed efficiently after performing the

Jordan-Wigner transformation.

3.10.5 Derivation of the spin-boson coupling

Consider the full Hamiltonian of two potential energy surfaces,

H = |↓〉 〈↓| ⊗HG + |↑〉 〈↑| ⊗HE , (3.22)

where

HG ≡ ∆g +Hg (3.23)

is the Hamiltonian for the nuclear motion in the electronic ground state and similarly

HE ≡ ∆e +He (3.24)
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is the nuclear Hamiltonian in the excited state. Here ∆g and ∆e are the zero-point

energies of the two potential energy surfaces. In the second-quantized representation,

we consider one normal mode for each local minimum in the potential energy surface,

Hg = ω(g)a†a and He = ω(e)b†b. (3.25)

Here the two normal modes are related by a shift of a real constant λ, namely

b = a+ λ. (3.26)

Now, we will rewrite the full Hamiltonian in terms of the Pauli matrix

σz =




1 0

0 −1


 = |↑〉 〈↑| − |↓〉 〈↓| . (3.27)

First of all, we write H = HSB +HS , where

HSB = |↓〉 〈↓| ⊗ ω(g)a†a+ |↑〉 〈↑| ⊗ ω(e)b†b, (3.28)

and

HS ≡ |↓〉 〈↓ |∆g + |↑〉 〈↑ |∆e

=
1

2
(∆g + ∆e) I +

1

2
(∆g −∆e)σz. (3.29)

Next, we use Eq. (3.26) to write HSB as

HSB = Ω (σz)⊗ a†a+ 1
2λω

(e) (I + σz)⊗
(
a† + a

)
, (3.30)
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where the frequency of the effective mode becomes spin-dependent,

Ω (σz) ≡ |↑〉 〈↑ |ω(g) + |↓〉 〈↓ |ω(e) (3.31)

=
1

2

(
ω(g) + ω(e)

)
I +

1

2

(
ω(g) − ω(e)

)
σz.

3.10.6 Multimode extension of simulating vibronic coupling

In order to extend the method of simulating vibronic coupling to the case with mul-

tiple bosonic modes, we now consider the case of Eq. 3.15. If we express the excited

state modes in terms of the ground state modes such that

bk =
∑

j

skjaj + λk, (3.32)

we can write H as

H = H ′s + |↓〉 〈↓| ⊗HG + |↑〉 〈↑| ⊗HE , (3.33)

where

HG ≡
∑

k

ω
(g)
k a†kak, (3.34)

and

HE ≡
∑

kjl

ω
(e)
k skjslka

†
jal +

∑

kj

ω
(e)
k skjλk

(
a†j + aj

)
. (3.35)

In the definition of H ′s, the only change from Hs is given by

∆′e = ∆e +
∑

k

λ2
k. (3.36)

With knowledge of sij and λi for all modes, we can then repeat the above procedure

to determine the absorption spectrum for a complicated system using a quantum
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computer. The above Hamiltonian can be written in a form more familiar to quan-

tum computation as

H = H ′s +
∑

k

Ωk(σz)a
†
kak

+
1

2

∑

kj

skjω
(e)
k λk(I + σz)(a

†
j + aj)

+
1

2

∑

k

∑

j 6=l
skjslkω

(e)
k (I + σz)a

†
jal (3.37)

where we define

Ωk(σz) ≡
1

2
(ω

(g)
k + s2

kkω
(e)
k )I +

1

2
(ω

(g)
k − s2

kkω
(e)
k )σz. (3.38)

In cases where Duchinsky rotations of the normal modes can be neglected (sij = δij),

this expression can be further reduced to

H = H ′s +
∑

k

Ω′k(σz)a
†
kak

+
1

2

∑

k

ω
(e)
k λk(I + σz)(a

†
k + ak) (3.39)

with the simplification

Ω′k(σz) =
1

2
(ω

(g)
k + ω

(e)
k )I +

1

2
(ω

(g)
k − ω

(e)
k )σz. (3.40)
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Generality is the enemy of all art.

Konstantin Stanislavski

4
Exploiting Locality in Quantum Computation for

Quantum Chemistry∗

Abstract

Accurate prediction of chemical and material properties from first principles quan-

tum chemistry is a challenging task on traditional computers. Recent developments in

quantum computation offer a route towards highly accurate solutions with polynomial

∗Reprinted (adapted) with permission from Jarrod R. McClean, Ryan Babbush, Peter
J. Love, and Alán Aspuru-Guzik. Exploiting locality in quantum computation for quantum
chemistry. The Journal of Physical Chemistry Letters, 5(24):4368-4380, 2014. Copyright
(2014) American Chemical Society.
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cost, however this solution still carries a large overhead. In this perspective, we aim

to bring together known results about the locality of physical interactions from quan-

tum chemistry with ideas from quantum computation. We show that the utilization

of spatial locality combined with the Bravyi-Kitaev transformation offers an improve-

ment in the scaling of known quantum algorithms for quantum chemistry and provide

numerical examples to help illustrate this point. We combine these developments to

improve the outlook for the future of quantum chemistry on quantum computers.

4.1 Introduction

Within chemistry, the Schrödinger equation encodes all information required to pre-

dict chemical properties ranging from reactivity in catalysis to light absorption in

photovoltaics. Unfortunately the exact solution of the Schrödinger equation is thought

to require exponential resources on a classical computer, due to the exponential growth

of the dimensionality of the Hilbert space as a function of molecular size. This makes

exact methods intractable for more than a few atoms [229].

Richard Feynman first suggested that this scaling problem might be overcome if a

more natural approach was taken [70]. Specifically, instead of painstakingly encoding

quantum information into a classical computer, one may be able to use a quantum

system to naturally represent another quantum system and bypass the seemingly in-

surmountable storage requirements. This idea eventually developed into the field of

quantum computation, which is now believed to hold promise for the solution of prob-

lems ranging from factoring numbers [214] to image recognition [12, 182] and protein

folding [12, 195].

Initial studies by Aspuru-Guzik et. al. showed that these approaches might be par-
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ticularly promising for quantum chemistry [6]. There have been many developments

both in theory [111, 209, 261] and experimental realization [8, 136, 196, 242] of quan-

tum chemistry on quantum computers. The original gate construction for quantum

chemistry introduced by Whitfield et al. [251] was recently challenged as too expen-

sive by Wecker et al. [244]. The pessimistic assessment was due mostly to the extrap-

olation of the Trotter error for artificial rather than realistic molecular systems, as

was analyzed in detail in a followup study by many of the same authors [198]. They

subsequently improved the scaling by means of several circuit enhancements [99]. The

analysis of the Trotter error on realistic molecules in combination with their improve-

ments led to a recent study where an estimate of the calculation time of Fe2S2 was

reduced by orders of magnitude [198]. In this paper, we further reduce the scaling by

exploiting the locality of physical interactions with local basis sets as has been done

routinely now in quantum chemistry for two decades [41, 85]. These improvements

in combination with others make quantum chemistry on a quantum computer a very

attractive application for early quantum devices. We describe the scaling under two

prominent measurement strategies, quantum phase estimation and Hamiltonian aver-

aging, which is a simple subroutine of the recently introduced Variational Quantum

Eigensolver approach [196].

Additionally, recent progress in accurate and scalable solutions of the Schrödinger

equation on classical computers has also been significant [5, 30, 41, 85, 102, 212].

Some of these results have already appeared in the quantum computation literature

in the context of in depth studies of state preparation [236, 240]. A general review

of quantum simulation [38, 80] and one on quantum computation for chemistry [117]

cover these topics in more depth. A collection covering several aspects of quantum in-

formation and chemistry recently appeared [114]. However many developments that
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utilize fundamental physical properties of the systems being studied to enable scala-

bility have not yet been exploited.

In this study, we hope to bring to light results from quantum chemistry as well as

their scalable implementation on quantum computers. We begin by reviewing the

standard electronic structure problem. Results based on the locality of physical in-

teractions from linear scaling methods in quantum chemistry are then introduced with

numerical studies to provide quantification of these effects. A discussion of the result-

ing impact on the most common quantum algorithms for quantum chemistry follows.

We also investigate instances where a perfect oracle is not available to provide input

states, demonstrating the need for advances in state preparation technology. Finally,

we conclude with an outlook for the future of quantum chemistry on quantum com-

puters.

4.2 Electronic structure problem

To frame the problem and set the notation, we first briefly introduce the electronic

structure problem of quantum chemistry [102]. Given a set of nuclei with associated

charges {Zi} and a total charge (determining the number of electrons), the physical

states of the system can be completely characterized by the eigenstates {|Ψi〉} and

corresponding eigenvalues (energies) {Ei} of the Hamiltonian H

H = −
∑

i

∇2
Ri

2Mi
−
∑

i

∇2
ri

2
−
∑

i,j

Zi
|Ri − rj |

+
∑

j>i

ZiZj
|Ri −Rj |

+
∑

j>i

1

|ri − rj |
(4.1)
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where we have used atomic units, {Ri} denote nuclear coordinates, {ri} electronic

coordinates, {Zi} nuclear charges, and {Mi} nuclear masses. Owing to the large dif-

ference in masses between the electrons and nuclei, typically the Born-Oppenheimer

approximation is used to mitigate computational cost and the nuclei are treated as

stationary, classical point charges with fixed positions {Ri}. Within this framework,

the parametric dependence of the eigenvalues on {Ri}, denoted by {E({Ri})j} deter-

mines almost all chemical properties, such as bond strengths, reactivity, vibrational

frequencies, etc. Work has been done in the determination of these physical properties

directly on a quantum computer [115].

Due to the large energy gaps between electronic levels with respect to the thermal

energy scale kBT , it typically suffices to study a small subset of the eigenstates cor-

responding to the lowest energies. Moreover, for this reason, in many molecules the

lowest energy eigenstate |Ψ0〉, or ground state, is of primary importance, and for that

reason it is the focus of many methods, including those discussed here.

4.2.1 Second quantized Hamiltonian

Direct computation in a positional basis accounting for anti-symmetry in the wave-

function while using the Hamiltonian described is referred to as a first quantization

approach and has been explored in the context of quantum computation [116, 243,

246]. The first quantized approach has also been realized in experiment [151]. One

may also perform first quantized calculations in a basis of Slater determinants. This

was introduced as a representation of the electronic wavefunction by qubits in [6]

(the compact mapping) and the efficiency of time evolution in this basis was recently

shown [230, 237]. The second quantized approach places the antisymmetry require-

ments on the operators. After choosing some orthogonal spin-orbital basis {ϕi} with a
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number of terms M , the second quantized Hamiltonian may be written as [102]

Ĥ =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

hpqrsa
†
pa
†
qaras (4.2)

with coefficients determined by

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑

i

Zi
|Ri − r|

)
ϕq(σ) (4.3)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(4.4)

where σi now contains the spatial and spin components of the electron, σi = (ri, si).

The operators a†p and ar obey the fermionic anti-commutation relations

{a†p, ar} = δp,r (4.5)

{a†p, a†r} = {ap, ar} = 0 (4.6)

For clarity, we note that the basis functions used in quantum chemistry (such as atom-

centered Gaussians) are frequently parameterized on the nuclear coordinates {Ri},

which can result in a dependence on the nuclear positions of the electronic integral

terms {hpqrs}. For notational simplicity the dependence of the integrals on the nu-

clear positions in this work will remain implied.

4.2.2 Spatial locality

It is clear by inspection that the maximum number of terms in the second-quantized

Hamiltonian scales as O(M4). M can be quite large to reach chemical accuracy for

systems of interest, and the number of terms present in the Hamiltonian is a domi-
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nant cost factor for almost all quantum computation algorithms for chemistry. How-

ever, due to the locality of physical interactions, one might imagine that many of the

terms in the Hamiltonian are negligible relative to some finite precision ε. While this

depends on the basis, it is this observation that forms the foundation for the linear-

scaling methods of electronic structure such as linear scaling density functional theory

or quantum Monte Carlo [5, 7, 85, 187, 247, 253, 265]. That is, in a local basis, the

number of non-negligible terms scales more like O(M2), and advanced techniques such

as fast multipole methods techniques can evaluate their contribution in O(M) time.

These scaling properties are common knowledge within the domain of traditional

quantum chemistry, however they have not yet been exploited within the context of

quantum computation. They are clearly vitally important for the correct estimate of

the asymptotic scaling of any method [6, 111, 244, 251]. For that reason, we review

the origin of that scaling here for the most common and readily available local ba-

sis, the Gaussian atomic orbital basis. We follow loosely the explanation presented

by Helgaker, Jørgensen, and Olsen [102], and refer readers to this text for additional

detail on the evaluation of molecular integrals in local basis sets. The two elements

we will consider here are the cutoffs due to exponentially vanishing overlaps between

Gaussians basis functions and a bound on the value of the largest integral.

By far the most common basis used in electronic structure calculations is a set of

atom-centered Gaussian (either Cartesian or “Pure” spherical) functions. While the

precise result can depend on the angular momentum associated with the basis func-

tion, for simplicity, consider only Gaussian S functions, which is defined by

|Ga〉 = exp
(
−ar2

A

)
(4.7)
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where rA is the vector from a point A which defines the center of the Gaussian. One

property of Gaussian functions that turns out to be useful in the evaluation of molec-

ular integrals is the Gaussian product rule. This rule states simply that the prod-

uct of two spherical Gaussian functions may be written in terms of a single spheri-

cal Gaussian function on the line segment connecting the two centers. Consider two

spherical Gaussian functions, |Ga〉 and |Gb〉 separated along the x-axis.

exp
(
−ax2

A

)
exp

(
−bx2

B

)
= Kx

ab exp
(
−px2

p

)
(4.8)

where Kx
ab is now a constant pre-exponential factor

Kx
ab = exp

(
−µX2

AB

)
(4.9)

and the total exponent p, the reduced exponent µ, and the Gaussian separation XAB

are given by

p = a+ b (4.10)

µ =
ab

a+ b
(4.11)

XAB = Ax −Bx (4.12)

That is, the product of two spherical Gaussians is a third Gaussian centered between

the original two that decays faster than the original two functions, as given by the

total exponent p. The overlap integral of two spherical Gaussian S functions may be

obtained through application of the Gaussian product rule after factorizing into the
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three Cartesian dimensions, followed by Gaussian integration and is given by

Sab = 〈Ga|Gb〉 =

(
π

a+ b

)3/2

exp

(
− ab

a+ b
R2
AB

)
(4.13)

where RAB is the distance between the Gaussian centers A and B. Clearly this inte-

gral decays exponentially with the square of the distance between centers, and one

may determine a distance ds such that beyond that distance, the integrals will be

smaller than 10−k in magnitude.

ds =

√√√√a−1
min log

[(
π

2amin

)3

102k

]
(4.14)

where amin is the minimal Gaussian exponent a (most diffuse function) in the set of

Gaussian basis functions {|Ga〉}. While the exact decay parameters will depend on

the basis set, it is generally true from this line of reasoning that there is a character-

istic distance, beyond which all overlap integrals are negligible. This means that the

number of interactions per basis function becomes fixed, resulting in a linear number

of significant overlap integrals. As kinetic energy integrals are just fixed linear com-

binations of overlap integrals of higher angular momentum, the same argument holds

for them as well.

For S orbitals, the two-electron Coulomb integral may be written as

hacbd =
SabScd
RPQ

erf(
√
αRPQ) (4.15)

where erf is the error function, P and Q are Gaussian centers formed through applica-

tion of the Gaussian product rule to |Ga〉 |Gb〉 and |Gc〉 |Gd〉 respectively. RPQ is the

distance between the two Gaussian centers P and Q and α is the reduced exponent
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derived from P and Q. For clarity, this may be bounded by the simpler expression

hacbd ≤ min

(
4α

π
SabScd,

SabScd
RPQ

)
(4.16)

The first of these two expressions in the min function comes from the short range

bound and the latter from the long range bound of the error function. These bounds

show that the integrals are determined by products of overlap terms, such that in the

regime where overlap integrals scale linearly, we expect O(M2) significant two-electron

terms. Moreover, as seen in the long range bound of the two-electron integral, there is

some further asymptotic distance beyond which these interactions may be completely

neglected, yielding an effectively linear scaling number of significant integrals. This

limit can be quite large however, thus practically one expects to observe a quadratic

scaling in the number of two-electron integrals (TEI).

Additionally, we note from the form of the integrals, that the maximal values the

two-electron integrals will attain are determined by the basis set parameters, such as

the width of the Gaussian basis functions or their angular momentum. The implica-

tion of this, is that the maximal integral magnitude for the four index two-electron

integrals, |hTEI
max| will be independent of the molecular size for standard atom centered

Gaussian basis sets, and may be treated as a constant for scaling analysis that exam-

ine cost as a function of physical system size with fixed chemical composition. The

overlap and kinetic energy integrals will similarly have a maximum independent of

molecular size past a very small length scale. However, the nuclear attraction inte-

grals must also be considered.

While not typically considered a primary source of difficulty due to the relative

ease of evaluation with respect to two-electron integrals, we separate the nuclear at-
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traction integrals here due to the fact that the maximal norm of the elements may

change as well. The nuclear attraction matrix element between S functions may be

written as

hnuc
ab = −

∑

i

ZiSab
RPi

erf (
√
pRPi) (4.17)

where Zi is the nuclear charge and RPi refers to the distance between the Gaussian

center P with total exponent p formed from the product |Ga〉 |Gb〉 to the position

of the i’th nuclei. Following from the logic above, from the exponentially vanishing

overlap Sab, at some distance, we expect only a linear number of these integrals to be

significant. However, each of the integrals considers the sum over all nuclei, which can

be related linearly to the number of basis functions in atom centered Gaussian basis

sets. Thus the maximal one-electron integral is not a constant, but rather can be ex-

pected to scale with the Coulomb sum over distant nuclear charges. A conservative

bound can be placed on such a maximal element as follows.

The temperature and pressure a molecule reside in will typically determine the

minimal allowed separation of two distinct nuclei, and will thus define a maximum

nuclear density ρmax. Denote the maximum nuclear charge in the systems under con-

sideration as Zmax. The maximal density and the number of nuclei will also define a

minimal radius that a sphere of charge may occupy rmax,

r3
max =

3ZmaxNnuc

4πρmax
(4.18)

where Nnuc is the number of nuclei in the system. Modeling the charge as spread uni-

formly within this minimal volume and using the maximum of the error function to

94



find a bound on the maximum for the nuclear attraction matrix element, we find

|hnuc
ab | < 4πρmaxSab

∣∣∣∣
∫ rmax

0
r2dr

1

r

∣∣∣∣

= 2πρmaxSabr
2
max

= βabN
2/3
nuc (4.19)

where βab is now a system size independent quantity determined only by basis set

parameters at nuclei a and b, and the size dependence is bounded as O(N
2/3
nuc ). Atom

centered Gaussian basis sets will have a number of a basis functions which is a linear

multiple of the number of nuclei, and as such we may now bound the maximal one-

electron integral (OEI) element as

|hOEI
max| < βOEI

maxM
2/3 (4.20)

4.2.3 Effect of truncation

The above analysis demonstrates that given some integral magnitude threshold, δ,

there exists a characteristic distance d between atomic centers, beyond which integrals

may be neglected. If one is interested in a total precision ε in the energy Ei, it is im-

portant to know how choosing δ will impact the solution, and what choice of δ allows

one to retain a precision ε.

By specification, the discarded integrals are small with respect to the rest of the

Hamiltonian (sometimes as much as 10 orders of magnitude smaller in standard cal-

culations). As such, one expects a perturbation analysis to be accurate. Consider the

new, truncated Hamiltonian Ht = H + V , where V is the negation of the sum of all

removed terms, each of which have magnitude less than δ.
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Assuming a non-degenerate spectrum for H, from perturbation theory we expect

the leading order change in eigenvalue Ei to be given by

∆Ei = 〈Ψi|V |Ψi〉 (4.21)

if the number of terms removed from the sum is given by Nr, a worst case bound on

the magnitude of this deviation follows from the spectrum of the creation and annihi-

lation operators and is given by

|∆Ei| ≤
∑

{hi:|hi|<δ}

|hi| ≤ Nrδ (4.22)

where {hi : |hi| < δ} is simply the set of Hamiltonian elements with norm less than

δ and the first inequality follows directly from the triangle inequality. We emphasize

that this is a worst case bound, and generically one expects at least some cancellation

between terms, such as kinetic and potential terms, when the Hamiltonian is con-

sidered as a whole. Some numerical studies of these cancellation effects have been

performed [198], but additional studies are required. Regardless, under this maximal

error assumption, by choosing a value

δ ≤ ε

Nr
(4.23)

one retains an accuracy ε in the final answer with respect to the exact answer when

measuring the eigenvalue of the truncated Hamiltonian Ht. Alternative, one may use

the tighter bound based on the triangle inequality and remove the maximum number

of elements such that the total magnitude of removed terms is less than ε. From the

looser but simpler bound, we see a reduction of scaling from M4 to M2 would require
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removal of the order of M4 terms from the Hamiltonian, this constraint on δ can be

rewritten in terms of M as

δ ≤ ε

M4
(4.24)

While the perturbation of the eigenvalue will have a direct influence on energy pro-

jective measurement methods such as quantum phase estimation, other methods eval-

uate the energy by averaging. In this case, we do not need to appeal to perturbation

theory, and the δ required to achieve a desired ε can be found directly.

