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Is Doing More, Doing Better? Basic versus Advanced Life
Support Ambulances for Medical Emergencies

ABSTRACT

Deficiencies in the quality of pre-hospital care constitute a serious public health problem that
has largely been neglected by the scientific community. Trauma and complications of acute disease
produce medical emergencies outside of the hospital setting. Treating patients with these conditions
involves an inherent trade-off between providing treatment on-site and reducing time to hospital
care. My dissertation compares two models of providing pre-hospital care, and highlights a data-
driven approach to identifying potentially fraudulent ambulance claims.

Chapters 1 and 2 compare effects of Advanced Life Support (ALS) and Basic Life Support (BLS)
on outcomes after out-of-hospital medical emergencies. Most Medicare patients seeking emergency
medical transport are treated by ambulance providers trained in ALS. Evidence supporting the su-
periority of ALS over BLS is limited. I analyzed claims from a 20% sample of Medicare beneficiaries
from non-rural counties between 2006-2011 with cardiac arrest, major trauma, stroke, acute my-
ocardial infarction (AMI), or respiratory failure. To address unmeasured confounding, I exploited
variation in geographic penetration in ALS rates across counties, using instrumental variables anal-
ysis. In particular, I predicted the probability of ALS use for each patient as a function of ALS rates
in each county for patients with other diagnoses, using a multilevel, multivariate model. Survival to
90 days for trauma, stroke, cardiac arrest, and AMI patients was higher with BLS than ALS; respi-
ratory failure patients did not exhibit differences in survival. I conducted a secondary analysis based

on propensity score-based balancing weights, and this produced generally similar results. I con-
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cluded ALS is associated with substantially higher mortality for several acute medical emergencies
compared to BLS, and may harm patients through delayed hospital care and iatrogenic injury.

In Chapter 3, I link patient demographic information and ambulance, outpatient, and inpatient
claims to look for the inconsistency of having a claim for an ambulance transport with seemingly
no real patient - a ‘ghost’. I find 1.9% of emergency transports have this inconsistency. I estimate
the distribution of ghost ride rates by suppliers and separately, by counties, using an expectation-
maximization algorithm. I find the ghost rides are not evenly distributed across counties or suppli-
ers. Although it is not possible to conclusively distinguish billing anomalies due to fraud from data
entry errors and similar explanations, this type of analysis may provide useful starting points for

turther investigation of Medicare fraud.
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Cardiac Arrest

1.1  ABSTRACT

Most out-of-hospital cardiac arrests receiving emergency medical services in the United States are
treated by ambulance service providers trained in advanced life support (ALS), but supporting ev-
idence for the use of ALS over basic life support (BLS) is limited. Our objective was to compare

the effects of BLS and ALS on outcomes after out-of-hospital cardiac arrest. We conducted an ob-



servational cohort study of a nationally representative sample of traditional Medicare beneficiaries
from nonrural counties who experienced out-of-hospital cardiac arrest between January 1, 2009,
and October 2, 2011, and for whom ALS or BLS ambulance services were billed to Medicare (31,292
ALS cases and 1,643 BLS cases). Propensity score methods were used to compare the effects of ALS
and BLS on patient survival, neurological performance, and medical spending after cardiac arrest.
Outcomes measures included survival to hospital discharge,to 30days, and to 9odays; neurological
performance; and incremental medical spending per additional survivor to 1 year. Survival to hospi-
tal discharge was greater among patients receiving BLS (13.1% vs 9.2% for ALS; 4.0 [95% CI, 2.3-5.7]
percentage point difference), as was survival to 9o days (8.0% vs 5.4% for ALS; 2.6 [95% CI, 1.2-4.0]
percentage point difference). Basic life support was associated with better neurological functioning
among hospitalized patients (21.8% vs 44.8% with poor neurological functioning for ALS; 23.0 [95%
CI, 18.6-27.4] percentage point difference). Incremental medical spending per additional survivor to
1 year for BLS relative to ALS was $154,333. In summary, patients with out-of-hospital cardiac arrest
who received BLS had higher survival at hospital discharge and at 9o days compared with those who

received ALS and were less likely to experience poor neurological functioning.

1.2 INTRODUCTION

American emergency medical services (EMS) respond to an estimated 380,000 out-of-hospital car-
diac arrests of primary cardiac etiology annually’. Although 90% of these patients do not survive
to hospital discharge, community training, rapid and appropriate delivery of prehospital care, and
high-quality hospital cardiac care may substantially improve survival rates*”7. In the United States
and in other developed countries, an important strategy for responding to out- of-hospital cardiac
arrest has been the delivery of advanced life support (ALS) by ambulance service providers®.

Advanced life support providers, or paramedics, are trained to use sophisticated, invasive inter-



ventions to treat cardiac arrest, including endotracheal intubation, intravenous fluid and drug deliv-
ery, and semiautomatic defibrillation®. In contrast, basic life support (BLS) providers, or emergency
medical technicians, use simple devices such as bag valve masks and automated external defibrilla-
tors. As a result, ALS providers tend to spend substantially more time at the location of the cardiac
arrest than BLS providers™. Reflecting ALS’s additional training and equipment, insurance reim-
bursement for it is higher™.

However, ALS has no established benefit over BLS for patients with cardiac arrest>". Of the few
high-quality comparisons that exist, the most robust is a before-after study’® from Ontario, Canada,
which found that ALS did not improve survival to hospital discharge compared with a BLS system
that optimized the time to defibrillation. Research from the United States is scant, but observa-
tional studies™™ from urban areas of other high-income countries have also failed to find a benefit
of prehospital ALS. Similarly, studies™° on the effectiveness of airway management favor BLS, and
evidence of the benefits of intravenous drug delivery in the prehospital setting is limited 7~*'. Under-
standing the comparative effects of ALS and BLS on health outcomes and medical spending after
out-of-hospital cardiac arrest is important not only for countries such as the United States with de-
veloped ALS-based emergency response systems but also for developing countries in the process of

designing cost-effective prehospital emergency response systems.

1.3 METHODS

1.3.1 STUDY POPULATION AND DATA LINKAGE

This research was approved by institutional review boards at Harvard University and the National
Bureau of Economic Research. Informed consent was not required because the analysis is based on
deidentified Medicare claims. We analyzed a 20% simple random sample of fee-for-service Medicare

beneficiaries from nonrural counties who experienced out-of-hospital cardiac arrest between Jan-



uary 1, 2009, and October 2, 2011. We identified ground emergency ambulance rides by Health Care
Financing Administration Common Procedural Coding System codes Ao429 (BLS emergency),
Ao427 (ALS level 1 emergency), and Ao433 (ALS level 2)* with origin and destination codes RH
(residence to hospital), SH (scene of accident or acute event to hospital), NH (skilled nursing facility
[SNF] to hospital), or EH (residential, domiciliary, or custodial facility or nursing home other than
SNF to hospital). We linked 95.7% of these rides to inpatient and outpatient claims by matching on
beneficiary identification numbers and dates of service.

For 43,760 ambulance rides, an International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) diagnosis code of 427.5 for cardiac arrest was present on an outpatient
claim or an inpatient claim marked as ‘present on admission’. To focus on cardiac arrests arising
from a non-traumatic etiology and to allow comparison with other studies™, we removed obser-
vations with an injury ICD-9-CM diagnosis code (800-999 or E800-E900). We also removed cases
(3.1%) from Connecticut, Delaware, Hawaii, and the District of Columbia, where billing practices
make it difficult to determine whether ALS provided the service. For example, in Delaware, ALS
is supported by local government funds and does not generally bill Medicare. We excluded obser-
vations (approximately 10% of the sample) from rural counties as defined by the US Bureau of the
Census because they exhibited large differences on baseline characteristics. Finally, we removed cases
from North Dakota, Vermont, and Wyoming because they had no BLS cases in nonrural areas. Our
final sample size was 32,935 ambulance rides (Figure 1.1). We linked each observation to beneficiary
data on demographics, death, and chronic conditions. Using claims for services during the one year
before cardiac arrest, we constructed combined Charlson and Elixhauser comorbidity scores**. We
ascertained total Medicare spending from claims. We obtained demographic data from the 2009
Population Estimates for Zip Code Tabulation Areas?, county-level demographic and health in-
formation for the most recent year available before 2011 for each variable from the Area Health Re-

sources Files*#, and hospital process measures and mortality rates for 2009 to 2o11 from the Hospital



Compare data sets™.

13.2 COMPARISON GROUPS

We compared BLS and ALS transports defined by the service level billed on the Medicare ambulance
claim, as indicated by the Health Care Financing Administration Common Procedural Coding Sys-
tem code. This code reflects the level of service that was deemed medically necessary. Crucially for
our purposes, Medicare allows billing at the ALS level if assessment by ALS-trained providers was
considered necessary at dispatch, even if ALS providers delivered only BLS interventions. Medicare
pays a single amount for the service level that is inclusive of all items, and there is no itemized list

of interventions in the claims. Therefore, although we cannot observe the specific combination of
provider training, local protocols, or clinical interventions that a patient experienced, the ambulance
crew level is an indicator for the set of interventions and scene and transport times that are character-
istic of that level.

Guidelines and training for ALS providers direct them to provide ALS care for cardiac arrest or
its antecedent conditions®?°. Still, a potential concern may be that, after evaluating a patient, ALS-
trained providers will deliver BLS interventions to patients who appear healthier and therefore bill
at the BLS level. However, as noted above, ALS providers can still bill at the ALS level in these cases,
and it is unlikely that they would not do so given the reimbursement differences. Therefore, it is
unlikely that BLS cases in our sample were treated by providers trained in ALS.

A second potential concern with comparing outcomes for patients receiving ALS vs BLS is that,
if more severe cases were to be triaged by dispatchers toward ALS, our analyses may be confounded
by making ALS outcomes appear worse than they would be if patients were randomized to ALS.
However, based on telephone interviews with EMS officials in 45 states, we established that existing
dispatch protocols generally lead to BLS dispatch for cardiac arrest or any of its prodromal symp-

toms (e.g., chest pain, breathing difficulty, or fainting) only if ALS is unavailable within a reasonable
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Figure 1.1: Codes refer to International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes.
ALS indicates advanced life support; BLS, basic life support. “Pickup locations included residence, scene of accident or
acute event, skilled nursing facility, and non-skilled nursing facility residential, domiciliary, custodial, or nursing home
facility. bPresent on admission status for cardiac arrest is either no or unknown. ‘Rural areas are defined as counties
that do not meet the metropolitan or micropolitan criteria as defined by the US Bureau of the Census. Metropolitan
counties have at least 1 urbanized area of 50,000 or more population, and micropolitan counties have at least 1 urban
cluster of at least 10,000 but less than 50,000 population. Both types have adjacent territory that has a high degree of
social and economic integration with the core as measured by commuting ties.



amount of time, either due to travel distance, attendance at another call, or a staffing shortage.

13.3 OUTCOME MEASURES

Our primary outcome measures were patient survival to hospital discharge, to 30 days, and to 90
days. Our secondary outcomes included neurological performance and medical spending. We in-
ferred Cerebral Performance Categories Scale*® item 4 (coma or vegetative state) and item s (brain
death) by the presence of ICD-9-CM diagnosis codes for anoxic brain injury (348.1), coma (700.01),
persistent vegetative state (780.03), or brain dead (348.82). We combined these items to create an
indicator for poor neurological functioning. For cardiac arrests that occurred in 2009 and 2010, we

computed total medical spending up to 1 year after the cardiac arrest or until death.

1.3.4 STATISTICAL ANALYSIS

We first modeled the probability () that a beneficiary received ALS using logistic regression. The
predicted propensity scores P were used to derive balancing weights®”. Because ALS cases outnum-
bered BLS cases, we chose weights to adjust the ALS distribution to the observed BLS distribution
over the set of covariates. Therefore, each BLS observation received a weight of 1, and each ALS
observation received a weight of (1 — P)/P. We chose this approach over propensity score-based
matching or stratifying because it provided exact balance most efficiently. Furthermore, unlike using
the propensity score as a covariate in a multivariable model, it allowed balance checking.

We tested the following individual-level variables in the propensity score regression: ambulance
mileage, history of 277 chronic conditions, and a 6-category zip code-level indicator combining high
(>$40,000) or low median household income and racial/ethnic composition (>80% black, >80%
white, or integrated)**. To account for differences in the quality of hospital care that may be cor-

related with both outcomes and the propensity of a beneficiary to receive prehospital ALS, we also



created zip code-level hospital quality measures, as described in Appendix A.1.

Our final propensity score model adjusted for age (linear spline), sex, race/ethnicity, pickup lo-
cation, and 3 chronic conditions at the individual level (the model coefficients are summarized in
Appendix A.10). At the zip code level, we adjusted for race/ethnicity, the median household income,
and hospital quality (Appendix A.1). We also adjusted for urbanicity, percentage older than 25 years
with four or more years of college, percentage of primary care practitioners, and the presence of any
medical school-affiliated hospital at the county level. We included binary variables for all states with
15 or more BLS observations (i.e., state fixed effects) and created groups by region defined by the
US Bureau of the Census for the remaining states. The Hosmer-Lemeshow test was not statistically
significant for this model, suggesting that the link function was appropriate.

We used statistical software to construct (SAS version 9.3) and analyze (R version 3.1.0) the sam-
ple. All statistical tests were 2-sided at the 5% level. All differences were evaluated using t tests.
Kaplan-Meier survival curves were prepared from the weighted observations, with end points de-
fined by death or survival beyond the end of our data on December 31, 2011. Medical spending in-
cluded Medicare and any non-Medicare primary insurer payments, as well as beneficiary payments,
geographically adjusted using the Medicare Hospital Wage Index for an estimated 70% labor share of
inputs. For medical spending and survival to 1 year, we used balancing weights estimated for obser-

vations in 2009 and 2010, and for survival to 2 years, we used only 2009 data.

1.3.5 SENSITIVITY ANALYSES

We conducted several sensitivity analyses, described in Appendices A.2-A.9. First, to assess the extent
to which unmeasured disease severity could confound our results, we estimated potential unmea-
sured confounding by introducing incremental changes to comorbidity scores (Appendix A.2). Sec-
ond, we assessed the sensitivity of our results to alternative analytic methods by regressing survival

on a binary indicator for ambulance type and other variables from our main analysis (Appendix



A.3). Third, we assessed sensitivity to the inclusion of beneficiaries who appeared to have died en
route to the hospital (Appendix A.4). We excluded this group in the main analysis because diagnosis
is only available from ambulance claims and coding may be inaccurate. Fourth, we used other data
sets to check the sensitivity of our results to the exclusion of individuals who may have died at the
scene and therefore were not transported (Appendix A.s). Fifth, we estimated the effect of ALS, ex-
cluding patients from nursing homes who may have received different on-site care compared with
other patients (Appendix A.6). Sixth, we assessed the sensitivity of our results to situations in which
BLS called for ALS backup by calculating the number of BLS cases that would have to have been
incorrectly attributed to ALS to reverse the direction of our findings (Appendix A.7). Seventh, we
estimated the effect of ALS compared with BLS for patients with a primary cardiac etiology by ex-
cluding patients with acute respiratory failure codes (Appendix A.8). Eighth, we assessed the robust-
ness of our results to a less sensitive but more specific definition of poor neurological functioning

that included only patients with persistent vegetative state or brain death (Appendix A.9).

1.4 REsSULTs

Out-of-hospital cardiac arrest mortality rates were high (Table 1.1) and comparable to those of other

studies'**93°

that used primary data. Beneficiaries who received ALS were slightly younger, were
more likely to be male, and were less likely to have most chronic conditions (Table 1.2). They were
more often picked up at a residence, whereas patients receiving BLS were more often picked up ata
skilled nursing facility. The distributions of household income and race/ethnicity, urbanicity, and
the presence of medical school-affiliated hospitals differed (Table 1.3). Beneficiaries receiving ALS
services were taken to hospitals that had somewhat better performance on process measures but had

slightly worse 30-day mortality from acute myocardial infarction, heart failure, or pneumonia. After

applying the propensity score-derived balancing weights to the ALS observations, there were no



meaningful differences on any observed measure between the BLS and ALS groups.

Table 1.1: Comparison of Medicare claims-based sample and primary data-based samples on mortality at discharge
for individuals brought to a hospital. “Discharge status for Medicare outpatient claims was approximated using 2-day
mortality because discharge status was poorly coded. CARES, Cardiac Arrest Registry to Enhance Survival 2%. ROC,
Resuscitation Outcomes Consortium °; OPALS, Ontario Prehospital Advanced Life Support 1°.

Medicare* CARES ROC OPALS Study

Number arrived at hospital via EMS 32,935 24,843 7,486 4,247
Inpatients who died before discharge (%) 66 63 NA NA
Inpatients and outpatients who died before discharge (%) 90 88 87 95

1.4.1 DIFFERENCES IN PATIENT SURVIVAL

Unadjusted survival to hospital discharge was 3.5 (95% CI, 1.9-5.2) percentage points higher among
patients receiving BLS (13.1% vs 9.6% for ALS) (Table 1.4). Unadjusted survival after BLS was also
greater at 30 days (9.6% vs 6.5% for ALS; 3.1 [95% CI, 1.6-4.5] percentage point difference) and at 9o
days (8.0% vs 5.8% for ALS; 2.2 [95% CI, 0.9-3.6] percentage point difference).

After propensity score adjustment, survival to hospital discharge was 4.0 (95% CI, 2.3-5.7) per-
centage points, or 43%, higher among patients receiving BLS (13.1% vs 9.2% for ALS). Survival after
BLS was also greater at 30 days (9.6% vs 6.2% for ALS; 3.4 [95% CI, 1.9-4.8] percentage point dif-
ference) and at 9o days (8.0% vs 5.4% for ALS; 2.6 [95% CI, 1.2-4.0] percentage point difference).
Kaplan-Meier estimates show that much of the difference in survival between ALS and BLS is ex-
plained by higher mortality in the first few days after cardiac arrest for patients receiving ALS (Fig-
ure 1.2). After this period, the near constancy in the survival ratios to different time points suggests
that patients receiving BLS survive at least as well as those receiving ALS. These findings were unaf-

fected by various sensitivity analyses (Appendices A.2-A.9).
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Table 1.2: Differences in individual-level characteristics by ambulance service level. *p < 0.05, **p < 0.01,***

p < o.oou Differences between BLS and unweighted ALS observations were tested for statistical significance using
Student’s t-test or chi-square test, as appropriate. Due to missing data, some measures are based on less data than the
full sample. 2 Chi-squared test of independence was used for this categorical variable. bIncludes non-SNF residential,
domiciliary, custodial, or nursing home facilities. ‘Alzheimer’s disease/dementia includes Alzheimer’s, related diseases,
and senile dementia. dCOPD, chronic obstructive pulmonary disease.

