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Abstract

Since its introduction one decade ago, the quantum algorithm for chemistry has been among

the most anticipated applications of quantum computers. However, as the age of industrial

quantum technology dawns, so has the realization that even “polynomial” resource over-

heads are often prohibitive. There remains a large gap between the capabilities of existing

hardware and the resources required to quantum compute classically intractable problems

in chemistry. The primary contribution of this dissertation is to take meaningful steps to-

wards reducing the costs of three approaches to quantum computing chemistry. First, we

discuss how chemistry problems can be embedded in Hamiltonians suitable for commercially

manufactured quantum annealing machines. We introduce schemes for more efficiently com-

piling problems to annealing Hamiltonians and apply the techniques to problems in protein

folding, gene expression, and cheminformatics. Second, we introduce the first adiabatic

quantum algorithm for fermionic simulation. Towards this end, we develop tools which

embed arbitrary universal Hamiltonians in constrained hardware at a reduced cost. Finally,

we turn our attention to the digital quantum algorithm for chemistry. By exploiting the

locality of physical interactions, we quadratically reduce the number of terms which must

be simulated. By analyzing the scaling of time discretization errors in terms of chemical

properties, we obtain significantly tighter bounds on the minimum number of time steps

which must be simulated. Also included in this dissertation is a protocol for preparing

configuration interaction states that is asymptotically superior to all prior results and the

details of the most accurate experimental quantum simulation of chemistry ever performed.
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Chapter 1

Introduction

During the several hundred years leading up to the discovery of quantum mechanics it

was common to think of the universe as a vast, intricate clockwork mechanism, deterministi-

cally ticking along with its gears governed by the laws of classical physics [138]. Eventually,

computers replaced machines in the popular metaphors and we began to understand dynam-

ics as a special case of information processing. Since the instantaneous state of a physical

system is literally “information”, any time evolution altering the system performs a com-

putation on information encoded in the state. Accordingly, the task of modeling a physical

system is equivalent to simulating a computation performed by nature. We might wonder

then, how powerful a computer is nature? Ignoring a few technicalities having to do with

analog computation and chaos, the answer is that nature seems to process information just

like any other computer, except when things get really small or really cold, that is, when

things get quantum. This is because merely representing the state of a quantum system on a

classical computer appears to require an amount of information that increases exponentially

with the size of the system. Such systems are said to store “quantum information”.

For more than fifty years after the discovery of quantum mechanics, the exponential

classical overhead required to simulate quantum systems was, to some, a source of despair.
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Paul Dirac perfectly summed up the situation in 1929 [92],

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

It did not occur to Dirac that instead of surrendering to the complexity of quantum me-

chanics, we might harness it as a computational resource. In 1982, Richard Feynman first1

suggested that we could build a computer which operated according to the laws of quantum

mechanics in order to efficiently simulate quantum dynamics [107]. The field of quantum

computing would remain rather obscure until 1994 when Peter Shor revealed a quantum

algorithm for integer factorization (a problem having nothing to do with physics) which is

exponentially more efficient than the best known classical algorithm [251].

Several papers in the late nineties would formalize Feynman’s notion of a universal

quantum computer capable of simulating arbitrary quantum dynamics. In 1995, Alexei

Kitaev published a general method (today known as the quantum phase estimation algo-

rithm) for efficiently estimating the eigenvalues of unitary operators such as those which

evolve quantum systems forward in time [168]. The following year, Seth Lloyd showed that

any local quantum system could be efficiently simulated using a set of standard quantum

logic gates [183]. Subsequent work by Abrams and Lloyd demonstrated how this could be

done for fermions [1] and provided a method for combining phase estimation and quantum

simulation in order to find the eigenvalues and eigenvectors of a quantum system [2]. While

providing a prescription for evolving quantum states under arbitrary Hamiltonians, these

papers did not demonstrate how one might efficiently prepare physical states of interest in

the first place.

1Though unknown to most Western scientists at the time, Yuri Manin made a similar suggestion in paper
published in Russian two years prior [189].
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In 2000, Farhi et al. introduced a novel paradigm for quantum computation, known

as adiabatic quantum computing [104]. In this model, a quantum system is initialized in

the ground state of a trivial Hamiltonian and then the Hamiltonian is slowly perturbed

into a Hamiltonian whose ground state encodes the solution to a nontrivial computational

problem. If the perturbation acts sufficiently slowly, the system will remain in its instan-

taneous ground state throughout the evolution. In 2005, Aspuru-Guzik et al. conjectured

that because the natural processes that lead to the formation of molecules are generally

efficient, adiabatic state preparation can be used to efficiently prepare the ground states of

chemical Hamiltonians [11]. With this assumption, Aspuru-Guzik et al. demonstrated that

by combining adiabatic state preparation, Kitaev’s quantum phase estimation algorithm

and Lloyd’s scheme for universal simulation, one can efficiently compute the ground state

energy of molecules, thus solving the central problem of quantum chemistry known as the

electronic structure problem [11].

Ten years have passed since Aspuru-Guzik et al.’s seminal work and quantum comput-

ers now appear to be in the very early stages of industrialization. Today there is optimism

that we are technologically close to the ability to manufacture a coherent quantum annealing

machine or universal quantum computer with hundreds of high quality qubits. This dis-

sertation explores strategies for using such hypothetical “early industrial” quantum devices

to have an impact on problems in chemistry. The subsequent chapters seek to realistically

analyze and practically improve upon the prospects for implementing classically intractable

chemistry problems on a near future quantum device. Early work in this field, such as [11],

often described algorithms intended for a very abstract device with the goal of demonstrating

a quantum algorithm to be exponentially faster than the classical alternative. By contrast,

this dissertation is often concerned with precise sub-asymptotic scalings of resources.
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1.1 Quantum Annealing

In the first section, this dissertation explores resource efficient strategies for encoding

problems of relevance to chemistry in Hamiltonians suitable for quantum annealing. Quan-

tum annealing is the quantum analog of simulated annealing [167, 7, 8]. In particular, it is

an analog quantum algorithm which heuristically optimizes classical energy landscapes by

means of quantum tunneling [108, 159, 57, 238]. In the last few years, quantum annealing

has been a central focus of the quantum computing field due, in part, to the prominence of

a Canadian company, D-Wave Systems, which manufactures quantum annealing machines

with over 500 superconducting qubits [60]. While the extent to which the current (fairly

noisy) generation of devices demonstrate a quantum advantage (if any) is the subject of

considerable debate [154, 43, 225, 87, 278, 254, 174, 233, 45], their construction represents

a significant step forward towards a coherent quantum annealer.

The typical implementation of quantum annealing, and the one implemented by D-

Wave Systems, involves a transverse Ising Hamiltonian of the form

H = −A (t)
∑
i

σxi +B (t)Hprob (1.1)

where the diagonal “problem Hamiltonian” is a programmable classical Ising model,

Hprob = −
∑
{i,j}∈G

Jijσ
z
i σ

z
j −

∑
i

hiσ
z
i . (1.2)

Typically, the time-dependent parameters A (t) and B (t) are chosen so that B (0) = A (T ) =

0 where T is the total evolution time. For instance, a typical annealing schedule is to

choose A (t) = t/T and B (t) = 1 − t/T . The connectivity graph of the hardware, G,

defines which qubits are coupled together. Engineering considerations typically limit this

graph to bounded degree. For instance, D-Wave devices use the so-called “Chimera graph”
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which is approximately a 5-regular graph [273, 164]. One programs a quantum annealer via

specification of the local fields hi and couplings Jij defined over the graph G.

The system begins in the lowest eigenstate of the transverse field Hamiltonian, which

is the uniform superposition state,

1√
2N

N⊗
i=1

(|0〉i + |1〉i) . (1.3)

Thus, the system starts maximally delocalized over the energy landscape defined by the

diagonal Hamiltonian, Hprob. As the transverse field is slowly turned off and the problem

Hamiltonian is slowly turned on, the wavefunction localizes in the computational basis.

The total time T required to ensure the system ends up in the lowest energy eigenstate is

inversely proportional to a polynomial power of the gap between the lowest eigenstate and

first excited state [67]. In some cases, this gap shrinks exponentially fast with the size of the

problem. Thus, in general, we do not expect that quantum annealing can efficiently solve

NP-Hard optimization problems in the worst cases. However, there are known problems

for which quantum annealing still affords an exponential speedup over any known classical

algorithm [256]. Furthermore, there is evidence that multiqubit cotunneling is a generic

computational resource which might provide an average case scaling advantage in terms of

problem size or residual energy (i.e. solution quality) [201, 202, 45, 6, 212]. Even if quantum

annealing is only capable of reducing the exponential prefactor in the exact scaling of the

hardest instances of certain problems, this would be of significant industrial value and has

obvious applications in many fields of research.

For many graphs G, determining the lowest energy eigenstate of the Hamiltonian in

Eq. 1.2 is formally NP-Hard [23]. Accordingly, there exists a constructive procedure for

efficiently embedding any optimization problem in the class NP in those models. Thus, there

is nothing novel or surprising about the ability to efficiently cast a classical optimization

5



problem as the ground state of a quantum annealing Hamiltonian. However, in this context

“efficient” has a fairly esoteric definition. NP-Hardness only guarantees that a problem can

be embedded with “polynomial overhead”. In practice, this overhead is often enormous

and naive embedding schemes frequently require a quantum annealer with hundreds of

thousands of qubits (or more) to solve a problem whose solution space can be described with

hundreds of bits. Section I of this dissertation is about strategies for intelligently encoding

optimization problems as the ground state of the Ising model so that classically intractable

problems of relevance to chemistry can be attempted on existing quantum hardware.

Qubits are not the only resource that limits one’s ability to encode optimization prob-

lems on existing hardware. As mentioned earlier, the connectivity of the qubits is deter-

mined by engineering considerations and it is unrealistic to expect that one will be able to

realize a fully-connected Ising model. While it is always possible to find a minor embedding

of a graph having arbitrary connectivity in any NP-Hard graph, doing so often requires

expensive classical preprocessing and ultimately comes at the cost of many quantum bits

[73, 75, 273]. Furthermore, engineering considerations also constrain the range of available

couplings (this is known as control precision). Accordingly, Chapter 2 is about practi-

cal strategies for compiling arbitrary optimization problems involving variables connected

through k-body interactions into a form suitable for quantum annealing with minimal con-

trol precision overhead.

In Chapter 3, we demonstrate several resource-efficient strategies for embedding lattice

protein folding in a Hamilonian suitable for quantum annealing. This chapter significantly

improves the encodings for this problem described in [220] and explains in detail the strate-

gies used for an experimental implementation of this problem in [221]. Chapter 4 is about

learning the structure of Bayesian networks, a problem of importance to understanding
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metabolic pathways and gene expression networks [93, 111]. This problem represents a

major bottleneck in computational genomics and the embedding strategy we employ has

the desirable (and unusual) quality that the connectivity graph of the qubits is determined

by problem size and does not depend on the particular instance. Chapter 5 is about a

supervised machine learning problem, binary classification robust to noise, which is widely

applicable in high-throughput materials or pharmaceutical screening and cheminformatics

[293, 180]. This work improves upon embeddings first introduced in [85].

1.2 Adiabatic Quantum Computing

Adiabatic quantum computing is a variant on quantum annealing in which the system

remains in the ground state throughout the entire evolution and the final Hamiltonian does

not need to be diagonal. In fact, a universal adiabatic quantum computer (one capable

of efficiently executing any gate model algorithm) requires the ability to implement a final

Hamiltonian for which determining the ground state energy is complete for quantum com-

puting, i.e. QMA-Complete [165, 3]. A QMA-Complete Hamiltonian is one that can embed

the eigenspectrum of any Hamiltonian in the class QMA as its lowest eigenvalues while

requiring (at most) polynomially more resources [165]. Ever since [165] we have known that

the eigenspectrum of any class of spin Hamiltonians having fixed locality can be embed-

ded in the low energy sector of a 2-local Hamiltonian. More recently we have known that

many 2-local Hamiltonians with restricted connectivity and limited interactions are QMA-

Complete [38, 216, 82]. Perhaps the simplest example of a QMA-Complete Hamiltonian is

the ZZXX Ising model [38],

H = −
∑
ij

Jijσ
z
i σ

z
j −

∑
ij

Kijσ
x
i σ

x
j −

∑
i

hiσ
z
i −

∑
i

giσ
x
i . (1.4)
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The electronic structure Hamiltonian can be written in second quantization as,

H =
∑
pqrs

hpqrsa
†
pa
†
qasar +

∑
pq

hpqa
†
paq (1.5)

in which creation and annihilation operators act on a basis of orthogonal spin orbitals, {ϕi}

and the one-electron and two-electron integrals are

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
ϕq(σ) (1.6)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(1.7)

where σi contains spatial and spin degrees of freedom for the electrons [15]. The operators

a†p and ar obey the fermionic anti-commutation relations

{a†p, ar} = δp,r, {a†p, a†r} = {ap, ar} = 0. (1.8)

The primary accomplishment of Chapter 7 is to map the Hamiltonian in Eq. 1.5 to an

experimentally realizable universal Hamiltonian (e.g. Eq. 1.4). This task is complicated by

the fact that the typical mapping between fermions and spins, the Jordan-Wigner trans-

formation, produces a spin Hamiltonian that has locality equal to the number of orbitals,

which is to say that it produces an N -local Hamiltonian rather than a k-local Hamiltonian.

The subject of Chapter 6 is perturbative gadgets, which are tools used to embed the

eigenspectra of arbitrary Hamiltonians in the low energy sector of a larger Hamiltonian that

is constrained in some way [165]. For instance, perturbative gadgets can be used to embed

the eigenspectra of an arbitrary k-local Hamiltonian in a 2-local Hamiltonian at the cost of

a polynomial number of ancilla qubits. These “gadgets” were first introduced in [165] and

have little in common with the classical gadgets of Chapter 2 which only work for reducing

the locality of diagonal Hamiltonians but have the attractive property of embedding the

energy landscape exactly rather than perturbatively.
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Specifically, the goal of Chapter 6 is to develop improved perturbative gadgets, based

on a formulation by Olivera and Terhal [216] which require significantly less experimental

resources. In particular, our improved gadgets require an amount of control precision which

scales asymptotically better than any other gadget construction in the literature. We also

introduce perturbative gadgets which can rid a Hamiltonian of YY couplings. This result has

specific utility for quantum chemistry as such terms appear in the chemistry Hamiltonian

but are difficult to implement using superconducting flux quits. Due to the availability of

medium-scale quantum annealers, there is optimism that a universal adiabatic quantum

computer can be built using a similar superconducting flux qubit platform. To accomplish

this, one needs only to add XX couplings to existing designs.

As discussed in Chapter 6, with all known formulations of perturbative gadgets, the

control precision cost of embedding a k-local Hamiltonian in a 2-local Hamiltonian scales

exponentially with k. Thus, to the best of our knowledge2, if the Jordan-Wigner transfor-

mation is applied to the Hamiltonian in Eq. 1.5, the resultant N -local spin Hamiltonian

can be reduced to a 2-local Hamiltonian only at the cost of control precision that scales

exponentially in N . Perhaps the most important insight of Chapter 7 is that by using a

technique recently described by Seeley and Love, the Bravyi-Kitaev transformation, one

can map fermionic operators to spin couplings with locality that is logarithmic in N . Ac-

cordingly, the control precision cost of making such Hamiltonians 2-local comes at only a

polynomial overhead. This insight allows us map the electronic structure Hamiltonian to an

experimentally realizable qubit Hamiltonian so that we can apply the adiabatic algorithm to

quantum chemistry. More generally, Chapter 7 shows the first efficient adiabatic quantum

algorithm for fermionic simulation.

2While no such technique exists in the literature, we do not have any particular reason for suspecting
that it is impossible to reduce locality with control precision overhead that scales polynomially with k.
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1.3 Digital Quantum Computation

The final section of this dissertation explores techniques for solving the molecular elec-

tronic structure problem with a digital quantum computer. The canonical quantum algo-

rithm for quantum computing molecular energies was introduced by Aspuru-Guzik et al.

almost a decade ago [11]. Preliminary details of how one might actually implement this

algorithm were explained five years later by Whitfield et al. [285]. Very recently, there has

been substantial renewed interest in this algorithm as some believe that quantum chem-

istry will be one of the first industrially viable applications of quantum computing [118].

This speculation led researchers working in industry to publish a series of papers which, for

the first time, aimed to realistically estimate the resources required to solve an important

classically intractable instance of the molecular electronic structure problem on a quan-

tum computer [281, 140, 224, 15]. The first of these papers concluded that even with an

error-corrected 100 MHz digital quantum computer, the problem would remain practically

intractable as a 168 spin-orbital instance would still take approximately 300,000,000 years

to solve [281]. Over the course of the next year, subsequent papers, which include Chapter 8

of this thesis, introduced algorithmic improvements and tighter error bounds which reduced

those estimates by more than fourteen orders of magnitude to an estimated runtime of 300

seconds [140, 224, 15].

After applying the Jordan-Wigner or Bravyi-Kitaev Hamiltonian to Eq. 1.5, one obtains

a spin Hamiltonian containingO
(
N4
)

terms having localityO (N) orO (logN), respectively

[145, 243]. The typical approach to this algorithm involves three additional steps. First,

one must prepare an initial ansatz state |ψ〉 which has polynomially bounded overlap with

the ground state of the exact Hamiltonian, |0〉; i.e., |〈ψ|0〉|2 ∈ Ω
(
poly

(
N−1

))
[11]. One

way to accomplish this would be to use adiabatic state preparation, such as in Chapter 7.

10



The next step is to evolve the ansatz under the molecular propagator U (t). Since H

and U (t) share eigenstates, this operator induces phases on the eigenstates of H which

encode the eigenvalues of H. Specifically, when applied to |ψ〉,

U (t) |ψ〉 = e−iHt |ψ〉 =

2N−1∑
j=0

ei2πφj |j〉 〈j|ψ〉 =

2N−1∑
j=0

e−iEjt |j〉 〈j|ψ〉 (1.9)

where H |j〉 = Ej |j〉. Therefore, measurement of the phase projects us to an eigenstate of

the Hamiltonian and if we have sufficient overlap with the ground state, we will measure

the ground state energy with bounded probability. The typical strategy to measure this

phase was introduced by Kitaev in [168] and elaborated on for the chemistry problem in

[285, 284]. The circuit for phase estimation is shown below in Figure 1.1.

|0〉 H • Sk H jk

|ψ〉 U (t)2k−1 |ψ〉

Figure 1.1: The generic circuit for iterative phase estimation of bit k.

The general idea of this circuit is that we want to read out the phase accumulated on the

eigenstate of interest bit by bit to L bits [285]. The readout values from Figure 1.1 gives

the fractional binary expansion of φ,

φ = 0.j1j2 · · · jL =

(
j1
21

)
+

(
j2
22

)
+ · · ·+

(
jL
2L

)
. (1.10)

The energy of the measured eigenstate is given from the phase as E = −2πφ/t. In gen-

eral, we must choose t so as to avoid aliasing the large eigenvalues, i.e. so that t <

2π/ (Emax − Emin) [285]. In Figure 1.1, the gate Sk is defined as,

Sk =

1 0

0 Φk

 Φk = exp

[
2πi

L−k+1∑
l=2

jk+l+1

2l

]
. (1.11)
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The most costly part of this procedure is the implementation of U (t) which usually

relies on Trotterization. If we write our Hamiltonian as H =
∑

γ Hγ , then the most straight-

forward Trotter scheme, the first-order Trotter formula gives us

U (t) ≈
(∏

γ

e−iHγt/r
)r

. (1.12)

In general, the Hγ do no commute; thus, this formula is only a good approximation when

r, which is referred to as the Trotter number, is large. It follows that if the number of

terms in the Hamiltonian is W , the cost of the total algorithm should scale roughly as

O (Wr) where r is the number of Trotter steps required to implement U
(
2k−1t

)
to one

bit of accuracy. The primary contribution of Chapter 9 is to point out to the quantum

information community that by using a local basis set, W ∈ O
(
N2
)

or W ∈ O (N) when

N is sufficiently large. While this insight is the basis of many linear scaling methods in

classical quantum chemistry, most estimates of the scaling of the quantum algorithm were

based on the assumption that W ∈ O
(
N4
)
. This decreased scaling is explained in Chapter

9 as a property of the locality of physical interactions; that is, electrons always interact

pairwise so the number of non-negligible terms in the Hamiltonian should only increase

quadratically for a sufficiently large local basis [195].

A more nuanced issue is how one should determine the requisite Trotter number to ob-

tain chemical precision. The initially pessimistic results of [281, 140] relied upon analytical

bounds suggesting the error in Trotter formula might grow as fast O
(
N10

)
. Further analy-

sis in [224] showed that the Trotter error in real molecules was substantially less than these

bounds but still suggested that error depends substantially on the number of spin-orbitals.

The primary contribution of [15], which is Chapter 8 of this thesis, is to argue that the

Trotter error depends on much more than the number of spin-orbitals in a system. Instead,

we use a combination of analytics and numerics to demonstrate that chemical properties
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such as the largest nuclear charge in a molecule or the filling fraction of electrons in the

molecular orbital diagram are more decisive for determining Trotter error. We also intro-

duce novel methods for estimating the requisite Trotter number and provide circuits for

state preparation of the molecular ansatz |ψ〉 which are asymptotically superior to results

in the previously existing literature.

In Chapter 11 we describe an experimental collaboration designed to demonstrate the

efficacy of the quantum phase estimation algorithm. Specifically, we use a Nitrogen-vacancy

center platform to simulate Helium Hydride in a symmetry adapted configuration state

function basis. Despite the limitations of existing hardware, we obtain the ground state

energy of Helium Hydride in the minimal basis to 10−14 Hartree, which is far beyond the

accuracy of the basis set and the requirements of chemical accuracy. This demonstration

represents the most precise experimental chemistry quantum simulation ever performed.
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Part I

Quantum Annealing

14



Chapter 2

Compiling Classical Optimization Problems for

Quantum Annealing

Apart from minor modifications, this chapter originally appeared as [16]:

“Resource Efficient Gadgets for Compiling Adiabatic Quantum Optimization Problems”.
Ryan Babbush, Bryan O’Gorman, and Alán Aspuru-Guzik. Annalen der Physik. Volume
525, Number 10-11: 877-888. 2013.

Abstract

We develop a resource efficient method by which the ground state of an arbitrary

k-local, optimization Hamiltonian can be encoded as the ground-state of a (k − 1)-local,

optimization Hamiltonian. This result is important because adiabatic quantum algorithms

are often most easily formulated using many-body interactions but experimentally available

interactions are generally 2-body. In this context, the efficiency of a reduction gadget is

measured by the number of ancilla qubits required as well as the amount of control precision

needed to implement the resulting Hamiltonian. First, we optimize methods of applying

these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla

qubits. Next, we show a novel reduction gadget which minimizes control precision and a

heuristic which uses this gadget to compile 3-local problems with a significant reduction in
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control precision. Finally, we present numerics which indicate a substantial decrease in the

resources required to implement randomly generated, 3-body optimization Hamiltonians

when compared to other methods in the literature.

2.1 Introduction

Our group has used quantum annealing to simulate classical problems of importance

in chemistry such as lattice protein folding [220, 221, 18]. During the course of this work

we developed tools, explained in this paper, which are essential for practically encoding and

compiling classical problems into Hamiltonians suitable for experimental implementation.

The adiabatic algorithm prepares a system in the ground-state of an arbitrary Hamiltonian

through adiabatic evolution from the ground-state of a trivial Hamiltonian [104]. This

strategy exploits the adiabatic theorem of quantum mechanics which states that a physical

system remains in its instantaneous eigenstate if a given perturbation acts on it slowly

enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s

spectrum [48]. In 2004, this algorithm was shown to efficiently simulate any given quantum

circuit and thus to be polynomially equivalent to standard quantum computation [3]. That

same year a proof by Kempe et al. demonstrated that adiabatic computation with a 2-local

Hamiltonian accomplishes the same result [165].

Though unlikely to be universal for adiabatic quantum computation, the 2-local quan-

tum Ising model with 1-local transverse field has been realized using a wide array of tech-

nologies and is known to be a stoquastic Hamiltonian for which finding the ground-state

is an NP-Hard problem [23, 55, 158]. D-Wave System’s current generation of quantum an-

nealing machines are an important example of devices that implement this type of quantum
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Ising model Hamiltonian2[154]. In the last two years, a large number of academic groups

have used these annealing machines to solve a diversity of practical problems from protein

folding to machine learning [211, 86, 39, 147, 43]. Unfortunately, classical optimization

problems are most easily formulated using many-body interactions. In order to reduce the

locality of interactions from k-local to 2-local, one must employ the concept of a reduction

gadget. A vigorous debate on the quantum nature of the D-Wave computer is currently

underway [43, 278, 254]. In this paper, we avoid that discussion and focus on the issue of

efficiently constructing experimentally realizable Hamiltonians.

In their 2004 proof, Kempe et al. first introduced the notion of perturbative gadgets,

which use perturbation theory to reproduce the low-energy subspace of an arbitrary, QMA-

Complete k-local Hamiltonian with a (k − 1)-local Hamiltonian in a larger Hilbert space,

expanded by the addition of ancilla qubits [165, 157]. While this tool has been essential

to a number of important proofs, none have used perturbative gadgets to efficiently encode

practical problems into an experimentally realizable Hamiltonian [216, 55, 38, 242]. A

significant problem with using perturbative gadgets for practical encodings is that each

order of perturbation theory causes an exponential increase in the control precision required

to implement the resulting Hamiltonian. In this context, control precision refers to the

number of distinct field values that a device must be able to resolve in order to implement

the requisite interactions in a given Hamiltonian. D-Wave’s newest device has 512 qubits

and 4 bits of control precision, which amounts to 16 distinct values of coupler strength in

both positive and negative biases. In practice, this means that problem size is often more

limited by control precision than by qubits. Even for an ideal device which could implement

2The D-Wave hardware implements a restricted form of the 2D Ising model, known as the Chimera graph,
which can encode smaller instances of the general 2D Ising model. Compiling to this specific graph is beyond
the scope of the present work.
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couplings to arbitrary precision (but with finite maximum field strengths) we should avoid

encodings which demand high control precision. This is because the separation of energy

eigenstates is inversely proportional to the control precision, and thus the adiabatic runtime

increases with control precision.

Fortunately, there exist a class of non-perturbative gadgets which are significantly

more efficient in terms of both ancilla and control precision [50]. We refer to these as

exact classical gadgets because they apply only for Hamiltonians in which all many-body

terms are simultaneously diagonalizable, e.g. the D-Wave final Hamiltonian. This class of

Hamiltonians can encode NP-Hard problems (but not QMA-Hard unless NP = QMA) and

is thus referred to as an optimization Hamiltonian [3]. Exact gadgets work by substituting

the product of two qubits in a k-local term with an ancilla qubit and introducing a 2-local

penalty function which raises the energy of any state in which the product of the original

two qubits is not equal to the state of the ancilla bit. This penalty function still raises

control precision considerably but we show that the effect can be partially ameliorated by

a different penalty function which uses additional ancilla qubits.

The central contribution of the present work is to introduce novel techniques for ef-

ficiently applying exact classical gadgets. In order to efficiently reduce locality, one must

collapse many-body terms in a systematic fashion that takes into account the appearance of

specific pairs of qubits in multiple higher-order terms. For applications in which qubits are

the limiting resource, we demonstrate how to map the optimal reduction to set cover and

0-1 integer linear programming (ILP) so that conventional heuristic (or exact) solvers can

be leveraged to quickly find the best encoding. For control precision limited problems we

formalize the optimal reduction problem and propose a greedy algorithm that significantly

outperforms the status quo. Finally, we present numerics which demonstrate the signifi-
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cant advantage of using these optimized gadgets and gadget application techniques over all

previously mentioned reduction techniques in the literature.

2.2 Optimal reduction gadgets

In order to compile NP-hard optimization problems into an experimental Hamilto-

nian, one must encode the problem of interest into a graph of binary variables with phys-

ically realizable interactions. Perhaps the simplest model of interacting binary variables is

Polynomial Unconstrained Binary Optimization (PUBO): given a pseudo-Boolean function

f : BN → R, find an assignment x ∈ BN such that f (x) = min
[
f
(
BN
)]

, where B = {0, 1}.

Every pseudo-Boolean f has a unique multi-linear polynomial representation

f (x) =
∑

S⊆{1,··· ,N}
cS
∏
i∈S

xi, (2.1)

where cS ∈ R. From this expression we can construct an optimization Hamiltonian that

embeds the energy landscape of a given PUBO in its eigenspectrum,

H (f) =
∑

S⊆{1,··· ,N}
cS
∏
i∈S

qi, (2.2)

acting on N qubits, where qi = 1
2

(
I⊗N − Zi

)
and Zi is the Pauli matrix σz acting on the

ith qubit, i.e.

Zi = I⊗(i−1) ⊗ σz ⊗ I⊗(N−i), (2.3)

where I is the one-qubit identity operator. Note that while we write H (f) for convenience,

in practice f will be specified by its coefficients cS . Every element |x〉 of the computational

basis is an eigenstate of H (f) with eigenvalue f (x). Specifically, the ground state of H (f)

is spanned by the set of states |x〉 such that f (x) = min
[
f
(
BN
)]

.
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However, experimental interactions are typically limited to pairwise couplings between

qubits, allowing Hamiltonians of the form3

H (f) =
∑

1≤i≤j≤N
αijqiqj , (2.4)

where αij ∈ R. Such Hamiltonians correspond to a second-order pseudo-Boolean f ,

f (x) =
∑

1≤i≤j≤N
αijxixj . (2.5)

Thus, to encode a general instance of PUBO into an experimentally realizable Hamiltonian,

one must reduce the problem to Quadratic Unconstrained Binary Optimization (QUBO),

defined analogously to PUBO with the restriction that the pseudo-Boolean function to

be minimized is quadratic. In practice, many common optimization problems have been

reduced to PUBO in such a way that the pseudo-Boolean function to be minimized is cubic,

i.e. of the form

f (x) =
∑

1≤i≤j≤N
αijxixj +

∑
1≤i<j<k≤N

αijkxixjxk.

It is therefore desirable to have a general method for reducing a cubic function f : BN → R

to a quadratic function f ′ : BN ′ → R in such a way that an assignment x ∈ BN that

minimizes f can be efficiently computed given an assignment x′ that minimizes f ′, where

N ′ is a polynomial function of N . One family of methods employs a set of N ′ −N ancilla

variables {y1, · · · , yN ′−N} ∈ BN ′−N such that if (x1, · · · , xN , y1, · · · yN ′−N ) minimizes f ′,

then (x1, · · · , xN ) minimizes f . That is, a minimizing assignment (x1, · · · , xN ) of f is

directly encoded in the N computational qubits of a ground state |x1 · · ·xNy1 · · · yN ′−N 〉

of H (f ′). In the methods examined here, each ancilla variable corresponds to a pair of

computational variables (i, j) and so for convenience is denoted by xij or x
(m)
ij .

3In our definition, the case in which the indices are equal is used to include 1-local terms: qiqi = qi.
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2.2.1 Minimal ancilla gadget

Integral to the exact gadget is the penalty function

s (x, y, z) = 3z + xy − 2xz − 2yz, (2.6)

with the important property that s (x, y, z) = 0 if xy = z and s (x, y, z) ≥ 1 if xy 6= z, as

shown in Table 1 [50]. While s is not the only quadratic ternary pseudo-Boolean with this

property, we will show that it is optimal for our purposes.

Table 2.1: Truth table for ancilla gadget

x y z s (x, y, z)

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0
0 0 1 3
0 1 1 1
1 0 1 1
1 1 0 1

In our reductions, we replace a part xixj of a 3-local term xixjxk with xij , where

xij is an ancilla variable, thereby reducing locality, while simultaneously adding the penalty

function s (xi, xj , xij), scaled by an appropriate factor to ensure that the value of the reduced

form is greater if xij 6= xixj than it is if xij = xixj , for any assignment of the computational

variables. In this way, we ensure that if an assignment of the computational and ancilla

variables minimizes the reduced form, then that assignment of the computational variables

also minimizes the original form. Consider the reduction

αijkxixjxk → αijkxijxk + (1 + |αijk|) s (xi, xj , xij) . (2.7)

If xij = xixj , then s (xi, xj , xij) = 0 and the reduced form simplifies to the unreduced form

αijkxixjxk. If xij = 1−xixj , then s(xi, xj , 1−xixj) = 3−2xi−2xj +2xixj and the reduced
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form always has a greater value than it does if xij = xixj . That is,

αijk (1− xixj)xk + (1 + |αijk|) s (xi, xj , 1− xixj) (2.8)

> αijk (xixj)xk + (1 + |αijk|) s (xi, xj , xixj)

= αijkxixjxk

for all xi, xj , and xk. To decrease the number of ancilla variables needed to reduce many

3-local terms, it is advantageous to use the same ancilla variable xij to reduce more than

one 3-local term. Let Kij be the set of indices k such that the term xixjxk is reduced using

the ancilla variable xij corresponding to the pair of variables {xi, xj}. Each non-zero 3-local

term is reduced using exactly one ancilla, and so we must choose {Kij} such that for each

αijk 6= 0, there is exactly one pair of indices {w, v} with {w, v,Kwv} = {i, j, k}4. Then the

entire set of 3-local terms can be reduced by∑
1≤i<j<k≤N

αijkxixjxk =
∑

1≤i<j≤N

∑
k∈Kij

αijkxixjxk (2.9)

→
∑

1≤i≤j≤N

∑
k∈Kij

(αijkxijxk + (1 + |αijk|) s (xi, xj , xij)) ,

where the single term reduction in Eq. (2.7) is applied to every term in the rewritten

original expression. The essential conditions (that, for any i and j for which an ancilla

variable is used, the value of the reduced form is greater if xij 6= xixj than the value

thereof if xij = xixj and in the latter case the reduced form is equal to the original form)

are preserved by linearity. In Section 3, we explain a method for choosing which pair of

variables to use to reduce each 3-local term (i.e. for choosing Kij with the constraints

given) in a way that minimizes the total number of ancilla variables (the number of non-

empty Kij). In the Appendix we generalize this strategy to minimize the number of ancilla

required in 4-local to 2-local reductions.

4Note that the indices on the coefficients are unordered, e.g. αijk = αkji = αjki.
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2.2.2 Minimal control precision

It is often the case that the limiting factor in encoding a PUBO instance into experi-

mentally realizable form is the control precision rather than the number of qubits available

[18]. Existing hardware is able to implement 2-local Hamiltonians of the form in Eq. (2.4)

such that the coefficients are integral multiples of a fixed step size ∆α with a maximum

magnitude of Nα∆α, where Nα is the control precision. An arbitrary 2-local Hamiltonian

can be made to have coefficients that are integral multiples of ∆α by dividing them all by

their greatest common divisor and multiplying by ∆α. The control precision needed for an

arbitrary instance is thus the quotient of the greatest magnitude of the coefficients and their

greatest common divisor. We assume without loss of generality that the coefficients of the

PUBO to be reduced are integers and structure the reductions so that the reduced QUBO

also has integral coefficients. The greatest common divisor of the coefficients of the reduced

QUBO is thus one with high probability, and the control precision needed is the greatest

magnitude of the coefficients. As a preliminary, we show that s as defined is optimal in that

the greatest coefficient (3) cannot be reduced any further.

Suppose f (x1, x2, x3) is a quadratic pseudo-Boolean function with integer coefficients

(i.e. in the form of Eq. (2.5)) such that f (x1, x2, x3) = 0 if x3 = x1x2 and is at least

one otherwise. First note that f (0, 0, 0) = 0 and thus that f (1, 0, 0) = α11 = 0 and

f (0, 1, 0) = α22 = 0. Because f (1, 1, 1) = α33 +α12 +α13 +α23 = 0, α33 +α23 = −α12−α13,

and so f (0, 1, 1) = α33 + α23 = −α12 − α13 ≥ 1, which implies α13 ≤ −α12 − 1. Because

α12 = f (1, 1, 0) ≥ 1, α13 ≤ −2. Finally, f (1, 0, 1) = α33 +α13 ≥ 1 and so α33 ≥ 1−α13 ≥ 3.

For each i and j in the reduction shown in Eq. (2.9), (1 + |αijk|) s (xi, xj , xij) is added

for each k ∈ Kij , and so the coefficients in s (xi, xj , xij) are multiplied by
∑

k∈Kij (1 + |αijk|).
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We claim that this factor can be decreased using the reduction

∑
k∈Kij

αijkxixjxk →
∑
k∈Kij

αijkxijxk + δijs (xi, xj , xij) , (2.10)

where

δij = 1 + max

 ∑
k∈{k∈Kij |αijk>0}

αijk,
∑

k∈{k∈Kij |αijk<0}
−αijk

 ,

for each i and j. For all xi, xj , and {xk|k ∈ Kij},

∑
k∈Kij

αijk(1− xixj)xk + δijs (xi, xj , 1− xixj) (2.11)

>
∑
k∈Kij

αijk(xixj)xk + δijs (xi, xj , xixj) .

That is, for any assignment of the computational variables, the value of the reduced form is

greater if the ancilla variable xij 6= xixj than it is if xij = xixj . The δij given in Eq. (2.10)

is optimal in the sense that it requires the least control precision of all possibilities which

satisfy the appropriate conditions. Consider the reduced form

xij
∑
k∈Kij

αijkxk + δs(xi, xj , xij) (2.12)

for some δ ∈ Z to be determined. We must guarantee that

(1− xixj)
∑
k∈Kij

αijkxk + δs(xi, xj , 1− xixj) > xixj
∑
k∈Kij

αijkxk + δs(xi, xj , xixj) (2.13)

for all xi, xj , and {xk|k ∈ Kij}. For xi = 1 and xj = 0 or xi = 0 and xj = 1, this inequality

simplifies to

δ > −
∑
k∈Kij

αijkxk, (2.14)

for xi = xj = 1 it simplifies to

δ >
∑
k∈Kij

αijkxk, (2.15)
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and for xi = xj = 0 it simplifies to

δ > −1

3

∑
k∈Kij

αijkxk. (2.16)

Eq. (2.16) is implied by Eq. (2.14) and so it is sufficient to ensure that Eq. (2.14) and

Eq. (2.15) are satisfied. We see that the term −∑k∈Kij αijkxk is greatest when

xk =


1 if αijk < 0

0 if αijk > 0

, (2.17)

and so if and only if

δ >
∑

k∈{k∈Kij |αijk<0}
−αijk, (2.18)

then Eq. (2.14) is satisfied for all {xk|k ∈ Kij}. The term
∑

k∈Kij αijkxk is greatest under

the exact opposite conditions as Eq. (2.17). Thus, if and only if

δ >
∑

k∈{k∈Kij |αijk>0}
αijk (2.19)

then Eq. (2.15) is satisfied for all {xk|k ∈ Kij}. Together, Eq. (2.18) and Eq. (2.19) and

imply that

δ > max

 ∑
k∈{k∈Kij |αijk>0}

αijk,
∑

k∈{k∈Kij |αijk<0}
−αijk

 . (2.20)

Note that the terms introduced in Eq. (2.10) only appear in the reduction for that pair

(i, j), and so the coefficient for a term therein is the coefficient in the total reduced form,

with the exception of xixj which may also appear in the original unreduced form, which

is to be addressed later. The greatest term introduced in Eq. (2.10) is 3δij , which greatly

increases the control precision needed.

Below, we introduce an alternative method that adds terms whose greatest coefficient

is approximately a third of this. Because the complexity of the final form obscures the
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simplicity of the method, we begin with a special case and extend it gradually to the

general case. To reduce a single term whose coefficient is divisible by three, we introduce

three ancillary bits and penalty functions:

αijkxixjxk →
αijk

3

(
x

(1)
ij + x

(2)
ij + x

(3)
ij

)
xk +

(
1 +

∣∣∣αijk
3

∣∣∣) 3∑
m=1

s
(
xi, xj , x

(m)
ij

)
(2.21)

When x
(1)
ij = x

(2)
ij = x

(3)
ij = xixj , the reduced form simplifies to αijkxixjxk. Otherwise, it

is always greater than αijkxixjxk, and so the reduction is valid. Furthermore, the greatest

coefficient introduced is 3+ |αijk|. In general however, the coefficient will not be divisible by

3. In that case, we define a new coefficient β
(m)
ijk for each ancilla variable x

(m)
ij that depends

on αijk mod 3 such that each β
(m)
ijk is an integer and

∑
m=1 β

(m)
ijk = αijk. This is elucidated

by Table 2. We now use the reduction

Table 2.2: Integer coefficients so that
∑

m=1 β
(m)
ijk = αijk

αijk mod 3 β
(1)
ijk β

(2)
ijk β

(3)
ijk

0 αijk/3 αijk/3 αijk/3
1 (αijk + 2) /3 (αijk − 1) /3 (αijk − 1) /3
2 (αijk + 1) /3 (αijk + 1) /3 (αijk − 2) /3

αijkxixjxk →
(
β

(1)
ijkx

(1)
ij + β

(2)
ijkx

(2)
ij + β

(3)
ijkx

(3)
ij

)
xk +

3∑
m=1

(
1 +

∣∣∣β(m)
ijk

∣∣∣) s(xi, xj , x(m)
ij

)
.

(2.22)

If x
(1)
ij = x

(2)
ij = x

(3)
ij = xixj , then s(xi, xj , x

(m)
ij ) = 0 and this simplifies to αijkxixjxk. We

can rewrite the replacement terms as,

3∑
m=1

(
β

(m)
ijk x

(m)
ij xk + (1 + |βijk|) s (xi, xj , xij)

)
(2.23)

In all cases and for each m

β
(m)
ijk x

(m)
ijk xk + (1 + |βijk|) s(xi, xj , x(m)

ij ) ≥ β(m)
ijk xixjxk. (2.24)
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If not x
(1)
ij = x

(2)
ij = x

(3)
ij = xixj , strict inequality holds for at least onem and the replacement

terms are greater than αijkxixjxk. Here, the greatest coefficient is

3 + max
{

3
∣∣∣β(m)
ijk

∣∣∣ , |αijk|} . (2.25)

Finally, we use the same set of ancilla variables
{
α

(m)
ij

}
to reduce all of the 3-local terms:

∑
1≤i<j<k≤N

αijkxixjxk =
∑

1≤i<j≤N

∑
k∈Kij

3∑
m=1

β
(m)
ijk xixjxk (2.26)

→
∑

1≤i≤j≤N

3∑
m=1

 ∑
k∈Kij

β
(m)
ijk x

(m)
ij xk + δ

(m)
ij s(xi, xj , x

(m)
ij )

 ,

where

δ
(m)
ij = 1 + max


∑

k∈{k∈Kij |β(m)
ijk >0}

β
(m)
ijk ,

∑
k∈{k∈Kij |β(m)

ijk <0}

−β(m)
ijk


and Kij is defined as above with the same constraints. In the reduced form, for every i,

j, and m the coefficient of x
(m)
ij is 3δ

(m)
ij and for every i and j the coefficient of xixj is∑3

m=1 δ
(m)
ij . The latter will be added to the coefficient αij of the corresponding quadratic

term in the original expression. Thus the control precision needed is

min
{Kij}

(
max

{
max
i,j,m

(
3δ

(m)
ij

)
,max
i,j

∣∣∣∣∣αij +
3∑

m=1

δ
(m)
ij

∣∣∣∣∣
})

. (2.27)

In Section 3 we describe a greedy algorithm to find a set of Kij that greatly decreases the

control precision needed.

2.3 Efficient encoding techniques

With the exception of the 3-ancilla gadget to reduce control precision, the classical

gadgets we have described have already been characterized in the literature [50]. However,

knowing these formulas is not enough to efficiently encode a problem. In the following two
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sections we describe how to efficiently apply these gadgets so that the resulting Hamilto-

nian meets the demands of available hardware. For simplicity, and because it is the most

frequently encountered situation, we will focus on reductions from 3-local to 2-local. We

also describe the 4-local to 2-local reduction in the Appendix of this chapter.

When working with a qubit limited encoding, the goal in applying these gadgets will

be to choose the smallest set of qubit pairs that collapses all 3-local terms. We explain how

to cast this problem as canonical set cover and map to 0-1 ILP so that popular heuristic or

exact optimization software can be leveraged to find a set of collapsing pairs. When working

with a control precision limited encoding, the goal is to choose the set of qubits for which

the sum of penalty functions contains the smallest maximum coefficient. We approach this

problem with a greedy algorithm but later show numerics which validate the efficiency of

our technique.

2.3.1 Limited ancilla reduction technique

The qubit-optimized application of classical gadgets can be cast as set cover. In this

context, the universe U that we seek to cover is the set of 3-local terms that we must

collapse. For example, U = {x1x2x3, x1x4x5, x2x3x5}. Treating each 3-local term as a set

of single qubits, we define A as the union of all 2-subsets of each 3-local term. In the

example given,

A =

|U |⋃
i=1

{
X | X ∈ 2Ui ∧ |X| = 2

}
(2.28)

= {x1x2, x1x3, x2x3} ∪ {x1x4, x1x5, x4x5} ∪ {x2x3, x2x5, x3x5}

= {x1x2, x1x3, x1x4, x1x5, x2x3, x2x5, x3x5, x4x5} .
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Next, we construct S by replacing each element Ai with the union of proper supersets of

Ai in U ,

S =

|A|⋃
i=1

{{X | X ∈ U ∧X ) Ai}} (2.29)

= {{x1x2x3} , {x1x2x3} , {x1x4x5} , {x1x4x5} ,

{x1x2x3, x2x3x5} , {x2x3x5} , {x2x3x5} , {x2x3x5}} .

In this way, A is the set of products of pairs of qubits xixj that can be used in the

reduction, and each element Si is the set of 3-local terms that the corresponding Ai can

be used to reduce. The problem is clearly set cover if we view the 3-local terms as el-

ements (as opposed to sets themselves). Given U and S, find the minimal covering set,

i.e. argmin
{C|C⊆S∧⋃C=U}

|C|. In this form, the problem is easily cast as 0-1 ILP. 0-1 ILP is the

problem of finding a Boolean-valued vector v that minimizes the quantity cTv subject to

Mv ≥ b. In set cover each element of v is a Boolean which says whether or not to include

the associated element of S in the cover C. Thus, c is a vector of ones with length equal to

the cardinality of S so that the cost function cTv represents the cardinality of C.

The matrix M multiplies v to set up a system of equations which guarantees that C

covers U . Thus, the matrix element Mij is 1 if the Sj contains the Ui and 0 otherwise.

Accordingly b is a vector of all ones with length equal to the cardinality of U . Both set

cover and 0-1 ILP are well known to be NP-Complete. In fact, the exact problem of cubic

to quadratic polynomial binary reduction has been shown to be NP-Complete by analogy

with vertex cover [50].

In Figure 2.1 we show numerics that demonstrate the efficiency of embeddings that

make use of this reduction technique. For the case of 3-local to 2-local PUBO reduction,

the complexity of a random problem instance is characterized by the number of logical
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Figure 2.1: Performance of ancilla reduction scheme computed with Mathematica 9
ILP solver. Numerics were collected on randomly generated 3-local polynomial uncon-
strained binary optimization (PUBO) with n logical qubits and λ 3-local clauses. For
each value of n, data were collected from 1,000 instances at every possible value of λ, i.e.
{λ ∈ Z | 1 ≤ λ ≤ Cn3 }. Different colors indicate different values of n ranging between 6 and
12 qubits. 2.1a: average number of ancilla required for reduction to 2-local versus

√
λ.

2.1b: slope of fits to linear region of aforementioned plot as a function of
√
n. Linear fits

in top plots indicate that ancilla requirements scale as
√
nλ until saturating at ρ (n). 2.1c:

semi-log plot showing average time in seconds for ILP to solve random instance.
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qubits, n, and the number of 3-local clauses, λ. While ancilla requirements scale as 3λ for

perturbative gadgets and λ for exact gadgets without optimized application, numerics from

Figure 2.1a and 2.1b indicate that our ancilla requirements scale as
√
nλ until reaching an

asymptote equal to the quarter squares function, defined as ρ (n) =
⌊

(n−1)2

4

⌋
. A proof of

this bound is shown in the Appendix. In terms of the clause to variable ratio, r = λ/n,

we see that our method scales as n
√
r whereas the other methods scale as 3nr and nr,

respectively. Thus, we see a quadratic improvement in the number of ancilla required for a

given clause to variable ratio but after a certain point, our method saturates and requires

no additional ancilla, representing an undefined improvement over other methods.

Unfortunately, we should not expect to do better than a quadratic improvement for

extremely large problem sizes because the constant scaling region appears to coincide with

the most difficult to reduce problem instances as indicated by the computational time

scaling in Figure 2.1c. In this regime, exact ILP solvers might take exponentially long to

find the minimal cover. The worst case scenario is that the integrality gap of the ILP scales

with the logarithm of λ, which would preclude the existence of a polynomial-time relaxation

algorithm to approximate the solution beyond a logarithmic factor [9]. There does not seem

to be any clear connection between the complexity of a PUBO instance and the complexity

of reducing that instance to QUBO; thus, we should have no reason to suspect that on

average, difficult PUBO instances will take exponential time to reduce to QUBO with ILP.

However, for intractably large instances in the difficult clause to variable ratio regime, there

exist greedy algorithms in the literature, for instance ReduceMin in Section 4.4 of [50] which

finds the pair of indices that appears most in qubit triplets, reduces that pair in all 3-local

terms, and repeats this process until all triplets are depleted.
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2.3.2 Limited control precision reduction technique

To minimize the control precision, as expressed in Eq. (2.27), we develop a greedy

algorithm which chooses the collapsing pairs, {Kij}. Recall that Kij is the set of indices k

such that the term xixjxk is reduced using the ancilla variable xij corresponding to the pair

of variables (xi, xj). In the pseudo-code contained in Figure 2.2 we employ the convention

that K({i, j}) = Kij , α({i, j, k}) = αijk, and α({i, j}) = αij for ease of exposition.

The algorithm is initialized by setting K({i, j}) to the empty set for every pair of

variable indices {i, j}, and by collecting the triplet of variable indices {i, j, k} for every

3-local term αijkxixjxk with a non-zero coefficient αijk into the set A. We also introduce

the notation B(a) for the set of three pairs of indices contained by a triplet of indices a, e.g.

B({i, j, k}) = {{i, j}, {i, k}, {j, k}}. The remainder of the algorithm consists of a procedure

for choosing a 3-local term (as represented by the set of indices of its variables d) and a

pair of variables contained therein (also represented by their indices ∆(d)) with which to

collapse it, which is repeated until such a choice has been made for every term that we wish

to collapse. Throughout, the set A contains those terms for which the decision has not been

made.

The repeated procedure is as follows: first, for every 3-local term a ∈ A for a which

a pair has not been chosen with which to collapse it and for every pair therein b ∈ B(a),

the cost of collapsing the term a using that pair b is calculated. The cost is defined as

w(a, b) = α(b) + 3 + max

∑
θ∈Θ+

θ,
∑
θ∈Θ−

−θ

, where Θ is the set consisting of coefficients

of terms that the pair b has already been chosen to collapse and the coefficient of the

current term a, and Θ+ and Θ− are respectively the positive and negative elements thereof.