〈Ht〉 = 〈Ψi|Ht |Ψi〉 (4.25)

= Ei + 〈Ψi|V |Ψi〉 (4.26)

We find that under our assumption of worst case error for averaging, the result is

identical to that of the first order perturbation of the eigenvalue Ei,

|∆〈Ht〉| ≤
∑

{hi:|hi|<δ}

|hi| ≤ Nrδ (4.27)

In summary, we find that for both the consideration of the ground state eigenvalue

and the average energy of the ground state eigenvector, there is a simple formula for

the value of δ, which scales polynomially in the system size, below which one may

safely truncate to be guaranteed an accuracy ε in the final answer. Moreover it sug-

gests a simple strategy that one may utilize to achieve the desired accuracy. That is,

sort the integrals in order of magnitude, and remove the maximum number of inte-

grals such that the total magnitude of removed integrals is less than ε.

On the subject of general truncation, we note that while there may exist Hamil-

tonians with the same structure as the second quantized electronic structure Hamil-
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tonian that have the property that removal of small elements will cause a drastic

shift in the character of the ground state, this has not been seen for physical sys-

tems in quantum chemistry. Moreover, from the perturbation theory analysis given,

such Hamiltonians would likely need to exhibit degenerate ground electronic states,

which are not common in physical systems. In practice it is observed that remov-

ing elements on the order of δ = 10−10 and smaller is more than sufficient to retain

both qualitative and quantitative accuracy in systems of many atoms [5, 7, 102, 253].

Moreover, the convergence with respect to this value may be tested easily for any sys-

tems under consideration.

4.2.4 Onset of favorable scaling

While the above analysis shows that locality of interactions in local basis sets pro-

vides a promise that beyond a certain length scale, the number of non-negligible in-

tegrals will scale quadratically in the number of basis functions, it does not provide

good intuition for the size of that length scale in physical systems of interest. Here we

provide numerical examples for chemical systems in basis sets used so far in quantum

computation for quantum chemistry. The precise distance at which locality starts to

reduce the number of significant integrals depends, of course, on the physical system

and the basis set used. In particular, larger, more diffuse basis sets are known to ex-

hibit these effects at comparatively larger length scales than minimal, compact basis

sets. However the general scaling arguments given above hold for all systems of suffi-

cient size.

An additional consideration which must be made for quantum computation, is

that as of yet, no general technology has been developed for direct simulation in non-

orthogonal basis sets. This prohibits direct simulation in the bare atomic orbital ba-
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sis, however the use of Löwdin symmetric orthogonalization yields the orthogonal ba-

sis set closest to the original atomic orbital basis set in an l2 sense [149, 163]. We find

that this is sufficient for the systems we consider, but note that there have been a

number of advances in orthogonal basis sets that are local in both the occupied and

virtual spaces and may find utility in quantum computation [273]. Moreover, there

has been recent work in the use of multiresolution wavelet basis sets that have nat-

ural sparsity and orthogonality while providing provable error bounds on the choice

of basis [97]. Such a basis also allows one to avoid costly integral transformations re-

lated to orthogonality, which are known to scale as O(M5) when performed exactly.

Further research is needed to explore the implications for quantum computation with

these basis sets, and we focus here on the more common atom-centered Gaussian ba-

sis sets.

As a prototype system, we consider chains of hydrogen atoms separated by 1 Bohr

(a0) in the STO-3G basis set, an artificial system that can exhibit a transition to a

strongly correlated wavefunction [91]. We count the total number of significant in-

tegrals for values of δ given by 10−15 and 10−7 for the symmetrically orthogonalized

atomic orbital (OAO) basis and the canonical Hartree-Fock molecular orbital (MO)

basis. The results are displayed in Fig. 4.1 and demonstrate that with a cutoff of

δ = 10−7 the localized character of the OAO’s allows for a savings of on the order

of 6 × 106 integrals with respect to the more delocalized canonical molecular orbitals.

The s in the labeling of the orbital bases simply differentiates between two possible

cutoffs. These dramatic differences begin to present with atomic chains as small as 10

Å in length in this system with this basis set.

As an additional example, we consider linear alkane chains of increasing length.

The results are displayed in Fig. 4.2 and again display the dramatic advantages of
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Figure 4.1: The number of significant(magnitude > 10−15) spin-orbital integrals in the STO-3G
basis set as a function of the number of hydrogens in a linear hydrogen chain with a separation of
1 a0 for the Hartree-Fock canonical molecular orbital basis(MO) and the symmetrically orthogo-
nalized atomic orbital basis (OAO). The sMO and sOAO, shows the same quantity with a sharper
cutoff (10−7) and demonstrates the advantage to localized atomic basis functions at length scales
as small as 10 Å.

preserving locality in the basis set. By the point one reaches 10 carbon atoms, a sav-

ings of almost 108 integrals can be achieved at a truncation level of 10−7.

Although localized basis sets provide a definitive scaling advantage in the medium-

large size limit for molecules, one often finds that in the small molecule limit canon-

ical molecular orbitals, the orbitals from the solution of the Hartree-Fock equations

under the canonical condition, provide a more sparse representation. This is observed

in the hydrogen and alkanes chains studied here for the smallest molecule sizes, and

the transition for this behavior will generally be basis set dependent. For example

in the alkane chains smaller than C4H10 studied here, such as C3H8, the number of

significant integrals in the MO basis at a threshold of 10−7 is roughly 80% of that in

the atomic orbital basis. The reason is that at smaller length scales, the “delocalized”
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canonical molecule orbitals have similar size to the more localized atomic orbitals, but

with the additional constraint of the canonical condition, a sufficient but not neces-

sary condition for the solution of the Hartree-Fock equations that demands the Fock

matrix be diagonal (as opposed to the looser variational condition of block-diagonal

between the occupied and virtual spaces). A side effect of the canonical condition

is that in the canonical molecular orbital basis many of the hpqrs terms for distinct

indices are reduced in magnitude. However, there are not enough degrees of free-

dom present in the orbital rotations for this effect to persist to larger length scales,

and as a result local basis sets eventually become more advantageous. Moreover, it is

known that at larger length scales, the canonical conditions tend to favor maximally

delocalized orbitals, which can reduce the advantages of locality. These effects have

been studied in some detail in the context of better orbital localizations by relaxing

the canonical condition in Hartree-Fock and the so-called Least-Change Hartree-Fock

method coupled with fourth-moment minimization [273].

4.3 Quantum energy estimation

Almost all algorithms designed for the study of quantum chemistry eigenstates on

a quantum computer can be separated into two distinct parts: 1. state preparation

and 2. energy estimation. For the purposes of analysis, it is helpful to treat the two

issues separately, and in this section we make the standard assumption in doing so,

that an oracle capable of producing good approximations to the desired eigenstates

|Ψi〉 at unit cost is available. Under this assumption, energy estimation for a fixed de-

sired precision ε is known to scale polynomially in the size of the system for quantum

chemistry, however the exact scaling costs and tradeoffs depend on the details of the
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Figure 4.2: The number of significant(magnitude > 10−15) spin-orbital integrals in the STO-
3G basis set as a function of the number of carbons in a linear alkane chain for the Hartree-Fock
canonical molecular orbital basis (MO) and the symmetrically orthogonalized atomic orbital basis
(OAO). The sMO and sOAO shows the same quantity with a sharper cutoff (10−7) and demon-
strates the dramatic advantage to localized atomic basis even at this small atomic size.

method used. Here we compare the costs and benefits of two prominent methods of

energy estimation used in quantum computation for chemistry: quantum phase esti-

mation and Hamiltonian averaging.

4.3.1 Quantum phase estimation

The first method used for the energy estimation of quantum chemical states on a

quantum computer was quantum phase estimation [2, 6, 122]. The method works by

evolving the give quantum eigenstate |Ψi〉 forward under the system Hamiltonian H

for a time T , and reading out the accumulated phase, which can be easily mapped to

the associated eigenenergy Ei. While the basic algorithm and its variations can have

many different components, the cost is universally dominated by the coherent evolu-

tion of the system.
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To evolve the system under the Hamiltonian, one must find a scalable way to im-

plement the unitary operator U = e−iHT . The standard procedure for accomplishing

this task is the use of Suzuki-Trotter splitting [222, 233], which approximates the uni-

tary operator(at first order) as

U = e−iHT =
(
e−iH(T/m)

)m

=
(
e−i(

∑
iHi)∆t

)m
≈
(∏

i

e−iHi∆t

)m
(4.28)

where ∆t = T/m and Hi is a single term from the Bravyi-Kitaev transformed sys-

tem Hamiltonian. Higher order Suzuki-Trotter operator splittings and their benefits

have been studied in the context of quantum simulation by Berry et al. [21] and in

an early arXiv version of Ref. [250], namely [250], but we largely focus on the first or-

der formula in this work. If each of the simpler unitary operators e−iHi∆t has a known

gate decomposition, the total time evolution can be performed by chaining these se-

quences together.

The use of the Suzuki-Trotter splitting can be thought of as an evolution under an

approximate Hamiltonian H̃, given by e−iH̃T , whose eigenspectrum deviates from the

original Hamiltonian by a factor depending on time-step ∆t. The precise dependence

of this bias depends on the order of the Suzuki-Trotter expansion used. The total res-

olution, ε, in the energies of the approximate Hamiltonian H̃ is determined by the

total evolution time T . Thus to achieve an accuracy of ε in the final energy, one must

utilize a time step ∆t small enough that the total bias is less than ε and a total run

time T such that the resolution is better than ε. If the number of gates required to

implement a single timestep ∆t is given by Ng, then the dominant cost of simulation
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(all of which must be done coherently) is given by

Nc = Ng

⌈
T

∆t

⌉
(4.29)

The total evolution time T required to extract an eigenvalue to chemical precision

εchem = 10−3 is typically set at the Fourier limit independent of molecular size and

thus can be considered a constant for scaling analysis. We then focus on the number

of gates per Suzuki-Trotter time step, Ng, and the time step ∆t required to achieve

the desired precision.

In a first order Suzuki-Trotter splitting, the number of gates per Trotter time step

is given by the number of terms in the Hamiltonian multiplied by the number of gates

required to implement a single elementary term for the form e−iHi∆t. The gates per

elementary term can vary based on the particular integral, however for simplicity in

developing bounds we consider this as constant here. The number of terms, is known

from previous analysis in this work to scale as O(M2) or in the truly macroscopic

limit O(M). The number of gates required to implement a single elementary term

depends on the transformation used from fermionic to qubit operators. The Jordan-

Wigner transformation [112] results in non-local terms that carry with them an over-

head that scales as the number of qubits, which in this case will be O(M). Although

there have been developments in methods to use teleportation to perform these non-

local operations in parallel [111] and by improving the efficiency of the circuits com-

puting the phases in the Jordan-Wigner transformation [99], these issues can also be

alleviated by choosing the Brayvi-Kitaev transformation that carries an overhead only

logarithmic in the number of qubits, O(logM) [35, 209]. As a result, one expects

the number of gates per Suzuki-Trotter time step Ng to scale as O(M2 logM) or in
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a truly macroscopic limit O(M logM).

To complete the cost estimate with fixed total time T , one must determine how

the required time step ∆t scales with the size of the system. As mentioned above, the

use of the Suzuki-Trotter decomposition for the time evolution of H is equivalent to

evolution under an effective Hamiltonian H̃ = H + V , where the size of the perturba-

tion is determined by the order of the Suzuki-Trotter formula used and the size of the

timestep. Once the order of the Suzuki-Trotter expansion to be used has been deter-

mined, the requirement on the timestep is such that the effect of V on the eigenvalue

of interest is less than the desired accuracy in the final answer ε.

This has been explored previously [99, 198], but we now examine this scaling in our

context. To find V , one may expand the k’th order Suzuki-Trotter expansion of the

evolution of H̃ into a power series as well as the power series of the evolution operator

exp [−i (H + V ) ∆t], and find the leading order term V . As a first result, we demon-

strate that for a k’th order propagator, the leading perturbation on the ground state

eigenvalue for a non-degenerate system is O(∆t)k+1.

Recall the power series expansion for the propagator

exp [−i (H + V ) ∆t] =
∞∑

j=0

(−i)j
j!

(H + V )j (∆t)j (4.30)

The definition of a k’th order propagator, is one is that correct through order k in the

power series expansion. As such, when this power series is expanded, V must make no

contribution in the terms until O((∆t)k+1). For this to be possible, it’s clear that V

must depend on ∆t. In order for it to vanish for the first k terms, V must be propor-

tional to (∆t)k. Moreover, due to the alternation of terms between imaginary and real

at each order in the power series with the first term being imaginary, the first possi-

105



ble contribution is order (∆t)k and imaginary. As is common in quantum chemistry,

we assume a non-degenerate and real ground state, and thus the contribution to the

ground state eigenvalue is well approximated by first order perturbation theory as

E(1) = 〈Ψg|V |Ψg〉 (4.31)

however, as V is imaginary Hermitian and the ground state is known to be real in

quantum chemistry, this expectation value must vanish. Thus the leading order per-

turbation to the ground state eigenvalue is at worst the real term depending on (∆t)k+1.

To get a more precise representation of V for a concrete example, we now consider

the first order (k = 1) Suzuki-Trotter expansion. As expected, the leading order imag-

inary error term is found to be

V (0) =
∆t

2

∑

j<k

i [Hj , Hk] (4.32)

whose contribution must vanish due to it being an imaginary Hermitian term. Thus

we look to the leading contributing error depending on (∆t)2, which has been ob-

tained previously[198] from a Baker-Campbell-Hausdorff(BCH) expansion to read

V (1) =
(∆t)2

12

∑

i≤j

∑

j

∑

k<j

[
Hi

(
1− δij

2

)
, [Hj , Hk]

]
(4.33)

Thus the leading order perturbation is given by third powers of the Hamiltonian oper-

ators. To proceed, we count the number of one- and two-electron integrals separately

as NOEI
int and NTEI

int respectively. Their maximal norm elements are similarly denoted

by hOEI
max and hTEI

max. From this, we can draw a worst case error bound on the perturba-
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tion of the eigenvalue given by

E(1) ≤ (∆t)2

12

∑

i≤j

∑

j

∑

k<j

∣∣∣∣Hi

(
1− δij

2

)
, [Hj , Hk]

∣∣∣∣

≤
(
|hOEI

max|NOEI
int + |hTEI

max|NTEI
int

)3
(∆t)2 (4.34)

≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3
(∆t)2

Where the first inequality follows from the triangle inequality and the second is a

looser, but simpler bound, that may be used to elucidate the scaling behavior. Hold-

ing the looser bound to the desired precision in the final answer ε, this yields

∆t ≤
[

ε
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3

]1/2

(4.35)

We emphasize that this is a worst case bound from first order perturbation the-

ory, including no possible cancellation between Hamiltonian terms. Some preliminary

work has been done numerically in establishing average cancellation between terms

that shows these worst case bounds are too pessimistic [198]. Additionally, a rigorous

bound not depending on perturbation theory has been previously derived [198, 244].

Continuing, we expect the total scaling under a first order Suzuki-Trotter expansion

using a Bravyi-Kitaev encoding to be bounded by

Nc = Ng

⌈
T

∆t

⌉
≤ Ng

ε∆t

≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3/2
Nint logM

ε3/2
(4.36)

and in the large size limit where the number of significant two-electron integrals in a
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local basis set scales quadratically and the number of significant one-electron integrals

scales linearly, this may be bounded by

Nc ≤ κ
(
|βOEI

max|M5/3 + |hTEI
max|M2

)3/2
(M2 +M)

ε3/2(logM)−1
(4.37)

where κ is a positive constant that will depend on the basis set and this expression

scales as O(M5 logM) in the number of spin-orbital basis functions.

4.3.2 Hamiltonian averaging

The quantum phase estimation algorithm has been central in almost all algorithms

for energy estimation in quantum simulation. However, it has a significant practi-

cal drawback in that after state preparation, all the desired operations must be per-

formed coherently. A different algorithm for energy estimation has recently been in-

troduced [196, 261] that lifts all but an O(1) coherence time requirement after state

preparation, making it amenable to implementation on quantum devices in the near

future. We briefly review this approach, which we will call Hamiltonian averaging,

and bound its costs in applications for quantum chemistry.

As in quantum phase estimation, in Hamiltonian averaging one assumes the eigen-

states |Ψi〉 are provided by some oracle. By use of either the Jordan-Wigner or Bravyi-

Kitaev transformation, the Hamiltonian may be written as a sum of tensor products

of Pauli operators. These transformations at worst conserve the number of indepen-

dent terms in the Hamiltonian, thus we may assume for our worst case analysis the

number of terms is fixed by Nint and the coefficients remain unchanged. From the

provided copy of the state and transformed Hamiltonian, to obtain the energy one

108



simply performs the average

〈Ĥ〉 =
∑

i,j,k,...∈x,y,z
hijk...〈σi1 ⊗ σj2 ⊗ σk3 ...〉 (4.38)

by independent Pauli measurements on the provided state |Ψi〉 weighted by the coef-

ficients hijkl..., which are simply a relabeling of the previous two-electron integrals for

convenience with the transformed operators. As |Ψi〉 is an eigenstate, this average will

correspond to the desired eigenvalue Ei with some error related to sampling that we

now quantify.

Consider an individual term

Xijkl... = hijkl...σ
i
1 ⊗ σj2 ⊗ σk3 ... (4.39)

it is clear from the properties of qubit measurements, that the full range of values

this quantity can take on is [−hijkl..., hijkl...]. As a result, we expect that the variance

associated with this term can be bounded by

Var [Xijkl...] ≤ |hijkl...|2 (4.40)

Considering a representative element, namely the maximum magnitude integral

element hmax, we can bound the variance of Ĥ as

Var
[
Ĥ
]
≤ N2

int|hmax|2 (4.41)

The variance of the mean, which is the relevant term for our sampling error, comes
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from the central limit theorem and is bounded by

Var
[
〈Ĥ〉

]
≤

Var
[
Ĥ
]

N
(4.42)

where N is the number of independent samples taken of 〈Ĥ〉. Collecting these results,

we find

Var
[
〈Ĥ〉

]
≤
∑ |hijkl...|2

N

≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2

N
(4.43)

Now setting the variance to the desired statistical accuracy ε2 (which corresponds to a

standard error of ε at a 68% confidence interval), we find the number of independent

samples expected, Ns, is bounded by

Ns ≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2

ε2
(4.44)

If a single independent sample of 〈Ĥ〉 requires the measurement of each of the Nint

quantities, then the bound on the total cost in the number of state preparations and

measurements, Nm is

Nm ≤
Nint

(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2

ε2
(4.45)

which if one considers the large size limit,such that the number of two-electron inte-

grals scales quadratically and the number of one-electron integrals scales linearly, we
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find

Nm ≤ κ
(M +M2)

(
|βOEI

max|M5/3 + |hTEI
max|M2

)2

ε2
(4.46)

where κ is a positive constant that depends upon the basis set. It is clear that this

expression scales as O(M6) in the number of spin-orbital basis functions. We see from

this, that under the same maximum error assumptions, Hamiltonian averaging scales

only marginally worse in the number of integrals and precision as compared to quan-

tum phase estimation performed with a first order Suzuki-Trotter expansion, but has

a coherence time requirement of O(1) after each state preparation. Note that each

measurement is expected to require single qubit rotations that scale as either O(M)

for the Jordan-Wigner transformation or O(logM) for the Bravyi-Kitaev transforma-

tion. However, we assume that these trivial single qubit rotations can be performed

in parallel independent of the size of the system without great difficulty, and we thus

don’t consider this in our cost estimate. This method is a suitable replacement for

quantum phase estimation in situations where coherence time resources are limited

and good approximations to the eigenstates are readily available. Additional studies

are needed to quantify the precise performance of the two methods beyond worst case

bounds.

4.4 Using imperfect oracles

A central assumption for successful quantum phase estimation and typically any en-

ergy evaluation scheme is access to some oracle capable of producing good approxima-

tions to the eigenstate of interest, where a “good” approximation is typically meant

to imply an overlap that is polynomial in the size of the system. Additionally, a sup-
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posed benefit of phase estimation over Hamiltonian averaging is that given such a

good (but not perfect) guess, by projective measurement in the energy basis, in prin-

ciple one may avoid any bias in the final energy related to the initial state. Here we

examine this assumption in light of the Van-Vleck catastrophe [239], which we review

below, and examine the consequences for measurements of the energy by QPE and

Hamiltonian averaging.

The Van Vleck catastrophe [239] refers to an expected exponential decline in the

quality of trial wavefunctions, as measured by overlap with the true wavefunction of a

system, as a function of size. We study a simple case of the catastrophe here in order

to frame the consequences for quantum computation. Consider a model quantum sys-

tem consisting of a collection of N non-interacting two level subsystems with subsys-

tem Hamiltonians given by Hi. These subsystems have ground and excited eigenstates

|ψig〉 and |ψie〉 with eigenenergies Eg < Ee, such that the total Hamiltonian is given by

H =
∑

i

Hi (4.47)

and eigenstates of the total Hamiltonian are formed from tensor products of the eigen-

states of the subsystems. As such the ground state of the full system is given by

|Ψg〉 =

N−1⊗

i=0

|ψig〉 (4.48)

Now suppose we want to measure the ground state energy of the total system, but

the oracle is only capable of producing trial states for each subsystem |ψit〉 such that
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〈ψit|ψig〉 = ∆, where |∆| < 1. The resulting trial state for the whole system is

|Ψt〉 =

N−1⊗

i=0

|ψit〉 (4.49)

From normalization of the two level system, we may also write the trial state as

|ψit〉 = ∆ |ψig〉+ e−iθ
√

1−∆2 |ψie〉 (4.50)

where θ ∈ [0, 2π). Moreover, from knowledge of the gap, one can find the expected

energy on each subsystem, which is given by

〈ψit|Hi |ψit〉 = ∆2Eg + (1−∆2)Ee (4.51)

For the case of Hamiltonian averaging on the total system, the expected answer is

given by

E = 〈Ψt|H |Ψt〉

=
N−1∑

i=0

〈ψit|Hi |ψit〉

= N(∆2Eg + (1−∆2)Ee) (4.52)

which yields an energy bias from the true ground state, εb, given by

εb = N(∆2Eg + (1−∆2)Ee)−NEg

= N(1−∆2)(Ee − Eg)

= N(1−∆2)ω (4.53)
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where we denote the gap for each subsystem as ω = (Ee − Eg). As such, it is clear

that the resulting bias is only linear in the size of the total system N .