BLS Unweighted ALS  Weighted ALS

Mean age 77 75 77

Female (%) 3 46*** 52

Race (%) a™*
White 72 77 72
Black 21 17 21
Hispanic 3 2 3
Asian 2 2
Other 2 2

Comorbidity score (mean) 5.5 4.8™* 5.5

Chronic conditions (%)
Acute myocardial infarction 3 14 14
Alzheimer’s disease 20 15" 20
Alzheimer’s disease/dementia® 42 3> 42
Atrial fibrillation 30 29 31
Cataract 66 62* 65
Chronic kidney disease 53 48** 52
corp? 49 49 49
Heart failure 66 62* 67
Diabetes 58 53** 58
Glaucoma 27 227 25
Hip/pelvic fracture 9 8 9
Ischemic heart disease 75 72 76
Depression 43 40 43
Osteoperosis 24 20™* 23
Rheumatoid arthritis/osteoarthritis 59 55** 58
Stroke/transient ischemic attack 32 27" 31
Breast cancer 5 4 5
Colorectal cancer 6 4 5
Prostate cancer 7 7 7
Lung cancer 5 4 4
Endometrial cancer 1 I 1
Anemia 8o 72.5* 79
Asthma 19 20 19
Hyperlipidemia 76 75 77
Benign prostatic hyperplasia 23 22 21
Hypertension 91 90 92
Acquired hypothyroidism 25 22** 24
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Table 1.3: Differences in transport, geographic, and hospital characteristics by ambulance service level. * p < o0.05,
**p < 0.01, ***p < o.ooL Differences between BLS and unweighted ALS observations were tested for statistical
significance using Student’s t-test or chi-square test, as appropriate. Due to missing data, some measures are based on
less data than the full sample. 2 Chi-squared test of independence was used for this categorical variable. bHigh if me-
dianincome is greater than 40k, low otherwise, and predominantly black if more than 80% black, predominantly white
if more than 80% white, and otherwise integrated. ¢ Metropolitan areas have at least one urbanized area of 50,000 or
more population, and micropolitan areas have at least one urban cluster of at least 10,000 but less than 50,000 pop-
ulation. Both types of area have adjacent territory that has a high degree of social and economic integration with the
core as measured by commuting ties. 4 The denominator for these measures is heart attack patients. ¢ The denominator
for these measures is heart failure patients. LVSD, left ventricular systolic dysfunction; ACE, angiotensin-converting-
enzyme; ARB, angiotensin receptor blocker.f The denominator for these measures is pneumonia patients.

BLS Unweighted ALS ~ Weighted ALS

Transport level

Mean mileage (km) 87 95 8.5
Pick-up location (%) a™*
Residence 55 65 55
Skilled nursing facility 27 14 27
Scene 4 7 14
Non-SNF nursing home? 5 4 5
ZIP code level
Income/race groupb (%) a™*
High/white 37 43 38
Low/white 7 8 7
High/black 2 I 2
Low/black 3 2 3
High/integrated 35 30 34
Low/integrated 16 16 16
Female (%) SI S SI
Age 65+ years (%) 14 14 14
County level
Metropolitan® (%) 87 8s5* 87
Persons with 4+ years of college (%) 24 23 24
General practice doctors (%) 14 16™* 14
Any hospital with med schl affiliation (%) 70 63" 69
Hospital level
Given aspirin at arrival? (%) 98 98 98
Given aspirin at discharged (%) 98 98 98
Given beta blocker at discharged (%) 97 98** 98
Given evaluation for LVSD? (%) 97 98*** 98
Given ACE inhibitor or ARB for LVSD? (%) 94 95 9
Initial blood culture performed prior to first dose of 95 96™* 96
antibiotics’ (%)
Given the most appropriate initial antibiotid (%) 93 93* 93
Heart failure (30 day mortality rate) 11 I 11
Heart attack (30 day mortality rate) 15 16*** 15
Pneumonia (30 day mortality rate) 11 2 11
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Table 1.4: Health and payment outcomes by ambulance service level [95% Cl]. Unless noted otherwise, estimates are
adjusted by propensity-score based balancing weights. Estimates for survival to 1 year used only data from 2009 and
2010, and estimates for survival to 2 years used only data from 2009. Spending includes total payments to the provider
by Medicare, the beneficiary, and a non-Medicare primary payer if one exists. Payments are geographically adjusted
using the Hospital Wage Index for an estimated 70% labor share of inputs.?Discrepancies in differences are due to

rounding.

BLS ALS Difference” Ratio
Unadjusted outcomes
Survival to discharge (%) 13.1 (115, 14.8) 9.6(9.3,9.9) 3.5(1.9,5.2) 1.4 (1.2, L5)
Survival to 30 days (%) 9.6 (8.1, 11.0) 6.5(6.2,6.8) 3.1 (16, 4.5) Ls (1.2, 1.7)
Survival to 9o days (%) 8.0(6.7,9.3) 5.8 (5.5, 6.1) 2.2.(0.9, 3.6) 1.4 (1.2, 1.6)
Adjusted outcomes
Survival (%)
Survival to discharge 13.1 (115, 14.8) 9.2(8.7,9.7) 4.0(2.3,5.7) 1.4 (1.2, 1.6)
Survival to 30 days 9.6 (8.1, 11.0) 6.2(5.8,6.6) 3.4 (1.9, 4.8) L5 (1.3, 1.8)
Survival to 9o days 8.0(6.7,9.3) 5.4 (5.0, 5.8) 2.6 (1.2, 4.0) Ls (1.2, 1.8)
Survival to 1 year 6.2(4.9,7.6) 4.4 (4.0, 4.8) 1.8(0.4,3.3) 1.4 (1.1, 1.8)
Survival to 2 years 6.8(4.8,8.9) 3.9 (3.3, 4.5) 2.9 (0.8, 5.0) 1.7 (1.2,2.4)
Other health measures (%)
Poor neurological perfor- 6.1(5.0,7.3) 9.7 (9.1,10.2) 3.5 (2.2, 4.8) 0.6 (0.5,0.8)
mance
Admission to hospital 25.4(23.3,27.5)  20.5(19.8,21.2) 4.9 (2.7, 7.1) 1.2 (L1, 1.4)
Payments (U.S. §)
Average 1 year spending forall 11,875 9,097 2,778(582, 4,973) 1.3 (1.1, 1.6)
beneficiaries (9,754, 13,995) (8,527, 9,666)
Average 1 year spending per 190,153 206,775 - -
survivor to 1 year (150,041, (189,909,

230,265) 223,641)
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Figure 1.2: Kaplan-Meier analysis of survival after cardiac arrest by ambulance service level. The main plot shows sur-

vival probability during the first 90 days, and the inset shows survival probability over the full observational period.

Survival analysis was based on cardiac arrests that occurred between January 1, 2009, and October 2, 2011. Mortality

was observed until December 31, 2011, when the data were censored; thus, there was follow-up to at least 90 days for

each beneficiary. ALS indicates advanced life support; BLS, basic life support.

L.4.2

DI1FFERENCES IN NEUROLOGICAL PERFORMANCE

Among all individuals experiencing an out-of-hospital cardiac arrest, the percentage with poor neu-

rological functioning after cardiac arrest was lower among those who received BLS vs ALS (6.1% vs
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9.7%; 3.5 [95% CI, 2.2-4.8] percentage point difference). Among individuals who were admitted to
the hospital, rates of poor neurological functioning were markedly lower for BLS compared with

ALS (21.8% Vs 44.8%; 23.0 [95% CI, 18.6-27.4] percentage point difference).

1.4.3 DIFFERENCES IN MEDICAL SPENDING

The mean medical spending was higher among beneficiaries receiving BLS ($11,875 vs $9,097 for
ALS; $2,778 [95% CI, $582-$4,973] difference), in part because individuals who received BLS sur-
vived longer and had more opportunity to receive medical care. Incremental medical spending per
additional survivor to 1 year for BLS relative to ALS was $154,333 ([$11,875 - $9,097]/[6.2% - 4.4%]),

less than the mean medical spending per survivor to 1 year for ALS ($206,775).

1.4.4 SENSITIVITY ANALYSES

With one exception, our results were robust to all the sensitivity analyses described above and in
Appendix A.2-A.9. The exception is that, after restricting the definition of poor neurological func-
tioning to only persistent vegetative state or brain death, there was no observed difference in neuro-

logical functioning between patients receiving ALS vs BLS.

5 DiscussioN

Using a nationally representative sample of traditional Medicare beneficiaries from nonrural coun-
ties who experienced out-of-hospital cardiac arrest between 2009 and 2011 and for whom EMS were
billed to Medicare, we compared the effects of out-of-hospital BLS and ALS on survival, neurolog-
ical performance, and medical spending. Ninety-day survival and neurological performance were
substantially better among beneficiaries who received out-of-hospital BLS rather than ALS. Our

estimates suggest that each year 1,479 (95% CI, 683-2,276) additional Medicare beneficiaries who
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experience out-of-hospital cardiac arrest would survive to 9o days if provided BLS instead of ALS.
Furthermore, incremental medical spending per additional survivor to 1 year for BLS relative to
ALS was $154,333, substantially less than the mean medical spending per survivor to 1 year for ALS
($206,775).

Prehospital care is complex, expensive, and critical to survival after out-of-hospital cardiac ar-
rest, making it crucial to understand the combined effect on morbidity and mortality of the medical
interventions, transport time, and training that characterize the two dominant models of prehospi-
tal care. Results of our study, to our knowledge the first large-scale systematic comparison of BLS
and ALS in the United States, are consistent with those of international studies™>'*, which found
that ALS does not improve survival to hospital discharge after cardiac arrest. In contrast, our results
suggest that the use of ALS is associated with higher mortality than the use of BLS in patients with
cardiac arrest. However, most out-of-hospital cardiac arrests treated by EMS in the United States are
provided with ALS care.

Although ALS is often assumed to improve clinical outcomes by providing advanced airway
management and intravenous drug therapy, other studies have described mechanisms by which
ALS may lead to the worse outcomes that we found. First, prehospital endotracheal intubation en-
tails risks, including unrecognized esophageal intubation, aspiration of gastric contents, aggravation
of existing injuries such as cervical spine damage, and interference with chest compressions*. Fur-
thermore, successful intubation requires high levels of competency and regular practice, but in a
Pennsylvania study?® paramedics performed a median of only one intubation per year. Therefore,
bag valve mask ventilation may improve outcomes over endotracheal intubation in out-of-hospital

cardiac arrest™*®

. Consistent with these risks of pre-hospital intubation, a large study™ of cardiac
arrests in Japan found greater neurologically favorable survival with the use of bag valve masks com-
pared with advanced airways. Similarly, an analysis of out-of-hospital cardiac arrests in Los Angeles,

California, found that advanced airway methods were associated with decreased survival to hos-
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pital discharge compared with bag valve mask ventilation™. Second, evidence on the benefits of

intravenous drug delivery in out-of-hospital cardiac arrest is limited 7~

. Third, and perhaps most
important, ALS may entail delays in hospital care™ that would otherwise offer definitive clinical
management of the underlying disease (e.g., percutaneous coronary intervention for acute myocar-
dial infarction).

Because a randomized controlled trial of ALS vs BLS is unlikely to occur, we performed an obser-
vational analysis. Although our analysis is the largest to date in the United States to our knowledge,
it has several limitations. Patients receiving ALS may be at higher risk of mortality irrespective of
the intervention, which would confound our estimates. This would be most likely to occur if ALS
was dispatched to patients with higher preexisting mortality risk based either on symptoms or pre-
existing conditions. However, telephone interviews with 45 state EMS agencies demonstrated that
if ALS was available it would always be provided in cases of known cardiac arrest or for any typ-
ical prodromal symptoms (e.g., chest pain, syncope, etc) that would be known to the dispatcher
at the time of dispatch. In other words, BLS would only be dispatched when ALS is unavailable,
leaving no clear remaining mechanisms to explain why less severely ill patients would be preferen-
tially dispatched BLS. Moreover, beneficiaries who received BLS had on average more preexisting
comorbidities than those who received ALS, suggesting that outcomes among patients receiving
BLS would (if anything) be worse and not better. Finally, in analyses of sensitivity to unmeasured
confounding (Appendix A.2), our findings that outcomes under BLS were better than under ALS
would continue to hold unless an implausibly high difference in unobserved severity was postulated.

An additional source of confounding may be that individuals who can be more easily resuscitated
at the scene (e.g., those with ventricular fibrillation) might be overrepresented among BLS cases,
while individuals who cannot be resuscitated by BLS wait to be treated by ALS rather than undergo-
ing direct transport to the hospital. Advanced life support would then be spuriously associated with

worse outcomes that should have been attributed to BLS. However, our sensitivity analysis of sit-
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uations in which BLS waits for ALS backup found that this would have to occur in an implausibly
high proportion of BLS cases to change the direction of our effect (Appendix A.7).

Additional factors that influence outcomes after cardiac arrest may potentially confound our
analysis. For example, shorter ambulance response times to the scene® and the presence of a shock-
able rhythm*? are associated with improved outcomes. However, no evidence exists that these fac-
tors differ between patients receiving ALS vs BLS. However, ALS providers on average spend sig-
nificantly more time at the scene’®, which suggests how BLS may improve outcomes over ALS via
rapid transport to the hospital. Other factors such as the quality of cardiopulmonary resuscitation
(CPR) and the use of endotracheal intubation or intravenous drugs are similarly potential medi-
ators of ALS and BLS treatment effects and, like scene and travel time, should not be viewed as
confounders. Finally, although bystander-initiated CPR has been associated with improved out-
comes?, we could not directly control for bystander-initiated CPR and defibrillation. However, we
adjusted for area-level race/ethnicity and household income, which have been shown to be impor-
tant determinants of bystander-initiated treatment?®.

An additional limitation is that we used administrative claims, which may be inaccurate and sub-
ject to coding errors in diagnoses and procedures. For example, our identification of ALS and BLS
exposures may not accurately reflect the service level of the ambulance. However, Medicare policy
allows billing at the ALS level if assessment by an ALS-trained crew was considered necessary at dis-
patch. Based on telephone interviews with state EMS officials, we found some instances of joint BLS
and ALS response in which Medicare is billed for only BLS. However, states with distinctive billing
practices such as this comprise about 3% of the sample, and our findings were unaffected by their ex-
clusion. Nonetheless, services provided by EMS may differ across areas, which may not be reflected
in the level of billing to Medicare. Because we could not identify specific interventions provided
to each patient, our conclusions are limited to differences in outcomes associated with the overall

practices of BLS and ALS providers.
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Our study calls into question the widespread assumption that advanced prehospital care im-
proves outcomes of out-of-hospital cardiac arrest relative to care following the principles of BLS,
including rapid transport and basic interventions such as effective chest compressions, bag valve
mask ventilation, and automated external defibrillation. It is crucial to evaluate BLS and ALS use
in other diagnosis groups and settings and to investigate the clinical mechanisms behind our results
to identify the most effective prehospital care strategies for saving lives and improving quality of life

conditional on survival.
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Stroke, Major Trauma, Acute Myocardial

Infarction, and Respiratory Failure

2.1 ABSTRACT

Most Medicare patients seeking emergency medical transport are treated by ambulance providers

trained in Advanced Life Support (ALS). Evidence supporting the superiority of ALS over Basic
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Life Support (BLS), however, is limited, and some studies suggest ALS may harm patients. Our
objective was to compare effects of ALS and BLS on health outcomes after out-of-hospital medical
emergencies. We analyzed claims from a 20% sample of Medicare beneficiaries from non-rural coun-
ties between 2006-2011 with major trauma, stroke, acute myocardial infarction (AMI), or respiratory
failure. We compared survival and neurological functioning among patients receiving ALS versus
BLS. To address unmeasured confounding, we exploited variation in geographic penetration in ALS
rates across counties, using an instrumental variables approach. We conducted a second analysis that
balanced characteristics using propensity scores. The measurements included survival to 30 days,

90 days, 1 year, and 2 years, and neurological performance. In the instrumental variables analyses,
survival to 9o days among trauma, stroke, and AMI patients was higher with BLS than ALS (4.1

(1.3, 6.9] percentage points for trauma; 4.3 [1.3, 7.3] percentage points for stroke; and 5.9 [2.2, 9.6]
percentage points for AMI). For stroke and AMI, these differences persisted for one and two years,
respectively. Respiratory failure patients did not exhibit differences in survival between BLS and
ALS. Neurological functioning was not significantly different between BLS and ALS in any diagno-
sis group. Results from the propensity score analyses were broadly consistent. We concluded ALS

is associated with substantially higher mortality for several acute medical emergencies compared to

BLS, and may harm patients through delayed hospital care and/or iatrogenic injury.

2.2 INTRODUCTION

The predominant response to out-of-hospital medical emergencies by ambulance providers in the
United States is Advanced Life Support (ALS) rather than Basic Life Support (BLS). ALS accounts
for 65% of emergency medical care among Medicare beneficiaries*, and even more among patients
with high-acuity conditions such as stroke. ALS provides sophisticated care on site (‘stay and play’),

whereas BLS emphasizes rapid transport to the hospital, providing only minimal treatment at the
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scene (‘scoop and run’) ¥ . Whereas ALS providers use invasive interventions, such as endotra-
cheal intubation for airway management and intravenous catheters for drug and fluid delivery, BLS-
trained providers use non-invasive interventions, such as bag-valve masks for respiratory support.

ALS providers spend more time at the scene on average®*#

% and receive higher reimbursement™.

Despite the predominance of ALS, previous studies, mostly from outside the United States,
show some evidence of similar or longer survival with BLS'®"*7$373%49742 ' A5 3 result, the World
Health Organization has advised countries without ALS not to implement it for trauma until there
is greater evidence of its benefits #»#4. Recent evidence among Medicare beneficiaries experiencing
out-of-hospital cardiac arrest suggests ALS is associated with lower 30-day survival and poorer neu-
rologic recovery .

Randomized trials of ALS versus BLS are probably infeasible, but American counties differ
markedly in their rates of ALS use. This between-county variation in the use of ALS, which is plau-
sibly exogenous to an individual’s health and healthcare, provides an opportunity to assess the com-

parative effectiveness of ALS versus BLS on outcomes after major trauma, stroke, acute myocardial

infarction (AMI), and respiratory failure.