Second, we choose a term d and reduction pair ∆(d) that minimizes the costw. For each

term a ∈ A we find the set of pair(s) Γ(a) with the least cost of collapsing the term a.
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Input: N , α : {{i, j, k})|1 ≤ i < j < k ≤ N} → R
Initialization:

for 1 ≤ i < j ≤ N :
K({i, j}) = ∅

A = {{i, j, k}|1 ≤ i < j < k ≤ N ∧ α({i, j, k}) 6= 0}
for a ∈ A:

B(a) = {{p, q}|{p, q} ⊂ a}
Loop:

while |A| > 0:
for a ∈ A:

for b ∈ B(a):
Θ = {α(b ∪ {k})|k ∈ K(b)} ∪ {α(a)}
Θ+ = {θ|θ ∈ Θ ∧ θ > 0}
Θ− = {θ|θ ∈ Θ ∧ θ < 0}

w(a, b) = α(b) + 3 + max

∑
θ∈Θ+

θ,
∑
θ∈Θ−

−θ


Γ(a) = argmin

b∈B(a)
w(a, b)

select ∆(a) ∈ argmin
γ∈Γ(a)

|{a ∈ A|γ ⊂ a}|

D = argmax
a∈A

w(a,∆(a))

select d ∈ D
K(∆(d)) = K (∆(d)) ∪ (d \∆(d))
A = A \ d

Output: K : {{i, j})|1 ≤ i < j ≤ N} → 2{i|1≤i≤N}

Figure 2.2: Greedy algorithm for choosing which ancilla bits to use with each cubic term in
reducing a cubic pseudo-Boolean to a quadratic one. The algorithm attempts to minimize
the control precision of the reduced function. Given the function α that yields the coefficient
of a term from the indices of its variables, the algorithm returns the function K that yields
the the set of indices of variables that together with the variables whose indices are passed
to it form a cubic term to be reduced using the latter. See text for explanation.
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Note that here we follow the convention that argmin (argmax) returns the set of arguments

for which the function has its minimum (maximum) value over the specified domain, i.e.

argmin
x∈X

f(x) = {x ∈ X|f(x) = min
x∈X

f(x)}.

If there is more than one such pair, we find which of those is contained in the fewest

number of terms in A, those for which a choice has not yet been made. If there is then

more than one such pair, a pair ∆(a) is chosen arbitrarily. Having found the minimum cost

w(a,∆(a)) of each term a ∈ A, we find the set of terms with the minimum cost D and

choose one d arbitrarily. Finally, we append the index in d that is not in the reduction pair

∆(d) to K(∆(d)) and then remove the term d from the set A of terms for which a decision

needs to be made. This procedure is repeated until a reduction pair has been chosen for

every term, i.e. until A is empty.

While we do not claim that this greedy algorithm is optimal, we present numerical evi-

dence to show that it outperforms the default approach of selecting Kij in a non-systematic

fashion. Figure 2.3 indicates that our technique significantly reduces the control precision

cost of 3-local to 2-local reductions. For instance, with 11 qubits and 50 3-local terms,

our approach requires approximately half the control precision that one would need with

the default reduction strategy. Randomly choosing qubit pairs to collapse 3-local terms

is the approach that many researchers (including the authors) have used in the past to

encode problems into the D-Wave One device, even though the device is primarily control

precision limited [221]. Our results show that the expected increase in control precision is

approximately proportional to λ/n, also known as the clause to variable ratio, r.
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Figure 2.3: Numerics were collected on randomly generated 3-local polynomial uncon-
strained binary optimization (PUBO) with n logical qubits, λ 3-local clauses, and n choose
2, 2-local clauses. For each value of n, data were collected from 1,000 instances at every
possible value of λ, i.e. {λ ∈ Z | 1 ≤ λ ≤ Cn3 }. Different colors indicate different values of n
ranging between 6 and 11 qubits. Integer coefficients for each term were drawn at random
from a flat distribution between −8 and 8. With these initial coefficients, a 100% increase
in control precision exhausts current D-Wave capabilities (this threshold is indicated with
a dotted line). 3a: unoptimized application of reduction gadgets. 3b: application of our
greedy algorithm indicating that increase in resolution is linear in λ. 3c: dependence of
greedy algorithm’s linear scaling in λ, suggesting control precision is proportional to λ

n .
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2.4 Conclusion

In this study, we have expanded the definition of an exact classical gadget and for-

malized the difficult problem of efficiently applying these tools. We introduced a novel

and useful form of classical gadgets that uses multiple ancilla qubits to decrease the re-

quired control precision of compiling arbitrary problems. Using this new gadget we derived

Eq. (2.27), a general expression for the optimal control precision of a 3-local to 2-local re-

duction. While exactly solving this equation appears extremely difficult, we introduced a

simple greedy algorithm which significantly outperforms the status quo. For the problem of

minimizing ancilla qubit requirements during 3-local to 2-local reduction, we demonstrated

how to map the problem to set cover which allowed us to find minimal ancilla encodings

with the use of Integer Linear Programming. We believe that these techniques will be very

useful to anyone wishing to compile classical problems into realizable Hamiltonians for adi-

abatic quantum computation. We are working towards applying these new techniques for

protein folding and related optimization problems of interest to chemistry and biophysics.
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2.5 Appendix

2.5.1 Quadratization of quartic PBO by mapping to WMAXSAT

Here we show how the problem of reducing a quartic pseudo-Boolean to a quadratic one

using the minimum number of ancilla bits can be recast as Weighted Max-SAT (WMAXSAT).

An instance of WMAXSAT consists of a set of clauses, each of which is a disjunction of

literals, and a function w that assigns a non-negative weight to each clause; the problem is

to find an assignment that maximizes the sum of the weights of clauses satisfied thereby.

Consider an arbitrary 4-local term xixjxkxl. It can be reduced to 2-local in two ways,

both of which require two ancilla bits. The first way is to use two ancilla bits that each

correspond to the conjunction of two computational bits. For example, the term can be

reduced using the ancilla bits xij and xkl, which entails replacing the term xixjxkxl with

xijxkl and adding the penalty functions s(xi, xj , xij) and s(xk, xl, xkl), scaled by the ap-

propriate factor. Similarly, the term can also be reduced using xik and xjl, or xil and xjk.

The second way is to use an ancilla bit corresponding to the conjunction of three bits,

which requires a second ancilla bit.1 For example, the term xixjxkxl can reduced to 2-local

using the ancilla bits xkij and xij , where xkij corresponds to the conjunction of xij and xk.
2

This entails replacing the term by xkijxl and adding the penalty functions s(xi, xj , xij) and

s(xij , xk, x
k
ij), scaled by the appropriate factor. There are twelve distinct ancilla bit pairs

that can be used to reduce the term using the second way.

1No quadratic pseudo-Boolean f(x, y, z, a) exists such that f(x, y, z, a) = 0 if a = xyz and f(x, y, z, a) ≥ 1
otherwise, which can be shown in a similar manner to that of the proof that the minimum coefficient in the
penalty function for the conjunction of two variables is three.

2Accordingly, just as the indices of the ancilla bit xij were unordered, i.e. xij = xji, so are the subscript
indices of the ancilla bit xkij , i.e. xkij = xkji, though the distinction between subscript and superscript indices
must be made. Though in reducing a single term the choice of which pair of computational bits to use for
the intermediary ancilla bit is unimportant, when reducing several the same ancilla bit may be used as an
intermediary for several ancilla bits each corresponding to the conjunction of three computational bits.
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Now consider a quartic pseudo-Boolean

f(x) = α0 +
∑

1≤i≤N
αixi +

∑
1≤i<j≤N

αijxixj (2.30)

+
∑

1≤i<j<k≤N
αijkxixjxk +

∑
1≤i<j<k<l≤N

αijklxixjxkxl

that we would like to reduce to quadratic. Let T3 and T4 be sets of the sets of indices of

the variables in the 3-local and 4-local terms with non-zero coefficients, respectively, i.e.

T3 = {{i, j, k} ⊂ {1, . . . , N}|αijk 6= 0} (2.31)

and

T4 = {{i, j, k, l} ⊂ {1, . . . , N}|αijkl 6= 0}. (2.32)

For each ancilla bit xij that represents a conjunction of two computational bits, we introduce

a Boolean variable rij ∈ {true, false} that represents its actual use. For each triplet

of computational bits {xi, xj , xk}, we introduce a Boolean variable rijk ∈ {true, false}

corresponding to the use of an ancilla corresponding to their conjunction, regardless of

which intermediate ancilla bit was used. While the choice of intermediate ancilla bit must

be made when doing the reduction, the minimum set of ancilla bits used in a reduction

cannot contain two distinct ancilla bits corresponding to the conjunction of the same three

ancilla variables and so here there is no need to make the distinction. Let

R2 =

rij |{i, j} ⊂ ⋃
t∈T3∪T4

t

 , (2.33)

R3 =

rijk|{i, j, k} ⊂ ⋃
t∈T4

t

 , (2.34)

and

R = R2 ∪R3. (2.35)
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There are three sets of clauses that must be included. First, the goal is to minimize

the number of ancilla bits used in the reduction, and so for each variable representing the

use of a unique ancilla bit we include the single-literal clause consisting of its negation, and

assign to each such clause a weight of 1:

F1 = {(rij |{i, j} ∈ R2} ∪ {(rijk|{i, j, k} ∈ R3} (2.36)

and w(C) = 1 for every C ∈ F1. This first set consists of so-called soft clauses. The

remaining two sets of clauses F2 and F3 consist of hard clauses, those that must be satisfied.

This is ensured by assigning to every hard clause a weight greater than the sum of the weights

of al the soft clauses. Here, we set w(C) = |F1|+ 1 = |R|+ 1 for every C ∈ F2 ∪ F3. Note

that |R| ≤
(
N
3

)
+
(
N
2

)
= n(n2−1)

6 .

Second, we must ensure that for each ancilla bit used that corresponds to the conjunc-

tion of three computational bits there is at least one intermediate ancilla bit that can be

used in its construction, i.e.

(rijk → (rij ∨ rik ∨ rjk)) ≡ (rijk ∨ rij ∨ rik ∨ rjk). (2.37)

Let

F2 = {(rijk ∨ rij ∨ rik ∨ rjk)|{i, j, k} ∈ R3}. (2.38)

Third, we must ensure that the set of ancilla bits used reduces all the cubic and quartic

terms. A cubic term xixjxk can be reduced using xij , xik, or xjk, i.e. if (rij∨rij∨rjk). Note

that while an ancilla bit corresponding to the term itself can be used to reduce it to 1-local,

that ancilla bit can only be constructed using one of the three ancilla bits mentioned, and any

one of those three is sufficient to reduce the term to quadratic. A quartic term xixjxkxl can

be reduced using one of twelve ancilla bits (though each requires an intermediary). These

twelve can be partitioned into four triplets by the triplet of variables whose conjunction
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they correspond to, i.e. by the Boolean variable that represents the use of any one. Thus

the quartic term can be reduced to quadratic if (rijk∨rijl∨rikl∨rjkl). It can also be reduced

using two ancilla bits that correspond to the conjunctions of disjoint pairs of computational

bits, i.e. if ((rij ∧ rkl)∨ (rik ∧ rjl)∨ (ril∧ rjk)). These clauses must be written in conjunctive

normal form:

((rij ∧ rkl) ∨ (rik ∧ rjl) ∨ (ril ∧ rjk) ∨ rijk ∨ rijl ∨ rikl ∨ rjkl)

≡
∧

y1∈{rij ,rkl}
y2∈{rik,rjl}
y3∈{ril,rjk}

(y1 ∨ y2 ∨ y3 ∨ rijk ∨ rijl ∨ rikl ∨ rjkl).

Let

F3 = {(rij ∨ rij ∨ rjk)|{i, j, k} ∈ T3} (2.39)

∪
⋃

{i,j,k,l}∈T4

⋃
y1∈{rij ,rkl}
y2∈{rik,rjl}
y3∈{ril,rjk}

(y1 ∨ y2 ∨ y3 ∨ rijk ∨ rijl ∨ rikl ∨ rjkl).

Finally, let F = F1 + F2 + F3. The WMAXSAT instance is specified by F and

w(C) =


1 C ∈ F1

|R|+ 1 C ∈ F2 ∪ F3

. (2.40)

2.5.2 Max number of ancilla needed to reduce a cubic pseudo-Boolean

We prove here that the minimum number of ancilla variables needed to reduce all 3-local

terms over n variables to 2-local is
⌊

(n−1)2

4

⌋
, and therefore that the minimum number of

ancilla variables needed to reduce any set of 3-local terms over n variables is upper-bounded

by the same.

The basis of the proof is Mantel’s Theorem: A triangle-free graph with n vertices can

have at most
⌊
n2

4

⌋
vertices [47]. We identify a set of ancilla bits A used to reduce locality
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with the edge set E(A) of a graph G(A) whose vertices V = {vi|1 ≤ i ≤ N} correspond

to the computational variables and in which there is an edge between any two vertices vi

and vj if and only if the ancilla bit xij representing the conjunction of the corresponding

computational bits xi and xj is used.3 The set of ancilla bits A can be used to reduce all

possible 3-local terms if and only if for every set of three computational bits there is at

least one ancilla bit in A corresponding to the conjunction of any two. In graph-theoretic

terms, A can be used to reduce all 3-local terms if and only if every possible triangle in

the complete graph with the same the vertex set V contains at least one edge in E(A),

or equivalently if the complement EC(A) of E(A) is triangle-free. Suppose that the set

of ancilla bits A reduces all 3-local terms. Then by Mantel’s Theorem |EC(A)| ≤ bN2

4 c.

Because |E(A)|+ |EC(A)| =
(
N
2

)
, this yields

|E(A)| =
(
N

2

)
− |EC(A)| ≥

(
N

2

)
−
⌊
N2

4

⌋
. (2.41)

Let N = 2m+ b, where m =
⌊
N
2

⌋
∈ Z and b = N − 2m ∈ {0, 1}. Then

|E(A)| ≥
(

2m+ b

2

)
−
⌊

(2m+ b)2

4

⌋
(2.42)

=
(2m+ b)(2m+ b− 1)

2
−
⌊
m2 +mb+

b2

4

⌋
= 2m2 + 2mb−m+

b2 − b
2
− (m2 +mb)

= m2 +mb−m

=

⌊
m2 +mb−m+

b2 − 2b+ 1

4

⌋
=

⌊
(2m+ b− 1)2

4

⌋
=

⌊
(N − 1)2

4

⌋
.

3In reducing a cubic pseudo-Boolean to a quadratic, only ancilla bits of this type are needed.
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Furthermore, by construction we show that the minimal set reaches this bound. Let E =

{{vi, vj}|(1 ≤ i < j ≤ dN/2e) ∨ (dN/2e + 1 ≤ i < j ≤ N}. That is, partition the vertices

into sets of as equal size as possible and include an edge between every pair within each set.

Let N = 2m+ b as above. The total number of edges constructed in this way is

(dN/2e
2

)
+

(bN/2c
2

)
=

(
m+ b

2

)
+

(
m

2

)
(2.43)

=
(m+ b)(m+ b− 1)

2
+
m(m− 1)

2

= m2 +mb−m

= b(N − 1)2

4
c.
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Chapter 3

Lattice Protein Folding Using Quantum Annealing

Apart from minor modifications, this chapter originally appeared as [18]:

“Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings
for Constraint Satisfaction Programming and Quantum Annealing”. Ryan Babbush, Ale-
jandro Perdomo-Ortiz, Bryan O’Gorman and Alán Aspuru-Guzik. Advances in Chemical
Physics. Volume 155, Chapter 5: 201-243. 2014.

Abstract

Optimization problems associated with the interaction of linked particles are at the

heart of polymer science, protein folding and other important problems in the physical

sciences. In this chapter we explain how to recast these problems as constraint satisfac-

tion problems such as linear programming, maximum satisfiability, and pseudo-boolean

optimization. By encoding problems this way, one can leverage substantial insight and

powerful solvers from the computer science community which studies constraint program-

ming for diverse applications such as logistics, scheduling, artificial intelligence, and circuit

design. We demonstrate how to constrain and embed lattice heteropolymer problems using

several strategies. Each strikes a unique balance between number of constraints, complexity

of constraints, and number of variables. In addition, each strategy has distinct advantages

and disadvantages depending on problem size and available resources. Finally, we show

43



how to reduce the locality of couplings in these energy functions so they can be realized as

Hamiltonians on existing quantum annealing machines.

3.1 Introduction

3.1.1 Motivation and Background

Optimization problems associated with the interaction of linked particles are ubiquitous

in the physical sciences. For example, insights into a problem of biological relevance such as

the protein folding problem can be obtained from trying to solve the optimization problem

of finding the lowest energy configuration of a given sequence of amino acids in space

[236, 90, 198, 89, 126, 245]. Among other examples of biologically relevant polymers, DNA

and RNA chains also fold into complicated structures which can be challenging to predict.

The number of possible configurations (in fact, the number of local minima) for a

protein with N amino acids is exponential in N [139]. Even the simplest model for lattice

folding [177] was proved to be an NP-hard problem [27, 81]. This implies that the scaling

of the worst case scenario for arbitrary protein sequences is exponential with the size of

the system. This scaling imposes limitations on the exhaustive search in lattice models for

proteins with as few as 36 amino acids in even the most coarse grained protein models [241].

An alternative route to exhaustive search or the development of new heuristics is to

map these problems into the form of other, more general problems which have been ex-

tensively studied for decades. For instance, the NP-Complete problem known as Max-SAT

has central importance to practical technologies such as artificial intelligence, circuit de-

sign, automated theorem proving, cryptography and electronic verification [130, 131, 258].

The study of this particular problem is central to computer science. There are several

journals, conferences and competitions every year dedicated entirely to solving SAT prob-
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lems [192]. Another widely studied constraint satisfaction problem is linear programming

which has many applications including logistics scheduling, operations research, company

management, and economic planning [146]. Some applications of linear programming, i.e.

multi-commodity flow problems, are considered important enough that entire fields of re-

search exist to develop specialized algorithms for their solution [102].

Once cast as one of these canonical constraint satisfaction problems one can leverage

decades of progress in these fields to solve lattice heteropolymer problems. Though it has

received relatively little attention until recently, the idea that constraint programming can

help solve problems of this type has at least appeared in protein folding and computer

science literature since [295]. Other relevant papers include [269, 84, 172, 19, 20].

Another intriguing option is to study these problems using a computer which takes

advantage of quantum mechanical effects to drastically reduce the time required to solve

certain problems. For combinatorial optimization problems, perhaps the most intuitive

quantum computing paradigms is quantum annealing [108, 159, 239, 7, 8, 253], which is

equivalent to adiabatic quantum computation [104, 103, 159] with a diagonal final Hamil-

tonian. In quantum annealing, the presence of quantum fluctuations (tunneling) allows

the system to efficiently traverse potential energy barriers which have a tendency to trap

classical optimizations algorithms.

Motivated by the experimental realization of studying biologically interesting optimiza-

tion problems with quantum computation, in this contribution we present a general con-

struction of the free-energy function for the two-dimensional lattice heteropolymer model

widely used to study the dynamics of proteins. While the authors have already demon-

strated some of these techniques in [220], the encoding strategies discussed here are more

general and also more efficient than what we have explained previously. The reduction in
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resources achieved with these methods allowed for the first experimental implementation of

lattice folding on a quantum device [221] where we employed up 81 superconducting qubits

to solve a six amino-acid problem in the Miyazawa-Jernigan (MJ) model [199].

The goal of this review is to explain the mapping used in [221], to discuss the strengths

and weaknesses of this mapping with respect to other strategies, and to demonstrate how

to map the lattice heteropolymer problem into forms which can be solved by using differ-

ent types of technology and algorithms. While the focus of this paper will be on lattice

protein folding, the methods introduced here have very general relevance to discrete and

combinatorial optimization problems in science. Whether one decides to use a classical

or a quantum (annealing) device, the mappings and techniques presented here emphasize

the importance of three key considerations: energy function locality, coupler/coefficient

resolution, and efficiency of encoding.

In this context, the “locality” of an expression refers to the order of the largest many-

body expansion term. For instance, QUBO problems, which are a binary version of the

Ising model, are said to be “2-local” because QUBO expressions never contain terms with

more than two variables. This is a relevant consideration because an expression which

is 3-local cannot be programmed into a quantum device with only pairwise couplings. A

similar consideration applies to classical solvers. Coefficient resolution refers to the ability

of a quantum device or classical solver to program coupler values to the degree of precision

required for the problem. Finally, the efficiency of the encoding refers to the number of bits

required to encode the problem.
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3.1.2 Overview of Mapping Procedure

The embedding strategies presented here apply to many discrete optimization problems.

Mapping these problems to a constraint programming problem is a three step process. In

this section we provide a brief description of the process and expand upon each step as it

applies to lattice folding in later sections.

1. Encode solution space in computational basis

Define a one-to-one mapping between possible valid assignments of the problem and

a bit string encoding this information. Let us denote the bit string by q ≡ q1q2 · · · qn.

The way information is encoded at this point can drastically alter the nature of the

following three steps so one must take care to choose a mapping which will ultimately

make the best use of resources; in many cases, the most compact mapping will have

a high order energy function or require many ancillary bits. Regardless of how infor-

mation is encoded, the bit string must uniquely enumerate each element of the low

energy solution space.

2. Constrain energy landscape with pseudo-boolean expression

Construct a pseudo-boolean energy function E(q) = E(q1, q2, · · · , qn) which takes q

as input and correctly reproduces the relative energies in the low energy subspace

of the original problem so that the optimal solution to E(q) encodes the solution to

the original problem. The construction of this function is not trivial and will depend

largely on how information is encoded in q. At this point it may be necessary to

increase the dimensionality of the solution space by adding ancillary bits. In a previous

contribution, we provided a specific technique to construct the energy function for

particles interacting in a lattice [220]. The purpose of this contribution is to introduce
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the reader to several different types of mappings which have distinct advantages or

disadvantages depending on problem size, complexity and available resources.

3. Map boolean representation to desired constraint programming

In most cases one can take advantage of significantly more powerful solvers by making

a final transformation from pseudo-boolean function to weighted maximum satisfia-

bility (W-SAT), integer-linear programming (ILP), or quadratic unconstrained binary

optimization (QUBO). When cast as a W-SAT problem one can take advantage of

both heuristic and exact W-SAT solvers which have been developed by the computer

science community and tested every year in annual “SAT Competitions”. When rep-

resented as an ILP problem, one can use commercial logistics scheduling software such

as IBM’s CPLEX. If one wishes to implement the energy expression on a quantum

device it may be necessary to manipulate the energy expression so that it contains

only local fields and two-body couplings. So the final step is often to reduce the

dimensionality of the pseudo-boolean expression to 2-local so that the problem can

be implemented as QUBO on currently existing architectures for adiabatic quantum

computing as was done in [221].

3.2 The “Turn” Encoding of Self-Avoiding Walks

3.2.1 Embedding physical structure

Let us use the term “fold” to denote a particular self-avoiding walk (SAW) assumed by

the ordered chain of beads or “amino acids” on a square lattice. These configurations include

amino acid chains that might intersect at different points due to amino acids occupying the

same lattice sites. Even though overlapping folds will exist in the solution space of our
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problem, these folds are unphysical and therefore we need to construct energy functions to

penalize such configurations. Such functions will be discussed in detail below.

A fold of an N amino acid protein is represented in what we refer to as the “turn”

mapping by a series of N − 1 turns. We use this name to distinguish the encoding from

other (spatial) representations which encode the possible folds by explicitly encoding the

grid location of each amino acid. The square lattice spatial representation discussed in

[220] has the advantage of being general for the problem of N particles interacting in a

lattice (which need not be connected) but we can do much better in terms of the number

of variables needed; bit efficiency is the main advantage of the turn mapping.

In the turn mapping, one saves bits by taking advantage of the connectivity of a

valid SAW to store information about where each amino acid is relative to the previous

amino acid instead of encoding explicit amino acid locations. Therefore, instead of encoding

the positions of the jth amino acids in the lattice, we encode the jth turn taken by the

j + 1 amino acid in the chain. For pedagogical purposes, we concentrate on the case of a

two-dimensional (2D) lattice SAW; the extension to a three-dimensional lattice requires a

straightforward extension of the same techniques described here for the 2D case.

Because the location of an amino acid in the turn mapping is specified by its location

relative to the previous acid in the primary sequence, the solution space consists only of

paths, or “worms”, embedded in the lattice. The resulting energy function is invariant

under translational, rotation and reflection with respect to the embedding in physical space

as long as the local structure of the relative locations is kept intact. More specifically,

each of the N − 1 turns in 2D space requires two bits so that each of the four directions

(up, down, left, and right) has a unique representation. This assumes a rectilinear lattice,

but the method is equally valid, though with slight modification, for other lattices, e.g.

49



triangular. The convention or “compass” used in this paper is presented in the upper-left

part of Fig. 3.1. Furthermore, we can fix the first three bits to obtain only solutions which

are rotationally invariant. Under this convention, the bit-string q is written as,

q = 01 0q1︸︷︷︸
turn2

q2q3︸︷︷︸
turn3

· · · q2(N−1)−4q2(N−1)−3︸ ︷︷ ︸
turn(N−1)

(3.1)

We have chosen to fix the first three bits as 010 so that the walk always turns first to

the right and then either right or down. This does not affect the structure of the solution

space and leaves only N − 2 turns to be specified; an example is provided in Eq. 3.1. Since

every turn requires 2 bits, the turn mapping requires only 2(N − 2) − 1 = 2N − 5 bits to

represent a fold. This can be compared with the (2N − 4) log2N required for the spatial

mapping in [220]. To clearly demonstrate how this mapping works, an example of the turn

encoding for a short SAW is shown below in Fig. 3.1.

Figure 3.1: Step-by-step construction of the binary representation of a particular six unit
lattice protein in the turn encoding. Two qubits per bond are needed and the turn “com-
pass” (bond directions) are denoted as “00” (downwards), “01” (rightwards), “10” (left),
and “11” (upwards). This image has been reproduced with permission from [221].
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3.2.2 “Turn ancilla” construction of E(q)

Now that we have a mapping function which translates a length 2N − 5 bit-string

into a specific fold in the 2D lattice we can construct E(q) as a function of these binary

variables. For the case of lattice folding, we need to penalize folds where two amino acids

overlap, i.e. the chain must be self-avoiding. This penalty will be given by the energy

function, Eoverlap (q), which returns an extremely high value if and only if amino acids

overlap. While it is possible to construct a single function Eoverlap (q) which penalizes

all potential overlaps, we will show that less ancillary bits are needed if we introduce the

function Eback (q) which penalizes the special case of overlaps that happen because the

chain went directly backwards on itself. In this scheme, Eoverlap (q) will apply to all other

potential overlaps.

Finally, we must consider the interaction energy among the different amino acids. This

will ultimately determine the structure of the lowest energy fold. The energy given by

the pairwise interaction of beads in our chain will be given by Epair(q). In some lattice

protein models such as the Hydrophobic-Polar (HP) protein folding model, there is only one

stabilizing interaction; however, the construction we present here applies for an arbitrary

interaction matrix among the different amino acids (or particles to be even more general).

One of the advantages of the turn representation over the spatial representation is that

we do not need to worry about having the amino acids linked in the right order (primary

sequence), since this is guaranteed by design. The construction of the energy function,

E(q) = Eback (q) + Eoverlap(q) + Epair(q), (3.2)

involves a series of intermediate steps which we outline next.
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Construction of Eback(q)

In order to have a valid SAW we need to guarantee that our “worm” does not turn left

and then immediately turn right or vice versa or turn up and then immediately turn down

or vice versa. In order to program this constraint into the energy function we will introduce

several simple logic circuits. Looking at the compass provided in Fig. 3.1 it should be clear

the circuits in Figs. 3.2-3.5 return true if and only if a particular turn (encoded q1q2) went

right, left, up, or down respectively.

q1 q2

(q2 − q1q2)

Figure 3.2: A logical circuit representing “right” consisting of a not gate after the first bit
and an and gate. Evaluates to true if and only if q1, q2 = 0, 1.

q1 q2

(q1 − q1q2)

Figure 3.3: A logical circuit representing “left” consisting of a not gate after the second
bit and an and gate. Evaluates to true if and only if q1, q2 = 1, 0.
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q1 q2

(q1q2)

Figure 3.4: A logical circuit representing “up”. Only true if q1, q2 = 1, 1.
q1 q2

(1− q1 − q2 + q1q2)

Figure 3.5: A logical circuit representing “down”. Only true if q1, q2 = 0, 0.

Using these circuits we can generalize the concept of “up”, “down”, “left” and “right”

functions to precise directional strings. In two dimensions (as prescribed by Fig. 3.1), we

have the functions for the jth turn,

djx+ = q2j(1− q2j−1) = q2j − q2jq2j−1 (3.3)

djx− = (1− q2j)q2j−1 = q2j−1 − q2jq2j−1 (3.4)

djy+ = q2jq2i−1 (3.5)

djy− = (1− q2j)(1− q2j−1) = 1− q2j − q2j−1 + q2jq2j−1, (3.6)

which evaluate to true if and only if the jth turn is to be right, left, up or down respectively.

Having defined these circuits we can construct a more complicated circuit which takes two

turns (the 4 bits qiqi+1qi+2qi+3) as input and returns true if and only if the second turn

went backwards, i.e.
(
djx+ ∧ dj+1

x−
)
∨
(
djx− ∧ dj+1

x+

)
∨
(
djy+ ∧ dj+1

y−
)
∨
(
djy− ∧ dj+1

y+

)
. An

example of these conjunctions,
(
djx+ ∧ dj+1

x−
)

is shown in Fig. 3.6.

The other three conjunctions are also trivially constructed by combining the appropri-

ate circuits using and gates which simply multiply together the directional strings. The

utility of these circuits is that they produce terms in a pseudo-boolean function. Specifically
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qi qi+1 qi+2 qi+3

(
djx+ ∧ dj+1

x−
)

Figure 3.6: A logical circuit which returns true if and only if
(
djx+ ∧ dj+1

x−
)

, i.e. the turn

sequence qiqi+1qi+2qi+3 = 0110, meaning it went right and then left.

we get the terms,

(
djx+ ∧ dj+1

x−
)

= qi+1qi+2 − qiqi+1qi+2 − qi+1qi+2qi+3 + qiqi+1qi+2qi+3 (3.7)(
djx− ∧ dj+1

x+

)
= qiqi+3 − qiqi+1qi+3 − qiqi+2qi+3 + qiqi+1qi+2qi+3 (3.8)(

djy+ ∧ dj+1
y−
)

= qiqi+1 − qiqi+1qi+2 − qiqi+1qi+3 + qiqi+1qi+2qi+3 (3.9)(
djy− ∧ dj+1

y+

)
= qi+2qi+3 − qiqi+2qi+3 − qi+1qi+2qi+3 + qiqi+1qi+2qi+3. (3.10)

It might seem logical to finish this circuit by combining all four backwards overlap circuits

with or gates; however, this is not an advisable strategy as it is sure to produce many high

ordered terms. Because exactly one or none of these circuits will be true we can accomplish

the same result by summing the four circuits. Accordingly, for the two turns qiqi+1qi+2qi+3

the pseudo-boolean expression,

(
djx+ ∧ dj+1

x−
)

+
(
djx− ∧ dj+1

x+

)
+
(
djy+ ∧ dj+1

y−
)

+
(
djy− ∧ dj+1

y+

)
(3.11)

evaluates to true if and only if qiqi+1qi+2qi+3 represents a backwards turn and evaluates

to false otherwise. Our goal is to construct a pseudo-boolean expression which returns a

penalty whenever a backwards turn is made; therefore we must multiply this expression by
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a constant to be determined later known as λoverlap. After substituting Eqs. 3.7-3.10 into

Eq. 3.11, factoring the terms, and adding in λoverlap we can write,

Eback (qiqi+1qi+2qi+3) = λoverlap (2qiqi+2 − qi − qi+2) (2qi+1qi+3 − qi+1 − qi+3) . (3.12)

To construct the entire Eback (q) we need to sum together bits from each pair of adjacent

turns. Keeping in mind that we fix the first three bits at 010, we write the final expression

for Eback(q) as,

Eback(q) = λoverlap (q1q2 + q2q3 − 2q1q2q3)

+ λoverlap
∑2N−8

i=2 (2qiqi+2 − qi − qi+2) (2qi+1qi+3 − qi+1 − qi+3) .

(3.13)

In this expression, the first three terms come from ensuring that the second turn (which

begins with a bit fixed at 0) does not overlap with the third turn. Notice that in this

expression, the first physical bit with an unknown value is labeled “q1” despite the fact

that the first three information bits are fixed at 010. This formalism will be consistent

throughout our review.

It is important to point out that while the decision to use a separate Eback(q) instead

of a more general Eoverlap (q) has the disadvantage of introducing 3 and 4-local terms, it has

the advantage of construction without any ancillary bits. Furthermore, even if one needs an

entirely 2-local expression this strategy may still be preferable because the same reductions

needed to collapse this expression to 2-local will be needed in collapsing the pairwise energy

function to 2-local by construction. For more on reductions, see Sec. 3.6.

Construction of Eoverlap (q) with ancilla variables

The overlap energy function Eoverlap(q) penalizes configurations in which any two

amino acids share the same lattice point. The penalty energy associated with any pair
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of amino acids overlapping must be large enough to guarantee that it does not interfere

with the spectrum of the valid configurations (we return to the topic of choosing penalty

values later on). We begin by defining a function which specifies the x and y grid positions

of each amino acid. Because the directional strings we defined earlier in Eqs. 3.7-3.10 keep

track of the direction of every step we can define these functions as,

xn = 1 + q1 +
n−1∑
k=2

(
dkx+ − dkx−

)
(3.14)

yn = q1 − 1 +

n−1∑
k=2

(
dky+ − dky−

)
(3.15)

where the position of the nth amino acid in the sequence is a function of the preceeding

n − 1 turns iterated through with index k. Note that the terms in front of the sum are

determined by the first three (fixed) bits: 010. With these definitions we can make an

extremely useful function which will return the square of the grid distance between any two

amino acids (denoted i and j):

gij = (xi − xj)2 + (yi − yj)2 . (3.16)

gij has several extremely useful properties worth pointing out now. First, gij is zero if and

only if two amino acids overlap; otherwise, gij is always positive. Additionally, gij has the

very surprising property of being natively 2-local when constructed using the compass that

we defined in Fig. 3.1 (therefore the decision to encode directions in that fashion was not

arbitrary). This is surprising because the directional strings are 2-local so we might naively

expect something which involves the square of these to be 4-local; however this turns out

not to be the case because xn and yn are 1-local by construction.

In order to use gij to construct Eoverlap (q) we need a function which takes gij as input

and returns a penalty if and only if gij = 0. First, we note the bounds on gij ,

0 ≤ gij ≤ (i− j)2. (3.17)
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To help enforce the constraint that gij ≥ 1, we introduce a free parameter, αij . In the

optimization literature, such a variable is called a “slack variable” and is used to convert

an inequality into an equality. In our case,

0 ≤ αij ≤ (i− j)2 − 1 (3.18)

This implies that,

∀ gij ≥ 1 ∃αij : (i− j)2 − gij − αij = 0. (3.19)

Furthermore, if and only if gij = 0,

(i− j)2 − gij − αij ≥ 1 ∀αij . (3.20)

In order to introduce a slack variable such as αij into the construction of our pseudo-

boolean function we must encode it using ancilla bits. Ancilla bits are real, unconstrained

bits used in the calculation which have no physical significance to the particular problem

mapping (i.e. ancilla bits do not tell us anything about a particular protein fold). In using

ancilla we increase the dimensionality of the solution space of our problem by introducing

extra variables but gain the ability to use those bits in our energy function.

Every pair of amino acids which could possibly overlap will need unique bits to form an

α for use in the Eoverlap (q) term corresponding to that pair. Only amino acids which are

an even number of turns apart can possibly overlap and we are already preventing amino

acids which are two turns apart from overlapping with Eback(q); thus, the number of amino

acid pairs which require a slack variable is calculated as,

N−4∑
i=1

N∑
j=i+4

[(1 + i− j) mod 2] . (3.21)

Each αij can be represented in binary using the corresponding ancilla bits. Using Eq. 3.18

we see that the αij corresponding to amino acid pair i, j can be represented in µij ancilla
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bits where,

µij = d2 log2 (i− j)e [(1 + i− j) mod 2] . (3.22)

Therefore, the total number of ancilla bits required to form Eoverlap (q) is,

N−4∑
i=1

N∑
j=i+4

µij . (3.23)

Finally, we can write the formula for a given αij as,

αij =

µij∑
k=0

qcij+k2
k (3.24)

where cij denotes a pointer to the first ancilla bit corresponding to a particular amino acid

pair. For instance, if the Eoverlap (q) ancilla are in sequential order from lowest index pair

to highest index pair and come immediately after the information, bits then we could write,

cij =
i∑

m=1

(
N∑

n=m+4

µmn

)
−

N∑
n=j

µin. (3.25)

However, there are still several problems we must address before we can construct

Eoverlap (q). To begin with, we originally wanted an αij which was specifically restricted to

the domain given in Eq. 3.18 but since we cannot constrain the physical bits in any fashion,

Eq. 3.22 and Eq. 3.24 suggest that our slack variable is actually in the domain given by,

0 ≤ αij ≤ 2µij − 1. (3.26)

We should adjust Eq. 3.19 and Eq. 3.20 so that,

∀ gij ≥ 1 ∃αij : 2µij − gij − αij = 0. (3.27)

Furthermore, if and only if gij = 0,

2µij − gij − αij ≥ 1 ∀αij . (3.28)
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Finally, there is the question of how to guarantee that αij is the particular αij that gives

0 in Eq. 3.27 whenever gij ≥ 1. Even though there exist αij such that Eq. 3.27 evaluates to

0, it is also possible to have αij such that Eq. 3.27 evaluates to a negative value. Negative

values would incentivize overlaps instead of penalizing them so to ensure that the lowest

energy solution always has Eoverlap (q) = 0 we square the expression to obtain the following

formula,

γij = λoverlap [2µij − gij − αij ]2 . (3.29)

The expression γij is effective for our purposes because αij ’s restricted domain given by

Eq. 3.26, promises that γij can only equal zero if gij ≥ 1. γij is zero only if gij ≥ 1 ∧ αij =

2µij − gij ; thus, the goal is to make λoverlap a sufficiently large penalty that all low energy

solutions must have no overlaps, i.e. gij ≥ 1 for all ij, and αij = 2µij − gij . Finally we can

write the final expression,

Eoverlap (q) =
N−4∑
i=1

N∑
j=i+4

[(1 + i− j) mod 2] γij . (3.30)

Again, we include the term [(1 + i− j) mod 2] because only amino acids that are an

even number apart have the possibility of overlapping. Furthermore, because overlaps

between adjacent amino acids are impossible and overlaps between amino acids two apart

are prevented by Eback (q), we start the second sum at j = i + 4 Accordingly, one should

only create ancillary bits for pairs in which (i− j) mod 2 = 0 ∧ i − j ≥ 4. It should now

be clear that the reason we introduced Eback (q) was so that we used fewer ancillary bits in

this step.

Construction of Epair(q) with ancilla variables

Finally, we need to construct the pairwise interaction energy function. To do this we

need to make an interaction matrix, J , which contains all of the pairwise interactions which
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lower the energy when two amino acids are adjacent on the lattice (thus all elements of

J are negative or zero). Note that this interaction matrix must contain many zero-valued

elements as many amino acid pairs cannot possibly be adjacent. For instance, only amino

acids which are at least three turns apart and an odd number of turns apart can ever be

adjacent. Furthermore, depending on the interaction model many of these amino acids

might not “interact”; for instance, in the HP-model only H-H pairs can interact where as

in the Miyazawa-Jernigan model all amino acids can interact.

For each potential interaction, we must introduce one ancillary bit denoted ωij where

i and j denote the amino acids involved in the interaction. ωij is essentially a switch which

is only “on” without incurring an energy penalty if two amino acids are interacting (that

is, if gij = 1). We can now write the pairwise interaction term:

ϕij = ωijJij (2− gij) (3.31)

This simple function does everything we need to write the pair function. Because

Eoverlap (q) ensures that gij ≥ 1, we see that ϕij is only positive if both Jij and ωij are

non-zero and gij is greater than 2. Such solutions will never be part of the low-energy

landscape for our problem because the energy could be made lower by trivially flipping the

ωij ancillary bit. On the other hand, ϕij = Jij if and only if gij = 1 ∧ ωij = 1 which means

that the pair is adjacent! Thus, the final form of Epair(q) is,

Epair(q) =
N−1∑
i=1

N∑
j=i+3

ωijJij (2− gij) . (3.32)

3.2.3 “Turn circuit” construction of E(q)

The turn ancilla construction has the advantage of providing an energy expression

with relatively few many-body terms but it does so at the cost of introducing ancilla bits.
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If one intends to use a pseudo-boolean solver or a quantum device with adjustable many-

body couplings, bit efficiency is much more important than the particular structure of the

energy expression. This section explains the so-called “circuit” construction which provides

optimal efficiency at the cost of introducing high ordered many-body terms. The turn circuit

construction (along with reductions explained in Sec. 3.6) was used to encode problems into

a quantum annealing machine in [221].

Sum strings

The circuit construction works by keeping track of the turns in between amino acids to

determine if the amino acids overlap or not. To do this we keep track of the turns in every

direction using the directional strings defined in Eqs. 3.7-3.10. Using these directional

strings we introduce ancillary bits referred to as “sum strings”. Sum strings are strings

of dlog2(j − i)e bits for each segment of the chain between amino acids i and j, with

1 ≤ i < j ≤ N and i+ 1 < j. As in the case of the directional strings, we require one ‘sum

string” per direction per pair of amino acids to be compared. Each represents, in binary,

the number of total turns in a particular direction within the segment.

As in the ancilla construction, whether or not two amino acids interact or overlap

depends on the sequence of turns between them. To determine this, for each segment of

the directional strings we construct a string that is the sum, in binary, of the bits between

two amino acids, i.e. the total number of turns in that direction. This process is most

straightforwardly described using a circuit model. Consider, a single Half-Adder gate (HA)

consisting of an and and an xor gate, as shown in Fig. 3.7. The output of a Half-Adder

can be interpreted as the two-bit sum of its two input bits. Accordingly, if we wanted to

add three bits we could add two of them, and then add the resultant two-bit number to the
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x
HA

x ∧ y

y x ⊕ y

Figure 3.7: The Half-Adder gate sums two bits.

third bit, as shown in Figure 3.8.

x
HA

x ∧ y
HA

0

y x ⊕ y
HA

(x ⊕ y) ∧ z (x ∧ y) ⊕ ((x ⊕ y) ∧ z)

z (x ⊕ y) ⊕ z = (x + y + z) mod 2

Figure 3.8: A circuit to sum three bits.

In general, to add a single bit to an n-bit number, we simply apply n Half-Adders.

First, a Half-Adder applied to the single bit and the least significant bit of the augend gives

the least significant bit of the sum. Next, we use a second Half-Adder to add the carry bit of

the first addition and the second least significant bit of the augend to give the second least

significant bit of the sum. This process is repeated until the (n + 1)-bit sum is computed.

For an example of this see Fig. 3.9.

x5

HA
z6

x4

HA
z5

x3

HA
z4

x2

HA
z3

x1

HA
z2

y z1

Figure 3.9: Circuit for the addition of a single bit y to the 5-bit x = x5x4x3x2x1 to form
the 6-bit sum x+ y = z6z5z4z3z2z1.

Thus, given an arbitrary number of bits we can find their sum, in binary, by successively

combining the strategies shown in Fig. 3.10, i.e. first adding the first three bits (see the first
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three HA gates from left to right) and then adding the next bit to the resulting three bit

number which carries the previous sum. This is accomplished by the next three HA gates.

From then and on, one adds a simple bit to each of the resulting n bit number by using n

HA gates until all bits in the string are added.

x5

HA HA HA HA
s5

x4

HA HA HA
s4

x3

HA HA
s3

x2

HA
s2

x1 s1

Figure 3.10: The circuit for the sum, s1s2s3s4s5, of 5 bits x1 + x2 + x3 + x4 + x5.

dj−1
k,±

HA HA

· · ·
HA HA HA

· · ·
HA HA

sj−i
k,±(i, j)

dj−2
k,±

HA

· · ·
HA HA

· · ·
HA

sj−i−1
k,± (i, j)

dj−3
k,±

HA

· · ·
HA HA HA

· · ·
HA

sj−i−2
k,± (i, j)

dj−4
k,± · · · · · · sj−i−3

k,± (i, j)

...
. . .

...
...

...
...

... . .
. ...

di+3
k,± · · ·

HA HA HA

· · · s4k,±(i, j)

di+2
k,± · · ·

HA HA

· · · s3k,±(i, j)

di+1
k,± · · ·

HA

· · · s2k,±(i, j)

dik,± · · · · · · s1k,±(i, j)

Figure 3.11: The circuit for the number sk±(i, j) of turns between amino acids i and j in
the ±k direction.

We can use the circuit such shown in Fig. 3.11 to compute the the binary digits of a

particular sum that will be very useful to us,

srk±(i, j) = rth digit of

j−1∑
p=i

dpk±. (3.33)

This sum tells us how many turns our protein has taken in the k± direction between any

two amino acids. For instance, s1
x−(3, 9) would tell us the value of the 1st binary digit of an
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integer representing the number of times that the protein turned in the negative x direction

(aka left) between amino acids 3 and 9. While the size of the output of the circuit given

in Fig. 3.11 scales exactly with the size of the input, the maximum number of bits needed

to represent the sum of a set of bits scales logarithmically; therefore, many of the bits

representing higher places in the sequence are zero. Specifically, the sum of n bits requires

at most dlog2 ne bits to represent in binary.

Construction of Eoverlap (q) with circuit

The overlap penalty should be positive if any two amino acids are at the same lattice

point. For a pair i, j, this occurs when the number of turns between them in each direction

k± is equal to those in the opposite direction k∓ or equivalently, when the bit-strings

representing those numbers, sj−ik+ · · · s1
k+ and sj−ik− · · · s1

k−, are the same. As discussed above,

since only the first dlog2(j − i)e digits of sk± are non-zero, the overlap penalty function for

amino acids i,j is

Eoverlap(i, j) =

D∏
k=1

dlog(j−i)e∏
r=1

XNOR
(
srk+(i, j), srk−(i, j)

) , (3.34)

where

XNOR(p, q) = 1− p− q + 2pq (3.35)

is the exclusive nor function which evaluates to true if and only if the two bits have the

same value. Furthermore, we need not consider every pair of amino acids in the sequence

because in order for the number of turns in opposite directions to be equal, there must be

an even number of total turns. The total on-site penalty function is

Eoverlap = λoverlap

N−2∑
i=1

b(N−i)/2c∑
j=1

Eoverlap(i, i+ 2j)

 (3.36)
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Construction of Epair(q) with circuit

To determine if a pair of amino acids is adjacent on the lattice without using ancilla

bits is more involved. Two amino acids are adjacent if and only if the number of turns

between them in opposite directions is the same in all but one dimension and the numbers

of turns in the other dimension have a difference of one. The construction of the equality

condition is the same as in as for the overlap function; to construct the latter condition,

consider the set of 4 bit numbers. Note that when the first of two sequential binary is

even, the Hamming distance between those bit-strings are the same except for the least

significant bit, e.g. 0000 and 0001, 1000 and 1001, 1110 and 1111. On the other hand,

sequential numbers for which the lesser one is odd differ in at least two places, depending

on where the rightmost 0 is in the lesser number, i.e.

00000000000 · · · 01

+ ∗ ∗ · · · ∗ ∗011 · · · 11

∗ ∗ · · · ∗ ∗100 · · · 00

, (3.37)

as in 0011 and 0100, 0111 and 1000, and 1011 and 1100.

Let us use p to denote the position of the rightmost 0 in the odd, lesser number of

this comparison. There are three portions of the bit strings which need attention when

comparing adjacency in this case. First, all digits from the least significant and up to p

need to be different. Second, all digits after p need to be the same. Third, within each

possible adjacency direction (k+ or k−) there needs to be a change from p−1 to p. Finally,

all the digits from the least significant up to the (p− 2)th digit need to be the same. Using

these conditions, for both cases when the lesser number is either even or odd, results in the

adjacency terms for each of the two dimensions and all of the possible amino acid pairs,
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ak(i, j):

ak(i, j) =

∏
w 6=k

dlog(j−i)e∏
r=1

XNOR
(
srw+(i, j), srw−(i, j)

) (3.38)

∗

XOR
(
s1k+(i, j), s1k−(i, j)

) dlog(j−i)e∏
r=2

XNOR
(
srk+(i, j), srk−(i, j)

)

+

dlog(j−i)e∑
p=2

(
XOR

(
sp−1k+ (i, j), spk+(i, j)

) p−2∏
r=1

XNOR
(
srk+(i, j), sr+1

k+ (i, j)
)

∗
p∏

r=1

XOR
(
srk+(i, j), srk−(i, j)

) dlog(j−i)e∏
r=p+1

XNOR
(
srk+(i, j), srk−(i, j)

) .
Thus total contribution of the interaction between two amino acids to the total energy

function is given by

Epair(i, j) = Jij [ax(i, j) + ay(i, j)] , (3.39)

where Jij is the adjacency matrix giving the energy of pairwise interactions that we used

earlier. As was the case with the overlap penalty function, we need not consider all pairs

of amino acids. In order for two amino acids to be adjacent there must be an odd number

of turns between them, excluding the trivial case of amino acids that are adjacent in the

primary sequence. Accordingly, the total pairwise interaction function is

Epair =
N−3∑
i=1

d(N−i−1)/2e∑
j=1

Epair(i, 1 + i+ 2j)

 . (3.40)

3.3 The “Diamond” Encoding of SAWs

There are many different ways in which one could encode a SAW into binary. Of all the

alternatives to the “turn” encoding that we have considered, one stands out for a number

of reasons: the so-called “diamond encoding” lends itself to an energy function which is

natively 2-local (without any reductions) and which has a very sparse QUBO (quadratic

unconstrained binary optimization) matrix. Despite the fact that the diamond encoding
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requires no ancillary bits whatsoever, the encoding is still less bit-wise efficient than the

“turn encoding”. In the language of constraint satisfaction programming, this means that

the clause:variable ratio is significantly lower when compared to the clause:variable in the

turn encoding.

3.3.1 Embedding physical structure

The diamond encoding can be thought of as a more sophisticated version of the “spa-

tial” encoding used in [220]. The key insight behind the diamond encoding is that if the

first amino acid is fixed then each subsequent amino can only occupy a restricted set of

lattice points which can be enumerated independent of any knowledge of the particular

fold. To clarify this point and elucidate why we refer to this as the “diamond” encoding,

see Fig. 3.12.

Figure 3.12: A “map” of the diamond encoding in 2D. If the first amino acid is fixed to the
blue lattice point in the center then the second amino acid must be on an orange lattice
point, the third must be on a green lattice point and the fourth must be on either an orange
or red lattice point.