Quantum phase estimation promises to remove this bias by projecting into the ex-

act ground state. However, this occurs with a probability proportional to the square

of the overlap of the input trial state with the target state. In this example, this is

given by

|〈Ψt|Ψg〉|2 = |∆|2N (4.54)

which is exponentially small in the size of the system. That is, quantum phase esti-

mation is capable of removing the bias exactly in this example non-interacting sys-

tem, but at a cost which is exponential in the size of the system. The expected cost of

removing some portion of the bias may be calculated by considering the distribution

of states and corresponding energies.

Consider first the probability of measuring an energy with a bias of ε(M) = M(1 −

∆2)ω. For this to happen, it is clear that exactly M of the subsystems in the mea-

sured state are in the excited state. It is clear that this is true for




N

M


 eigen-

states, and the square of the overlap with such an eigenstate is
(
∆2
)N−M (

1−∆2
)M

or

P (ε(M)) =




N

M



(
∆2
)N−M (

1−∆2
)M

(4.55)

which is clearly a binomial distribution. As a result, in the large N limit, this distri-
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bution is well approximated by a Gaussian and we may write

P (ε) ≈ 1√
2πσ2

exp

[
−1

2

(
M − N̄

σ

)2
]

(4.56)

N̄ = N(1−∆2) (4.57)

σ2 = N∆2(1−∆2) (4.58)

Bringing this together, we find that the probability of measuring a bias of less than

ε(M) is given by

P (< ε) =
1√

2πσ2

∫ M

0
dM ′ exp

[
−1

2

(
M ′ − N̄

σ

)2
]

=
1

2

[
erf

(
M − N̄√

2σ2

)
+ erf

(
N̄√
2σ2

)]
(4.59)

where erf is again the error function.

Thus the expected cost in terms of number of repetitions of the full phase estima-

tion procedure to remove a bias of at least ε(M) from this model system is

C(< ε(M)) =
1

P (< ε(M))

= 2

[
erf

(
M − N̄√

2σ2

)
+ erf

(
N̄√
2σ2

)]−1

(4.60)

We plot the expected cost function for a range of oracle guess qualities ∆ on a modest

system of N = 100 in Fig 4.3. From this, we see that the amount of bias that can

feasibly be removed depends strongly on the quality of the oracle guess. Generically,

we see that for any fixed imperfect guess on the subsystem level(|∆| < 1), there will

be an exponential cost in phase estimation related to perfect removal of the bias.
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Figure 4.3: A log log plot of the expected cost in number of repetitions of measuring an energy
with a bias ε(M) as a function of M in quantum phase estimation for different values of the oracle
quality ∆. A system of N = 100 non-interacting subsystems is considered. A perfect, unbiased
answer corresponds to M = 0 with expected cost O(∆2N ), however to aid in visualization this
plot is provided only beyond M = 1. In general one sees that depending on the oracle quality ∆,
different fractions of the bias may be removed with ease, but there is always some threshold for
imperfect guesses (|∆| < 1) such that there is an exponential growth in cost.

This problem can be circumvented by improving the quality of the subsystem guesses

as a function of system size. In particular, one can see that if |∆| is improved as (1 −

1/(2N)) then |∆|2N is O(1). However, as the subsystems in a general case could be

of arbitrary size, classical determination of a subsystem state of sufficient quality

may scale exponentially in the required precision and thus system size. Moreover,

one would not expect the problem to be easier in general cases where interactions

between subsystems are allowed. As a result, further developments in variational

methods [196], quantum cooling [260], and adiabatic state preparation [6, 10, 236]

will be of key importance in this area. Moreover improvements in the ansatze used to

prepare the wave function such as multi-configurational self consistent field calcula-

tions(MCSCF) [236, 240] or unitary coupled cluster (UCC) [261] will be integral parts
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of any practical quantum computing for quantum chemistry effort.

4.5 Adiabatic computation

A complementary solution for the problem of molecular simulation on quantum com-

puters is that of adiabatic quantum computation. It is not known to show the same

direct dependence on the overlap of the initial guess state as QPE, which may al-

low it to solve different problems than the quantum phase estimation or variational

quantum eigensolver in practice. In [10], Babbush et al. show how to scalably em-

bed the eigenspectra of molecular Hamiltonians in a programmable physical system

so that the adiabatic algorithm can be applied directly. In this scheme, the molecu-

lar Hamiltonian is first written in second quantization using fermionic operators. This

Hamiltonian is then mapped to a qubit Hamiltonian using the Bravyi-Kitaev trans-

formation [35, 209]. The authors show that the more typical Jordan-Wigner trans-

formation cannot be used to scalably reduce molecular Hamiltonians to 2-local qubit

interactions as the Jordan-Wigner transformation introduces linear locality overhead

which translates to an exponential requirement in the precision of the couplings when

perturbative gadgets are applied. Perturbative gadgets are used to reduce the Bravyi-

Kitaev transformed Hamiltonian to a 2-local programmable system with a restricted

set of physical couplings. Finally, tunneling spectroscopy of a probe qubit [20] can be

used to measure eigenvalues of the prepared state directly.

While the exact length of time one must adiabatically evolve is generally unknown,

Babbush et al. argue that the excited state gap could shrink polynomially with the

number of spin-orbitals when interpolating between exactly preparable noninteracting

subsystems and the exact molecular Hamiltonian in which those subsystems inter-
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act. This would imply that adiabatic state preparation is efficient. Their argument

is based on the observation that molecular systems are typically stable in their elec-

tronic ground states and the natural processes which produce these states should be

efficient to simulate with a quantum device. Subsequently, Veis and Pittner analyzed

adiabatic state preparation for a set of small chemical systems and observed that for

all configurations of these systems, the minimum gap occurs at the very end of the

evolution when the state preparation is initialized in an eigenstate given by a CAS

(complete active space) ground state [236]. The notion that the minimum gap could

be bounded by the physical HOMO (highest occupied molecular orbital) - LUMO

(lowest unoccupied molecular orbital) gap lends support to the hypothesis put for-

ward by Babbush et al.

4.5.1 Resources for adiabatic quantum chemistry

In the adiabatic model of quantum computation, the structure of the final problem

Hamiltonian (encoding the molecular eigenspectrum) determines experimental re-

source requirements. Since programmable many-body interactions are generally un-

available, we will assume that any experimentally viable problem Hamiltonian must

be 2-local. Any 2-local Hamiltonian on n qubits can be expressed as,

H = α · 1 +
n∑

i=1

~βi · ~σi +
n−1∑

i=1

n∑

j=i+1

~γij · (~σi ⊗ ~σj) (4.61)

where ~σi = 〈σxi , σyi , σzi 〉 is the vector of Pauli matrices on the ith qubit, α ∈ R is a

scalar and ~βi ∈ R3 and ~γij ∈ R9 are vectors of coefficients for each possible term.

In addition to the number of qubits, the most important resources are the number

of qubit couplings and the range of field values needed to accurately implement the
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Hamiltonian. Since local fields are relatively straightforward to implement, we are

concerned with the number of 2-local couplings,

n−1∑

i=1

n∑

j=i+1

card (~γij) (4.62)

where card (~v) is the number of nonzero terms in vector ~v. Since the effective molec-

ular electronic structure Hamiltonian is realized perturbatively, there is a tradeoff be-

tween the error in the eigenspectrum of the effective Hamiltonian, ε, and the strength

of couplings that must be implemented experimentally. The magnitude of the pertur-

bation is inversely related to the gadget spectral gap ∆ which is directly proportional

to the largest term in the Hamiltonian,

max
ij

{
‖ ~γij (ε)‖∞

}
∝ ∆ (ε) . (4.63)

Thus, the smaller ∆ is, the easier the Hamiltonian is to implement but the greater the

error in the effective Hamiltonian. In general, there are other important resource con-

siderations but these are typically scale invariant; for instance, the geometric locality

of a graph or the set of allowed interaction terms. The Hamiltonian can be modified

to fit such constraints using additional perturbative gadgets but typically at the cost

of using more ancilla qubits that require greater coupling strength magnitudes.

4.5.2 Estimates of qubit and coupler scaling

The Bravyi-Kitaev transformation is crucial when embedding molecular electronic

structure in 2-local spin Hamiltonians due to the fact that this approach guarantees

a logarithmic upper-bound on the locality of the Hamiltonian. A loose upper-bound

119



(i.e. overestimation) for the number of qubits needed to gadgetize the molecular elec-

tronic Hamiltonian can be obtained by assuming that all terms have the maximum

possible locality of O (log (M)) where M is the number of spin-orbitals.

In general, the number of terms produced by the Bravyi-Kitaev transformation

scales the same as the number of integrals in the electronic structure problem, O
(
M4
)
;

however, as pointed out in an earlier section, this bound can be reduced to O
(
M2
)

if a local basis is used and small integrals are truncated. Using the “bit-flip” gad-

gets of [113, 119] to reduce M2 terms of locality log (M), we would need M2 log (M)

ancillae. Since the number of ancilla qubits is always more than the number of logi-

cal qubits for this problem, an upper-bound on the total number of qubits needed is

O
(
M2 log (M)

)
.

The number of couplings needed will be dominated by the number of edges in-

troduced by ancilla systems required as penalty terms by the bit-flip gadgets. Each

of the O
(
M2
)

terms is associated with a different ancilla system which contains a

number of qubits equal to the locality of that term. Furthermore, all qubits within

an ancilla system are fully connected. Thus, if we again assume that all terms have

maximum locality, an upper-bound on the number of couplers is O
(
M2 log2 (M)

)
.

Based on this analysis, the adiabatic approach to quantum chemistry has rather mod-

est qubit and coupler requirements.

4.5.3 Estimates of spectral gap scaling

In [10], Babbush et al. reduce the locality of interaction terms using perturbative gad-

gets from the “bit-flip” family, first introduced in [119] and later generalized by [113].

In the supplementary material presented in a later paper analyzing the scaling of gad-
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get constructions [40], it is shown that for bit-flip gadgets, λk+1/∆k = O (ε) and

max
ij

{
‖ ~γij (ε)‖∞

}
= O

(
λk

∆k−1

)
. (4.64)

Here, λ is the perturbative parameter, ∆ is the spectral gap, ε is the error in the

eigenspectrum and ~γij is the coefficient of the term to be reduced. Putting this to-

gether and representing the largest coupler value as γ, we find that ∆ = Ω
(
ε−kγk

)
,

where Ω is the “Big Omega” lower bound. Due to the Bravyi-Kitaev transformation,

the locality of terms is bounded by, k = O (log (M)); thus, ∆ = Ω
(
ε− log(M)γlog(M)

)
.

Prior analysis from this paper indicates that the maximum integral size is bounded

by γ ≤ |βOEI
max|M2/3. This gives us the bound,

∆ = Ω

(
ε− log(M)

∥∥∥βOEI
maxM

2/3
∥∥∥

log(M)
)
. (4.65)

However, ∆ also depends polynomially on M2, the number of terms present. Though

known to be polynomial, it is extremely difficult to predict exactly how ∆ depends on

M2 as applying gadgets to terms “in parallel” leads to “cross-gadget contamination”

which contributes at high orders in the perturbative expansion of the self-energy used

to analyze these gadgets [40]. Without a significantly deeper analysis, we can only

conclude that,

∆ = Ω


poly (M)

∥∥∥∥∥
βOEI

maxM
2/3

ε

∥∥∥∥∥

log(M)

 . (4.66)

This analysis indicates that the most significant challenge to implementing the adia-

batic approach to quantum chemistry is the required range of coupler values which is

certain to span at least several orders of magnitude for non-trivial systems.

This calls attention to an important open question in the field of Hamiltonian gad-
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gets: whether there exist “exact” gadgets which can embed the ground state energy of

arbitrary many-body target Hamiltonians without the use of perturbation theory. A

positive answer to this conjecture would allow us to embed molecular electronic struc-

ture Hamiltonians without needing large spectral gaps. For entirely diagonal Hamil-

tonians, such gadgets are well known in the literature [11, 23] but fail when terms do

not commute [40]. Exact reductions have also been achieved for certain Hamiltoni-

ans. For instance, “frustration-free” gadgets have been used in proofs of the QMA-

Completeness of quantum satisfiability, and in restricting the necessary terms for em-

bedding quantum circuits in Local Hamiltonian [48, 87, 178].

4.6 Conclusions

In this work, we analyzed the impact on scaling for quantum chemistry on a quantum

computer that results from consideration of locality of interactions and exploitation

of local basis sets. The impact of locality has been exploited to great advantage for

some time in traditional algorithms for quantum chemistry, but has received rela-

tively little attention in quantum computation thus far. From these considerations,

we showed that in practical implementations of quantum phase estimation using a

first order Suzuki-Trotter approximation, one expects a scaling cost on the order of

O(M5 logM) with respect to number of spin-orbitals, rather than more pessimistic

estimates of O(M8)-O(M9)[99, 244] or O(M5.5)-O(M6.5)[198] related to the use of

unphysical random integral distributions or the restriction to molecules too small to

observe the effects of physical locality. We believe that the combination of the algo-

rithmic improvements suggested by Poulin and Hastings et al [99, 198] with strategies

that exploit locality presented here will result in even greater gains, and more work is
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needed in this area.

We also considered the cost of Hamiltonian averaging, an alternative to quantum

phase estimation with minimal coherence time requirements beyond state preparation.

This method has some overhead with respect to quantum phase estimation, scaling

as O(M6) in the number of spin-orbitals, but has significant practical advantages in

coherence time costs, as well as the ability to make all measurements in parallel. This

method can at best give the energy of the state provided when oracle guesses are im-

perfect, however it can easily be combined with a variational or adiabatic approach

to improve the accuracy of the energy estimate. Moreover, while quantum phase esti-

mation promises to be able to remove the bias of imperfect oracle guesses, we demon-

strated how the cost of removal may strongly depend on how imperfect the guesses

are.

Finally we analyzed the impact of locality on a complementary approach for quan-

tum chemistry, namely adiabatic quantum computation. This approach does not have

a known direct dependence on the quality of guess states provided by an oracle, and

can in fact act as the state oracle for the other approaches discussed here.

In all cases, the consideration of physical locality greatly improves the outlook for

quantum chemistry on a quantum computer, and in light of the goal of quantum

chemistry to study physical systems rather than abstract constructs, it is correct to

include this physical locality in any analysis pertaining to it. We believe that with

these and other developments made in the area of quantum computation, quantum

chemistry remains one of the most promising applications for exceeding the capabili-

ties of current classical computers.
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One day some as yet unborn scholar will recognize in the

clock the machine that has tamed the wilds.

John Maxwell Coetzee

5
Feynman’s clock, a new variational principle, and

parallel-in-time quantum dynamics∗

Abstract

We introduce a new discrete-time variational principle inspired by the quantum clock

originally proposed by Feynman, and use it to write down quantum evolution as a

ground state eigenvalue problem. The construction allows one to apply ground state

quantum many-body theory to quantum dynamics, extending the reach of many highly

∗Jarrod R McClean, John A Parkhill, and Alán Aspuru-Guzik. Feynman’s clock, a new
variational principle, and parallel-in-time quantum dynamics. Proceedings of the National
Academy of Sciences USA, 110(41):E3901-E3909, 2013.
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developed tools from this fertile research area. Moreover this formalism naturally

leads to an algorithm to parallelize quantum simulation over time. We draw an ex-

plicit connection between previously known time-dependent variational principles and

the new time-embedded variational principle presented. Sample calculations are pre-

sented applying the idea to a Hydrogen molecule and the spin degrees of freedom of a

model inorganic compound demonstrating the parallel speedup of our method as well

as its flexibility in applying ground-state methodologies. Finally, we take advantage of

the unique perspective of the new variational principle to examine the error of basis

approximations in quantum dynamics.

5.1 Introduction

Feynman proposed a revolutionary solution to the problem of quantum simulation:

use quantum computers to simulate quantum systems. While this strategy is pow-

erful and elegant, universal quantum computers may not be available for some time,

and in fact, accurate quantum simulations may be required for their eventual con-

struction. In this work, we will use the clock Hamiltonian originally introduced by

Feynman[70, 72] for the purposes of quantum computation, to re-write the quantum

dynamics problem as a ground state eigenvalue problem. We then generalize this ap-

proach, and obtain a novel variational principle for the dynamics of a quantum sys-

tem and show how it allows for the natural formulation of a parallel-in-time quan-

tum dynamics algorithm. Variational principles play a central role in the development

and study of quantum dynamics[15, 57, 93, 103, 108, 120, 144, 202], and the varia-

tional principle presented here extends the arsenal of available tools by allowing one

to directly apply efficient approximations from the ground state quantum many-body
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problem to study dynamics.

Following trends in modern computing hardware, simulations of quantum dynam-

ics on classical hardware must be able to make effective use of parallel processing. We

will show below that the perspective of the new variational principle leads naturally

to a time-parallelizable formulation of quantum dynamics. Previous approaches for re-

casting quantum dynamics as a time-independent problem include Floquet theory for

periodic potentials[9, 59, 171] and more generally the (t, t′) formalism of Peskin and

Moiseyev[197]. However, the approach proposed in this manuscript differs consider-

ably from these previous approaches. We derive our result from a different variational

principle, and in our embedding the dynamics of the problem are encoded directly in

its solution, as opposed to requiring the construction of another propagator. Consid-

erable work has now been done in the migration of knowledge from classical comput-

ing to quantum computing and quantum information[6, 115, 116, 183, 240]. In this

paper, we propose a novel use of an idea from quantum computation for the simula-

tion of quantum dynamics.

The paper is organized as follows. We will first review the Feynman clock: a map-

ping stemming from the field of quantum computation that can be employed for con-

verting problems in quantum evolution into ground-state problems in a larger Hilbert

space. We then generalize the Feynman clock into a time-embedded discrete varia-

tional principle (TEDVP) which offers additional insight to quantum time-dynamics

in a way that is complementary to existing differential variational principles [61, 75,

168]. We then apply the configuration interaction method [31, 216] from quantum

chemistry to solve for approximate dynamics of a model spin system demonstrating

convergence of accuracy of our proposed approach with level of the truncation. We

demonstrate how this construction naturally leads to an algorithm that takes advan-
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tage of parallel processing in time, and show that it performs favorably against exist-

ing algorithms for this problem. Finally we discuss metrics inspired by our approach

that can be used to quantitatively understand the errors resulting from truncating the

Hilbert space of many-body quantum dynamics.

5.1.1 Physical dynamics as a sequence of quantum gates

Consider a quantum system described by a time-dependent wavefunction |Ψ(t)〉. The

dynamics of this system are determined by a Hermitian Hamiltonian H(t) according

to the time-dependent Schrödinger equation in atomic units,

i∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 (5.1)

A formal solution to the above equation can be generally written:

|Ψ(t)〉 = T
(
e
−i
∫ t
t0
dt′H(t′)

)
|Ψ(t0)〉 = U(t, t0) |Ψ(t0)〉 (5.2)

Where T is the well known time-ordering operator and U(t, t0) is a unitary operator

that evolves the system from a time t0 to a time t. These operators also obey a group

composition property, such that if t0 < t1 < ... < tn < t then

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 =

U(t, tn)U(tn, tn−1)...U(t1, t0) |Ψ(t0)〉 (5.3)

From the unitarity of these operators, it is of course also true that U(tn, tn−1)† =

U(tn−1, tn) where † indicates the adjoint. Thus far, we have treated time as a contin-

uous variable. However, when one considers numerical calculations on a wavefunction,
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it is typically necessary to discretize time.

We discretize time by keeping an ancillary quantum system, which can occupy

states with integer indices ranging from |0〉 to |T − 1〉 where T is the number of dis-

crete time steps under consideration. This quantum system has orthonormal states

such that

〈i|j〉 = δij (5.4)

This definition allows one to encode the entire evolution of a physical system by en-

tangling the physical wavefunction with this auxiliary quantum system representing

time, known as the “time register”. We define this compound state to be the history

state, given by

|Φ〉 =
1√
T

∑

t

|Ψt〉 ⊗ |t〉 (5.5)

where subscripts are used to emphasize when we are considering a time-independent

state of a system at time t. That is, we define |Ψi〉 = |Ψ(t)〉 |t=ti . From these defini-

tions, it is immediately clear from above that the wavefunction at any time t can be

recovered by projection with the time register, such that

|Ψ(t)〉 |t=ti =
√
T 〈i|Φ〉 (5.6)

Additionally, we discretize the action of our unitary operators, such that U(t1, t0) =

U0 and we embed this operator into the composite system-time Hilbert space as (U0 ⊗ |1〉 〈0|).