2.3 METHODS

2.3.1  DATA

We analyzed claims between January 1, 2006 and October 2, 2011 from a 20% random sample of
Medicare fee-for-service beneficiaries from non-rural counties who were transported to a hospital
for out-of-hospital trauma, stroke, AMI, or respiratory failure (Appendices B.1-B.2). We identified
ground emergency ambulance rides by Healthcare Common Procedure Coding System (HCPCS)
codes (Appendix B.3). We linked 96% of ambulance rides to inpatient and outpatient claims by

matching on beneficiary identification number and service date.
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We linked each observation to validated death dates and demographic data in the Medicare De-
nominator/Beneficiary Summary File and to chronic medical conditions in the Chronic Conditions
Warehouse File. We used demographic data for ZIP Code Tabulation Areas in 2009 * and county-
level demographic and health information from the Area Health Resources Files**.

Using claims during the year prior to the emergency event, we calculated Charlson/Elixhauser co-
morbidity scores**. For trauma cases we computed New Injury Severity Scores (NISS) from hospital
claim diagnosis codes*® (Appendix B.4). We generated risk-adjusted hospital quality scores based on

non-emergent surgical survival (Appendix B.s).

2.3.2  SAMPLE CONSTRUCTION

We based patient diagnoses on hospital-assigned ICD-9CM diagnosis codes rather than ambulance-
assigned codes, which are less likely to be accurate. The Appendix provides flowcharts for the sample
construction of each diagnosis group (Figures B.1-B.4) and the diagnosis codes used to define the
sample (Appendix B.2).

Among trauma patients, we focused on major trauma, defined as a NISS score above 15 (7% of
scored cases) #7#%. This left 79,687 cases (30,919 BLS, 48,768 ALS). The sample sizes for the other
diagnoses were 119,989 for stroke (19,985 BLS, 100,004 ALS), 114,469 for AMI (14,434 BLS, 100,035

ALS), and 82,530 for respiratory failure (9,502 BLS, 73,028 ALS).

2.3.3 IDENTIFICATION OF ALS AND BLS SERVICES

We identified whether a patient received BLS or ALS using the HCPCS code on the claim. Al-
though provider training, local protocols, and clinical interventions are not recorded, the ambulance
provider level indicates the set of interventions and transport times characteristic of that level.

Importantly, even if ALS providers delivered only BLS interventions, Medicare allows billing at
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the ALS level if assessment by ALS-trained providers was considered necessary at dispatch. Based on
telephone interviews with Emergency Medical Services officials in 45 states, we established that the
symptoms that generally precede the conditions we studied, such as chest pain or difficulty breath-
ing, would only result in BLS dispatch if ALS were unavailable within a reasonable amount of time,
either due to travel distance, attendance at another call, or a staffing shortage. Given the high sever-
ity of the medical conditions under study, the policy of allowing ALS billing if ALS was considered
necessary at dispatch, and the reimbursement differences between BLS and ALS, it is unlikely that

the BLS cases in our sample were actually treated by providers trained in ALS.

2.3.4 OUTCOME MEASURES

Our primary outcome measures were survival at 30, 90, 365, and 730 days after ambulance transport.
We also created an indicator for poor neurological functioning based on the presence of ICD-9CM
diagnosis codes for anoxic brain injury (348.1), coma (700.01), persistent vegetative state (780.03), or

brain death (348.82), and so inferred Cerebral Performance Categories 4 and 5°.

2.3.5 STATISTICAL ANALYSIS

We used two methodological approaches. Our main analysis was a quasi-experimental design that
relied on variation in ALS penetration at the county level (Figure 2.1). In particular, we predicted
the probability of ALS use for each patient as a function of ALS rates in the county for patients
with other diagnoses. Our approach thus estimated survival effects using variation in county-level
rates of ALS use that are presumptively driven by local ambulance supply and dispatch protocols
common to all included diagnoses, rather than by unobserved characteristics of individuals in the
focal diagnosis, such as acuity. In other words, this analysis should not be confounded by individual-

level associations between acuity and ambulance type used, since the predicted probability of ALS
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ALS penetration rate

Figure 2.1: County-level ALS penetration rates for major trauma. Rates are for a standardized population but are not
derived from characteristics of trauma patients. Rather, they are predicted from ALS use rates in other diagnosis groups
in each county.

for an individual does not depend on the ambulance type serving that individual.

This approach formally constitutes an instrumental-variables analysis **~. ALS probabilities
for an individual case predicted from rates in other diagnosis groups meet the conditions for an
instrumental variable, and we use those predicted rates to predict outcomes. We describe our estima-
tion methods in detail in Appendix B.6. We adjusted estimates in the first stage (probability of ALS
transport) and second stage (probability of outcome) of the two-stage least-squares procedure for
pick-up location type (e.g., residence, scene), mileage from pick-up location to hospital, and a range
of individual, county, and ZIP code characteristics and hospital quality (Appendices B.6-B.7).

The instrumental-variables estimates yield the average effect of receiving ALS rather than BLS

for those individuals who received ALS but would instead have received BLS in counties with lower
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ALS utilization *. Because emergency patient outcomes reflect quality of both pre-hospital and
hospital care, we conducted a falsification test (Appendix B.15) to address the possibility that ALS
prevalence in a county affects patient outcomes through association with quality of hospital care’”.
To do so, we repeated the instrumental variables analysis with an outcome of risk-adjusted nonemer-
gency inpatient surgical mortality, which should be unaftected by the nature of emergency services
so long as ALS penetration in a county is not correlated with unobserved quality of hospital care.

We also conducted a secondary analysis, which compared outcomes between ALS and BLS using
propensity-score-based balancing weights to adjust for potential confounders (Appendix B.8). This
analysis thus exploited individual-level variation in ALS and BLS assignment. We first modeled the
probability that a beneficiary received ALS using logistic regression, adjusting for the variables de-
scribed above. We used diagnosis-specific propensity scores from these models to derive weights®”
that balanced the BLS and ALS distributions over the observed set of covariates, and compared
weighted BLS and ALS outcomes. A key assumption in this analysis is that this balance also applies
to potential unobserved confounders. Unlike the instrumental-variable analysis, this analysis esti-
mates the magnitude of survival effects from variation in the use of ALS both between and within
counties. As a result, the size of estimated effects can be expected to differ between the two methods
of analysis.

In both the instrumental-variable and propensity-score analyses, we compared BLS and ALS
outcomes with 5% level t tests. We generated Kaplan-Meier survival curves, censored at the end of
our data. Finally, we conducted pre-specified subgroup analyses of trauma patients who experienced
falls (Appendix B.2), the most common external cause of trauma (75% of patients), and patients
with relatively low (16 - 24) and high (25 - 75) injury severity scores. The Appendix gives modeling
details (B.6-B.8) and multiple sensitivity analyses (B.9-B.1s).

We used SAS 9.3, R 3.0.2, and Stata 13.1 to carry out our analysis.
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2.3.6 IRB APPROVALS.

The research protocol was approved by the relevant institutional review boards at Harvard Univer-

sity and the National Bureau of Economic Research.

2.4 RESULTs

2.4.1 PATIENT CHARACTERISTICS

On average, patients who received BLS were older, more likely female, had higher comorbidity
scores, and, except for trauma, more likely black (Appendix B, Table B.1). They were also more likely

to be picked up at a skilled nursing facility and live in metropolitan areas.

2.4.2 TRAUMA

In instrumental-variable analysis, patients receiving BLS were 4.1 [1.3, 6.9] percentage points more
likely to survive to 9o days (Table 2.1). At1year and 2 years, survival was higher with BLS, but not

significantly so.

Table 2.1: BLS - ALS differences in health outcomes from county-level analysis. Instrumental variables estimates rep-
resent the effect on survival (in percentage points [95% confidence interval]) of receiving BLS rather than ALS for a
‘switcher’, who would receive BLS in an area with a higher rate of BLS utilization but ALS in an area with lower BLS uti-
lization.

Trauma Stroke AMI Respiratory failure
30 day survival 3.7 (1.3, 6.0] 53[2.7,8.0]  4.8[12,8.4] 4.2 [-0.9,9.4]
90 day survival 4.1[13,6.9] 4.3 [1.3,7.3] 5.9 [2.2, 9.6] 0.2 [-4.7,5.1]
1 year survival 1.8 [-1.4, 5.0] 3.6[0.4,6.8] 7.1[2.6,1.6] -2.9[-7.8,1.9]
2 year survival 2.4 [-1.3, 6.1] 3.2[-02,6.7] 8.4[27,142] -2.4[-7.2,23]
Poor neurological performance  -0.3 [-0.6,0.04] 0. [-0q,05] -0.7[15,02] -0.6[-2.s5,1.2]

In propensity-score analysis, survival after BLS was 6.0 [5.5, 6.5] percentage points higher at 30

days, and remained higher at intervals up to two years (Table 2.2). Much of the difference in survival
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between ALS and BLS patients is explained by higher mortality among ALS patients in the days
immediately following trauma (Figure 2.2A). After this period the near constancy of survival ratios
over time suggests that BLS patients survive as well as ALS patients. Patients receiving BLS were
0.22 [0.15, 0.30] percentage points less likely to experience poor neurological functioning by the time
of hospital discharge or hospital death, though there was no such statistically significant difference in
the county-level analysis.

Survival differences between BLS and ALS were more pronounced for patients with more severe
trauma (12.5 [4.7, 20.2]) than less severe trauma (2.7 [-0.2, 5.5]) in both instrumental-variable and
propensity-score analyses (Table 2..3). For patients experiencing falls, survival to 9o days was higher
with BLS in both instrumental-variable (7.1 [2.0, 12.3] percentage points) and propensity-score (4.7

(3.4, 5.9] percentage points) analyses.

2.4.3 STROKE

In instrumental-variable analysis, BLS survival was 3.6 [0.4, 6.8] percentage points higher at one
year (Table 2.1). Survival was 5.0 [4.2, 5.9] percentage points higher in propensity-score analysis at
one year (Table 2.2). As with trauma, this difference was largely explained by higher survival among
BLS patients in the initial period following the event (Figure 2.2B). BLS patients were 0.24 [0.16,
0.33] percentage points less likely to experience poor neurological functioning in the propensity-
score analysis, but there was no statistically significant difference between BLS and ALS patients in

instrumental-variable analysis.

2.4.4 ACUTE MYOCARDIAL INFARCTION

In instrumental-variable analysis the receipt of BLS versus ALS was associated with higher survival

at all intervals (Table 2.1). By two years, survival with BLS was 8.4 [2.7, 14.2] percentage points
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Figure 2.2: Kaplan-Meier analysis of survival after emergency event by ambulance service level. The inset shows the

survival probability over the full observational period, while the main graph shows it for the first 90 days. Data include

emergency medical events between January 1, 2006 and October 2,2011. Mortality was observed until December 31,
2011, when the data were censored, and thus there was follow-up to at least 90 days for each beneficiary. Plots use

different y-axis scales.
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Table 2.2: Major trauma and stroke health outcomes by ambulance service level, from individual-level analysis. Unless
noted otherwise, estimates are adjusted by propensity-score based balancing weights. Estimates for survival to 1 year
used data from 2006-2010, and estimates for survival to 2 years used data from 2006-2009.

BLS [95% CI]

ALS [95% CI]

Difference [95% CI]

Major trauma

N

30,919

48,768

Unadjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Poor neurological performance

955 [95.3, 95.7]
89.2 [88.9, 89.5]
81.7 [81.3, 82.2]
0.17 [0.12, 0.21]

90.1[89.8, 90.3]
83.1 [82.8, 83.5]

76.8 [76.5,77.2]
0.43 [0.37, 0.49]

5.4 [5.1,5.8]
6.1 5.6, 6.5]
4.9 [4.3,55]
-0.26 [-0.34, -0.19]

Adjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Survival to 1 year

Survival to 2 years

Poor neurological performance

95.4 [952, 95.7]
89.3 [88.9, 89.6]
82.2 [81.8, 82.7]
69.9 [69.3, 70.5]
59.3 [58.6, 60.0]
0.17 [0.12, 0.22]

90.7 [90.4, 91.0]
83.2 [82.9, 83.6]
76.4 [76.0,76.8]
65.0 [64.5, 65.5]
54.9 [543, 55.5]
0.39 [0.33, 0.45]

7 (43, 5.1]
6 o [s.s,6.5]
5 8 [5-2,6.4]
9 [4.1,5.7]
4~4 (3.4 53]
-0.22 [-0.30, -0.15

Stroke

N

19,985

100,004

Unadjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Poor neurological performance

94.6 [94.3, 95.0]
84.4 (83.9, 84.9]
76.6 [76.0,77.2]
0.23 [0.16, 0.30]

9L.9 [91.8, 92.1]

793 [79.1,79.6]
72.2 [72.0, 72.5]
0.46 [0.41, 0.50]

2.7 (2.4, 3.1]
5-1[4.5,5.6]
4.4 [3.7,5.0]
-0.23 [-0.30, -0.15]

Adjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Survival to 1 year

Survival to 2 years

Poor neurological performance

94.8 [94.5, 95.1]
84.7 [84.2, 85.2]
77.0 (76.4,77.6]
62.7 [61.9, 63.4]
51.6 [50.7, 52.4]
0.22 [0.15, 0.28]

91.4 [91.2, 91.6|
78.0[77.7,78:3]
70.6 [70.2,70.9]
577 [57.2, 58.1]
47.6 [47.1, 48.0]
0.46 [0.41, 0.51]

4 [3.0,3.8]
7 [6.,73]
4 [5.7,7.1]
0 [42,5.9]
0 [3.0,5.0]
—0.24 [-0.33,-0.16]

higher. By contrast, survival to 30 or 9o days did not significantly differ between ALS and BLS in
propensity-score analysis (Table 2.4). At 1year, however, survival was 1.7 [0.7, 2.6] percentage points
higher with ALS in the propensity-score analysis, and the Kaplan-Meier plot (Figure 2.2C) shows
the BLS and ALS curves remain separate after this period. Neurological performance did not sta-

tistically differ between BLS and ALS patients in the IV analysis, but in propensity-score analysis
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Table 2.3: BLS - ALS differences in 90-day survival by trauma subgroups. Individual-level estimates are the difference in
90-day survival between individuals who received BLS and ALS, adjusted by propensity-score based balancing weights.
The county-level estimates represent the effect on survival of receiving BLS rather than ALS for a ‘switcher’, who would
receive BLS in an area with a higher rate of BLS utilization but ALS in an area with lower BLS utilization. Differences

are in percentage points [95% confidence intervals]. Accidental falls were analyzed only for 2010 and 2011, in which
separate external cause code fields exist and are complete for 92% of observations.

Subgroup NBLS NALS Survival difference Survival difference
from county-level from individual-level
analysis analysis

New Injury Severity Scores 16 - 24 27,297 39,341 2.7 [-0.2,5.5] 4.4 [3.7,5.0]

New Injury Severity Scores 25-75 3,622 9,427 12.5 [4.7,20.2] 14.7 [12.9, 16.5]

Accidental falls 7,568 1,947 7.1 [2.0,12.3] 4.7 (3.4, 5.9]

patients receiving BLS were 0.9 [0.7, 1.1] percentage points less likely to experience poor neurological

functioning.

2.4.5 RESPIRATORY FAILURE

In instrumental-variable analysis there were no statistically significant differences in survival between
ALS and BLS (Table 2.1), but in propensity-score analysis survival with BLS was higher at all time
intervals (Table 2.4). Early survival gains among patients receiving BLS narrowed with time (Figure
2.2D). In propensity-score analysis, patients receiving BLS were 2.9 [2.6, 3.3] percentage points less

likely to experience poor neurological functioning.

2.5 DISCUSSION

We compared health outcomes after pre-hospital ALS versus BLS for Medicare patients with major
trauma, stroke, acute myocardial infarction, or respiratory failure. Because these high-acuity con-
ditions necessitate early optimization of care, one would expect any advantage of ALS over BLS to
manifest itself in these conditions. It is, however, clinically uncertain whether on-site care improves

outcomes due to early treatment or worsens them due to iatrogenic injury or delays in definitive
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Table 2.4: Acute myocardial infarction and respiratory failure health outcomes by ambulance service level, from
individual-level analysis. Unless noted otherwise, estimates are adjusted by propensity-score based balancing weights.
Estimates for survival to 1 year used data from 2006-2010, and estimates for survival to 2 years used data from 2006-
2009.

BLS [95% CI] ALS [95% CI] Difference [95% CI]

Acute myocardial infarction (AMI)

N 14,434
Unadjusted outcomes (%)

100,035

Survival to discharge 87.9(87.4,88.5] 87.6[87.4,87.8] 0.3[-0.3,0.9]
Survival to 30 days 77.5[76.8,78.2]  80.3[80.0,80.5] 2.8 [-3.5, -2.1]
Survival to 9o days 68.6[67.8,69.3]  73.6[73.3,73.9]  -5.1[-5.9,-4.3]

Poor neurological performance
Adjusted outcomes (%)

0.71 [0.58, 0.85] 2.07 [1.98, 2.15] -1.35 [-LsI, -L.19 ]

Survival to discharge 88.2(87.6,88.7] 87.2(86.9,87.4] 1.0[0.4,16]
Survival to 30 days 78.0(77.3,78.7]  78.1[77.8,78.4] -0.1[-0.9,0.6]
Survival to 9o days 69.4 [68.6,701] 70.a1[69.7,70.5] -0.7 [-1.6,0.1]
Survival to 1 year 54.4 [53.5, 55.3] 56.0 [55.6,56.5]  -L.7 [-2.6,-0.7]
Survival to 2 years 44.0 [43.0,45.0]  45.5[45.1, 46.0]  -L5[-2.6,-0.4]
Poor neurological performance 0.74 [0.60,0.89] 1.63 [L54, 1.72] -0.88 [-1.05, -0.72]
Respiratory failure

N 9,502 73,028

Unadjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Poor neurological performance

77.0 [76.1,77.8]
66.4 [65.4,67.3]
55.6 [54.6,56.6]
2.39 [2.08, 2.70]

752 [74.9,755]
64.3 [63.9, 64.6]
55-4 [55.05 55.7]

5.86 [5.69, 6.03]

1.8 [0.9,2.7]
2.1 (L1, 3.1]
0.2 [-0.9,1.2]

-3.47 [-3.83, 3.12]

Adjusted outcomes (%)

Survival to discharge

Survival to 30 days

Survival to 9o days

Survival to 1 year

Survival to 2 years

Poor neurological performance

77-4 [76.5,78.2]
66.8 [65.8, 67.8]
563 [55:3, 57:3]
40.4 [38.9, 41.1]
29.0 [27.9, 30.1]
2.42 [2.11, 2.73]

73.7 [73.3, 74.1]
62.3 [61.9, 62.7]
52.7 [52.3, 53.2]
37.4 [37.0,37.9]
27.6 [27.2,28.1]
5.36 [5.16, 5.55]

3.7 [2.7, 4.6]
45345 5:5]
3.6 [2.5, 4.7]
2.5 [1.4,3.7]
1.4 [0.1, 2.6]
-2.94 [-331, -2.57]

hospital management.