Fig. 3.12 illustrates what the “diamond” of valid lattice sites looks like for the first 4
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amino acids in a SAW. In the diamond encoding each bit refers to a specific lattice site

which could be occupied by an amino acid in that part of the sequence. In Fig. 3.12 we

notice that the second amino acid may occupy 4 positions, the third may occupy 8 and the

fourth may occupy 16. Accordingly, we need this many bits for each amino acid.

q = q1q2q3q4︸ ︷︷ ︸
2nd acid

q5q6q7q8q9q10q11q12︸ ︷︷ ︸
3rd acid

· · · (3.41)

Though very straightforward to encode, this representation makes significantly less

efficient use of bits than does the turn representation. However, there are a few tricks which

we can use to improve the situation for this encoding. While the “diamond” of possible

lattice locations for each amino acid grows quadratically with the length of the chain we can

simultaneously save bits and drastically reduce the solution space without discarding the

global minimum by deciding to set a hard limit on the size of the diamond. For instance, if

a protein has length 100 then we would expect that the diamond for the 100th amino acid

will have a radius of 99 lattice points at each corner. However, we can use the observation

that proteins always fold into very compact structures to justify a substantial restriction on

the solution space of our problem.

The very fact that these problems are typically called “protein folding” suggests that

low energy solutions involve dense conformations. Indeed, almost all heuristic methods for

folding proteins take advantage of the compact nature of low energy folds to constrain search

procedures [21, 214, 246]. A large part of the reason why lattice heteropolymer problems

such as protein folding are so difficult and poorly suited to heuristic algorithms is because

the low energy solutions are always very compact and thus, frustrated, which makes it very

unlikely that compact folds will be found efficiently via stochastic searches [88, 248, 62, 213].

Therefore, for any interesting problem its reasonable to assume that the protein will not

stretch out further than a certain limit. To estimate this limit one must have familiarity
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with the types of solutions expected of the particular problem. An examination of several

publications holding current records for lowest energy folds in canonical problems suggests

to us that for a 100 unit instance in 2D a reasonable cutoff radius would be around 20-30

lattice points. The cutoff radius could reasonably be made shorter for lattice models in

higher dimensions as folds are expected to be even more compact on higher dimensional

lattices. The number of bits required for the diamond encoding can be expected to grow

cubicly up to a limit and then linearly after that limit if a cutoff is imposed. Because the

number of bits required for the turn ancilla grows quadratically, for large proteins or proteins

on higher dimensional lattices the diamond encoding would actually be more efficient in bits.

3.3.2 Natively 2-local E(q)

The major advantages of the diamond encoding become evident as soon as one starts

to construct E(q). The breakdown of the energy function looks different for the diamond

encoding than for the turn encoding because the diamond encoding has different strengths

and weaknesses. The first difference is that the diamond encoding will require a constraint,

Eone (q) which makes sure that each amino acid will have only one bit flipped to “on” so that

each amino acid can only occupy one lattice position. Furthermore, the diamond encoding

does not hard-code a primary structure constraint so we will need a term, Econnect (q) to

guarantee that each sequential amino acid is adjacent. Like the turn encoding the diamond

encoding will also require Eoverlap (q) and Epair (q) terms. The overall energy function is,

E (q) = Eone (q) + Econnect (q) + Eoverlap (q) + Epair (q) . (3.42)
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Construction of Eone (q)

Each amino acid is encoded by flipping a bit in the part of the total bit-string sequence

which represents that amino acid. Thus, we need to make sure that exactly one bit is flipped

“on” for each amino acid. The most efficient way to guarantee this is the case for low energy

solutions is to lower the energy whenever a bit is flipped on but introduce extremely high

penalties if any two are flipped on for the same amino acid. For instance, if qk is the binary

vector which represents the kth amino acid and nk represents the length of this vector then

we can write,

Eone (q) = λone

N∑
k=2

nk−1∑
i=1

nk∑
j>i

qki q
k
j . (3.43)

λone in Eq. 3.43 yields terms which impose a very large penalty if any two (or more) bits

are flipped at once. As written, this function allows for the possibility that no bits are

flipped on at once (and clearly one must be flipped on). However, the terms introduced in

Econnect (q) will guarantee that the low energy solutions all have one bit flipped on. Thus,

this function only needs to make sure that no more than one bit is flipped for each amino

acid.

Construction of Econnect (q)

To form Econnect (q) we take a very similar approach to how we formed Eone (q). To

guarantee that the low energy solution space contains only amino acids chains which connect

in the desired order we couple every bit representing amino acid k to each of the nk−1 ≤ 4

bits representing a lattice position adjacent to that amino acid from the previous amino

acid k − 1 and multiply by a reward as follows (using the same notation as was used in
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Eq. 3.43,

Econnect (q) = N − 2− λconnect
N∑
k=2

nk−1∑
i=1

nk−1∑
j=1

qki q
k−1
j . (3.44)

Note a subtle difference between the second and third sums here is that the “-1” in the

upper limit of the sum is subscripted in the latter but not in the former equation. Another

important caveat is that λconnect << λone so that the system cannot overcome the λone

penalty by having multiple λconnect couplings. Finally we put the constant factor of N − 2

into the equation to adjust the energy back to zero overall for valid solutions which contain

N − 2 connections.

Construction of Eoverlap (q)

It is much easier to prevent amino acids from overlapping in the diamond mapping

than in the turn mapping. The only way that amino acids could overlap in the diamond

mapping is for amino acids which have an even number of bonds between them to flip bits

corresponding to the same lattice location. For instance, in Fig. 3.12 its clear that the

fourth amino acid could overlap with second amino acid since the orange lattice points are

possibilities for both amino acids. Assuming that the diamond lattice positions are encoded

so that the inner diamond bits come first in the bit-string for each amino acid and that

bits are enumerated in some consistent fashion (e.g. starting at the top and going clockwise

around the diamond), we can write the following,

Eoverlap (q) = λoverlap

N−1∑
k=2

N∑
h>k

nk∑
i=1

[(1 + k − h) mod 2] qki q
h
i . (3.45)

This expression would perfectly sum over all the possible overlaps as the first two sums

iterate through all possible overlapping pairs and the third sum iterates through all of the

diamond points up to the last point they both share, nk.
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Construction of Epair (q)

To form the pairwise interaction term we simply couple each bit to the possible adjacent

lattice locations which could be occupied by other amino acids. The strength of the coupling

will depend on the interaction matrix element between the two amino acids coupled by the

term. Additionally, we note that amino acids are only able to be adjacent if there are an

even number of amino acids (2 or greater) in between the two. Thus, the formula is as

follows:

Epair (q) =
N−1∑
k=2

N∑
h=k+2

∑
<ij>

Jhk [(k − h) mod 2] qki q
h
j (3.46)

where the sum over < ij > is understood as a sum over bits corresponding to adjacent lattice

sites. There is no straightforward way to write the function < ij > in analytical terms.

Nevertheless, for large problems it is trivial to write a program which iterates through bits

in the second amino acid with a for-loop and evaluated the sum on those bits if the first

amino acid bit and the second amino acid bit have a grid distance of 1.

3.4 Pseudo-boolean Function to W-SAT

In order to take advantage of state-of-the-art satisfiability (SAT) solvers to optimize

our pseudo-boolean function, it is necessary to map the problem to Weighted Maximum

Satisfiability (W-SAT). The most general form of the generic SAT problem is known as

K-SAT. In K-SAT the problem is to find a vector of boolean valued variables which satisfies

a list of clauses, each containing up to K variables, which constrain the solution. When

K-SAT has a solution it is known as “satisfiable” and for K ≤ 2 the problem is tractable

in polynomial time. However, for K > 2 the problem is known to be NP-complete; in fact,

3-SAT was the first problem proved to be NP-Complete [79].
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3.4.1 MAX-SAT and W-SAT

Maximum Satisfiability (MAX-SAT) is an alternative version of the canonical SAT

problem which is relevant when K-SAT is either “unsatisfiable” or at least not known to

be satisfiable. In MAX-SAT the goal is not necessarily to find the solution string which

satisfies all clauses (such a solution string may not even exist); rather, the goal is to find

the solution string which satisfies the maximum number of clauses.

An extension of MAX-SAT known as Weighted Maximum Satisfiability (aka W-SAT)

is what will be most relevant to us. In W-SAT each clause is given a positive integer valued

“weight” which is added to a sum only if the clause evaluates to false. Accordingly, in

W-SAT the goal is to minimize this sum rather than the total number of false clauses as in

canonical MAX-SAT [291, 50]. We can more succinctly state the problem as follows: given

m number of clauses (y) each with a weight of w, minimize

W =
m∑
i=1

wiyi : yi =


1 if the ith clause is false

0 otherwise.

(3.47)

The same approximation schemes and exact solver algorithms which work for MAX-

SAT also work for W-SAT [51, 218]. In order to use these solvers one must first trans-

late their pseudo-boolean function into a W-SAT problem articulated in what is known as

Weighted Conjunctive Normal Form (WCNF). In WCNF, the W-SAT problem is stated

as a list of weights followed by a clause with each clause stated as an or statement be-

tween integers representing the index of the corresponding boolean variable in the solution

vector. In WCNF, a negative integer denotes a negation. For instance the WCNF clause

“4000 9 −1 82” means x9 ∨ ¬x1 ∨ x82 with penalty of 4000 if clause evaluates to false.

Fig. 3.13 shows this clause as a logic circuit.

73



x9

x1

x82

(1− x1 + x1x82 + x1x9 − x1x9x82)

Figure 3.13: A logical circuit representation of the CNF clause: “9 −1 82”

3.4.2 Constructing WCNF clauses

To prepare the WCNF input file from a pseudo-boolean function one will need to write

a short script which transforms each term in the pseudo-boolean function into a WCNF

clause. There is more than one way to accomplish this transformation and we will only

discuss one method here. For a more complete review of this topic, see [100].

It will be very useful to think of CNF clauses as logical circuits which involve only or

gates and not gates as in Fig. 3.13. Weights in WCNF notation always represent a positive

value. Because pseudo-boolean functions are treated as cost functions to minimize and the

goal of W-SAT is to minimize the sum of weights on false clauses, terms in the pseudo-

boolean function with a positive weight are very easy to translate in WCNF notation. To

achieve this, one needs only to pass all variables in the clause through a not gate and then

a series of or gates (effectively making a nand gate which takes all variables as input).

This circuit is illustrated in Fig. 3.14 for the case of a 5 variables clause.

Representing a negative weighted pseudo-boolean term in CNF is less trivial but follows

a simple pattern. To make the CNF clause positive (corresponding to negative boolean term)

one needs to construct the same circuit as in the case when the boolean term is positive but

remove one of the not gates. An example comprising three variables is shown in Fig. 3.15.

However, this circuit alone does not accomplish our goal as it produces a 2-local term with

negative weight in addition to the 3-local term with positive weight. Consequentially, after
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x1

x2

x3

x4

x5

(1− x1x2x3x4x5)

Figure 3.14: A logical circuit which shows that any pseudo-boolean term with positive
weight is equivalent (up to a constant) to a CNF clause with each variable negated. The
term produced here is negative because the weight is only added when the clause evaluates
to false.

x1

x2

x3

(1− x1x2 + x1x2x3)

Figure 3.15: A logical circuit on three variables which gives a positive valued 3-local CNF
term.

using the circuit in Fig. 3.15 to get rid of the 3-local term “x1x2x3” we must subtract the

term “x1x2” multiplied by its weight from the pseudo-boolean expression we are converting

into CNF. At first glance, it is not obvious that this procedure will get us anywhere - we

turned a term into CNF only to introduce a new term into the pseudo-boolean which we

must convert back into CNF. However, the auxiliary terms produced by this circuit are of

one degree less than number of variables in the term; thus, we can iterate this procedure

until only the constant term remains. The next CNF clause (this time 2-local) is shown in

Fig. 3.16.
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x1

x2

(1− x1 + x1x2)

Figure 3.16: A logical circuit on three variables which gives a positive valued 2-local CNF
term.

3.4.3 Solving SAT problems

While MAX-SAT is known to be NP-hard, there exist heuristic algorithms which are

guaranteed to satisfy a fixed fraction of the clauses of the optimal solution in polynomial

time. In general, oblivious local search will achieve at least an approximation ratio of k
k+1 ,

Tabu search achieves a ratio of at least k+1
k+2 and non-oblivious local search achieves an

approximation ratio of 2k−1
2k

where k is the “K” in K-SAT. For the special case of MAX-

2-SAT the best possible algorithm is theoretically capable of satisfying at least 21
22 + ε ≈

0.955+ε [9] in polynomial time [218, 72]. Additionally, there are a great deal of exact MAX-

SAT solvers which run in super-polynomial time but in many cases can find the solution

to MAX-SAT in a very short amount of time, even for problems containing hundreds of

variables and clauses [192, 176].

3.5 W-SAT to Integer-Linear Programming

Integer-Linear Programming (ILP) is a subset of linear programming problems in which

some variables are restricted to integer domains. In general, ILP is an NP-Hard problem

but the importance of ILP problems (particular for logistics scheduling) has produced many

extremely good exponential-time exact solvers and polynomial-time heuristic solvers [291].

Pseudo-boolean optimization is an even more specific case of ILP sometimes known as 0-1

ILP where the integer variables are boolean [50]. The mapping between W-SAT and ILP
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is very straightforward.

3.5.1 Mapping to ILP

In ILP, the goal is to minimize an objective function of integer-valued variables subject

to a list of inequality constraints which must be satisfied. The inequality constraints come

directly from the clauses in W-SAT. As described in Sec. 3.4.1, the logical clause from the

WCNF clause “4000 9 -1 82” (which again, means x9 ∨ ¬x1 ∨ x82 with penalty of 4000 if

clause evaluates to False) can be represented as x9 + (1− x1) + x82 ≥ 1 s.t. xn ∈ {0, 1}. In

ILP, all constraints must be satisfied but in W-SAT clauses are sometimes not satisfied; to

accommodate this we introduce an auxiliary binary variable, y1 into the equation and get

y1 + x9 + (1 − x1) + x82 ≥ 1. Thus, if the original equation is False, y1 will have a value

of True which satisfies the inequality. We can take advantage of this auxiliary variable to

construct the optimization function, W . Since the clause in our example has a weight of

4000 we can write W = 4000y1 s.t. y1 + x9 + (1 − x1) + x82 ≥ 1. Thus, the mapping

between ILP and W-SAT is extremely trivial: all WCNF clauses are rewritten as linear

equalities which are ≥ 1− yi by adding together the variables (or their negations) where i

is the index of the clause and the objective function is written as W =
∑N

i=1wiyi where N

is the number of clauses and wi is the weight of that clause [291].

3.5.2 Solving ILP problems

Commercial logistic scheduling software such as IBM ILOG CPLEX Optimization Stu-

dio (aka CPLEX) is designed to solve in integer programming, linear programming, and

mixed integer-linear programming problems on a very large scale [149]. Constraint satisfac-

tion problems which are sometimes very difficult to solve using conventional SAT techniques

77



can be easier to solve using ILP techniques and vice versa. In particular, SAT solvers and

specialized pseudo-boolean optimizers seem to outperform ILP solvers when a problem is

over-constrained [5]. On the other hand, for problems which are under-constrained and

have a large number of variables ILP solvers are the natural choice. In some cases 0-1 ILP

optimizers such as Pueblo will outperform both SAT solvers and commercial ILP solvers

[235, 249, 190].

3.6 Locality Reductions

The practical ability to either exactly or approximately solve random instances of con-

straint satisfaction optimization such as pseudo-boolean optimization or MAX-SAT seems

to depend very sensitively on the variable to clause ratio and degree of constraint expres-

sions [218, 160, 291]. In fact, the degree of constraints determines the complexity class of

certain constraint satisfaction problems; e.g. 2-SAT is proven to be in P whereas 3-SAT is

in NP-Complete [79]. Clearly for instances such as this there can be no efficient method

which reduces the degree of constraints. Fortunately, reducing the degree of constraints in

general pseudo-boolean optimization (i.e. reducing the polynomial order of pseudo-boolean

terms) can be done efficiently.

Constraint degree reduction is particularly important if we wish to solve our problem

using existing architectures for adiabatic quantum computation because available devices

tend to be very limited in their ability to realize arbitrary variable couplings (especially

high ordered couplings). For instance, the D-Wave One device used for pseudo-boolean

optimization in [221] is only able to implement 2-local qubit couplings and has limited

coupler resolution. To encode functions of higher locality in such setups, we must introduce

ancilla bits which replace 2-local terms to reduce locality. Because these ancilla become free
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parameters of the system, it is also necessary to introduce penalty functions to account for

the possibility that their value may be incorrect. All of this is accomplished with the function

E∧ (qi, qj , q̃n; δn) in Eq. 3.48 which introduces the ancillary bit qn in order to collapse the

2-local term qiqj with energy penalty of δn if qn 6= qiqj . For a further discussion, see [50, 16].

E∧(qi, qj , q̃n; δn) = δn(3q̃n + qiqj − 2qiq̃n − 2qj q̃n) (3.48)

If one desires an entirely 2-local energy function then many E∧ (qi, qj , q̃n; δn)’s may

be necessary to collapse all high-local terms. For instance, consider the complete energy

function for the HP model protein HPPHP when coded in the turn ancilla mapping:

E = −4q2q6λ1 + 4q1q3q6λ1 + 3q6λ1 + 28q1λ2 + 25q1q2λ2 + 108q2λ2 − 56q1q3λ2 (3.49)

− 50q1q2q3λ2 + 26q2q3λ2 + 28q3λ2 + 24q1q4λ2 − 16q1q2q4λ2 − 56q2q4λ2 − 48q1q3q4λ2

+ 32q1q2q3q4λ2 − 18q2q3q4λ2 + 25q3q4λ2 + 108q4λ2 − 56q1q5λ2 − 48q1q2q5λ2

+ 25q2q5λ2 + 48q1q3q5λ2 − 50q2q3q5λ2 − 56q3q5λ2 − 48q1q4q5λ2 + 32q1q2q4q5λ2

− 18q2q4q5λ2 + 36q2q3q4q5λ2 − 50q3q4q5λ2 + 25q4q5λ2 + 28q5λ2 − 32q1q7λ2

− 96q2q7λ2 + 64q1q3q7λ2 − 32q3q7λ2 + 64q2q4q7λ2 − 96q4q7λ2 + 64q1q5q7λ2

+ 64q3q5q7λ2 − 32q5q7λ2 − 32q7λ2 − 16q1q8λ2 − 48q2q8λ2 + 32q1q3q8λ2 − 16q3q8λ2

+ 32q2q4q8λ2 − 48q4q8λ2 + 32q1q5q8λ2 + 32q3q5q8λ2 − 16q5q8λ2 + 64q7q8λ2

− 32q8λ2 − 8q1q9λ2 − 24q2q9λ2 + 16q1q3q9λ2 − 8q3q9λ2 + 16q2q4q9λ2 − 24q4q9λ2

+ 16q1q5q9λ2 + 16q3q5q9λ2 − 8q5q9λ2 + 32q7q9λ2 + 16q8q9λ2 − 20q9λ2 − 4q1q10λ2

− 12q2q10λ2 + 8q1q3q10λ2 − 4q3q10λ2 + 8q2q4q10λ2 − 12q4q10λ2 + 8q1q5q10λ2

+ 8q3q5q10λ2 − 4q5q10λ2 + 16q7q10λ2 + 8q8q10λ2 + 4q9q10λ2 − 11q10λ2 + 36λ2.
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In order to reduce this function to 2-local we will need to collapse some of the 2-local

terms inside of the 3-local terms to a single bit. We enumerate the 3-local terms and their

corresponding 2-local terms which we could use to reduce each 3-local term in Eq. 3.50.



q1 q2 q3

q1 q2 q4

q1 q3 q4

q2 q3 q4

q1 q2 q3

q1 q2 q5

q1 q3 q5

q2 q3 q5

q1 q4 q5

q2 q4 q5

q1 q2 q4

q3 q4 q5

q2 q3 q4

q1 q3 q6

q1 q3 q7

q2 q4 q7

q1 q5 q7

q3 q5 q7

q1 q3 q8

q2 q4 q8

q1 q5 q8

q3 q5 q8

q1 q3 q9

q2 q4 q9

q1 q5 q9

q3 q5 q9

q1 q3 q10

q2 q4 q10

q1 q5 q10

q3 q5 q10



⇐⇒



q1q2 q1q3 q2q3

q1q2 q1q4 q2q4

q1q3 q1q4 q3q4

q2q3 q2q4 q3q4

q1q2 q1q3 q2q3

q1q2 q1q5 q2q5

q1q3 q1q5 q3q5

q2q3 q2q5 q3q5

q1q4 q1q5 q4q5

q2q4 q2q5 q4q5

q1q2 q1q4 q2q4

q3q4 q3q5 q4q5

q2q3 q2q4 q3q4

q1q3 q1q6 q3q6

q1q3 q1q7 q3q7

q2q4 q2q7 q4q7

q1q5 q1q7 q5q7

q3q5 q3q7 q5q7

q1q3 q1q8 q3q8

q2q4 q2q8 q4q8

q1q5 q1q8 q5q8

q3q5 q3q8 q5q8

q1q3 q1q9 q3q9

q2q4 q2q9 q4q9

q1q5 q1q9 q5q9

q3q5 q3q9 q5q9

q1q3 q1q10 q3q10

q2q4 q2q10 q4q10

q1q5 q1q10 q5q10

q3q5 q3q10 q5q10



(3.50)

Eq. 3.50 shows that there are 30, 3-local terms in Eq. 3.49 and three different ways to

collapse each of those 3-local terms. In general, the problem of choosing the most efficient

2-local terms to collapse this function is NP-Complete. This becomes evident if we represent

our problem as an element cover on a bipartite graph. Suppose we relabel each 3-local term
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on the left as “set” 1-30, denoted as S1S2...S30. We can then make the following bipartite

graph which connects the 3-local terms to the 2-local terms which collapse them.

q1 q2

q1 q3

q2 q3

q1 q4

q2 q4

q3 q4

q1 q5

q2 q5

q3 q5

q4 q5

q1 q6

q3 q6

q1 q7

q2 q7

q3 q7

q4 q7

q5 q7

q1 q8

q2 q8

q3 q8

q4 q8

q5 q8

q1 q9

q2 q9

q3 q9

q4 q9

q5 q9

q1 q10

q2 q10

q3 q10

q4 q10

q5 q10

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

S30

Figure 3.17: A bipartite graph connecting the 3-local terms (Sn) in Eq. 3.49 to the 2-local
terms (qiqj) which collapse them.

Fig. 3.19 shows that we can now restate the problem in the following way: “choose the

fewest number of 2-local terms (on the left) which covers all 3-local terms (on the right)
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with at least one edge.” In general, this problem is isomorphic to the canonical “hitting

set” problem which is equivalent to set cover, one of Karp’s 21 NP-Complete Problems

[66, 76, 178]. However, we have specifically kept this issue in mind when creating the turn-

ancilla representation in such a way as to guarantee that it is easy to find a relatively efficient

solution to this problem. Accordingly, our experience has been that a greedy local-search

algorithm performs very well.

The explanation for this is simple: each 3 or 4-local term will contain no more than

1 ancillary bit; thus, to cover all 3 and 4-local terms we can focus entirely on the physical

bits (in this case, bits 1-5). In alternative mappings not presented here we have frequently

encountered extremely difficult instances of the hitting set problem during the reduction

process. In these situations one should see [250] for a very efficient algorithm which can

exactly solve hitting cover in O (1.23801n).

3.7 Example Encoding

A primary goal of this review is to elucidate an efficient process for encoding chemical

physics problems into a form suitable for quantum computation. In addition to providing

the alternatives for the solution of the lattice heteropolymer problem in quantum devices,

we seek to provide a general explanation of considerations for constructing energy functions

for these devices. These have many possible applications for solving problems related to

statistical mechanics on the device. In this section, we will complete our review by demon-

strating the final steps required to embed a small instance of a particular lattice protein

problem into a QUBO Hamiltonian.

The Hamiltonians and the number of resources presented here correspond to the min-

imum amount of resources needed assuming the device can handle many-body interactions
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as is the case for NMR quantum computers or trapped ions. The hierarchical experimental

proposals presented here work for lattice folding under no external constraints, i.e., amino

acid chains in “free space” 1. As a final step we will reduce these Hamiltonians to a 2-local

form specifically design for the Dwave One used in [221, 211, 86, 154]. The final Hamilto-

nian we present is more efficient than that used in [221] as we have since realized several

tricks to make the energy function more compact.

3.7.1 Previous experimental implementation

Throughout this review we have referred to an experimental implementation of quan-

tum annealing to solve lattice heteropolymer problems in [221]. The quantum hardware

employed consists of 16 units of a recently characterized eight qubit unit cell [154, 135].

Post-fabrication characterization determined that only 115 qubits out of the 128 qubit ar-

ray can be reliably used for computation. The array of coupled superconducting flux qubits

is, effectively, an artificial Ising spin system with programmable spin-spin couplings and

transverse magnetic fields. It is designed to solve instances of the following (NP-hard) clas-

sical optimization problem: given a set of local longitudinal fields (hi) and an interaction

matrix (Jij), find the assignment s = s1s2s3...sN , that minimizes the objective function

E(s), where,

E (s) =
∑

1≤i≤N
hisi +

∑
1≤i≤j≤N

Jijsisj (3.51)

and si ∈ −1, 1. Thus, the solution to this problem, s, can be encoded into the ground-state

wavefunction of the quantum Hamiltonian,

Hp =
∑

1≤i≤N
hiσ

z
i +

∑
1≤i≤j≤N

Jijσ
z
i σ

z
j . (3.52)

1External interactions could also be included as presented and verified experimentally in [221].
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Quantum annealing exploits the adiabatic theorem of quantum mechanics, which states

that a quantum system initialized in the ground state of a time-dependent Hamiltonian re-

mains in the instantaneous ground state, as long as it is driven sufficiently slowly. Since

the ground state of Hp encodes the solution to the optimization problem, the idea behind

quantum annealing is to adiabatically prepare this ground state by initializing the quantum

system in some easy-to-prepare ground state, Hb. In this case, Hb corresponds to a super-

position of all states of the computational basis. The system is driven slowly to the problem

Hamiltonian, H(τ = 1) ≈ Hp. Deviations from the ground-state are expected due to devi-

ations from adiabaticity, as well as thermal noise and imperfections in the implementation

of the Hamiltonian.

Using the encoding methods discussed here, the authors were able to encode and to

solve the global minima solution for small tetrapeptide and hexapeptide chains under several

experimental schemes involving 5 and 8 qubits for four-amino-acid sequence (Hydrophobic-

Polar model) and 5, 27, 28, and 81 qubits experiments for the six-amino-acid sequence

under the Miyazawa-Jernigan model for general pairwise interactions.

3.7.2 Six unit Miyazawa-Jernigan protein

The example we will present here is a different encoding of the largest problem per-

formed in [221]: the Miyazawa-Jernigan (MJ) protein, Proline-Serine-Valine-Lysine-Methionine-

Alanine (PSVKMA) on a 2D lattice. We will use the pair-wise nearest-neighbor MJ inter-

action energies presented in Table 3 of [199] and shown in Fig. 3.18.
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Figure 3.18: Interaction matrix for our protein in the MJ model.

We will use the turn ancilla construction for our energy function and constrain the first

three virtual bits to 010, as before. Recall that the turn ancilla construction requires

2N − 5 physical information bits; thus, our 6-unit MJ protein will be encoded into 7 bits.

Eback(q) for 6-unit SAW on 2D lattice

Using Eq. 3.13, we find that our 6-unit protein has the backwards energy function,

Eback(q) = λback(q1q2 − 2q1q3q2 + 2q3q2 − 2q3q4q2 − 2q3q5q2 (3.53)

+ 4q3q4q5q2 − 2q4q5q2 + q5q2 + q3q4 − 2q3q4q5 + 2q4q5 − 2q4q5q6

+ q5q6 + q4q7 − 2q4q5q7 − 2q4q6q7 + 4q4q5q6q7 − 2q5q6q7 + q6q7).

Soon, we will discuss how to choose the appropriate value for λback but for now we simply

note that λback and λoverlap penalize the same illegal folds; thus we realize that λback =

λoverlap.
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Eoverlap(q) for 6-unit SAW on 2D lattice

Using Eq. 3.30, we calculate the overlap energy function as,

Eoverlap(q) = λoverlap(96q2q1 − 96q2q3q1 − 64q3q1 − 64q2q4q1 + 64q2q3q4q1 − 96q3q4q1 + 96q4q1

− 96q2q5q1 + 64q2q4q5q1 − 96q4q5q1 − 64q5q1 − 48q2q6q1 + 32q2q3q6q1 − 48q3q6q1 + 32q3q4q6q1

− 48q4q6q1 + 32q2q5q6q1 + 32q4q5q6q1 − 48q5q6q1 + 72q6q1 − 48q2q7q1 − 48q3q7q1 + 32q2q4q7q1

− 48q4q7q1 + 96q3q5q7q1 − 48q5q7q1 + 32q2q6q7q1 + 32q4q6q7q1 − 48q6q7q1 − 8q7q1 − 8q3q10

+ 64q3q8q1 + 64q5q8q1 − 32q8q1 + 32q3q9q1 + 32q5q9q1 − 16q9q1 + 16q3q10q1 + 16q5q10q1 − 8q10q1

+ 8q3q11q1 + 8q5q11q1 − 4q11q1 + 64q3q12q1 + 64q5q12q1 + 64q7q12q1 − 96q12q1 + 32q3q13q1

+ 32q5q13q1 + 32q7q13q1 − 48q13q1 + 16q3q14q1 + 16q5q14q1 + 16q7q14q1 − 24q14q1 + 8q3q15q1

+ 8q5q15q1 + 8q7q15q1 − 12q15q1 + 64q1 + 144q2 + 96q2q3 + 64q3 − 64q2q4 − 64q2q3q4 + 96q3q4 + 144q4

+ 96q2q5 − 96q2q3q5 − 64q3q5 − 64q2q4q5 + 64q2q3q4q5 − 96q3q4q5 + 96q4q5 + 64q5 − 8q2q6 − 48q2q3q6

+ 72q3q6 − 48q2q4q6 − 48q3q4q6 − 8q4q6 − 48q2q5q6 + 32q2q3q5q6 − 48q3q5q6 + 32q3q4q5q6 − 48q4q5q6

+ 72q5q6 + 36q6 + 72q2q7 − 48q2q3q7 − 8q3q7 − 48q2q4q7 + 32q2q3q4q7 − 48q3q4q7 + 72q4q7 − 48q2q5q7

− 48q3q5q7 + 32q2q4q5q7 − 48q4q5q7 − 8q5q7 − 48q2q6q7 + 32q2q3q6q7 − 48q3q6q7 + 32q3q4q6q7

+ 32q2q5q6q7 + 32q4q5q6q7 − 48q5q6q7 + 72q6q7 + 36q7 − 96q2q8 − 32q3q8 + 64q2q4q8 − 96q4q8

− 32q5q8 − 32q8 − 48q2q9 − 16q3q9 + 32q2q4q9 − 48q4q9 + 32q3q5q9 − 16q5q9 + 64q8q9 − 32q9 − 24q2q10

+ 16q2q4q10 − 24q4q10 + 16q3q5q10 − 8q5q10 + 32q8q10 + 16q9q10 − 20q10 − 12q2q11 − 4q3q11 + 8q2q4q11

− 12q4q11 + 8q3q5q11 − 4q5q11 + 16q8q11 + 8q9q11 + 4q10q11 − 11q11 − 96q2q12 − 96q3q12 + 64q2q4q12

− 96q4q12 + 64q3q5q12 − 96q5q12 + 64q2q6q12 + 64q4q6q12 − 96q6q12 + 64q3q7q12 + 64q5q7q12

− 96q7q12 + 64q12 − 48q2q13 − 48q3q13 + 32q2q4q13 − 48q4q13 + 32q3q5q13 − 48q5q13 + 32q2q6q13

+ 32q4q6q13 − 48q6q13 + 32q3q7q13 + 32q5q7q13 − 48q7q13 + 64q12q13 + 16q13 − 24q2q14 − 24q3q14

+ 16q2q4q14 − 24q4q14 + 16q3q5q14 − 24q5q14 + 16q2q6q14 + 16q4q6q14 − 24q6q14 + 16q3q7q14

+ 16q5q7q14 − 24q7q14 + 32q12q14 + 16q13q14 + 4q14 − 12q2q15 − 12q3q15 + 8q2q4q15 − 12q4q15

+ 8q3q5q15 − 12q5q15 + 8q2q6q15 + 8q4q6q15 − 12q6q15 + 8q3q7q15 + 8q5q7q15 − 12q7q15

+ 16q12q15 + 8q13q15 + 4q14q15 + q15 − 48q4q6q7 + 64q3q5q8). (3.54)
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We notice that as discussed in Sec. 3.6, all the 3-local terms here contain at least two

physical information qubits (i.e. q1 through q7).

Epair(q) for MJ-model PSVKMA

Using the J matrix as defined in Eq. 3.32 we calculate the pair-wise energy function

as,

Epair(q) = −4q2q16 + 4q1q3q16 + 3q16 − 8q1q17 − 16q2q17 + 8q1q3q17 − 8q3q17

+ 8q2q4q17 − 16q4q17 + 8q1q5q17 + 8q3q5q17 − 8q5q17 + 8q2q6q17 + 8q4q6q17 − 16q6q17

+ 8q1q7q17 + 8q3q7q17 + 8q5q7q17 − 8q7q17 + 30q17 − 12q1q18 − 12q2q18 + 12q1q3q18

− 12q3q18 + 12q2q4q18 − 12q4q18 + 12q1q5q18 + 12q3q5q18 − 12q5q18 + 21q18 − 16q2q19

− 16q3q19 + 16q2q4q19 − 16q4q19 + 16q3q5q19 − 16q5q19 + 16q2q6q19 + 16q4q6q19

− 16q6q19 + 16q3q7q19 + 16q5q7q19 − 16q7q19 + 28q19. (3.55)

Setting λ penalty values

Finally, we will discuss how one chooses the correct penalty values for the energy

function. This is a crucial step if one wishes to implement the algorithm experimentally as

all currently available architectures for adiabatic quantum annealing have limited coupler

resolution. That is, quantum annealing machines cannot realize arbitrary constant values

for the QUBO expression. Thus, it is very important that one chooses the lowest possible

penalty values which still impose the correct constraints. In our problem we choose the value

of λoverlap by asking ourselves: what is the greatest possible amount that any overlap could

lower the system energy? In general, a very conservative upper bound can be obtained by

simply summing together every J matrix element (which would mean that a single overlap

allowed every single possible interaction to occur); in our problem this upper-bound would

be -10. Thus, we can set λoverlap = +10.
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Reduction to 2-local

Using a standard greedy search algorithm we find that an efficient way to collapse this

energy function to 2-local is to make ancilla with the qubit pairs,

q2q4 → q20

q1q3 → q21

q3q5 → q22

q1q5 → q23

q2q6 → q24

q4q6 → q25

q3q7 → q26

q5q7 → q27

q1q7 → q28 .

(3.56)

There is one issue left to discuss - the value of δn in Eq. 3.48. The purpose of δn is to constrain

the reductions in Eq. 3.56 so that the value of the ancillary bit actually corresponds to the

product of the two bits it is supposed to represent. In order for Eq. 3.48 to work we must

choose δn which is large enough so that a violation of the reduction we desire will always

raise the system energy. Thus, we must ensure that δn is large enough so that configurations

which do not conform to the reduction are penalized by an amount higher than the largest

penalty they could avoid and larger in magnitude than the largest energy reduction they

could achieve with the illegal move. Of course, finding the exact minimum value of E(q) is

as difficult as minimizing E(q) (our goal). Instead, we can simply make an upper-bound for

the penalty by setting it equal to one plus either the sum of the absolute value of all psuedo-

boolean coefficients corresponding to the variables being collapsed in E(q) (whichever sum

is larger).
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QUBO Matrix and Solutions

After reduction of the energy function to 2-local, we arrive at the final pseudo-boolean

energy function. Instead of writing out the entire pseudo-boolean expression we will instead

provide a matrix containing all of the coefficients of 1-local terms on the diagonal and 2-local

terms in the upper triangular portion of this matrix. This representation is known as the

QUBO matrix and contains all of the couplings needed for experimental implementation and

is shown in Eq. 3.57. Note that the full pseudo-boolean expression contains one constant

term that we drop in the matrix representation. This constant has a value of C = 180 for

this particular problem.



320 485 42962 480 42962 360 42962−160 −80 −40 −20−480−240−120−60 0 −8 −12 0 −320 −85924 0 −85924 −240 −240 0 0 −85924

0 720 490 42962 485 42962 360 −480−240−120−60−480−240−120−60−4−16−12−16−85924 −490 −490 −480 −85924 0 −240 −240 −240

0 0 320 485 42962 360 42962−160 −80 −40 −20−480−240−120−60 0 −8 −12−16 −330 −85924−85924 0 −240 −240 −85924 0 0

0 0 0 720 490 42962 365 −480−240−120−60−480−240−120−60 0 −16−12−16−85924 −480 −490 −480 0 −85924 −240 −250 −240

0 0 0 0 320 365 42962−160 −80 −40 −20−480−240−120−60 0 −8 −12−16 −330 0 −85924−85924 −240 −250 0 −85924 0

0 0 0 0 0 180 365 0 0 0 0 −480−240−120−60 0 −16 0 −16 −240 −240 −240 −240 −85924−85924 −240 −250 −240

0 0 0 0 0 0 180 0 0 0 0 −480−240−120−60 0 −8 0 −16 −240 −240 −240 −240 −240 −250 −85924−85924−85924

0 0 0 0 0 0 0 −160 320 160 80 0 0 0 0 0 0 0 0 320 320 320 320 0 0 0 0 0

0 0 0 0 0 0 0 0 −160 80 40 0 0 0 0 0 0 0 0 160 160 160 160 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −100 20 0 0 0 0 0 0 0 0 80 80 80 80 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −55 0 0 0 0 0 0 0 0 40 40 40 40 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 320 320 160 80 0 0 0 0 320 320 320 320 320 320 320 320 320

0 0 0 0 0 0 0 0 0 0 0 0 80 80 40 0 0 0 0 160 160 160 160 160 160 160 160 160

0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 0 0 0 0 80 80 80 80 80 80 80 80 80

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 40 40 40 40 40 40 40 40 40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 8 8 8 8 8 8 8 8 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 12 12 12 12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 16 0 16 0 16 16 16 16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128566 320 340 320 0 0 160 160 160

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128566 0 0 160 160 0 480 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128566 0 160 160 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128566 160 160 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128846 0 160 160 160

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128846 160 180 160

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128846 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128846 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128846



(3.57)

89



Taking the matrix in Eq. 3.57 as Q, we can write the total energy of a given solution

(denoted by q) as,

E(q) = qQq. (3.58)

The problem is now ready for its implementation on a quantum device. For our particular

problem instance the solution string is given by the bit string,

0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0. (3.59)

The energy given by Eq. 3.58 is −186. In the original expression this corresponds to an

energy of C − 186 = 180− 186 = −6. Let’s confirm that this is accurate to the MJ model.

Looking only at the physical information bits and prepending the first three constant bits

(010) we see that the bit string prescribes the following fold:

q = 01︸︷︷︸
right

00︸︷︷︸
down

00︸︷︷︸
down

10︸︷︷︸
left

11︸︷︷︸
up

(3.60)

which corresponds to the fold,

Figure 3.19: The solution to our example problem for MJ protein PSVKMA.

3.8 Conclusion

As both traditional and quantum computer science continue to advance as fields, do-

main scientists from all disciplines need to develop new ways of representing problems in

order to leverage state-of-the-art computational tools. In this review, we discussed strate-

gies and techniques for solving lattice heteropolymer problems with some of these tools.
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While the lattice heteropolymer model is widely applicable to many problems, the gen-

eral principles used to optimally encode and constrain this particular application are fairly

universal for discrete optimization problems in the physical sciences.

We focused on three mappings: “turn ancilla”, “turn circuit” and “diamond”. The turn

ancilla mapping is the best mapping in terms of the scaling of the number of resources for

large instances, thus making it ideal for benchmark studies of lattice folding using (heuristic)

solvers for pseudo-boolean minimization. Additionally, this method shows how one can use

ancilla variables to construct a fitness function with relatively few constraints per clause

(i.e. low-locality). With ancilla variables even an extremely simple encoding, such as the

turn encoding, can be used to construct a complicated energy function. While some of the

particular tricks employed to optimize the efficiency of this mapping, such as introducing

the backwards penalty, are specific to lattice heteropolymers, the general logic behind these

tricks is much more universal.

The turn circuit mapping is the most compact of all three mappings. The extremely

efficient use of variables (qubits) makes it ideal for benchmark experiments on quantum

devices which can handle many body couplings. Moreover, the turn circuit method demon-

strates how one can construct an elaborate energy function by utilizing logic circuits to

put together a high-local fitness function of arbitrary complexity without ancilla variables.

While different problems may involve different circuits, the underlying strategy is very

broadly applicable.

The diamond encoding illustrates a strategy for producing an extremely under-constrained

optimization problem. Furthermore, this method demonstrates that even fairly complex en-

ergy functions can be represented as natively 2-local functions if one is willing to sacrifice

efficiency. Many quantum devices can only couple bits pairwise; thus, this is a very impor-
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tant quality of the diamond encoding. Finally, if one uses another, more efficient encoding,

we explain how reductions can be used to replace high-local terms with 2-local terms in

an optimally efficient fashion but at the cost of needing very high coupler resolution. The

relatively few constraints in the diamond encoding make it a natural choice for exact or

heuristic ILP and W-SAT solvers.

These three strategies elucidate many of the concepts that we find important when

producing problems suitable for the D-Wave device utilized in [221]. Accordingly, as quan-

tum information science continues to develop, we hope that the methods discussed in this

review will be useful to scientists wishing to leverage similar technology for the solution of

discrete optimization problems.
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Chapter 4

Bayesian Network Structure Learning Using

Quantum Annealing

Apart from minor modifications, this chapter originally appeared as [215]:

“Bayesian Network Structure Learning Using Quantum Annealing”. Bryan O’Gorman,
Alejandro Perdomo-Ortiz, Ryan Babbush, Alán Aspuru-Guzik and Vadim Smelyanskiy.
European Physical Journal Special Topics. Volume 225, Number 1: 163-188. 2015.

Abstract

We introduce a method for the problem of learning the structure of a Bayesian network

using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation

of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function,

which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for

enforcing the constraints necessary for the reformulation; our proposed method requires

O(n2) qubits for n Bayesian network variables. Furthermore, we prove lower bounds on

the necessary weighting of these penalty terms. The logical structure resulting from the

mapping has the appealing property that it is instance-independent for a given number of

Bayesian network variables, as well as being independent of the number of data cases.
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4.1 Introduction

Bayesian networks are a widely used probabilistic graphical model in machine learning

[171]. A Bayesian network’s structure encapsulates conditional independence within a set of

random variables, and, equivalently, enables a concise, factored representation of their joint

probability distribution. There are two broad classes of computational problems associated

with Bayesian networks: inference problems, in which the goal is to calculate a probability

distribution or the mode thereof given a Bayesian network and the state of some subset of

the variables; and learning problems, in which the goal is to find the Bayesian network most

likely to have produced a given set of data. Here, we focus on the latter, specifically the

problem of Bayesian network structure learning. Bayesian network structure learning has

been applied in fields as diverse as the short-term prediction of solar-flares [294] and the

discovery of gene regulatory networks [93, 111]. The problem of learning the most likely

structure to have produced a given data set, with reasonable formal assumptions to be

enumerated later, is known to be NP-complete [68], so its solution in practice requires the

use of heuristics.

Quantum annealing is one such heuristic. Though efficient quantum algorithms for

certain problems are exponentially faster than their classical counterpart, it is believed that

quantum computers cannot efficiently solve NP-complete problems [208]. However, there

exist quantum algorithms that have a provable speedup over classical ones [124, 256]. There

is therefore reason to believe quantum-mechanical effects such as tunneling could provide

a polynomial speedup over classical computation for some sets of problems. The recent

availability of quantum annealing devices from D-Wave Systems has sparked interest in the

experimental determination of whether or not the current generation of the device provides

such speedup [43, 44, 233, 273]. While there exists prior work related to “quantum Bayesian
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networks”[267] and the “quantum computerization” of classical Bayesian network methods

[268], the results presented here are unrelated.

In this paper, we describe how to efficiently map a certain formulation of Bayesian

Network Structure Learning (BNSL) to Quadratic Unconstrained Binary Op-

timization (QUBO). The QUBO formalism is useful because it is mathematically equiv-

alent to that of a set Ising spins with arbitrary 2-body interactions, which can be mapped

to the Ising spins with a limited 2-body interaction graph as implementable by physical

quantum annealing devices. Similar mappings have been developed and implemented for

lattice protein folding [18, 221], planning and scheduling [229], fault diagnosis [222], graph

isomorphism [112], training a binary classifier [13, 209], and the computation of Ramsey

numbers [39].

To map BNSL to QUBO, we first encode all digraphs using a set of Boolean vari-

ables, each of which indicates the presence or absence of an arc (i.e. directed edge), and

define a pseudo-Boolean function on those variables that yields the score of the digraph

encoded therein so long as it satisfies the necessary constraints. This function is not neces-

sarily quadratic, and so we apply standard methods to quadratize (i.e. reduce the degree

to two) using ancillary variables. We then introduce ancillary variables and add additional

terms to the pseudo-Boolean function corresponding to constraints, each of which is zero

when the corresponding constraint is satisfied and positive when it is not. The resulting

QUBO instance is defined over O(n2) Boolean variables when mapped from a BNSL in-

stance with n Bayesian network variables. Interestingly, the structure of the QUBO is

instance-independent for a fixed BNSL size. Because embedding the structure of QUBO

into physical hardware is generally computationally difficult, this is an especially appealing

feature of the mapping.
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We also show sufficient lower bounds on penalty weights used to scale the terms in

the Hamiltonian that penalize invalid states, like those containing a directed cycle or with

parent sets larger than allowed. In a physical device, setting the penalty weights too high

is counterproductive because there is a fixed maximum energy scale. The stronger the

penalty weights, the more the logical energy spectrum is compressed, which is problematic

for two reasons: first, the minimum gap, with which the running time of the algorithm scales

inversely, is proportionally compressed, and, second, the inherently limited precision of a

physical device’s implementation of the interaction strengths prevents sufficient resolution

of logical states close in energy as the spectrum is compressed.

The utility of the mapping from BNSL to QUBO introduced here is not limited to

quantum annealing. Indeed, the methods used here were motivated by a previous mapping

of the same problem to weighted MAX-SAT [83]. Existing simulated annealing code is

highly optimized [150] and may be applied to QUBO instances derived from our mapping.

In that case, there is no need to quadratize, because simulated annealing does not have the

limitation to 2-body interactions that physical devices do. With respect to penalty weights,

while simulated annealing does not have the same gap and precision issues present in quan-

tum annealing, there may still be reason to avoid setting the penalty weights too high.

Because the bits corresponding to arcs with different i.e. terminal vertices do not interact

directly, many valid states are separated by invalid ones, and so penalty weights that are

too strong may erect barriers that tend to produce basins of local optima. While simulated

annealing directly on digraph structures is possible, mapping to QUBO and performing

simulated annealing in that form has the advantage that it enables the exploitation of ex-

isting, highly optimized code, as well as providing an alternative topology of the solution

space and energy landscape.
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BNSL has a special property that makes it especially well-suited for the application of

heuristics such as QA: Unlike in other problems where anything but the global minimum

is undesirable or those in which an approximate solution is sufficient, in BNSL there is

utility in having a set of high scoring DAGs. The scoring function encodes the posterior

probability, and so sub- but near-optimal solution may be almost as probable as the global

optimum. In practice, because quantum annealing is an inherently stochastic procedure, it

is run many times for the same instance, producing a set of low-energy states. In cases where

the BN structure is learned for the purpose of doing inference on it, a high-scoring subset

of many quantum annealing runs can utilized by performing Bayesian model averaging, in

which inference is done on the set of likely BNs and the results averaged proportionally.

In Section 4.2, we review the formalism of Bayesian networks and BNSL (4.2.1) and

quantum annealing (4.2.2), elucidating the features that make the latter suitable for finding

solutions of the former. In Section 4.3, we develop an efficient and instance-independent

mapping from BNSL to QUBO. In Section 4.4, we provide sufficient lower bounds on the

penalty weights in the aforementioned mapping. In Section 4.5, we discuss useful features

of the mapping and conclude. In the Appendix, we prove the sufficiency of the lower bounds

given; the methods used to do so may be useful in mappings for other problems.

4.2 Background

4.2.1 Bayesian Network Structure Learning

A Bayesian network (BN) is a probabilistic graphical model for a set of random vari-

ables that encodes their joint probability distribution in a more compact way and with

fewer parameters than would be required otherwise by taking into account conditional in-

dependences among the variables. It consists of both a directed acyclic graph (DAG) whose
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vertices correspond to the random variables and an associated set of conditional probabili-

ties for each vertex. Here and throughout the literature, the same notation is used for both

a random variable and its corresponding vertex, and the referent will be clear from context.

Formally, a BN B for n random variables X = (Xi)
n
i=1 is a pair (BS , BP ), where BS is a

DAG representing the structure of the network and BP is the set of conditional probabilities

{p(Xi|Πi(BS))|1 ≤ i ≤ n} that give the probability distribution for the state of a variable

Xi conditioned on the joint state of its parent set Πi(BS) (those variables for which there

are arcs in the structure BS from the corresponding vertices to that corresponding to Xi; we

will write simply Πi where the structure is clear from context). Let ri denote the number

of states of the variable Xi and qi =
∏
j∈Πi

rj denote the number of joint states of the

parent set Πi of Xi (in BS). Lowercase variables indicate realizations of the corresponding

random variable; xik indicates the k-th state of variable Xi and πij indicates the j-th joint

state of the parent set Πi. The set of conditional probabilities BP consists of n probability

distributions
(

(θij)
qi
j=1

)n
i=1

, where θij = (θijk)
ri
k=1 is the conditional probability distribution

for the states (xik)
ri
k=1 of the variable Xi given the joint state πij of its parents Πi (i.e.

p(xik|πij) = θijk).

Given a database D = {xi|1 ≤ i ≤ N} consisting of N cases, where each xi denotes

the state of all variables X, the goal is to find the structure that maximizes the posterior

distribution p(BS |D) out of all possible structures. By Bayes’s Theorem,

p(BS |D) =
p(D|BS)p(BS)

p(D)
. (4.1)

The marginal probability of the database p(D) is the same for all structures, so assuming

that each structure is equally likely, this simplifies to

p(BS |D) ∝ p(D|BS). (4.2)
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In Section 4.3.5, we describe how to account for certain types of non-uniform prior distri-

butions over the graph structures. With certain further reasonable assumptions, namely

multinomial sampling, parameter independence and modularity, and Dirichlet priors, the

latter conditional probability is

p(D|BS) =
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)
, (4.3)

where Nijk is the number of cases in D such that variable Xi is in its k-th state and its

parent set Πi is in its j-th state, Nij =
∑ri

k=1Nijk, αijk is the hyperparameter for θijk in the

Dirichlet distribution from which θij is assumed to be drawn, and αij =
∑ri

k=1 αijk [143].