While the utility of this discretization has not yet been made apparent, we will now

use this discretization to transform the quantum dynamics problem into a ground

state eigenvalue problem.
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5.1.2 Feynman’s clock

In the gate model[68, 183] of quantum computation, one begins with an initial quan-

tum state |Ψ0〉 state, applies a sequence of unitary operators {Ui}, known as quantum

gates. By making a measurement on the final state |Ψf 〉, one determines the result of

the computation, or equivalently the result of applying the sequence of unitary oper-

ators {Ui}. The map from the sequence of unitary operators {Ui} in the gate model,

to a Hamiltonian that has the clock state as its lowest eigenvector is given by a con-

struction called the Clock Hamiltonian[72]. Since its initial inception, much work has

been done on the specific form of the clock, making it amenable to implementation on

quantum computers[123]. However, for the purposes of our discussion that pertains to

implementation on a classical computer, the following simple construction suffices

C = C0 +
1

2

∑

t

(I ⊗ |t〉 〈t| − Ut ⊗ |t+ 1〉 〈t|

−U †t ⊗ |t〉 〈t+ 1|+ I ⊗ |t+ 1〉 〈t+ 1|
)

(5.7)

where C0 is a penalty term which can be used to specify the state of the physical sys-

tem at any time. Typically, we use this to enforce the initial state, such that if the

known state at time t = 0 is given by |Ψ0〉, then

C0 = (I − |Ψ0〉 〈Ψ0|)⊗ |0〉 〈0| (5.8)

One may verify by action of H on the history state defined above, |Φ〉, that the

history state is an eigenvector of this operator, with eigenvalue 0.
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5.1.3 A discrete-time variational principle

We now introduce a new time-embedded discrete variational principle (TEDVP) and

show how the above eigenvalue problem emerges as the special case of choosing a lin-

ear variational space. Suppose that one knows the exact form of the evolution opera-

tors and wavefunctions at times t = 0, 1. By the properties of unitary evolution it is

clear that the following holds:

2− 〈Ψ1|U0 |Ψ0〉 − 〈Ψ0|U †0 |Ψ1〉 = 0 (5.9)

From this, we can see that if the exact construction of Ui is known for all i, but the

wavefunctions are only approximately known (but still normalized), it is true that

∑

t

(
2− 〈Ψt+1|Ut |Ψt〉 − 〈Ψt|U †t |Ψt+1〉

)
≥ 0 (5.10)

where equality holds in the case that the wavefunction becomes exact at each discrete

time point. Reintroducing the ancillary time-register, we may equivalently say that all

valid time evolutions embedded into the composite system-time space as
∑

t |Ψt〉 |t〉

minimize the quantity

S =
∑

t,t′

〈t′| 〈Ψt′ |H |Ψt〉 |t〉 (5.11)

where H (script font for operators denotes they act in the composite system-time

space) is the operator given by

H =
1

2
(I ⊗ |t〉 〈t| − Ut ⊗ |t+ 1〉 〈t|

−U †t ⊗ |t〉 〈t+ 1|+ I ⊗ |t+ 1〉 〈t+ 1|) (5.12)
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It is then clear from the usual ground state variational principle, that the expectation

value of the operator

S =
∑

t,t′

〈t′| 〈Ψt′ |H |Ψt〉 |t〉 (5.13)

is only minimized for exact evolutions of the physical system. This leads us imme-

diately to a time-dependent variational principle for the discrete representation of a

wavefunction given by:

δS = δ
∑

t,t′

〈t′| 〈Ψt′ |H |Ψt〉 |t〉 = 0 (5.14)

It is interesting to note, that this is a true variational principle in the sense that an

exact quantum evolution is found at a minimum, rather than a stationary point as in

some variational principles[168]. This is related to the connection between this varia-

tional principle and the McLachlan variational principle that is explored in the next

section. However, to the authors knowledge, this connection has never been explicitly

made until now.

To complete the connection to the clock mapping given above, we first note that

this operator is Hermitian by construction and choose a linear variational space that

spans the entire physical domain. To constrain the solution to have unit norm, we

introduce the Lagrange multiplier λ and minimize the auxiliary functional given by

L =
∑

t,t′

〈t′| 〈Ψt′ | C |Ψt〉 |t〉 − λ


∑

t,t′

〈t′| 〈Ψt′ |Ψt〉 |t〉 − 1


 (5.15)

It is clear that this problem is equivalent to the exact eigenvalue problem on H with

eigenvalue λ. The optimal trajectory is given by the ground state eigenvector of the

operator H. From this construction, we see that the clock mapping originally pro-
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posed by Feynman is easily recovered as the optimal variation of the TEDVP in a

complete linear basis, under the constraint of unit norm. Note that the inclusion of

C0 as a penalty term to break the degeneracy of the ground state is only a conve-

nient construction for the eigenvalue problem. In the general TEDVP, one need not

include this penalty explicitly, as degenerate allowed paths are excluded, as in other

time-dependent variational principles, by fixing the initial state.

We note, as in the case of the time-independent variational principle and differ-

ential formulations of the time-dependent variational principle, the most compact

solutions may be derived from variational spaces that have non-linear parameter-

izations. Key examples of this in chemistry include Hartree-Fock, coupled cluster

theory[18, 51, 54], and multi-configurational time-dependent Hartree[19]. It is here

that the generality of this new variational principle allows one to explore new solu-

tions to the dynamics of the path without the restriction of writing the problem as an

eigenvalue problem, as in the original clock construction of Feynman.

5.1.4 Connection to previous time-dependent variational principles

In the limit of an exact solution, it must be true that all valid time-dependent vari-

ational principles are satisfied. For that reason, it is important to draw the formal

connection between our variational principle and previously known variational princi-

ples.

Consider only two adjacent times t and t + 1, and the operator H defined in equa-

tion 5.12. Now suppose that the separation of physical times between discrete step t

and t + 1, denoted dt is small, and the physical system has an associated Hamiltonian
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given by H, such that

Ut = e−iHdt ≈ I − iHdt− H2dt2

2
(5.16)

By inserting this propagator into equation 5.14, rewriting the result in terms of

|Ψ(t)〉, and dropping terms of order dt3 we have

δ (〈Ψ(t)|Ψ(t)〉 − 〈Ψ(t+ dt)| (I − iHdt) |Ψ(t)〉

− 〈Ψ(t)| (I + iHdt) |Ψ(t+ dt)〉+

〈Ψ(t)|H2dt2 |Ψ(t)〉+ 〈Ψ(t+ dt)|Ψ(t+ dt)〉) = 0 (5.17)

After defining the difference operator such that ∂t |Ψ(t)〉 ≡ [|Ψ(t+ dt)〉 − |Ψ(t)〉] /dt,

we can factorize the above expression into

δ 〈Ψ(t)| (i∂t −H)† (i∂t −H) |Ψ(t)〉 = 0 (5.18)

In the limit that dt → 0, these difference operators become derivatives. Defining

Θ = i∂t |Ψ(t)〉 and only allowing variations of Θ, this is precisely the McLachlan varia-

tional principle [168].

δ‖Θ−H |Ψ(t)〉 ‖2 = 0 (5.19)

We then conclude that in the limit of infinitesimal physical time for a single time

step, the TEDVP is equivalent to the McLachlan variational principle under these

assumptions. Under the reasonable conditions that the variational spaces of the wave-

function and its time derivative are the same and that the parameters are complex

analytic, then it is also equivalent to the Dirac-Frenkel and Lagrange variational principles[37].
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Û0

�1

2
Û†
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Figure 5.1: A schematic representation of the action of the clock Hamiltonian on the history
state with three discrete times, and a Hilbert space of three states. Each block is a matrix with
dimension of the physical system.

Moreover, as supplementary material (SI1), we provide a connection that allows other

variational principles to be written as eigenvalue problems, and further discuss the

merits of the integrated formalism used here.

To conclude this section, we highlight one additional difference between practical

uses of the TEDVP and other variational principles: The TEDVP is independent of

the method used to construct the operator Ut. In quantum information applications,

this implies it is not required to know a set of generating Hamiltonians for quantum

gates. Additionally, in numerical applications, one is not restricted by the choice of

approximate propagator used. In cases where an analytic propagator is known for the

chosen basis, it can be sampled explicitly. Suppose that the dimension of the physical

system is given by N and the number of timesteps of interest is given by T . Assuming

that the time register |T 〉 is ordered, the resulting eigenvalue problem is block tridi-

agonal with dimension NT (See Fig. 5.1). This structure has been described at least

once before in the context of ground-state quantum computation[172], but to the au-
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Figure 5.2: The spin triangle within the vanadium compound, used as a model system for
the TEDVP. Note that coordinating sodium ions and water molecules are not depicted here.

The chemical formula of this compound is given by (CN3H6)4Na2[H4V
(IV )
6 O8(PO4)4 (OCH2)3

CCH2OH2] · 14H2O

thors knowledge, never in the context of conventional simulation of quantum systems.

5.2 Many-Body application of the TEDVP

There has been a recent rise in the interest of methods for simulating quantum spin

dynamics in chemistry [105, 130]. To study the properties of the clock mapping when

used to formulate approximate dynamics, we chose a simple model spin system inside

an inorganic molecule [152]. Specifically, we examine the spin dynamics of the vana-

dium compound depicted in Fig. 5.2. By choosing the three unpaired electron spins

to interact with one another by means of isotropic exchange as well as uniform static

external magnetic field B0, and a time-dependent transverse field B1, this system can

be modeled with a spin Hamiltonian

H = Ja(S1 · S2 + S1 · S3) + JcS2 · S3+

µB0(Sz1 + Sz2 + Sz3) + µB1(Sx1 + Sx2 + Sx3 ) (5.20)
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Where Sαi is the α Pauli operator on spin i, µ = gµb, µb is the Bohr magneton, g

is the measured spectroscopic splitting factor. The couplings Ja 6= Jc as well as g

are fitted through experimental determinations of magnetic susceptibility[152]. The

fact that they are not equal is reflective of the isosceles geometry of the vanadium

centers. The parameters of this model, are given by: g = 1.95, Ja = 64.6 ± 0.5K, and

Jc = 6.9 ± 1K. We will allow B0 to vary to study the properties of the clock mapping

in the solution of approximate quantum dynamics.

The quantum chemistry community has decades of experience in developing and

employing methods for obtaining approximate solutions of high-dimensional, ground-

state eigenvector problems. By utilizing the connection we have made from dynamics

to ground state problem, we will now borrow and apply the most conceptually sim-

ple approximation from quantum chemistry: configuration interaction in the space of

trajectories[90], to our model problem to elucidate the properties of the clock map-

ping.

For the uncorrelated reference, we take the entire path of a mean-field spin evolu-

tion that is governed by the time-dependent Hartree equations, and write it as:

|ΨMF 〉 =
∑

t

(∏

i

U it |0〉i

)
|t〉 =

∑

t

(∏

i

|0〉ti

)
|t〉

=
∑

t

|φt〉 |t〉 (5.21)

where |0〉i is the reference spin-down state for spin i, |0〉ti is the reference spin-down

state after rotation at time t, |φt〉 is the whole product system at time t, and U it is

determined from the mean field Hamiltonian. The equations of motion that determine

U it are derived in a manner analogous to the time-dependent Hartree equations, and if
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one writes the wavefunction in the physical space as

|ψ(t)〉 = a(t)
∏

i

Ui(t) |0〉i = a(t)
∏

i

|φi〉 = a(t) |Φ(t)〉 (5.22)

Then the equations of motion are given by

a(t) = a(0) (5.23)

iU̇i = (H(i) −
(
f − 1

f

)
E(t))Ui (5.24)

Where H(i) is the mean field Hamiltonian for spin i formed by contracting the Hamil-

tonian over all other spins j 6= i, E(t) is the expectation value of the Hamiltonian at

time t, and f is the number of spins in the system.

To generate configurations, we also introduce the transformed spin excitation oper-

ator S̃+
it , which is defined by

S+
i |0〉i = |1〉i (5.25)

U i†t S
+
i U

i†
t = S̃+

it (5.26)

S̃+
it |0〉ti = |1〉ti (5.27)

In analogy to traditional configuration interaction, we will define different levels of

excitation (e.g. singles, doubles, ...) as the number of spin excitations at each time t

that will be included in the basis in which the problem is diagonalized. For example,

the basis for the configuration interaction singles (CIS) problem is defined as

BCIS =
{
S̃+
jt |φt〉 |t〉 | j ∈ [0, n], t ∈ [0, T )

}
(5.28)
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Note that S̃+
jt for j = n is simply defined to be the identity operator on all spins so

that the reference configuration is naturally included. Similarly, the basis for single

and double excitations (CISD) is given by

BCISD =
{
S̃+
jtS̃

+
kt |φt〉 |t〉 | j ∈ [0, n], k ∈ [0, j), t ∈ [0, T )

}
(5.29)

Higher levels of excitation follow naturally, and it is clear that when one reaches a

level of excitation equivalent to the number of spins, this method may be regarded

as full configuration interaction, or exact diagonalization in the space of discretized

paths.

The choice of a time-dependent reference allows the reference configuration to be

nearly exact when B0, B1 >> Ja, Jc, independent of the nature of the time-dependent

transverse field. This allows for the separation of the consequences of time-dependence

from the effects of two versus one body spin interactions.

After a choice of orthonormal basis, the dynamics of the physical system are given

by the ground state eigenvector of the projected eigenvalue problem

CBi |Φ̃〉 = E |Φ̃〉 (5.30)

where we explicitly define the projection operator onto the basis Bi as PBi =
∑
|j〉∈Bi |j〉 〈j|

so that the projected operator is given by CBi = (PBiCPBi)

Using these constructions, we calculate the quantum dynamics of the sample sys-

tem described above. For convenience, we rescale the Hamiltonian by the value of

1/µB0. To add arbitrary non-trivial time dependence to the system and mimic the

interaction of the system with a transverse pulse, we take B1 ∝ exp (−t2/2) cos(mt).

The magnitude of B0 was taken to be 200T in order to model perturbative two body
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Figure 5.3: Trajectories for single-particle observables in different levels of basis set truncation
starting from the reference configuration path (MF) for the Vanadium spin complex. The units of
time are K−1. As more levels of spin excitation are included with configuration interaction sin-
gles(CIS) and configuration interaction with singles and doubles (CISD) the trajectories converge
to the exact result.

interactions in this Hamiltonian. To propagate the equations of motion and generate

the propagators for the clock operator we use the enforced time-reversal symmetry

exponential propagator[44] given by

Ut = exp

(
−idt

2
H(t+ dt)

)
exp

(
−idt

2
H(t)

)
(5.31)

The dynamics of some physical observables are displayed (Fig. 5.3) for the reference

configuration, single excitations, double excitations, and full configuration interaction.

The physical observables have been calculated with normalization at each time step.

It is seen (Fig. 5.4) that as in the case of ground state electronic structure the phys-

ical observables become more accurate both qualitatively and quantitatively as the

configuration space expands, converging to the exact solution with full configuration
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Figure 5.4: The convergence of the CI expansion in time is robust to strength of perturbation,
and choice of initial state for the Vanadium complex. In these plots the error of the expectation
value of Sz at site 1 is plotted as a function of time, and coupling constant, each propagation with
a different coupling constant is begun from a different random initial product state. The expansion
approaching Full CI is given by Mean Field (MF), Configuration Interaction with Single Excitations
(CIS), Configuration Interaction with Single and Double Excitations (CISD), and FCI (Exact) to
which the solutions are compared.

interaction. Moreover in Fig. 5.5 we plot the contributions from the reference con-

figuration, singles space, doubles space, and triples space and observe rapidly dimin-

ishing contributions. This suggests that the time-dependent path reference used here

provides an good qualitative description of the system. As a result, perturbative and

other dynamically correlated methods from quantum chemistry may also be amenable

to the solution of this problem.

In principle, approximate dynamics derived from this variational principle are not

norm conserving, as is seen in Fig. 5.5, however this actually offers an important in-

sight into a major source of error in quantum dynamics simulations of many-body

systems, which is the truncation of the basis set as described in the last section. Sim-

ulations based on conventional variational principles that propagate within an incom-

plete configuration space easily preserve norm; however the trajectories of probability

which should have left the simulated space are necessarily in error.

140



0 1 2 3
Excitation Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
o
n
fi
g
 W

e
ig

h
ts

0 5 10 15 20 25 30
Time

0.6

0.8

1.0

1.2

1.4

W
fn

 N
o
rm

Exact
CIS

CISD

Figure 5.5: Following a simulation of the dynamics of the Vanadium spin complex, the to-
tal contribution to the ground state eigenvector from each level of excitation is plotted, where
0=MF(Mean-Field), 1=CIS (Configuration Interaction with Single Excitations), 2=CISD (Config-
uration interaction with Single and Double Excitations), and 3=FCI (Exact Diagonalization), and
seen to decrease with excitation supporting the quality of the time-dependent reference state. The
units of time are K−1. The deviation of the wavefunction norm from unity resulting from projec-
tion is seen to decrease monotonically with level of excitation.

5.3 Parallel-in-time quantum dynamics

Algorithms that divide a problem up in the time domain, as opposed to spatial do-

main, are known as parallel-in-time algorithms. Compared to their spatial coun-

terparts, such as traditional domain decomposition[218], these algorithms have re-

ceived relatively little attention. This is perhaps due to the counterintuitive notion

of solving for future times in parallel with the present. However as modern compu-

tational architectures continue to evolve towards many-core setups, exploiting all

avenues of parallel speedup available will be an issue of increasing importance. The
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most popular parallel-in-time algorithm in common use today is likely the parareal

algorithm[14, 143]. The essential ingredients of parareal are the use of a coarse prop-

agator U c that performs an approximate time evolution in serial, and a fine propaga-

tor Uf that refines the answer and may be applied in parallel. The two propagations

are combined with a predictor-corrector scheme. It has been shown to be successful

with parabolic type equations[77], such as the heat equation, but it has found limited

success with wave-like equations[76], like the time-dependent Schrödinger equation.

We will now show how our variational principle can be used to naturally formulate a

parallel-in-time algorithm, and demonstrate its improved domain of convergence with

respect to the parareal algorithm for Schrödinger evolution of Hydrogen.

Starting from the TEDVP, minimization under the constraint that the initial state

is fixed yields a Hermitian positive-definite, block-tridiagonal linear equation of the

form

Rf |Φ〉 = |Λ〉 (5.32)

where |Φ〉(to be solved for) contains the full evolution of the system and |Λ〉 specifies

the initial condition such that

|Λ〉 =

(
1
2 |Ψ0〉 0 0 0 ... 0

)T
(5.33)

The linear clock operator, Ri, is similar to before, where now we distinguish be-

tween a clock built from a coarse operator, Rc, from a clock built from a fine opera-
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tor, Rf , as

Ri =




I −1
2U

i†
0 0 ...

−1
2U

i
0 I −1

2U
i†
1

0 −1
2U

i
1 I

...
. . .

. . .

−1
2U

i
T−2 I −1

2U
i†
T−1

0 −1
2U

i
T−1

1
2I




(5.34)

The spectrum of this operator is positive-definite and admits T distinct eigenvalues,

each of which is N -fold degenerate. The conjugate gradient algorithm can be used to

solve for |Φ〉, converging at-worst in a number of steps which is equal to the number

of distinct eigenvalues[67, 104]. Thus application of the conjugate gradient algorithm

to this problem is able to converge requiring at most T applications of the linear clock

operator Rf . This approach on its own yields no parallel speedup. However, the use

of a well-chosen preconditioner can greatly accelerate the convergence of the conjugate

gradient algorithm[64].

If one uses an approximate propagation performed in serial, Rc, which is much

cheaper to perform than the exact propagation, as a preconditioning step to the con-

jugate gradient solve, the algorithm can converge in far fewer steps than T and a

parallel-in-time speedup can be achieved. The problem being solved in this case for

the clock construction is given by

(Rc)−1Rf |Φ〉 = (Rc)−1 |Λ〉 (5.35)

To clarify and compare with existing methods, we now introduce an example from
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chemistry. The nuclear quantum dynamics of the Hydrogen molecule in its ground

electronic state can be modeled by the Hamiltonian

H = − P̂
2

2m
+D

(
e−2βX̂ − 2e−βX̂

)
(5.36)

where m = 918.5, β = 0.9374, and D = 0.164 atomic units[158]. The initial state of

our system is a gaussian wavepacket with a width corresponding to the ground state

of the harmonic approximation to this potential, displaced −0.1 Å from the equilib-

rium position. To avoid the storage associated with the propagator of this system

and mimic the performance of our algorithm on a larger system, we use the symmet-

ric matrix-free split-operator Fourier transform method(SOFT) to construct block

propagators[69]. We note that this splitting is commonly referred to as the Suzuki-

Trotter formula[222, 233] in the physics literature. This method is unconditionally

stable, accurate to third order in the time step dt, and may be written as

USOFT (t+ dt, t) = e−iV (X̂)dt/2F−1e−iP̂
2/(2m)dtFe−iV (X̂)dt/2 (5.37)

Here, F and F−1 corresponds to the application of the fast Fourier transform (FFT)

and its inverse over the wavefunction grid. The use of the FFT allows each of the ex-

ponential operators to be applied trivially to their eigenbasis and as a result the ap-

plication of the propagator has a cost dominated by the FFT that scales as O(N logN),

where N is the number of grid-points being used to represent |ψ〉. For our algorithm,

we define a fine propagator, Uf , and a coarse propagator, U c from the SOFT con-
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struction, such that for a given number of sub-time steps k.