We used two methodological approaches to compare outcomes between BLS and ALS. Our pri-
mary approach was an instrumental-variable analysis of associations exploiting county-level varia-
tion in overall ALS prevalence to predict patients’ outcomes. This approach is not susceptible to

confounding by associations of ALS use with individual patient characteristics. Although it is po-
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tentially susceptible to confounding by unmeasured county-level factors such as hospital quality,
in a falsification analysis we found no association between county ALS use and survival of non-
ambulance surgical patients, suggesting such confounding is not present (Appendix B.1s).

Our second analysis used propensity score methods and so is susceptible to confounding by any
unobserved patient characteristics associated with both survival and ALS use. However, it is less
subject to county-level confounding than the instrumental-variable analysis since individuals are
compared both within and between counties. Furthermore, because ambulance dispatch protocols
prioritize ALS for these conditions, such individual-level confounding is likely to be minimal.

The two methodological approaches we employed rely on different comparisons and so will
generally estimate different effect sizes. However, using two distinct approaches allows us to test
the robustness of our inferences to a particular methodological strategy. We found that these ap-
proaches generally delivered similar qualitative results. The findings from both methods for trauma
and stroke showed that survival was higher at most intervals following the event for patients receiv-
ing BLS. For AMI and respiratory failure patients, however, the results differed. For AMI, survival
was higher with BLS for all intervals examined in the instrumental-variable analysis, whereas in the
propensity-score analysis, there was no detectable difference at 30 and 9o days and ALS survival was
greater at one and two years. For respiratory failure, survival was not different between BLS and
ALS in the instrumental-variable analysis, but survival was significantly higher with BLS for all time
intervals in the propensity-score analysis. Poor neurological performance was significantly more
likely among ALS than BLS patients for all diagnoses in propensity-score analyses, but there were no
significant differences in the instrumental-variable analyses.

In sum, with the possible exception of AMI, BLS produced significantly better or similar out-
comes than ALS. These findings are consistent with other evidence for cardiac arrest (Appendix
B.16) and trauma'®B3-537:3%:49-45  Little prior evidence, however, exists for stroke, AMI, and respi-

ratory failure. Based on reimbursement levels of ALS and BLS, our findings suggest that Medicare
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would have spent $322 million less on ambulance services in 2011 if all rides had been BLS*#, without
little or no detriment in patient outcomes.

We conducted several sensitivity analyses (Appendix B.9-B.1s), none of which changed the direc-
tion or significance of our main findings.

How might ALS result in worse outcomes? First, pre-hospital endotracheal intubation by ALS
providers has risks**. Successful intubation requires high competency and practice, but in one large
state the median paramedic performed only one intubation annually*. Bag-valve mask ventilation,
commonly performed as part of BLS, may improve outcomes in comparison'®54~%7. Second, ad-
ministration of pre-hospital intravenous fluids may actually harm trauma patients by disrupting
hemostasis, either by directly disrupting an already-formed clot or reflexively reducing peripheral
vascular resistance through the expansion of intravascular volume’%. Third, ALS may delay hos-

10,36,38,39  Eyven when clinical

pital care that would otherwise offer definitive clinical management
guidelines recommend not delaying transport for pre-hospital interventions, delays may still result
from the on-site provision of optional interventions that are intended to be performed en route to
the hospital °°.

Our study has potential limitations. A key limitation of any observational study is the possibility
of selection bias. To guard against such bias, we conducted two types of analyses that are subject to
different types of confounding. Our instrumental-variable analysis would be confounded if coun-
ties with poorer quality health care or higher severity had higher ALS penetration. We conducted
a falsification test (Appendix B.1s), however, that showed no association of ALS penetration with
non-emergent surgical mortality at the county level. Our propensity-score analysis would be biased
if ALS were more likely to be dispatched for more severely ill patients. Interviews we conducted
with 45 state EMS representatives, however, confirmed that BLS would only be dispatched for the

types of symptoms our non-trauma patients would exhibit if ALS were unavailable. We did not ask

the EMS representatives about dispatch decisions for trauma, but we controlled for trauma sever-
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ity so our analysis of individuals with major trauma is unlikely to be confounded by unobserved
severity differences between BLS and ALS.

Our propensity-score analysis would be subject to a selection bias if ALS-trained providers eval-
uated a patient and then provided care and billed at the BLS level. Given the substantial reimburse-
ment differences between ALS and BLS, however, ALS providers’ billing at BLS rates is unlikely
since Medicare allows billing at the ALS level if assessment by ALS-trained providers was considered
necessary at dispatch. Furthermore, analysis of survival differences in 2005 claims, which distinguish
ALS claims billed at the BLS level, showed little sensitivity to inclusion of this small group in ALS or
BLS categories (Appendix B.14).

Because we limited our samples to patients with hospital claims, another potential concern may
be that more BLS patients died at the scene or en route to the hospital. In sensitivity analyses that
considered these cases, however, the direction and significance of our findings was unchanged (Ap-
pendix B.9-B.10).

Finally, our results are limited to the Medicare population, and the administrative data we relied
on may not always accurately reflect diagnoses, comorbidities, or neurological performance.

In conclusion, our study questions whether advanced life support improves clinical outcomes af-
ter out-of-hospital emergency medical events. We studied medical conditions for which ALS would
be expected to manifest life-saving benefits over BLS, if these benefits exist. Our findings suggest

survival is longer with BLS and that BLS may also offer benefits for non-fatal outcomes.
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Ghosts on Ambulances, Courtesy of

Medicare

, but these discussions necessarily rely on incom-
FRAUD IN HEALTH CARE IS MUCH DISCUSSED, but these d ly rely
plete data®. Medicare fraud recovery efforts returned $3.3 billion to the federal treasury in fiscal

year 2014, about half a percent of Medicare spending in that year®*. The extent of fraud, however,
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is thought to be considerably larger, with one well known estimate that it accounts for at least 3 per-
cent and possibly as much as 10 percent of all US health care spending ®*. Geographic areas that are

extreme outliers for specific services have been suggested to indicate fraud. For example, in 2006 Mi-
ami Medicare home health spending per beneficiary was more than 6 times the national average and
durable medical equipment spending per beneficiary was more than 7 times the national average®* .

Most ‘big-data’ driven investigations have relied on single sources of data to infer patterns of
anomalous billing, e.g., identifying excessively high rates of durable medical equipment spending
in Part B claims submitted to Medicare. However, relatively little use has been made of claim link-
ages to identify patterns that might signal improper or incomplete billing. In this Perspective, we
highlight the potential importance of claim linkages to identify anomalous and plausibly fraudulent
billing in Medicare.

To demonstrate this strategy we investigated possible fraud in Medicare emergency ambulance
transports, using a 20% simple random sample of Medicare claims between 2006 and 2011. Emer-
gency ambulance transports, which are generated by a 911 dispatch protocol, account for the major-
ity of ground ambulance rides, 55%, and $3.05 billion in spending in 2011. In 2006, the Office of the
Inspector General (OIG) in the Department of Health and Human Services estimated that a quarter
of overall ambulance transports in 2002 (non-emergency and emergency) did not meet Medicare
coverage requirements and had been improperly paid. In particular, the OIG and in a more recent
report, the Medicare Payment Advisory Commission, raised fraud and abuse concerns over non-
emergency ambulance transports, in part due to uneven growth in this sector across providers and
geography?*. Aberrant billing in emergency ambulance transports has not been investigated to our
knowledge.

Linking together patient demographic information with ambulance, outpatient, and inpatient
claims, we looked for the inconsistency of having a claim for an ambulance transport with seemingly

no real patient - a ‘ghost’. We found a non-trivial number of such seemingly fraudulent claims.
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We focused on Basic and Advanced Life Support ground emergency ambulance claims (Health-
care Common Procedure Coding System codes Ao429, Ao427, and Ao433) from non-institutional
suppliers with a destination of a hospital and a pick-up location of residence, scene of accident or
acute event, skilled nursing facility (SNF), or non-SNF nursing home, and removed claims for which
payment was denied. Beneficiaries with more than one ride in the same day (1%) were dropped. By
matching beneficiary identification numbers, we linked ambulance claims to outpatient and inpa-
tient claims that had a date of service between two days before and up to seven days after the trans-
port. Therefore, we only used claims for ambulance transports that occurred between January 3rd
and December 24th of each year. Most beneficiaries (96.5%) had a matching claim within two days
of the transport, but the extended date range allowed for date errors in billing. We also dropped
beneficiaries who were enrolled in a Medicare Advantage plan at any point in the year, to exclude the
possibility the ambulance claim was submitted to Medicare and hospital claims to the plan. Finally,
we excluded patients with death dates that were not validated with the Social Security Administra-
tion or death dates prior to or within two days of the ambulance transport.

After these exclusions, 1.9% of claims billed to Medicare for emergency ambulance rides to a hos-
pital had no linked hospital claim in the subsequent days. These ‘ghost rides’ accounted for $309
million of ambulance spending over the 6 years of our sample.

As one might expect of fraudulent behavior, these ‘ghost rides’ were not evenly distributed across
suppliers or across counties. We examined data for the 8,163 largest suppliers and the 2,591 coun-
ties that account for 99.5% percent of the rides. We excluded 2.5% of observations for which a pro-
vide identifier was unavailable. We estimated the underlying distribution of ghost rides rates for
counties, and separately for suppliers, by nonparametric maximum likelihood using an expectation-
maximization (EM) algorithm. This approach accounted for sampling variation in our 20% sam-
ple, and the mean and standard deviations reported below describe these distributions. We defined

outliers as counties and suppliers that were 1.5 standard deviations or more above the mean. To esti-
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mate the percentage of counties and suppliers that were above this cutoff, we summed the estimated
probability distribution above the cutoft. To identify specific outliers with a high probability (0.95
or higher) of being above the cutoft, we summed the posterior probabilities (that is, the product of
the likelihood and the estimated underlying distribution) for each county and supplier above the
cutoff.

The mean ghost ride rates for both providers and counties equaled 1.7%, with standard deviations
(SD) equaling 1.4% and 1.3% respectively. We estimated that 355 (4.3%) suppliers had rates exceeding
3.7% (1.5 standard deviations above the mean for suppliers) and 128 (4.9%) counties had rates exceed-
ing 3.6% (1.5 standard deviations above the mean for counties). We identified 123 suppliers and 61
counties with at least a 0.95 probability of having a ghost ride rate exceeding 1.5 standard deviations
above the mean. Figure 3.1 shows the geographic distribution of raw ghost ride rates in Texas and
Florida, both of which had several outlying counties.

With 100% of claims, the Centers for Medicare and Medicaid Services (CMS) would be able to
identify many more outlying providers. Since suppliers often operate within a county and county
government agencies can be suppliers of emergency ambulance services too, there was overlap in the
two lists. For example, among the nine counties with more than 10% estimated ghost rides, five were
also represented in the provider list.

A few suppliers and counties caught our attention. County A has about 146,000 emergency
transports in our sample, of which 7% are ghost rides. Supplier B is a private company based out of
a southern state with approximately 43,000 emergency transports, of which 1%, or 4,900, are ghost
rides. Supplier C is a large city with almost 74,000 emergency transports, of which 8%, or 5,900,
have no hospital claim.

To summarize, our analysis identified a substantial number of claims for emergency ambulance
transports that are strongly suggestive of fraud. Through data linkages, the particular billing incon-

sistency we detected should be relatively easy for CMS and other payers to pursue. It may be useful
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Standard deviations of ghost ride rates in Texas
and Florida (and their equivalent percentages).

<-0.50 Std. Dev. (< 1.6863%)
= -0.50 - 0.50 Std. Dev. (1.6864% - 3.3732%)
= 0.50 - 1.5 Std. Dev. (3.3733% - 5.0602%)
> 1.5 Std. Dev. (>5.0602%)

Figure 3.1: Each individual square represents 100 rides (counties with less than 100 rides are represented with one
square). Groups of squares representing the total rides in a county are placed at the county’s geographic center. The
national mean ghost ride rate for counties was 1.7%, with standard deviations (SD) corrected for sampling variation
equaling 1.3%. The mean raw ghost ride rate for counties in Texas and Florida is 1.9%, with SD of 1.9%.
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for payers to check for other inconsistencies in ambulance billings by linking to hospital claims, e.g.,
using hospital-assigned diagnosis codes to assess the likelihood that ambulance claims were up-coded
from Basic to Advanced Life Support. Although such analyses cannot by themselves conclusively
distinguish billing anomalies due to fraud from data entry errors and similar explanations, they may
identify anomalous patterns with a high probability of confirmed fraud or inappropriate use upon
turther investigation. Unlocking this information through data linkages can help Medicare to pro-

mote proper and efficient use of health care resources.
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Supplementary Materials for Chapter 1

A1 HospiTaL QUALITY MEASURES

Because the quality of hospitals to which ALS and BLS ambulances transport patients might differ
systematically, we allow hospital quality to be part of the ambulance effect, while still controlling for
the average quality of available hospital options. We constructed this measure of hospital quality as

follows.
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First, we selected all patients who had ALS ambulance service to each hospital in 2009 - 2011, with
hospital-assigned diagnosis codes for acute myocardial infraction (AMI), congestive heart failure
(CHF), or pneumonia (PN) from our Medicare claims, excluding cardiac arrest cases. Second, we
obtained AMI, CHF, and PN 30-day mortality measures from Hospital Compare for 2009 - 2011,
and averaged over the three years within each measure. Third, we linked each Medicare observa-
tion from the first step with the hospital mortality measures from the second step for the hospital
to which the patient was taken. Fourth, we averaged the hospital mortality measures in the newly
linked dataset by ZIP codes. This created ZIP-code level hospital mortality averages, weighted by the
number of people visiting each hospital from the ZIP code.

In our analysis, we linked the ZIP code of each cardiac arrest patient with its corresponding ZIP
code level hospital mortality rates. In cases where no ZIP code level hospital mortality rates were
found, we linked with rates in ZIP codes that were nearby, based on sharing the same first four digits
and numerically nearest fifth digit. We averaged in cases where mortality rates were found for two
equidistant ZIP codes. Finally, for each observation, we computed an average of the ZIP code hospi-
tal mortality rates for AMI, CHF, and PN, weighted by the overall distribution of these cases in the
Medicare sample. This is the final measure we used to control for the quality of available hospitals in

a ZIP code.

A2  SENSITIVITY ANALYSIS: UNMEASURED SEVERITY IN ALS TRANSPORTS

Unmeasured severity differences between patients might have led to differential ambulance dispatch
and treatment, and also affected outcomes. Though this is unlikely in cardiac arrest cases, we used
comorbidity scores to estimate this potential bias.

We regressed survival to 9o days on a binary indicator for ambulance type. Our logistic regression

was specified similarly to our propensity score model in the main analysis. We incremented the av-
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erage comorbidity score for ALS cases until the coefficient for ambulance type was not statistically
significant at the 5% level.

The mean comorbidity score among BLS patients was s.s with a standard deviation of about 4,
and among ALS patients was 4.8 with a standard deviation of also about 4. The observed difference
in survival could be explained by an unobserved factor affecting ALS mortality that has an effect
equivalent to an average comorbidity score that is 5 units higher, or 9.8, which is about 1.3 standard
deviations above the observed mean ALS comorbidity score. It is unlikely that there was an unob-
served difference in severity of this magnitude. Thus, our main findings are not sensitive to unob-
served differences in severity. However, a limitation of this analysis was that comorbidity scores may

not be good constructs for measuring severity in acute events.

A.3 SENSITIVITY ANALYSIS: ADJUSTMENT USING LOGISTIC REGRESSION FOR OUTCOMES

In our main analysis, we balanced the covariate distributions between Basic Life Support (BLS) and
Advanced Life Support (ALS) by generating weights based on propensity scores. We developed our
propensity score model systematically and used likelihood ratio tests to compare model specifica-
tions. As an additional alternative, we used logistic regression to estimate survival to 30 days and to
90 days. This allowed us to check the modeling dependency of our results.

We regressed the outcomes, survival to 30 days and to 9o days, on a binary indicator for ambu-
lance type. Otherwise, our logistic regression used the same variables as our propensity score model
in the main analysis. To estimate the difference in outcomes, we predicted the probabilities of sur-
vival for the population that was transported by BLS for both types of ambulances. Thus, we simu-
late the average effect of ALS for the BLS population as we did in the main analysis.

Survival to 30 days was 3.6 percentage points (95% CI: 1.1, 7.8) higher and to 9o days was 2.8 per-

centage points higher (95% CI: 0.7, 6.9) with BLS level of service (Table A.1). The direction or signif-
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icance of our main findings did not change.

Table A.1: Survival outcomes by ambulance service level, adjusted by logistic regression model.

BLS (95% CI) ALS(95% CI) Difference (95% CI)
Survival to 30 days (%) 9.6 (3.2,21.3)  6.1(2.0,13.9) 3.6 (11,7.8)
Survival to 9o days (%) 8.1(2.2,19.9)  5.4(1.4,13.4)  2.8(0.7,6.9)

A.4 SENSITIVITY ANALYSIS: DEATH EN ROUTE TO HOSPITAL

Ambulance diagnosis coding is generally of poor quality, and thus we did not use it in our main
analysis. However, this may have excluded some beneficiaries who died prior to arrival at a hospital
and thus do not have hospital claims. According to Medicare rules, if a patient dies after dispatch
but prior to loading onto the truck, the ambulance service may only bill at the BLS level and indicate
this situation with a HCPCS modifier code. Thus, it is not possible to know the service level in these
cases. These cases are likely to often involve individuals who would not be considered revivable. If
a patient was transported and the ambulance correctly coded cardiac arrest, we would expect the
patient to have a death date on the same day as the ride, or at most, on the day after the ride. In this
analysis, we check the sensitivity of our main findings to the inclusion of this group.

We included in our sample those beneficiaries who were transported by ambulance, were iden-
tified as being in cardiac arrest by the ambulance crew, do not have a hospital claim, and have a
death date on the same day or the day after the ride. We identified 1,538 cases that met this criteria,
of which 151 were provided with BLS service and 1,387 were provided with ALS service. It was not
possible to exclude injury cases as codes for these diagnoses were generally not reported on ambu-
lance claims. We applied the same propensity score model specification and weighting approach as in
our main analysis, and estimated survival to 30 days and 9o days.