Given a database D, our goal is equivalent to that of finding the structure with the

largest likelihood, i.e. the structure that yields the largest probability of the given database

conditioned on that structure. We do this by encoding all structures into a set of bits and

defining a quadratic pseudo-Boolean function on those bits and additional ancillary bits

whose minimizing bitstring encodes the structure with the largest posterior probability.

4.2.2 Quantum Annealing

Quantum annealing is a method for finding the minimum value of a given objective

function. It is the quantum analogue of classical simulated annealing, where the computa-

tion is driven by quantum, rather than thermal, fluctuations [159]. A similar procedure is

called adiabatic quantum computation, in which the adiabatic interpolation of a Hamilto-

nian whose ground state is easily prepared to one whose ground state encodes the solution

to the desired optimization problem guarantees that final state is indeed the ground state

of the latter [104]. The formalism for both is similar, and the methods described here are

useful for both. Specifically, the time-dependent Hamiltonian is

H(t) = A(t)H0 +B(t)H1, (4.4)
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for 0 ≤ t ≤ T , where H0 is the initial Hamiltonian, H1 is the final Hamiltonian, A(t) is a

real monotonic function such that A(0) = 1 and A(T ) = 0, and B(t) is a real monotonic

function such that B(0) = 0 and B(T ) = 1. The adiabatic theorem states that if the system

starts in the ground state of H0 and H(t) varies slowly enough, then the system will be in

the ground state of H1 at time T . Using this procedure to solve an optimization problem

entails the construction of H1 such that its ground state encodes the optimal solution.

In practice, arbitrary Hamiltonians are difficult to implement, but this is ameliorated by

results showing the ability to effectively implement arbitrary Hamiltonians using physically-

realizable connectivity through various gadgetry with reasonable overhead [216, 161].

The main contribution of this paper is a construction of H1 such that its ground state

encodes the solution for a given instance of BNSL. Specifically, we construct an instance

of QUBO whose solution is the score-maximizing DAG; there is a simple transformation

between a classically defined QUBO instance and a diagonal quantum 2-local Hamiltonian

consisting of only Pauli Z and ZZ terms [220].

When the desired Hamiltonian is diagonal and 2-local an embedding technique called

graph-minor embedding can be used [73, 75]. A graph G is a minor of another graph H if

there exists a mapping from vertices of G to disjoint, individually connected subgraphs of

H such that for every edge e in G there is an edge in H whose adjacent vertices are mapped

to by the adjacent vertices of the edge e. The desired Hamiltonian and hardware are

considered as graphs, called the logical and physical respectively, where qubits correspond

to vertices and edges correspond to a 2-body interaction, desired or available. Graph-

minor embedding consists of two parts: finding a mapping of the logical vertices to sets of

physical as described, and setting the parameters of the physical Hamiltonian such that the

logical fields are distributed among the appropriate physical qubits and there is a strong
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ferromagnetic coupling between physical qubits mapped to my the same logical qubit so

that they act as one. Determining the graph-minor mapping, or even if the logical graph is

a minor of the physical one, is itself NP-hard, and so in practice heuristics are used [61].

4.3 Mapping BNSL to QUBO

We use n(n− 1) bits d = (dij)1≤i<j≤n
i 6=j

to encode each of the possible arcs in a directed

graph, where dij = 1 indicates the presence of the arc from vertex Xi to vertex Xj and

dij = 0 indicates its absence. In this way, the matrix whose entries are {dij} is the adjacency

matrix of a directed graph (where dii = 0). Let G(d) be that directed graph encoded in

some d. The mapping consists of the construction of a function of these “arc bits” that

is equal to the logarithm of the score of the structure they encode, as well as a function

that penalizes states that encode graphs with directed cycles. Additionally, due to resource

constraints, we add a function that penalizes structures in which any node has more than

m parents and allow that the scoring function only works on states that encode structures

in which each vertex has at most m parents.

4.3.1 Score Hamiltonian

For numerical efficiency, it is the logarithm of the likelihood for a given structure that

is actually computed in practice. The likelihood given in Equation 4.3 decomposes into a

product of likelihoods for each variable, which we exploit here. Let

si(Πi(BS)) ≡ − log

 qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)

 , (4.5)

i.e. the negation of the “local” score function, and

s(BS) ≡
n∑
i=1

si(Πi(BS)), (4.6)
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so that

log p(D|BS) = −s(BS) = −
n∑
i=1

si(Πi(BS)). (4.7)

The negation is included because while we wish to maximize the likelihood, in QUBO the

objective function is minimized. We wish to define a quadratic pseudo-Boolean function

Hscore(d) such that Hscore(d) = s(G(d)). Let di ≡ (dji)1≤j≤n
j 6=i

and define

Hscore(d) ≡
n∑
i=1

Hscore(di). (4.8)

Any pseudo-Boolean such asH
(i)
score has a unique multinomial form and si(Πi(G(d))) depends

only on arcs whose head isXi (i.e. those encoded in di), so we write without loss of generality

H(i)
score(di) =

∑
J⊂{1,··· ,n}\{i}

wi(J)
∏
j∈J

dji

 . (4.9)

From this it is clear that wi(∅) = si(∅). If Xi has a single parent Xj , then the above

simplifies to

H(i)
score = wi(∅) + wi({j}) = si({Xj}), (4.10)

which yields wi({j}) = si({Xj})− si(∅) for arbitrary j. Similarly, if Xi has two parents Xj

and Xk, then

H
(i)
score = wi(∅) + wi({j}) + wi({k}) + wi({j, k})

= si(∅) + (si({Xj})− si(∅)) + (si({Xj})− si(∅)) + wi({j, k})

= si({Xj}) + si({Xk})− si(∅) + wi({j, k})

= si({Xj , Xk}),

(4.11)

which yields wi({j, k}) = si({Xj , Xk}) − si({Xj}) − si({Xk}) + si(∅). Extrapolating this

pattern, we find that

wi(J) =

|J |∑
l=0

(−1)|J |−l
∑
K⊂J
|K|=l

si(K). (4.12)
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Note that the general form given in Equation 4.9 includes terms of order (n−1). Ultimately,

we require a quadratic function and reducing high-order terms to quadratic requires many

extra variables. Therefore, we limit the number of parents that each variable has to m via

Hmax, described below, and allow that the score Hamiltonian actually gives the score only

for structures with maximum in-degree m:

H(i)
score(di) =

∑
J⊂{1,··· ,n}\{i}

|J |≤m

wi(J)
∏
j∈J

dji

 , (4.13)

which is equal to si(Πi(G(d))) if |di| ≤ m.

4.3.2 Max Hamiltonian

Now we define a function H
(i)
max whose value is zero if variable Xi has at most m parents

and positive otherwise. This is done via a slack variable yi for each node. Define

di ≡ |di| =
∑

1≤j≤n
j 6=i

dji, (4.14)

i.e. di is the in-degree of xi,

µ ≡ dlog2(m+ 1)e , (4.15)

i.e. µ is the number of bits needed to represent an integer in [0,m],

yi ≡
µ∑
l=1

2l−1yil, (4.16)

i.e. yi ∈ Z is encoded using the µ bits yi = (yil)
µ
l=1 ∈ Bµ, and

H(i)
max(di,yi) = δ(i)

max(m− di − yi)2, (4.17)

where δ
(i)
max > 0 is the weight of the penalty. For convenience, we also write H

(i)
max(di, yi)

without loss of generality. When viewed as a quadratic polynomial of yi, H
(i)
max takes its
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minimal value of zero when yi = m − di. Note that 0 ≤ yi ≤ 2µ − 1. If di ≤ m, let y∗i be

such that 0 ≤ y∗i = m− di ≤ m ≤ 2µ − 1. Then Hmax(di, y
∗
i ) = 0. However, when di > m,

because yi ≥ 0, we cannot set yi in that way. By taking the derivative with respect to yi,

∂

∂yi
H(i)

max(di, yi) = 2δ(i)
max(yi −m+ di) > 0, (4.18)

we see that H
(i)
max takes its minimum value over the domain of yi when yi = 0, and that

value is

H(i)
max(di, 0) = δ(i)

max(m− di)2. (4.19)

Noting that H
(i)
max is nonnegative,

min
yi

H(i)
max(di, yi) =


0, di ≤ m,

δmax(di −m)2, di > m.

(4.20)

Thus, if the constraint |di| ≤ m is satisfied, H
(i)
max does nothing, but if |di| > m, a penalty

of at least δ
(i)
max is added.

4.3.3 Acyclicity

Lastly, we must ensure that the structure encoded in {dij} has no directed cycles. We

do so by introducing additional Boolean variables r = (rij)1≤i<j≤n that will encode a binary

relation on the set of variables. Every directed acyclic graph admits at least one topological

order of the vertices, and a graph with a directed cycle admits none. A topological order

“≤” of the vertices {Xi} of a digraph is a total order thereon such that for every edge (i, j)

in the digraph Xi ≤ Xj . Such an order is not unique in general. Let rij = 1 represent

xi ≤ xj and rij = 0 represent xi ≥ xj .

To ensure acyclicity, we define a function Htrans(r) such that Htrans(r) is zero if the

relation encoded in {rij} is transitive and is positive otherwise, as well as a function Hconsist

104



such that Hconsist(d is zero if the order encoded in {rij} is consistent with the directed edge

structure encoded by {dij} and positive otherwise. First, we ensure that {rij} is transitive.

Because if a tournament has any cycle, it has a cycle of length three, it is sufficient to

penalize directed 3-cycles. Define

Htrans(r) ≡
∑

1≤i<j≤n
H

(ijk)
trans(rij , rik, rjk), (4.21)

where

H
(ijk)
trans(rij , rik, rjk) ≡ δ

(ijk)
trans [rijrjk(1− rik) + (1− rij)(1− rjk)rik]

= δ
(ijk)
trans (rik + rijrjk − rijrik − rjkrik)

=


δ

(ijk)
trans, [(xi ≤ xj ≤ xk ≤ xi) ∨ (xi ≥ xj ≥ xk ≥ xi)] ,

0, otherwise,

(4.22)

and δ
(ijk)
trans is the penalty weight added if r encodes either 3-cycle containing {xi, xj , xk}.

Note that the superscripted indices on the penalty weight variable are unordered so that

δ
(i′j′k′)
trans ≡ δ(ijk)

trans for all permutations (i′, j′, k′) of (i, j, k).

Second, we must penalize any state that represents an order and a directed graph that

are inconsistent with each other, i.e. in which rij = 1 and (xj , xi) ∈ E(G(d)) or rij = 0

and ((xi, xj) ∈ E(G(d)). Equivalently, we want to ensure that neither rij = dji = 1 nor

rij = 1− dij = 0. Define

Hconsist(d, r) ≡
∑

1≤i<j≤n
H

(ij)
consist(dij , dji, rij) (4.23)
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and

Hconsist(dij , dji, rij) = δ
(ij)
consist(djirij + dij(1− rij))

=


δ

(ij)
consist, dji = rij = 1 ∨ (dij = 1 ∧ rij = 0),

0, otherwise,

(4.24)

which has the desired features. Again the superscripted indices on the penalty weight

variable are unordered, so that δ
(ji)
consist ≡ δ

(ij)
consist for 1 ≤ i < j ≤ n. Finally, define

Hcycle(d, r) ≡ Hconsist(d, r) +Htrans(r), (4.25)

which takes on its minimal value of zero if G(d) is a DAG and is strictly positive otherwise.

4.3.4 Total Hamiltonian

Putting together the parts of the Hamiltonian defined above, define

H(d,y, r) ≡ Hscore(d) +Hmax(d,y) +Hcycle(d, r). (4.26)

In the next section, we show lower bounds on the penalty weights therein that ensure

that the ground state of the total Hamiltonian H encodes the highest-scoring DAG with

a maximum parent set size of m. The sets of variables described above have the following

sizes:

|{dij}| = n(n− 1),

|{rij}| =
n(n− 1)

2
, and

|{yil}| = nµ = n dlog2(m+ 1)e . (4.27)

Furthermore, while Hmax and Hcycle are natively 2-local, Hscore is m-local. For each variable

xi there are
(
n−1
l

)
possible parent sets of size l and the same number of corresponding l-local
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Figure 4.1: Logical Graph for n = 7 BN variables with a maximum of m = 2 parents.
Each vertex corresponds to a bit in the original QUBO and an edge between two vertices
indicates a non-zero quadratic term containing the corresponding bits. The central cluster
is the order bits used to enforce acyclicity; it is highly connected but not complete. Each
“spike corresponds to a variable Xi in the Bayesian network. The outer two vertices are
the corresponding slack bits {yil} and the remaining inner vertices are the arc bits {dji}
representing those arcs for which the corresponding Bayesian network variable is the head.
Each spike is a clique, due to Hmax (independent of which the arc bits for a given BN
variable are fully connected due to Hscore). Each arc bit is connected to a single order bit
and each order bit is connected to two arc bits, due to Hconsist.
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H = + + +

Arc Bits

HScore HConsist HMax

Order Bits

HTrans

Slack Bits
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Figure 4.2: Schematic of the Hamiltonian. The row of disks represents all of the bits in
the original QUBO problem, colored consistently with the logical graph above. They are
grouped into three sets: the arc bits representing the presence of the possible arcs, the order
bits representing a total ordering by which we enforce acyclicity, and the slack bits used to
limit the size of the parent sets. An arrow from a group of bits to a part of the Hamiltonian
indicates that that part of the Hamiltonian is a function of that set of bits.

terms in Hscore. If m = 3, the full set of
(
n−1

3

)
high-local terms

{∏
j∈J dji||J | = 3

}
corre-

sponding to parent sets of the variable xi can be reduced using b (n−2)2

4 c ancilla variables.

In total, nb (n−2)2

4 c ancilla variables are needed to reduce Hscore to 2-local.

A quadratic pseudo-Boolean function can be identified with a graph whose vertices

correspond to its arguments and whose edges correspond to non-zero quadratic terms. The

graph identified with the Hamiltonian described above for m = 2 has several features that

indicate it may be difficult to embed in sparsely connected physical devices. First, for each

variable Xi there is a clique consisting of the variables {dji}∪{yil}, whose order is (n−1)+µ.

Second, the set of variables {rij} are almost fully connected.

4.3.5 Utilizing Prior Information

The mapping so far described assumes a uniform prior distribution over all possible

DAGs of the appropriate size and with the given maximum number of parents. However,

there are situations in which it may be desirable to fix the presence or absence of an arc

in the search space. This could be because of domain knowledge or because hardware

limitations prevent the implementation of the mapping for all arcs, in which case resort can

be made to iterative search procedures such as the bootstrap method [110]. To realize the
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reduction in qubits needed by accounting for such a reduced search space, suppose that we

wish to only consider network structures that include the arc (i, j), where i < j without

loss of generality. We then set dij = 1, dji = 0, and rij = 1. Similarly, if (i, j) is to be

excluded, we set dij = dji = 0 and keep rij as a free variable. This can be done for any

number of arcs. The Hamiltonian remains unchanged once these substitutions are made,

and the lower bounds on the penalty weight remain sufficient, with the exception of the

terms used in quadratization in the case m > 2, in which case the quadratization should be

done after substitution to utilize the reduction in degree of some terms.

4.4 Penalty Weights

In the expression above, there are several sets of free parameters called penalty weights:

{δimax|1 ≤ i ≤ n}, {δijconsist|1 ≤ i, j ≤ n, i 6= j}, and {δijktrans|1 ≤ i < j < k}. They are

associated with penalty terms, i.e. parts of the Hamiltonian whose value is zero on states

satisfying the corresponding constraint and is positive on states violating it. The purpose of

their inclusion is to ensure that the energy-minimizing state of the total Hamiltonian satisfies

the requisite constraints by increasing the energy of those that do not. More strongly, the

penalty weights must be set such that the ground state of the total Hamiltonian is the lowest

energy state of Hscore that satisfies the constraints. Here we provide sufficient lower bounds

on the penalty weight necessary to ensure that this purpose is met. No claim is made to their

necessity, and tighter lower bounds may exist. It is important to note that these bounds

are mathematical, i.e. they ensure their purpose is met as stated above. In pure adiabatic

quantum computation, in which the quantum system is in its ground state for the duration

of the algorithm, this is sufficient (though the computation time necessary for the conditions

of the adiabatic theorem to hold may be longer than otherwise if a penalized state has lower
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energy than the first excited unpenalized state). In practical quantum annealing, however,

a combination of physical effects may cause the optimal value (in the sense of minimizing

the energy of the lowest-energy state found, which may or may not be the global ground

state) of the penalty weights to be less than these bounds. This remains the case even for

bounds shown to be tight with respect to their mathematical properties.

The bound presented for each of the three sets of penalty weights is based on the notion

that only the addition of an arc (i.e. changing some dij from 0 to 1) can lead to the violation

of two of the constrains we are concerned with: the maximum number of parents and the

consistency of the arc bits and the order bits. Therefore, we can use a basis for how strongly

the associated penalty needs to be the greatest difference in the energy of Hscore adding each

arc can contribute. The penalty for the third constraint, the absence of directed 3-cycles

among the order bits, will then be a function of the penalty for the consistency constraint.

Formally, we wish to set the penalties such that for any d violating at least one of the

constraints, we have

min
y,r

H(d,y, r) > Hscore(d
∗), (4.28)

where

d∗ ≡ arg min
|d′|≤m

G(d′) is a DAG

Hscore(d
′). (4.29)

This is achieved by showing that for any such d violating at least one constraint, there is

another d′ that satisfies all the constraints such that

min
y,r

H(d,y, r) ≥ min
y,r

H(d′,y, r). (4.30)

Because d′ satisfies all the constraints,

min
y,r

H(d′,y, r) = Hscore(d
′), (4.31)
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which implies the inequality in (4.28). In this section, we state the bounds and provide

brief justification, but relegate the proofs to Appendix 4.6.2.

4.4.1 Auxiliary Quantity

In this section, we briefly define an auxiliary quantity,

∆′ji = − min
{dki|k 6=i,j}

{
H(i)

score

∣∣∣
dji=1

− H(i)
score

∣∣∣
dji=0

}
, (4.32)

that will allow us to define the maximum penalty weights associated with the bounds

described previously. For details of the calculation of this quantity, see Appendix 4.6.1. In

general it is possible that ∆ji < 0 as defined above. We thus define the quantity

∆ji ≡ max{0,∆′ji}. (4.33)

In the proof of the bounds, the two following facts will be useful.

Claim 1 (Monotonicity of Hmax). If d ≥ d′, then minyHmax(d,y) ≥ minyHmax(d′,y).

Claim 2 (Monotonicity of Hcycle). If d ≥ d′, then minrHcycle(d, r) ≥ minrHcycle(d
′, r).

These say simply that the removal of one or more arcs from G(d) cannot increase the

values of Hmax nor Hcycle.

4.4.2 “Maximum” Penalty Weights

Here we show a lower bound for {δ(i)
max} that guarantees that if d is such that max1≤i≤n |di| >

m there exists a d′ with lesser total energy such that max1≤i≤n |di| ≤ m. To do so, we show

that if, for some d and i, |di| > m, there is a d′ such that |d′i| = |di| − 1 and

min
y,r

H(d,y, r) ≥ min
y,r

H(d′,y, r). (4.34)
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This idea can be applied iteratively to show that if, for some d and i, |di| > m, there is

some d′ with lesser energy such that d′j = dj for j 6= i and |d′i| ≤ m. This idea in turn can

be applied iteratively to show that if for some d max1≤i≤n |di| > m there is a d′ such that

max1≤i≤n |d′i| ≤ m.

Claim 3. If δ
(i)
max > maxj 6=i ∆ji for all 1 ≤ i ≤ n, then for all d such that, for some

i∗, |di∗ | > m, there is a d′ such that |d′i∗ | = |di∗ | − 1, d′i = di for all i 6= i∗, and

miny,rH(d,y, r) > miny,rH(d′,y, r).

Claim 4 (Sufficiency of “Maximum” Penalty Weight). If δ
(i)
max > maxj 6=i ∆ji for all i,

then for all d such that maxi |di| > m, there is a d′ ≤ d such that maxi |d′i| ≤ m and

miny,rH(d,y, r) > miny,rH(d′,y, r).

4.4.3 “Reduction” Penalty Weights

The degree of the “score” Hamiltonian Hscore is natively m-local as constructed. If

m = 2, as it often will be in practice, the total Hamiltonian is natively quadratic. If

m > 2, additional ancilla bits are needed to reduce the locality. The general method for

doing this is to replace the conjunction of a pair bits with an ancilla bit and to add a

penalty term with sufficiently strong weighting that penalizes states in which the ancillary

bit is not equal to the conjunction to which it should be. For m = 3, this can be done

using n
⌊
(n− 2)2/4

⌋
ancilla bits, but no more, where each H

(i)
score containing n− 1 arc bits

is quadratized independently; furthermore, heuristic methods have been developed that

reduce needed weight of the penalty terms [16]. For m = 4, at most n
(
n−1

2

)
ancilla bits are

needed. More generally, O(n2 log d) is ancilla bits are needed [49]. Because the proof of the

bounds on the other penalty weights are secular as to the degree of Hscore so long as {∆ij}

is computed appropriately, the quadratization of Hscore, including the addition of penalty
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terms and the needed weights therefor, can be done using the standard methods described

in the literature independent of the other penalties described here.

4.4.4 “Cycle” Penalty Weights

First, we that if the consistency penalty is set high enough, for any d encoding a graph

with a 2-cycle, there is some d′ encoding one whose minimal value of H over y, r is strictly

less than that of d.

Claim 5 (Removal of 2-cycles.). If δ
(ij)
consist > max{∆ij ,∆ji} for all 1 ≤ i < j ≤ n , then

for all d such that G(d) contains a 2-cycle, there is some d′ ≤ d such that G(d′) does not

contain a 2-cycle and miny,rH(d,y, r) > miny,rH(d′,y, r).

Second, we show that for any d that encodes a digraph without a 2-cycle, the minimal

value of Hconsist over all r is zero.

Claim 6 (Sufficiency of “Consistency” Penalty Weights). If δ
(ij)
consist > (n−2) maxk/∈{i,j} δ

(ijk)
trans

for 1 ≤ i < j ≤ n, then for all d such that G(d) contains no 2-cycle, Hconsist(d, r
∗) = 0,

where r∗ = arg minrHcycle(d, r).

Third, we show that for any d that encodes a digraph not containing a 2-cycle but

that is not a DAG, there is some d′ that does encode a DAG and whose minimal value of

H over all y, r is strictly less than that of d.

Claim 7 (Sufficiency of “Transitivity” Penalty Weights). If δ
(ij)
consist > (n−2) maxk/∈{i,j} δ

(ijk)
trans

for 1 ≤ i < j ≤ n and δ
(ijk)
trans = δtrans > max1≤i′,j′≤n

i′ 6=j′
∆i′j′ for 1 ≤ i < j < k ≤ n, then for all

d such that G(d) does not contain a 2-cycle but does contain a directed cycle there is some

d′ such that G(d′) is a DAG and miny,rH(d,y, r) > miny,rH(d′,y, r).
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Lastly, we show that for all d that encode a digraph that is not a DAG, there is some

d′ that does encode a DAG and whose minimal value of H over all y, r is strictly less than

that of d.

Claim 8 (Sufficiency of “Cycle” Penalty Weights). If δ
(ij)
consist > (n− 2) maxk/∈{i,j} δ

(ijk)
trans for

all 1 ≤ i < j ≤ n and δ
(ijk)
trans = δtrans > max1≤i,j≤n

i 6=j
for all 1 ≤ i < j < k ≤ n, then for all d

such that G(d) contains a directed cycle, there is a d′ ≤ d such that G(d′) is a DAG, and

miny,rH(d′,y, r) < miny,rH(d,y, r).

4.4.5 Overall Sufficiency

Finally, we show that the digraph encoded in the ground state of the total Hamiltonian

H is a DAG and has a maximum parent set size of at most m, and that it is the solution

to the corresponding BNSL instance.

Claim 9 (Overall Sufficiency). If δ
(i)
max > maxj 6=i ∆ji for all 1 ≤ i ≤ n, δ

(ij)
consist > (n −

2) maxk/∈{i,j} δ
(ijk)
trans for all 1 ≤ i < j ≤ n and δ

(ijk)
trans = δtrans > max1≤i′,j′≤n

i′ 6=j′
∆i′j′ for all

1 ≤ i < j < k ≤ n, then H(d∗,y, r) = min maxi |di|≤m
G(d) is a DAG

Hscore(d,y, r), G(d∗) is a DAG, and

maxi |d∗i | ≤ m, where d∗ = arg mind {miny,rH(d,y, r)}.

The strict inequalities used in the specification of the lower bounds ensures that the

global ground state is a score-maximizing DAG with maximum parent set size m, but

replacing them with weak inequalities is sufficient to ensure that the ground state energy is

the greatest score over all DAGs with maximum parent set size m. However, the latter is

of little interest in the present situation because it is the DAG itself that is of interest, not

its score per se.
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4.5 Conclusion

We have introduced a mapping from the native formulation of BNSL to QUBO that

enables the solution of the former using novel methods.

The mapping is unique amongst known mappings of optimization problems to QUBO

in that the logical structure is instance-independent for a given problem size. This enables

the expenditure of considerably more computational resources on the problem of embed-

ding the logical structure into a physical device because such an embedding need only be

done once and reused for new instances. The problem addressed, BNSL, is special among

optimization problems in that approximate solutions thereto often have value rivaling that

of the exact solution. This property, along with the general intractability of exact solution,

implies the great value of efficient heuristics such as SA or QA implemented using this

mapping.

At present, only problems of up to seven BN variables can be embedded in existing

quantum annealing hardware (i.e. the D-Wave Two chip installed at NASA Ames Research

Center), whereas classical methods are able to deal with many of tens of BN variables.

Nevertheless, the quantum state of the art is quickly advancing, and it is conceivable that

quantum annealing could be competitively applied to BNSL in the near future. Given the

already advanced state of classical simulated annealing code, it is similarly conceivable that

its application to the QUBO form described here could be competitive with other classical

methods for solving BNSL.
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4.6 Appendix

4.6.1 Calculation of ∆ij

Recall the definition of the auxillary quantity,

∆′ji = − min
{dki|k 6=i,j}

{
H(i)

score

∣∣∣
dji=1

− H(i)
score

∣∣∣
dji=0

}
, (4.32)

Note that H
(i)
score can be decomposed as

H(i)
score =

∑
J⊂{1,...,n}\{i}
|J |≤m

(
wi(J)

∏
k∈J

dki

)

=
∑

J⊂{1,...,n}\{i,j}
|J |≤m

(
wi(J)

∏
k∈J

dki

)
+

∑
J⊂{1,...,n}\{i,j}
|J |≤m−1

(
wi(J ∪ {j})dji

∏
k∈J

dki

)
, (4.35)
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where the first term is independent of dji and thus cancels in the argument of the mini-

mization on the right-hand side of Equation 4.32. Thus ∆ji simplifies to

∆′ji = − min
{dki|k 6=i,j}


∑

J⊂{1,...,n}\{i,j}
|J |≤m−1

(
wi(J ∪ {j})

∏
k∈J

dki

)
= max
{dki|k 6=i,j}

−
∑

J⊂{1,...,n}\{i,j}
|J |≤m−1

(
wi(J ∪ {j})

∏
k∈J

dki

) . (4.36)

For m = 1, ∆ji is trivially −wi({j}), the constant value of the expression to be ex-

tremized in Equation 4.36 regardless of the values of {dki|k 6= i, j}. For m = 2, ∆ji can still

be calculated exactly:

∆′ji = max
{dki|k 6=i,j}

−
∑

J⊂{1,...,n}\{i,j}
|J |≤1

(
wi(J ∪ {j})

∏
k∈J

dki

)
= max
{dki|k 6=i,j}

−wi({j})−
∑

1≤k≤n
k 6=i,j

dki


= −wi({j})−

∑
1≤k≤n
k 6=i,j

wi{j,k})<0

wi({j, k})

= −wi({j})−
∑

1≤k≤n
k 6=i,j

min{0, wi({j, k})}. (4.37)

However, for m ≥ 3, calculation of the extremum in Equation 4.36 is an intractable op-

timization problem in its own right and therefore we must resort to a reasonable bound.

Because ∆ji will be used in finding a lower bound on the necessary penalty weights, caution

ditates that we use, if needed, a greater value than necessary. A reasonable upper bound
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on the true value is:

∆′ji = max
{dki|k 6=i,j}

−
∑

J⊂{1,...,n}\{i,j}
|J |≤m−1

(
wi(J ∪ {j})

∏
k∈J

dki

)
≤ −

∑
J⊂{1,...,n}\{i,j}
|J |≤m−1

wi(J∪{j})<0

wi(J ∪ {j}) = −
∑

J⊂{1,...,n}\{i,j}
|J |≤m−1

min{0, wi(J ∪ {j})}. (4.38)

4.6.2 Proofs of Penalty Weight Lower Bounds

Claim 1 (Monotonicity of Hmax). If d ≥ d′, then minyHmax(d,y) ≥ minyHmax(d′,y).

Proof. d ≥ d′ implies di ≥ d′i and thus |di| ≥ |d′i| for 1 ≤ i ≤ n. By design, minyi Hmax(di,yi) =

δ
(i)
max max{0, |di| −m}. Let y∗ ≡ arg minyH(d,y). Then

min
y
Hmax(d,y) =

n∑
i=1

min
yi

Hmax(di,yi) =
n∑
i=1

δ(i)
max max{0, |di| −m}

≥
n∑
i=1

δ(i)
max max{0, |d′i| −m}

=
n∑
i=1

min
yi

Hmax(d′i,yi) = min
y
Hmax(d′,y). (4.39)

Claim 2 (Monotonicity of Hcycle). If d ≥ d′, then minrHcycle(d, r) ≥ minrHcycle(d
′, r).

Proof. In the statement of the claim, we implicitly assume that δ
(ij)
consist > 0 for all 1 ≤ i <

j ≤ n. Let r∗ = arg minrHcycle(d, r). Because dji ≥ d′ji for all i, j such thati 6= j and
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1 ≤ i, j ≤ n, and because 0 ≤ rij ≤ 1 for all 1 ≤ i < j ≤ n,

min
r
Hcycle(d, r) = min

r
{Hconsist(d, r) +Htrans(r)} = Hconsist(d, r

∗) +Htrans(r
∗)

=

 ∑
1≤i<j≤n

δ
(ij)
consist

[
djir

∗
ij + dij(1− r∗ij)

]+Htrans(r
∗)

≥

 ∑
1≤i<j≤n

δ
(ij)
consist

[
d′jir

∗
ij + d′ij(1− r∗ij)

]+Htrans(r
∗)

= Hconsist(d
′, r∗) +Htrans(r

∗)

≥ min
r

[
Hconsist(d

′, r) +Htrans(r)
]

= min
r
Hcycle(d

′, r) (4.40)

Claim 3. If δ
(i)
max > maxj 6=i ∆ji for all 1 ≤ i ≤ n, then for all d such that, for some

i∗, |di∗ | > m, there is a d′ such that |d′i∗ | = |di∗ | − 1, d′i = di for all i 6= i∗, and

miny,rH(d,y, r) > miny,rH(d′,y, r).

Proof. We prove the existence of such a d′ by construction. Let d′i ≡ di for all i 6= i∗.

Let d′i∗ ≡ di∗ |dj∗i∗=0, where j∗ = arg minj∈{j|dji∗=1}∆ji∗ . First, we note that by design

minyi H
(i)
max(di,yi) = min{0, δ(i)

max(|di| −m)}. Thus

min
yi∗

H(i∗)
max(di∗ ,yi∗)−min

yi∗
H(i∗)

max(d′i∗ ,yi∗) =
[
δ(i∗)

max(|d| −m)
]

+
[
δ(i∗)

max(|d′| −m)
]

= δ(i∗)
max(|d| − |d′|) = δ(i∗)

max

> max
j 6=i∗

∆ji∗ ≥ H(i∗)
score(d

′
i∗)−H(i∗)

score(di∗). (4.41)

which rearranges to

H(i∗)
score(di∗) + min

yi∗
H(i∗)

max(di∗ ,yi∗) > H(i∗)
score(d

′
i∗) + min

yi∗
H(i∗)

max(d′i∗ ,yi∗). (4.42)
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In context,

min
y

[Hscore(d) +Hmax(d,y)] = Hscore(d) + min
y
Hmax(d,y)

=
∑
i 6=i∗

[
H(i)

score(di) + min
yi

H(i)
max(di,yi) +H(i∗)

score(di∗) + min
yi∗

H(i∗)
max(di∗ ,yi∗)

]

=
∑
i 6=i∗

[
H(i)

score(d
′
i) + min

yi
H(i)

max(d′i,yi) +H(i∗)
score(di∗) + min

yi∗
H(i∗)

max(di∗ ,yi∗)

]

>
∑
i 6=i∗

[
H(i)

score(d
′
i) + min

yi
H(i)

max(d′i,yi) +H(i∗)
score(d

′
i∗) + min

yi∗
H(i∗)

max(d′i∗ ,yi∗)
]

= Hscore(d
′) + min

y
Hmax(d′,y) = min

y

[
Hscore(d

′) +Hmax(d′,y)
]
. (4.43)

By Claim 1 and the fact that d′ ≤ d,

min
r
Hmax(d, r) ≥ min

r
Hmax(d′, r), (4.44)

and so

min
y,r

H(d,y, r) = Hscore(d) + min
y
Hmax(d,y) + min

r
Hcycle(d, r)

> Hscore(d
′) + min

y
Hmax(d′,y) + min

r
Hcycle(d

′, r) = min
y,r

H(d,y, r). (4.45)

Claim 4 (Sufficiency of “Maximum” Penalty Weight). If δ
(i)
max > maxj 6=i ∆ji for all i,

then for all d such that maxi |di| > m, there is a d′ ≤ d such that maxi |d′i| ≤ m and

miny,rH(d,y, r) > miny,rH(d′,y, r).

Proof. We prove the sufficiency of the given bound by iterative application of Claim 3. Let

d(0,0) ≡ d. For all i, if |di| > m, let d(i,|di|−m) ≡ d(i−1,0), and if |di| ≤ m, let d(i,0) ≡ d(i−1,0).

For all 1 ≤ i ≤ n and x such that 1 ≤ i ≤ n and 1 ≤ x ≤ max{0, |di| −m}}, |d(i,x)
i | > m

and so by Claim 3 there is a d(i,x−1) ≤ d(i,x) such that |d(i,x−1)| = |d(i,x)| − 1 and
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miny,rH(d(i,x−1),y, r) < miny,rH(d(i,x),y, r). Then for all i, if |di| > m, there is a se-

quence d(i,|di|−m), . . . ,d(i,x), . . . ,d(i,0) such that d(i,0) ≤ d(i,|di|−m) and miny,rH(d(i,0),y, r) <

miny,rH(d(i,|di|−m),y, r). Similarly, for all i, d(i,0) ≤ d(i−1,0) and

miny,rH(d(i,0) ≤ miny,rH(d(i−1),y, r), with strict inequality if |di| > 0 and equality if

|di| = 0. Thus there is a sequence d(0,0),d(1,0), . . . ,d(i,0), . . . ,d(n,0) such that d(n,0) ≤

d(0,0) = d, maxi |d(n,0)
i | ≤ m, and miny,rH(d′,y, r) < miny,rH(d,y, r). Setting d′ ≡ d(n,0)

completes the proof.

Claim 5 (Removal of 2-cycles.). If δ
(ij)
consist > max{∆ij ,∆ji} for all 1 ≤ i < j ≤ n , then

for all d such that G(d) contains a 2-cycle, there is some d′ ≤ d such that G(d′) does not

contain a 2-cycle and miny,rH(d,y, r) > miny,rH(d′,y, r).

Proof. Let d(0) ≡ d and l∗ be the number of 2-cycles contained in G(d). The claim is proved

iteratively by showing that for all d(l) such that G(d(l)) contains a 2-cycle there exists some

d(l+1) such that miny,rH(d(l),y, r) > miny,r(d
(l+1),y, r) and G(d(l+1)) contains one fewer

2-cycle. Because a graph of fixed order can only have a finite number of 2-cycles, this implies

the existence of a sequence d,d(1), . . . ,d(l), . . . ,d(l∗) such that d(l∗) meets the desiderata.

Consider an arbitrary d(l). If G(d(l)) does not contain a directed 2-cycle, then l = l∗

and so we set d′ = d(l∗) to complete the proof. Otherwise, choose some 2-cycle in G(d(l))

arbitrarily, i.e. some pair {i, j} such that (i, j), (j, i) ∈ E(G(d)), or, equivalently, that

dij = dji = 1. Without loss of generality, assume i < j. Let r∗ ≡ arg minrHcycle(d
(l), r)

and

(i∗, j∗) ≡


(j, i), r∗ij = 1,

(i, j), r∗ij = 0,

(4.46)
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i.e. the arc in G(d(l) inconsistent with G(r∗). Define d(l+1) such that

d
(l+1)
ij =


dij , (i, j) 6= (i∗, j∗)

0 = 1− dij , (i, j) = (i∗, j∗)

. (4.47)

Thus d(l+1) ≤ d(l) and |d(l+1)| = |d(l)| − 1. By construction, G(d(l+1)) contains one fewer

2-cycle than G(d(l)). Furthermore,

min
r
Hcycle(d

(l), r)−min
r
Hcycle(d

(l+1), r) = Hcycle(d
(l), r∗)−min

r
Hcycle(d

(l+1), r)

≥ Hcycle(d
(l), r∗)−Hcycle(d

(l+1), r∗)

=

 ∑
1≤i<j≤n

δ
(ij)
consist

[
d

(l)
ji r
∗
ij + d

(l)
ij (1− r∗ij)

]−
 ∑

1≤i<j≤n
δ

(ij)
consist

[
d

(l+1)
ji r∗ij + d

(l+1)
ij (1− r∗ij)

]
=

∑
1≤i<j≤n

δ
(ij)
consist

[
(d

(l)
ji − d

(l+1)
ji )r∗ij + (d

(l)
ij − d

(l+1)
ij )(1− r∗ij)

]

=


δ

(j∗i∗)
consist(d

(l)
i∗j∗ − d

(l+1)
i∗j∗ )r∗j∗i∗ , j∗ < i∗

δ
(i∗j∗)
consist(d

(l)
i∗j∗ − d

(l+1)
i∗j∗ )(1− r∗i∗j∗), i∗ < j∗

=


δ

(j∗i∗)
consist, j∗ < i∗

δ
(i∗j∗)
consist, i∗ < j∗

> ∆i∗j∗ ≥ Hscore(d
(l+1))−Hscore(d

(l)). (4.48)

By Claim 1 and the fact that d(l+1) ≤ d(l),

min
y
Hmax(d(l)) ≥ min

y
Hmax(d(l+1)). (4.49)

Thus,

min
y,r

H(d(l),y, r)−min
y,r

H(d(l+1),y, r) = Hscore(d
(l)) + min

r
Hcycle(d

(l), r) min
y
Hmax(d(l),y)

−Hscore(d
(l+1)) + min

r
Hcycle(d

(l+1), r) + min
y
Hmax(d(l+1),y)
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≥
(
Hscore(d

(l)) + min
r
Hcycle(d

(l), r)
)
−
(
Hscore(d

(l+1)) + min
r
Hcycle(d

(l+1), r)
)
> 0,

(4.50)

which rearranges to the desired inequality.

Claim 6 (Sufficiency of “Consistency” Penalty Weights). If δ
(ij)
consist > (n−2) maxk/∈{i,j} δ

(ijk)
trans

for 1 ≤ i < j ≤ n, then for all d such that G(d) contains no 2-cycle, Hconsist(d, r
∗) = 0,

where r∗ = arg minrHcycle(d, r).

Proof. We prove the claim via its contrapositive: for all d, r, if Hconsist(d, r) > 0, there is

some r′ such that Hcycle(d, r) > Hcycle(d, r
′), so r 6= arg minrHcycle(d, r).

Consider an arbitrary d and some r such that Hconsist(d, r) > 0. The positivity of

Hconsist(d, r) indicates that there is at least one inconsistency between d and r, i.e. there

is some (i∗, j∗) such that di∗j∗ =


rj∗i∗ , i∗ > j∗

1− ri∗j∗ , i∗ < j∗
= 1. For convenience, we prove the

claim for the case in which i∗ < j∗; the proof provided can be easily modified for the case in

which i∗ > j∗. Let r′ be the same as r exept in the bit corresponding to this inconsistency:

r′ij ≡


rij (i, j) 6= (i∗, j∗)

1− rij , (i, j) = (i∗, j∗)

. Then

Hconsist(d, r)−Hconsist(d, r
′) =

∑
1≤i<j≤n

[
H

(ij)
consist(dij , dji, rij)−H

(ij)
consist(dij , dji, r

′
ij)
]

= H
(i∗j∗)
consist(di∗j∗ , dj∗i∗ , ri∗j∗)−H

(i∗j∗)
consist(di∗j∗ , dj∗i∗ , r

′
i∗j∗)

= δ
(i∗j∗)
consist [dj∗i∗ri∗j∗ + di∗j∗(1− ri∗j∗)]− δ(i∗j∗)

consist

[
dj∗i∗r

′
i∗j∗ + di∗j∗(1− r′i∗j∗)

]
= δ

(i∗j∗)
consist [−dj∗i∗ + di∗j∗ ] = δ

(i∗j∗)
consist. (4.51)

Furthermore,

Htrans(r)−Htrans(r
′) =

∑
1≤i<j<k≤n

H
(ijk)
trans(rij , rik, rjk)−

∑
1≤i<j<k≤n

H
(ijk)
trans(r

′
ij , r

′
ik, r

′
jk)
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=
∑

1≤i<j<k≤n
{i∗,j∗}⊂{i,j,k}

[
H

(ijk)
trans(rij , rik, rjk)−H

(ijk)
trans(r

′
ij , r

′
ik, r

′
jk)
]

=
∑
k<i∗

δ
(ki∗j∗)
trans

[
(rkj∗ + rki∗ri∗j∗ − rki∗rkj∗ − ri∗j∗rkj∗)−

(
r′kj∗ + r′ki∗r

′
i∗j∗ − r′ki∗r′kj∗ − r′i∗j∗r′kj∗

) ]
+

∑
i∗<k<j∗

δ
(i∗kj∗)
trans

[
(ri∗j∗ + ri∗krkj∗ − ri∗kri∗j∗ − rkj∗ri∗j∗)−

(
r′i∗j∗ + r′i∗kr

′
kj∗ − r′i∗kr′i∗j∗ − r′kj∗r′i∗j∗

) ]
+
∑
j∗<k

δ
(i∗j∗k)
trans

[
(ri∗k + ri∗j∗rj∗k − ri∗j∗ri∗k − rj∗kri∗k)−

(
r′i∗k + r′i∗j∗r

′
j∗k − r′i∗j∗r′i∗k − r′j∗kr′i∗k

) ]
=
∑
k<i∗

δ
(ki∗j∗)
trans (−rki∗ + rkj∗) +

∑
i∗<k<j∗

δ
(i∗kj∗)
trans (−1 + ri∗k + rkj∗) +

∑
j∗<k

δ
(i∗j∗k)
trans (−rj∗k + ri∗k)

≤
∑
k<i∗

δ
(ki∗j∗)
trans +

∑
i∗<k<j∗

δ
(i∗kj∗)
trans +

∑
j∗<k

δ
(i∗j∗k)
trans ≤ (n− 2) max

k/∈{i∗,j∗}
δ

(i∗j∗k)
trans . (4.52)

Together, the above imply

Hcycle(d, r)−Hcycle(d, r
′) = Hconsist(d, r)−Hconsist(d, r

′) +Htrans(r)−Htrans(r
′)

≥ δ(i∗j∗)
consist − (n− 2) max

k/∈{i,j}
δ

(ijk)
trans > 0. (4.53)

Claim 7 (Sufficiency of “Transitivity” Penalty Weights). If δ
(ij)
consist > (n−2) maxk/∈{i,j} δ

(ijk)
trans

for 1 ≤ i < j ≤ n and δ
(ijk)
trans = δtrans > max1≤i′,j′≤n

i′ 6=j′
∆i′j′ for 1 ≤ i < j < k ≤ n, then for all

d such that G(d) does not contain a 2-cycle but does contain a directed cycle there is some

d′ such that G(d′) is a DAG and miny,rH(d,y, r) > miny,rH(d′,y, r).

Proof. Consider an arbitrary d(l) such that G(d(l)) does not contain a 2-cycle but does

contain a directed cycle. Let r(l) ≡ arg minrHcycle(d
(l), r). By Claim 6, Hconsist(d

(l), r(l)) =

0 and so Hcycle(d
(l), r(l)) = Htrans(d

(l), r(l)).

If δ
(ijk)
trans = δtrans for 1 ≤ i < j < k ≤ n, i.e. the trasitivity penalty weight is uniform

for all directed triangles, then Htrans(r) is equal to the product of δtrans and the number of

directed triangles in the tournament G(r) for all r.
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In any tournament with a positive number of directed triangles, there is always some

arc whose switch of direction lowers the number of directed triangles. Let (i∗, j∗) be such

such an arc for r(l). Define r̃(l) such that r̃
(l)
ij =


r

(l)
ij , (i, j) 6= (i∗, j∗)

1− r(l)
ij , (i, j) = (i∗, j∗)

. By construction,

Htrans(r
∗
l )−Htrans(r̃

(l)) ≥ δtrans.

It must be the case that d
(l)
i∗j∗ = 1. Suppose otherwise. Define some r′ such that

r′ij =


rij , (i, j) 6= (i∗, j∗),

1− rij , (i, j) = (i∗, j∗),

, which would have the properties that Hconsist(d
(l), r′) = 0

and, by construction, Htrans(r
′) < Htrans(r

(l), so that Hcycle(d
(l), r′) < Hcycle(d

(l), r(l)) 6=

minrHcycle(d
(l), r). Because G(d(l)) does not contain a 2-cycle, d

(l)
j∗i∗ = 0.

Now, define d(l+1) such that d
(l+1)
ij =


d

(l)
ij , (i, j) 6= (i∗, j∗),

0 = 1− d(l)
ij , (i, j) = (i∗, j∗).

Then

Hconsist(d
(l+1), r̃(l)) =

∑
1≤i<j≤n

(i,j)6=(i∗,j∗)

H
(ij)
consist(d

(l+1)
ij , d

(l+1)
ji , r̃

(l)
ij ) +H

(i∗j∗)
consist(d

(l+1)
i∗j∗ , d

(l+1)
j∗i∗ , r̃

(l)
i∗j∗)

=
∑

1≤i<j≤n
(i,j)6=(i∗,j∗)

H
(ij)
consist(d

(l)
ij , d

(l)
ji , r

(l)
ij ) +H

(i∗j∗)
consist(0, 0, r

(l)
i∗j∗)

≤ Hconsist(d
(l), r(l)) = 0 (4.54)

Because of this, it must be that Htrans(r̃
(l)) ≥ Htrans(r

(l+1)), whose negation contradicts the

definition of r(l+1). Therefore,

Htrans(r
(l))−Htrans(r

(l+1)) ≥ Htrans(r
(l))−Htrans(r̃

(l))

≥ δtrans > ∆i∗,j∗

≥ Hscore(d
(l+1))−Hscore(d

(l)). (4.55)
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Because d(l+1) ≤ d(l), G(d(l+1) also does not contain a 2-cycle and, by Claim 1,

min
y
Hmax(d(l+1),y) ≤ min

y
Hmax(d(l),y), (4.56)

which, together with the above, implies

min
y,r

H(d(l),y, r)−min
y,r

H(d(l+1),y, r) = Hscore(d
(l))−Hscore(d

(l+1))

+ min
y
Hmax(d(l),y)−min

y
Hmax(d(l+1),y) + min

r
Hcycle(d

(l), r)−min
r
Hcycle(d

(l+1), r)

≥ Hscore(d
(l))−Hscore(d

(l+1)) +Htrans(r
(l))−Htrans(r

(l+1)) > 0.

(4.57)

Let d(0) ≡ d. Because there can be only finitely many directed triangles in a graph of fixed

order, we can construct a sequence d,d(1), . . . ,d(l), . . . ,d(l∗) such that miny,rH(d,y, r) >

miny,rH(d(l∗),y, r) and G(rl∗) does not contain directed triangle. Thus Htrans(rl∗) =

Hcycle(d
(l∗), r∗l∗) = 0, which means that G(d(l∗)) is a DAG. Setting d′ ≡ d(l∗) completes

the proof.

Claim 8 (Sufficiency of “Cycle” Penalty Weights). If δ
(ij)
consist > (n− 2) maxk/∈{i,j} δ

(ijk)
trans for

all 1 ≤ i < j ≤ n and δ
(ijk)
trans = δtrans > max1≤i,j≤n

i 6=j
for all 1 ≤ i < j < k ≤ n, then for all d

such that G(d) contains a directed cycle, there is a d′ ≤ d such that G(d′) is a DAG, and

miny,rH(d′,y, r) < miny,rH(d,y, r).

Proof. If G(d) contains a 2-cycle, then by Claim 5, there is some d′′ ≤ d such that G(d′′)

does not contain a directed 2-cycle and

min
y,r

H(d,y, r) > min
y,r

H(d′′,y, r). (4.58)
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If G(d′′) is a DAG, then setting d′ ≡ d′′ completes the proof. If G(d) does not contain a

2-cycle, set d′′ ≡ d. Then by Claim 7, there is a d′ ≤ d′′ such that G(d′) is a DAG and

min
y,r

H(d′′,y, r) > min
y,r

H(d′,y, r). (4.59)

Claim 9 (Overall Sufficiency). If δ
(i)
max > maxj 6=i ∆ji for all 1 ≤ i ≤ n, δ

(ij)
consist > (n −

2) maxk/∈{i,j} δ
(ijk)
trans for all 1 ≤ i < j ≤ n and δ

(ijk)
trans = δtrans > max1≤i′,j′≤n

i′ 6=j′
∆i′j′ for all

1 ≤ i < j < k ≤ n, then H(d∗,y, r) = min maxi |di|≤m
G(d) is a DAG

Hscore(d,y, r), G(d∗) is a DAG, and

maxi |d∗i | ≤ m, where d∗ = arg mind {miny,rH(d,y, r)}.

Proof. Consider an arbitrary d. If maxi |di| > m, then by Claim 4, there exists some d′

such that

min
y,r

H(d,y, r) > min
y,r

H(d′,y, r) (4.60)

and minyHmax(d′) = 0, i.e. maxi |d′i| ≤ m. If G(d) has a directed cycle, then by Claim 8,

there is some d′′ such that

min
y,r

H(d,y, r) > min
y,r

H(d′′,y, r) (4.61)

and minrHcycle(d
′′, r) = 0, i.e. G(d′′) is a DAG. Either of these cases implies that d 6= d∗, so

it must be thatG(d∗) is a DAG, maxi |d∗i | ≤ m, andH(d∗,y, r) = min maxi |di|≤m
G(d) is a DAG

Hscore(d,y, r).
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Chapter 5

Training Robust Binary Classifiers Using

Quantum Annealing

Apart from minor modifications, this chapter originally appeared as [13]:

“Construction of Non-Convex Polynomial Loss Functions for Training a Binary Classifier
with Quantum Annealing”. Ryan Babbush, Vasil Denchev, Nan Ding, Sergei Isakov and
Hartmut Neven. arXiv preprint 1406.4203. 1-9. 2014.