Uf = USOFT (t+ kdt, t+ (k − 1)dt)...USOFT (t+ dt, t) (5.38)

U c = USOFT (t+ kdt, t) (5.39)

We take for our problem the clock constructed from the fine-propagator and use

the solution of the problem built from the coarse propagator as our preconditioner.

In all cases, only the matrix free version of the propagator is used, including in the

explicit solution of the coarse propagation.

One must emphasize here the importance of the matrix free aspect of the propaga-

tor. Consider, for example, an alternative scheme of parallelization where the prop-

agators Ut are computed simultaneously by T processors and stored for application

to the vector. While this scheme has apparently high parallel efficiency, the explicit

calculation of a propagator with equivalent accuracy to the SOFT method can scale

as O(N3) in the size of the system and require the storage of a dense matrix of size

O(N2). This makes it impractical for many problems of interest and is the reason we

emphasize a scalable, matrix free approach here.

From the construction of the coarse and fine propagators, with T processors, up

to communication time, the cost of applying the fine clock in parallel and solving the

coarse clock in serial require roughly the same amount of computational time. This

is a good approximation in the usual case where the application of the propagators is

far more expensive than the communication required. From this, assuming the use of

T processors, we define an estimated parallel-in-time speed-up for the computational

procedure given by

Sclock =
T

2(Nf +Nc)
(5.40)
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where Nf is the number of applications of the fine-propagator matrix Rf performed

in parallel and Nc is the number of serial linear solves using the coarse-propagator

matrix Rc used in preconditioned conjugate gradient. The factor of 2 originates from

the requirement of backwards evolution not present in a standard propagation. The

cost of communication overhead as well as the inner-products in the CG algorithm are

neglected for this approximate study, assuming they are negligible with respect to the

cost of applying the propagator.

The equivalent parallel speedup for the parareal algorithm is given by

Spara =
T

Nf +Nc
(5.41)

where Nf and Nc are now defined for the corresponding parareal operators which are

functionally identical to the clock operators without backward time evolution, and

thus it lacks the same factor of 2.

As is stated above, in the solution of the linear clock without preconditioning, it is

possible to converge the problem in at most T steps, independent of both the choice

of physical timestep and the size of the physical system N by using a conjugate gradi-

ent method. However, with the addition of the preconditioner, the choice of timestep

and total time simulated can have an effect on the total preconditioned system. This

is because as the coarse (approximate) propagation deviates more severely from the

exact solution, the preconditioning of the problem can become quite poor.

This problem exhibits itself in a more extreme way for the parareal algorithm, as

the predictor-corrector scheme may start to diverge for very poorly preconditioned

system. This has been seen before in the study of hyperbolic equations[76], and re-

mains true in this case for the evolution of the Schrödinger equation. The construc-
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Figure 5.6: The real part of the Clock solution for the nuclear dynamics of the hydrogen molecule
oscillates around an equilibrium bond length as expected, eliciting diverse interference patterns
due to anharmonicity. Both time and position are given in atomic units and the color indicates the
value of the real part of the waveform at that space-time point.

tion derived from the clock is more robust and is able to achieve parallel-in-time speedup

for significantly longer times. This marks an improvement over the current standard

for parallel-in-time evolution of the Schrödinger equation.

To give a concrete example, consider the case where we divide the evolution of the

nuclear dynamics of hydrogen into pieces containing T evolution blocks, each of which

is constructed from T fine evolutions for a time dt = 0.015 as is described above. The

dynamics over which we simulate are depicted in Fig. 5.6. We average the estimated

parallel speedup for 10 time blocks (which we define as the whole time in one con-

struction of the clock) forward and the results are for the speedup are given in Fig.

5.7. In this example we see that for small T (or small total evolution times), the re-

duced overhead of having no backwards evolution yields an advantage for the parareal

algorithm. However as the T increases, the parareal algorithm is less robust to er-
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Figure 5.7: In simulating the nuclear dynamics of the Hydrogen molecule, the clock formula-
tion not only demonstrates higher peak parallel speedup compared to parareal, but more robust
speedup for longer total evolution times. This is an isoaccuracy comparison in that all points are
converged to an identical level of accuracy corresponding to a fine timestep of dt = 0.015. The
results have been averaged for 10 consecutive evolutions of the specified number of blocks T . For
small times the parareal algorithm has a slight advantage due to reduced overhead, but as the to-
tal evolution time increases it is less robust to the diminishing quality of the preconditioner. The
non-monotonic nature of the speedup results from the preconditioner having variable quality de-
pending on the dynamics of the system.

rors in the coarse propagation and performance begins to degrade rapidly. In these

cases, our clock construction demonstrates a clear advantage. It is a topic of current

research how to facilitate even longer evolutions in the clock construction.

5.4 Norm Loss as a measure of truncation error

Conservation of the norm of a wavefunction is often considered a critical property for

approximate quantum dynamics, as it is a property of the exact propagator resulting

from time-reversal symmetry. However, if norm conservation is enforced in a propaga-

tion which does not span the complete Hilbert-space, one must account for the com-
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ponents of the wavefunction that would have evolved into the space not included in

the computation. It’s not immediately clear how population density which attempts

to leave the selected subspace should be folded back into the system without being

able to simulate the exact dynamics. This problem is sometimes glossed over with the

use of exponential propagators that are guaranteed to produce norm-conserving dy-

namics on a projected Hamiltonian. Some more sophisticated approaches adjust the

configuration space in an attempt to mitigate the error[248].

This discrepancy is at the center of the difference between the approximate dynam-

ics derived from the discrete variational principle here and the approximate dynam-

ics derived from the McLachlan variational principle such as the multi-configurational

time-dependent Hartree method. Mathematically, this results from the non-commutativity

of the exponential map and projection operator defined above. That is

PBi(t)T
(
e−i

∫
dt′H(t′)

)
PBi(t) 6= T

(
exp

(
−i
∫
dt′PBi(t′)H(t′)PBi(t′)

))
(5.42)

in general for a Hermitian operator H. In an approximate method derived from the

McLachlan or any of the other differential time-dependent variational principles, the

projection is performed on the Hamiltonian. As the projection of any Hermitian op-

erator yields another Hermitian operator, the dynamics generated from the projection

are guaranteed to be unitary if a sufficiently accurate exponential propagator is used.

In contrast, projection of a unitary operator, as prescribed by the TEDVP, does not

always yield a unitary operator. Thus for an approximate basis, one expects norm

conservation to be violated, where the degree of violation is related to the severity of

the configuration space truncation error. This leads us to define a metric of trunca-
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tion error which we term the instantaneous norm loss. We define this as

N1(t) = 1− ‖PBiUtPBi |Ψ̃t〉 ‖2 (5.43)

where |Ψ̃t〉 is always assumed to be normalized, which in practice means that a renor-

malization is used after each time step here. However, as we proved above, in the

limit of a short time step, with dynamics generated by a Hamiltonian, the TEDVP

must contain essentially the same content as the McLachlan variational principle. For

this reason, we propose an additional metric which is given by

N2(t) = ‖(H(t)− PBiH(t)PBi) |Ψ̃t〉 ‖2dt2 = ‖V (t) |Ψ̃t〉 ‖2dt2 (5.44)

Where H(t) is the physical Hamiltonian. This is motivated by appealing to the McLach-

lan variational principle and substituting from the exact Schrödinger equation that

i∂t = H |Ψt〉 where H is the full (non-projected) Hamiltonian. By defining V (t) =

(H(t)− PBiH(t)PBi) , we recognize this as a perturbation theory estimate of the error

resulting from the configuration basis truncation at a given point in time.

To examine the quality of these metrics and to better understand the consequences

of the non-commutativity of the exponential map and projection, we return to the

sample spin system. In this case, we choose a basis for the propagation space based

entirely on the initial state, and do not allow it to change dynamically in time as be-

fore. We perform simulations in the space of single excitations (S) from the initial

state, double excitations (SD), and in the full Hilbert space (Ex). Dynamics from the

TEDVP are generated by first building the exact propagator then projecting to the

desired basis set while dynamics from the McLachlan variational principle (MVP)
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are modeled by projecting the Hamiltonian into the target basis set and exponenti-

ating. A renormalization is used after each time step in the first case. Although one

could perform the simulation with a timestep where timestep error is negligible, we

remove this component of the calculation for this example by making the Hamilto-

nian time-independent. This allows direct analysis of the effect of timestep on non-

commutativity deviations.
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Figure 5.8: The dynamics of a spin observable in the Vanadium spin complex at a short time
step, dt = 0.01K−1, are indistinguishable when generated with equations of motion determined
by the time embedded discrete variational principle (TEDVP) (dashed lines) and the McLachlan
variational principle (MVP) (solid lines). Results are shown for propagations restricted to the space
of single excitations from the initial state(S), double excitations (SD), and the full space (Ex).
The associated error metrics, N1(t) for the TEDVP (dashed) and N2(t) for the MVP (solid), also
yield nearly identical results, displaying peaks correlated with qualitative deviations from the exact
trajectory.

In Fig. 5.8 we show the dynamics of the Vanadium spin complex for the two ap-
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proximate truncation levels (S and SD) with both methods and their associated error

metrics (N1(t) and N2(t)). Deviations in the qualitative features of the observable oc-

cur after even the first peak of the proposed metrics. In this particular simulation, the

configuration interaction with singles and doubles spans all but one state in the full

Hilbert space. The lack of this one state results in the large qualitative errors present,

associated with the first and subsequent peaks present in these error metrics. The

impact of later peaks is more difficult to discern, due to error in the wavefunctions,

which accumulates as the propagation proceeds.

As predicted by the connection between the TEDVP and the McLachlan varia-

tional principle, while N1 and N2 are not identical for each case, in the short time

limit they yield extremely similar information, which is highlighted in Fig. 5.8 dis-

playing the resulting longer time dynamics for a time step of dt = 0.01. In Fig. 5.9,

however we explore the effects of a significantly larger time step and begin to discern

the result of the non-commutativity discussed here. Recalling that because the Hamil-

tonian is time-independent in this case, the propagator used is numerically exact in

both instances, so this effect is not a result of what would be traditionally called time

step error, resulting from intrinsic errors of an integrator. Interestingly, it is observed

that N1(t) begins to decay to a nearly constant value. This occurs because the ac-

tion of projection after exponentiation breaks the degeneracy of the spectrum of the

unitary operator, resulting in eigenvalues with norms different than 1. As a result, re-

peated action and renormalization of the operator is analogous to a power method for

finding the eigenvector associated with the largest eigenvalue. This effect is exacer-

bated by taking long time steps.
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Figure 5.9: The dynamics of a spin observable in the Vanadium complex at a large time step,
dt = 0.5K−1, shows significant differences resulting from the non-commutativity of projection and
exponentiation in dynamics generated by the time embedded discrete variational principle(TEDVP)
(dashed lines) and the McLachlan variational principle (MVP) (solid lines). Results are shown
for propagations restricted to the space of single excitations from the initial state (S), double ex-
citations (SD), and the full space (Ex). The corresponding error metrics, N1(t) for the TEDVP
(dashed) and N2(t) for the MVP (solid), differ considerably in this case.

5.5 Conclusions

In this manuscript, we introduce a new variational principle for time-dependent dy-

namics inspired by the Feynman clock originally employed for quantum computation.

Unlike other previously-proposed variational principles, the proposed TEDVP ap-

proach involves the solution of an eigenvalue problem for the entire time propagation.

This perspective allows for readily employing many of the powerful truncation tech-

niques from quantum chemistry and condensed-matter physics, that have been devel-
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oped for the exact diagonalization problem. We show how this formulation naturally

leads to a parallel-in-time algorithm and demonstrate its improved robustness with

respect to existing methods. We introduce two novel error metrics for the TEDVP

that allow one to characterize the basis approximations involved. The features of the

method were demonstrated by simulating the dynamics of a Hydrogen molecule and

a molecular effective spin Hamiltonian. Further research directions include the use of

other approximate techniques for the time dynamics such as the use of perturbation

theory [102] or coupled-cluster approaches[132], and further enhancement of parallel-

in-time dynamics.

5.6 Supplemental Information

5.6.1 On the general construction of eigenvalue problems from dy-

namics

We have presented one path for constructing eigenvalue problems from quantum dy-

namics problems so far, however it is instructive to illuminate precisely which part of

our procedure allowed this. To do this, we will slightly generalize the Floquet-type

Hamiltonians and demonstrate that the time embedding was the crucial feature that

allows one to recast a dynamics problem as an eigenvalue problem. This is in addition

to the choice to work in an integrated framework, which we will show simply allows

for a convenient choice of basis.

Recall the definition of a Floquet-type Hamiltonian given by

F (t) = H(t)− i∂t (5.45)
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If one considers a finite time evolution for a length of time T , this operator is Hermi-

tian in the basis of Fourier functions states given by

|Ψnj(t)〉 = |Φj〉 |n〉 = |Φj〉 e2πint/T (5.46)

where |Φj〉 is a time-independent state of the physical system when considering the

generalized inner-product

〈n′| 〈Φi|Φj〉 |n〉 =
〈Φi|Φj〉
T

∫ T

0
dt′e−2πin′t′/T e2πint′/T (5.47)

This is the the generalized Hilbert space first introduced by Sambe[207] and general-

ized by Howland[106]. Because this operator is Hermitian in this basis, by noting the

similarity to the Lagrange Variational principle

δL = δ

∫ T

0
dt 〈Ψ(t)|F |Ψ(t)〉 = 0 (5.48)

minimization of L on this linear basis of Fourier states yields a Hermitian eigenvalue

problem. Thus the time evolution can be reconstructed by solving the full time-independent

eigenvalue problem in this basis, or by constructing a surrogate evolution operator as

in the (t, t′) formalism of Peskin and Moiseyev[197]. The use of Fourier basis states

to express time dependence is natural given the form of the operator F . That is, ma-

trix elements of the derivative operator ∂t have a trivial analytic expression in this

basis. This represents the same general idea we have been discussing here, which is to

consider states in a system-time Hilbert space. However, as the solution of this vari-

ational problem will may yield a stationary point rather than a true minimum[168],

ground state techniques are not appropriate for this particular operator. Moreover,
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this operator is not in general Hermitian when considering arbitrary basis functions

of time. For example arbitrary choices of plane waves not corresponding to the tradi-

tional Fourier basis will yield a non-Hermitian operator. The operator F ′ = (1/2)(F +

F †), which has been used in the past for the construction of approximate dynamics[211],

is Hermitian, however it still suffers from a pathology that the optimal solution repre-

sents a stationary point rather than a minimum. However, the operator

G = F †F = (H(t)− i∂t)†(H(t)− i∂t) (5.49)

is always Hermitian and positive semi-definite by construction. Thus one can expand

the system-time Hilbert space in any linear basis of time, and the optimal path in

that space will be the ground state eigenvector of the operator G utilizing the above

generalized inner-product, assuming we have broken degeneracy by introducing the

correct initial state. This can be viewed as an application of the McLachlan time

dependent variational principle. From this, we see it is the expression systems in

a system-time Hilbert space which allows for the eigenvalue problem construction.

Moreover, we note that this is not limited to the use of Fourier time basis states,

and that many more expressions of time dependence may be utilized to construct an

eigenvalue problem within this framework.

One may ask then, what was the objective of working in the an integrated formal-

ism, defined using unitary operators rather than differential operators. To see this,

consider evaluating the system at a point in time with the Fourier construction above.

One has to expand the system in all time basis functions and evaluate them at a time

t. When one usually considers time, however, they are thinking of a parametric con-

struction where a number t simply labels a specific state of a system. Embedding into
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the system-time Hilbert space with this idea would be most naturally expressed as

delta-functions. However matrix elements of ∂t on this basis can be difficult to con-

struct. In the ancillary time system framework used in the TEDVP, however, time is

easily expressed as a discrete parametric variable. One might also consider the use of

discretized derivatives in the operator G. However, balancing the errors in numerical

derivatives and the increasing difficultly of solving the problem with the number of

simultaneously stored time steps can be practically difficult.
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Consideration of black holes suggests, not only that God

does play dice, but that he sometimes confuses us by

throwing them where they can’t be seen.

Stephen Hawking

6
Clock Quantum Monte Carlo: an imaginary-time

method for real-time quantum dynamics∗

Abstract

In quantum information theory, there is an explicit mapping between general unitary

dynamics and Hermitian ground state eigenvalue problems known as the Feynman-

Kitaev Clock Hamiltonian. A prominent family of methods for the study of quantum

ground states are quantum Monte Carlo methods, and recently the full configura-

∗Reprinted with permission from Jarrod R McClean, Alán Aspuru-Guzik. Clock Quan-
tum Monte Carlo: an imaginary-time method for real-time quantum dynamics. Physical
Review A 91, 012311, 2015. Copyright (2015) by the American Physical Society.
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tion interaction quantum Monte Carlo (FCIQMC) method has demonstrated great

promise for practical systems. We combine the Feynman-Kitaev Clock Hamiltonian

with FCIQMC to formulate a new technique for the study of quantum dynamics

problems. Numerical examples using quantum circuits are provided as well as a tech-

nique to further mitigate the sign problem through time-dependent basis rotations.

Moreover, this method allows one to combine the parallelism of Monte Carlo tech-

niques with the locality of time to yield an effective parallel-in-time simulation tech-

nique.

6.1 Introduction

Understanding the evolution of quantum systems is a central problem in physics and

the design of emerging quantum technologies. However, exact simulations of quantum

dynamics suffer from the so-called curse of dimensionality [224]. That is, the dimen-

sion of the Hilbert space grows exponentially with the size of the physical system. An

effective remedy for the curse of dimensionality in some classical systems has been

the use of Monte Carlo methods, which in many cases has an error with respect to

number of samples that is independent of the dimension of the simulated system [25].

Unfortunately this favorable scaling is often lost in quantum systems of interest due

to the emergence of the famous sign problem. In particular, it has hindered the use of

Monte Carlo methods for fermionic systems, where it is sometimes called “the fermion

sign problem”, and for real-time dynamics of general quantum systems, where it is

known as “the dynamical sign problem”. The generic sign problem has been proven

to belong to the computational complexity class NP-Complete [234], and recent stud-

ies of complexity have refined knowledge about the computational power of sign-
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problem free (or “stoquastic”) Hamiltonians [33, 34]. However, these results do not

preclude the effective use of these methods on many interesting instances of physical

problems.

In particular, despite the generic challenges of the sign problem, Monte Carlo meth-

ods have been used with great success in the study of electronic systems, providing a

standard of accuracy in quantum chemistry and condensed matter [16, 74, 96, 184,

270]. In some of these methods, such as fixed node diffusion Monte Carlo, the use of

a trial wavefunction allows one to approximately remove the complications of the sign

problem at the cost of a small bias in the resulting energy. One alternative to such

an approximation is the use of interacting walker methods [269], which attempt to

solve the problem exactly without the bias introduced by a trial function. Recently,

Booth et. al introduced an interacting walker method in the discrete basis of Slater

determinants called Full Configuration Interaction Quantum Monte Carlo (FCIQMC)

[29]. The sign problem in the context of this algorithm has been studied in some de-

tail [128, 213, 220] and it has been successfully applied to both small molecular sys-

tems of chemical interest and extended bulk systems [26, 27].

The use of Monte Carlo methods to study the real-time dynamics of generic quan-

tum systems has been comparatively less prevalent [155]. The dynamical sign problem

may become more severe both with the size of the system, and duration for which it

is simulated [71, 159, 228]. Despite these challenges, advances are being made in the

treatment of these problems, including hybridization of Monte Carlo techniques with

other methods [109, 156–158, 160].

The sign problem has been studied in the context of quantum computation, where

it is known that a sufficient condition for efficient probabilistic classical simulation

of the adiabatic evolution of a quantum system using Monte Carlo methods is that
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the Hamiltonian governing the quantum system is sign problem free (also known as

stoquastic) and frustration free [33, 34, 49]. Projector Monte Carlo algorithms have

been developed specifically for this type of problem [32, 33]. Moreover, the use of

tools from quantum information allows any generic unitary evolution of a quantum

system to be written as the ground state eigenvalue problem of a Hermitian Hamilto-

nian [70, 123, 167]. In this work, we exploit this equivalence to adapt the interacting

walker method introduced by Booth et. al [29] to treat the dynamical sign problem

with a method designed for the fermion sign problem.

The paper is organized as follows. First, we review the time-embedded discrete

variational principle [167] and derive from it the Clock Hamiltonian [70, 123, 167],

which are the essential tools for writing a general unitary evolution as a ground state

eigenvalue problem of a Hermitian Hamiltonian. We then review the FCIQMC method

and adapt it for application to the Clock Hamiltonian. A discussion of the theoreti-

cal and practical manifestation of the dynamical sign problem in this setting follows

with numerical examples from quantum computation. Finally, we introduce a general

framework of basis rotations which can be used to ameliorate the sign problem and

study the performance of this method when used in parallel computation.

6.2 Dynamics as a ground state problem

It has been shown that any unitary quantum evolution may be formulated as a ground

state eigenvalue problem with applications to classical simulation of quantum sys-

tems [167]. We briefly review the relevant results here so that this work remains self-

contained.