Survival to 30 days was 2.9 percentage points (95% CI: 1.5, 4.2) higher and to 9o days was 2.2 per-
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centage points higher (95% CI: 0.9, 3.5) with BLS than with ALS (Table A.2). The direction or sig-
nificance of our main findings did not change. However, this analysis was limited by the quality of

ambulance diagnosis coding.

Table A.2: Survival outcomes by ambulance service level, with beneficiaries who died prior to hospital arrival.

BLS (95% CI) ALS(9s% CI) Difference (95% CI)
Adjusted survival to 30 days (%) 8.8(7.4,10.1)  5.9(s.5,6.3) 2.9 (L5, 4.2)
Adjusted survival to 9o days (%) 7.4 (6.1, 8.6) 5.2(4.8,5.5) 2.2.(0.9,3.5)
Unadjusted survival to 9o days (%) 7.4 (6.1,8.6)  5.6(5.3,5.8) 1.8 (0.6, 3.0)

A.s SENSITIVITY ANALYSIS: DEATH IN THE FIELD

We excluded patients with only an ambulance claim, and therefore individuals who died at the
scene. If patients receiving BLS are more likely to die at the scene, our results may be confounded.
However, for two key reasons, it is not possible to use the Medicare claims data to assess the sensi-
tivity of our results to this exclusion. First, in cases where an individual is treated at the scene but
pronounced dead before being loaded into the truck, both ALS and BLS providers are paid at the
BLS level and therefore bill at this level. Second, these observations have only ambulance diagnosis
coding, which is unlikely to be accurate in general, but even more so in cases where there was little
time to observe the patient.

Therefore, we have used data sources other than the claims to estimate how deaths in the field
may have affected our estimates. While these datasets likely differ in key ways from the Medicare
sample, these approximate calculations provide reassurance.

In an analysis by the Resuscitation Outcomes Consortium (ROC)?°, approximately 63% of car-
diac arrest cases where resuscitation was attempted by EMS were transported to a hospital. In Table
A.3, we apply this figure to our Medicare sample to estimate the BLS/ALS distribution that would

be required among cases that died in the field in order to eliminate our observed effect.

46



Table A.3: BLS/ALS distribution required among additional field deaths to remove observed effect using ROC data. ROC,
Resuscitation Outcomes Consortium.

Medicare sample size Medicare sample Additional estimated Overall mortality rate
90-day mortality deaths in field
BLS 1,643 (s%) L1 1,934 (10%) IJJTQ;‘: = 96%
29, 17,409 __
ALS 31,292 (95%) 29,477 17,409 (90%) TS = 96%
Total 32,935 (63%) - 19,343 (37%) -

To remove our observed effect, 10% of field deaths would have to have been treated by BLS,
which is twice the overall percent of BLS in our sample. Further, the BLS mortality rate in the field
(56%) would have to be 1.5 times the ALS mortality rate in the field (37%). This does not seem plau-
sible.

We repeated the above analysis using data from the Cardiac Arrest Registry to Enhance Survival
(CARES)??, in which 22% of cases treated by EMS died in the field. In Table A.4, we show that to
remove the observed difference between BLS and ALS, about 13% of field deaths would have to be
treated by BLS. This is more than two times the overall percent of BLS in our sample. Also, the BLS
mortality rate in the field (44%) would have to be twice the ALS mortality rate in the field (22%).
Therefore, we do not believe accounting for deaths in the field would change the direction of our
observed effect.

Table A.4: BLS/ALS distribution required among additional field deaths to remove observed effect using CARES data.
CARES, Cardiac Arrest Registry to Enhance Survival.

Medicare sample size Medicare sample Additional estimated ~ Overall mortality rate
90-day mortality deaths in field
BLS  1,643(5%) LSII 1,208 (13%) % = 95%
> 8,081 __
ALS 31,292 (95%) 29,477 8,081 (87%) DAL = os%
Total 32,935 (78%) - 9,289 (22%) -
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A.6  SENSITIVITY ANALYSIS: NURSING HOMES

Although we control for pickup location in the main analysis, there may be concern about resid-
ual confounding related with interactions between being in a nursing home and other covariates.
For example, nursing home staft' may selectively treat some patients with a defibrillator or CPR and
therefore be able to request BLS service to the hospital. This would attribute survival to BLS in-
stead of the nursing home staff. To study the sensitivity of our results to this potential source of
confounding, we repeat our analysis for 30 day and 9o day survival using only observations that did
not originate at a nursing home.

After removing nursing home pickups, our sample includes 1,205 BLS and 26,896 ALS cases. Sur-
vival to 30 days was 3.5 percentage points (95% CI: 1.7, 5.3) higher and to 90 days was 3.2 percentage
points higher (95% CI: 1.5, 4.9) with BLS level of service (Table A.s). The direction or significance of

our main findings did not change.

Table A.5: Survival outcomes by ambulance service level for non-nursing home pickups.

BLS (95% CI) ALS(95% CI) Difference (95% CI)
Survival to 30 days (%) 10.5(8.7,12.2) 7.0(6.5,7.5) 3.5 (1.7,5.3)
Survival to 9o days (%) 9.4 (7.7,11.0)  6.2(5.7,6.7) 3.2 (L5, 4.9)

A.7 SENSITIVITY ANALYSIS: BLS REQUESTED ALS BACKUP

In areas with two-tier response, it may be that BLS providers request ALS backup when BLS is un-
able to resuscitate a patient. In these cases, ALS would be spuriously associated with worse out-
comes that otherwise should have been attributed to BLS.

Our sample includes only rides in which a transport occurred and a hospital bill was generated.

Thus, in order for these cases to be included in our sample, the patient would have to survive until
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ALS arrives, be considered appropriate for transport, and be provided with service in the Emergency
Department.

We estimate the number of BLS cases that would have to have been incorrectly attributed to ALS
as described above in order to change the direction of our findings. In our sample, 1,511 of 1,643 BLS
and 29,477 of 31,292 ALS patients did not survive to 9o days. For the calculation, we simply moved
patients who died under ALS to the group of patients who died under BLS until the proportion of
survivors was the same in both groups. We found this occurred when about 600 cases were removed
from the sample of ALS patients who had died by 9o days after the arrest and added to the sample
of BLS cases that had died by 9o days after the arrest. Thus, to change the direction of our findings,
600/(1,643+600) or 27% of BLS cases would have to have been in the situation where BLS could
not resuscitate and called ALS for backup, ALS treated the patient and transported the patient to
the hospital, and the Emergency Department provided service to the patient. This does not seem

plausible.

A.8 SENSITIVITY ANALYSIS: REMOVAL OF RESPIRATORY FAILURE OBSERVATIONS

Itis possible that outcomes after ALS and BLS are different for patients with cardiac arrest that orig-
inates from a cardiac etiology versus patients with a root respiratory cause. To study the sensitivity
of our results to this potential source of confounding, we repeat our analysis for 30 day and 9o day
survival for a sample that excludes patients with acute respiratory failure ICD-9CM diagnosis codes
(518.4, 518.5%, 518.81, and 518.82).

After removing acute respiratory failure cases, our sample includes 1,373 BLS and 25,999 ALS
cases. Survival to 30 days was 3.0 percentage points (95% CI: 1.7, 4.4) higher and to 9o days was 2.4
percentage points higher (95% CI: 1.2, 3.7) with BLS level of service (Table A.6). Though the overall

mortality rates are higher in these cases, the direction or significance of our main findings did not
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change.

Table A.6: Survival outcomes by ambulance service level for observations with likely primary cardiac etiology.

BLS (95% CI) ALS(95% CI) Difference (95% CI)
Survival to 30 days (%) 6.7 (5.4,8.0)  3.7(3.3, 4.0) 3.0 (1.7, 4.4)
Survival to 9o days (%) 5.8 (4.5,7.0) 3.3 (3.0, 3.6) 2.4 (1.2,3.7)

A.9 SENSITIVITY ANALYSIS: NARROWER DEFINITION OF POOR NEUROLOGICAL PERFOR-

MANCE

We inferred Cerebral Performance Categories (CPC) scale items 4 and s based on the presence of
ICD-9CM diagnosis codes for anoxic brain injury (348.1), coma (700.01), persistent vegetative state
(780.03), or brain dead (348.82). Since individuals with anoxic brain injury and coma can recover,
defining poor neurological performance using only diagnosis codes for persistent vegetative state
and brain dead may be more precise. Therefore, we repeat our analysis of poor neurological func-
tioning following ALS and BLS using this narrower specification.

After restricting the definition to only persistent vegetative state and brain death, a higher per-
centage of ALS than BLS patients experienced poor neurological functioning, both overall and
among only admitted patients, but the difference between ALS and BLS was not statistically sig-

nificant (Table A.7).

Table A.7: Neurological performance outcomes by ambulance service level using narrower definition of poor neurologi-
cal functioning.

BLS (95% CI) ALS (95% CI)  Difference (95% CI)

Poor neurological performance, overall (%) 0.06 (-0.05,0.2) 0.2(0.1,0.2) 0.1(-0.02, 0.3)
Poor neurological performance, admitted patients (%) 0.2 (-0.2,0.7) 0.7 (0.4, 1.0) 0.5 (-0.06,1.0)
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A.10 PROPENSITY SCORE REGRESSION PARAMETERS

Below, Table A.8 shows the regression parameters from the logistic regression model that was used
to predict the probability of receiving ALS. This was used to generate propensity scores and hence

balancing weights for the analysis.
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Table A.8: Coefficients from logistic regression model for predicting the propensity to receive ALS (log-odds ratios are
shown). “Includes non-SNF residential, domiciliary, custodial, or nursing home facilities. b Alzheimer’s disease/dementia
includes Alzheimer’s, related diseases, and senile dementia. “High if median household income > $40,000, low other-
wise, and predominantly black if more than 80% black, predominantly white if more than 80% white, and otherwise
integrated. dMetropoIitan areas have at least one urbanized area of 50,000 or more population, and micropolitan areas
have at least one urban cluster of at least 10,000 but less than 50,000 population. Both types of area have adjacent ter-
ritory that has a high degree of social and economic integration with the core as measured by commuting ties. *“Measure
described in detail in Section A.1.

Variable Coefficient 95% CI
Intercept 0.198 -0.921, 1.336
State fixed effects (not shown) - -

Female -0.134 -0.240, -0.029

Linear age spline: o - 65 years 0.388 0.253, 1.498
Linear age spline: 65 - 75 years 0.973 0.419, 1.501
Linear age spline: 75 - 80 years 0.642 0.063, 1.195
Linear age spline: 80 - 85 years 0.8s0 0.278,1.395
Linear age spline: 85 years and over 0.344 -0.383, 1.06I
Race Reference: White - -

Race: Asian -0.306 -0.665, 0.081
Race: Black -0.167 -0.323, -0.009
Race: Hispanic -0.224 -0.538, 0.110
Race: Other -0.303 -0.634, 0.054
Pickup Reference: Residence - -

Pickup: Non-SNF Nursing Home* -0.400 -0.648, -0.140
Pickup: SNF -0.797 -0.928, -0.665
Pickup: Scene 0.203 0.050, 0.359
Chronic condition: Alzheimer’s/Dementia® -0.192 -0.312, -0.072
Chronic condition: Diabetes -0.069 -0.176, 0.039
Chronic condition: Asthma 0.162 0.030, 0.298
Race/Income ZIP Mix® Reference: Black, High Income - -
Race/Income ZIP Mix: Black, Low Income -0.051 -0.568, 0.446
Race/Income ZIP Mix: Integrated, High Income 0.198 -0.262, 0.622
Race/Income ZIP Mix: Integrated, Low Income 0.163 -0.303, 0.596
Race/Income ZIP Mix: White, High Income 0.516 0.047, 0.952
Race/Income ZIP Mix; White, Low Income 0.315 -0.188, 0.792.
Metropolitan Countyd 0.166 -0.015, 0.345
Percent of Persons with 4 Plus Years of College in County  0.007 -0.001, 0.014
Percent General Practice Doctors in County -0.011 -0.017, -0.006
Any Medical School-Affiliated Hospital in County -0.079 -0.225, 0.065
Hospital Quality ZIP Measure® 0.218 0.161, 0.2775
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Supplementary Materials for Chapter 2

B.i SaMPLE CONSTRUCTION

We modeled outcomes of multiple rides for a beneficiary separated by at least the period of interest
(90 days, 1 year, or 2 years) in a given analysis. For example, in studying 9o-day survival, the index
ambulance transports for patients with multiple rides were restricted to those at least 9o days after

the last ride for the same diagnosis.
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We removed cases (about 3% of the sample) from Connecticut, Delaware, Hawaii, and the Dis-
trict of Columbia where billing practices make it difficult to determine whether ALS provided the
service. For example, in Delaware, ALS is supported by local government funds and does not gen-
erally bill Medicare. We excluded observations (about 11% of the sample) from rural counties, those
not meeting standard metropolitan or micropolitan criteria**, because they exhibited large differ-
ences on baseline characteristics from the metropolitan and micropolitan sample. Sample construc-
tion flow charts are show in Figures B.1-B.4. For outcomes beyond 9o days, we lacked data for in-
dividuals who entered our sample late in the observation period and so we appropriately trimmed
the end of our dataset (i.e., we dropped the last year of data for 1 year outcomes for those for whom
a year would have extended past the end of our period of observation and similarly for those for
whom the last two years of data for 2 year outcomes would have extended past the period of obser-
vation) and refit the models using the reduced datasets.

We linked ambulance claims to the nearest in time hospital claims using the beneficiary’s identi-
fication number and the date of service. This allowed us to use diagnosis codes that described the
medical emergency, rather than any subsequent developments. Our algorithm prioritized linking to
the nearest hospital claim (up to two days after the ride) and to inpatient over outpatient claims. In
each diagnosis group, at least 91% of ambulance transports were linked to inpatient claims. The vast
majority of ambulance transports linked to outpatient claims (at least 94% in each diagnosis group)
had either died in the emergency department and therefore were not admitted to the hospital or

were transferred to another health facility, according to discharge status codes.

B.. DiagnNnosis CODES

Trauma cases were identified by ICD-9CM codes 800 to 959.9, excluding late effects of injury, for-

eign bodies, complications, and burns. Falls were identified by external cause codes E880-E888 for
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Emergency rides to hospital*

8,211,146

/

Injury code on outpatient or
inpatient claim

2,252,593
Not maior trauma States with distinctive
2 15JG 994 & S ambulance billing practices
, , 2,446
Individuals with multiple rides
within 90 days, death date more
than two days prior to ride, L Rural counties**
inconsistent cc?;i:g, or missing [~ [ 9,362
4,104
4
Final sample
79,687
[
v v
ALS BLS
48,768 30,919

Figure B.1: Flowchart for trauma observations. Codes refer to ICD-9CM diagnosis codes. *Pick-up locations included
residence, scene of accident or acute event, skilled nursing facility (SNF), and non-SNF residential, domiciliary, custodial,
or nursing home facility. **Rural areas are defined as counties that do not meet the metropolitan or micropolitan criteria
as defined by the U.S. Bureau of the Census. Metropolitan counties have at least one urbanized area of 50,000 or more
population, and micropolitan counties have at least one urban cluster of at least 10,000 but less than 50,000 population.
Both types have adjacent territory that has a high degree of social and economic integration with the core as measured
by commuting ties.
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Emergency rides to hospital*

8,211,146

/

Primary diagnosis of stroke on
outpatient or inpatient claim

144,485
Individuals with multiple rides States with distinctive
within 90 days, death date more > ambulance billing practices
than two days prior to ride, - 3,61 7
inconsistent coding, or missing [~
data -
7’711 Rural counties™
“ 13,168
y
Final sample
119,989
I
v v
ALS BLS
100,004 19,985

Figure B.2: Flowchart for stroke observations. Codes refer to ICD-9CM diagnosis codes. *Pick-up locations included
residence, scene of accident or acute event, skilled nursing facility (SNF), and non-SNF residential, domiciliary, custodial,
or nursing home facility. **Rural areas are defined as counties that do not meet the metropolitan or micropolitan criteria
as defined by the U.S. Bureau of the Census. Metropolitan counties have at least one urbanized area of 50,000 or more
population, and micropolitan counties have at least one urban cluster of at least 10,000 but less than 50,000 population.
Both types have adjacent territory that has a high degree of social and economic integration with the core as measured
by commuting ties. An additional 74 observations were dropped from the final stroke sample for the county-level analy-
sis due to missing data on two county-level covariates.
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Emergency rides to hospital*

8,211,146

/

Primary diagnosis of stroke on
outpatient or inpatient claim

138,375
Individuals with multiple rides States with distinctive
within 90 days, death date more >{  ambulance billing practices
than two days prior to ride, - 3,41 6
inconsistent coding, or missing [~
data -
8’063 Rural counties
“ 12,423
y
Final sample
114,469
I
v v
ALS BLS
100,035 14,434

Figure B.3: Flowchart for AMI observations. Codes refer to ICD-9CM diagnosis codes. *Pick-up locations included
residence, scene of accident or acute event, skilled nursing facility (SNF), and non-SNF residential, domiciliary, custodial,
or nursing home facility. **Rural areas are defined as counties that do not meet the metropolitan or micropolitan criteria
as defined by the U.S. Bureau of the Census. Metropolitan counties have at least one urbanized area of 50,000 or more
population, and micropolitan counties have at least one urban cluster of at least 10,000 but less than 50,000 population.
Both types have adjacent territory that has a high degree of social and economic integration with the core as measured
by commuting ties.
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Emergency rides to hospital*

8,211,146

/

Primary diagnosis of stroke on
outpatient or inpatient claim

101,655
Individuals with multiple rides States with distinctive
within 90 days, death date more >{  ambulance billing practices
than two days prior to ride, - 2,51 6
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data -
8’268 Rural counties
- 8,341
y
Final sample
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I
v v
ALS BLS
73,028 9,502

Figure B.4: Flowchart for respiratory failure observations. Codes refer to ICD-9CM diagnosis codes. *Pick-up locations
included residence, scene of accident or acute event, skilled nursing facility (SNF), and non-SNF residential, domiciliary,
custodial, or nursing home facility. **Rural areas are defined as counties that do not meet the metropolitan or microp-
olitan criteria as defined by the U.S. Bureau of the Census. Metropolitan counties have at least one urbanized area of
50,000 or more population, and micropolitan counties have at least one urban cluster of at least 10,000 but less than
50,000 population. Both types have adjacent territory that has a high degree of social and economic integration with the
core as measured by commuting ties.
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accidental falls (excluding E887), and were analyzed only in 2010 and 2011, which, unlike earlier
years, include separate external cause code fields. Those fields were completed for 92% of observa-
tions.