Abstract

Quantum annealing is a heuristic quantum algorithm which exploits quantum resources

to minimize an objective function embedded as the energy levels of a programmable physical

system. To take advantage of a potential quantum advantage for training binary classifiers,

one needs to be able to map the regularized risk function to the native hardware with rea-

sonably low overhead. Because experimental considerations constrain our training objective

to take the form of a low degree PUBO (polynomial unconstrained binary optimiza-

tion), we employ non-convex loss functions which are polynomial functions of the margin.

We show that these loss functions are robust to label noise and provide a clear advantage

over convex methods. These loss functions may also be useful for classical approaches as

they compile to regularized risk expressions which can be evaluated in constant time with

respect to the number of training examples.
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5.1 Introduction

5.1.1 Quantum annealing

While it is well known that gate model quantum algorithms provide an exponential

speedup over the best known classical approaches for some problems [251, 169], we are

still technologically far from the ability to construct a large scale quantum computer which

can robustly implement such algorithms for nontrivial problem instances. By contrast,

rapid advances in superconducting qubit technology [25] have provided a scalable platform

for engineering medium-scale, controllable quantum systems at finite temperature. Such

devices would be able to implement a quantum version of simulated annealing [167] known

as quantum annealing [159, 104, 238, 255].

Because it is NP-Hard to determine the lowest energy configuration of a system of

binary spins subject to controllable linear and quadratic energy terms [23], the ability to en-

gineer and cool such a system provides an approach to solving any optimization problem in

the class NP. In general, we do not expect that any device can efficiently solve instances of

NP-Hard problems in the worst case. However, there is evidence that quantum resources

such as tunneling and entanglement are generic computational resources which may help to

solve problem instances which would be otherwise intractable for classical solvers. For in-

stance, quantum annealing allows disordered magnets to relax to states of higher magnetic

susceptibility asymptotically faster than classical annealing [57] and can solve certain orac-

ular problems exponentially faster than any classical algorithm [256]. For the last few years,

D-Wave Systems has been commercially manufacturing quantum annealing machines [154].

These machines are the subject of ongoing scientific investigations by several third parties

which aim to characterize the extent to which the hardware utilizes quantum resources and
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whether a scaling advantage is apparent for any class of problems [43, 44, 233].

5.1.2 Training under non-convex loss

The problem we consider in this work is the training of a linear binary classifier using

noisy data [40]. We assume that the training data is provided as a matrix x ∈ Rm×n with

the m rows corresponding to unique descriptor vectors containing n features. We are also

provided with a vector of labels, y ∈ {−1, 1}m, which associate a binary classification with

each feature vector. The training problem is to determine an optimal classifier w ∈ Rn

which predicts the data by classifying example i as sign
(
w>xi

)
.

The classifier may be viewed as a hyperplane in feature space which divides data points

into negative and positive classifications. In this space, the distance that example i falls from

the classification hyperplanew is referred to as the margin γi ≡ yi x>i w. Whereas a negative

margin represents a classification opposite the training label, a positive margin represents a

classification consistent with the training label. To cast training as an optimization problem

we use the concept of a loss function which penalizes the classification of each example

according to its margin [40]. Perhaps the simplest loss function is the 0-1 loss function

which provides a correct classification with penalty 0 and an incorrect classification with

penalty 1,

L01 (γi) ≡
1− sign (γi)

2
. (5.1)

The training objective (known in machine learning as total empirical risk) is given as the

mean loss over all examples in the training set. For instance, the 0-1 empirical risk function

is

f01 (w) ≡ 1

m

m−1∑
i=0

L01 (γi) . (5.2)

Unfortunately, minimization of the 0-1 empirical risk function is known to be NP-
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Hard [106]. For this reason, most contemporary research focuses on convex loss functions

which are provably efficient to optimize. However, in data with high label noise, this is an

unacceptable compromise as the efficiency gained by convex minimization allows only for

the efficient computation of a poor classifier [191]. By contrast, training under non-convex

loss functions is known to provide robust classifiers even when nearly half of the examples

are mislabeled [184].

Objectives such as these, for which certain instances may require exponential time

using classical heuristics, are ideal candidates for quantum annealing. In order to attempt

non-convex risk minimization with quantum annealing in the near future, one must first

efficiently compile the problem to a form compatible with quantum hardware. Due to

engineering considerations, this usually means preparing the problem as an instance of

QUBO (quadratic unconstrained binary optimization). Previously, Denchev at al.

introduced a method for mapping non-convex loss training to QUBO [86] for the purposes

of solving on a quantum device. However, in that work, the number of variables required to

accomplish the embedding was lower-bounded by the number of training examples. While

clearly robust, this scheme seems impractical for medium-scale quantum annealers due to

the large qubit overhead.

Here, we develop a different embedding in which the number of required variables is

independent of the number of training examples. This is accomplished by deriving loss

functions which are polynomial functions of the margins. We show that such loss functions

give rise to empirical risk objectives expressible as PUBO. Compatibility with quantum

hardware comes from the fact that any PUBO can be reduced to QUBO using a number

of boolean ancilla variables that is at most O
(
N2 log k

)
where N is the number of logical

variables and k is the order of the PUBO [49]. Coincidentally, this implies that the empirical
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risk objective associated with any polynomial loss function can be evaluated in an amount

of time that does not depend on the number of training examples.

In particular, we investigate the use of third-order and sixth-order polynomial loss

functions. The cubic loss function is chosen as k = 3 is the lowest order that gives us

non-convexity. Polynomial loss has very different characteristics depending on the parity of

k so we also investigate an even degree polynomial loss function. We forgo quartic loss in

favor of sixth-order loss as the latter qualitatively fits 0-1 loss much better than the former.

After deriving optimal forms of cubic loss and sixth-order loss we numerically investigate the

properties of these loss functions to show robustness to label noise. Finally, we demonstrate

an explicit mapping of any polynomial risk objective to a tensor representing an instance

of PUBO that is easily compiled to quantum hardware.

5.2 Cubic loss

In this section we derive an approximate embedding of 0-1 risk under `2-norm regular-

ization as a cubic function of the weights. We begin by considering the general forms of the

cubic loss and cubic risk functions,

L3 (γi) = α0 + α1γi + α2γ
2
i + α3γ

3
i (5.3)

f3 (w) =
1

m

m−1∑
i=0

L3 (γi) . (5.4)

Thus, the embedding problem is to choose the optimal α ∈ R4 so that f3 (w) best approx-

imates f01 (w). To accomplish this we consider the `2-norm between 0-1 risk and cubic

risk,

α∗ = argmin

{∫
P (w) [f01 (w)− f3 (w)]2 dw

}
. (5.5)

132



Here, P (w) is the prior distribution of the weights. If we incorporate an `2-norm regularizer,

Ω2 (w), into our ultimate training objective, E (w), i.e.

Ω2 (w) =
λ2

2
w>w (5.6)

E (w) = f (w) + Ω2 (w) , (5.7)

then we are provided with a Gaussian prior on the weights [227] taking the form,

P (wi) =

√
λ2

2π
e−λ2w2

i /2. (5.8)

Immediately, we see that for the optimal solution α2 → 0 since 0-1 loss is an odd function

and the least squares residual is weighed over a symmetric function (the Gaussian prior).

Furthermore, we can ignore α0 and the constant factor of 1
2 in L01 (γi) as these constants

are irrelevant for the training problem. With this in mind, we expand the empirical risk

functions under the integral in the embedding problem as,

∫
P (w)

(
m−1∑
i=0

sign (γi)

2
+ α1γi + α3γ

3
i

)2

dw. (5.9)

Thus,

α∗ = argmin


m−1∑
i=0

m−1∑
j=0

∫
P (γ)Fij (γ) dγ

 (5.10)

where

Fij (γ) ≡ α1

2
[γisign (γj) + γjsign (γi)] +

α3

2

[
γ3
i sign (γj) + γ3

j sign (γi)
]

(5.11)

+ α2
1γiγj + α1α3

(
γ3
i γj + γ3

j γi
)

+ α2
3γ

3
i γ

3
j .

Without loss of generality, we may assume that P (γ) is a multinormal distribution

centered at zero with a covariance matrix,

Σ =
1

λ2

(
x>x

)
�
(
y y>

)
(5.12)
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where � implies element-wise matrix multiplication (i.e. the Hadamard product). The

multinormal distribution occurs because the margins arise as the result of the training

examples being projected by classifiers drawn from the prior distribution given by P (w).

Since each weight is normally distributed with zero mean and variance λ−2
2 in the prior,

the distribution of margins associated with training example i will be a Gaussian with zero

mean and variance,

σ2
i =

1

n

n−1∑
j=0

(
xij
λ2

)2

. (5.13)

Because each linear combination of the elements of the margin vector is also normally

distributed, we have a multinormal distribution. This is true regardless of the number of

features or any particular qualities of the training data.

Accordingly, if we wished to scale w to a range which contains w∗ with a likelihood

in the rth standard deviation of the prior then we should make w ∈
[
− r√

λ2m
, r√

λ2m

]n
.

However, making r too large would be problematic because this could allow the cubic term

to dominate the quadratic regularizer. This necessitates a cutoff on the maximum weight

value to ensure that unbounded cubic losses associated with large negative margins do not

overcome the regularizer. In practice, r would need to be selected as a hyperparameter.

Since the integrand has only two point correlation functions, we can integrate over the

marginal distribution of γi and γj which is a binormal distribution with covariance,

Σij =
1

λ2

 x>i xi yiyjx
>
i xj

yjyix
>
jxi x>jxj

 =

 σ2
i ρij σiσj

ρij σjσi σ2
j

 . (5.14)
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We can analytically evaluate the double integral,

α∗ = argmin


m−1∑
i=0

m−1∑
j=0

Iij

 (5.15)

Iij =

∫ ∞
−∞

∫ ∞
−∞

Pij (γ)Fij (γ) dγidγj (5.16)

=
ρij (σi + σj)√

2π︸ ︷︷ ︸
t0

α1 +
ρij

(
3− ρ2

ij

)(
σ3
i + σ3

j

)
√

2π︸ ︷︷ ︸
t1

α3

+ 3 ρijσiσj
(
σ2
i + σ2

j

)︸ ︷︷ ︸
t2

α1α3 + ρijσiσj︸ ︷︷ ︸
t3

α2
1 + 3 ρij

(
3 + 2ρ2

ij

)
σ3
i σ

3
j︸ ︷︷ ︸

t4

α2
3

= t0α1 + t1α3 + t2α1α3 + t3α
2
1 + t4α

2
3

With the integral in closed form, we obtain the argmin using simple algebra by solving,

∇

m−1∑
i=0

m−1∑
j=0

Iij

 = 0. (5.17)

The analytical coefficients for a single set of training examples are,

α∗1 =
2 t0t4 − t1t2
t22 − 4 t3t4

α∗3 =
2 t1t3 − t0t2
t22 − 4 t3t4

. (5.18)

Thus, for the full training set we must sum together the t values from each set of (i, j)

before plugging values into the expression for α1 and α3. We note that the computation

required to obtain these coefficients is O
(
m2
)
. Figure 5.1 shows several cubic loss function

fits associated with various real data sets from the UCI Machine Learning Repository.

The coefficients above are analytic and optimal for embedding 0-1 risk. However, it is

instructive to explain what would happen if we had chosen to fit the loss function instead

of the objective function. This would have produced a far simpler embedding problem1,

α? = argmin

{∫ ∞
−∞

P ? (γ) [L01 (γ)− L3 (γ)]2 dγ

}
(5.19)

1Note the difference between α? and α∗.
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Figure 5.1: Cubic loss fits for a variety of real data sets. Due to the different properties of
their correlation matrices each set is associated with unique cubic loss coefficients.

where

P ? (γ) ≡ 1

σ
√

2π
e−γ

2/2σ2
, σ2 =

1

λ2m
tr
[
x>x

]
. (5.20)

This time the integral is trivial to evaluate,

I? =

∫ ∞
−∞

G? (γ, ) [L01 (γ)− L3 (γ)]2 dγ (5.21)

=

√
2

π
σα1 + σ2α2

1 + 2

√
2

π
σ3α3

+ 6σ4α1α3 + 15σ6α2
3.

As before, convexity guarantees that ∇I will have exactly one real root which we find

analytically,

α?1 = − 3

2
√

2πσ
α?3 =

1

6
√

2πσ3
. (5.22)

These result seems much simpler than when we embed the entire risk function but they are

obviously less useful. However, if we make the assumption that σi = σj = σ then, α?1 = α∗1

and α?3 = α∗3.
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Figure 5.2: Performance of cubic loss on synthetic data sets with 104 examples, 9 features
and a bit depth of 2. We exactly enumerate all fixed bit depth classifiers and evaluate
the empirical risk under various loss functions. Error bars are obtained by repeating the
experiment on fifty data sets. The upper left plot shows the error in the lowest objective
state and the upper right plot shows the error in the best state of the lowest fifty. The
lower left plot shows mean position of the global minima in the eigenspectra of the various
objective functions. The lower right plot shows the probability of the global minima being
in the first fifty states. As we can see, the global minima remains very near the bottom of
the eigenspectra for cubic loss, regardless of label noise.
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In Figure 5.2 we study the performance of our embedded loss function by exactly

enumerating the solution space produced by small synthetic data sets. These data sets were

produced by randomly generating classifiers with weights drawn from a normal distribution

and then using that classifier to label feature vectors with features drawn from a uniform

distribution. Symmetric label errors are then manually injected at random. A maximum

weight cutoff is imposed at the second standard deviation of the weight prior. Further

numerical analysis of cubic loss on synthetic data sets is included in the Appendix.

While the cubic loss embedding is somewhat noisy in the sense that it does not perfectly

approximate 0-1 loss, it is clearly robust in the sense that test error does not depend strongly

on label error for up to 45% label noise. This remains true whether we consider the best fifty

states embedded in cubic loss or only the absolute ground state. These results indicate that

cubic loss has an advantage over convex methods when data is known to contain substantial

label noise.

5.3 Sixth-order loss

One potentially unattractive feature of the cubic loss function is that it is necessary to

fix the scale of the weights as a hyperparameter. Since we intend to encode our objective

function as QUBO for quantum annealing, we will need to choose a maximum weight. While

one can prove that the optimal classifier will have weights in the interval
[
− 1√

λ2
, 1√

λ2

]
, such

a large range is potentially problematic for regularized cubic risk as the loss associated with

large negative margins tends towards negative infinity faster than the `2 regularizer can

penalize the large weights which would produce such margins.

Alternatively, one might consider using a polynomial loss function of even degree as

such loss functions will not diverge to negative infinity for large negative margins. In order
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to do this, we must fix the highest order term in the loss function as a hyperparameter.

This is because 0-1 loss is an odd function so if we attempt to embed 0-1 risk in an even

degree polynomial, the even terms will vanish. Accordingly, we turn our attention to the

sixth-order loss and empirical risk functions,

L6 (γi) ≡ ωγ6
i +

5∑
k=1

βkγ
k
i (5.23)

f6 (w) ≡ 1

m

m−1∑
i=0

L3 (γi) . (5.24)
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Figure 5.3: The sixth-order loss function at various values of the fixed sixth-order coefficient,
ω. This coefficient is taken to be a hyperparameter.

Here, ω is taken to be a hyperparameter. We will solve for the values of β. In the

case of the cubic loss function, we used the weight prior imposed by `2-norm regularization

and data set covariance to derive a margin prior which was used for embedding. However,

this is unnecessary for the sixth-order loss function as ω provides a very simple prior on the

margins,

P (γ) =
ω1/6

2 Γ (7/6)
e−ωγ

6
(5.25)
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where Γ is the standard gamma function. With this definition, the embedding problem

becomes

β∗ = argmin

{∫
P (γ) [L01 (γ)− L6 (γ)]2 dγ

}
. (5.26)

Whereas we chose α for cubic loss by fitting the empirical risk function, we choose β

for sixth-order loss by fitting the loss function directly. Since the sixth-order loss function is

already parameterized in terms of a hyperparameter, there is nothing to gain by devising a

more elaborate fit based on empirical risk. After evaluating I6, the integral in Eq. 5.26, we

can obtain β∗ by solving, ∇I6 = 0. The optimal values of β are included in the Appendix.

Figure 5.3 shows the sixth-order loss function for various values of ω.

Figure 5.4 shows the performance of the sixth-order loss function on selected data sets

from the UCI Machine Learning Repository. To stand-in for a quantum annealer, we op-

timized the sixth-order objective function using a simulated annealing routine which was

run for over one hundred thousand CPU hours. In addition to standard convex methods,

we compare to 0-1 loss optimized using the same simulated annealing code run with the

same number of restarts and variable updates as were used to optimize sixth-order loss.

We also include the “q-loss” results from [86] which were obtained for that work using an-

other metaheuristic algorithm (Tabu search). Details regarding the 10-fold cross validation

procedure are reported in the Appendix.

We find that for all real data sets, the sixth-order loss function outperforms all tested

convex loss functions and performs similarly to the non-convex methods. The first two data

sets shown in Figure 5.4 are synthetic sets designed to break convex loss functions devised by

Long and Servedio [184] and Mease and Wyner [196]. The sixth-order loss performs poorly

on the Long-Servedio set because the data set is designed so that the optimal solution has

only extremely large margins and extremely small margins. The large margins dominate
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Figure 5.4: Test error versus label noise for 7 methods on 2 synthetic data sets (Long-
Servedio and Mease-Wyner) and 4 real data sets from the UCI repository. Error bars are
obtained from 10-fold cross-validation with the hyperparameters recorded in the Appendix.
As a stand-in for quantum annealing, a classical simulated annealing routine was used to
optimize the sixth-order objective function and the 0-1 objective function. For each training
cut at each selection of hyperparameters, we kept 50 classifiers having the lowest objective
values of all states encountered. We computed validation error as the lowest of validation
error produced by these 50 classifiers. This procedure is used for both 0-1 loss and sixth-
order loss. Test error was obtained using the classifier of lowest validation error. This
strategy is realistic as we expect that a quantum annealer will sample the lowest energy
states as opposed to giving us only the global minima. q-loss was optimized using Tabu
search in [86]. We see that sixth-order loss outperforms the convex methods on every data
set except for Long-Servedio and performs similarly to other non-convex methods on the
other five sets.
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the risk minimization due to the steep walls of the sixth-order function and this forces all

of the smaller margins very near zero where the sixth-order function is almost linear. We

believe that the particular pathological behavior which leads to the poor performance of

sixth-order loss on the Long-Servedio set is unlikely to occur in real data.

Figure 5.4 shows that the sixth-order loss function outperforms even the other non-

convex methods on three of the four real data sets. However, we attribute the suboptimal

q-loss and 0-1 loss results to a failure of the selected optimization routines rather than to a

deficiency of the actual training objectives. One reason this seems likely is because sixth-

order loss outperforms the other non-convex functions most significantly on web8 (the real

data set with the greatest number of features) but losses to q-loss and 0-1 loss on covertype

(the real data set with the fewest number of features). A comprehensive summary of the

data sets is included in the Appendix. While non-convex, the sixth-order loss objective

appears to be somewhat easier to optimize as a consequence of being significantly smoother

than either the 0-1 loss or q-loss objective.

5.4 Explicit tensor construction

In this section we show how to represent any regularized risk objective using a poly-

nomial loss function as PUBO. We first introduce a fixed bit-depth approximation. More

substantially, we represent variables using a fixed-point representation as floating-point rep-

resentations require a non-polynomial function of the bits. Using d bits per feature, our

encoding will require a total of N = nd bits. The binary state vector q ∈ BN encodes the

weight vector w,

w[i] ≡ ζq[id]− ζ
d−1∑
j=1

(
1

2

)j
q[id+ j] (5.27)
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where ζ ∈ R determines the weight scale so that w ∈ (−ζ, ζ]n. Furthermore, we define a

binary coefficient matrix, k ∈ Rn×N ,

k ≡ In×n ⊗
〈
ζ,−ζ

2
,−ζ

4
, . . . ,

ζ

21−d

〉
(5.28)

where In×n⊗ indicates a Kronecker product by an n× n identity matrix. This “tiles” the

binary weight sequence into a stair-step pattern down the diagonal; e.g. if n = 3, d = 2 and

ζ = 1,

k =


1 −1

2 0 0 0 0

0 0 1 −1
2 0 0

0 0 0 0 1 −1
2

 . (5.29)

We do this because later on, it will be useful to think of w as a linear mapping of q

given as w = kq. In general, any PUBO of degree k can be expressed as,

E (q) = v>q⊗k (5.30)

where v ∈ RNk
is a k-fold tensor and q⊗k represents the kth tensor power of q. We now

show how to obtain this embedding for a cubic loss function but do so in a way that is

trivially extended to orders less than or greater than cubic. In terms of continuous weights

the empirical risk objective may be expressed as,

f (w) =
1

m

m−1∑
i=0

α1yix
>
i w + α2

(
x>i w

)2
+ α3

(
yix
>
i w
)3

(5.31)

=

(
α1

m

m−1∑
i=0

yix
>
i

)
︸ ︷︷ ︸

ϕ>1

w +

(
α2

m

m−1∑
i=0

(
x⊗2
i

)>)
︸ ︷︷ ︸

ϕ>2

w⊗2 +

(
α3

m

m−1∑
i=0

(
yix
⊗3
i

)>)
︸ ︷︷ ︸

ϕ>3

w⊗3 =
3∑
j=1

ϕ>j w
⊗j

where

ϕj =
αj
m

m−1∑
i=0

(yixi)
⊗j . (5.32)
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Using tensor notation, `2-norm regularization is

Ω2 (w) =
λ2

2

(
1n

2
)>
w⊗2, (5.33)

where 1n
2

denotes a vector of all ones with length n2. We now use k to expand the binary

variable tensor,

E (q) = f (w) + Ω2 (w) =
λ2

2

(
1n

2
)>

(kq)⊗2 +
3∑
j=1

ϕ>j (kq)⊗j . (5.34)

This expression implies the form of v,

v =
λ2

2
1n

2⊗ k⊗2 +
3∑
j=1

ϕj ⊗ k⊗j . (5.35)

We slightly abuse notation in our definition of v by “adding” together tensors of different

rank. To accomplish this the tensor of lower rank should be placed in a tensor having the

same rank as the larger tensor by setting additional tensor indices equal to a lower tensor

index. For instance, the element corresponding to (i, j) in a tensor of rank two could be

placed in a tensor of rank three at (i, j, i) or (i, j, j). We note that it is necessary to first

convert to binary and then combine the three terms; doing things the other way would

introduce complications due to the fact that wri 6= wi ∀i, r whereas qri = qi ∀i, r. Finally, we

note that constructing ϕ>3 ⊗ k⊗3 is the most computationally expensive part of this entire

procedure taking O
(
n3d3m

)
time.

This 3-fold tensor can be reduced to a QUBO matrix using ancillae. The optimal

reduction is trivial using the tools developed in [16]. In Appendix B of that paper, it shown

that the number of ancillae which are required to collapse a fully connected cubic to 2-local

is upper bounded by N2

4 . Again, the general bound for the quadratization of a PUBO of

degree k is O
(
N2 log k

)
[49]. This bound suggests that unlike prior encodings, the number

of ancillae required is entirely independent of the number of training examples. We point
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out that the tensor form of this problem may be evaluated in a time that does not depend

on the number of training examples.

5.5 Conclusion

We have introduced two unusual loss functions: the cubic loss function and the sixth-

order loss function. Both losses are non-convex and show clear evidence of robustness

to label noise. While superior to classically tractable convex training methods, both loss

functions are highly parameterized and represent less than perfect approximations to 0-1

loss. Prima facie, this suggests that more popular non-convex loss functions, e.g. sigmoid

loss, may be more reliable (or at least more straightforward) in some respects.

However, training under non-convex loss is formally NP-Hard and in order to obtain

satisfactory solutions to such optimization problems, heuristic algorithms must query the

objective function many times. Often, the quality of the eventual solution depends on

the number of queries the heuristic is allowed. The fact that the polynomial loss func-

tions may be compiled so that each query to the objective is independent of the number of

training examples suggests that these loss functions may be more compatible with heuris-

tic optimization routines. This same property ensures that these loss functions can be

compiled to a Hamiltonian suitable for quantum annealing using a reasonable number of

qubits (estimates of resources requirements for various example problems are included in

the Appendix). This efficient embedding in quantum hardware makes binary classification

under non-convex polynomial loss a promising target problem to accelerate using a quantum

annealing machine.

145



5.6 Appendix

5.6.1 `0-norm regularization

While `0 programming is well known to be NP-Hard, we believe that quantum annealing

may allow us to obtain satisfactory minima in many instances. `0-norm regularization is

often used to train classifiers that are particularly efficient in terms of the number of features

required for classification. For the situation in which we would like to train a classifier with

binary weights, the regularization function is trivial,

Ω0 (q) = λ0

n−1∑
i=0

qi. (5.36)

For multiple bit depth weights, `0-norm regularization will require a modest number of

ancilla qubits (one for each feature). Using our notation, the regularizer is

Ω0 (q) =
n−1∑
j=0

(
λ0 q[N + j] + φ (1− q[N + j])

d−1∑
k=0

q[jd+ k]

)
. (5.37)

Minimizing Ω (q) causes the ancillae q[N+j] to act as indicator bits, each of which is 1 if and

only if wj 6= 0 and is 0 otherwise. This is achieved by summing the binary variables that take

part in a weight variable. Correctness comes from the fact that the binary representation

of wj = 0 is when all bits corresponding to that weight are 0. Thus, if even a single bit

from weight wi is on, the objective will either incur a penalty of φ or will set the ancilla

to 0 so as to obtain a penalty of λ0 instead. Thus, as long as φ is sufficiently larger than

λ0, this function enforces `0-norm regularization with weight of λ0. This regularizer may

be combined with the empirical risk function described previously.
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5.6.2 Sixth-order loss coefficients
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5.6.3 Convergence of cubic loss function

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 s

qu
ar

e 
em

pi
ric

al
 ri

sk

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 lo

gi
st

ic
 e

m
pi

ric
al

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 h

in
ge

 e
m

pi
ric

al
 ri

sk

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 c

ub
ic

 e
m

pi
ric

al
 ri

sk

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 q

-lo
ss

 e
m

pi
ric

al
 ri

sk

0.0 0.2 0.4 0.6 0.8 1.0
Normalized 0-1 empirical risk

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 t-

lo
gi

st
ic

 e
m

pi
ric

al
 ri

sk

Figure 5.5: Correlations between the total empirical risk of 104 randomly selected states
using various loss functions over 104 training examples from the adult9 data set. The
empirical risk values of each state have been uniformly shifted and rescaled to be in between
0 and 1. As we can see, the correlations between the convex loss functions and 0-1 loss are
strictly worse than the correlation between cubic loss and 0-1 loss.
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Figure 5.6: The upper-left plot is made by fitting the cubic loss function and evaluating the
resultant embedding error on adult9 using a variable number of training examples. Here,
the error is the standard deviation of the energy landscapes defined by the limited number
of training examples. At each point, 104 states are sampled at random to evaluate the error.
We also show the error in only the lowest 50 of these states to give an indication of the rate
at which the low energy subspace is converging. On the upper-right, is a log plot of the same
data indicating that embedding appears to converge as roughly O

(
m−1/3

)
. The remaining

plots show correlations between the total empirical risk of the 104 randomly selected states
using 0-1 loss and the total empirical risk on those states using cubic loss. These four plots
were obtained by fitting the cubic loss function to the adult9 data set using: 10 training
examples, 100 training examples, 1,000 training examples and 10,000 training examples.
The error in these embeddings are 0.107, 0.0818, 0.062 and 0.055, respectively.
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5.6.4 Estimated qubit requirements

Table 5.1: Upper-bounds on qubit requirements for selected problems

Loss function degree #Features Bit-depth #Qubits

cubic 100 1 2,550
cubic 100 4 40,200
cubic 500 1 62,750
cubic 500 4 1,001,000
cubic 2,500 1 1,563,750
cubic 2,500 4 25,005,000

5.6.5 Data summary

Table 5.2: Data summary

Name Dims #Examples Density (%) Baseline error (%)

Long-Servedio 21 2000 100.00 50.00
Mease-Wyner 20 2000 100.00 49.80

covertype 54 581012 22.20 36.46
mushrooms 112 8124 18.75 48.20

adult9 123 48842 11.30 23.93
web8 300 59245 4.20 2.92

5.6.6 Hyperparameters

Table 5.3: ω values for sixth-order loss picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0.000001 0.000001 0.000001 0.000001 0.000632
Mease-Wyner 0.398965 0.000126 0.000126 0.000025 0.000005

covertype 2.000000 2.000000 0.398965 2.000000 0.000025
mushrooms 2.000000 2.000000 2.000000 0.000632 0.000005

adult9 0.000001 2.000000 0.000025 0.079583 2.000000
web8 0.000632 0.000126 0.398965 0.398965 2.000000
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Table 5.4: values of λ and ω offered to cross-validation

λ and ω

2.000000
0.398965
0.079583
0.015875
0.003167
0.000632
0.000126
0.000025
0.000005
0.000001

Table 5.5: q values for q-loss picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0 -0.39 -0.24 -0.71 -0.55
Mease-Wyner 0 -2.96 -1.62 -1.36 0

covertype -0.63 -0.54 -0.38 -0.5 -0.51
mushrooms 0 -0.76 -0.47 -0.17 -0.13

adult9 -0.86 -0.53 -0.43 -0.53 -0.07
web8 -0.99 -0.46 -0.41 -0.19 0
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Table 5.6: C values for liblinear picked by cross-validation

Data set name
Label noise (%)

0 10 20 30 40

Long-Servedio 0.499978 2.506486 0.499978 0.499978 0.499978
Mease-Wyner 40000.00 0.499978 315.7562 12.565498 62.99213

covertype 0.499978 2.506486 62.99213 1000000.0 12.56541
mushrooms 2.506486 12.56541 0.499978 0.499978 0.499978

adult9 0.499978 62.992126 0.499978 0.499978 0.499978
web8 315.7562 0.499978 12.56541 12.56541 0.499978

Table 5.7: λ values picked by cross-validation for 0% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 0.003167 0.079583 0.015875 0.015875 0.000001
Mease-Wyner 0.000001 0.000025 0.000001 0.000126 2.000000

covertype 0.000025 0.000025 0.000001 0.000025 0.000632
mushrooms 0.000001 0.000025 0.000632 0.000025 0.398965

adult9 0.000001 0.000632 0.000126 0.003167 0.015875
web8 0.000001 0.000005 0.000001 0.000632 0.015875

Table 5.8: λ values picked by cross-validation for 10% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 0.000005 2.000000 0.003167 0.015875 0.000001
Mease-Wyner 0.000005 0.000632 0.000005 0.000126 0.398965

covertype 0.000025 0.000632 0.000126 0.000001 0.000001
mushrooms 0.000005 0.000001 0.000005 0.003167 0.398965

adult9 0.000632 0.003167 0.000126 0.015875 0.000632
web8 0.000005 0.000126 0.000005 0.000632 0.015875
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Table 5.9: λ values picked by cross-validation for 20% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.000126 0.000001
Mease-Wyner 0.000025 0.000005 0.000126 0.000126 0.079583

covertype 0.000001 0.000126 0.000126 0.000001 0.000025
mushrooms 0.000126 0.000632 0.000025 0.003167 0.398965

adult9 0.079583 0.079583 0.003167 0.015875 2.000000
web8 0.000001 0.000001 0.000126 0.000632 0.015875

Table 5.10: λ values picked by cross-validation for 30% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.003167 0.000001
Mease-Wyner 0.000005 0.000001 0.000005 0.000126 0.000632

covertype 0.000001 0.000126 0.000025 0.000025 0.398965
mushrooms 0.000632 0.003167 0.000632 0.003167 0.079583

adult9 2.000000 0.003167 2.000000 0.003167 0.000632
web8 0.000126 0.000001 0.000126 0.000632 0.000005

Table 5.11: λ values picked by cross-validation for 40% label noise

Data set name
Method

logistic square smooth hinge q-loss sixth-order

Long-Servedio 2.000000 2.000000 2.000000 0.003167 0.000632
Mease-Wyner 0.000001 0.000005 0.000025 0.000126 0.000632

covertype 0.000001 0.000001 0.000001 0.000001 0.079583
mushrooms 0.000126 0.000632 0.003167 0.003167 0.003167

adult9 0.000126 0.000126 0.079583 0.000025 0.000025
web8 0.015875 0.079583 0.000632 0.000632 0.000001
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Part II

Adiabatic Quantum Computation
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Chapter 6

Realizable Perturbative Gadgets for Encoding

Quantum Problems

Apart from minor modifications, this chapter originally appeared as [63]:

“Hamiltonian Gadgets with Reduced Resource Requirements”. Yudong Cao, Ryan Bab-
bush, Jacob Biamonte, and Sabre Kais. Physical Review A. Volume 91, Number 1: 012315.
2015.

Abstract

Application of the adiabatic model of quantum computation requires efficient encoding

of the solution to computational problems into the lowest eigenstate of a Hamiltonian that

supports universal adiabatic quantum computation. Experimental systems are typically

limited to restricted forms of 2-body interactions. Therefore, universal adiabatic quantum

computation requires a method for approximating quantum many-body Hamiltonians up to

arbitrary spectral error using at most 2-body interactions. Hamiltonian gadgets, introduced

around a decade ago, offer the only current means to address this requirement. Although

the applications of Hamiltonian gadgets have steadily grown since their introduction, lit-

tle progress has been made in overcoming the limitations of the gadgets themselves. In

this experimentally motivated theoretical study, we introduce several gadgets which require

significantly more realistic control parameters than similar gadgets in the literature. We

employ analytical techniques which result in a reduction of the resource scaling as a func-
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tion of spectral error for the commonly used subdivision, 3- to 2-body and k-body gadgets.

Accordingly, our improvements reduce the resource requirements of all proofs and exper-

imental proposals making use of these common gadgets. Next, we numerically optimize

these new gadgets to illustrate the tightness of our analytical bounds. Finally, we introduce

a new gadget that simulates a Y Y interaction term using Hamiltonians containing only

{X,Z,XX,ZZ} terms. Apart from possible implications in a theoretical context, this work

could also be useful for a first experimental implementation of these key building blocks by

requiring less control precision without introducing extra ancillary qubits.

6.1 Introduction

Although adiabatic quantum computation is known to be a universal model of quan-

tum computation [3, 200, 216, 38] and hence, in principle equivalent to the circuit model,

the mappings between an adiabatic process and an arbitrary quantum circuit require sig-

nificant overhead. Currently the approaches to universal adiabatic quantum computation

require implementing multiple higher order and non-commuting interactions by means of

perturbative gadgets [38]. Such gadgets arose in early work on quantum complexity theory

and the resources required for their implementation are the subject of this study.

Early work by Kitaev et al. [169] established that an otherwise arbitrary Hamiltonian

restricted to have at most 5-body interactions has a ground state energy problem which

is complete for the quantum analog of the complexity class NP (QMA-complete). Re-

ducing the locality of the Hamiltonians from 5-body down to 2-body remained an open

problem for a number of years. In their 2004 proof that 2-local Hamiltonian is QMA-

Complete, Kempe, Kitaev and Regev formalized the idea of a perturbative gadget, which

finally accomplished this task [165]. Oliveira and Terhal further reduced the problem, show-
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ing completeness when otherwise arbitrary 2-body Hamiltonians were restricted to act on

a square lattice [216]. The form of the simplest QMA-complete Hamiltonian is reduced

to physically relevant models in [38] (see also [82]), e.g.

H =
∑
i

hiZi +
∑
i<j

JijZiZj +
∑
i<j

KijXiXj . (6.1)

Although this model contains only physically accessible terms, programming problems

into a universal adiabatic quantum computer [38] involves several types of k-body inter-

actions (for bounded k). Reduction from k-body interactions to 2-body interactions is

accomplished through the application of gadgets. Hamiltonian gadgets were introduced as

theorem-proving tools in the context of quantum complexity theory yet their experimen-

tal realization currently offers the only currently known path towards universal adiabatic

quantum computation. In terms of experimental constraints, an important parameter in

the construction of these gadgets is a large spectral gap introduced into the ancilla space

as part of a penalty Hamiltonian. This large spectral gap often requires control precision

well beyond current experimental capabilities and must be improved for practical physical

realizations.

A perturbative gadget consists of an ancilla system acted on by Hamiltonian H, charac-

terized by the spectral gap ∆ between its ground state subspace and excited state subspace,

and a perturbation V which acts on both the ancilla and the system. V perturbs the ground

state subspace of H such that the perturbed low-lying spectrum of the gadget Hamiltonian

H̃ = H + V captures the spectrum of the target Hamiltonian, Htarg, up to error ε. The

purpose of a gadget depends on the form of the target Hamiltonian Htarg and available

experimental resources. For example, if the target Hamiltonian is k-local with k ≥ 3 while

the gadget Hamiltonian is 2-local, the gadget serves as a tool for reducing locality. Also if

the target Hamiltonian involves interactions that are hard to implement experimentally and
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the gadget Hamiltonian contains only interactions that are physically accessible, the gadget

becomes a generator of physically inaccesible terms from accessible ones. For example the

gadget which we introduce in Sec. 6.7 might fall into this category.

Apart from the physical relevance to quantum computation, gadgets have been cen-

tral to many results in quantum complexity theory [54, 38, 55, 82]. Hamiltonian gadgets

were also used to characterize the complexity of density functional theory [242] and are

required components in current proposals related to error correction on an adiabatic quan-

tum computer [113]. Since these works employ known gadgets which we provide improved

constructions of here, our results hence imply a reduction of the resources required in these

past works.

The first use of perturbative gadgets [165] relied on a 2-body gadget Hamiltonian to

simulate a 3-body Hamiltonian of the form Htarg = Helse +α ·A⊗B⊗C with three auxiliary

spins in the ancilla space. Here Helse is an arbitrary Hamiltonian that does not operate

on the auxiliary spins. Further, A, B and C are unit-norm operators and α is the desired

coupling. For such a system, it is shown that it suffices to construct V with ‖V ‖ < ∆/2

to guarantee that the perturbative self-energy expansion approximates Htarg up to error

ε [216, 165, 54]. The gadget Hamiltonian is constructed such that in the perturbative

expansion (with respect to the low energy subspace) only virtual excitations that flip all 3

ancilla bits would have non-trivial contributions in the 1st through 3rd order terms.

In [157] Jordan and Farhi generalized the construction in [165] to a general k-body

to 2-body reduction. They showed that one can approximate the low-energy subspace

of a Hamiltonian containing r distinct k-local terms using a 2-local Hamiltonian. Two

important gadgets were introduced by Oliveira and Terhal [216] in their proof that 2-local

Hamiltonian on square lattice is QMA-Complete. In particular, they introduced an
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alternative 3- to 2-body gadget which uses only one additional spin for each 3-body term as

well as a “subdivision gadget” that reduces a k-body term to a (dk/2e+1)-body term using

only one additional spin [216]. These gadgets, which we improve in this work, find their

use as the de facto standard whenever the use of gadgets is necessitated. For instance, the

gadgets from [216] were used by Bravyi, DiVincenzo, Loss and Terhal [54] to show that one

can combine the use of subdivision and 3- to 2-body gadgets to recursively reduce a k-body

Hamiltonian to 2-body, which is useful for simulating quantum many-body Hamiltonians.

While recent progress in the experimental implementation of adiabatic quantum pro-

cessors [43] suggests the ability to perform sophisticated adiabatic quantum computing

experiments, the perturbative gadgets require very large values of ∆. This places high

demands on experimental control precision by requiring that devices enforce very large cou-

plings between ancilla qubits while still being able to resolve couplings from the original

problem even though those fields may be orders of magnitude smaller than ∆. Accordingly,

if perturbative gadgets are to be used, it is necessary to find gadgets which can efficiently

approximate their target Hamiltonians with significantly lower values of ∆.

6.1.1 Chapter structure and result summary

Previous works in the literature [165, 216, 55, 38, 54] choose ∆ to be a polynomial

function of ε−1 which is sufficient for yielding a spectral error O(ε) between the gadget

and the target Hamiltonian. Experimental realizations however, will require a recipe for

assigning the minimum ∆ that guarantees error within specified ε, which we consider here.

This recipe will need to depend on three parameters: (i) the desired coupling, α; (ii) the

magnitude of the non-problematic part of the Hamiltonian, ‖Helse‖; and (iii) the specified

error tolerance, ε. For simulating a target Hamiltonian up to error ε, previous constructions

159



[216, 55, 54] use ∆ = Θ(ε−2) for the subdivision gadget and ∆ = Θ(ε−3) for the 3- to 2-body

gadget. We will provide analytical results and numerics which indicate that ∆ = Θ(ε−1)

is sufficient for the subdivision gadget (Sec. 6.3 and 6.4) and ∆ = Θ(ε−2) for the 3- to

2-body gadget (Sec. 6.5 and Appendix 6.8.1), showing that the physical resources required

to realize the gadgets are less than previously assumed elsewhere in the literature.

In our derivation of the ∆ scalings, we use an analytical approach that involves bound-

ing the infinite series in the perturbative expansion. For the 3- to 2-body reduction, in

Appendix 6.8.1 we show that complications arise when there are multiple 3-body terms

in the target Hamiltonian that are to be reduced concurrently and bounding the infinite

series in the multiple-bit perturbative expansion requires separate treatments of odd and

even order terms. Furthermore, in the case where ∆ = Θ(ε−2) is used, additional terms

which are dependent on the commutation relationship among the 3-body target terms are

added to the gadget in order to compensate for the perturbative error due to cross-gadget

contributions (Appendix 6.8.2).

The next result of this paper, described in Sec. 6.6, is a 3- to 2-body gadget construction

that uses a 2-body Ising Hamiltonian with a local transverse field. This allows for the

use existing flux-qubit hardware to simulate Htarg = Helse + αZiZjZk where Helse is not

necessarily diagonal. One drawback of this construction is that it requires ∆ = Θ(ε−5),

rendering it challenging to realize in practice. For cases where the target Hamiltonian is

diagonal, there are non-perturbative gadgets [36, 16] that can reduce a k-body Hamiltonian

to 2-body. In this work, however, we focus on perturbative gadgets.

The final result of this paper in Sec. 6.7 is to propose a gadget which is capable of

reducing arbitrary real-valued Hamiltonians to a Hamiltonian with only XX and ZZ cou-

plings. In order to accomplish this, we go to fourth-order in perturbation theory to find
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an XXZZ Hamiltonian which serves as an effective Hamiltonian dominated by YY coupling

terms. Because YY terms are especially difficult to realize in some experimental architec-

tures, this result is useful for those wishing to encode arbitrary QMA-Hard problems on

existing hardware. This gadget opens the door to solving electronic structure problems on

an adiabatic quantum computer.

To achieve both fast readability and completeness in presentation, each section from

Sec. 6.3 to Sec. 6.7 consists of a Summary subsection and an Analysis subsection. The

former is mainly intended to provide a high-level synopsis of the main results in the cor-

responding section. Readers could only refer to the Summary sections on their own for

an introduction to the results of the paper. The Analysis subsections contain detailed

derivations of the results in the Summary.

6.2 Perturbation theory

In our notation the spin-1/2 Pauli operators will be represented as {X,Y, Z} with

subscript indicating which spin-1/2 particle (qubit) it acts on. For example X2 is a Pauli

operator X = |0〉〈1| + |1〉〈0| acting on the qubit represented by tensor factor 2. In the

literature there are different formulations of the perturbation theory that are used when

constructing and analyzing perturbative gadgets. This adds to the challenge of comparing

the physical resources required among the various proposed constructions. For example,

Jordan and Farhi [157] use a formulation due to Bloch, while Bravyi et al. use a formulation

based on the Schrieffer-Wolff transformation [54]. Here we employ the formulation used in

[165, 216]. For a review on various formulations of perturbation theory, refer to [53].

A gadget Hamiltonian H̃ = H +V consists of a penalty Hamiltonian H, which applies

an energy gap onto an ancilla space, and a perturbation V . To explain in further detail how
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the low-lying sector of the gadget Hamiltonian H̃ approximates the entire spectrum of a

certain target Hamiltonian Htarg with error ε, we set up the following notations: let λj and

|ψj〉 be the jth eigenvalue and eigenvector of H and similarly define λ̃j and |ψ̃j〉 as those of

H̃, assuming all the eigenvalues are labelled in a weakly increasing order (λ1 ≤ λ2 ≤ · · · ,

same for λ̃j). Using a cutoff value λ∗, let L− = span{|ψj〉|∀j : λj ≤ λ∗} be the low energy

subspace and L+ = span{|ψj〉|∀j : λj > λ∗} be the high energy subspace. Let Π− and Π+

be the orthogonal projectors onto the subspaces L− and L+ respectively. For an operator

O we define the partitions of O into the subspaces as O− = Π−OΠ−, O+ = Π+OΠ+,

O−+ = Π−OΠ+ and O+− = Π+OΠ−.

With the definitions above, one can turn to perturbation theory to approximate H̃−

using H and V . We now consider the operator-valued resolvent G̃(z) = (zI − H̃)−1. Simi-

larly one would define G(z) = (zI −H)−1. Note that G̃−1(z)−G−1(z) = −V so that this

allows an expansion in powers of V as

G̃ = (G−1 − V )−1 = G(I − V G)−1 = G+GV G+GV GV G+GV GV GV G+ · · · . (6.2)

It is then standard to define the self-energy Σ−(z) = zI − (G̃−(z))−1. The self-energy is

important because the spectrum of Σ−(z) gives an approximation to the spectrum of H̃−

since by definition H̃− = zI − Π−(G̃−1(z))Π− while Σ−(z) = zI − (Π−G̃(z)Π−)−1. As is

explained by Oliveira and Terhal [216], loosely speaking, if Σ−(z) is roughly constant in

some range of z (defined below in Theorem 6.2.1) then Σ−(z) is playing the role of H̃−.

This was formalized in [165] and improved in [216] where the following theorem is proven

(as in [216] we state the case where H has zero as its lowest eigenvalue and a spectral gap

of ∆). We use operator norm ‖ · ‖ which is defined as ‖M‖ ≡ max|ψ〉∈M |〈ψ|M |ψ〉| for an

operator M acting on a Hilbert space M:
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Theorem 6.2.1 (Gadget Theorem [165, 216]). Let ‖V ‖ ≤ ∆/2 where ∆ is the spectral gap

of H and let the low and high spectrum of H be separated by a cutoff λ∗ = ∆/2. Now let

there be an effective Hamiltonian Heff with a spectrum contained in [a, b]. If for some real

constant ε > 0 and ∀z ∈ [a − ε, b + ε] with a < b < ∆/2 − ε, the self-energy Σ−(z) has the

property that ‖Σ−(z)−Heff‖ ≤ ε, then each eigenvalue λ̃j of H̃− differs to the jth eigenvalue

of Heff, λj, by at most ε. In other words |λ̃j − λj | ≤ ε, ∀j.

To apply Theorem 6.2.1, a series expansion for Σ−(z) is truncated at low order for

which Heff is approximated. The 2-body terms in H and V by construction can give rise

to higher order terms in Heff. For this reason it is possible to engineer Heff from Σ−(z) to

approximate Htarg up to error ε in the range of z considered in Theorem 6.2.1 by introducing

auxiliary spins and a suitable selection of 2-body H and V . Using the series expansion of

G̃ in Eq. 6.2, the self-energy Σ−(z) = zI − G̃−1
− (z) can be expanded as (for further details

see [165]),

Σ−(z) = H− + V− + V−+G+(z)V+− + V−+G+(z)V+G+(z)V+− + · · · . (6.3)

The terms of 2nd order and higher in this expansion give rise to the effective many-body

interactions.
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(a)

(b)

Figure 6.1: Numerical illustration of gadget theorem using a subdivision gadget. Here we
use a subdivision gadget to approximate Htarg = Helse + αZ1Z2 with ‖Helse‖ = 0 and
α ∈ [−1, 1]. ε = 0.05. “analytical” stands for the case where the value of ∆ is calculated
using Eq. 6.12 when |α| = 1. “numerical” represents the case where ∆ takes the value
that yield the spectral error to be ε. In (a) we let α = 1. z ∈ [−max z,max z] with
max z = ‖Helse‖+ maxα+ ε. The operator Σ−(z) is computed up to the 3rd order. Subplot
(b) shows for every value of α in its range, the maximum difference between the eigenvalues
λ̃j in the low-lying spectrum of H̃ and the corresponding eigenvalues λj in the spectrum of
Htarg ⊗ |0〉〈0|w.
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6.3 Improved Oliveira and Terhal subdivision gadget

Summary. The subdivision gadget is introduced by Oliveira and Terhal [216] in their proof

that 2-local Hamiltonian on square lattice is QMA-Complete. Here we show an

improved lower bound for the spectral gap ∆ needed on the ancilla of the gadget.

A subdivision gadget simulates a many-body target HamiltonianHtarg = Helse+α·A⊗B

(Helse is a Hamiltonian of arbitrary norm, ‖A‖ = 1 and ‖B‖ = 1) by introducing an ancilla

spin w and applying onto it a penalty Hamiltonian H = ∆|1〉〈1|w so that its ground state

subspace L− = span{|0〉w} and its excited subspace L+ = span{|1〉w} are separated by

energy gap ∆. In addition to the penalty Hamiltonian H, we add a perturbation V of the

form

V = Helse + |α||0〉〈0|w +

√
|α|∆

2
(sgn(α)A−B)⊗Xw. (6.4)

Hence if the target term A ⊗ B is k-local, the gadget Hamiltonian H̃ = H + V is at most

(dk/2e + 1)-local, accomplishing the locality reduction. Assume Htarg acts on n qubits.

Prior work [216] shows that ∆ = Θ(ε−2) is a sufficient condition for the lowest 2n levels of

the gadget Hamiltonian H̃ to be ε-close to the corresponding spectrum of Htarg. However,

by bounding the infinite series of error terms in the perturbative expansion, we are able to

obtain a tighter lower bound for ∆ for error ε. Hence we arrive at our first result (details

will be presented later in this section), that it suffices to let

∆ ≥
(

2|α|
ε

+ 1

)
(2‖Helse‖+ |α|+ ε). (6.5)

In Fig. 6.2 we show numerics indicating the minimum ∆ required as a function of α and

ε. In Fig. 6.2a the numerical results and the analytical lower bound in Eq. 6.5 show that

for our subdivision gadgets, ∆ can scale as favorably as Θ(ε−1). For the subdivision gadget

presented in [216], ∆ scales as Θ(ε−2). Though much less than the original assignment in
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(a) (b)

Figure 6.2: Comparison between our subdivision gadget with that of Oliveira and Terhal
[216]. The data labelled as “numerical” represent the ∆ values obtained from the numerical
search such that the spectral error between Htarg and H̃− is ε. The data obtained from the
calculation using Eq. 6.5 are labelled as “analytical”. “[Oliveira2008]” refers to values of
∆ calculated according to the assignment by Oliveira and Terhal [216]. In this example we
consider Htarg = Helse + αZ1Z2. (a) Gap scaling with respect to ε−1. Here ‖Helse‖ = 0 and
α = 1. (b) The gap ∆ as a function of the desired coupling α. Here ‖Helse‖ = 0, ε = 0.05.