Consider a quantum system that is described at discrete time steps t by a normal-
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ized wavefunction |Ψt〉. The dynamics of this system are described by a sequence of

unitary operators {Ut} such that Ut |Ψt〉 = |Ψt+1〉 and U †t |Ψt+1〉 = |Ψt〉. In the case of

simulating Hamiltonian dynamics, these Ut could be obtained from a Suzuki-Trotter

factorization of the total evolution [222, 233]. However, we stress that explicit con-

struction of a full unitary operator Ut is never required, only the ability to efficiently

evaluate matrix elements between different physical states as detailed in a previous

work [167]. From the properties of unitary evolution, the following is clear:

2− 〈Ψt+1|Ut |Ψt〉 − 〈Ψt|U †t |Ψt+1〉 = 0. (6.1)

Moreover, if the wavefunctions at each point in time are only approximately known

(but normalized) then

∑

t

(
2− 〈Ψt+1|Ut |Ψt〉 − 〈Ψt|U †t |Ψt+1〉

)
≥ 0 (6.2)

where equality holds only in the case where the wavefunction represents an exact,

valid evolution of the quantum system. To consider all moments in time simultane-

ously, we extend the physical Hilbert space with an ancillary quantum system to de-

note time. This ancillary time register takes on integer values t and is orthonormal

such that 〈t′|t〉 = δt,t′ . With this construction, we see that by defining

H′ = 1

2

(∑

t

I ⊗ |t〉 〈t| − Ut ⊗ |t+ 1〉 〈t|

−U †t ⊗ |t〉 〈t+ 1|+ I |t+ 1〉 〈t+ 1|
) (6.3)

which acts on the composite system-time Hilbert space, all valid time evolutions mini-
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mize

S =
∑

t,t′

〈t′| 〈Ψt′ |H′ |Ψt〉 |t〉 . (6.4)

Note that we have adopted the convention of script letters for operators acting in the

system-time Hilbert space such as H′ as opposed to operators only acting on the

system such as Ut. The time-embedded discrete variational principle immediately

follows, which simply states that this quantity is stationary under variations of the

wavefunction δ |Ψt〉 for all valid time evolutions, or

δS = δ
∑

t,t′

〈t′| 〈Ψt′ |H′ |Ψt〉 |t〉 = 0 (6.5)

To select a particular evolution of interest, one may introduce a penalty operator

that fixes the state of the system at a given time. Typically, this might represent a

known initial state, and this operator in the system-time Hilbert space is given by

C0 = (I − |Ψ0〉 〈Ψ0|)⊗ |0〉 〈0| . (6.6)

The minimization of a Hermitian quadratic form constrained to have unit norm

is equivalent to the eigenvalue problem for the corresponding Hamiltonian. We in-

troduce the Lagrange multiplier λ to enforce normalization. As both S and C0 are

Hermitian by construction, minimization of

L =
∑

t,t′

〈t′| 〈Ψt′ |H′ + C0 |Ψt〉 |t〉

− λ


∑

t,t′

〈t′| 〈Ψt′ |Ψt〉 |t〉 − 1




(6.7)
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is equivalent to solving for the eigenvector corresponding to the smallest eigenvalue of

the Hermitian operator

H = H′ + C0 (6.8)

which we refer to as the Clock Hamiltonian. This Hamiltonian has a unique ground

state with eigenvalue 0 given by the history state,

|Φ〉 =
1√
T

∑

t

|Ψt〉 ⊗ |t〉 (6.9)

which encodes the entire evolution of the quantum system. Thus, the quantum dy-

namics of the physical system can be obtained by finding the ground state eigenvector

of H.

6.3 FCIQMC for the Clock Hamiltonian

The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method was

introduced by Booth et. al as a method to accurately find the ground state for elec-

tronic structure problems in a basis of Slater determinants without appealing to the

fixed node approximation to eliminate the fermion sign problem [29]. We review the

basics of the theory behind this method and show how it can be adapted for the

Clock Hamiltonian H, such that it simulates the full time evolution of a quantum sys-

tem.

Let |Φi〉 and λi be the eigenvectors and corresponding eigenvalues of H. Any vector

|Ψ〉 in the system-time Hilbert space acted upon by H can be decomposed in terms of
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the eigenvectors of H such that

|Ψ〉 =
∑

i

ci |Φi〉 (6.10)

It follows that for any |Ψ〉 not orthogonal to the ground state of the Clock Hamilto-

nian, |Φ0〉, that

lim
τ→∞

e−τH |Ψ〉 = lim
τ→∞

∑

i

e−τλici |Φi〉 ∝ |Φ0〉 (6.11)

Because H trivially commutes with itself, we may break this operator into the succes-

sive application of many operators, such that for a large number of slices N of a finite

τ ,

e−τH =
(
e−

τ
N
H
)N
≈ (1− δτH)N (6.12)

where δτ = τ/N . Note that the linearized time propagator used here is both simple to

implement for discrete systems as well as unbiased in the final (τ → ∞) result given

some restrictions on δτ [231]. Thus with a prescription to stochastically apply the

operator

G = (1− δτH) (6.13)

repeatedly to any vector in the system-time Hilbert space, we can simulate the quan-

tum dynamics of the physical system. τ is sometimes interpreted as imaginary-time

by analogy to the Wick-rotated time-dependent Schrödinger equation, however we will

only refer to τ as “simulation time” here, to avoid confusion with the simultaneous

presence of real and imaginary-time.

To represent a vector in the system-time Hilbert space, we introduce discrete walk-

ers represented by {i, t} with associated real and imaginary integer weights R({i, t})

and I({i, t}). These walkers correspond to a single system-time configuration. The in-
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dices correspond to a system state |i〉 at time t with a complex integer weight defined

by its real and imaginary components, W ({k, t}) = R({k, t}) + iI({k, t}). Given a

collection set of these walkers, the corresponding normalized vector is given by

|Ψ〉 =
1

K

∑

{i,t}

W ({i, t}) |i〉 ⊗ |t〉 (6.14)

where K is the normalization constant given by the sum of the absolute value of all

the complex integer walker weights

K =
∑

{i,t}

|W ({i, t})|. (6.15)

We also use this notation to define matrix elements for an operator O between a state

|i〉 |t〉 and |j〉 |t′〉 as

O{j,t′},{i,t} = 〈j| 〈t′| O |i〉 |t〉 (6.16)

To stochastically apply the operator G to a vector represented by a set of such

walkers, the following four steps are used, adapted from the original implementation

by Booth et. al:

1. Spawning: This step addresses the off-diagonal elements of G. For each walker

{i, t}, we consider Nr = R({i, t}) real parents and Ni = I({i, t}) imaginary

parents, both with the correct associated sign. For each of the real parents Ni,

we select a coupled state at an adjacent time and attempt to spawn a real child
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and imaginary child {j, t′} with probabilities

pRs ({j, t′}|{i, t}) =
δτ
∣∣R(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(6.17)

pIs ({j, t′}|{i, t}) =
δτ
∣∣I(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(6.18)

with corresponding signs

SR = −sign(R(H{j,t′},{i,t})) (6.19)

SI = −sign(I(H{j,t′},{i,t})) (6.20)

and for each of the imaginary parents Ni we select a coupled state at an adja-

cent time and attempt to spawn a real child and imaginary child {j, t′} with

probabilities

pRs ({j, t′}|{i, t}) =
δτ
∣∣I(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(6.21)

pIs ({j, t′}|{i, t}) =
δτ
∣∣R(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(6.22)

with corresponding signs

SR = sign(I(H{j,t′},{i,t})) (6.23)

SI = −sign(R(H{j,t′},{i,t})) (6.24)

where probabilities ps > 1 are handling by deterministically spawning bpsc

walkers and spawning an additional walker with probability ps − bpsc. δτ is the

simulation time step and may be used to control the rate of walker spawning.

167



The functions pgt(t
′, t) and pgs({j, t′}|{i, t}) are the probability of suggesting

a walker at the new time t′ and of the particular state j respectively. For the

Clock Hamiltonian, an efficient choice of the time generation function, pgt(t
′, t)

is t′ = t ± 1 with equal probability unless the walker is at a time boundary, in

which case it should move inward with unit probability. The state generation

probability pgs({j, t′}|{i, t}) should be chosen based on knowledge of the struc-

ture of Ut such that connected states may reach each other. In this work we use

a uniform distribution where states connected by Ut are selected randomly with

equal probability, however this can be refined using knowledge of Ut.

In this case, where {j, t′} 6= {i, t}, the matrix elements H{j,t′},{i,t} may be writ-

ten more explicitly as

H{j,t′},{i,t} =





−1
2 〈j|Ut |i〉 t′ = t+ 1

−1
2 〈j|U

†
t |i〉 t′ = t− 1

0 otherwise

(6.25)

2. Diagonal Death/Cloning: This step addresses the application of the diagonal

of G. In this step, for each parent walker {i, t} (not yet including child walkers

spawned in the last step), calculate

pd({i, t}) = δτ(H{i,t},{i,t} − S) (6.26)

where S is a shift that is used to control the population in the simulation. Now

for each real and imaginary parent Nr and Ni associated with {i, t}, if pd > 0,

the parent is destroyed. If pd < 0, the parent is cloned with a probability |pd|,
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handling instances of greater than unit probabilities as in the previous step.

In the case of the Clock Hamiltonian, the diagonal matrix elements take on a

simple form

H{i,t},{i,t} =





1/2 + (1− |〈i|Ψ0〉|2) t = 0

1/2 t = T − 1

1 otherwise

(6.27)

3. Annihilation: In this step, all previously existing and newly spawned walkers

are searched, and any which match are combined such that both their real and

imaginary components are summed. In the event that any walker ends up with

0 total weight, it is removed entirely from the simulation. In the case of the

Clock Hamiltonian, it is advantageous to store walkers grouped by time, such

that in parallel implementations the simulation can be easily split along this di-

mension. This will be elaborated upon later. Within each group it is advisable

to use any natural ordering present on the basis states to enable binary search

that can locate identical walkers in a time that is logarithmic in the number of

walkers at a given time. Alternatively one can use hash tables to facilitate anni-

hilation [28].

A single iteration of the above algorithm is cartooned in Fig. 6.1. By using this

procedure, the operator G is iteratively applied until the state of walkers is equili-

brated at some simulation time τ > τeq, with a number of walkers Nw. The average of
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SpawningDiagonal 
Death

Annihilation

Figure 6.1: A schematic representation of a single iteration of the FCIQMC algorithm for the
Clock Hamiltonian. The larger squares represent real-time, and sub-squares represent the possible
quantum states occupied by either positive (blue) or negative (red) walkers. In each iteration,
the set of parents spawns potential children to adjacent times, with parentage being indicated by
dotted lines. Simultaneously the set of parent walkers are considered for diagonal death. Finally,
the remaining set of parents and spawned children are combined, allowing walkers with opposing
signs at the same state and time to annihilate.

some observable O may be estimated at simulation time τ according to

〈O〉 (τ) =
〈Φ(τ)|O |Φ(τ)〉
〈Φ(τ)|Φ(τ)〉 (6.28)

By averaging over the simulation time τ and correcting for the autocorrelation time

of the quantity 〈O〉 using standard statistical procedures, the average may be con-

verged to the desired precision. In general, however, the simulation time averaged

quantity 〈O〉τ may be biased due to the sign problem [128, 213, 220]. This bias may

be removed to an arbitrary degree by increasing the number of walkers Nw such that
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the state remains sign-coherent between steps. The number of walkers required to re-

move the bias to a given precision depends both on the severity of the sign problem

and the amount of Hilbert space the physical problem occupies [128, 213, 220]. To

this end, we define a problem-dependent number nc such that when Nw > nc, the

time averaged quantity 〈O〉τ is accurate to the desired precision. Because this is an

NP-Complete problem, one must expect that in general, nc is on the order of the di-

mension of the Hilbert space, D, that is, it grows exponentially with the size of the

system and linearly with real-time. However, for many systems of interest in ground

state problems it has been found that nc << D [26, 27, 213], and one might expect

the same to be true for some dynamical problems. We now turn our attention to the

scaling and properties of nc for dynamical systems.

6.4 Manifestation of the sign problem

The conditions for the efficient simulation of a Hamiltonian on a classical computer

have been studied in the context of quantum complexity theory. It is known that if

a Hamiltonian is frustration free and has real, non-positive off-diagonal elements in a

standard basis (stoquastic) that it may be probabilistically simulated to a set preci-

sion in a time that is polynomial in the size of the system [33, 34].

For practical purposes, there are limitations on the system operators one may sim-

ulate. In particular, the system operators must be the sum of a polynomial number of

terms. This simply originates from the need to be able to efficiently evaluate matrix

elements of a given state. The interaction of at most k particles, or k−local inter-

actions, in the physical system is a sufficient but not necessary condition for this to

be true. The Clock Hamiltonian construction has also been recently generalized to
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open quantum systems [227], where even in this case a 2−local construction is gener-

ally possible with the use of gadgets. Alternatively, if the Clock Hamiltonian is con-

structed from a sequence of unitary gates that act on at most k qubits in quantum

computation, then the Clock Hamiltonian will also satisfy this requirement.

The presence of frustration in interacting systems can cause the autocorrelation

time of measured observables to diverge exponentially, rendering their efficient sim-

ulation intractable even in cases where the Hamiltonian is bosonic or sign problem

free [234, 245]. It has been proven generally that the Clock Hamiltonian is frustration

free, with a unique ground state separated from the first excited state with a gap of

O(1/T 2) where T is the number of discrete time steps being considered at once.

If an operator is stoquastic (or sign problem free), then the off-diagonal elements

that correspond to transitions in a Monte Carlo simulation all be non-positive. The

operator G will contain only positive transition probabilities in this case and have

a ground state corresponding to a classical probability distribution by the Perron-

Frobenius theorem [33, 34]. In the context of the FCIQMC method introduced, this

means that walkers will never change signs throughout the simulation, and all aver-

ages will be sign-coherent and unbiased independent of the number of walkers Nw.

In the Clock Hamiltonian, the off-diagonal elements correspond to the set of unitary

operators with their adjoints {Ut, U †t }, and the penalty term C0. For the standard

computational initial state (|0〉⊗N ), the penalty term C0 has a fixed sign, and thus the

Clock Hamiltonian is stoquastic if {Ut, U †t } represented in the standard basis has all

real positive entries, yielding non-positive off-diagonal entries in the Clock Hamilto-

nian.

Given the ubiquity of k−local interactions in physical problems and the rigorous

proof that the Clock Hamiltonian is frustration free, we will take these two conditions
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as given and consider more carefully the stoquastic condition. Consider a simple ex-

ample of a unitary evolution that may be simulated on a classical computer efficiently,

namely reversible classical computational. All reversible classical circuits may be ex-

pressed in terms of Toffoli gate sequences, which is unitary and acts to switch a target

bit conditional on the state of two control bits. In the standard computational basis it

has a representation given by

Tof =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




(6.29)

The Clock Hamiltonian when constructed with unitary Toffoli gates is stoquastic and

nc ≈ 1. More explicitly, each Ut is a Toffoli gate acting on different qubits for all

times t. Although a stoquastic Hamiltonian is sufficient for this to be the case, it is

not a necessary condition. To see this, consider a slightly different set of unitary oper-

ators, namely the standard Pauli group gates, Xi, Yi, and Zi in combination with the

CNOT gate. These gates have the following unitary representations in the standard
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computational basis

X =




0 1

1 0


 (6.30)

Y =




0 −i

i 0


 (6.31)

Z =




1 0

0 −1


 (6.32)

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(6.33)

Considering for now only the computational basis we simulate in (a restriction we

later lift), it is clear that given the complex entries and varying signs of the off-diagonals,

that a Clock Hamiltonian built from this gate set will not be stoquastic if even a sin-

gle Y or Z gate is used. However these gates also have the property that they map

single configurations to single configurations, and as as a result no interference oc-

curs, yielding all sign coherent averages and nc ≈ 1. We call this type of transforma-

tion, which is configuration number preserving, “quasi-classical”, in contrast to clas-

sical which we define as configuration number preserving as well as phase preserving.

Thus a stoquastic Clock Hamiltonian is a sufficient, but not necessary condition for

the simulation procedure to be sign-problem free.
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Consider a slightly more general local rotation R parameterized by an angle θ

R(θ) =




cos θ sin θ

− sin θ cos θ


 (6.34)

In this case, the value of nc as a function of system size is more complex. These rep-

resent the real-time evolutions of local spin Hamiltonians for systems of spin-1
2 parti-

cles.
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Figure 6.2: Computed expectation value for σz for a single qubit at the final time in the simu-
lation as a function of the average number of walkers kept in the simulation. There are 11 total
qubits in the simulation. It is apparent the system exhibits a sharp transition between a totally
sign incoherent sampling where all averages become zero, and a sign coherent region where the
averages begin to converge to the appropriate value.

In Fig. 6.2 we consider a single rotation R(θ) with θ = 5π/32 applied uniformly to

11 qubits initialized to |0〉⊗N . This sequence of rotations could be applied uniformly

to all qubits at once, as the individual operations trivially commute. However, main-

taining the locality of the operations, that is, allowing each gate to act only on a sin-

gle qubit facilitates the sampling procedure by restricting the number of connected
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states for each walker to those that may be generated by local transformations on

each qubit. In contrast, the application of all rotations simultaneously in principle

connects each walker to 2N states, which can make it difficult to take advantage of

structure present in the specific rotations.

As the Clock Hamiltonian in this simulation is neither stoquastic nor quasi-classical,

one observes a sign-incoherent region for a small number of walkers, where all aver-

ages tend towards 0, until some critical threshold Nw > nc is reached where a tran-

sition occurs to sign-coherent sampling, and the average converges to the true value.

We note that some implementations of the FCIQMC algorithm have used the diago-

nal shift S as a proxy for convergence [29], but we did not observe a similar plateau

trend here. The history state being sampled in this case is given by

|Ψ〉 =
∑

t

1√
T

(R(θ) |0〉)⊗t |0〉⊗T−t |t〉 (6.35)

The formal structure of this evolution is quite similar for all values of θ, however

the states that result can exhibit quite different features with respect to the sign

problem in sampling. In Fig. 6.3 we examine the same circuit, but include many

different rotation angles. One sees that not only does the value nc change as a func-

tion of rotation angle, but the rate of the transition is quite different as well, favoring

sharper, earlier transitions for rotations that are closer to quasi-classical (θ = 0).

6.5 Mitigating the sign problem

In the last section we considered the impact of sign problem as it related to local ro-

tations (or the dynamics of distinguishable non-interacting particles). The apparent

challenges in this domain are unsettling given that trivial solutions are known for this
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Figure 6.3: Computed expectation value for σz for a single qubit at the final time in the simula-
tion as a function of the average number of walkers kept in the simulation and the rotation angle
used in the simulation. The rotation angle θ is indicated by the line label. The simulation contains
11 total qubits for all rotation angles. One sees that the closer the rotation is to quasi-classical,
the sharper and earlier the transition to sign coherent sampling.

problem. Here we propose a simple scheme to mitigate the sign problem to an arbi-

trary extent using preliminary computation.

It is known that the sign problem is generically basis dependent. To this end we

propose an analogous approach to the interaction picture in quantum dynamics, where

the walkers at each point in time are expressed in a new basis determined by a generic

time-dependent unitary rotation given by {Bt}. The evolution operators are also

dressed by this change such that in the new basis, the Clock Hamiltonian is con-

structed from the rotated operators given by

U ′t = B†t+1UtBt (6.36)

Moreover, the computation of any Hermitian observable O must also take into con-
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|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ)

· · ·
Figure 6.4: The quantum circuit diagram for the circuit used to test the efficacy of time-
dependent local rotations in ameliorating the sign problem. The angle used in this case is θ =
0.49. We compare the results from this circuit as a function of the number of controls that are re-
moved from the NOT gates (crossed circle here), and whether time dependent local basis rotations
are utilized. The controls are removed from the end of the circuit first.

sideration the new basis, such that

〈O〉 (τ) =
〈Φ(τ)| B†tOBt |Φ(τ)〉
〈Φ(τ)|Φ(τ)〉 (6.37)

If one finds a set of {Bt} that renders the Clock Hamiltonian stoquastic or quasi-

classical, the resulting Hamiltonian may be sampled readily. One expects that in gen-

eral, finding this basis must be at least as difficult as solving exactly the problem of

the quantum evolution. In fact, it is easy to see that one may choose the exact evo-

lution as the set of basis rotations, and that this renders the Clock Hamiltonian sto-

quastic and trivial, such that the evolution is dictated by the identity at all times. Of

course the price one must pay for this is that the computation of observables requires

the full evolution to be known.

However, as was seen above, it is not necessary for the Clock Hamiltonian to be

rendered completely trivial. Even approaching a quasi-classical Hamiltonian in an ap-

proximate sense can greatly reduce the sampling costs. For some instances, one may
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find an approximate set of rotations that make the Clock Hamiltonian nearly stoquas-

tic or quasi-classical, and the remainder of the sign problem can be handled by main-

taining a reasonable number of walkers Nw in the simulation. As an example of this

procedure, we consider the simple case where {Bt} are determined entirely by the lo-

cal rotations in a quantum circuit. Specifically, for local rotations, Bt =
∏0
t′<t Ut′ ,

where Ut′ is replaced by I for two- or more qubit operations. It is clear that for cir-

cuits consisting of only local rotations, as in the previous section, this is equivalent to

exact evolution and the resulting Clock Hamiltonian becomes trivial (U ′t = I ∀ t′).

To study how this works in the non-trivial case, we examine a similar circuit of local

rotations, but now with a variable number of CNOT gates included. This elucidates

to what extent the use of basis rotations can mitigate the sign problem when they are

not an exact solution to the dynamics considered. A depiction of this circuit is given

in Fig. 6.4.

In Fig. 6.5 we consider a simple quantum circuit consisting of a series of local rota-

tions followed by NOT gates, with a variable number of the NOT gates under control.