We used primary diagnosis codes for AMI (only initial episodes, 410.x1), stroke (433, 434, or 436),
and respiratory failure (518.4, 518.81, or 518.82). Table B.1 shows differences in characteristics of BLS

and ALS patients by diagnosis group.

B.3 HeartHCARE CoMMON PROCEDURE CoDING SYSTEM (HCPCS) CoDES FOR AMBU-

LANCE SERVICES

We identified ground emergency ambulance rides by HCPCS codes Ao429 (BLS Emergency),
Ao427 (ALS Level 1 Emergency), and Ao433 (ALS Level 2)", with origin and destination modi-

fier codes RH, SH, NH, or EH, indicating a ride to a hospital from a residence, scene of accident or
acute event, skilled nursing facility (SNF), or non-SNF residential, domiciliary, custodial, or nursing
home facility. Providers can bill at the ALS2 level if certain advanced ALS procedures are performed.
Medicare pays a single amount for the service level and does not require an itemized list of inter-
ventions. Based on conversion factors for 2012, and prior to any adjustments or mileage payments,
reimbursement is about $343 for BLS Emergency, $407 for ALS1 Emergency, and $590 for ALS2,

which is always considered an emergency.

B.4 INJURY SEVERITY SCORES

We used the New Injury Severity Score (NISS)*%%~¢7 to identify major trauma cases (scores above
15) *7#% and to adjust for severity differences between ALS and BLS patients. The NISS is the sum
of squares of the three highest scores assigned to a patient on the Abbreviated Injury Scale (AIS),

which is a widely recognized system for classifying injuries by body region and severity *°. However,
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Table B.1: Differences in characteristics by ambulance service level before adjustments. Differences between BLS and

ALS observations were tested for statistical significance using Student’s t-test or chi-square test, as appropriate. 2

Chi-squared test of independence was used for this categorical variable. b Includes non-SNF residential, domiciliary,
custodial, or nursing home facilities. ¢ High if median household income > $40,000, low otherwise, and predominantly

black if more than 80% black, predominantly white if more than 80% white, and otherwise integrated. d Average dif-

ference between actual and predicted surgical survival for hospitals, weighted by number of patients transported to
hospital within ZIP code. Details are provided in supplementary materials. ¢ Metropolitan counties have at least one ur-

banized area of 50,000 or more population, and micropolitan areas have at least one urban cluster of at least 10,000 but
less than 50,000 population. Both types of area have adjacent territory that has a high degree of social and economic
integration with the core as measured by commuting ties.

Trauma AMI Stroke Resp. failure
BLS ALS BLS ALS BLS ALS BLS ALS

N 30,919 48,768 14,434 100,03§ 19,985 100,004 9,502 73,028

Mean age 82 79*r* 81 78+ 80 79** 75 74+

Female (%) 69 [ et 60 SR 63 6+ 59 $6***

Race (%) a arr arrr arrr
White 91 91 83 87 79 84 78 81
Black s s 12 9 1$ 12 16 14
Hispanic 2 1 3 2 3 2 3 2
Asian 1 1 2 1 2 1 1 1
Other 1 1 1 1 2 1 2 1

Comorbidity score [mean] 3.3 2.9%** 4.2 3.374% 3.6 D il 5.9 §.37%

Mean mileage 6.2 7.8%%* 6.4 7.5+ 6.4 7.5%%% 6.0 6.5%%*

Pick-up location (%) ar+ ar* artr arr
Residence 57 60 61 71 63 71 49 64
Skilled nursing 18 10 23 i 22 12 36 19

facility
Scene 18 24 10 14 10 be] 9 bid
Non-SNF nursing 6 s s 4 s 4 6 s

home”

ZIP: Income/race mix‘ (%) arr ar ar*r arr
High/white ST 52 45 49 44 48 39 43
Low/white 7 8 8 9 7 8 9 9
High/black o ) 1 ) I o 1 I
Low/black 1 2 1 2 2 2 2
High/integrated 30 27 31 27 33 28 33 29
Low/integrated 10 12 13 13 14 14 16 16

ZIP: Hospital quality 0.0001  -0.00I** | 0.0003 -0.0009™** | -0.0001 -o0.00*** | -0.0001  -0.00I***

measure?

County: Metropolitan® (%) 87 847%* 87 84%%* 87 8*** 87 gxx*

County: Any hospital with 68 61+F* 69 62%**F 69 63*** 69 63+F*

med schl affiliation (%)

County: Any trauma center 72 67+F* 74 67+* 75 68*** 74 68***

%)

County: General practice 14 16%** 14 16%** 14 1674* 14 167+*

doctors (%)

County: Persons with 4+ 25 24+ 24 234% 25 23%%* 24 23F%%

years of college (%)
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since direct AIS coding requires access to medical records, we used ICDPIC software to map ICD-
9CM discharge diagnosis codes to AIS scores **%. We included up to 30 diagnosis codes for each
observation and removed duplicate codes. Scores are assigned to observations with a valid trauma
ICD-9CM code (800 to 959.9 excluding 905-909 (late effects of injury), 930-939 (foreign bodies),

958 (complications), and 940-949 (burns)) that has both a known severity and body region in the
mapping tables. Since the NISS is neither normally distributed nor continuous, we specified it as

a categorical variable using a similar breakdown to other studies (<16, 16 - 24, >25) #7#%%9. We also
included a numerical variable in the regressions to adjust for within-category severity differences. We
analyzed the sensitivity of our trauma results to alternative measures of injury severity (see Appendix

B.).

B.s HosPITAL SURGICAL QUALITY SCORES

Quality of hospital care may be correlated with both outcomes and the propensity of a beneficiary
to receive pre-hospital ALS, and thus may be a confounder. However, hospital choice may also be
part of the ambulance effect. For example, ALS may be able to reach higher quality hospitals that
are further away due to field stabilization, or conversely, BLS may be able to reach a higher quality
hospital because it prioritized rapid transport. We wished to control for the pre-treatment hospital
quality effect (quality of hospitals available to ambulances picking up patients residing in a partic-
ular area), but not the post-treatment quality effect (quality of the specific hospital chosen for each
patient). To do so, we created measures of the surgical quality for non-ambulance patients of hospi-
tals used by ambulance patients from each ZIP code. We did this by first regressing 30-day survival
on age, sex, comorbidity score and fixed effects for surgical Diagnosis-Related Groups (DRGs), us-
ing all inpatient claims with a surgical DRG code between 2006 and 2011. We removed all transfers

from other hospitals, admissions from the Emergency Department, and beneficiaries overlapping
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with our ambulance cases from the sample. Therefore, this sample did not overlap with our ambu-
lance sample. Then, we subtracted the modeled survival probability from the binary 30-day survival
indicator for each observation. Finally, we averaged these residuals for each hospital, and then av-
eraged the hospital averages over beneficiaries in the same ZIP code, weighted by the number of
individuals transported to each hospital from that ZIP code. This weighting was diagnosis specific
so that the final measures for a given diagnosis reflected the average hospital quality experienced by
ambulance patients of that group. Individuals were matched to the hospital quality measure for
their ZIP code. In a small number of cases, an exact match was not found, so measures from the
nearest or nearest equidistant ZIP codes (determined by fixing the first three digits and considering

ZIP codes within a range of & 5 of the last two digits), were used directly or averaged.

B.6 CoOUNTY-LEVEL MODELS

The propensity score weighting approach in the individual-level analysis (Appendix B.8) is useful
for balancing observed covariates, but it does not account for unobserved confounders. Therefore,
we conducted an instrumental variables (IV) analysis. If the requirements for a valid IV analysis
are met, the instruments represent exogenous randomization in the treatment assignment that is
uncorrelated (after adjustment) with unobserved covariates. Thus, in theory, an IV analysis can
produce causal inferences comparable to randomized controlled trials over the range of support in
the data.

Our IV analysis replaced the individual-level ambulance assignment with a county-level proba-
bility of ALS use, predicted from measures of ALS use in other, non-overlapping diagnosis groups.
The IV analysis was conducted in several steps for each diagnosis group. In the first step, we fitted a
multivariate, multilevel model, with county-level random intercepts for each diagnosis group from a

multivariate normal distribution:
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ALS;; ~ Bernoulli( \;;)

Aic = P}"(ALSic‘oc, (8) = logitfl 22:1 Dicd[’xcd + Xicﬁd]

o = ~ N(o, %)

1 if case Zin county ¢ has diagnosis d,
Dicq =

o otherwise.

where 4, ¢, and 4 denote an individual, county, and diagnosis, respectively.

Above, ALS;, is an indicator variable for whether individual 7 in county ¢ received ALS or BLS
and follows a Bernoulli distribution with probability \;.. To ease computational problems due to
the size of the dataset and number of covariates, we first modeled the fixed effects using a logistic
regression, logit Pr(ALS;) = > 4_ Dica| X108 - We included the linear predictor, Xy = Xxte "
from this model as a covariate in the first step. Therefore, Xj, the linear predictor, represents the
individual- and county-level covariates that are modeled as fixed effects, including year, age, sex,
race, comorbidity score, pickup location, and mileage from scene to hospital at the individual level,
and urbanicity (metropolitan/micropolitan), percent over 25 years of age with four or more years
of college, percent of primary care practitioners, presence of any medical school-affiliated short-
term hospital, and presence of a trauma center at the county level. We also included the six-category
measure for racial makeup and household income at the ZIP code level, described in the individual-

level models section (Appendix B.8). In short, this model includes county-diagnosis-specific random
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intercepts and diagnosis-specific fixed effects for each covariate.

We used this fitted nonlinear model to predict the probability of receiving ALS for each individ-
ual in the sample from observed ALS use in the county for other diagnoses. We implemented this
by duplicating the dataset, trivially modifying the county labels in the copy, removing the target
diagnosis ambulance data from the copy, and fitting the model to a dataset that included both the
original full data and the duplicated data. This allowed the model to estimate the covariance struc-
ture of the random effects, and then this fitted model to make predictions for the diagnosis group
of interest (the set with trivially modified county labels whose outcomes were removed from the
copy). This procedure guaranteed that the predicted probabilities of ALS-use for the target diag-
nosis cases were independent of unobserved characteristics of these cases and depended solely on
shared resources and policy, and not any unobserved characteristics of the patients.

The next step was to use the predicted probability of ALS from the nonlinear model as the in-
strument in the two-stage least-squares IV analysis. We implemented the first stage of the two-stage-
least-squares analysis by regressing the actual binary indicator of whether an individual received
ALS or BLS on the predicted probability of ALS use and other covariates from the model above,
using a separate linear probability model for each diagnosis. Using the fitted values of the nonlinear
model as the instruments in a linear model addressed potential concerns about inconsistent esti-
mates. Specifically, we compared predicted and empirical ALS rates within deciles and found the
logistic model fitted the data significantly better than a linear probability model. Nonetheless, the
use of a nonlinear model in the first stage of an IV analysis will not generate consistent estimates in
the second stage if the nonlinear model is misspecified*°. It is possible, however, to generate consis-
tent estimates by feeding predictions from a nonlinear model into a linear first-stage model, which
was how we proceeded. The F- statistics for testing the null hypothesis that the instruments are not
strong predictors of ALS use were extremely high (F-statistic > 1,000 in every diagnosis group), indi-

cating that the predicted ALS probabilities from the non-linear model were very strong predictors in
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the linear probability models. Also, the coefficients of the predicted probability of ALS in the linear
models were close to 1 (between 0.97 and 1.06), indicating our logistic regression fit the data well.
The two key requirements for a valid IV analysis are that the instruments be good predictors of
the treatment, and that there be no causal pathway between the instruments and the final outcome
except through the treatment. Tables B.2 and B.3 show both that the random effects were highly
correlated across diagnoses (if a county was likely to use ALS for one diagnosis it was likely to use
it for others) and that the instruments had good predictive value, given the range of predictions
produced. Our sensitivity analysis (Appendix B.1s) indicates it is improbable that our findings are
biased by county-level confounding.

Table B.2: Correlations of county-level random effects in multilevel model for instruments.

Trauma AMI  Stroke
AMI 0.90
Stroke 0.91 0.97
Respiratory failure 0.86 0.98  0.96

Table B.3: Distributions of predicted probabilities of ALS from first stage instrumental variables model by diagnosis
group.

Diagnosis groups ~ Min  1st Quartile Median Mean 3rd Quartile Max

Trauma 0.01 0.49 0.64 0.61 0.77 1.01
Stroke 0.00 0.78 0.88 0.83 0.94 1.0I
AMI 0.10 0.84 0.92 0.87 0.95 1.00

Respiratory failure  o.1 0.86 0.92 0.88 0.96 1.0O

In the next step, the second stage of the two-stage-least-squares procedure, we estimated the effect
of the instrumented probability of ALS use, p.ALS;, on survival by fitting separate linear probability

models for each diagnosis group:

survival; ~ N (i, o)

w; = Pr(survivali|B,y) = pALS;B + Xiy
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Above, survival; is a binary variable for whether individual 7 survived to a specific number of days.
Here, we included all of the variables from the first stage and also added other covariates from the
final individual-level models for each diagnosis group of interest (Table B.4). These are denoted
by X;. We interpret @8 as the average change in survival probability for an individual who would
have received ALS in a higher ALS-use county but would have received BLS in a lower-ALS use
county. The standard errors in the second stage were adjusted, using the design effect (the ratio of
the actual variance under clustering to the variance under simple random sampling, estimated from
a single-stage model equivalent to the second stage of 2SLS), to account for the fact that individuals

are clustered within counties where they face common ALS penetration rates.

B.7 MEDIATORS

We adjusted for pre-treatment variables that are potential confounders of the treatment-outcome re-
lationship, but not for post-treatment variables, which are potential mediators of treatment effects.
For example, we controlled for distance from the scene to the hospital, which is a confounder, but
did not study transport time from the scene to the hospital, which is a mediator. Other factors, such
as the quality of CPR and the use of endotracheal intubation or specific intravenous drugs, are also

mediators of ALS and BLS effects, rather than confounders.

B.8 INDIVIDUAL-LEVEL MODELS

We aimed to estimate the difference between ALS and BLS in an individual’s survival probability
after a high-acuity medical emergency. However, since individuals were not randomly assigned to
ALS and BLS, a direct comparison might produce a biased estimate of this relationship. There-

fore, in addition to the instrumental variable analysis described in Appendix B.6, we conducted a

propensity score analysis by balancing the distributions of ALS and BLS over observed covariates
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Table B.4: Coefficients from linear probability models for 90-day survival from second stage county-level analysis.

“Includes non-SNF residential, domiciliary, custodial, or nursing home facilities. b Alzheimer’s disease/dementia includes

Alzheimer’s, related diseases, and senile dementia. “COPD = chronic obstructive pulmonary disease. dHigh if median

household income > $40,000, low otherwise, and predominantly black if more than 80% black, predominantly white if

more than 80% white, and otherwise integrated. ¢ Metropolitan counties have at least one urbanized area of 50,000 or

more population, and micropolitan areas have at least one urban cluster of at least 10,000 but less than 50,000 popula-

tion. Both types of area have adjacent territory that has a high degree of social and economic integration with the core

as measured by commuting ties.

Covariate Coefficient [95% CI]
Trauma Stroke AMI Respiratory failure
Intercept 0.804 [0.668, 0.940] 0.667 [0.474, 0.860] 0.977 [0.881, 1.073] 0.835 [0.749, 0.922]
Probability of ALS -0.041[-0.069, -0.013] -0.043[-0.073, -0.013] -0.059 [-0.096, -0.022] -0.002 [-0.051, 0.047]
State fixed effects (not included included included included
shown)
Linear age splines (not included included included included
shown)
Female 0.088 [0.081, 0.095] -0.005 [-0.010, 0.000] 0.026 [0.021, 0.031] 0.054 [0.046, 0.062]
Race
White (Ref) - - - -
Black 0.027 [0.015, 0.040] 0.045 [0.036, 0.053] 0.013 [0.002, 0.023] 0.048 [0.037, 0.059]
Hispanic 0.028 [0.008, 0.047] 0.033 [0.008, 0.058] 0.010 [-0.006, 0.027] 0.038 [0.013, 0.062]
Asian 0.008 [-0.018, 0.034] 0.039 [0.021, 0.057] 0.016 [-0.009, 0.040] 0.011 [-0.017, 0.038]
Other 0.016 [-0.004, 0.037] 0.0II [-0.009, 0.032] -0.005 [-0.027, 0.017] 0.000 [-0.028, 0.027]

Comorbidity score linear
splines (not shown)
Comorbidity score (no
splines)
ST segment elevation
New Injury Severity Score
(continuous)
New Injury Severity Score
(categorical)

16-24 (Ref)

25-40

41-49

50-75
Mileage linear splines (not
shown)
Mileage (no splines)
Pick-up location

Residence (Ref)

Skilled nursing
facility

Scene

Non-SNF nursing
home?*
Chronic conditions

Acute myocardial
infarction

Alzheimer’s
disease/dementia®

Atrial fibrillation

Chronic kidney
disease

included

0.007 [0.006, 0.009]

-0.192 [-0.210, -0.175]
-0.418 [-0.463, -0.373]
-0.664 [-0.746, -0.582]

0.000 [0.000, 0.00I]

-0.040 [-0.051, -0.028]

0.030 [0.023, 0.037]

-0.037 [-0.052, -0.022]

-0.023 [-0.034, -0.011]

-0.026 [-0.033, -0.019]

-0.049 [-0.057, -0.042]

included

included

-0.099 [-0.109, -0.090]

0.024 [0.016, 0.031]

-0.058 [-0.072, -0.043]

-0.028 [-0.038, -0.019]

-0.039 [-0.04s5, -0.032]

-0.065 [-0.072, -0.059]
-0.008 [-0.015, -0.002]

-0.020 [-0.021, -0.019]

-0.137 [-0.143, -0.130]

0.001 [0.001, 0.002]

-0.109 [-0.119, -0.099]
0.024 [0.017, 0.031]
-0.084 [-0.099, -0.068]
0.019 [0.011, 0.026]
-0.052 [-0.059, -0.04 4]

-0.007 [-0.013, 0.000]

-0.020 [-0.021, -0.019]

0.001 [0.000, 0.001]