[216], the lower bound of ∆ in Eq. 6.5, still satisfies the condition of Theorem 6.2.1. In Fig.

6.2 we numerically find the minimum value of ∆ that yields spectral error of exactly ε.

Analysis. The currently known subdivision gadgets in the literature assume that the gap

in the penalty Hamiltonian ∆ scales as Θ(ε−2) (see for example [216, 54]). Here we employ

a method which uses infinite series to find the upper bound to the norm of the high order

terms in the perturbative expansion. We find that in fact ∆ = Θ(ε−1) is sufficient for the

error to be within ε. A variation of this idea will also be used to reduce the gap ∆ needed

in the 3- to 2-body gadget (see Sec. 6.5).

The key aspect of developing the gadget is that given H = ∆|1〉〈1|w, we need to
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determine a perturbation V to perturb the low energy subspace

L− = span{|ψ〉 ⊗ |0〉w, |ψ〉 is any state of the system excluding the ancilla spin w}

such that the low energy subspace of the gadget Hamiltonian H̃ = H + V approximates

the spectrum of the entire operator Htarg⊗ |0〉〈0|w up to error ε. Here we will define V and

work backwards to show that it satisfies Theorem 6.2.1. We let

V = Helse +
1

∆
(κ2A2 + λ2B2)⊗ |0〉〈0|w + (κA+ λB)⊗Xw (6.6)

where κ, λ are constants which will be determined such that the dominant contribution

to the perturbative expansion which approximates H̃− gives rise to the target Hamiltonian

Htarg = Helse + α · A ⊗ B. In Eq. 6.6 and the remainder of the section, by slight abuse of

notation, we use κA + λB to represent κ(A ⊗ IB) + λ(IA ⊗ B) for economy. Here IA and

IB are identity operators acting on the subspaces A and B respectively. The partitions of

V in the subspaces, as defined in Sec. 6.2 are

V+ = Helse ⊗ |1〉〈1|w, V− =

(
Helse +

1

∆
(κ2A2 + λ2B2)I

)
⊗ |0〉〈0|w,

V−+ = (κA+ λB)⊗ |0〉〈1|w, V+− = (κA+ λB)⊗ |1〉〈0|w.
(6.7)

We would like to approximate the target Hamiltonian Htarg and so expand the self-energy

in Eq. 6.3 up to 2nd order. Note that H− = 0 and G+(z) = (z − ∆)−1|1〉〈1|w. Therefore

the self energy Σ−(z) can be expanded as

Σ−(z) = V− +
1

z −∆
V−+V+− +

∞∑
k=1

V−+V
k

+V+−
(z −∆)k+1

(6.8)

=

(
Helse −

2κλ

∆
A⊗B

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+
z

∆(z −∆)
(κA+ λB)2 ⊗ |0〉〈0|w +

∞∑
k=1

V−+V
k

+V+−
(z −∆)k+1︸ ︷︷ ︸

error term

.

By selecting κ = sgn(α)(|α|∆/2)1/2 and λ = −(|α|∆/2)1/2, the leading order term in Σ−(z)

becomes Heff = Htarg ⊗ |0〉〈0|w. We must now show that the condition of Theorem 6.2.1 is
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satisfied i.e. for a small real number ε > 0, ‖Σ−(z) − Heff‖ ≤ ε,∀z ∈ [min z,max z] where

max z = ‖Helse‖+ |α|+ ε = −min z. Essentially this amounts to choosing a value of ∆ to

cause the error term in Eq. 6.8 to be ≤ ε. In order to derive a tighter lower bound for ∆,

we bound the norm of the error term in Eq. 6.8 by letting z 7→ max z and from the triangle

inequality for operator norms:∥∥∥∥ z

∆(z −∆)
(κA+ λB)2 ⊗ |0〉〈0|w

∥∥∥∥ ≤ max z

∆(∆−max z)
· 4κ2 =

2|α|max z

∆−max z
(6.9)

∥∥∥∥∥
∞∑
k=1

V−+V
k

+V+−
(z −∆)k+1

∥∥∥∥∥ ≤
∞∑
k=1

‖V−+‖ · ‖V+‖k · ‖V+−‖
(∆−max z)k+1

≤
∞∑
k=1

2|κ| · ‖Helse‖k · 2|κ|
(∆−max z)k+1

=
∞∑
k=1

2|α|∆‖Helse‖k
(∆−max z)k+1

.

Using Heff = Htarg ⊗ |0〉〈0|w, from (6.8) we see that

‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤
2|α|max z

∆−max z
+
∞∑
k=1

2|α|∆‖Helse‖k
(∆−max z)k+1 (6.10)

=
2|α|max z

∆−max z
+

2|α|∆
∆−max z

· ‖Helse‖
∆−max z − ‖Helse‖

. (6.11)

Here going from Eq. 6.10 to Eq. 6.11 we have assumed the convergence of the infinite series

in Eq. 6.10, which adds the reasonable constraint that ∆ > |α| + ε + 2‖Helse‖. To ensure

that ‖Σ−(z) −Htarg ⊗ |0〉〈0|w‖ ≤ ε it is sufficient to let expression Eq. 6.11 be ≤ ε, which

implies that

∆ ≥
(

2|α|
ε

+ 1

)
(|α|+ ε+ 2‖Helse‖) (6.12)

which is Θ(ε−1), a tighter bound than Θ(ε−2) in the literature [54, 165, 216]. This bound

is illustrated with a numerical example (Fig. 6.1). From the data labelled as “analytical”

in Fig. 6.1a we see that the error norm ‖Σ−(z) − Heff‖ is within ε for all z considered in

the range, which satisfies the condition of the theorem for the chosen example. In Fig.

6.1b, the data labelled “analytical” show that the spectral difference between H̃− and
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Heff = Htarg ⊗ |0〉〈0|w is indeed within ε as the theorem promises. Furthermore, note that

the condition of Theorem 6.2.1 is only sufficient, which justifies why in Fig. 6.1b for α values

at maxα and minα the spectral error is strictly below ε. This indicates that an even smaller

∆, although below the bound we found in Eq. 6.12 to satisfy the theorem, could still yield

the spectral error within ε for all α values in the range. The smallest value ∆ can take would

be one such that the spectral error is exactly ε when α is at its extrema. We numerically

find this ∆ (up to numerical error which is less than 10−5ε) and as demonstrated in Fig.

6.1b, the data labelled “numerical” shows that the spectral error is indeed ε at max(α) and

min(α), yet in Fig. 6.1a the data labelled “numerical” shows that for some z in the range

the condition of the Theorem 6.2.1, ‖Σ−(z) − Htarg ⊗ |0〉〈0|w‖ ≤ ε, no longer holds. In

Fig. 6.1 we assume that ε is kept constant. In Fig. 6.2a we compute both analytical and

numerical ∆ values for different values of ε.

Comparison with Oliveira and Terhal [216]. We also compare our ∆ assignment with

the subdivision gadget by Oliveira and Terhal [216], where given a target Hamiltonian

Htarg = Helse +Q⊗R it is assumed that Q and R are operators with finite norm operating

on two separate spaces A and B.

The construction of the subdivision gadget in [216] is the same as the construction

presented earlier: introduce an ancillary qubit w with energy gap ∆, then the unperturbed

Hamiltonian is H = ∆|1〉〈1|w. In [216] they add a perturbation V that takes the form of

[216, Eq. 15]

V = H ′else +

√
∆

2
(−Q+R)⊗Xw (6.13)

where H ′else = Helse + Q2/2 + R2/2. Comparing the form of Eq. 6.13 and Eq. 6.6 we can

see that if we redefine Q =
√
|α|A and R =

√
|α|B, the gadget formulation is identical to
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our subdivision gadget approximating Htarg = Helse + αA⊗B with α > 0. In the original

work ∆ is chosen as [216, Eq. 20]

∆ =
(‖H ′else‖+ C2r)

6

ε2

where C2 ≥
√

2 and r = max{‖Q‖, ‖R‖}. In the context of our subdivision gadget, this

choice of ∆ translates to a lower bound

∆ ≥ (‖Helse + |α|I‖+
√

2|α|)6

ε2
. (6.14)

In Fig. 6.2a we compare the lower bound in Eq. 6.14 with our lower bound in Eq. 6.12 and

the numerically optimized ∆ described earlier.

6.4 Parallel subdivision and k- to 3-body reduction

Summary. Applying subdivision gadgets iteratively one can reduce a k-body Hamiltonian

Htarg = Helse + α
⊗k

i=1 σi to 3-body. Here each σi is a single spin Pauli operator. Initially,

the term
⊗k

i=1 σi can be broken down into A⊗B where A =
⊗r

i=1 σi and B =
⊗k

i=r+1 σi.

Let r = k/2 for even k and r = (k + 1)/2 for odd k. The gadget Hamiltonian will be

(dk/2e+ 1)-body, which can be further reduced to a (ddk/2e+ 1e/2 + 1)-body Hamiltonian

in the same fashion. Iteratively applying this procedure, we can reduce a k-body Hamilto-

nian to 3-body, with the ith iteration introducing the same number of ancilla qubits as that

of the many-body term to be subdivided. Applying the previous analysis on the improved

subdivision gadget construction, we find that ∆i = Θ(ε−1∆
3/2
i−1) is sufficient such that during

each iteration the spectral difference between H̃i and H̃i−1 is within ε. From the recurrence

relation ∆i = Θ(ε−1∆
3/2
i−1), we hence were able to show a quadratic improvement over pre-

vious k-body constructions [54].
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Analysis. The concept of parallel application of gadgets has been introduced in [216, 165].

The idea of using subdivision gadgets for iteratively reducing a k-body Hamiltonian to

3-body has been mentioned in [216, 54]. Here we elaborate the idea by a detailed analyti-

cal and numerical study. We provide explicit expressions of all parallel subdivision gadget

parameters which guarantees that during each reduction the error between the target Hamil-

tonian and the low-lying sector of the gadget Hamiltonian is within ε. For the purpose of

presentation, let us define the notions of “parallel” and “series” gadgets in the following

remarks.

Remark 6.4.1 (Parallel gadgets). Parallel application of gadgets refers to using gadgets on

multiple terms Htarg,i in the target Hamiltonian Htarg = Helse +
∑m

i=1Htarg,i concurrently.

Here one will introduce m ancilla spins w1, · · · , wm and the parallel gadget Hamiltonian

takes the form of H̃ =
∑m

i=1Hi + V where Hi = ∆|1〉〈1|wi and V = Helse +
∑m

i=1 Vi. Vi is

the perturbation term of the gadget applied to Htarg,i.

Remark 6.4.2 (Serial gadgets). Serial application of gadgets refers to using gadgets se-

quentially. Suppose the target Hamiltonian Htarg is approximated by a gadget Hamiltonian

H̃(1) such that H̃
(1)
− approximates the spectrum of Htarg up to error ε. If one further applies

onto H̃(1) another gadget and obtains a new Hamiltonian H̃(2) whose low-lying spectrum

captures the spectrum of H̃(1), we say that the two gadgets are applied in series to reduce

Htarg to H̃(2).

Based on Remark 6.4.1, a parallel subdivision gadget deals with the case where Htarg,i =

αiAi ⊗ Bi. αi is a constant and Ai, Bi are unit norm Hermitian operators that act on

separate spaces Ai and Bi. Note that with Hi = ∆|1〉〈1|wi for every i ∈ {1, 2, · · · ,m} we

have the total penalty Hamiltonian H =
∑m

i=1Hi =
∑

x∈{0,1}m h(x)∆|x〉〈x| where h(x) is

the Hamming weight of the m-bit string x. This penalty Hamiltonian ensures that the
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ground state subspace is L− = span{|0〉⊗m} while all the states in the subspace L+ =

span{|x〉|x ∈ {0, 1}m, x 6= 00 · · · 0} receives an energy penalty of at least ∆. The operator-

valued resolvent G for the penalty Hamiltonian is (by definition in Sec. 6.2)

G(z) =
∑

x∈{0,1}m

1

z − h(x)∆
|x〉〈x|. (6.15)

The perturbation Hamiltonian V is defined as

V = Helse +
1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i ) +

m∑
i=1

(κiAi + λiBi)⊗Xui (6.16)

where the coefficients κi and λi are defined as κi = sgn(αi)
√
|αi|∆/2, λi = −

√
|αi|∆/2.

Define P− = |0〉⊗m〈0|⊗m and P+ = I − P−. Then if Htarg acts on the Hilbert space

M, Π− = IM ⊗ P− and Π+ = IM ⊗ P+. Comparing Eq. 6.16 with Eq. 6.6 we see that

the projector to the low-lying subspace |0〉〈0|w in Eq. 6.6 is replaced by an identity I in

Eq. 6.16. This is because in the case of m parallel gadgets P− cannot be realized with only

2-body terms when m ≥ 3.

The partition of V in the subspaces are

V− =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗ P−, V+ =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗ P+

V−+ =
m∑
i=1

(κiAi + λiBi)⊗ P−XuiP+, V+− =
m∑
i=1

(κiAi + λiBi)⊗ P+XuiP−.

(6.17)

The self-energy expansion in Eq. 6.3 then becomes

Σ−(z) =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗ P− +

1

z −∆

m∑
i=1

(κiAi + λiBi)
2 ⊗ P−

+

∞∑
k=1

V−+(G+V+)kG+V+−.

(6.18)
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Rearranging the terms we have

Σ−(z) =

(
Helse +

m∑
i=1

(
−2κiλi

∆
Ai ⊗Bi

))
⊗ P−︸ ︷︷ ︸

Heff

+

(
1

∆
+

1

z −∆

) m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )⊗ P−︸ ︷︷ ︸

E1

+

(
1

∆
+

1

z −∆

) m∑
i=1

2κiλiAi ⊗Bi ⊗ P−︸ ︷︷ ︸
E2

+
∞∑
k=1

V−+(G+V+)kG+V+−︸ ︷︷ ︸
E3

[0.1in] (6.19)

where the term Heff = Htarg ⊗ P− is the effective Hamiltonian that we would like to obtain

from the perturbative expansion and E1, E2, and E3 are error terms. Theorem 6.2.1 states

that for z ∈ [−max(z),max(z)], if ‖Σ−(z) − Htarg ⊗ P−‖ ≤ ε then H̃− approximates the

spectrum of Htarg ⊗ P− by error at most ε. Similar to the triangle inequality derivation

shown in (6.9), to derive a lower bound for ∆, let z 7→ max(z) = ‖Helse‖ +
∑m

i=1 |αi| + ε

and the upper bounds of the error terms E1 and E2 can be found as

‖E1‖ ≤
max(z)

∆−max(z)

m∑
i=1

|αi| ≤
max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

‖E2‖ ≤
max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

.

(6.20)

From the definition in Eq. 6.15 we see that ‖G+(z)‖ ≤ 1
∆−max(z) . Hence the norm of E3

can be bounded by

‖E3‖ ≤
∞∑
k=1

‖∑m
i=1(κiAi + λiBi)‖2‖Helse + 1

∆

∑m
i=1(κ2

iA
2
i + λ2

iB
2
i )I‖k

(∆−max(z))k+1

≤
∞∑
k=1

2∆(
∑m

i=1 |αi|1/2)2(‖Helse‖+
∑m

i=1 |αi|)k
(∆−max(z))k+1

=
2∆(

∑m
i=1 |αi|1/2)2

∆−max(z)

‖Helse‖+
∑m

i=1 |αi|
∆−max(z)− (‖Helse‖+

∑m
i=1 |αi|)

.

(6.21)

Similar to the discussion in Sec. 6.3, to ensure that ‖Σ−(z)−Htarg ⊗P−‖ ≤ ε, which is the
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condition of Theorem 6.2.1, it is sufficient to let ‖E1‖+ ‖E2‖+ ‖E3‖ ≤ ε:

‖E1‖+ ‖E2‖+ ‖E3‖ ≤
2 max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

+
2∆(

∑m
i=1 |αi|1/2)2

∆−max(z)
· ‖Helse‖+

∑m
i=1 |αi|

∆−max(z)− (‖Helse‖+
∑m

i=1 |αi|)

=
2(
∑m

i=1 |αi|1/2)2(max(z) + ‖Helse‖+
∑m

i=1 |αi|)
∆−max(z)− (‖Helse‖+

∑m
i=1 |αi|)

≤ ε
(6.22)

where we find the lower bound of ∆ for parallel subdivision gadget

∆ ≥
[

2(
∑m

i=1 |αi|1/2)2

ε
+ 1

]
(2‖Helse‖+ 2

m∑
i=1

|αi|+ ε). (6.23)

Note that if one substitutes m = 1 into Eq. 6.23 the resulting expression is a lower bound

that is less tight than that in Eq. 6.12. This is because of the difference in the perturbation

V between Eq. 6.16 and Eq. 6.6 which is explained in the text preceding Eq. 6.17. Also we

observe that the scaling of this lower bound for ∆ is O(poly(m)/ε) for m parallel applications

of subdivision gadgets, assuming |αi| = O(poly(m)) for every i ∈ {1, 2, · · · ,m}. This

confirms the statement in [216, 165, 54] that subdivision gadgets can be applied to multiple

terms in parallel and the scaling of the gap ∆ in the case of m parallel subdivision gadgets

will only differ to that of a single subdivision gadget by a polynomial in m.

Iterative scheme for k- to 3-body reduction. The following iterative scheme summarizes

how to use parallel subdivision gadgets for reducing a k-body Ising Hamiltonian to 3-body

(Here we use superscript (i) to represent the ith iteration and subscript i for labelling objects
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within the same iteration):

H̃(0) = Htarg;Htarg acts on the Hilbert space M(0).

while H̃(i) is more than 3-body

Step 1: Find all the terms that are no more than 3-body (including Helse from

H̃(0)) in H̃(i−1) and let their sum be H
(i)
else.

Step 2: Partition the rest of the terms in H̃(i−1) into α
(i)
1 A

(i)
1 ⊗B

(i)
1 ,

α
(i)
2 A

(i)
2 ⊗B

(i)
2 , · · · , α(i)

m A
(i)
m ⊗B(i)

m . Here α
(i)
j are coefficients.

Step 3: Introduce m ancilla qubits w
(i)
1 , w

(i)
2 , · · ·w(i)

m and construct H̃(i) using the

parallel subdivision gadget. Let P
(i)
− = |0 · · · 0〉〈0 · · · 0|

w
(i)
1 ···w

(i)
m

.

Define Π
(i)
− = IM(i) ⊗ P (i)

− .

3.1: Apply the penalty Hamiltonian H(i) =
∑m

x∈{0,1} h(x)∆(i)|x〉〈x|.

Here ∆(i) is calculated by the lower bound in Eq. 6.23.

3.2: Apply the perturbation V (i) =

H
(i)
else +

∑m
j=1

√
|α(i)
j |∆(i)

2 (sgn(α
(i)
j )A

(i)
j −B

(i)
j )⊗X

w
(i)
j

+
∑m

j=1 |α
(i)
j |I.

3.3: H̃(i) = H(i) + V (i) acts on the space M(i) and the maximum spectral

difference between H̃
(i)
− = Π

(i)
− H̃

(i)Π
(i)
− and H̃(i−1) ⊗ P (i)

− is at most ε.

i→ i+ 1

end

(6.24)

We could show that after s iterations, the maximum spectral error between Π
(s)
− H̃(s)Π

(s)
−

and H̃(0)
⊗s

i=1 P
(s)
− is guaranteed to be within sε. Suppose we would like to make target

Hamiltonian H̃0, we construct a gadget H̃ = H(1) + V (1) according to algorithm (6.24),

such that |λ(H̃(1))−λ(H̃(0))| ≤ ε for low-lying eigenvalues λ(·). Note that in a precise sense

we should write |λ(Π
(1)
− H̃(1)Π

(1)
− ) − λ(H̃(0) ⊗ P (0)

− )|. Since the projectors Π
(i)
− and P

(i)
− do
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i = 1@@R

S1S2S3|S4Xu1 Xu1S5|S6S7

��	 @@R ��	 @@R
i = 2

S1S2|S3Xu2 Xu2S4Xu1 Xu1S5Xu3 Xu3S6S7

��	 @@R
i = 3

S1S2Xu4 Xu4S3Xu2

(a)

(b) (c)

Figure 6.3: (a) Reduction tree diagram for reducing a 7-body term to 3-body using parallel
subdivision gadgets. Each Si is a single-qubit Pauli operator acting on qubit i. The vertical
lines | show where the subdivisions are made at each iteration to each term. (b) An example
where we consider the target Hamiltonian Htarg = αS1S2S3S4S5S6S7 with α = 5 × 10−3,
Si = Xi, ∀i ∈ {1, 2, · · · , 7}, and reduce it to 3-body according to (a) up to error ε = 5×10−4.
This plot shows the energy gap applied onto the ancilla qubits introduced at each iteration.
(c) The spectral error between the gadget Hamiltonian at each iteration H̃(i) and the target
Hamiltonian Htarg. For both (b)(c) the data labelled as “numerical” correspond to the case
where during each iteration ∆(i) is optimized such that the maximum spectral difference

between Π
(i)
− H̃

(i)Π
(i)
− and H̃(i−1) ⊗ P (i)

− is ε. For definitions of ∆(i), H̃(i), Π
(i)
− and P

(i)
− , see

Eq. 6.24. Those labelled as ‘analytical’ correspond to cases where each iteration uses the
gap bound derived in Eq. 6.23.
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not affect the low-lying spectrum of H̃(i) and H̃(i−1), for simplicity and clarity we write

only H̃(i−1) and H̃(i). After H̃(1) is introduced, according to algorithm (6.24) the second

gadget H̃(2) is constructed by considering the entire H̃(1) as the new target Hamiltonian and

introducing ancilla particles with unperturbed Hamiltonian H(2) and perturbation V (2) such

that the low-energy spectrum of H̃(2) approximates the spectrum of H̃(1) up to error ε. That

is, |λ(H̃(1))−λ(H̃(2))| ≤ ε. With the serial application of gadgets we produce a sequence of

Hamiltonians H̃(0) → H̃(1) → H̃(2) → · · · → H̃(k) where H̃(0) is the target Hamiltonian and

each subsequent gadget Hamiltonian H̃(i) captures the entire previous gadget H̃(i−1) in its

low-energy sector with |λ(H̃(i))−λ(H̃(i−1))| ≤ ε. Hence to bound the spectral error between

the last gadget H̃(k) and the target Hamiltonian H̃(0) we could use triangle inequality:

|λ(H̃(s))− λ(H̃(0))| ≤ |λ(H̃(s))− λ(H̃(s−1))|+ · · ·+ |λ(H̃(1))− λ(H̃(0))| ≤ sε.

Total number of iterations for a k- to 3-body reduction. In general, given a k-body Hamil-

tonian, we apply the following parallel reduction scheme at each iteration until every term

is 3-body: if k is even, this reduces it to two (k/2 + 1)-body terms; if k is odd, this reduces

it to a (k+1
2 + 1)- and a (k−1

2 + 1)-body term. Define a function f such that a k-body term

needs f(k) iterations to be reduced to 3-body. Then we have the recurrence

f(k) =


f

(
k

2
+ 1

)
+ 1 k even

f

(
k + 1

2
+ 1

)
+ 1 k odd

(6.25)

with f(3) = 0 and f(4) = 1. One can check that f(k) = dlog2(k − 2)e, k ≥ 4 satisfies

this recurrence. Therefore, using subdivision gadgets, one can reduce a k-body interaction

to 3-body in s = dlog2(k − 2)e iterations and the spectral error between H̃(s) and H̃(0) is

within dlog2(k − 2)eε.

Gap scaling. From the iterative scheme shown previously one can conclude that ∆(i+1) =
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Θ(ε−1(∆(i))3/2) for the (i+ 1)th iteration, which implies that for a total of s iterations,

∆(s) = Θ
(
ε−2[(3/2)s−1−1](∆(1))(3/2)s−1

)
. (6.26)

Since s = dlog2(k − 2)e and ∆(1) = Θ(ε−1) we have

∆(s) = Θ
(
ε−3( 1

2
dk−2e)log2(3/2)−2

)
= Θ

(
ε−poly(k)

)
(6.27)

accumulating exponentially as a function of k. The exponential nature of the scaling with

respect to k agrees with results by Bravyi et al. [54]. However, in our construction, due to

the improvement of gap scaling in a single subdivision gadget from ∆ = Θ(ε−2) to Θ(ε−1),

the scaling exponents in ∆(i+1) = Θ(ε−1(∆(i))3/2) are also improved quadratically over

those in [54], which is ∆(i+1) = Θ(ε−2(∆(i))3).

Qubit cost. Based on the reduction scheme described in Eq. 6.24 (illustrated in Fig. 6.3a

for 7-body), the number of ancilla qubits needed for reducing a k-body term to 3-body is

k− 3. Suppose we are given a k-body target term S1S2 · · ·Sk (where all of the operators Si

act on separate spaces) and we would like to reduce it to 3-body using the iterative scheme

Eq. 6.24. At each iteration, if we describe every individual subdivision gadget by a vertical

line | at the location where the partition is made, for example S1S2S3S4|S5S6S7 in the case

of the first iteration in Fig. 6.3a, then after dlog2(k − 2)e iterations all the partitions made

to the k-body term can be described as S1S2|S3|S4| · · · |Sk−2|Sk−1Sk. Note that there are

k− 3 vertical lines in total, each corresponding to an ancilla qubit needed for a subdivision

gadget. Therefore in total k − 3 ancilla qubits are needed for reducing a k-body term to

3-body.

Example: Reducing 7-body to 3-body. We have used numerics to test the reduction algorithm

Eq. 6.24 on a target Hamiltonian Htarg = αS1S2S3S4S5S6S7. Here we let Si = Xi, ∀i ∈

{1, 2, · · · , 7}, ε = 5 × 10−4 and α = 5 × 10−3. During each iteration the values of ∆(i) are
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assigned according to the lower bound in Eq. 6.23. From Fig. 6.3c we can see that the lower

bounds are sufficient for keeping the total spectral error between H̃
(3)
− and H̃(0)

⊗3
i=1 P

(i)
−

within 3ε. Furthermore, numerical search is also used at each iteration to find the minimum

value of ∆(i) so that the spectral error between Π
(i)
− H̃

(i)Π
(i)
− and H̃(i−1)

⊗i
j=1 P

(j)
− is ε. The

numerically found gaps ∆(i) are much smaller than their analytical counterparts at each

iteration (Fig. 6.3b), at the price that the error is larger (Fig. 6.3c). In both the numerical

and the analytical cases, the error appears to accumulate linearly as the iteration proceeds.

6.5 Improved Oliveira and Terhal 3- to 2-body gadget

Summary. Subdivision gadgets cannot be used for reducing from 3- to 2-body; accordingly,

the final reduction requires a different type of gadget [165, 216, 54]. Consider 3-body target

Hamiltonian of the form Htarg = Helse + αA ⊗ B ⊗ C. Here A, B and C are unit-norm

Hermitian operators acting on separate spaces A, B and C. Here we focus on the gadget

construction introduced in Oliveira and Terhal [216] and also used in Bravyi, DiVincenzo,

Loss and Terhal [54]. To accomplish the 3- to 2-body reduction, we introduce an ancilla

spin w and apply a penalty Hamiltonian H = ∆|1〉〈1|w. We then add a perturbation V of

form,

V = Helse + µC ⊗ |1〉〈1|w + (κA+ λB)⊗Xw + V1 + V2 (6.28)

where V1 and V2 are 2-local compensation terms (details presented later in this section):

V1 =
1

∆
(κ2 + λ2)|0〉〈0|w +

2κλ

∆
A⊗B − 1

∆2
(κ2 + λ2)µC ⊗ |0〉〈0|w

V2 = −2κλ

∆3
sgn(α)

[
(κ2 + λ2)|0〉〈0|w + 2κλA⊗B

]
.

(6.29)

Here we let κ = sgn(α) (α/2)1/3 ∆3/4, λ = (α/2)1/3 ∆3/4 and µ = (α/2)1/3 ∆1/2.

For sufficiently large ∆, the low-lying spectrum of the gadget Hamiltonian H̃ captures
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the entire spectrum of Htarg up to arbitrary error ε. In the construction of [54] it is shown

that ∆ = Θ(ε−3) is sufficient. In [165], ∆ = Θ(ε−3) is also assumed, though the construction

of V is slightly different from Eq. 6.28. By adding terms in V to compensate for the pertur-

bative error due to the modification, we find that ∆ = Θ(ε−2) is sufficient for accomplishing

the 3- to 2-body reduction:

∆ ≥ 1

4
(−b+

√
b2 − 4c)2 (6.30)

where b and c are defined as

b = −
[
ξ +

24/3α2/3

ε
(max z + η + ξ2)

]

c = −
(

1 +
24/3α2/3

ε
ξ

)
(max z + η)

(6.31)

with max z = ‖Helse‖+ |α|+ ε, η = ‖Helse‖+ 22/3α4/3 and ξ = 2−1/3α1/3 + 21/3α2/3. From

Eq. 6.30 we can see the lower bound to ∆ is Θ(ε−2). Our improvement results in a power

of ε−1 reduction in the gap. For the dependence of ∆ on ‖Helse‖, α and ε−1 for both the

original [216] and the optimized case, see Fig. 6.4. Results show that the bound in Eq. 6.30

is tight with respect to the minimum ∆ numerically found that yields the spectral error

between H̃− and Htarg ⊗ |0〉〈0|w to be ε.

Analysis. We will proceed by first presenting the improved construction of the 3- to

2-body gadget and then show that ∆ = Θ(ε−2) is sufficient for the spectral error to be ≤ ε.

Then we present the construction in the literature [216, 54] and argue that ∆ = Θ(ε−3) is

required for yielding a spectral error between H̃ and Heff within ε using this construction.

In the improved construction we define the perturbation V as in Eq. 6.28. Here the

coefficients are chosen to be κ = Θ(∆3/4), λ = Θ(∆3/4) and µ = Θ(∆1/2). In order to show

that the assigned powers of ∆ in the coefficients are optimal, we introduce a parameter r
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such that

κ = sgn(α)
(α

2

)1/3
∆r, λ =

(α
2

)1/3
∆r, µ =

(α
2

)1/3
∆2−2r. (6.32)

It is required that ‖V ‖ ≤ ∆/2 (Theorem 6.2.1) for the convergence of the perturbative

series. Therefore let r < 1 and 2 − 2r < 1, which gives 1/2 < r < 1. With the definitions

L− and L+ being the ground and excited state subspaces respectively, V−, V+, V−+, V+−

can be calculated as the following:

V− =

[
Helse +

1

∆
(κA+ λB)2 − 1

∆
(κ2 + λ2)µC − 2κλ

∆3
sgn(α)(κA+ λB)2

]
⊗ |0〉〈0|w

V+ =

[
Helse + µC +

2κλ

∆
A⊗B − 4κ2λ2

∆3
sgn(α)A⊗B

]
⊗ |1〉〈1|w

V−+ = (κA+ λB)⊗ |0〉〈1|w

V+− = (κA+ λB)⊗ |1〉〈0|w.
(6.33)

The self-energy expansion, referring to Eq. 6.3, becomes

Σ−(z) = V− +
1

z −∆
V−+V+− +

1

(z −∆)2
V−+V+V+− +

∞∑
k=2

V−+V
k

+V+−
(z −∆)k+1

(6.34)

= Helse︸ ︷︷ ︸
(a)

+
1

∆
(κA+ λB)2︸ ︷︷ ︸

(b)

− 1

∆
(κ2 + λ2)µC︸ ︷︷ ︸

(c)

−2κλ

∆3
sgn(α)(κA+ λB)2︸ ︷︷ ︸

(d)

+
1

z −∆
(κA+ λB)2︸ ︷︷ ︸

(e)

+
1

(z −∆)2
(κA+ λB)

Helse︸ ︷︷ ︸
(f)

+ µC︸︷︷︸
(g)

+
2κλ

∆
A⊗B︸ ︷︷ ︸
(h)

−4κ2λ2

∆3
sgn(α)A⊗B︸ ︷︷ ︸

(i)

 (κA+ λB)

+
∞∑
k=2

V−+V
k

+V+−
(z −∆)k+1︸ ︷︷ ︸

(j)

.

Now we rearrange the terms in the self energy expansion so that the target Hamiltonian

arising from the leading order terms can be separated from the rest, whcih are error terms.
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Observe that term (g) combined with the factors outside the bracket could give rise to a

3-body A⊗B ⊗ C term:

1

(z −∆)2
(κA+ λB)2µC =

2κλµ

∆2
A⊗B ⊗ C︸ ︷︷ ︸

(g1)

+

(
1

(z −∆)2
− 1

∆2

)
2κλµA⊗B ⊗ C︸ ︷︷ ︸

(g2)

+
1

(z −∆)2
(κ2 + λ2)µC︸ ︷︷ ︸
(g3)

.

(6.35)

Here (g1) combined with term (a) in (6.34) gives Htarg. (g2) and (g3) are error terms. Now

we further rearrange the error terms as the following. We combine term (b) and (e) to form

E1, term (c) and (g3) to form E2, term (f) and the factors outside the bracket to be E3.

Rename (g2) to be E4. Using the identity (κA+λB)(A⊗B)(κA+λB) = sgn(α)(κA+λB)2

we combine term (d) and (h) along with the factors outside the bracket to be E5. Rename

(i) to be E6 and (j) to be E7. The rearranged self-energy expanision reads

Σ−(z) =

[
Helse +

2κλµ

∆2
A⊗B ⊗ C︸ ︷︷ ︸

Htarg

+

(
1

∆
+

1

z −∆

)
(κA+ λB)2︸ ︷︷ ︸

E1

+

(
1

(z −∆)2
− 1

∆2

)
(κ2 + λ2)µC︸ ︷︷ ︸

E2

+
1

(z −∆)2
(κA+ λB)Helse(κA+ λB)︸ ︷︷ ︸

E3

+

(
1

(z −∆)2
− 1

∆2

)
2κλµA⊗B ⊗ C︸ ︷︷ ︸

E4

+

(
1

(z −∆)2
− 1

∆2

)
2κλ

∆
sgn(α)(κA+ λB)2︸ ︷︷ ︸

E5

− 1

(z −∆)2
· 4κ2λ2

∆3
(κA+ λB)2︸ ︷︷ ︸

E6

]
⊗ |0〉〈0|w +

∞∑
k=2

V−+V
k

+V+−
(z −∆)k+1︸ ︷︷ ︸

E7

.

(6.36)

We bound the norm of each error term in the self energy expansion Eq. 6.36 by substituting

the definitions of κ, λ and µ in Eq. 6.32 and letting z be the maximum value permitted by
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Theorem 6.2.1 which is max z = |α|+ ε+ ‖Helse‖:

‖E1‖ ≤
max z·24/3α2/3∆2r−1

∆−max z
= Θ(∆2r−2), ‖E2‖ ≤

(2∆−max z) max z

(∆−max z)2
· α = Θ(∆−1)

(6.37)

‖E3‖ ≤
24/3α2/3∆2r‖Helse‖

(∆−max z)2
= Θ(∆2r−2), ‖E4‖ ≤

(2∆−max z) max z

(∆−max z)2
· α = Θ(∆−1)

(6.38)

‖E5‖ ≤
(2∆−max z) max z

(∆−max z)2
·25/3α4/3∆4r−3 = Θ(∆4r−4), ‖E6‖ ≤

4α2∆6r−3

(∆−max z)2
= Θ(∆6r−5)

(6.39)

‖E7‖ ≤
∞∑
k=2

∥∥∥∥∥(κA+ λB)
(
Helse + µC + 2κλ

∆

(
1 + 2κλ

∆2

)
A⊗B

)k
(κA+ λB)

(∆−max z)k+1

∥∥∥∥∥
≤ 24/3α2/3∆2r

(∆−max z)

∞∑
k=2

(
‖Helse‖+ 2−1/3α1/3∆2−2r + 21/3α2/3∆2r−1 + 22/3α4/3∆4r−3

)k
(∆−max z)k

= Θ(∆max{1−2r,6r−5,10r−9}).

(6.40)

Now the self energy expansion can be written as

Σ−(z) = Htarg ⊗ |0〉〈0|w + Θ(∆f(r))

where the function f(r) < 0 determines the dominant power in ∆ from ‖E1‖ through ‖E6‖:

f(r) = max{1− 2r, 6r − 5}, 1

2
< r < 1. (6.41)

In order to keep the error O(ε), it is required that ∆ = Θ(ε1/f(r)). To optimize the gap

scaling as a function of ε, f(r) must take the minimum value. As is shown in Fig. 6.5b, when

r = 3/4, the minimum value f(r) = −1/2 is obtained, which corresponds to ∆ = Θ(ε−2).

We have hence shown that the powers of ∆ in the assignments of κ, λ and µ in Eq. 6.32

are optimal for the improved gadget construction. The optimal scaling of Θ(ε−2) is also

numerically confirmed in Fig. 6.4a. As one can see, the optimized slope d log ∆/d log ε−1 is

approximately 2 for small ε.
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Figure 6.4: Comparison between our 3- to 2-body gadget with that of Oliveira and Terhal
[216]. As ∆ is not explicitly assigned as a function of α, ‖Helse‖ and ε in [216], we numerically
find the optimal ∆ values for their constructions (marked as “[OT06]”). (a) shows the scaling
of the gap ∆ as a function of error tolerance ε. (b) shows the gap ∆ as a function of the
desired coupling α. For the meanings of the labels in the legend, see Fig. 6.2. The fixed
parameters in each subplots are: (a) ‖Helse‖ = 0, α = 1. (b) ε = 0.01, ‖Helse‖ = 0. Note
that our constructions have improved the ∆ scaling for the ranges of α and ε considered.
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Figure 6.5: The function f(r) shows the dominant power of ∆ in the error terms in the
perturbative expansion. (a) When the error term E4 in Eq. 6.49, which contributes to
the 4r − 3 component of f(r) in Eq. 6.51, is not compensated in the original construction
by Oliveira and Terhal, the dominant power of ∆ in the error term f(r) takes minimum
value of −1/3, indicating that ∆ = Θ(ε−3) is required. (b) In the improved construction,
minr∈(1/2,1) f(r) = −1/2 indicating that ∆ = Θ(ε−2).
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One natural question to ask next is whether it is possible to further improve the gap

scaling as a function of ε. This turns out to be difficult. Observe that the 6r−5 component

of f(r) in Eq. 6.41 comes from E6 and E7 in Eq. 6.36. In E7, the Θ(∆6r−5) contribution is

attributed to the term 1
∆(κA+ λB)2 in V1 of Eq. 6.29, which is intended for compensating

the 2nd order perturbative term and therefore cannot be removed from the construction.

We now let r = 3/4 be a fixed constant and derive the lower bound for ∆ such that for

given α, Helse and ε, the spectral error between the effective Hamiltonian Heff = Htarg ⊗

|0〉〈0|w and H̃− is within ε. This amounts to satisfying the condition of Theorem 6.2.1:

‖Σ−(z)−Heff‖ ≤ ε. (6.42)

Define the total error E = Σ−(z) − Heff = E1 + · · · + E7. For convenience we also define

η = ‖Helse‖+ 22/3α4/3 and ξ = 2−1/3α1/3 + 21/3α2/3. Then

‖E7‖ ≤
24/3α2/3∆3/2

∆−max z

∞∑
k=2

(η + ξ∆1/2)k

(∆−max z)k
=

24/3α2/3∆3/2

∆−max z − (η + ξ∆1/2)

(
η + ξ∆1/2

∆−max z

)2

.

(6.43)

The upper bound for ‖E‖ is then found by summing over Eq. 6.37, 6.38, 6.39 and 6.43:

‖E‖ ≤ max z·24/3α2/3∆1/2

∆−max z
+

(2∆−max z) max z

(∆−max z)2
· 24/3α3/2ξ +

24/3α2/3∆3/2η

(∆−max z)2

+
24/3α2/3∆3/2

∆−max z − (η + ξ∆1/2)

(
η + ξ∆1/2

∆−max z

)2

.

(6.44)

By rearranging the terms in Eq. 6.44 we arrive at a simplified expression for the upper

bound presented below. Requiring the upper bound of ‖E‖ to be within ε gives

‖E‖ ≤ 24/3α2/3 (max z + η + ξ2)∆1/2 + ξ(max z + η)

∆− ξ∆1/2 − (max z + η)
≤ ε. (6.45)
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Eq. 6.45 is a quadratic constraint with respect to ∆1/2. Solving the inequality gives the

lower bound of ∆ given in Eq. 6.30. Note here that ∆ = Θ(ε−2), which improves over the

previously assumed ∆ = Θ(ε−3) in the literature [216, 165, 54]. This bound is shown in

Fig. 6.4b as the “analytical lower bound”. Comparison between the analytical lower bound

and the numerically optimized gap in Fig. 6.4b indicates that the lower bound is relatively

tight when ‖Helse‖ = 0.

Comparison with Oliveira and Terhal [216]. Given operators Q, R and T acting on separate

spaces A, B and C respectively, the 3- to 2-body construction in [216, 165] approximates

the target Hamiltonian Htarg = Helse + Q ⊗ R ⊗ T . In order to compare with their con-

struction, however, we let α = ‖Q‖ · ‖R‖ · ‖T‖ and define Q = α1/3A, R = α1/3B and

T = α1/3C. Hence the target Hamiltonian Htarg = Helse + αA ⊗ B ⊗ C with A, B and C

being unit-norm Hermitian operators. Introduce an ancilla qubit w and apply the penalty

Hamiltonian H = ∆|1〉〈1|w. In the construction by Oliveira and Terhal [216], the pertur-

bation V is defined as

V = Helse ⊗ Iw + µC ⊗ |1〉〈1|w + (κA+ λB)⊗Xw + V ′1 (6.46)

where the compensation term V ′1 is

V ′1 =
1

∆
(κA+ λB)2 − 1

∆2
(κ2A2 + λ2B2)µC. (6.47)

Comparing Eq. 6.47 with the expression for V1 in Eq. 6.29, one observes that V1 slightly

improves over V ′1 by projecting 1-local terms to L− so that V will have less contribution to

V+, which reduces the high order error terms in the perturbative expansion. However, this

modification comes at a cost of requiring more 2-local terms in the perturbation V .

From the gadget construction shown in [216, Eq. 26], the equivalent choices of the
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coefficients κ, λ and µ are

κ = −
(α

2

)1/3 1√
2

∆r, λ =
(α

2

)1/3 1√
2

∆r, µ = −
(α

2

)1/3
∆2−2r (6.48)

where r = 2/3 in the constructions used in [216, 54]. In fact this value of r is optimal for the

construction in the sense that it leads to the optimal gap scaling ∆ = Θ(ε−3). Expanding

the self-energy to 3rd order, following a similar procedure as in (6.34), we have

Σ−(z) =

[
Helse +

2κλµ

∆2
A⊗B ⊗ C︸ ︷︷ ︸

Htarg

+

(
1

∆
+

1

z −∆

)
(κA+ λB)2︸ ︷︷ ︸

E1

+

(
1

(z −∆)2
− 1

∆2

)
(κ2A2 + λ2B2)µC︸ ︷︷ ︸

E2

+
1

(z −∆)2
(κA+ λB)Helse(κA+ λB)︸ ︷︷ ︸

E3

+
1

(z −∆)2
· 1

∆
(κA+ λB)4︸ ︷︷ ︸

E4

− 1

(z −∆)2
· 1

∆2
(κ2A2 + λ2B2)µ(κA+ λB)2 ⊗ C︸ ︷︷ ︸

E5

]
⊗ |0〉〈0|w

+

∞∑
k=2

V−+V
k

+V+−
(z −∆)k+1︸ ︷︷ ︸

E6

. (6.49)

Similar to the derivation of Eq. 6.37, 6.38, and 6.39 by letting z 7→ max z, where max z =

|α| + ε + ‖Helse‖ is the largest value of z permitted by the Theorem 6.2.1, and using the

triangle inequality to bound the norm, we can bound the norm of the error terms E1 through

E6. For example,

‖E1‖ ≤
(

1

∆−max z
− 1

∆

)
22 ·

(α
2

)2/3
∆2r = Θ(∆2r−2).

Applying the same calculation to E2, E3, · · · we find that ‖E2‖ = Θ(∆−1), ‖E3‖ = Θ(∆2r−2),

‖E4‖ = Θ(∆4r−3), ‖E5‖ = Θ(∆4r−4). The norm of the high order terms E6 can be bounded
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as

‖E6‖ ≤
∞∑
k=2

‖V−+‖ · ‖V+‖k · ‖V+−‖
(∆−max(z))k+1

≤ 4
(
α
2

)1/3
∆2r

∆−max(z)

∞∑
k=2

(
ρ

∆−max(z)

)k
(6.50)

=
24/3α2/3∆2r

∆−max(z)− ρ

(
ρ

∆−max(z)

)2

= Θ(∆2r−1+2 max{1−2r,2r−2}) = Θ(∆max{1−2r,6r−5})

where ρ = ‖Helse‖ + 2−1/3α1/3∆2−2r + 21/3α2/3∆2r−1. If we again write the self energy

expansion Eq. 6.49 as

Σ−(z) = Htarg ⊗ |0〉〈0|w + Θ(∆f(r)),

the function f(r) < 0, which determines the dominant power in ∆ among E1 through E6,

can be found as

f(r) = max{1− 2r, 2r − 2, 4r − 3, 6r − 5}, 1

2
< r < 1. (6.51)

Similar to the discussion after Eq. 6.41, the optimal scaling of ∆ = Θ(ε1/f(r)) gives r =

argminf(r) = 2/3, when f(r) = −1/3 and ∆ = Θ(ε−3), as is shown in Fig. 6.5a. Note that

the 4r−3 component in f(r), Eq. 6.51, comes from the error term E4 in Eq. 6.49. The idea

for improving the gadget construction comes from the observation in Fig. 6.5a that when we

add a term in V to compensate for E4, the dominant power of ∆ in the perturbation series,

f(r), could admit a lower minimum as shown in Fig. 6.5b. In the previous calculation we

have shown that this is indeed the case and the minimum value of f(r) becomes −1/2 in

the improved case, indicating that ∆ = Θ(ε−2) is sufficient for keeping the error terms O(ε).

6.6 Creating 3-body gadget from local X

Summary. In general, terms in perturbative gadgets involve mixed couplings (e.g. XiZj).

Although such couplings can be realized by certain gadget constructions [38], physical cou-

plings of this type are difficult to realize in an experimental setting. However, there has
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been significant progress towards experimentally implementing Ising models with transverse

fields of the type:

HZZ =
∑
i

δiXi +
∑
i

hiZi +
∑
i,j

JijZiZj . (6.52)

Accordingly, an interesting question is whether we can approximate 3-body terms such as

α ·Zi⊗Zj⊗Zk using a Hamiltonian of this form. This turns out to be possible by employing

a perturbative calculation which considers terms up to 5th order.

Similar to the 3- to 2-body reduction discussed previously, we introduce an ancilla w

and apply the Hamiltonian H = ∆|1〉〈1|w. We apply the perturbation

V = Helse + µ(Zi + Zj + Zk)⊗ |1〉〈1|w + µI ⊗Xw + Vcomp (6.53)

where µ =
(
α∆4/6

)1/5
and Vcomp is

Vcomp = (6.54)

µ2

∆
|0〉〈0|w −

(
µ3

∆2
+ 7

µ5

∆4

)
(Zi + Zj + Zk)⊗ |0〉〈0|w +

µ4

∆3
(3I + 2ZiZj + 2ZiZk + 2ZjZk) .

To illustrate the basic idea of the 5th order gadget, define subspaces L− and L+ in the

usual way and define P− and P+ as projectors into these respective subspaces. Then the

second term in Eq. 6.53 with ⊗|1〉〈1|w contributes a linear combination µZi + µZj + µZk

to V+ = P+V P+. The third term in Eq. 6.53 induces a transition between L− and L+ yet

since it operates trivially on qubits 1-3, it only contributes a constant µ to the projections

V−+ = P−V P+ and V+− = P+V P−. In the perturbative expansion, the 5th order contains

a term

V−+V+V+V+V+−
(z −∆)4

=
µ5(Zi + Zj + Zk)

3

(z −∆)4
(6.55)

due to the combined the contribution of the second and third term in Eq. 6.53. This yields a

term proportional to α ·Zi⊗Zj⊗Zk along with some 2-local error terms. These error terms,
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combined with the unwanted terms that arise at 1st through 4th order perturbation, are

compensated by Vcomp. Note that terms at 6th order and higher are Θ(∆−1/5). This means

in order to satisfy the gadget theorem of Kempe et al. ([165, Theorem 3], or Theorem I.1)

∆ needs to be Θ(ε−5). This is the first perturbative gadget that simulates a 3-body target

Hamiltonian using the Hamiltonian Eq. 6.52. By rotating the ancilla space, subdivision

gadgets can also be implemented using this Hamiltonian: in the X basis, Z terms will

induce a transition between the two energy levels of X. Therefore ZiZj coupling could

be used for a perturbation of the form in Eq. 6.4 in the rotated basis. In principle using

the transverse Ising model in Eq. 6.52, one can reduce some diagonal k-body Hamiltonian

to 3-body by iteratively applying the subdivision gadget and then to 2-body by using the

3-body reduction gadget.

Analysis. Similar to the gadgets we have presented so far, we introduce an ancilla spin

w. Applying an energy gap ∆ on the ancilla spin gives the unperturbed Hamiltonian

H = ∆|1〉〈1|w. We then perturb the Hamiltonian H using a perturbation V described in

(6.53). Using the same definitions of subspaces L+ and L− as the previous 3-body gadget,

the projections of V into these subspaces can be written as

V+ =

{
Helse + µ(Z1 + Z2 + Z3) +

µ4

∆3

[
3I + 2(Z1Z2 + Z1Z3 + Z2Z3)

]}
⊗ |1〉〈1|w

V− =

{
Helse +

µ2

∆
I − µ3

∆2
(Z1 + Z2 + Z3)I +

µ4

∆3

[
3I + 2(Z1Z2 + Z1Z3 + Z2Z3)

]
−7µ5

∆4

(
Z1 + Z2 + Z3

)}
⊗ |0〉〈0|w

V−+ = µI ⊗ |0〉〈1|w, V+− = µI ⊗ |1〉〈0|w.