With the given rotation angle (θ = 0.49), these are entangling operations not covered

by the simple local basis rotation scheme we use here. However, it is seen that even

for 8 controlled NOT gates, the use of local basis rotations dramatically reduces the

number of walkers required to reach sign-coherent sampling, indicating this scheme

can be computationally effective even for simulations containing a considerable frac-

tion of two-qubit entangling operations. In this figure, the 4 and 8 CNOT simulations

in the unrotated basis suffer similar biases due to the fact that local rotations are ca-

pable of making the sign problem difficult independent of the number of CNOT op-

erations. The rotated basis is able to repair much of the sign problem introduced by

the local rotations, but is less efficient on the 8 CNOT problem in comparison with
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Figure 6.5: The mean value of a spin observable is plotted as a function of the mean number of
walkers labeled by the number of CNOT gates both with local basis rotation(-Rot) and without.
It is seen that even for a relatively high proportion of CNOT gates, the rotated basis performs
far better than the non-rotated basis, requiring a lower number of walkers to reach sign-coherent
sampling.

the 4 CNOT problem. Further tests of more complex quantum circuits are needed to

determine the efficiency of different rotation schemes as a function of the structure of

the quantum circuit.

6.6 Parallel-in-time scaling

Monte Carlo methods are often championed as the ultimate parallel algorithms, as-

sociated with the phrase “embarrassingly parallel”. Given the evolution of modern

computational architectures towards many-core architectures with slower clock speeds,

Monte Carlo will continue to play a growing role in the numerical simulation of physics

at the boundaries of our computational capabilities. Interacting walker Monte Carlo

methods, can be more difficult to parallelize effectively due to the annihilation step
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(a)

(b)

Figure 6.6: A schematic representation of the communication patterns the annihilation step of
interacting walker Monte Carlo schemes, where the boxes represent different MPI processes and
the ellipsis represents the rest of the processes. In the case of the Clock Hamiltonian (a), a time
domain decomposition allows one to restrict communication to only nearest neighbor processes,
facilitating simple, constant time communication amenable to the architecture of modern parallel
computers. In the more general case (b), a clear partitioning may not be readily achievable, and all
processes may need to communicate with all other processes, creating a bottleneck.

where communication of walkers is unavoidable.

In contrast to the most general interacting walker algorithm, which may require

heavy communication between all processes, the FCIQMC method applied to the

Clock Hamiltonian may take advantage of time-locality to create an efficient parallel-

in-time algorithm using the standard method of domain decomposition in time. Using

this construction, only processes containing adjacent times need to communicate their

child walkers, which may be done simultaneously in a time that is constant for the

number of processes involved. This remains true so long as the number of time steps

under consideration is larger than the number of processes in use, which is typically
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Figure 6.7: A scaling study of our method implementation with a fixed total problem size (strong
scaling), showing parallel efficiencies and speedups. The simulation consisted of 11 qubits with 128
time points generated by consecutive local rotations with θ ≈ 0.098. The simulation maintained
on average 106 walkers in each simulation-time step and the wall clock time was measured to the
point of an equivalent number of statistical samples.

the case. In the case that the number of processes is much greater than the number

of timesteps, this scheme may still be used by blocking multiple processors to each

time, and utilizing an all-to-all communication pattern within each block only. The

difference between these two communication patterns is highlighted in Fig. 6.6.

To demonstrate the scaling properties of this approach, we consider the scaling as

a function of the number of processors for fixed total problem size, or strong scaling,

with our implementation. This benchmarking is done on a standard Linux cluster

composed of AMD Opteron 6376 processors. The parallel speedup with respect to sin-

gle core time as a function of the number of processors is given in Fig 6.7. Here, we

see that we are able to combine the parallelism of Monte Carlo with the locality of

time-decomposition to achieve practical parallel efficiencies of over 95% with 2 proces-

sors and 70% with 8 using a simple MPI implementation on a commodity cluster.
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6.7 Conclusions

In this work we reviewed the mapping between unitary dynamics and ground state

eigenvalue problems. We then showed how the FCIQMC method, a technique orig-

inally designed to ameliorate the fermionic sign problem for ground state electronic

systems, could be applied to quantum dynamics problems as a direct result of this

mapping. This establishes a potential research direction for explicit connections be-

tween the fermionic and dynamical sign problems that plague quantum Monte Carlo

simulations, and provides a pathway for the transfer of tools between the two do-

mains.

The numerical consequences of the dynamical sign problem in this context were

studied using a few basic quantum circuits. It was found that even local rotations can

exhibit a severe sign problem depending on the form of the rotation and how different

it is from a quasi-classical operation. We then introduced a general method analogous

to the interaction picture in dynamics or natural orbitals in the study of eigenstates

that uses basis rotations to mitigate the difficulty of the problem. The costs and ben-

efits of different types of rotations require further research, however we showed that

even local rotations can have a significant benefit for non-trivial circuits. Finally, we

discussed the structure of the problem in the context of parallel-in-time dynamics,

and showed high parallel efficiencies with only a basic MPI implementation on a com-

modity cluster.

Overall, we believe this is a promising new method for the simulation of quantum

dynamics. It clarifies the bridge between dynamics and ground state problems and is

capable of effectively utilizing parallel computing architectures. While we have only

demonstrated it for quantum circuits, we believe it will be generally useful for the
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study of quantum dynamics.
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Entia non sunt multiplicanda praeter necessitatem. -

More things should not be used than are necessary.

William of Ockham

7
Compact wavefunctions from compressed

imaginary time evolution∗

Abstract

Simulation of quantum systems promises to deliver physical and chemical predictions

for the frontiers of technology. In this work, we introduce a general and efficient black

box method for many-body quantum systems using technology from compressed sens-

ing to find compact wavefunctions without detailed knowledge of the system. No

∗Jarrod R McClean and Alán Aspuru-Guzik. Compact wavefunctions from compressed
imaginary time evolution. arXiv preprint arXiv:1409.7358 [physics.chem-ph], 2014.
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knowledge is assumed in the structure of the problem other than correct particle

statistics. As an application, we use this technique to compute ground state electronic

wavefunctions of hydrogen fluoride and recover 98% of the basis set correlation energy

or equivalently 99.996% of the total energy with 50 configurations out of a possible

107.

7.1 Introduction

The prediction of chemical, physical, and material properties from first principles has

long been the goal of computational scientists. The Schrödinger equation contains the

required information for this task, however its exact solution remains intractable for

all but the smallest systems, due to the exponentially growing space in which the so-

lutions exist. To make progress in prediction, many approximate schemes have been

developed over the years that treat the problem in some small part of this exponen-

tial space. Some of the more popular methods in both chemistry and physics include

Hartree-Fock, approximate density functional theory, valence bond theory, perturba-

tion theory, coupled cluster methods, multi-configurational methods, and more re-

cently density matrix renormalization group [13, 17, 45, 84, 102, 107, 173, 192, 217,

249].

These methods have been successful in a wide array of problems due largely to the

intricate physics they compactly encode. For example, methods which are essentially

exact and scale only polynomial with the size of the system have been developed for

one-dimensional gapped quantum systems [134]. However such structure is not always

easy to identify or even present as the size and complexity of the systems grow. For

example, some biologically important transition metal compounds as well as metal
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clusters lack obvious structure, and remain intractable with current methods [129,

169, 271].

The field of compressed sensing exploits a general type of structure, namely sim-

plicity or sparsity, which has been empirically observed and is adaptive to the prob-

lem at hand. Recent developments in compressed sensing have revived the notion that

Occam’s razor is at work in physical systems. That is, the simplest feasible solution

is often the correct one. Compressed sensing techniques have had success in quantum

simulation in the context of localized wavefunctions [190] and vibrational dynamics

of quantum systems [46, 257], but little has been done to exploit the possibilities for

many-body eigenstates, which are critically important in the analysis and study of

physical systems.

In this letter, we concisely describe a new methodology for finding compact ground

state eigenfunctions for quantum systems. It is a Multicomponent Adaptive Greedy

Iterative Compression (MAGIC) scheme. This method is general in that it is not re-

stricted to a specific ansatz or type of quantum system. It operates by expanding the

wavefunction with imaginary time evolution, while greedily compressing it with or-

thogonal matching pursuit [232]. Matching pursuit and its variants are greedy algo-

rithms in the standard sense, that is, at each step they select a new optimal compo-

nent without regard to the consequences this may have on future steps. As an exam-

ple application, we choose the simplest possible ansatze for quantum chemistry, sums

of non-orthogonal determinants, and demonstrate that extremely accurate solutions

are possible with very compact wavefunctions. This non-orthogonal MAGIC scheme

we refer to as NOMAGIC, and apply it electronic wavefunctions in quantum chem-

istry.
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7.2 Compressed imaginary time evolution

Beginning with general quantum systems, an N -particle eigenfunction of a quantum

Hamiltonian H, |Ψ〉, may be approximated by a trial function |Ψ̃〉 that is the sum of

many-particle component functions |Φi〉, such that

|Ψ̃〉 =

Nc∑

i

ci |Φi〉 (7.1)

where Nc is the total number of configurations in the sum and no relation need be as-

sumed between |Φi〉 and |Φj〉 for i 6= j. A simple example of such a component func-

tion for a general quantum system is the tensor product of N single particle functions

|φij〉

|Φi〉 = |φi0〉 |φi1〉 ... |φiN−1〉 (7.2)

and we will consider its anti-symmetric counterpart in applications to electronic sys-

tems. In this work, we define a state to be simple, sparse, or compact if the number of

configurations, Nc, required to represent a state is much smaller than the total dimen-

sion of the Hilbert space.

One method for determining |Ψ̃〉 is a direct variational approach based on the par-

ticular parametrization of |Φi〉 and choice of Nc. This approach can be plagued by

issues related to the choice of initial states, difficulty of adding new states, and nu-

merical instability of the optimization procedure if proper regularization is not ap-

plied [66, 88, 92, 125, 127].

We present an alternative technique that selects the important configurations in

a black-box manner and is naturally regularized to prevent numerical instability. It
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Figure 7.1: A schematic diagram of the MAGIC approach. At each iteration the wavefunction is
expanded by means of the imaginary time propagator G, and subsequently compressed with or-
thogonal matching pursuit. The imaginary time propagator corresponding to projection into the
manifold at |Ψ(τ)〉, denoted |δΨ(τ)〉, typically prescribed by differential time dependent variational
principles is given as GV P and depicted to emphasize that expansion with the operator G can ex-
plore a greater part of Hilbert space. The compression is performed simultaneously with expansion
in our implementation to prevent rapid growth of the wavefunction. These steps are iterated until
convergence at a specified maximum number of component functions, at which point an optional
variational relaxation may be performed.

is built through a combination of imaginary-time evolution and compressed sensing.

Imaginary-time evolution can be concisely described as follows. Given a quantum sys-

tem with a time-independent Hamiltonian H and associated eigenvectors
{
|χi〉

}
, any

state of the system |Ω〉 may be expressed in terms of those eigenvectors as

|Ω〉 =
∑

i

ci |χi〉 (7.3)

189



and the the evolution of the system for imaginary-time τ is given as

G |Ω〉 = e−Hτ |Ω〉 =
∑

i

cie
−Eiτ |χi〉 (7.4)

where E0 < E1 ≤ E2... ≤ EN−1 are the eigenenergies associated with |χi〉. By evolv-

ing and renormalizing, eventually one is left with only the eigenvector associated with

the lowest eigenvalue, or ground state. Excited states may be obtained with a number

of approaches including spectral transformations (e.g. H ′ = (H − λ)2 [154]), matrix

deflation, or other techniques. However we will concern ourselves only with ground

states in this work.

Imaginary time evolution approaches may be broadly grouped into two classes. The

first class involves the explicit application of the imaginary-time propagator G to the

wavefunction. This approach typically generates many configurations at every step,

causing a rapid expansion in the size of the wavefunction. As a result, these methods

have almost exclusively been restricted to Monte Carlo sampling procedures which

attempt to assuage this explosion by stochastically sampling or selecting the most

important configurations [29, 139], however the recently developed imaginary time-

evolving block decimation also belongs to this class, performing truncations after ex-

pansion along a virtual bond dimension [52, 94, 208, 238].

The second class of imaginary-time approaches follow the evolution dictated by

the action of G projected onto the manifold spanned by linear variations in the func-

tion at the previous time step, sometimes referred to as Galerkin or time-dependent

variational methods including imaginary time MCTDH [19, 181] and DMRG in some

limits [94]. While computationally convenient, it is often unclear how projection onto

the original linear subspace at every time can affect evolution with respect to the ex-
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act evolution. In this work, we show that the first class of explicit evolution can be

used on any ansatz without configuration explosions or stochastic sampling by uti-

lizing a technique from the field of compressed sensing, namely orthogonal matching

pursuit [193, 232].

The algorithm we use is diagrammed in Fig 7.1, and proceeds iteratively as follows.

The wavefunction at time τ = 0, |Ψ(τ)〉, may be any trial wavefunction that is not

orthogonal to the desired eigenstate. We determine the wavefunction at time τ + dτ =

τ ′ greedily, fitting one configuration |Φi(τ ′)〉 at a time by maximizing the functional

∣∣∣〈Φi(τ ′)|G |Ψ(τ)〉 −∑j<i cj(τ
′)〈Φi(τ ′)|Φj(τ ′)〉

∣∣∣
√
〈Φi(τ ′)|Φi(τ ′)〉

(7.5)

with respect to the parameters that determine |Φi(τ ′)〉. Such that after k iterations,

the wavefunction is given by

|Ψ̃(τ)〉 =

k∑

i

ci(τ) |Φi(τ)〉 (7.6)

The coefficients in this expansion, ci(τ
′) are solved for simultaneously after each it-

eration by orthogonal projection, which after simplification reduces to the following

linear system for the coefficient vector c

Sc = v (7.7)

where Sij = 〈Φi(τ ′)|Φj(τ ′)〉 and vi = 〈Φi(τ ′)|G |Ψ(τ)〉. Together, the fit and orthog-

onal projection step is equivalent to orthogonal matching pursuit [193, 232] applied

to the signal generated by the imaginary time evolution of the state at each time step

G |Ψ(τ)〉. The expansion-compression procedure is advanced to the next imaginary
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time step either when some accuracy convergence criteria is met, or when some pre-

set maximum number of components Nc is reached, and the total simulation is ter-

minated when the wavefunction converges between imaginary-time steps. We provide

additional details of the numerical procedure in the supporting information for inter-

ested readers.

Note that one is free to choose a convenient form for the propagator G. In this

work we use the linearized propagator G ≈ (I − dτ(H − λ)), which is both easy to

implement and provably free of bias in the final result for finite single particle basis

sets given some restrictions on dτ [231]. The constant shift λ can be adjusted and is

taken to be the expectation value of the energy of the previous imaginary time step in

our implementation.

Orthogonal matching pursuit attempts to find the sparsest solution to the prob-

lem of state reconstruction [179, 232], and thus is ideal for keeping the number of

configurations minimal throughout the imaginary time evolution. However, while

the solution is sparsest in the limit of total reconstruction and naturally regularized

against configuration collinearity, for very severe truncations of the wavefunction, the

sparsifying conditions generate a solution which is not variationally optimal for the

given number of configurations. For this reason, we finish the computation with a to-

tal variational relaxation of the expectation value of the energy with respect to both

coefficients and states. This retains both the benefits of imaginary time evolution in

avoiding local energetic minima and of variational optimality in the final solution.
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7.3 Application to chemical systems

The method we have outlined may be readily applied to any quantum system, such

as spins or oscillators, however as a first application we consider ground-state elec-

tronic wavefunctions of molecules. We will take the approach that is conventional to

the field of quantum chemistry, and solve the problem in a basis of Gaussian-type

functions [102]. After a basis has been selected, there is a standard procedure of ex-

panding the linear state space by excitation known as configuration interaction (CI),

which can eventually yield the numerically exact solution within a basis when the

full state space has been covered. This is referred to as full configuration interaction

(FCI) and is the standard to which we compare. Moreover, we compare to truncated

orthogonal CI methods that represent a high level of accuracy while yielding an ex-

plicit wavefunctions and requiring no additional machinery to evaluate the energy

efficiently [102, 267]. Comparison to methods considering explicit correlation beyond

that covered by a specific traditional Gaussian basis, such as explicitly correlated f12

type wavefunctions, are not yet within the scope of this work.

In the context of our approach, the indistinguishability of electrons necessitates

handling of anti-symmetry. The simplest way to include anti-symmetry into the wave-

function is by utilizing anti-symmetric component tensors |Φi〉. The most common

anti-symmetric component function is the Slater determinant, such that we express

the wavefunction as

|Ψ〉 =

Nc∑

i

ci |Φi〉 (7.8)

where |Φi〉 are Slater determinants with no fixed relations between |Φi〉 and |Φj〉 for
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Figure 7.2: The bond dissociation curve of the helium dimer in the aug-cc-pVDZ basis showing
rapid and consistent convergence in the number of non-orthogonal determinants. These repre-
sent the nuclear union curves constructed from a number of local determinants at each nuclear
point given by the line label, and are sampled at a spacing of 0.04 Å. The curves have been shifted
by the tail values in order to allow comparison of the features for this sensitive bond, and the 24
determinant curve is indistinguishable from the FCI solution in the graphic. At a point near the
equilibrium geometry, R = 3.01 Å, the 24 determinant curve with the nuclear union configura-
tion interaction technique recovers 99.9899% of the basis set correlation energy, or equivalently
99.9999% of the total energy.

i 6= j. While this simple form lacks extensivity [221], it is attractive for other rea-

sons. Namely the quality of description and rate of convergence in Nc are invariant

to invertible local transformations of the state (i.e. atomic orbitals vs. natural or-

bitals) [92], and the mathematical machinery related to the use and extension of such

a wavefunction is already well developed [3, 101, 150, 219]

While the method we use for determinant selection is unique, non-orthogonal Slater

determinants have been used successfully in valence bond theory [84, 107] as well as

more recent symmetry breaking and projection methods [39, 110]. Unconstrained

non-orthogonal Slater determinants have been utilized before, but in a purely varia-

tional context [88, 125]. Using this machinery yields explicit gradients that we utilize
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in the optimization of determinants [219]. The scaling of these constructions with cur-

rent algorithms is O(Nc
2 max(M2, N3

e )) [221] where Nc is the number of determinants

and Ne is the number of electrons, however development of approximations in this

area have received comparatively less attention with respect to orthogonal reference

wavefunction methods and there may be ways to improve upon this scaling.

We introduce an additional enhancement for the study of chemical reactions that

is greatly facilitated by the compactness of our expansions. Namely, when considering

a full reaction coordinate, such as that for a bond dissociation, we perform an addi-

tional linear variational calculation in the space of components (determinants) found

locally at neighbouring nuclear configurations. As a proof of principle, we include

configurations from the entire curves in the following examples, but more economical

truncations can be used as well. We refer to this additional step, as the nuclear union

configuration interaction method and describe it in more depth in the supplemental

information.

As a first application, we consider He2 in the aug-cc-pVDZ basis [255], which is

a standard atom-centered Gaussian quantum chemical basis with additional diffuse

functions to better capture the weak dispersive interactions present in rare gas in-

teractions. The helium dimer is unbound in the case of a single determinant with re-

stricted Hartree Fock (RHF) and is not held together by a covalent bond, but rather

dispersive forces and dynamical correlation only. In Fig. 7.2, we consider the dissoci-

ation of this molecule under different numbers of non-orthogonal determinants. De-

spite the sensitive nature of this bond, it is qualitatively captured with as few as 4

local determinants and quantitatively captured with as few as 24 determinants. The

dimension of the space of this molecule is on the order of 104 when reduced by con-

siderations of point group symmetry. The NOMAGIC approach does not yet utilize
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Figure 7.3: The bond dissociation curve of hydrogen fluoride in the cc-pVDZ basis showing rapid
convergence in the number of non-orthogonal determinants. These are the nuclear union curves
constructed from a number of local determinants at each nuclear point given by the line label, and
are sampled at a spacing of 0.04 Å. The 32 determinant curve is nearly indistinguishable from the
FCI curve in this graphic. At a point near the equilibrium geometry, R = 0.93 Å, the 32 determi-
nant curve with the nuclear union configuration interaction technique recovers 98.6% of the basis
set correlation energy, or equivalently 99.997% of the total energy.

any symmetry other than the spin symmetry enforced by the parameterization of the

wavefunction.

As a second example, the dissociation of hydrogen fluoride in a cc-pVDZ basis [63]

is studied. The total configuration space for this molecule is on the order of 107 and it

involves a homolytic bond breaking of a covalent bond in the gas phase. Considering

the results in Fig. 7.3, one can see that while RHF yields an unphysical dissociation

solution, as few as 2 determinants are sufficient to fix the solution in a qualitative

sense. Beyond this, the addition of more determinants represents a monotonically

increasing degree of accuracy, with rapid convergence to a quantitative approximation

by 32 determinants.