-0.095 [-0.107, -0.084]
-0.003 [-0.014, 0.009]
-0.063 [-0.080, -0.046]
0.026 [0.016, 0.036]

-0.016 [-0.024, -0.008]
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Table B.4. (Continued) Coefficients from linear probability models for 90-day survival from second stage county-level

analysis
Covariate Coefficient [95% CI]
Trauma Stroke AMI Respiratory failure
COPD* 0.049 [0.041, 0.056]
Heart failure -0.013 [-0.020, -0.007] -0.021[-0.027, -0.014] -0.031 [-0.037, -0.025] 0.034 [0.025, 0.042]
Diabetes 0.002 [-0.005, 0.008] 0.008 [0.002, 0.014] -0.005 [-0.011, 0.001] 0.032 [0.025, 0.039]
Glaucoma 0.008 [0.002, 0.014] 0.006 [-0.003, 0.014]

Hip/pelvic fracture
Ischemic heart disease
Depression
Osteoperosis
Rheumatoid arthri-

tis/osteoarthritis

Stroke/transient

ischemic attack

Breast cancer
Colorectal cancer
Prostate cancer
Lung cancer
Anemia

Asthma
Hyperlipidemia
Hypertension
Acquired hypothy-

roidism

ZIP: Income/race mix

d

High/black (Ref)
HighAvhite
Low/white
Low/black
High/integrated
Low/integrated

ZIP: % Female

ZIP: % Over 65 years

ZIP: Hospital quality score
linear splines (not shown)
ZIP: Hospital quality score
(no splines)

County: Metropolitan®
County: Any hospital with
med schl affiliation
County: Any trauma center
County: General practice
doctors

County: Persons with 4+
years of college

Year

2006 (Ref)
2007
2008
2009
2010
2011

-0.003 [-0.010, 0.003]

0.036 [0.030, 0.042]

0.004 [-0.002, 0.010]

0.025 [0.011, 0.040]
-0.089 [-0.113, -0.064]
-0.002 [-0.009, 0.005]

0.026 [0.020, 0.033]

0.056 [0.012, 0.101]
0.052 [0.006, 0.098]
0.024 [-0.021, 0.069]
0.051[0.006, 0.096]
0.050 [0.005, 0.095]
0.000 [-0.001, 0.00I]
0.000 [0.000, 0.000]

0.248 [-0.046, 0.543]

-0.003 [-0.012, 0.006]
0.004 [-0.004, 0.012]

-0.002 [-0.010, 0.005]
0.000 [0.000, 0.00I]

0.001 [0.000, 0.001I]

0.002 [-0.008, 0.011]
0.001 [-0.009, 0.011]
0.010 [0.000, 0.019]
0.012 [0.002, 0.022]
0.015 [0.005, 0.026]

-0.021 [-0.030, -0.011]
0.017 [0.011, 0.023]
0.0I5 [0.010, 0.021]
0.0II [0.005, 0.018]

0.039 [0.034, 0.044]

0.021[0.016, 0.027]

0.005 [-0.009, 0.018]

-0.005 [-0.011, 0.001]

0.006 [-0.017, 0.029]
-0.007 [-0.031, 0.018]
-0.012 [-0.038, 0.014]
0.005 [-0.017, 0.028]
0.000 [-0.023, 0.022]
0.000 [-0.001, 0.002]
0.000 [-0.00I, 0.000]
included

0.012 [0.004, 0.021]
0.010 [0.003, 0.018]

0.001 [-0.006, 0.008]
0.000 [-0.00I, 0.000]

0.000 [0.000, 0.001]

0.002 [-0.006, 0.011]
0.008 [0.000, 0.016]
0.016 [0.008, 0.024]
0.016 [0.008, 0.023]
0.022 [0.013, 0.031]

-0.009 [-0.019, 0.001]
0.021 [0.015, 0.028]
0.017 [0.011, 0.022]

-0.001 [-0.006, 0.005]

0.017 [0.005, 0.030]

-0.004 [-0.009, 0.002]

0.051[0.044, 0.057]
-0.032 [-0.041, -0.023]
0.010 [0.003, 0.016]

0.017 [-0.034, 0.069]
0.009 [-0.043, 0.060]
0.033 [-0.019, 0.085]
0.009 [-0.041, 0.060]
0.015 [-0.035, 0.065]
0.001 [0.000, 0.002]
0.000 [0.000, 0.000]

0.371[0.139, 0.604]

0.007 [-0.001, 0.0I5]
0.004 [-0.003, 0.011]

0.002 [-0.005, 0.010]
0.000 [0.000, 0.000]

0.001 [0.001, 0.001]

-0.001 [-0.009, 0.006]
0.004 [-0.004, 0.013]
0.008 [-0.001, 0.017]
0.008 [0.000, 0.016]
0.014 [0.006, 0.023]

0.021[0.012, 0.029]
0.015 [0.007, 0.022]
-0.019 [-0.027, -0.010]
0.028 [0.021, 0.036]

-0.014 [-0.032, 0.005]
-0.004 [-0.020, 0.011]

-0.010 [-0.019, -0.002]
0.054 [0.046, 0.062]
0.020 [0.012, 0.028]

0.004 [-0.036, 0.043]
0.006 [-0.035, 0.047]
0.006 [-0.045, 0.056]
0.007 [-0.034, 0.048]
0.003 [-0.038, 0.04 4]

0.489 [0.219, 0.759]

0.014 [0.002, 0.026]
0.002 [-0.009, 0.013]

0.002 [-0.010, 0.013]
0.000 [0.000, 0.00I]

0.000 [0.000, 0.001]

0.009 [-0.001, 0.019]
0.020 [0.010, 0.031]
0.016 [0.006, 0.027]
0.013 [0.003, 0.023]
0.020 [0.007, 0.032]
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by weighting to remove the confounding of ambulance assignment with potential outcomes ™.
More specifically, our approach applied a balancing weight to each observation based on a mod-
eled propensity to receive ALS, 7;. Each ALS observation i was weighted by 1 — #; and each BLS
observation was weighted by 7;. Thus, conditional on 7;, the assignment to ambulance type is ran-
dom?. A key benefit of this approach is that it separates the study design from data analysis, since
the weights are derived without knowing the effects on outcomes. Since the distributions of ALS
and BLS over the covariates are similar after weighting, it does not require us to drop observations to
achieve balance in the observed variables.

To implement this procedure for each diagnosis group, we estimated the probability that a bene-

ficiary received ALS by fitting a logistic regression model:

ALS; ~ Bernoulli( ;)

wi = Pr(ALS;|B) = logir ' (X;f).

ALS; is an indicator variable for whether individual 7 received ALS or BLS. Covariates for in-
dividual 7 are denoted by X;. We used a structured approach to build the model for each diagnosis
group by testing groups of covariates with likelihood ratio tests and including those that were jointly
significant at the 5% level. At the individual level, these variables included age, sex, race, pickup lo-
cation type (e.g., residence, scene), mileage from pickup location to hospital, comorbidity score,
and indicator variables for 277 chronic conditions. Additionally, for trauma, we included New In-
jury Severity Scores, described above, and for AMI, an indicator for ST- segment elevation (ST if
410.71; non-ST if 410.x1 other than 410.71). We also tested state fixed effects. At the county level,
we tested for inclusion urbanicity (metropolitan/micropolitan), percent over 25 years of age with
four or more years of college, percent of primary care practitioners, and the presence of any medi-
cal school-affiliated short-term hospital. The ZIP code level covariates tested for inclusion were the

hospital surgical quality scores described above, percent of individuals over 65, and percent of fe-
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males. We also tested a six-category variable at the ZIP code level combining high (>$40,000) and
low median household income and racial composition (>80% black, >80% white, or integrated),
which have been shown to be important determinants of bystander-initiated CPR **. Some of the
continuous variables, such as age, were specified as linear splines to allow more flexibility in model
fit. Final model fits are shown in Table B.s.

We tested the differences in weighted mean outcomes between ALS and BLS using t tests, as
described in the main manuscript. A possible concern with this approach is that there may be in-
sufficient overlap in the propensity scores between ALS and BLS leading to an overreliance on
untestable functional form assumptions. However, the propensity score distributions were simi-
lar for BLS and ALS cases (Table B.6).

The key assumption of this analysis is that there are no unobserved covariates that are correlated
with both ambulance treatment assignment and survival, so the variation remaining after adjust-
ments is random and exogenous to health and healthcare. Because we believe this assumption is

satisfied, we interpret the adjusted difference in survival as the effect of receiving ALS versus BLS.

B.9 SENSITIVITY ANALYSIS: DEATH IN THE FIELD

We excluded patients with only an ambulance claim, and therefore individuals who died at the
scene. If patients receiving BLS are more likely to die at the scene, our sample may be biased. How-
ever, for two key reasons, it is not possible to use the Medicare claims data to assess the sensitivity

of our results to this exclusion. First, in cases where an individual is treated at the scene but pro-
nounced dead before being loaded into the truck, both ALS and BLS providers are paid at the BLS
level and therefore usually bill at this level. Second, these observations have only ambulance diagno-
sis coding, which is unlikely to be accurate in general, but even more so in cases where there was little

time to observe the patient.
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Table B.5: Coefficients from individual-level logistic regression models for predicting the propensity to receive ALS (log-

odds ratios are shown). “Includes non-SNF residential, domiciliary, custodial, or nursing home facilities. bAlzheimer’s

disease/dementia includes Alzheimer’s, related diseases, and senile dementia. “‘COPD = chronic obstructive pulmonary
disease. dHigh if median household income > $40,000, low otherwise, and predominantly black if more than 80% black,
predominantly white if more than 80% white, and otherwise integrated. ¢ Metropolitan counties have at least one ur-
banized area of 50,000 or more population, and micropolitan areas have at least one urban cluster of at least 10,000 but
less than 50,000 population. Both types of area have adjacent territory that has a high degree of social and economic

integration with the core as measured by commuting ties.

Covariate Coefficient [95% CI]
Trauma Stroke AMI Respiratory failure
Intercept 2.694 [1.541, 3.935] -0.176 [-1.416, 1.079] 2.644 [1.972, 3.326] 2.442 [1.958, 2.933]
State fixed effects (not included included included included
shown)
Linear age splines (not included included included included
shown)
Female -0.2I§ [-0.252, -0.178] 0.005 [-0.032, 0.041] -0.135 [-0.175, -0.095] -0.006 [-0.057, 0.045]
Race
White (Ref) - - - -
Black -0.008 [-0.088, 0.072] -0.113 [-0.169, -0.057] -0.260 [-0.330, -0.189] -0.064 [-0.137, 0.010]
Hispanic -0.159 [-0.285, -0.032] -0.382 [-0.490, -0.273] -0.285 [-0.409, -0.158] -0.288 [-0.426, -0.146]
Asian -0.120 [-0.265, 0.025] -0.166 [-0.299, -0.031] -0.274 [-0.427, -0.117] -0.067 [-0.254, 0.126]
Other -0.121 [-0.260, 0.019] -0.307 [-0.439, -0.173] -0.137 [-0.290, 0.020] -0.219 [-0.387, -0.046]

Comorbidity score linear
splines (not shown)
Comorbidity score (no
splines)
ST segment elevation
New Injury Severity Score
(continuous)
New Injury Severity Score
(categorical)

16-24 (Ref)

25-40

41-49

50-75
Mileage linear splines (not
shown)
Mileage (no splines)
Pick-up location

Residence (Ref)

Skilled nursing
facility

Scene

Non-SNF nursing
home?*
Chronic conditions

Acute myocardial
infarction

Alzheimer’s
disease/dementia®

Atrial fibrillation

Chronic kidney
disease

included

-0.0I§ [-0.022, -0.007]

0.651[0.558, 0.743]
1184 [0.956, 1.414]
1.709 [1.267, 2.157]

0.019 [0.017, 0.022]

-0.513 [-0.562, -0.464]
0.105 [0.06 4, 0.146]
-0.283[-0.352, -0.214]
0.059 [-0.002, 0.120]
-0.104 [-0.141, -0.068]

0.101 [0.062, 0.141]

included

included

-0.660 [-0.706, -0.613]
0.241[0.187, 0.295]
-0.387 [-0.464, -0.308]
0.061 [0.004, 0.119]
-0.085 [-0.124, -0.046]

0.253 [0.214, 0.291]
0.026 [-0.014, 0.065]

-0.023 [-0.030, -0.016]

0.262 [0.220, 0.304]

0.002 [-0.001, 0.005]

-0.620 [-0.673, -0.567]
0.289 [0.227, 0.350]
-0.390 [-0.478, -0.301]
0.132 [0.084, 0.180]
-0.172 [-0.218, -0.127]

0.074 [0.029, 0.119]

-0.008 [-0.016, -0.001]

-0.006 [-0.009, -0.003]

-0.827 [-0.882, -0.771]
0.168 [0.089, 0.249]
-0.496 [-0.597, -0.393]
0.183 [0.113, 0.254]

-0.074 [-0.127, -0.020]
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Table B.5 (Continued) Coefficients from individual-level logistic regression models for predicting the propensity to

receive ALS (log-odds ratios are shown)

Covariate Coefficient [95% CI]
Trauma Stroke AMI Respiratory failure
COPrD* 0.049 [-0.005, 0.103]
Heart failure -0.039 [-0.077, 0.000] 0.026 [-0.014, 0.067] 0.022 [-0.026, 0.070] -0.036 [-0.096, 0.025]
Diabetes -0.047 [-0.081, -0.012]  -0.038 [-0.073, -0.004] -0.014 [-0.054, 0.027] -0.011 [-0.061, 0.038]
Glaucoma -0.076 [-0.113, -0.038] -0.052 [-0.107, 0.003]

Hip/pelvic fracture

Ischemic heart disease

Depression
Osteoperosis

Rheumatoid arthri-

tis/osteoarthritis
Stroke/transient

ischemic attack
Breast cancer
Colorectal cancer
Prostate cancer
Lung cancer
Anemia
Asthma
Hyperlipidemia
Hypertension
Acquired hypothy-

roidism

ZIP: Income/race mix?
High/black (Ref)
HighAvhite
Low/white
Low/black
High/integrated
Low/integrated

ZIP: % Female

ZIP: % Over 65 years

ZIP: Hospital quality score
linear splines (not shown)
ZIP: Hospital quality score

(no splines)
County: Metropolitan®

County: Any hospital with

med schl affiliation

County: Any trauma center
County: General practice

doctors
County: Persons with 4+
years of college

0.022 [-0.016, 0.06I]

-0.041[-0.075, -0.007]

0.024 [-0.012, 0.060]

-0.046 [-0.118, 0.026]
-0.079 [-0.190, 0.034]
-0.080 [-0.118, -0.042]

0.076 [0.039, 0.113]

0.796 [0.508, 1.086]
0.773 [0.480, 1.070]
0.318 [-0.010, 0.649]
0.621[0.334, 0.911]
0.632 [0.343, 0.923]
0.002 [-0.005, 0.010]
-0.004 [-0.007, -0.00I]

-3.293 [-5.038, -1.569]

0.029 [-0.023, 0.082]
-0.035 [-0.079, 0.008]

-0.172 [-0.215, -0.129]
-0.004 [-0.006, -0.002]

0.005 [0.002, 0.007]

-0.013[-0.072, 0.047]
0.009 [-0.032, 0.050]
-0.049 [-0.08s, -0.013]
0.020 [-0.021, 0.061]
-0.046 [-0.083, -0.010]

-0.024 [-0.058, 0.011]

-0.099 [-0.177, -0.020]

-0.094 [-0.135, -0.054]

0.653 [0.459, 0.844]
0.633[0.429, 0.834]
0.225[0.006, 0.442]
0.352 [0.161, 0.541]
0.308 [0.115, 0.499]
-0.0I0 [-0.019, -0.002]
-0.003[-0.006, 0.000]
included

0.024 [-0.031, 0.079]
-0.072 [-0.114, -0.031]

-0.118 [-0.181, -0.053]
0.076 [0.023, 0.129]
-0.078 [-0.119, -0.037]

-0.052 [-0.094, -0.010]

0.077 [-0.008, 0.163]

-0.097 [-0.145, -0.048]

0.112 [0.063, 0.161]
-0.069 [-0.147, 0.008]
0.044 [-0.001, 0.088]

0.885 [0.664, 1.102]
0.722.[0.491, 0.949]
0.439 [0.189, 0.687]
0.588 [0.369, 0.803]
0.585 [0.364, 0.802]
0.001 [-0.008, 0.010]
-0.004 [-0.007, -0.001I]

-2.791[-4.713, -0.935]
0.101 [0.038, 0.164]
-0.054 [-0.105, -0.004]
-0.002 [-0.004, 0.000]

0.004 [0.001, 0.006]

0.027 [-0.034, 0.088]
-0.080 [-0.129, -0.031]
0.009 [-0.047, 0.065]
-0.067 [-0.117, -0.017]

-0.040 [-0.150, 0.072]
0.032 [-0.075, 0.140]

-0.077 [-0.139, -0.0I5]
-0.083 [-0.135, -0.031]
0.026 [-0.027, 0.079]

0.606 [0.350, 0.854]
0.383[0.116, 0.642]
0.009 [-0.277, 0.289]

0.302[0.049, 0.547]
0.227 [-0.028, 0.474]

-2.318 [-4.349, -0.385]
0.184 [0.107, 0.260]
-0.070 [-0.131, -0.009]
0.000 [-0.003, 0.002]

0.002 [-0.001, 0.005]
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Table B.6: Propensity score distributions from individual-level analysis for ALS and BLS by diagnosis group.

Diagnosis groups ~ Level Min 1stQuartile Median Mean 3rd Quartile Max

Trauma ALS o0.08 0.58 0.69 0.67 0.78 .00

BLS o.05 0.38 0.55 0.52 0.67 0.98

Stroke ALS ouay 0.82 0.89 0.8s 0.92 0.99

BLS o0.09 0.63 0.79 0.74 0.88 0.98

AMI ALS  o.r 0.86 0.91 0.89 0.94 1.00

BLS ouay 0.72 0.83 0.79 0.90 0.99

Respiratory failure ~ ALS 036 0.86 0.92 0.89 0.94 0.99
BLS o031 0.76 0.85 0.82 0.91 0.99

Therefore, we used data sources other than the claims to estimate how deaths in the field may
have affected our estimates. While these datasets likely differ in key ways from the Medicare sam-
ple, these approximate calculations provide reassurance. For cardiac arrest, we used data from the
Resuscitation Outcomes Consortium (ROC)** and the Cardiac Arrest Registry to Enhance Sur-
vival (CARES)? to estimate the proportion of cases who died at the scene among those patients for
whom resuscitation was attempted by the ambulance crew. This analysis is discussed in Appendix
A.s and the Supplementary Materials of our JAMA Internal Medicine article*’, and we concluded
that accounting for deaths at the scene would not change the direction of our observed effect in the
individual-level analysis.