(6.56)

The low-lying spectrum of H̃ is approximated by the self energy expansion Σ−(z) below
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with z ∈ [−max z,max z] where max z = ‖Helse‖+ |α|+ ε. With the choice of µ above the

expression of V+ in Eq. 6.56 can be written as

V+ =
(
Helse + µ(Z1 + Z2 + Z3) +O(∆1/5)

)
⊗ |1〉〈1|w. (6.57)

Because we are looking for the 5th order term in the perturbation expansion that gives a

term proportional to Z1Z2Z3, expand the self energy in Eq. 6.3 up to 5th order:

Σ−(z) = V− ⊗ |0〉〈0|w +
V−+V+−
z −∆

⊗ |0〉〈0|w +
V−+V+V+−

(z −∆)2
⊗ |0〉〈0|w (6.58)

+
V−+V+V+V+−

(z −∆)3
⊗ |0〉〈0|w +

V−+V+V+V+V+−
(z −∆)4

⊗ |0〉〈0|w +
∞∑
k=4

V−+V
k

+V+−
(z −∆)k+1

⊗ |0〉〈0|w.

Using this simplification as well as the expressions for V−, V−+ and V+− in Eq. 6.56, the

self energy expansion Eq. 6.58 up to 5th order becomes

Σ−(z) =

(
Helse +

6µ5

∆4
Z1Z2Z3

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+

(
1

∆
+

1

z −∆

)
µ2I ⊗ |0〉〈0|w︸ ︷︷ ︸

E1

+

(
1

(z −∆)2
− 1

∆2

)
µ3(Z1 + Z2 + Z3)⊗ |0〉〈0|w︸ ︷︷ ︸

E2

+

(
1

∆3
+

1

(z −∆)3

)
· µ4 · (Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E3

+

(
1

(z −∆)4
− 1

∆4

)
7µ5(Z1 + Z2 + Z3)⊗ |0〉〈0|w︸ ︷︷ ︸

E4

+
µ2

(z −∆)2
· µ

4

∆3
(Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E6

+
∞∑
k=4

V−+V
k

+V+−
(z −∆)k+1

⊗ |0〉〈0|w︸ ︷︷ ︸
E7

+ O(∆−2/5) +O(‖Helse‖∆−2/5) +O(‖Helse‖2∆−7/5) +O(‖Helse‖3∆−12/5).

(6.59)

Similar to what we have done in the previous sections, the norm of the error terms E1

through E7 can be bounded from above by letting z 7→ max z. Then we find that

‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤ Θ(∆−1/5) (6.60)
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(a) (b)

Figure 6.6: (a) The scaling of minimum ∆ needed to ensure ‖Σ−(z)−Heff‖ ≤ ε as a function
of ε−1. Here we choose ‖Helse‖ = 0, α = 0.1 and ε ranging from 10−0.7 to 10−2.3. The values
of minimum ∆ are numerically optimized. The slope of the line at large ε−1 is 4.97 ≈ 5,
which provides evidence that with the assignments of µ = (α∆4/6)1/5, the optimal scaling
of ∆ is Θ(ε−5). (b) The numerically optimized gap versus the desired coupling α in the
target Hamiltonian. Here ε = 0.01 and ‖Helse‖ = 0.

if we only consider the dominant dependence on ∆ and regard ‖Helse‖ as a given constant.

To guarantee that ‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤ ε, we let the right hand side of Eq. 6.60 to

be ≤ ε, which translates to ∆ = Θ(ε−5).

This Θ(ε−5) scaling is numerically illustrated (Fig. 6.6a). Although in principle the 5th

order gadget can be implemented on a Hamiltonian of form Eq. 6.52, for a small range of α,

the minimum ∆ needed is already large (Fig. 6.6b), rendering it challenging to demonstrate

the gadget experimentally with current resources. However, this is the only currently known

gadget realizable with a transverse Ising model that is able to address the case where Helse

is not necessarily diagonal.
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6.7 YY gadget

Summary. The gadgets which we have presented so far are intended to reduce the locality

of the target Hamiltonian. Here we present another type of gadget, called “creation” gadgets

[38], which simulate the type of effective couplings that are not present in the gadget

Hamiltonian. Many creation gadgets proposed so far are modifications of existing reduction

gadgets. For example, the ZZXX gadget in [38], which is intended to simulate ZiXj terms

using Hamiltonians of the form

HZZXX =
∑
i

∆iXi +
∑
i

hiZi +
∑
i,j

JijZiZj +
∑
i,j

KijXiXj , (6.61)

is essentially a 3- to 2-body gadget with the target term A ⊗ B ⊗ C being such that the

operators A, B and C are X, Z and identity respectively. Therefore the analyses on 3- to

2- body reduction gadgets that we have presented for finding the lower bound for the gap

∆ are also applicable to this ZZXX creation gadget.

Note that YY terms can be easily realized via bases rotation if single-qubit Y terms

are present in the Hamiltonian in Eq. 6.61. Otherwise it is not a priori clear how to realize

YY terms using HZZXX in Eq. 6.61. We will now present the first YY gadget which starts

with a universal Hamiltonian of the form Eq. 6.61 and simulates the target Hamiltonian

Htarg = Helse + αYiYj . The basic idea is to use the identity XiZi = ιYi where ι =
√
−1

and induce a term of the form XiZiZjXj = YiYj at the 4th order. Introduce ancilla qubit

w and apply a penalty H = ∆|1〉〈1|w. With a perturbation V we could perform the same

perturbative expansion as previously. Given that the 4th order perturbation is V−+V+V+V+−

up to a scaling constant. we could let single Xi and Xj be coupled with Xw, which causes

both Xi and Xj to appear in V−+ and V+−. Furthermore, we couple single Zi and Zj terms

with Zw. Then 1
2(I + Zw) projects single Zi and Zj onto the + subspace and causes them
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to appear in V+. For Htarg = Helse +αY1Y2, the full expressions for the gadget Hamiltonian

is the following: the penalty Hamiltonian H = ∆|1〉〈1|w acts on the ancilla qubit. The

perturbation V = V0 + V1 + V2 where V0, V1, and V2 are defined as

V0 = Helse + µ(Z1 + Z2)⊗ |1〉〈1|w + µ(X1 − sgn(α)X2)⊗Xw

V1 =
2µ2

∆
(I ⊗ |0〉〈0|w +X1X2)

V2 = −2µ4

∆3
Z1Z2.

(6.62)

with µ = (|α|∆3/4)1/4. For a specified error tolerance ε, we have constructed a YY gadget

Hamiltonian of gap scaling ∆ = O(ε−4) and the low-lying spectrum of the gadget Hamilto-

nian captures the spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The YY gadget implies that a wider class of Hamiltonians such as

HZZY Y =
∑
i

hiXi +
∑
i

∆iZi +
∑
i,j

JijZiZj +
∑
i,j

KijYiYj (6.63)

and

HXXY Y =
∑
i

hiXi +
∑
i

∆iZi +
∑
i,j

JijXiXj +
∑
i,j

KijYiYj (6.64)

can be simulated using the Hamiltonian of the form in Eq. 6.61. Therefore using the Hamil-

tonian in Eq. 6.61 one can in principle simulate any finite-norm real valued Hamiltonian

on qubits. Although by the QMA-completeness of HZZXX one could already simulate such

Hamiltonian via suitable embedding, our YY gadget provides a more direct alternative for

the simulation.

Analysis. The results in [38] shows that Hamiltonians of the form in Eq. 6.61 supports

universal adiabatic quantum computation and finding the ground state of such a Hamil-

tonian is QMA-complete. This form of Hamiltonian is also interesting because of its

relevance to experimental implementation. Here we show that with a Hamiltonian of the
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form in Eq. 6.61 we could simulate a target Hamiltonian Htarg = Helse + αY1Y2. Introduce

an ancilla w and define the penalty Hamiltonian as H = ∆|1〉〈1|w. Let the perturbation

V = V0 + V1 + V2 be

V0 = Helse + κ(Z1 + Z2)⊗ |1〉〈1|w + κ(X1 − sgn(α)X2)⊗Xw

V1 = 2κ2∆−1[|0〉〈0|w − sgn(α)X1X2]

V2 = −4κ4∆−3Z1Z2.

(6.65)

Then the gadget Hamiltonian H̃ = H + V is of the form in Eq. 6.61. Here we choose the

parameter κ = (|α|∆3/4)1/4. In order to show that the low lying spectrum of H̃ captures

that of the target Hamiltonian, define L− = span{|ψ〉 such that H̃|ψ〉 = λ|ψ〉, λ < ∆/2} as

the low energy subspace of H̃ and L+ = I −L−. Define Π− and Π+ as the projectors onto

L− and L+ respectively.

With these notations in place, here we show that the spectrum of H̃− = Π−H̃Π−

approximates the spectrum of Htarg ⊗ |0〉〈0|w with error ε. To begin with, the projections

of V into the subspaces L− and L+ can be written as

V− =

(
Helse +

κ2

∆
(X1 − sgn(α)X2)2︸ ︷︷ ︸

(a)

−4κ4

∆3
Z1Z2︸ ︷︷ ︸

(b)

)
⊗ |0〉〈0|w

V+ =

(
Helse + κ(Z1 + Z2)− 2κ2

∆
sgn(α)X1X2 −

4κ4

∆3
Z1Z2

)
⊗ |1〉〈1|w

V−+ = κ(X1 − sgn(α)X2)⊗ |0〉〈1|w

V+− = κ(X1 − sgn(α)X2)⊗ |1〉〈0|w

(6.66)

Given the penalty Hamiltonian H, we have the operator valued resolvent G(z) = (zI−H)−1

that satisfies G+(z) = Π+G(z)Π+ = (z − ∆)−1|1〉〈1|w. Then the low lying sector of the

gadget Hamiltonian H̃ can be approximated by the perturbative expansion Eq. 6.3. For
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our purposes we will consider terms up to the 4th order:

Σ−(z) = V− +
1

z −∆
V−+V+− +

1

(z −∆)2
V−+V+V+− (6.67)

+
1

(z −∆)3
V−+V+V+V+− +

∞∑
k=3

V−+V
k

+V+−
(z −∆)k+1

.

Now we explain the perturbative terms that arise at each order. The 1st order is the same

as V− in Eq. 6.66. The 2nd order term gives

1

z −∆
V−+V+− =

1

z −∆
· κ2(X1 − agn(α)X2)2︸ ︷︷ ︸

(c)

⊗|0〉〈0|w. (6.68)

At the 3rd order, we have

1

(z −∆)2
V−+V+V+− =

(
1

(z −∆)2
· κ2(X1 − agn(α)X2)Helse(X1 − sgn(α)X2)

+
1

(z −∆)2

4κ4

∆
(X1X2 − sgn(α)I)︸ ︷︷ ︸

(d)

)
⊗ |0〉〈0|w +O(∆−1/4).

(6.69)

The 4th order contains the desired YY term:

1

(z −∆)3
V−+V+V+V+− =

(
1

(z −∆)3
· 2κ4(X1 − sgn(α)X2)2︸ ︷︷ ︸

(e)

− 1

(z −∆)3
4κ4Z1Z2︸ ︷︷ ︸

(f)

+
4κ4sgn(α)

(z −∆)3
Y1Y2

)
⊗ |0〉〈0|w +O(‖Helse‖ ·∆−3/4) +O(‖Helse‖2 ·∆−1/2) (6.70)

Note that with the choice of κ = (|α|∆3/4)1/4, all terms of 5th order and higher are of norm

O(∆−1/4). In the 1st order through 4th order perturbations the unwanted terms are labelled

as (a) through (f) in Eqs. 6.66, 6.68, 6.69, and 6.70. Note how they compensate in pairs:

the sum of (a) and (c) is O(∆−1/4). The same holds for (d) and (e), (b) and (f). Then the

self energy is then

Σ−(z) = (Helse + αY1Y2)⊗ |0〉〈0|w +O(∆−1/4). (6.71)
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Let ∆ = Θ(ε−4), then by the Gadget Theorem (6.2.1), the low-lying sector of the gadget

Hamiltonian H̃− captures the spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The fact that the gadget relies on 4th order perturbation renders the gap scaling rela-

tively larger than it is in the case of subdivision or 3- to 2-body reduction gadgets. However,

this does not diminish its usefulness in various applications.

Conclusion

We have presented improved constructions for the most commonly used gadgets, which

in turn implies a reduction in the resources for the many works which employ these current

constructions. We presented the first comparison between the known gadget constructions

and the first numerical optimizations of gadget parameters. Our analytical results are

found to agree with the optimised solutions. The introduction of our gadget which simu-

lates YY-interactions opens many prospects for universal adiabatic quantum computation,

particularly the simulation of physics feasible on currently realizable Hamiltonians.

Acknowledgements

We thank Andrew Landahl for helpful comments. JDB and YC completed parts of this

study while visiting the Institute for Quantum Computing at the University of Waterloo.

RB was supported by the United States Department of Defense. The views and conclusions

contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the U.S. Government. JDB

completed parts of this study while visiting the Qatar Energy and Environment Research

Institute and would like to acknowledge the Foundational Questions Institute for support.

197



6.8 Appendix

6.8.1 Parallel 3- to 2-body gadget

Summary. In Sec. 6.4 we have shown that by using parallel subdivision gadgets iteratively,

one can reduce a k-body target term to 3-body. We now turn our attention to considering

Htarg = Helse +
∑m

i=1 αiAi⊗Bi⊗Ci, which is a sum of m 3-body terms. A straightforward

approach to the reduction is to deal with the 3-body terms in series i.e. one at a time:

apply a 3-body gadget on one term, and include the entire gadget in the Helse of the target

Hamiltonian in reducing the next 3-body term. In this construction, ∆ scales exponentially

as a function of m. In order to avoid that overhead, we apply all gadgets in parallel, which

means introducing m ancilla spins, one for each 3-body term and applying the same ∆ onto

it. This poses additional challenges as the operator valued resolvent G(z) now has multiple

poles. Enumerating high order terms in the perturbation series requires consideration of

the combinatorial properties of the bit flipping processes (Fig. 6.7).

If we apply the current construction [216, 54] of 3-body gadgets in parallel, which

requires ∆ = Θ(ε−3), it can be shown [54] that the cross-gadget contribution is O(ε).

However, if we apply our improved construction of the 3- to 2-body gadget in parallel,

the perturbation expansion will contain Θ(1) cross-gadget terms that are dependent on

the commutation relations between Ai, Bi and Aj , Bj . Compensation terms are designed

to ensure that these error terms are suppressed in the perturbative expansion. With our

improved parallel 3-body construction, ∆ = Θ(ε−2poly(m)) is sufficient.

The combination of parallel subdivision with the parallel 3- to 2-body reduction allows

us to reduce an arbitrary k-body target Hamiltonian Htarg = Helse +ασ1σ2 · · ·σk to 2-body

[54]. In this paper we have improved both parallel 2-body and 3- to 2-body gadgets. When
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numerically optimized at each iteration, our construction requires a smaller gap than the

original construction [54] for the range of k concerned.

Analysis. In Sec. 6.4 we have shown that with subdivision gadgets one can reduce a k-body

interaction term down to 3-body. To complete the discussion on reducing a k-body term to

2-body, now we deal with reducing a 3-body target Hamiltonian of form

Htarg = Helse +

m∑
i=1

αiAi ⊗Bi ⊗ Ci

where Helse is a finite-norm Hamiltonian and all of Ai, Bi, Ci are single-qubit Pauli operators

acting on one of the n qubits that Htarg acts on. Here without loss of generality, we

assume Ai, Bi and Ci are single-qubit Pauli operators as our construction depends on the

commutation relationships among these operators. The Pauli operator assumption ensures

that the commutative relationship can be determined efficiently a priori.

We label the n qubits by integers from 1 to n. We assume that in each 3-body term

of the target Hamiltonian, Ai, Bi and Ci act on three different qubits whose labels are in

increasing order i.e. if we label the qubits with integers from 1 to n, Ai acts on qubit ai, Bi

acts on bi, Ci on ci, we assume that 1 ≤ ai < bi < ci ≤ n must hold for all values of i from

1 to m. One important feature of this gadget is that the gap ∆ scales as Θ(ε−2) instead

of the common Θ(ε−3) scaling assumed by the other 3-body constructions in the literature

[165, 216, 54]. To reduce the Htarg to 2-body, introduce m qubits labelled as u1, u2, · · · ,

um and apply an energy penalty ∆ onto the excited subspace of each qubit, as in the case

of parallel subdivision gadgets presented previously. Then we have

H =
m∑
i=1

∆|1〉〈1|ui =
∑

x∈{0,1}m
h(x)∆|x〉〈x|. (6.72)

where h(x) is the Hamming weight of the m-bit string x. In this new construction the
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perturbation V is defined as

V = Helse +
m∑
i=1

µiCi ⊗ |1〉〈1|ui +
m∑
i=1

(κiAi + λiBi)⊗Xui + V1 + V2 + V3 (6.73)

where V1 is defined as

V1 =
1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi (6.74)

and V2 is defined as

V2 = − 1

∆3

m∑
i=1

(κiAi + λiBi)
4. (6.75)

V3 will be explained later. Following the discussion in Sec. 6.5, the coefficients κi, λi and

µi are defined as

κi = sgn(αi)

( |αi|
2

) 1
3

∆
3
4 , λi =

( |αi|
2

) 1
3

∆
3
4 , µi =

( |αi|
2

) 1
3

∆
1
2 . (6.76)

However, as we will show in detail later in this section, a close examination of the pertur-

bation expansion based on the V in Eq. 6.73 shows that with assignments of κi, λi and µi

in Eq. 6.76 if V has only V1 and V2 as compensation terms, the cross-gadget contribution in

the expansion causes Θ(1) error terms to arise. In order to compensate for the Θ(1) error

terms, we introduce the compensation

V3 =

m∑
i=1

m∑
j=1,j 6=i

V̄ij

into V and V̄ij is the compensation term for cross-gadget contribution 1. Before presenting

1As is shown by [54], for the gadget construction with the assignments of κi, λi and µi all being O(∆2/3),
the cross-gadget contribution can be reduced by increasing ∆, thus no cross-gadget compensation is needed.
However, with our assignments of κi, λi and µi in (6.76) there are cross-gadget error terms in the perturbative
expansion that are of order O(1), which cannot be reduced by increasing ∆. This is why we need V̄ij . Since
the O(1) error terms are dependent on the commuting relations between Ai, Bi, Aj and Bj of each pair of
i-th and j-th terms in the target Hamiltonian, V̄ij depends on their commutation relations too.
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the detailed form of V̄ij , let s
(i,j)
1 = s

(i,j)
11 + s

(i,j)
12 where

s
(i,j)
11 =


1 if


[Ai, Aj ] 6= 0

[Bi, Bj ] = 0

or


[Bi, Bj ] 6= 0

[Ai, Aj ] = 0

0 otherwise

(6.77)

s
(i,j)
12 =


1 if [Ai, Bj ] 6= 0 or [Bi, Aj ] 6= 0

0 otherwise

(6.78)

and further define s
(i,j)
2 as

s
(i,j)
2 =


1 if [Ai, Aj ] 6= 0 and [Bi, Bj ] 6= 0

0 otherwise.

(6.79)

Then we define V̄ij as

V̄ij = −s(i,j)
1 · 1

∆3
(κiκj)

2I − s(i,j)
2

(
2

∆3
(κiκj)

2I − 2

∆3
κiκjλiλjAiAjBiBj

)
(6.80)

where s
(i,j)
1 and s

(i,j)
2 are coefficients that depend on the commuting relations between the

operators in the i-th term and the j-th term. Note that in Eq. 6.80, although the term

AiAjBiBj is 4-local, it arises only in cases where s
(i,j)
2 = 1. In this case, an additional gadget

with a new ancilla uij can be introduced to generate the 4-local term. For succinctness we

present the details of this construction in Appendix 6.8.2. With the penalty Hamiltonian H

defined in Eq. 6.72, the operator-valued resolvent (or the Green’s function) can be written

as

G(z) =
∑

x∈{0,1}m

1

z − h(x)∆
|x〉〈x|. (6.81)

Define subspaces of the ancilla register L− = span{|00 · · · 0〉} and L+ = span{|x〉|x 6=

00 · · · 0}. Define P− and P+ as the projectors onto L− and L+. Then the projections of V
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onto the subspaces can be written as

V+ =

(
Helse +

1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi −
1

∆3

m∑
i=1

(κiAi + λiBi)
4

+

m∑
i=1

m∑
j=1,j 6=i

V̄ij

)
⊗ P+ +

m∑
i=1

µiCi ⊗ P+|1〉〈1|uiP+ +

m∑
i=1

(κiAi + λiBi)⊗ P+XuiP+︸ ︷︷ ︸
Vf

V−+ =
m∑
i=1

(κiAi + λiBi)⊗ P−XuiP+, V+− =
m∑
i=1

(κiAi + λiBi)⊗ P+XuiP− (6.82)

V− =

(
Helse +

1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi

− 1

∆3

m∑
i=1

(κiAi + λiBi)
4 +

m∑
i=1

m∑
j=1,j 6=i

V̄ij

)
⊗ P−.

Here the V+ projection is intentionally divided up into Vf and Vs components. Vf is the

component of V+ that contributes to the perturbative expansion only when the perturbative

term corresponds to flipping processes in the L+ subspace. Vs is the component that

contributes only when the perturbative term corresponds to transitions that involve the

state of the m-qubit ancilla register staying the same.

The projection of the Green’s function G(z) onto L+ can be written as

G+(z) =
∑

x 6=0···00

1

z − h(x)∆
|x〉〈x|. (6.83)

We now explain the self energy expansion

Σ−(z) = V−+V−+G+V+−+V−+G+V+G+V+−+V−+(G+V+)2G+V+−+V−+(G+V+)3G+V+−+· · ·

(6.84)

in detail term by term. The 1st order term is simply V− from Equation Eq. 6.82. The

2nd order term corresponds to processes of starting from an all-zero state of the m ancilla
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qubits, flipping one qubit and then flipping it back:

V−+G+V+− =
1

z −∆

m∑
i=1

(κiAi + λiBi)
2

(6.85)

The 3rd order term corresponds to processes of starting from an all-zero state of the ancilla

register, flipping one qubit, staying at the same state for V+ and then flipping the same

qubit back. Therefore only the Vf component in V+ in Equation Eq. 6.82 will contribute

to the perturbative expansion:

V−+G+V+G+V+− =
1

(z −∆)2

m∑
i=1

(κiAi + λiBi)

[
Helse + µiCi +

1

∆

m∑
j=1

(κjAj + λjBj)
2

+
1

∆2

m∑
j=1

[
(κ2
j + λ2

j )µjCj −
1

∆3

m∑
j=1

(κjAj + λjBj)
4 +

m∑
j=1

m∑
l=1,l 6=j

V̄jl

]
(κiAi + λiBi).

(6.86)

The 4th order term is more involved. Here we consider two types of transition processes

(for diagrammatic illustration refer to Fig. 6.7):

1. Starting from the all-zero state, flipping one of the qubits, flipping another qubit, then

using the remaining V+ and V+− to flip both qubits back one after the other (there

are 2 different possible sequences, see Fig. 6.7a).

2. Starting from the all-zero state of the ancilla register, flipping one of the qubits,

staying twice for the two V+ components and finally flipping back the qubit during

V+− (Fig. 6.7b).

Therefore in the transition processes of type (1), V+ will only contribute its Vf compo-

nent and the detailed form of its contribution depends on which qubit in the ancilla register

is flipped. The two possibilities of flipping the two qubits back explains why the second
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term in Eq. 6.87 takes the form of a summation of two components. Because two qubits

are flipped during the transition, G+ will contribute a 1
z−2∆ factor and two 1

z−∆ factors to

the perturbative term.

In the transition processes of type (2), V+ will only contribute its Vs component to the

4th order term since the states stay the same during both V+ operators in the perturbative

term. G+ will only contribute a factor of 1
z−∆ because the Hamming weight of the bit string

represented by the state of the ancilla register is always 1. This explains the form of the

first term in Eq. 6.87.

V−+(G+V+)2G+V+− =
1

(z −∆)3

m∑
i=1

(κiAi + λiBi)

[
Helse + µiCi +

1

∆

m∑
j=1

(κjAj + λjBj)
2

− 1

∆2

m∑
j=1

(κ2
j + λ2

j )µjCj −
1

∆3

m∑
j=1

(κjAj + λjBj)
4 +

m∑
j=1

m∑
l=1,l 6=j

V̄jl

]2

(κiAi + λiBi)

+
1

(z −∆)2(z − 2∆)

m∑
i=1

m∑
j=1,j 6=i

[
(κiAi + λiBi)(κjAj + λjBj)

(κiAi + λiBi)(κjAj + λjBj)

+ (κiAi + λiBi)(κjAj + λjBj)(κjAj + λjBj)(κiAi + λiBi)

]
.

(6.87)

Although the 4th order does not contain terms that are useful for simulating the 3-body

target Hamiltonian, our assignments of κi, λi and µi values in Eq. 6.76 imply that some of

the terms at this order can be Θ(1). Indeed, the entire second term in Eq.6.87 is of order

Θ(1) based on Eq. 6.76. Therefore it is necessary to study in detail what error terms arise

at this order and how to compensate for them in the perturbation V . A detailed analysis

on how to compensate the Θ(1) errors is presented in the Appendix 6.8.2. The 5th order
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and higher terms are errors that can be reduced by increasing ∆:

∞∑
k=3

V−+(G+V+)kG+V+−. (6.88)

At first glance, with assignments of κi, λi and µi in Eq. 6.76, it would appear that this

error term is Θ(∆−1/4) since ‖V−+‖ = Θ(∆3/4), ‖V+−‖ = Θ(∆3/4), ‖V+‖ = Θ(∆3/4) and

‖G+‖ = Θ(∆−1),

∞∑
k=3

V−+(G+V+)kG+V+− ≤
∞∑
k=3

‖V−+‖ · ‖G+V+‖k‖G+‖ · ‖V+−‖

= ‖V−+(G+V+)3G+V+−‖
∞∑
k=0

‖G+V+‖k

= O(∆−1/4)

(6.89)

as
∑∞

k=0 ‖G+V+‖k = O(1). However, here we show that in fact this term in Eq. 6.88 is

Θ(∆−1/2). Note that the entire term Eq. 6.88 consists of contributions from the transition

processes where one starts with a transition from the all-zero state to a state |x〉 with

x ∈ {0, 1}m and h(x) = 1. If we focus on the perturbative term of order k + 2:

V−+(G+V+)kG+V+−,

after k steps. During every step one can choose to either flip one of the ancilla qubits or

stay in the same state of the ancilla register, the state of the ancilla register will go back

to a state |y〉 with y ∈ {0, 1}m and h(y) = 1. Finally the |1〉 qubit in |y〉 is flipped back to

|0〉 and we are back to the all-zero state which spans the ground state subspace L−. Define

the total number of flipping steps to be kf . Then for a given k, kf takes only values from

K(k) =


{k, k − 2, · · · , 2} if k is even

{k − 1, k − 3, · · · , 2} if k is odd.

(6.90)

For the term of order k+ 2, all the transition processes that contribute non-trivially to the

term can be categorized into two types:
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L−
L+

G+ (z) =
1

z −∆

G+ (z) =
1

z − 2∆

|0 . . . 0︸︷︷︸
i

. . . 0︸︷︷︸
j

. . . 0〉

|0 . . . 1 . . . 0 . . . 0〉

|0 . . . 1 . . . 1 . . . 0〉

|0 . . . 0 . . . 1 . . . 0〉

V−+ V+− V+− V−+

Vf Vf VfVf

(a)

L−
L+

G+ (z) =
1

z −∆

|0 . . . 0︸︷︷︸
i

. . . 0︸︷︷︸
j

. . . 0〉

|0 . . . 1 . . . 0 . . . 0〉 |0 . . . 0 . . . 1 . . . 0〉

V−+ V+− V+− V−+

Vs Vs VsVs

(b)

Figure 6.7: Diagrams illustrating the transitions that occur at 4th order. The two diagrams
each represent a type of transition that occurs at 4th order. Each diagram is divided by a
horizontal line where below the line is L− space and above is L+ subspace. Each diagram
deals with a fixed pair of ancilla qubits labelled i and j. The diagram (a) has three horizontal
layers connected with vertically going arrows. Vf and Vs are both components of V+. In
fact V+ = Vf + Vs where Vf is responsible for the flipping and Vs contributes when the
transition does not have flipping. At the left of each horizontal layer lies the expression for
G+(z), which is different for states in L+ with different Hamming weights. The diagram
(b) is constructed in a similar fashion except that we are dealing with the type of 4th order
transition where the state stays the same for two transitions in L+, hence the Vs symbols
and the arrows going from one state to itself. The diagram (a) reflects the type of 4th order
transition that induces cross-gadget contribution and given our gadget parameter setting,
this contribution could be O(1) when otherwise compensated. The diagram (b) shows two
paths that don not interfere with each other and thus having no cross-gadget contributions.

206



1. If x = y, the minimum number of flipping steps is 0. The contribution of all such

processes to the (k + 2)-th order perturbative term is bounded by 2

≤ mkf ·
(
k

kf

)
· ‖Vf‖kf · ‖Vs‖k−kf ·

‖V−+‖ · ‖V+−‖
(∆−max(z))k+1

(6.91)

where the factor mkf is the number of all possible ways of flipping kf times, each

time one of the m ancilla qubits. This serves as an upper bound for the number

of transition processes that contribute non-trivially to the perturbative term. The

factor
(
k
kf

)
describes the number of possible ways to choose which (k − kf ) steps

among the total k steps involve the state of the ancilla register staying the same.

‖G+‖ ≤ 1
∆−max(z) is used in the upper bound.

2. If x 6= y, the minimum number of flipping steps is 2. The contribution of all such

processes to the (k + 2)-th order perturbative term is bounded by

≤
(
k

kf

)
·
(
kf
2

)
· 2! · ‖Vf‖kf ‖Vs‖k−kf ·mkf−2 · ‖V−+‖ · ‖V+−‖

(∆−max(z))k+1
(6.92)

where the factor
(
k
kf

)
is the number of all possible ways to choose which (k−kf ) steps

among the k steps should the state remain the same.
(kf

2

)
is the number of possible

ways to choose from the kf flipping steps the 2 minimum flips. 2! is for taking into

account the ordering of the 2 flipping steps. ‖G+‖ ≤ 1
∆−max(z) is used in the upper

bound.

For a general m-qubit ancilla register, there are in total m different cases of the first

type of transition processes and
(
m
2

)
different cases of the second type of transition processes.

2Here we use the notation Cnm to represent the combinatorial number that is the number of ways to choose
n elements from a total of m without distinguishing between different orderings.
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Figure 6.8: Numerical verification for the upper bound to the norm of the (k + 2)-th
order perturbative term in Eq.6.93. Here we use the parallel 3-body gadget for reducing
Htarg = 0.1X1Z2Z3−0.2X1X2Z3 up to error ε = 0.01. The gap in the gadget construction is
numerically optimized. Here the calculation of the analytical upper bound uses the result in
Eq.6.93. The calculation is then compared with the norm of the corresponding perturbative
term numerically calculated according to the self-energy expansion.

Therefore we have the upper bound to the norm of the (k + 2)-th term (Fig. 6.8)

‖V−+(G+V+)kG+V+−‖ ≤ m
∑

kf∈K(k)

mkf

(
k

kf

)
· ‖Vf‖kf · ‖Vs‖k−kf

‖V−+‖ · ‖V+−‖
(∆−max(z))k+1

+

(
m

2

) ∞∑
k=3

(
k

kf

)
·
(
kf
2

)
· 2! · ‖Vf‖kf ‖Vs‖k−kf ·mkf−2 · ‖V−+‖ · ‖V+−‖

(∆−max(z))k+1
(6.93)

=
∑

kf∈K(k)

(
m+

m− 1

m

)
2k · ‖V−+‖ · (m‖Vf‖)kf · ‖Vs‖k−kf · ‖V+−‖

(∆−max(z))k+1

≤ ‖V−+‖ · ‖V+−‖
∆−max(z)

(m+ 1)
∞∑
k=3

( ‖Vs‖
∆−max(z)

)k ∑
kf∈K(k)

(
m
‖Vf‖
‖Vs‖

)kf
.

Since ‖∑m
i=1

∑m
j=1,j 6=i V̄ij‖ is bounded by 1

∆3

∑m
i=1

∑m
j=1,j 6=i 8(κiκj)

2I, from Eq. 6.82 we
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see that

‖Vs‖ ≤ ‖Helse‖+ 2−1/3∆1/2
m∑
i=1

|αi|1/3 + 24/3∆1/2
m∑
i=1

|αi|2/3 +
m∑
i=1

|αi|

+28/3
m∑
i=1

|αi|4/3 +

m∑
i=1

m∑
j=1,j 6=i

8 · 2−4/3|αi|2/3|αj |2/3 ≡ vs

‖Vf‖ ≤ 22/3∆3/4
m∑
i=1

|αi|1/3 ≡ vf .

(6.94)

With bounds of ‖Vs‖ and ‖Vf‖ in Eq.6.82, the summation in Equation Eq. 6.93 can be

written as

‖
∞∑
k=3

V−+(G+V+)kG+V+−‖ ≤
‖V−+‖ · ‖V+−‖

∆−max(z)
(m+ 1)[ ∞∑

r=1

(
2vs

∆−max(z)

)2r+1 r∑
s=1

(
m
vf
vs

)2s

+
∞∑
r=2

(
2vs

∆−max(z)

)2r r∑
s=1

(
m
vf
vs

)2s ]
.

(6.95)

To guarantee convergence of the summation in Eq.6.95 we require that ∆ satisfies

2mvf
∆−max(z)

< 1 (6.96)

m

(
vf
vs

)
> 1, (6.97)

both of which are in general satisfied. The summation in Eq. 6.95 can then be written as

‖
∞∑
k=3

V−+(G+V+)kG+V+−‖ ≤
‖V−+‖ · ‖V+−‖

∆−max(z)
·

(
m
vf
vs

)2

(
m
vf
vs

)2
− 1(

2mvf
∆−max(z)

)2

1−
(

2mvf
∆−max(z)

)2 (m+ 1)

[(
2mvf

∆−max(z)

)2

+
2vs

∆−max(z)

]
= Θ(∆−1/2),

(6.98)

which shows that the high order terms are Θ(∆−1/2). This is tighter than the crude bound

Θ(∆−1/4) shown in Eq. 6.89. The self-energy expansion Eq. 6.84 then satisfies

‖Σ−(z)−Htarg ⊗ P−‖ ≤ Θ(∆−1/2) (6.99)

which indicates that ∆ = Θ(ε−2) is sufficient for the parallel 3-body gadget to capture the

entire spectrum of Htarg ⊗ P− up to error ε.
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Figure 6.9: Scaling of the spectral gap ∆ as a function of error ε for the parallel 3-body
example that is intended to reduce the target Hamiltonian Htarg = Z1Z2Z3 −X1X2X3 to
2-body. Here ε = 0.01. We show both numerically optimized values (“numerical”) in our
construction and the construction in [54], which is referred to as “[Bravyi2008]”.

We have used numerics to verify the Θ(ε−2) scaling, as shown in Fig. 6.8. Furthermore,

for a range of specified ε, the minimum ∆ needed for the spectral error between the gadget

Hamiltonian and the target Hamiltonian is numerically found. In the optimized cases,

the slope d log ∆/d log ε−1 for the construction in [54] is approximately 3, showing that

∆ = Θ(ε−3) is the optimal scaling for the construction in [54]. For our construction both

the analytical bound and the optimized ∆ scale as Θ(ε−2) (see Fig. 6.9).

6.8.2 Compensation for the 4-local error terms in parallel 3- to 2-body

gadget

Continuing the discussion in Appendix 6.8.1, here we deal with Θ(1) error terms that

arise in the 3rd and 4th order perturbative expansion when V in Eq. 6.73 is without V3 and

in so doing explain the construction of V̄ij in Eq. 6.80. From the previous description of
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the 3rd and 4th order terms, for each pair of terms (i) and (j) where i and j are integers

between 1 and m, let

M1 = (κiAi + λiBi)(κjAj + λjBj)

M2 = (κjAj + λjBj)(κiAi + λiBi)

and then the Θ(1) error term arising from the 3rd and 4th order perturbative expansion can

be written as

1

(z −∆)2

[
1

z − 2∆
(M2

1 +M2
2 ) +

(
1

∆
+

1

z − 2∆

)
(M1M2 +M2M1)

]
. (6.100)

Based on the number of non-commuting pairs among Ai, Aj , Bi and Bj , all possible cases

can be enumerated as the following:

case 0: [Ai, Aj ] = 0, [Bi, Bj ] = 0, [Ai, Bj ] = 0, [Bi, Aj ] = 0

case 1: 1.1 : [Ai, Aj ] = 0, [Bi, Bj ] = 0, [Aj , Bi] 6= 0

1.2 : [Ai, Aj ] = 0, [Bi, Bj ] = 0, [Ai, Bj ] 6= 0

1.3 : [Ai, Aj ] = 0, [Bi, Bj ] 6= 0

1.4 : [Ai, Aj ] 6= 0, [Bi, Bj ] = 0

case 2: [Ai, Aj ] 6= 0, [Bi, Bj ] 6= 0.

(6.101)

In case 0, clearly M1 = M2. Then the Θ(1) error becomes

1

(z −∆)2

(
1

∆
+

2

z − 2∆

)
· 2M2

1 = Θ(∆−1)

which does not need any compensation. In case 1, for example in the subcase 1.1, Aj does

not commute with Bi. Then M1 and M2 can be written as

M1 = K + κjλiBiAj

M2 = K + κjλiAjBi
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where K contains the rest of the terms in M1 and M2. Furthermore,

M2
1 +M2

2 = 2K2 − 2(κjλi)
2I

M1M2 +M2M1 = 2K2 + 2(κjλi)
2I.

Hence the Θ(1) term in this case becomes

1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
2K2 +

1

∆
· 2(κjλi)

2I

]
(6.102)

where the first term is Θ(∆−1) and the second term is Θ(1), which needs to be compensated.

Similar calculations for cases 1.2, 1.3 and 1.4 will yield Θ(1) error with the same norm. In

case 2, define R = κiλjAiBj + λiκjBiAj and T = κiκjAiAi + λiλjBiBi. Then

M2
1 +M2

2 = 2(R2 + T 2)

M1M2 +M2M1 = 2(R2 − T 2).

The Θ(1) error terms in the 3rd and 4th order perturbative expansion becomes

1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2R2 − 1

∆
· 2T 2

]
(6.103)

where the first term is Θ(∆−1) and hence needs no compensation. The second term is Θ(1).

Define

s
(i,j)
0 =


1 if case 0

0 Otherwise

(6.104)

With the definitions of s
(i,j)
1 and s

(i,j)
2 in Eq. 6.77, Eq. 6.78 and Eq. 6.79, the contribution

of the i-th and the j-th target terms to the Θ(1) error in the perturbative expansion Σ−(z)
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becomes

s
(i,j)
0 · 1

(z −∆)2

(
1

∆
+

2

z − 2∆

)
· 2(κiAi + λiBi)

2(κjAj + λjBj)
2

+ s
(i,j)
1 · 1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2K2

ij +
1

∆
· 2(κiκj)

2I

]
+ s

(i,j)
2 · 1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2R2

ij +
1

∆
· 2{[(κiκj)2 + (λiλj)

2]I

−2κiκjλiλjAiAjBiBj}
]
.

(6.105)

The term proportional to s
(i,j)
0 in Eq. 6.105 does not need compensation since it is already

Θ(∆−1). The term proportional to s
(i,j)
1 can be compensated by the corresponding term in

V̄ij in Eq. 6.80 that is proportional to s
(i,j)
1 . Similarly, the Θ(1) error term proportional to

s
(i,j)
2 can be compensated by the term in V̄ij in Eq. 6.80 that is proportional to s

(i,j)
2 .

Now we deal with generating the 4-local term in V̄ij . Introduce an ancilla uij and

construct a gadget H̃ij = Hij + Vij such that Hij = ∆|1〉〈1|uij and the perturbation Vij

becomes

Vij = (κiAi + λjBj)⊗Xuij + (κjAj + λiBi)⊗ |1〉〈1|uij + V ′ij (6.106)

where V ′ij is defined as

V ′ij =
1

∆
(κiAi + λjBj)

2 +
1

∆3

[
(κ2
j + λ2

i )(κiAi + λjBj)
2 − 2κjλi(κ

2
j + λ2

j )AjBi
]

(6.107)

The self-energy expansion Σ−(z) is now

Σ−(z) =
1

(z −∆)3
4κiκjλiλjAiAjBiBj +O(∆−1/2)

which is O(∆−1/2) close to the 4-local compensation term in V̄ij . We apply the the gadget

H̃ij for every pair of qubits with s
(i,j)
2 = 1. The cross-gadget contribution between the H̃ij

gadgets as well as those cross-gadget contribution between H̃ij gadgets and gadgets based

on ancilla qubits u1 through um both belong to the case 1 of the Eq. 6.101 and hence are

easy to deal with using 2-body terms.

213



Chapter 7

Adiabatic Quantum Simulation of Quantum

Chemistry

Apart from minor modifications, this chapter originally appeared as [14]:

“Adiabatic Quantum Simulation of Quantum Chemistry”. Ryan Babbush, Peter Love and
Alán Aspuru-Guzik. Scientific Reports. Volume 4, Number 6603: 1-11. 2014.

Abstract

We show how to apply the quantum adiabatic algorithm directly to the quantum com-

putation of molecular properties. We describe a procedure to map electronic structure

Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable cou-

plings. By combining the Bravyi-Kitaev construction to map fermions to qubits with per-

turbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements

on the coupling strengths and a number of ancilla qubits that scale polynomially in the

problem size. Hence our mapping is efficient. The required set of controllable interactions

includes only two types of interaction beyond the Ising interactions required to apply the

quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may

also be of interest to chemists directly as it defines a dictionary from electronic structure

to spin Hamiltonians with physical interactions.
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7.1 Introduction

The ability to make exact quantum chemical calculations on nontrivial systems would

revolutionize chemistry. While seemingly intractable for classical algorithms, quantum com-

puters can efficiently perform such computations. There has been substantial interest in

quantum algorithms for quantum chemistry involving a combination of Trotterization and

phase estimation [11, 285, 281, 140, 224, 195]. However, we are still technologically far

from when such gate-model approaches are experimentally feasible for practical chemistry

problems. Here, we propose a radically different approach based on the quantum adiabatic

algorithm. In this rapidly advancing paradigm of quantum computation, there is no need

for Trotterization, phase estimation or logic gates. More generally, we show the first scalable

quantum simulation scheme for fermionic systems using adiabatic quantum computing.

Adiabatic quantum computing works by changing the Hamiltonian of a controllable

quantum system from an initial Hamiltonian whose ground state is easy to prepare into

a Hamiltonian whose ground state encodes the solution of a computationally interesting

problem [104, 103]. The speed of this algorithm is determined by the adiabatic theorem

of quantum mechanics which states that an eigenstate remains at the same position in the

eigenspectrum if a perturbation acts on the system sufficiently slowly [48, 104, 46]. Simply

embedding a computational problem in a Hamiltonian suitable for AQC does not ensure an

efficient solution. The required runtime for the adiabatic evolution depends on the energy

gap between the ground state and first excited state at the smallest avoided crossing [104].

AQC has been applied to classical optimization problems that lie in the complexity class

NP [114]. For example, studies have been performed on satisfiability [148, 74, 205], Exact

Cover [104, 103], 3-regular 3-XORSAT and 3-regular Max-Cut [105], random instances of

classical Ising spin glasses [43, 44, 233], protein folding [221, 18] and machine learning [13,
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86, 210]. AQC has also been applied to structured and unstructured search [231, 232], search

engine ranking [115] and artificial intelligence problems arising in space exploration [253].

Many of these applications follow naturally from the NP-Completeness of determining the

ground state energy of classical Ising spin glasses [23]. This creates an equivalence between

a large set of computational problems (the class NP) and a set of models in classical physics

(classical Ising models with random coupling strengths). The advent of AQC provides a

powerful motivation to study the detailed implications of this mapping. In general, we

do not expect that quantum computing, including AQC, can provide efficient solutions to

NP-Complete problems in the worst case [32]. However, there may exist sets of instances

of some NP-Complete problems for which AQC can find the ground state efficiently, but

which defy efficient classical solution by any means. If this is the case then AQC is certainly

of considerable scientific interest, and likely of great industrial importance.

The potential value of a positive answer to this conjecture has motivated a commercial

effort to construct an adiabatic quantum computer [132, 134, 133, 136, 173, 153, 28]. Cur-

rently, these experimental implementations of AQC are not strictly confined to the ground

state at zero temperature but have considerable thermal mixing of higher lying states. Such

intermediate implementations are referred to as quantum annealing devices. Quantum an-

nealing machines with up to 509 qubits have been commercially manufactured by D-Wave

Systems [29, 154, 87]. They are currently the subject of serious scientific investigation to de-

termine whether their operation depends significantly on their quantum properties, and if so,

whether it provides a speedup for any class of instances [154, 225, 39, 44, 278, 254, 233, 174].

Quantum computers have been rigorously proved to provide an algorithmic advantage

over the best known classical approaches for a small set of problems [251, 69, 124, 256].

Adiabatic quantum computation applied to classical Ising Hamiltonians (equivalently, all
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problems in NP) also gives an approach to a very large class of problems where the advantage

(if any) is currently unknown. The construction of medium scale (500 qubit) quantum

annealing machines provides a hardware platform where the properties of AQC can be

investigated experimentally. Such investigations have already been performed for many

problems. At present, optimized codes on classical hardware can find the ground state

of many instances in comparable time to the D-Wave device [43]. However, even if no

interesting set of instances is found on which quantum annealing on the classical Ising

model outperforms classical approaches, the hardware constructed to date represents an

important step towards the construction of large scale quantum information technology. If

quantum annealing of the classical Ising model is the first step, what is the natural next

step?

Quantum simulation has provided a rich set of questions and methods in quantum

computation since Feynman’s suggestion that quantum devices would be best suited to

computation of quantum properties [107]. This observation has been fleshed out through

early work on specific systems [197, 289, 1, 182, 42, 298] and through quantum algorithms

for computation of eigenvalues, dynamics and other properties [2, 33, 162, 287, 280, 237].

Recently, there have been many proposals for the simulation of quantum lattice models using

trapped ions, trapped atoms and photonic systems [282, 128, 78, 141]. There has been rapid

experimental progress in the quantum simulation of a number of systems [252, 120, 179,

109, 152, 188, 228]. A natural target for these simulations is the phase diagram of the

Fermi-Hubbard model - believed to inform our understanding of high-Tc superconductivity.

For this reason many of these approaches are aimed at simulating systems of interacting

fermions.

Lattice systems are a natural target for trapped ion and atom quantum simulators, with
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the trapping mechanism taking the place of the crystal lattice and interactions restricted

to neighbors on the lattice. However, quantum chemistry applied to molecular systems is

perhaps the broadest class of problems on which quantum simulation of interacting fermions

could have an impact. Finding the energy of electrons interacting in the Coulomb potential

of a set of fixed nuclei of an atom or molecule defines the electronic structure problem. This

problem appears to be hard for classical computers because the cost of directly solving for

the eigenvalues of the exact electronic Hamiltonian grows exponentially with the problem

size. In spite of much progress over the last 60 years developing approximate classical

algorithms for this problem, exact calculations remain out of reach for many systems of

interest. Figure 7.1 shows several of the proposals for the efficient quantum simulation of

chemical Hamiltonians.

One may divide quantum simulation algorithms into two classes: those that address

statics and compute ground state properties, and those that address dynamics, and simu-

late time evolution of the wavefunction. It is clear that the simulation of time evolution

is exponentially more efficient on quantum computers, with significant implications for the

simulation of chemically reactive scattering, in particular [163]. The computation of ground

state properties naturally requires preparation of the ground state. This can be done adi-

abatically [11, 272], or by preparation of an ansatz for the ground state [223]. Adiabatic

preparation of the ground state within a gate model simulation requires time evolution of

the wavefunction, which is efficient. However, the length of time for which one must evolve

is determined, as for all adiabatic algorithms, by the minimum energy gap between ground

and first excited states along the adiabatic path. This is unknown in general. Similarly,

a successful ansatz state must have significant overlap with the true ground state, and

guarantees of this are unavailable in general.
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First Quantization FCI Hamiltonian

Real-Space-Real-Time
Dynamics

[163, 283, 280, 187]

Quantum Variational
Eigensolver [223, 296]

Born-Oppenheimer
Approximation

Second Quantize Compute Integrals

Bravyi-Kitaev
Transform [243, 56]

Jordan-Wigner
Transform [156, 257]

Gadgetize [165,
157, 216, 63]

Trotterize
[11, 285, 77]

Adiabatic Quantum
Simulation [104, 154, 29, 37]

Quantum Phase
Estimation [11, 277, 271,

264, 281, 175, 181, 97, 279]

Figure 7.1: A diagram relating several different approaches to the quantum simulation
of quantum chemistry with the procedures and approximations implicit in each approach.
Some of these approaches have been demonstrated experimentally using quantum informa-
tion processors.
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The worst case complexity of generic model chemistries (e.g. local fermionic problems

studied with density functional theory) has been shown to be in the quantum mechanical

equivalent of NP-Complete, QMA-Complete [242, 286]. However, the subset of these generic

models which correspond to stable molecules, or to unstable configurations of chemical in-

terest such as transition states, is small and structured. Just as with adiabatic optimization,

it does not matter if molecular electronic structure is QMA-Complete so long as the average

instance can be solved (or even approximated) efficiently. In this case we also have consid-

erable heuristic evidence that molecules are able to find their ground state configurations

rapidly: these are the configurations in which they naturally occur. Similarly, unstable tran-

sition states of interest occur in natural processes. Given that simulation of time evolution

on a quantum computer is efficient, we conjecture that simulation of the natural processes

that give rise to these states will also be practical.

The proofs that Local Hamiltonian (a decision problem capturing the complexity of

finding the ground state energy) is QMA-Complete relies on the construction of various

specific Hamiltonians that can represent any possible instance of any problem in QMA. In

general, these Hamiltonians possess couplings between more than two qubits. Hamiltonians

which contain many-body interactions of order k and lower are referred to as k-local Hamil-

tonians; experimentally programmable couplings are 2-local. The original formulation by

Kitaev was (log n)-local, he then reduced this to 5-local and that result was subsequently

reduced to 3-local. To reduce 3-local Hamiltonians to 2-local Hamiltonians “perturbative

gadgets” were introduced by Kempe et al. [165], which can embed a k-local Hamiltonian

in a subspace of a 2-local Hamiltonian using ancilla qubits. In the past decade, a growing

body of work has pushed the development of different gadgets which embed various target

Hamiltonians with various tradeoffs in the resources required [216, 157, 54, 38, 98, 16, 63].
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Embedding problems in realizable Hamiltonians requires careful consideration of the

availability of experimental resources. One consideration is that many-body qubit interac-

tions cannot be directly realized experimentally. Another factor is the “control precision” of

the Hamiltonian which is the dynamic range of field values which a device must be able to

resolve in order to embed the intended eigenspectrum to a desired accuracy. This resource

is especially important for molecular electronic structure Hamiltonians as chemists are typ-

ically interested in acquiring chemical accuracy (0.04 eV). Control precision is often the

limiting factor when a Hamiltonian contains terms with coefficients which vary by several

orders of magnitude. Other considerations include the number of qubits available as well

as the connectivity and type of qubit couplings.