In Fig. 7.4 we select two points on the HF dissociation curve, and study the con-
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Figure 7.4: A curve of the energetic error with respect to full CI for HF bond dissociation in the
cc-pVDZ basis as a function of the log of the number of determinants included for both a near-
equilibrium geometry “Eq” with R = 0.93 Å and a stretched geometry “St” with R = 1.73 Å.
The configuration interaction energies are generated by a standard excitation sequence from the
Hartree-Fock solution, CIX(X=SD, SDT, SDTQ) followed by FCI. The number of determinants
used in the full CI expansion is approximately 34 million taking into account molecular point group
symmetries, or 135 million without. No symmetries other than spin are utilized in the NOMAGIC
calculation.

vergence of the energy as a function of the number of determinants in the NOMAGIC

method and a traditional CI expansion with the canonical Hartree-Fock orbitals. In

particular, we study both a point near the equilibrium bond length (R = 0.93 Å)

where traditional CI expansions perform relatively well and a more stretched geome-

try (R = 1.73 Å) where traditional CI expansions perform more poorly. We see that

in both cases, if one considers a fixed level of accuracy in the energy, the NOMAGIC

method is considerably more compact. For example, to achieve a level of accuracy su-

perior to the CISDT expansion that uses 36021 determinants, NOMAGIC requires

only 24 determinants at both geometries. That is, for equivalent accuracy, the NO-

MAGIC wavefunction is roughly 1500 times more compact in the space of Slater de-
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terminants. By 50 determinants out of a possible 107 in the NOMAGIC wavefunction,

we recover 98% of the basis set correlation energy or equivalently 99.996% of the to-

tal energy. To further quantify the advantage of computationally for manipulating

and evaluating expectations values on compact NOMAGIC states, consider the cost

of evaluating the energy of a stored CISDT state and a NOMAGIC state with Nc de-

terminants. A NOMAGIC state with Nc determinants requires O(N2
c max(M2, N3

e ))

operations to evaluate the energy. In contrast, a CISDT state requires O(M8) opera-

tions in the standard case that the number of basis functions M is on the same order

as the number of electrons Ne. Thus assuming Ne ∼ M there is a clear computational

advantage in any case where Nc < O(M5/2) provides a sufficiently accurate represen-

tation, as has been observed in all examples thus far.

7.4 Conclusions

In this work, we introduced a general method to find compact representations of

quantum eigenfunctions by using imaginary-time evolution and compression. The

method assumes no specific structure in the problem and can be applied to any quan-

tum system with a variety of ansatze. The compact wavefunctions that result from

this methodology not only offer potential practical advantages in terms of storage

and subsequent evaluation of physical observables, but can also provide a numerical

upper-bound on the minimal information necessary to identify a physical quantum

state, or Kolmogorov complexity of the state. A low Kolmogorov complexity of phys-

ical quantum states would have important ramifications for the growing belief that

physical states occupy a small physical “corner of Hilbert space” [65, 79, 199]. We

demonstrated the method’s practical success in some quantum chemical systems with
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a small number of non-orthogonal Slater determinants. One practical application of

this method is the creation of extremely compact trial wavefunctions for quantum

Monte Carlo, which suffer little additional overhead with the use of non-orthogonal

determinants and are often limited by the size of the trial wavefunction [4, 83]. Fi-

nally, we believe that extensions to this method using ansatze that contain system

specific physics have the potential to be even more compact and this is subject of cur-

rent research.

7.5 Supplemental Information

7.5.1 Orthogonal Matching Pursuit

In this section, we offer some additional details on the implementation of Orthogonal

Matching Pursuit [232] with imaginary-time evolution in quantum systems. Given a

quantum state |Ψ(τ ′)〉 that one wishes to reconstruct, orthogonal matching pursuit is

a greedy decomposition algorithm (i.e. one that selects the best component at each

iteration without regard to future iterations) that approximates the sparse problem of

finding |Ψ̃(τ ′)〉 such that

min
|Ψ̃(τ ′)〉

|| |Ψ(τ ′)〉 − |Ψ̃(τ ′)〉 ||22

subject to || |Ψ̃(τ ′)〉 ||0 < N (7.9)
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This is done by considering an overcomplete dictionary {|Φi(τ ′)〉} that can express

|Ψ̃〉 as

|Ψ̃(τ ′)〉 =
∑

i

ci(τ
′) |Φi(τ ′)〉 (7.10)

and at each stage selecting selecting the |Φi(τ ′)〉 which maximizes the overlap with

the residual with respect to the target signal |Ψ(τ ′)〉,

max
|Φi〉(τ ′)

|〈Φi(τ ′)|Ψ(τ ′)〉 −∑j<i cj(τ
′)〈Φi(τ ′)|Φj(τ ′)〉|

√
〈Φi(τ ′)|Φi(τ ′)〉

(7.11)

In practice for quantum systems, the dictionary {|Φi(τ ′)〉} can be any overcomplete

basis for the N -particle Hilbert space, and the location of the optimal |Φi(τ ′)〉 can

be done with a few different methods such as discrete enumeration of all basis states,

stochastic search, and direct non-linear optimization. While discrete enumeration is

commonly used in the orthogonal matching pursuit literature, the high dimensional

nature of quantum systems does not readily allow it. Among the remaining options,

we find that direct non-linear optimization is superior to stochastic search methods

for the problems we considered. Specifically, we utilized a quasi-Newton BFGS proce-

dure with analytic gradients and inexact line search satisfying the strong Wolfe con-

ditions [185]. The implementation closely follows that discussed in the classic text by

Nocedal and Wright with a modified Cholesky regularization to protect again instabil-

ities in the approximate Hessian.

After selection of the optimal |Φi(τ ′)〉, the full set of coefficients {ci(τ ′)}ji=0 are

re-determined by orthogonal projection of the selected basis functions on the signal
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|Ψ(τ ′)〉. This is equivalent to solving the linear equation

Sc = v (7.12)

for the coefficient vector c, where Sij = 〈Φi(τ ′)|Φj(τ ′)〉, vi = 〈Φi(τ ′)|Ψ(τ ′)〉, and

ci = ci(τ
′).

Throughout this procedure, one also has a choice of how to represent the target sig-

nal |Ψ(τ ′)〉. In some cases, it is feasible to construct |Ψ(τ ′)〉 explicitly from a previous

time step and imaginary time propagator G, and doing so could potentially facilitate

the optimization procedure by examining properties of the state. However, exact ex-

pansion of the state |Ψ(τ ′)〉 using G can have many terms for even modestly sized

quantum systems, negating the potential benefits of compressing the wavefunction.

In practice, we found that a much better approach is to directly with G |Ψ(τ)〉 with-

out first expanding the wavefunction explicitly. When using the linearized propagator

G(λ) ≈ (I − dτ(H − λ)), this means that Hamiltonian and overlap matrix elements

and their derivatives are sufficient for the implementation of the procedure.

In principle, at any time step, one may continue to add elements |Φi(τ ′)〉 until an

arbitrary convergence tolerance is reached, i.e. || |Ψ(τ ′)〉 − |Ψ̃(τ ′)〉 ||2 < ε for some

ε > 0. However, as only the final state in the large τ limit is of interest, and any state

that is not completely orthogonal to this state will eventually converge to it, some

errors in intermediate steps are permissible. Thus a more economical approach, is to

terminate the addition of states |Φi〉 at intermediate time steps according to some

proxy, such as sufficient decrease in the energy Ẽ(τ ′) = 〈Ψ̃(τ ′)|H |Ψ̃(τ ′)〉 from the

previous time step.
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7.5.2 NOMAGIC Algorithm

In this section we detail our implementation of the NOMAGIC procedure, includ-

ing how values of algorithmic parameters may be chosen. Consider a physical system

defined by the Hamiltonian H with a number of particles N , each represented on a

discrete basis of M functions. The NOMAGIC algorithm begins by selecting an initial

component |Ψ̃(0)〉 = |Φ0(0)〉 from some approximation procedure. In this work we

utilize a mean-field procedure that minimizes the energy, namely the Hartree-Fock al-

gorithm [102], to find an initial state, however other procedures such as a tensor cross

approximation may be used [127]. Using the selected initial component, the initial

expectation value of energy is computed as

Ẽ(0) = 〈Ψ̃(0)|H |Ψ̃(0)〉 . (7.13)

Additionally, this initial component is also used to estimate a safe value for the imag-

inary timestep τ . The bound on τ that guarantees a correct final state [231] under

exact propagation is given by

dτ ≤ 2

Emax − λ
(7.14)

where Emax is the maximum eigenvalue of H. However, one does not expect to know

the eigenvalues in advance, and moreover the problem is changed by the fact that

propagation may be performed to some finite, economical precision. As a result, we

use a fast estimate to determine an approximate suitable timestep dτ . This is done

by constructing the corresponding mean-field Hamiltonian Hmf from the original

Hamiltonian and component function by performing a partial trace on all but a tar-
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get particle. In the distinguishable case, this will result in N uncoupled Hamiltonians

(one for each particle) and in the indistinguishable case, a single mean-field Hamilto-

nian, which is the Fock matrix for electronic systems. The maximum eigenvalue of the

mean-field Hamiltonian is easily found, and we define ∆mf = Emfmax − E(0), with the

constant shift set to the expectation value of the energy. From this, the value of the

timestep is set to

dτ =
1.8

∆mf
. (7.15)

We note that more efficient and adaptive schemes are possible for timestep selection

in problems of this type, however these were not utilized in the current work.

Once the timestep has been selected, the algorithm propagates forward through

imaginary time with the orthogonal matching pursuit algorithm, with a termination

threshold based on the energy. For computational practicality, we thus set several

threshold values. The maximum number of component functions allows, Nc-max, the

maximum imaginary time τmax, and the minimal improvement in energy εE . We also

introduce the function N that counts the number of components present in a wave-

function. This procedure is detailed in Alg. 1.

Note that the update for the threshold value εE ← max(∆/(edτ)), 10−7, where e

is Euler’s number, is based on a heuristic that if perfect evolution was achieved, the

energy would decay to the ground state exponentially in imaginary time. At the ter-

mination of this imaginary time procedure, a final variational relaxation is performed

on the wavefunction |Ψ̃(τ)〉 with respect to both component functions |Φi(τ)〉 and

coefficients ci(τ) to relax the greedy constraint on the fitting procedure. It is known

that direct minimization of canonical tensor decompositions can suffer from numerical
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εE ← 0
while τ < τmax do
τ ′ ← τ + dτ
i← 0
while i < Nc-max do

Find |Φi(τ ′)〉 satisfying eq 7.11 on state G(λ) |Ψ̃(τ)〉
Determine ci(τ

′) via eq 7.12
|Ψ̃(τ ′)〉i ←

∑i
j cj |Φj(τ ′)〉

Calculate ∆ = (〈Ψ̃(τ ′)|iH |Ψ̃(τ ′)〉i − E(τ))
if ∆ < −dτεE then break
end if
i← i+ 1

end while
if i = Nc-max and ∆ > −dτεE then break
else if i > N(|Ψ̃(τ)〉) then εE ← max(∆/(edτ), 10−7)
end if
λ← 〈Ψ̃(τ ′)|H |Ψ̃(τ ′)〉
τ ← τ + dτ

end while

ALGORITHM 7.1: NOMAGIC Algorithm
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issues if care is not taken to constraint the length of the individual components [127].

In particular, the space of canonical rank−k decompositions is not closed, however

the addition of a constraint on the norm of components remedies this situation [66].

In practice, we find a loose penalty term sufficient to enforce this constraint and mit-

igate the potential numerical difficulties from this problem without introducing the

complexities of sophisticated constrained optimizations. Specifically we variationally

minimize the auxiliary functional

L =
〈Ψ̃(τ)|H |Ψ̃(τ)〉 − γ(max(0,

∑
i〈Φi(τ)|Φi(τ)〉 −D))2

〈Ψ̃(τ)|Ψ̃(τ)〉
(7.16)

where D controls the maximum length of components and γ is the penalty parame-

ter. In this work we choose D = 4.0 and γ = 1.0, however little dependence is ob-

served in the final result on these parameters unless extreme values are taken. Note

that despite the presence of the max() function, this penalty term is differentiable and

introduces no substantial additional difficulty in implementation.

7.5.3 Electronic Wavefunction Parameterization

Here we detail the electronic wavefunction parametrization used in this work, as well

as the expressions used for the implementation of orthogonal matching pursuit and

variational relaxation in electronic systems.

In quantum chemistry, frequently one first chooses a suitable single particle spin-

orbital basis for the description of the electrons, which we denote {|φi〉}. This basis

typically consists of atom-centered contracted Gaussian type functions with a spin

function, and are in general non-orthogonal such that they have an overlap matrix
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defined by

Sij = 〈φi|φj〉 (7.17)

Linear combinations of these atomic orbitals are used to form molecular orbital func-

tions

|χm〉 =
∑

i

cim |φi〉 (7.18)

which have an inner product

〈χm|χn〉 =
∑

i,j

ci∗mc
j
n〈φi|φj〉 =

∑

i

ci∗mc
j
nSij (7.19)

In our implementation, the N−electron component wavefunctions may be formed

from the anti-symmetrized N−fold product of molecular orbital functions, also known

as Slater determinants.

|Φk〉 = A
(
|χk0〉 |χk1〉 ... |χkN−1〉

)
(7.20)

where A is the anti-symmetrizing operator. A convenient computational representa-

tion of an anti-symmetric component function |Φk〉 is given by the coefficient matrix

TK =
(
cK0 |cK1 |...|cKN−1

)
(7.21)

which denotes an M × N matrix whose m’th column are the coefficients defining the

m’th molecular orbital |χkm〉. This yields a convenient construction for the overlap
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between two component functions

〈ΦK |ΦL〉 = MKL = det (VKL) = det
(
TK†STL

)
(7.22)

One quantity of convenience is the so-called transition density matrix defined between

determinants K and L

PKL = TK
(
TL†STK

)−1
TL† (7.23)

Hamiltonian matrix elements may be written as

HKL = MKL

(
Tr
[
PKLĥ

]
+

1

2
Tr
[
PKLGKL

])
(7.24)

where ĥ are the single electron integrals,

hµν =

∫
dσ φ∗µ(σ)

(
−∇

2
r

2
−
∑

i

Zi
|Ri − r|

)
φν(σ) (7.25)

(7.26)

where σ = (r, s) denotes electronic spatial and spin variables and the nuclear positions

and charges are Ri and Zi. G
KL is given by

GKLµν =

(∑

λσ

PKLλσ (gµνλσ − gµλνσ)

)
(7.27)

with the two electron integrals gµνλσ

gµνλσ =

∫
dσ1 dσ2

φ∗µ(σ1)φν(σ1)φ∗λ(σ2)φσ(σ2)

|r1 − r2|
(7.28)
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From the description of orthogonal matching pursuit, we see that to utilize non-

linear optimization of the component functions |Φk〉 with analytic first derivatives,

one needs the variations of HKL and MKL with respect to TK . Allowing variations

δTK , the required expressions in the non-orthogonal spin orbital basis are as follows:

δMKL = MKL Tr
[
STL(V KL)−1δTK†

]
(7.29)

δPKL = [1− PKLS]δTK(V KL†)−1TL† (7.30)

δGKLµν =

(∑

λσ

δPKLλσ (gµνλσ − gµλνσ)

)
(7.31)

AKL = Tr
[
PKLGKL

]
(7.32)

δAKL = Tr
[
(1− SPKL†)GKL†TL(V KL)−1δTK†

]
(7.33)

One must take care in implementing this expression, as it is a special case of the adju-

gate relations that is only strictly valid when V KL is non-singular. To use this expres-

sion in evaluating cases when V KL is singular, techniques developed elsewhere utiliz-

ing the singular value decomposition of V KL and exact interpolation can be used [3].

Note also that numerical simplifications are possible by explicitly considering spin

(α, β) and noting that TK = TKα ⊕ TKβ. These reductions of the above equations are

straightforward and we do not give them here.

7.5.4 Renormalization of determinants

The form of the functional used in all optimizations formally ensures their values are

independent of total normalization of the wavefunction and normalization of individ-

ual columns defining the single particle portions of the wavefunctions. While this is

true in exact arithmetic, there can be practical numerical issues if these values are
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allowed to become unbounded throughout the course of the simulation. For this rea-

son, it is convenient to occasionally renormalize single particle functions as well as the

total wavefunction. An efficient way to perform the renormalization at the level of

a single determinant T with corresponding coefficient c defined on a non-orthogonal

single particle basis with overlap matrix S is

Q,R = QRDecomp(S1/2T )

T ′ = S−1/2Q

c′ = det(R)c (7.34)

where Q and R are the output from the well known QR decomposition of matrices,

the columns of T ′ are orthonormal with respect to the overlap matrix S, and c′ is its

new coefficient in the wave function expansion. An alternative to this approach is to

utilize an exponential parameterization of the coefficient space, which guarantees the

preservation of normalization. The cost and benefits of using such a parameterization

within this method are a subject of current research.

7.5.5 Nuclear Union Configuration Interaction

In this section we give some of the details of the nuclear union configuration interac-

tion method used to improve the description of reaction coordinates. In the study of

a set of related problems, such as set of electronic Hamiltonians differing only by the

positions of the nuclei, one would like to describe each configuration with an equiva-

lent amount of accuracy, to get the best relative features possible. In multi-reference

methods, this is often done by selecting the same active space at each configuration,

and rotating the orbitals and coefficients at each geometry accordingly. In the nu-
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clear union configuration interaction method, we propose each reuse of the compo-

nents(determinants) found locally at other geometries to give a totally identical vari-

ational space for all nuclear configurations. As the wavefunctions produced by the

NOMAGIC method are especially compact, this introduces little extra overhead to

the method as a whole.

Specifically, denote the component functions found at nuclear configuration R′ with

corresponding Hamiltonian H(R′) as |Φk
R′〉 = |Φi〉 where i is now an index set variable

that runs over all the component functions at all the geometries being considered.

This could be a whole reaction coordinate, or simply neighboring points depending

on computational restrictions or chemical/physical considerations. At each nuclear

configuration R we find new coefficients ci(R) by solving

H(R)C = SCE (7.35)

for its ground state eigenvector, and we define

H(R)ij = 〈Φi|H(R) |Φj〉 (7.36)

Sij = 〈Φi|Φj〉 (7.37)

Note that the overlap matrix may become singular, as configurations from nearby

geometries are often very similar. This can be handled either through canonical or-

thogonalization [102] or by removing redundant configurations before attempting the

diagonalization procedure. Moreover, one might expect that additional compression is

possible in this space, and this is the subject of current research.
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8
Conclusions

The modelling and prediction of complex chemical systems is a challenging problem,

but one whose solution has far reaching consequences. Through understanding the

interaction of light with matter we can understand how to better utilize renewable

energy from the sun. By accurately modelling the pathways of reactions and non-

covalent interactions, we can start to understand why proteins sometimes fold incor-

rectly, and try to inhibit this processes to prevent the onset of devastating diseases.

If we could advance our understanding of how molecules interact with surfaces and

metals, the design of new renewable catalysts may be within our reach. Just as classi-

cal computers changed the way we understand the classical world, so might quantum
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computers change our understanding of the quantum world.

In this thesis we have explored new ways in which one might use such a quantum

device to push forward the boundaries of understanding in quantum chemistry. In de-

veloping the variational quantum eigensolver, we boiled quantum algorithms down to

their essential elements for attaining an advantage over classical approaches. This ap-

proach not only allows one to utilize essentially any quantum device, but also informs

our understanding about how a quantum computer can outperform a classical one.

We pushed this algorithm forward by finding hardware specializations for ion traps

and by exploiting the natural structure of quantum chemistry problems. However, we

believe this algorithm is much more general than just quantum chemistry, and there

are many advantages to come for this novel approach.

We also found that the study of quantum algorithms feeds back into our under-

standing of classical computation for quantum systems. By importing a tool from

adiabatic quantum computation, namely Feynman’s Clock, we discovered a new dis-

crete time variational principle and showed the advantage of the equivalence between

quantum dynamics and eigenvalue problems. In particular, we demonstrated how

this led to a new algorithm for parallel-in-time quantum dynamics. We also demon-

strated how this equivalence could be used to exploit an algorithm originally designed

for many-body ground state computations, FCIQMC, to perform quantum dynam-

ics calculations. In doing so, we gained a better understanding of the sign problem in

quantum dynamics and its relation to the fermion sign problem in the study of many-

body ground states.

Finally we used the insights gained from our study of quantum computation to ex-

ploit the potential sparsity in rank decompositions of many-body ground states. By

using a technique from the field of compressed sensing, namely orthogonal match-
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ing pursuit, we built compressed representations of many-body ground states and

achieved remarkable compactness. This method was not particular to a specific ansatz

in its construction, but as an example we applied it with anti-symmetric canonical

tensors to quantum chemistry problems, and found great compactness with respect to

more traditional orthogonal configuration interaction expansions.

At the beginning of my doctoral studies, I received my first review that I would

consider simply pessimistic rather than critical. It was in response to my application

for a National Science Foundation graduate fellowship (which I happened to ulti-

mately receive, but decline), and its words stuck with me for some time. I had pro-

posed some work on the enhancement of quantum computation through large scale

optimization, and the reviewer, without reference to the proposal, remarked that the

intellectual merit was “average” as “quantum computation is a field doomed only

to make hard problems harder”. At difficult times during my graduate studies, I re-

flected on these words and wondered if they might be true. It is perhaps only now,

looking back that I realize they could not have been more wrong.

Not only has this field advanced essentially every aspect of what we understand

about our own world, but in short time of my doctoral studies, the technology has

progressed past what some referred to as insurmountable hurdles to what people now

regard as solvable engineering challenges. Given how much we have learned before the

first true quantum computer has been built, I cannot even begin to imagine the in-

sights that will come as we push forward. The ramifications for chemistry, physics,

and all of science will astounding. It is perhaps inappropriate that this section be

called a conclusion, because this is certainly only the beginning.
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