For other diagnosis groups, we used tabulations generated by the Data Cube of the National
EMS Information System, which collates data from participating local and state agencies”®. Specifi-
cally, we used the fields “EMS Primary Impression”, which provides diagnosis information, and “In-
cident Patient Disposition”, which indicates whether a patient was transported or died at the scene.
In the case of death at the scene, it is not possible to tell whether resuscitation had been attempted.
For each diagnosis group, we estimated the proportion of patients who died at the scene, and ap-
plied this to the Medicare sample. Then we estimated the BLS/ALS distributions that would be re-

quired among cases that died in the field in order to eliminate our observed effects in the individual-
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level analyses. Tables B.7a through B.7c walk through this process. We were not able to find a suit-
able diagnosis group in the NEMSIS data for AMIs, but if an AMI did result in cardiac arrest, it
would be captured in our cardiac arrest analysis.

Though the NEMSIS data are not a random sample, the proportion of individuals with cardiac
arrest who died at the scene (35%) is consistent with estimates from the ROC (37%) and CARES
(22%). Therefore, the estimates of the proportion of patients who died at the scene in other diagno-
sis groups may also be reasonable. Table B.7c shows that even if all of the estimated deaths in field
occurred among BLS patients, the overall raw ALS mortality rate for stroke and trauma patients
would still be higher than the BLS raw mortality rate. In the case of respiratory arrest, about 21% of
the estimated field deaths would have to have occurred among BLS cases to remove the observed ef-
fect. This is almost twice the proportion of BLS respiratory failure cases in the sample. Further, the
BLS mortality rate in the field would have to be 16%, twice the ALS mortality rate in the field (8%).
Therefore, we do not believe accounting for deaths in the field would change the direction of our

estimates.

Table B.7a: Estimated additional field deaths in Medicare sample using NEMSIS data.

NEMSIS: NEMSIS: NEMSIS: NEMSIS: Medicare Additional
Diagnosis Dead at Treated, % dead at sample size  estimated
scene trans- scene Medicare
ported by deaths in
EMS field
Stroke / CVA 232 487,222 0.05 119,989 57
Traumatic Injury 12,597 3,695,228 0.34 79,687 271
Respiratory arrest 1,823 47,924 3.7 82,530 3,024

B.io SENSITIVITY ANALYSIS: DEATH EN ROUTE TO HOSPITAL

Since ambulance diagnosis coding is generally of poor quality, we did not use it in our main analysis.

This may have excluded some beneficiaries who died prior to arrival at a hospital and thus do not
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Table B.7b: BLS/ALS distributions in Medicare sample

Diagnosis group ~ BLS Sample  ALS Sample BLS: Deaths by 30 days ~ ALS: Deaths by 30 days

Stroke 19,985 (17%) 100,004 (83%) 3,116 20,666
Trauma 30,919 (39%) 48,768 (61%) 3,339 8,222
Respiratory arrest 9,502 (12%) 73,028 (88%) 3,196 26,086

Table B.7c: BLS/ALS distributions required among additional field deaths to remove observed effects

Diagnosis group Estimated  BLS:Field  ALS: Field BLS: ALS:
deaths in deaths deaths Mortality Mortality
field required required rate(%) rate (%)

Stroke 57 57 (100%) o (o%) 16 21

Trauma 271 271 (100%) o (0%) o) 17

Respiratory arrest 3,024 625 (21%) 2,399 (79%) 38 38

have hospital claims. The previous sensitivity analysis addresses situations in which patients died at
the scene. Since those cases have special billing rules, we provided approximate calculations based
on other data sources. However, if a patient died en route, it is possible to use the Medicare data to
conduct a sensitivity analysis.

If a patient was loaded but died en route, we would expect the patient to have a death date on the
same day as the ride, or at most, on the day after the ride. In this analysis we checked the sensitivity
of our main findings to the inclusion of transported cases without a hospital claim who died within
a day after the transport. The key limitation of this analysis is that it depends heavily on ambulance
coding. We applied the same propensity score model specification and weighting approach as in our
main analysis (we dropped injury severity scores from the trauma model because these were difficult
to compute for observations with only ambulance rides), and estimated survival to 9o days for each
diagnosis group (Table B.8). AMI is not shown below because no BLS and 13 ALS observations
were identified as having died en route, which is too few to affect the main findings. Overall, the

direction and significance of our main findings did not change.
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Table B.8: Survival outcomes after including cases that died en route to hospital.

Additional BLS Additional ALS Overall difference
cases died en route cases died en route (BLS - ALS) in 9o-day
survival [95% CI]
Trauma 113 368 7.1[6.4,7.7]
Stroke 4 48 6.5[5.8,7.2]
Respiratory failure 25 102 3.5 [2.4, 4.6]

B.ar  SENSITIVITY ANALYSIS: OUT-OF-HOSPITAL VS. IN-HOSPITAL EVENT

We used principal diagnosis codes to identify stroke, AMI, and respiratory failure observations for
inclusion in our sample, since these are more likely to be accurate than admitting diagnosis codes
(also known as “reason for patient visit” codes). However, this raises the possibility that patients ex-
perienced the acute event in-hospital rather than out-of-hospital. Furthermore, if in-hospital events
are more likely to have better outcomes, this would introduce selection bias in our individual-level
analysis if this occurred differentially among BLS or ALS cases. However, this scenario is highly un-
likely given that the prodromal symptoms of the conditions under study would generate an ALS
dispatch if it is available. Further, our county-level analysis is not subject to this type of unobserved
selection bias.

Nonetheless, as an additional check, we carried out an additional analysis in which we limited our
samples to only patients with admitting or “reason for visit” codes for stroke, AMI, and respiratory
failure. In 2010 and 2011, reason for visit codes in outpatient claims were newly created fields, which
are incomplete for most of our observations, and we therefore limit this analysis to ambulance trans-
ports in 2006 - 2009. Table B.g shows differences in 9o-day survival between BLS and ALS based on
the same methodology used in the individual-level analyses. The direction and significance of our

main findings did not change.
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Table B.9: Survival outcomes after limiting samples to patients with admitting or “reason for visit” codes for the relevant

diagnoses.
NBLS NALS BLSgo-daysurvival ALS go-day survival ~Difference [95% CI]
Stroke 6,851 35,635 75.2 68.1 7.1 5.9, 8.3]
AMI 3,426 23,060  70.0 69.4 0.6 [-1.2,2.3]
Respiratory failure 2,839 24,112 56.5 53.0 3.4 [1.4, 5.4]

B.rz  SENSITIVITY ANALYSIS: INJURY SEVERITY SCORES

We analyzed the sensitivity of our trauma results to common alternative specifications of injury
severity based on different transformations of the ICD-mapped Abbreviated Injury Scale (AIS)
scores *°. These included: the Injury Severity Score (ISS), which is the sum of the squares of the
highest AIS scores in the three most severely injured body regions; the maximum overall AIS score;
and the modified Anatomic Profile Score (APS), which is the sum of the maximum AIS and for
each of three body regions, the square root of the sum of the squares of all AIS scores for all serious
injuries (AIS above 3). We created these measures using ICDPIC software .

We used the same methodological approaches as in our main analysis, and only replaced the NISS
with the alternate specification of injury severity. Specifically, the ISS scores were simultaneously
specified categorically and numerically, similar to the NISS in the main analysis, the Max AIS scores
were specified categorically and continuously in separate sensitivity analyses, and the APS was speci-
fied continuously. For consistency, we used the same sample as in our main analysis, which included
observations with NISS scores indicating major trauma. Table B.1o demonstrates our results are not

sensitive to alternative specifications of injury severity.
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Table B.10: Marginal difference in 90-day survival from receiving BLS instead of ALS by alternative specifications of

injury severity.

Marginal difference in 9o-day survival from
receiving BLS instead of ALS [95% CI]

Individual-level analysis

ISS 4.6 [4.0,5.2]
Max AIS (Numerical) 4.8 [4.2,5.4]
Max AIS (Categorical) 4.6 [4.0,5.3]
APS 4.4 [3.8,5.0]
County-level analysis

ISS 3.8 [1.2, 6.5]

Max AIS (Numerical) 3.7 [1.0, 6.3]
Max AIS (Categorical) 3.4 [0.8, 6.0]
APS 4.0 [1.4, 6.6]

B.;3  SENSITIVITY ANALYSIS: IDENTIFYING RESPIRATORY FAILURE USING PRIMARY AND

SECONDARY DIAGNOSES

The location of acute respiratory failure in the sequence of diagnosis codes may be inconsistent. The
underlying cause of illness may be recorded first, with respiratory failure recorded as the secondary
diagnosis. However, after the first few diagnosis codes, respiratory failure may be included to record
patient history, among other reasons. In this analysis, we repeat the individual and county-level
analyses for respiratory failure for a sample that includes primary and secondary diagnosis codes
rather than just the primary code.

Our sample included 28,970 BLS and 168,018 ALS observations. The individual-level results were
statistically significant and in the same direction as our main results (Table B.1x). Our county-level
results were also similar to our main analysis. However, with the larger sample size, at 1 year and 2

years confidence intervals are tighter.

78



Table B.11: Marginal difference in survival from receiving BLS instead of ALS for respiratory failure sample based on
primary and secondary diagnosis codes.

Marginal difference in survival from receiv-
ing BLS instead of ALS [95% CI]

Individual-level analysis

Survival to 30 days 3.0 [2.3,3.6]
Survival to 9o days 2.0 [L.4,2.7]
Survival to 1 year L7 [1.0,2.4]
Survival to 2 years 0.8 [0.06,1.6]
County-level analysis

Survival to 30 days 3.0 [-0.4, 6.3]
Survival to 9o days 0.5 [-2.9, 4.0]
Survival to 1 year -0.3 [-3.6,3.0]
Survival to 2 years -0.1[-3.3,3.0]

B4 SENsiTIVITY ANALYSIS: ALS BILLING AT THE BLS LEVEL

If ALS-trained providers bill at the BLS level for lower acuity patients, BLS would be spuriously as-
sociated with better outcomes, and the estimates in the individual-level analysis would be biased. We
have addressed this possibility in part with our interviews of EMS officials in 45 states, which con-
firmed that for our non-trauma observations, BLS would only be dispatched if ALS is unavailable.
(As noted in the text, we did not ask about trauma.) We have further argued that since Medicare
billing rules allow ALS to bill at the ALS level if assessment by an ALS-trained crew was considered
necessary at dispatch, it is unlikely that ALS would bill at the BLS level given the differences in re-
imbursement rates. Nonetheless, this may still be a concern. Here, we make use of a special HCPCS
code in 2005 to estimate the occurrence of ALS billing at the BLS level and its impact on our esti-
mates.

During the implementation of the National Ambulance Fee Schedule in 2002-2005, Medicare
blended payments to providers based on reasonable charges and the new Fee Schedule. During this
period Medicare allowed ALS-level crews to bill at the ALS level even if the transport did not meet

the Fee Schedule rules for the reasonable charge portion of the payment, i.e. that ALS assessment
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be considered necessary at dispatch or ALS-level treatment be provided. Providers were required to
submit a special HCPCS code for these situations, Q3or19 (“ALS Vehicle Used, Emergency Trans-
port, No ALS Service Furnished”). Therefore, by identifying observations that billed using code
Qj3019, we can estimate the occurrence of ALS-trained crews billing at the BLS level.

We identified observations in 2005 that met the key criteria for inclusion in our diagnosis group
samples in the main analysis. We included cardiac arrest for comparison purposes. Table B.12 shows
that 1-3% of non-trauma cases were cared for by ALS crews that billed at the BLS level in 2005. In
trauma cases, this happened in about 13% of cases. However, there is relatively little difference in
survival between the ALS groups that billed at the BLS level (ALS-BLS) and the other two groups
(ALS-ALS and BLS), and the directions of the survival differences are not consistent across groups.
Moreover, when we added the ALS-BLS cases to both the ALS-ALS and BLS groups we found
the overall survival for ALS and BLS to change only slightly. The final rows of the table show that
estimates of the survival differences between ALS and BLS are similar under both assumptions, i.e.,
that the ALS-BLS cases were in subsequent years billed at the ALS level or alternatively, at the BLS
level.

In sum, the occurrence of ALS billing at the BLS level is low for all diagnosis groups, except
trauma. More importantly, the cases where ALS billed for BLS do not exhibit survival patterns that
suggest these patients were systematically better off. Finally, there is little difference in the overall
estimates of survival differences between ALS and BLS whether the ALS-BLS cases are included in
either the ALS or BLS groups. Therefore, we do not believe our individual-level analysis is sensitive
to this potential bias. Our county-level analysis is not subject to confounding based on unobserved

patient characteristics, and therefore, this potential issue does not apply to that analysis.

8o



Table B.12: Effect of ALS billing at the BLS level on survival in 2005 claims by diagnosis group. ALS-ALS refers to ALS-
trained crews billing at the ALS level, ALS-BLS refers to ALS-trained crews billing at the BLS level.

Stroke Trauma Respiratory failure =~ AMI

Sample sizes

ALS-ALS 16,182 6,202 12,483 17,354
ALS-BLS 577 913 211 391
BLS 3,171 3,767 1,532 2,288
Survival to 30 days (%)

ALS-ALS 78.9 82.2 64.2 78.7
ALS-BLS 86.0 89.2 60.2 75.2
BLS 82.9 89.0 63.1 76.4
If ALS-BLS analyzed as ALS 79.1 83.1 64.1 78.6
If ALS-BLS analyzed as BLS 83.4 89.0 62.8 76.3
Estimates of survival differences between ALS and BLS (%)

If ALS-BLS analyzed as ALS 3.8 -5.9 Lo 2.1

If ALS-BLS analyzed as BLS -4.6 -6.9 1.4 2.4
Difference in estimates 0.7 0.9 -0.4 -0.3

B.IS SENSITIVITY ANALYSIS: FALSIFICATION TEST FOR COUNTY-LEVEL INSTRUMENTAL

VARIABLES ANALYSIS

Though the instrumental variables analysis is plausibly immune to confounding from unobserved
individual characteristics, it is vulnerable to unobserved variation at the county level that is related
to both ALS penetration rates and outcomes. Specifically, the exclusion restriction of instrumental
variables analysis requires that after adjusting for observed county-level covariates, there is no path-
way between the rates of ALS use in other diagnosis groups and survival in the diagnosis group of
interest other than that through the association of both with ALS use in the focal diagnosis. To ad-
dress this issue we constructed a falsification test to assess the validity of the necessary assumptions.
Our test applied the IV analysis approach to an outcome that should zor be affected by the pre-
dicted likelihood of ALS for pre-hospital care. If this analysis were to find a significant effect of ALS
on such an outcome, it would imply that the IV analysis is biased due to unmeasured confounding

or some other statistical artifact. Conversely, if there were a lack of an effect, our confidence in the
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validity of the assumptions of the main analysis would increase.

We believe hospital treatment quality is the single most important area-level variable that could
be potentially correlated with both overall ALS use and survival, and therefore, the largest source
of concern for confounding at the county level. This is because we have no direct measures of the
status of patients at the moment when the ambulances dropped them at the hospital; our endpoints
all combine the effects of pre-hospital treatment with those of a hospital stay of some duration.
Therefore, our falsification test applied the IV analysis approach to outcomes for surgery patients
who did not arrive at the hospital by ambulance and who therefore should not be affected by the
rates of ALS use. More specifically, we used the surgical cases from the hospital quality measure that
were inpatient cases and excluded admissions through the Emergency Department and any cases
appearing in the ambulance samples.

To conduct this analysis, we generated county-level estimates of ALS use using an approach simi-
lar to the step for creating the instrumental variables in the main analysis. We made two key changes
to this model. First, since our interest is in county-level variation, we used a standardized sample at
the individual level (i.e., we used a fixed set of individual characteristics) to predict ALS use, which
allowed us to remove individual-level variation between counties. Second, we specified a single set of
county-level fixed and random effects, rather than diagnosis-specific eftects, which were not relevant
to prediction for non-ambulance diagnoses and in any case are highly correlated.

Next, we created a county-level 30-day survival outcome measure for surgery patients using the
same approach as in creating our hospital surgical quality measure (Appendix B.s), but aggregated to
the county rather than the ZIP code level. We weighted the averaged hospital scores for a county by
the number of surgery patients that attended each hospital from the county, rather than the number
of ambulance patients that were transported to each hospital.

We regressed the county-level hospital quality measure based on survival among surgery patients

on predicted county-level ALS probabilities in a linear model, adjusted for state fixed effects and the
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county-level covariates used in our main analysis, but excluding surgical quality. The coefficient of
county-level ALS use, which is the main predictor of interest, was exceedingly small (-0.000r1) and
insignificant (p = o.79). This negative finding gave us additional confidence in the validity of our

main analysis.

B.16 CaARDIAC ARREST

We compared ALS and BLS after out-of-hospital non-traumatic cardiac arrest in an earlier study*,
which used a methodological approach similar to the individual-level analysis. We found survival
was higher with BLS than ALS to 30 days by 3.4 [1.9, 4.8] percentage points, to 9o days by 2.6 [1.2,
4.0] percentage points, to 1 year by 1.8 [0.4, 3.3] percentage points, and to 2 years by 2.9 [0.8, 5.0]
percentage points. Patients who received ALS were also 3.5 [2.2, 4.8] percentage points more likely
to have poor neurological performance. Here, we show the results from applying the instrumental
variables approach to cardiac arrest. We only used observations from 2009 to 2011 (because of coding
differences before 2009), and removed overlapping cases from the other diagnosis groups. Other-
wise, we followed the same procedure as for the other diagnosis groups.

Survival to 30 days was higher with BLS by 4.0 [-1.0, 9.0] percentage points. Survival was also
higher with BLS at 9o days by 2.6 [-2.6, 7.9] percentage points, at 1 year by 1.5 [-2.5, 5.5] percentage
points, and at 2 years by 3.5 [-2.2, 9.2] percentage points. None of the survival differences are statis-
tically significant, perhaps because of the greater sample size requirements of the county-level in-
strumental variables analysis compared to the individual-level analysis. However, the directions and
magnitudes of estimated survival effects are similar to the individual-level results from our earlier
analysis. Patients who received ALS were 8.7 [2.3, 15.2] percentage points more likely to have poor

neurological performance.
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