In this paper, we describe a scalable method which allows for the application of the

quantum adiabatic algorithm to a programmable physical system encoding the molecular

electronic Hamiltonian. Our method begins with the second quantized representation of

molecular electronic structure in which the Hamiltonian is represented with fermionic cre-

ation and annihilation operators. The first step in our protocol is to convert the fermionic

Hamiltonian to a qubit Hamiltonian using the Bravyi-Kitaev transformation [56, 243]. We

show that using the Bravyi-Kitaev transformation instead of the Jordan-Wigner transforma-

tion is necessary for avoiding exponential control precision requirements in an experimental

setting. Next, we show a new formulation of perturbative gadgets motivated by [165, 63]

that allows us to remove all terms involving Y Y couplings in a single gadget application

(note that throughout this paper we use X, Y and Z to denote the Pauli matrices and

these operators are defined to act as identity on unlabeled registers so that the dot product

YiYj is understood to represent the tensor product Yi ⊗ Yj). Finally, we apply the gadgets

described in [157] to produce a 2-local Hamiltonian with only ZZ, XX and ZX couplings.
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The paper is organized as follows. In the first section we review the second quantized

formulation of the electronic structure problem. Next we give the mapping of this problem to

qubits. In the third section we introduce the gadgets that we will use for locality reduction.

Finally, we apply our procedure to a simple example: molecular hydrogen in a minimal

basis. We close the paper with some discussion and directions for future work.

7.2 Second Quantization

We begin by writing down the full configuration interaction (FCI) Hamiltonian in

the occupation number basis. We define spin orbitals as the product of a spin function

(representing either spin up or spin down) and a single-electron spatial function (usually

molecular orbitals produced from a Hartree-Fock calculation). For example, in the case of

molecular hydrogen there are two electrons and thus, two single-electron molecular orbitals,

|ψ1〉 and |ψ2〉. Electrons have two possible spin states, |α〉 (spin up) and |β〉 (spin down).

The four spin orbitals for molecular hydrogen are therefore, |χ0〉 = |ψ1〉|α〉, |χ1〉 = |ψ1〉|β〉,

|χ2〉 = |ψ2〉|α〉, and |χ3〉 = |ψ2〉|β〉.

The occupation number basis is formed from all possible configurations of n spin or-

bitals which are each either empty or occupied. We represent these vectors as a tensor

product of individual spin orbitals written as |fn−1...f0〉 where fj ∈ B indicates the occu-

pation of spin orbital |χj〉. Any interaction between electrons can be represented as some

combination of creation and annihilation operators a†j and aj for {j ∈ Z|0 ≤ j < n}.

Because fermionic wavefunctions must be antisymmetric with respect to particle label ex-

change, these operators must obey the fermionic anti-commutation relations,

[aj , ak]+ = [a†j , a
†
k]+ = 0, [aj , a

†
k]+ = δjk1. (7.1)
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With these definitions we write the second-quantized molecular electronic Hamiltonian,

H =
∑
i,j

hija
†
iaj +

1

2

∑
i,j,k,l

hijkla
†
ia
†
jakal. (7.2)

The coefficients hij and hijkl are single and double electron overlap integrals which are

precomputed classically. The number of distinct integrals scale as O
(
n4
)

in the number of

molecular orbitals n.

7.3 Qubit Representation

The next step in our reduction will be to represent our fermionic wavefunction in terms

of qubits. We use the direct mapping introduced in [11] that maps an occupancy state to

a qubit basis state. Using Pauli operators we can represent qubit raising and lowering

operators as,

Q+
j = |1〉〈0| = 1

2
(Xj − iYj) , (7.3)

Q−j = |0〉〈1| = 1

2
(Xj + iYj) .

However, these operators do not obey the fermionic commutation relations given in Eq. 7.1.

To write qubit operators that obey the commutation relations in Eq. 7.1, we could use the

Jordan-Wigner transformation [156, 257, 11].

Unfortunately, the Jordan-Wigner transformation is not a scalable way to reduce elec-

tronic structure to an experimentally realizable Hamiltonian for AQC. This is because the

Jordan-Wigner transformation introduces k-local interaction terms into the Hamiltonian

and k grows linearly in the system size. Prima facie, this is not a major problem because

there exist theoretical tools known as perturbative gadgets which allow for reductions in

interaction order. However, in all known formulations of perturbative gadgets, control pre-

cision increases exponentially in k. Thus, the linear locality overhead introduced by the

223



Jordan-Wigner transformation translates into an exponential control precision requirement

in the reduction.

An alternative mapping between the occupation number basis and qubit representation,

known as the Bravyi-Kitaev transformation, introduces logarithmic locality overhead [56,

243]. Two pieces of information are required in order to correctly construct creation and

annihilation operators that act on qubits and obey the fermionic commutation relations.

First, the occupancy of each orbital must be stored. Second, parity information must be

stored so that for a pair of orbitals, it is possible to determine the parity of the occupancy

of the orbitals that lie between them. This parity determines the phase which results from

exchanging the occupancy of the two orbitals.

The occupation number basis stores the occupation directly in the qubit state (hence

the name). This implies that occupancy is a fully local variable in this basis; one may de-

termine the occupancy of an orbital by measuring a single qubit. However, this also implies

that the parity information is completely non-local. It is this fact that determines the struc-

ture of the qubit creation and annihilation operators in the Jordan-Wigner transformation.

Each such operator changes the state of a single qubit j (updating the occupancy informa-

tion) but also acts on all qubits with indices less than j to determine the parity of their

occupancy. This results in qubit operators, expressed as tensor products of Pauli matrices,

that contain strings of Z operators whose length grows with the number of qubits. One

could consider storing the parity information locally, so that the qubit basis states store

sums of orbital occupancies. Then determination of parity requires a single qubit operation.

However, updating occupancy information requires updating the state of a number of qubits

that again grows with the number of qubits. Hence this “parity basis” construction offers

no advantage over the Jordan Wigner transformation [56].
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The Bravyi-Kitaev transformation offers a middle ground in which both parity and

occupancy information are stored non-locally, so neither can be determined by measurement

of a single qubit [56, 243]. Both parity and occupancy information can be accessed by acting

on a number of qubits that scales as the logarithm of the number of qubits. This logarithmic

scaling makes the proposed mapping of electronic structure to a 2-local qubit Hamiltonian

efficient.

The consequences of this mapping, originally defined in [56], were computed for elec-

tronic structure in [243]. That work defines several subsets of qubits in which the parity

and occupancy information is stored. The occupancy information is stored in the update

set, whereas the parity information is stored in the parity set. These sets are distinct and

their size is strictly bounded above by the logarithm base two of the number of qubits.

The total number of qubits on which a qubit creation and annihilation operator may act

can be a multiple of the logarithm base two of the number of qubits. However, this mul-

tiple is irrelevant from the point of view of the scalability of the construction. Using the

Bravyi-Kitaev transformation, the spin Hamiltonian for molecular hydrogen in the minimal

(STO-3G) basis, as reported in [243], is given by

HH2 = f01 + f1Z0 + f2Z1 + f3Z2 + f1Z0Z1 + f4Z0Z2 + f5Z1Z3 + f6X0Z1X2 + f6Y0Z1Y2

+ f7Z0Z1Z2 + f4Z0Z2Z3 + f3Z1Z2Z3 + f6X0Z1X2Z3 + f6Y0Z1Y2Z3 + f7Z0Z1Z2Z3 (7.4)

where the integral values (in Hartree) are,

f0 = −0.81261, f1 = 0.17120, f2 = 0.16862, f3 = −0.22278, (7.5)

f4 = 0.12055, f5 = 0.17435, f6 = 0.04532, f7 = 0.16587.

In general, the Bravyi-Kitaev transformation applied to electronic structure produces an

n-qubit Hamiltonian which is (log n)-local, and has n4 real terms. This implies that each
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term has an even number of Y terms, or none.

7.4 Hamiltonian Gadgets

In order to embed electronic structure in an experimentally realizable Hamiltonian, we

define a scalable methodology for transforming our (log n)-local qubit Hamiltonian into a

2-local Hamiltonian with only ZZ, XX and XZ interaction terms. In this section we will

describe tools known as “gadgets” which allow us to simulate the target Hamiltonian with

these interactions.

Hamiltonian gadgets provide a method for embedding the eigenspectra (and sometimes

eigenvectors) of an n-qubit “target” Hamiltonian, denoted by Htarget, in a restricted (typ-

ically low-energy) subspace of a more constrained (N > n)-qubit “gadget” Hamiltonian,

denoted by H̃. To illustrate the general idea of gadgets, we describe how a 2-local Hamil-

tonian can embed a k-local Hamiltonian. Suppose that we have a gadget Hamiltonian, H̃,

which contains only 2-local terms which act on N = n+ a qubits. Then,

H̃ =
∑
i=1

fiOi, H̃|ψi〉 = λ̃i|ψ̃i〉, (7.6)

where {fi} are scalar coefficients, λ̃j and |ψ̃i〉 are the eigenvectors and eigenvalues of H̃,

and {Oi} are the 2-local interaction terms of the physical Hamiltonian. We choose our

interaction terms to be Hilbert-Schmidt orthogonal so that Tr [OiOj ] = 2nδi,j . We now

define an effective Hamiltonian which has support on the lowest 2n states of the gadget,

Heff ≡
2n−1∑
i=0

λ̃i|ψ̃i〉〈ψ̃i| =
∑
i=1

fiOi ⊗Π. (7.7)

Here Π is a projector onto a particular state (usually the lowest energy state) of the a ancilla

qubits and the {Oi} are a Hilbert-Schmidt orthogonal operator basis for operators on the

space of the n logical qubits. In other words, the most general representation of Heff is an
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Figure 7.2: Numerics comparing the minimum spectral gaps required to reduce the term
αX1Y2Z3 to 2-local with an error in the eigenspectrum of at most ε. On the left, ε is fixed
at 0.001 and gaps are plotted as a function of α. On the right, α is fixed at 0.1 and gaps are
plotted as a function of ε. Here we compare the bit-flip construction [165, 157], the Oliveira
and Terhal construction [216] and an improved variant on Oliveira and Terhal by Cao et
al. [63].

expansion of all possible tensor products acting on the logical qubits. In general, there is

no reason why fi = 0 on all non-2-local terms. Therefore a 2-local gadget on N = n + a

qubits can embed a (k > 2)-local, n-qubit Hamiltonian using a ancilla bits.

The use of perturbation theory to derive Hamiltonian gadgets was introduced by Kempe

et al. in their canonical proof showing that 2-Local Hamiltonian is QMA-Complete [165].

Their construction, which we refer to as the “bit-flip construction” for reasons that will

become obvious later on, was analyzed by Jordan and Farhi using a formulation of pertur-

bation theory due to Bloch [157]. Other perturbative gadget constructions were introduced

by Oliveira and Terhal to prove the QMA-Completeness of Hamiltonian on a square lattice

[216]. Following this work, Biamonte and Love used gadgets to show that XX and ZZ, or

XZ couplings alone, suffice for the QMA-Completeness of 2-local Hamiltonian [38]. Several

other papers improve these gadgets from an experimental perspective and introduce novel

constructions which are compatible with the protocol developed here [54, 98, 16, 63]. We
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note that different types of gadgets may have specific advantages when designing Hamilto-

nians for specific hardware. Results from [63] suggest that there is a rough tradeoff between

the number of ancillae required and the amount of control precision required. For instance,

Figure 7.2 indicates that bit-flip gadgets require less control precision than other gadget

constructions (but generally more ancillae). In this paper we focus on the bit-flip family of

gadgets.

Although we employ the perturbation theory approach here, it does require a high

degree of control precision and should be avoided when possible. We point out that when

the Hamiltonian is entirely diagonal there are exact gadgets [16] which can embed the

ground state with far less control precision and often far fewer ancillae but in a way that

does not necessarily conserve the gap scaling. Moreover, “frustration-free” gadgets have

been used extensively in proofs of the QMA-Completeness of various forms of quantum

satisfiability, and in restricting the necessary Hamiltonian terms for universal adiabatic

quantum computing [204, 203, 123, 70].

While several types of perturbation theory have been used to derive these gadgets,

we closely follow the approach and notation of Kempe et al. [165]. We wish to analyze

the spectrum of the gadget Hamiltonian, H̃ = H + V for the case that the norm of the

perturbation Hamiltonian, V , is small compared to the spectral gap between the ground

state and first excited state of the unperturbed Hamiltonian, H. To accomplish this we use

the Green’s function of H̃,

G̃ (z) ≡
(
z1− H̃

)−1
=
∑
j

|ψ̃j〉〈ψ̃j |
z − λ̃j

. (7.8)

We also define G (z) using the same expression except with H instead of H̃. Further, let

H = L+ ⊕ L− be the Hilbert space of H̃ where L+ is the “high-energy” subspace spanned

by eigenvectors of H̃ with eigenvalues λ̃ ≥ λ∗ and L− is the complementary “low-energy”
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subspace, spanned by eigenvectors of H̃ corresponding to eigenvalues of λ̃ < λ∗. Let Π±

correspond to projectors onto the support of L±. In a representation of H = L+ ⊕ L−, all

the aforementioned operators V , H, H̃, G (z) , G̃ (z) are block-diagonal so we employ the

notation that A±± = Π±AΠ± and,

A =

 A+ A+−

A−+ A−

 . (7.9)

Finally, we define the operator function known as the self-energy,

Σ− (z) ≡ z1− − G̃−1
− (z) . (7.10)

We use this notation to restate the “gadget theorem”.

Theorem 7.4.1. Theorem 6.2 in [165]. Assume that H has a spectral gap ∆ around the

cutoff λ∗; i.e. all of its eigenvalues are in (−∞, λ−] ∪ [λ+,+∞) where λ+ = λ∗ + ∆/2 and

λ− = λ∗ − ∆/2. Assume that ‖V ‖ ≤ ∆/2. Let ε > 0 be arbitrary. Assume there exists

an operator Heff such that λ (Heff) ⊂ [c, d] for some c < d < λ∗ − ε and, moreover, the

inequality ‖Σ− (z) − Heff‖ ≤ ε holds for all z ∈ [c− ε, d+ ε]. Then each eigenvalue λ̃j of

H̃− is ε-close to the jth eigenvalue of Heff.

Theorem 1 assures us that the eigenspectrum of the self-energy provides an arbitrarily

good approximation to the eigenspectrum of the low-energy subspace of the gadget Hamil-

tonian. This is useful because the self-energy admits a series expansion,

Σ− (z) = H− + V− +
∞∑
k=2

V−+G+ (V+G+)k−2 V+−. (7.11)

Using G+ = (z −∆)−1 1+ and H− = 0, we focus on the range z = O (1) � ∆ and find

that,

Heff ≈ V− +
1

∆

∞∑
k=2

V−+

(
V+

∆

)k−2

V+−. (7.12)
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We use this effective Hamiltonian to approximate our k-local target Hamiltonian, which

we now specify. The terms in our target Hamiltonian will have a locality that scales loga-

rithmically with the number of orbitals. We may write such a term:

T =
k−1⊗
i=0

Oi : Oi ∈ {Xi, Yi, Zi} ∀ i. (7.13)

One can always apply gadgets term by term to reduce locality; however, this may not be

the optimal procedure. In addition, we are interested in replacing even tensor powers of

the Y operator. For both these reasons we consider a slightly more general form of term

as a target for gadgetization. We use the fact that it is only the commuting nature of the

{Oi} that is important for the gadget to function. We therefore write our target term as a

product of k commuting operators, which includes the special case in which it is a product

of k operators acting on distinct tensor factors,

T ′ =
k−1∏
i=0

Oi : [Oi, Oj ] = 0 ∀ {i, j} (7.14)

Hence, we can represent the target Hamiltonian as a sum of r terms which are the product

of k commuting operators,

Htarget = Helse +
r∑
s=1

k−1∏
i=0

Os,i (7.15)

where all {Os,i} commute for a given s and Helse can be realized directly by the physical

Hamiltonian. While previous formulations of bit-flip gadgets [165, 157, 63] have gadgetized

operators acting on distinct tensor factors, it is only necessary that the operators com-

mute. Their action on distinct tensor factors is sufficient but not necessary for the gadget

construction. We take advantage of this property in order to realize Y Y terms without

access to such couplings by making the substitution, YiYj → −XiXjZiZj . Since XiXj

commutes with ZiZj , we can create this effective interaction with a bit-flip gadget. For

instance, suppose we have the term, Z0Y1Y2. We gadgetize the term A ·B ·C where A = Z0,
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B = −X1X2, and C = Z1Z2 and all operators A,B,C commute. We note that another

approach to removing Y Y terms is explained in [63].

We now introduce the form of the penalty Hamiltonian that acts only on the ancilla

qubits. Bit-flip gadgets introduce an ancilla system which has two degenerate ground-states,

usually taken to be |111...〉u and |000...〉u where u indicates that these kets refer to an ancilla

space. For each of the r terms we use a separate ancilla system of the form,

Hs =
∆

2 (k − 1)

∑
0≤i<j≤k−1

(
1− Zus,iZus,j

)
. (7.16)

Again, we use u to indicate that operators act on an ancilla; e.g. the label u3,2 indicates

the ancilla corresponding to O3,2 (the second operator in the third term). For each term we

follow Farhi and Jordan in introducing an ancilla system connected by a complete graph

with equal and negative edge weights. Thus, the ground state of the ancilla system is

spanned by |111...〉u and |000...〉u.

Next, we introduce the perturbation Hamiltonian,

V = Helse + Λ + µ
r∑
s=1

k−1∑
i=0

Os,iXus,i , (7.17)

where µ = k

√
∆k−1

k! and Λ is a 2-local operator on logical bits which will be discussed later.

The effect of this Hamiltonian on the low energy subspace is to introduce virtual excitations

into the high energy space that modify the low energy effective Hamiltonian. Only terms

which start and end in the ground state contribute to the perturbation series for the self-

energy (see, for example, Figure 7.3). Thus, the gadget will produce the target term at order

k in which a transition between the two degenerate ground states of the ancillae requires

that each of the Xu terms in the perturbation act exactly once to flip all r · k bits from one

ground state to the other. Crucially, the order in which the ancillae are flipped does not
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matter since the operators Os,i commute for a given s. The complete gadget is

H̃ = Λ +Helse +

r∑
s=1

[
µ

k−1∑
i=0

Os,iXus,i (7.18)

+
∆

2 (k − 1)

∑
0≤i<j≤k−1

(
1− Zus,iZus,j

) .
and is related to the target Hamiltonian and effective Hamiltonian by,

H̃− = Htarget ⊗Π− = Heff (7.19)

for the appropriate choice of Λ and ∆ � ‖V ‖ where Π− projects onto the ancillae ground

space,

Π− = |000〉 〈000|u + |111〉 〈111|u . (7.20)

To illustrate the application of such a gadget and demonstrate how Λ is chosen, we scalably

reduce the locality of molecular hydrogen and remove all Y terms in the next section.

For the example Htarget = A ·B · C +Helse, the perturbation is

V = µAXa + µBXb + µCXc +Helse + Λ. (7.21)

Its components in the low energy subspace, as in the block diagonal representation of Eq. 7.9

is:

V− = (Helse + Λ)⊗ (|000〉〈000|u + |111〉〈111|u) . (7.22)

The projection into the high energy subspace is:

V+ = (Helse + Λ)⊗

 ∑
{a,b,c}∈B3

|a, b, c〉〈a, b, c|u

− V− (7.23)

+ µA⊗ (|0, 1, 0〉〈1, 1, 0|u + |1, 1, 0〉〈|0, 1, 0|u + |0, 0, 1〉〈1, 0, 1|u + |1, 0, 1〉〈0, 0, 1|u)

+ µB ⊗ (|1, 0, 0〉〈1, 1, 0|u + |1, 1, 0〉〈|1, 0, 0|u + |0, 0, 1〉〈0, 1, 1|u + |0, 1, 1〉〈0, 0, 1|u)

+ µC ⊗ (|1, 0, 0〉〈1, 0, 1|u + |1, 0, 1〉〈|1, 0, 0|u + |0, 1, 0〉〈0, 1, 1|u + |0, 1, 1〉〈0, 1, 0|u) .
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The projections coupling the low and high energy subspaces are:

V+− = µA⊗ (|1, 0, 0〉〈0, 0, 0|u + |0, 1, 1〉〈1, 1, 1|u) (7.24)

+ µB ⊗ (|0, 1, 0〉〈0, 0, 0|u + |1, 0, 1〉〈1, 1, 1|u) + µC ⊗ (|0, 0, 1〉〈0, 0, 0|u + |1, 1, 0〉〈1, 1, 1|u)

and V−+ = (V+−)†. Substituting these values into Eq. 7.12 we see that at order k = 3 a

term appears with the following form,

1

∆2
V−+V+V+− =

µ3

∆2
(ABC +ACB +BCA+ CAB +BAC + CBA)→ ABC. (7.25)

These terms arise because all ancilla qubits must be flipped and there are six ways of doing

so, representing 3! (in general this will be k! for a gadget with k ancillae) combinations of

the operators. These six terms are represented diagrammatically in Figure 7.3. Note that it

is the occurrence of all orderings of the operators A, B and C that imposes the requirement

that these operators commute. Hence, in order to realize our desired term we see that

µ = k

√
∆k−1

k! . A few competing processes occur which contribute unwanted terms but these

terms either vanish with increasing spectral gap ∆, or they can be removed exactly by

introducing terms into the compensation term Λ. A simple way to compute Λ is to evaluate

the perturbation series to order k and choose Λ so that problematic terms disappear.

At higher orders we encounter “cross-gadget contamination” which means that pro-

cesses occur involving multiple ancilla systems, causing operators from different terms to

interact. For a 3-operator gadget, such terms will always only contribute at order O
(
∆−3

)
.

In reductions which require going to higher orders, these terms do not necessarily depend

on ∆, and so may introduce unwanted terms into the effective Hamiltonian. For instance,

Figure 7.4 shows an example of the four processes which occur at fourth order for a multiple

term, 4-operator reduction. The diagrams involving multiple ancilla registers are examples

of cross-gadget contamination.
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V+− C

V+
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Figure 7.3: The six equivalent bit-flip processes at third order which produce the effective
interaction A · B · C. Each of these diagrams also occurs backwards on the part of the
ground state in |111〉.

However, if terms are factored into tensor products of operators that square to the

identity (as is the case for products of Pauli operators, which is always possible), cross-

gadget contamination can only contribute a constant shift to the energy which can be

compensated for in Λ. This is because any process contributing to the perturbation se-

ries which does not transition between the two different ground states must contain an

even multiple of each operator and if we choose to act on the non-ancilla qubits with

operators that square to identity we obtain only a constant shift. Consider the two cross-

gadget terms represented in these diagrams: A1C
2
2A1 = A11A1 = 1 and D2B1D2B1 =

(D2B1)2 = 1. At even higher orders, individual cross-gadget terms might not equal a

constant shift (i.e. the sixth order term A1A2A3A2A1A3) but the occurrence of all com-

binations of operators and the fact that all Pauli terms either commute or anti-commute

will guarantee that such terms disappear. In the sixth order example, if [A1, A2] = 0 then

A1A2A3A2A1A3 = A1A2A3A1A2A3 = (A1A2A3)2 = 1, otherwise [A1, A2]+ = 0 which
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|0000〉
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|0000〉

|1000〉 |1100〉 |1110〉
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V+− A2
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B2

V+
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V−+D2

Figure 7.4: Diagrams showing an example of each of the four processes at fourth order. In
the upper left is the process B1 (Helse + Λ)2B1. In the upper right is the process A1C

2
2A1.

In the lower left is the process D2B1D2B1. In the lower right is the process A2B2C2D2.

implies that A1A2A3A2A1A3 +A1A2A3A1A2A3 = 0.
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7.5 Example Problem: Molecular Hydrogen

We begin by factoring and rewriting the k-local molecular hydrogen Hamiltonian from

Eq. 7.4 into a 4-local part and a 2-local part so that HH2 = H4L +H2L where,

H4L = (f4Z0 + f3Z1)Z2Z3 + (Z1 + Z1Z3) (f6X0X2 + f6Y0Y2 + f7Z0Z2) (7.26)

H2L = f01 + f2Z1 + f3Z2 + f4Z0Z2 + f5Z1Z3 + f1Z0 (1 + Z1) . (7.27)

In order to reduce HH2 to a 2-local ZZ/XX/XZ-Hamiltonian we further factor H4L to

remove Y Y terms,

H4L = (f4Z0 + f3Z1)︸ ︷︷ ︸
A1

Z2︸︷︷︸
B1

Z3︸︷︷︸
C1

+ f7Z0︸︷︷︸
A2

Z2︸︷︷︸
B2

(Z1 + Z1Z3)︸ ︷︷ ︸
C2

+ f6X0X2︸ ︷︷ ︸
A3

(1− Z0Z2)︸ ︷︷ ︸
B3

(Z1 + Z1Z3)︸ ︷︷ ︸
C3

= A1B1C1 +A2B2C2 +A3B3C3. (7.28)

Within each term, the operators all commute so that [Ai, Bi] = [Ai, Ci] = [Bi, Ci] = 0. We

emphasize that factoring terms into commuting operators is always possible and necessary

in order for bit-flip gadgets to work correctly.

Each of the operators defined in Eq. 7.28 will have a corresponding ancilla qubit labelled

to indicate the operator with which it is associated, e.g. the ancilla for operator B2 has

label b2. Our unperturbed Hamiltonian is a sum of fully connected ancilla systems in which

each ancilla system corresponds to a term,

H1 =
9∆1

4
1− ∆1

4
(Za1Zb1 + Za1Zc1 + Zb1Zc1 (7.29)

+ Za2Zb2 + Za2Zc2 + Zb2Zc2 + Za3Zb3 + Za3Zc3 + Zb3Zc3) .

The spectral gap and Hamiltonian have the subscript “1” to associate them with the first
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of two applications of perturbation theory. We perturb the ancilla system with the Hamil-

tonian,

V1 = µ1 (A1Xa1 +B1Xb1 + C1Xc1 +A2Xa2 +B2Xb2 (7.30)

+ C2Xc2 +A3Xa3 +B3Xb3 + C3Xc3) +H2L + Λ1

where µ1 =
3

√
∆2

1
6 and Λ1 is a 2-local compensation Hamiltonian acting on the logical qubits

only. Later on, Λ1 will be chosen to cancel extraneous terms from the perturbative expan-

sion. The interaction terms involving A, B, and C will arise at third order (V−+V+V+−)

from processes which involve a transition between the two degenerate ground states of the

ancilla systems. This occurs at third order because to make the transition |000〉 
 |111〉,

we must flip all three ancilla bits in each term by applying the operators Xa, Xb, and Xc.

Since these operators are coupled to A, B, and C, sequential action of bit flip operators

yields our desired term. Because the operators commute, the order of the bit flipping does

not matter. We now calculate the effective Hamiltonian using the perturbative expansion

of the self-energy from Eq. 7.12.

7.5.1 Second Order

The only processes which start in the ground state and return to the ground state at

second order are those which flip a single bit and then flip the same bit back. Thus, effective

interactions are created between each operator and itself,

− 1

∆1
V−+V+− = − µ

2
1

∆1

(
A2

1 +B2
1 + C2

1 +A2
2 +B2

2 + C2
2 +A2

3 +B2
3 + C2

3

)
(7.31)

= − 3

√
∆1

36

[(
9 + f2

3 + f2
4 + f2

6 + f2
7

)
1 + 2f3f4Z0Z1 − 2Z0Z2 + 4Z3

]
.

These processes are shown in Figure 7.5.
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|000〉

|100〉

V+− A A V−+

|000〉

|010〉

V+− B B V−+

|000〉

|001〉

V+− C C V−+

Figure 7.5: The three bit-flip processes at second order. These occur for each term. Note
that each of these diagrams occurs in reverse for the part of the ground state in |111〉.

The second order effective Hamiltonian at large ∆1 is,

H
(2)
eff = H2L + Λ1 − 3

√
∆1

36

[(
9 + f2

3 + f2
4 + f2

6 + f2
7

)
1 (7.32)

+2f3f4Z0Z1 − 2Z0Z2 + 4Z3] +O
(
∆−2

1

)
.

7.5.2 Third Order

The target Hamiltonian terms appears at third order from processes that transition

between degenerate ground states. However, there is also an additional, unwanted process

which occurs at this order. This competing process involves one interaction with H2L and

Λ1 in the high-energy subspace,

1

∆2
1

V−+V+V
(1)

+− =
µ2

1

∆2
1

[A1 (H2L + Λ1)A1 +B1 (H2L + Λ1)B1 + C1 (H2L + Λ1)C1 (7.33)

+A2 (H2L + Λ1)A2 +B2 (H2L + Λ1)B2 + C2 (H2L + Λ1)C2 +A3 (H2L + Λ1)A3

+B3 (H2L + Λ1)B3 + C3 (H2L + Λ1)C3].

These processes are illustrated diagrammatically in Figure 7.6.

The process we want occurs with the ancilla transition |000〉 
 |111〉 which flips all

three bits (for each term separately since they have different ancillae). There are 3! = 6
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|000〉

|100〉 |100〉

|000〉

V+− A

V+

H2L + Λ1

V−+A

|000〉

|010〉 |010〉

|000〉

V+− B

V+

H2L + Λ1

V−+B

|000〉

|001〉 |001〉

|000〉

V+− C

V+

H2L + Λ1

V−+C

Figure 7.6: Diagrams for the competing process encountered at third order. Note that each
of these diagrams can also occur backwards if the system starts in |111〉.

possible ways to flip the bits for each term, (these processes are illustrated in Figure 7.3),

1

∆2
1

V−+V+V
(2)

+− = 6
µ3

1

∆2
1

(A1B1C1 +A2B2C2 +A3B3C3)

= A1B1C1 +A2B2C2 +A3B3C3. (7.34)

BecauseH2L has no ∆1 dependence and µ1 is orderO
(

∆
2/3
1

)
, terms such as

(
µ2

1/∆
2
1

)
A1H2LA1

will vanish in the limit of large ∆1; therefore, the third order effective Hamiltonian is,

H
(3)
eff = H2L + Λ1 − 3

√
∆1

36

[(
9 + f2

3 + f2
4 + f2

6 + f2
7

)
1 (7.35)

+ 2f3f4Z0Z1 − 2Z0Z2 + 4Z3] +
µ2

1

∆2
1

(A1Λ1A1 +B1Λ1B1

+C1Λ1C1 +A2Λ1A2 +B2Λ1B2 + C2Λ1C2 +A3Λ1A3

+ B3Λ1B3 + C3Λ1C3) +A1B1C1 +A2B2C2 +A3B3C3

with error O
(
∆−3

1

)
. We see that if Λ1 = 1

∆1
V−+V+− then the unwanted contribution at

third order will go to zero in the limit of large ∆1 and the second order term will cancel

exactly with Λ1. Thus,

H
(3)
eff ≈ H2L +A1B1C1 +A2B2C2 +A3B3C3 (7.36)

HH2 → H1 + V1 (7.37)
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where “→” denotes an embedding. There are still 3-local terms remaining in V1,

V1 = µ1 (f4Z0 + f3Z1)Xa1 + µ1X2 (Xb1 +Xb2) (7.38)

+ µ1Z3Xc1 + µ1f7Z0Xa2 + µ1Z1 (Zc2 +Xc3) + µ1Xb3

+ µ1Z1︸ ︷︷ ︸
A4

Z3︸︷︷︸
B4

(Xc2 +Xc3)︸ ︷︷ ︸
C4

+µ1f6X0︸ ︷︷ ︸
A5

X2︸︷︷︸
B5

Xa3︸︷︷︸
C5

+ (−µ1)Z0︸ ︷︷ ︸
A6

Z2︸︷︷︸
B6

Xb3︸︷︷︸
C6

+H2L + Λ1.

With this notation we reorganize our Hamiltonian a final time, so that HH2 → H2L +H3L,

H3L = A4B4C4 +A5B5C5 +A6B6C6 (7.39)

H2L =

(
f0 +

9∆1

4

)
1 + f2Z1 + f3Z2 + f4Z0Z2 + f5Z1Z3 + f1Z0 (1 + Z1) (7.40)

− ∆1

4
(Za1Zb1 + Za1Zc1 + Zb1Zc1 + Za2Zb2 + Za2Zc2 + Zb2Zc2 + Za3Zb3 + Za3Zc3

+Zb3Zc3) +
3

√
∆2

1

6
[(f4Z0 + f3Z1)Xa1 + Z3Xc1 + f7Z0Xa2 +X2 (Xb1 +Xb2) +Xb3

+Z1 (Xc2 +Xc3)] +
3

√
∆1

36

[(
9 + f2

3 + f2
4 + f2

6 + f2
7

)
1 + 2f3f4Z0Z1 − 2Z0Z2 + 4Z3

]
.

The third order gadget we need to reduce H3L takes exactly the same form as before except

with the term labels 1, 2, 3 exchanged for the term labels 4, 5, 6. The components of the

final gadget are

H2 =
9∆2

4
1− ∆2

4
(Za4Zb4 + Za4Zc4 + Zb4Zc4 (7.41)

+ Za5Zb5 + Za5Zc5 + Zb5Zc5 + Za6Zb6 + Za6Zc6 + Zb6Zc6)

and

V2 = µ2 (A4Xa4 +B4Xb4 + C4Xc4 +A5Xa5 (7.42)

+ B5Xb5 + C5Xc5 +A6Xa6 +B6Xb6 + C6Xc6) +H2L + Λ2
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where µ2 =
3

√
∆2

2
6 and

Λ2 =
µ2

2

∆2

(
A2

4 +B2
4 + C2

4 +A2
5 +B2

5 + C2
5 +A2

6 +B2
6 + C2

6

)
=

3

√
∆2

6

[
7
3
√

6
+ ∆

4/3
1

(
1

3
+
f2

6

6

)]
1 +

3

√
2∆2

9
Xc2Xc3 . (7.43)

This time the spectral gap and Hamiltonian have the subscript “2” to associate them with

our second application of perturbation theory. We have thus shown the embedding HH2 →

H2 + V2. We present an interaction graph for the embedded Hamiltonian in Figure 7.7.

0
1

2

a1

a2

a5

a6

3

a4

c2

c3

b1

b2

b5

b6

b4

c1

a3

b3

c5

c4

c6

Figure 7.7: Interaction graph for embedded molecular hydrogen Hamiltonian. Each node
represents a qubit. The solid, black edges represent ZZ terms and the black loops represent
local Z terms. The dashed, red edges represent XX terms and the red loops represent local
X terms. The dotted, blue edges represent XZ terms. It is easy to see the unperturbed
Hamiltonians corresponding to the six 3-operator terms (the black triangles).
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7.6 Conclusion

We have presented a fully general method for mapping any molecular electronic struc-

ture instance to a 2-local Hamiltonian containing only ZZ, XX and XZ terms. Our method

is scalable in the sense that all experimental resources (qubits, control precision, graph de-

gree) scale polynomially in the number of orbitals. We used perturbative gadgets which

embed the entire target Hamiltonian (as opposed to just the ground state), thus guaran-

teeing that the eigenvalue gap is conserved under our reduction. Furthermore, we showed

that bit-flip gadgets can be applied to remove experimentally challenging Y Y terms. The

resulting Hamiltonian is suitable for implementation in superconducting systems, quantum

dots and other systems of artificial spins with the correct engineered interactions.

Further reduction of the types of interactions present is possible, to either ZZ and XX

terms or ZZ and XZ terms, using the techniques of [38]. This makes the required inter-

actions for simulating electronic structure Hamiltonians equivalent to the requirements of

universal adiabatic quantum computation [38]. However, repeated reduction of the Hamilto-

nian results in more stringent precision requirements. The chosen target set of interactions

strikes a balance between control precision and a reasonable set of distinct types of con-

trollable interaction. The techniques developed here could also be applied to interacting

fermion problems on the lattice. However, in that case it is possible to improve beyond

the Bravyi-Kitaev mapping and exploit the locality of the interactions to directly obtain

Hamiltonians whose locality is independent of the number of orbitals [274].

We intend to follow-up this work with an analysis of hardware requirements for im-

plementation on a system with superconducting qubits. A detailed scaling study of the

exact resources needed for this algorithm as a function of molecular size is underway. We

propose to read out energy eigenvalues using the tunneling spectroscopy of a probe qubit.
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This technique has already been demonstrated experimentally with rf SQUID flux qubits

in [29]. In this scheme, a probe qubit is coupled to a single qubit of the simulation. Tun-

neling transitions allow the probe qubit to flip when the energy bias of the probe is close

to an eigenvalue of the original system. Hence detection of these transitions reveals the

eigenspectrum of the original system. In this way, we would be able to directly measure

the eigenspectra of the molecular systems embedded into the spin Hamiltonian using the

techniques developed in the present paper.

There has been rapid recent progress in new classical algorithms, such as DMRG (den-

sity matrix renormalization group) and related tensor network methods, and proving com-

plexity and approximability results pertaining to minimal resource model Hamiltonians.

By using and understanding the techniques we have introduced in this paper, problems in

chemistry can be reduced to such models and these discoveries can be leveraged to make

advances in electronic structure theory. However, we note that the spin Hamiltonians that

result from the mapping developed here will be non-stoquastic, and classical simulation

techniques will therefore suffer from the fermionic sign problem [55]. This further moti-

vates the construction of quantum hardware to address the electronic structure problem by

quantum simulation of these spin Hamiltonians.
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Chapter 8

Scaling of Trotter-Suzuki Errors in Quantum

Chemistry Simulation

Apart from minor modifications, this chapter originally appeared as [15]:

“Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation”. Ryan Bab-
bush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik and Nathan Wiebe. Physical
Review A. Volume 91, Number 2: 022311. 2015.

Abstract

Although the simulation of quantum chemistry is one of the most anticipated applica-

tions of quantum computing, the scaling of known upper bounds on the complexity of these

algorithms is daunting. Prior work has bounded errors due to Trotterization in terms of the

norm of the error operator and analyzed scaling with respect to the number of spin orbitals.

However, we find that these error bounds can be loose by up to sixteen orders of magnitude

for some molecules. Furthermore, numerical results for small systems fail to reveal any

clear correlation between ground state error and number of spin orbitals. We instead argue

that chemical properties, such as the maximum nuclear charge in a molecule and the filling

fraction of orbitals, can be decisive for determining the cost of a quantum simulation. Our

analysis motivates several strategies to use classical processing to further reduce the required
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Trotter step size and to estimate the necessary number of steps, without requiring addi-

tional quantum resources. Finally, we demonstrate improved methods for state preparation

techniques which are asymptotically superior to proposals in the simulation literature.

8.1 Introduction

The idea that the simulation of quantum systems would be efficient on a quantum

computer dates back to Feynman’s original work on quantum mechanical computers [107].

Almost a decade after Abrams and Lloyd [1] demonstrated a scalable scheme for the quan-

tum simulation of fermions, Aspuru-Guzik et al. [11] proposed that these techniques could

be used to efficiently determine the ground state energy of molecular Hamiltonians, solving

what chemists refer to as the electronic structure problem. Since then, a great deal of work

has focused on specific strategies for the quantum simulation of quantum chemistry. While

most of these approaches are based on a second quantized representation of the problem

making use of both phase estimation and Trotterization [217, 11, 277, 276, 285, 77, 243,

281, 140, 224, 195], recently some have proposed alternative schemes such as the quantum

variational eigensolver [223], an adiabiatic algorithm [14] and an oracular approach based

on a 1-sparse decomposition of the configuration interaction Hamiltonian [264]. In fact,

quantum chemistry is such a popular application that toy problems in chemistry have been

solved on a variety of experimental quantum information processors which include quantum

optical systems [175, 223], nuclear magnetic resonance [97] and solid-state Nitrogen-vacancy

center systems [279].

Recently, a series of papers [281, 140, 224, 195] has provided improved analytical and

empirical bounds on the resources required to simulate classically intractable benchmarks

using a quantum computer. While the initial findings in [281] were pessimistic, improve-
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ments in both bounds and algorithms introduced in [140] and [224] have reduced these

estimates by more than thirteen orders of magnitude for simulations of Ferredoxin. The

primary contribution of [195] was to point out that in the limit of large molecules, the use

of a local basis can substantially reduce asymptotic complexity of these algorithms. In this

paper we build on the findings of [281, 140, 224, 195] to offer new perspectives regarding

the scaling of the second quantized, Trotterized, phase estimation algorithm for quantum

chemistry. In particular, we question a basic assumption implicit in all of these works: that

the Trotter error explicitly depends on the number of spin orbitals being simulated.

Instead, we argue that chemical properties such as the filling fraction of electrons in

a given basis, the particular choice of orbital basis and the nuclear potential play a more

significant role in determining the Trotter error than does the number of spin orbitals for

small molecules. We support these arguments with numerical analysis based on the explicit

computation of the Trotter error operator derived in [224]. Additionally, we show that clas-

sically tractable approximations to the ground state wavefunction can be used to efficiently

estimate the Trotter error expected in a particular ground state simulation. This result is

of significant practical importance because without a procedure for estimating the Trotter

error, one must rely on analytical error bounds which (as we show) tend to overestimate the

ground state error by many orders of magnitude. Finally, we show asymptotically improved

circuits for state preparation based on these classical ansatz states.

8.1.1 The electronic structure problem

The electronic structure problem is to estimate the energy of electrons interacting in a

fixed nuclear potential to within an additive error of ε. This Hamiltonian may be written
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as,

H = −
∑
i

∇2
ri

2
−
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

1

|ri − rj |
(8.1)

where we have used atomic units, {Ri} denotes nuclear coordinates, {ri} electronic coordi-

nates, and {Zi} nuclear charge. Often times, the utility of these energies is to provide Born-

Oppenheimer surfaces for molecular modeling at finite temperatures. Usually, chemists are

interested in obtaining free energy landscapes which provide mechanistic insight into chem-

ical events of significant practical importance such as drug binding, catalysis and material

properties. These free energy landscapes must be extremely accurate as chemical rates are

exponentially sensitive to changes in free energy. Under typical laboratory conditions of

room temperature and atmospheric pressure, “chemical accuracy” is required which sets ε

to the order of 10−3 hartree [145] where 1 hartree is ~2

mee2a2
0

and me, e and a0 denote the

mass of an electron, charge of an electron and Bohr radius, respectively.

We represent the electronic structure Hamiltonian in second quantization [145] as this

requires significantly fewer qubits than approaches using the first quantized Hamiltonian

[298, 162],

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras (8.2)

in which creation and annihilation operators act on a basis of orthogonal spin orbitals, {ϕi}

and the one-electron and two-electron integrals are

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
ϕq(σ) (8.3)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(8.4)

where σi contains spatial and spin degrees of freedom for the electrons. The operators a†p
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and ar obey the fermionic anti-commutation relations

{a†p, ar} = δp,r, {a†p, a†r} = {ap, ar} = 0. (8.5)

In principle, the number of spin orbitals used to represent a molecule is not a property of

the molecule. However, the quantum chemistry community has certain conventions (based

on periodic trends) for the number of spin orbitals that should be used for each atom in the

period table, depending on the desired level accuracy in the calculation. In a minimal basis,

first period atoms receive two spin orbitals, second period atoms receive 10 spin orbitals

and third period atoms receive 18 spin orbitals. The reasoning behind this scheme is that

the most important orbitals are those which have a principal quantum number less than or

equal to that of the highest occupied orbital according to Hund’s rules.

In addition to choosing a spatial basis, one must choose an orbital basis that associates

orthogonal spatial functions constructed from the spatial basis, with the second quantized

sites. Throughout this paper we investigate three such orbital basis sets: the “local basis” is

the set of orthogonal atomic orbitals discussed in [195], the “canonical basis” is the Hartree-

Fock molecular orbitals, and the “natural basis” is that which diagonalizes the one-electron

density matrices associated with the exact ground state1. It is worth pointing out that

the canonical orbitals are the natural orbitals of a Hartree-Fock calculation using a single

determinant.

From Eq. (8.2), we see that the number of terms in the Hamiltonian scales as Θ
(
N4
)

2.

However, McClean et al. [195] recently pointed out that the basis functions decay super-

1The natural basis can be well approximated without performing an exact calculation by repeating
truncated configuration interaction calculations from reference states defined using the natural orbitals
associated with a previous solution.

2We use the typical computer science convention that f ∈ Θ(g), for any functions f and g, if f is
asymptotically upper and lower bounded by a multiple of g, O indicates an asymptotic upper bound, Õ
indicates an asymptotic upper bound up to polylogarithmic factors, Ω indicates the asymptotic lower bound
and f ∈ o(g) implies f/g → 0 in the asymptotic limit.
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exponentially with distance in a local basis. This means that the integrals in Eq. (8.3)

and Eq. (8.4) will be negligibly small for many of the orbitals which in turn allows the

number of terms in the Hamiltonian to be truncated to Õ
(
N2
)

or Õ (N) depending on the

size and geometry of the molecule. All of the particular benchmarks studied in this paper

involve less than four atoms and so we consider the number of non-negligible terms in the

Hamiltonian to scale as Θ(N4), even in a local basis.

8.1.2 Quantum simulation of quantum chemistry

The electronic structure problem is classically intractable to current methods even after

discretizing the Hilbert space. This intractability can be understood as a consequence of

the exponential size of the Hilbert space for the second quantized Hamiltonian. Similarly,

existing methods such as configuration interaction, require consideration of a number of

electronic configuration states that increases exponentially as the approximation becomes

more exact. Quantum simulation offers a way to circumvent these challenges by directly

mapping the chemical system onto a set of qubits that can be manipulated using a quantum

computer. The particular problem that we focus on is the problem of computing the ground

state energy of the system. Other important physical quantities such as dipole moments

can be found by evaluating their expectation value with respect to the prepared state. The

simulation problem that we consider is as follows.

Problem: Assume that the user is provided with a classical database containing hpq
and hpqrs for a molecule with N spin orbitals and a blackbox state preparation algorithm that
prepares an approximation |0̃〉 to the ground state |0〉 such that |〈0̃|0〉|2 ∈ Ω

(
poly

(
N−1

))
.

Design a quantum circuit that uses these elements to estimate the ground state energy
of Eq. (8.2) within additive error ε using a minimal expected number of gates and qubits.
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Most proposals for quantum computer simulation of chemical systems use similar strate-

gies to solve this problem. The first step involves translating the basis of the second quan-

tized Hamiltonian to that of the quantum computer. The standard way to do this is to use

the occupation number basis in which individual qubits encode the occupation of a spin

orbital. For example, the state |00011〉 would refer to an electronic state where the first

two spin orbitals are occupied and the remaining three spin orbitals are unoccupied.

Although representing states is trivial, representing the Hamiltonian is not. The reason

is that, although it may seem that the creation and annihilation operators a†i and ai are

translated to (Xi− iYi)/2 and (Xi+ iYi)/2 respectively, the resulting operators do not obey

the anti-commutation relations in Eq. (8.5). This problem is addressed by using either

the Jordan-Wigner transformation [257, 11] or the Bravyi-Kitaev transformation [56, 243]

to modify these operators to have the correct anti-commutation relations. Importantly,

the operators that result from using either of these representations are tensor products of

Pauli operations. While the number of such terms in the transformed Hamiltonian scales

as O(N4) using both approaches, the locality (i.e. many-body order) of these terms scales

as O (N) under the Jordan-Wigner transformation and O (logN) under the Bravyi-Kitaev

transformation [243].

Since exponentials of a polynomial number of Pauli operators are known to be efficiently

simulatable, e−iHt |ψ̃〉 can be implemented using a polynomial number of gates using a

quantum computer. There are many different approaches that can be used to achieve this

and the majority of these rely on Trotter decompositions, which we will discuss in more

detail later. However, each of these methods solves a dynamical simulation problem and

does not directly solve the ground state energy estimation problem. The phase estimation

algorithm provides the connection needed to relate the eigenvalue estimation problem to a
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dynamical simulation problem.

The quantum phase estimation algorithm (PEA) uses a quantum computer to effi-

ciently estimate energies from the phases {θn (t)} accumulated during time evolution under

a propagator UH (t) associated with the Hamiltonian of interest H; i.e.

eiHt |n〉 = UH (t) |ψn〉 = eiθn(t) |ψn〉 (8.6)

θn (t) = (Ent) mod 2π (8.7)

where {|ψn〉} and {En} represent eigenstates and eigenvalues of H. If we initialize a quan-

tum register in a state |ψ̃0〉 then time evolution under a static Hamiltonian produces the

superposition,

UH (t) |ψ̃0〉 =

2N−1∑
n=0

eiθn(t) |ψn〉〈ψn|

 |ψ̃0〉 . (8.8)

Measuring the phase of this superposition projects the system to state |ψ0〉 with probability

|〈ψ0|ψ̃0〉|2. Thus, under the assumptions of our problem, at most a polynomial number of

repetitions of the phase estimation algorithm will be needed to find the ground state energy.

There are obviously two contributions to the cost of solving the electronic structure

problem via quantum computing: (a) the overlap |〈ψ0|ψ̃0〉|2 and (b) the cost of simulating

the dynamics of the system. Since the overlap is independent of the simulation method used

(to second-order in perturbation theory) most work on the topic has focused on reducing

the latter cost. We discuss both of these issues in the following.

Our main focus is on Trotter-Suzuki based methods, which involve a discretization of

the time evolution known as Trotterization. Trotterization approximates UH (t) as a series

of time steps known as “Trotter slices” during which only one of the Hamiltonian terms

is actually active. A Trotter series containing µ Trotter slices is said to have a “Trotter

number” of µ and the error in this approximation, which arises from non-commutativity of
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Figure 8.1: Spin-orbitals versus ground state Trotter error for various molecular benchmarks
in three different basis sets. Despite analytical predictions to the contrary (in prior works),
it would appear that no clear relation holds between the Trotter error induced on the ground
state and the number of spin orbitals for these benchmarks.

the Hamiltonian terms, vanishes as µ→∞. For a fixed order Trotter-Suzuki formula, each

Trotter slice contains a number of gates that is proportional to the number of terms in the

Hamiltonian, m. The value of m depends on basis and molecular size and its scaling with

N ranges from Õ (N)− Õ
(
N4
)
. Since the the total complexity of the quantum simulation

circuit for chemistry is Õ (mµ), understanding how both of these terms scales is vital for

determining whether quantum chemistry will be viable on small scale quantum computers.

The big question that several recent papers have attempted to address is: “how does

µ scale with N?” Indeed, this issue is central to the optimizations introduced in many

of these simulation methods. Given the importance of this issue in the literature, the

data in Figure 8.1 may come as a complete surprise. We see there that for modestly

small molecules, the error in the second-order Trotter-Suzuki formula does not have a clear

functional dependence on N . This is especially surprising for cases of canonical and natural
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orbitals where there is little evidence of even an increasing trend in the error as a function of

N . This lack of monotonicity is particularly striking for the atoms N, O, F, Ne which show

negligibly small Trotter errors. In fact, for these molecules (along with others such as Helium

Hydride and Lithium Hydride) µ = 1 or µ = 2 is sufficient to achieve chemical accuracy

despite the fact that their Hamiltonians contain hundreds of non-commuting terms.

In order to understand why the Trotter error deviates so strongly from prior expecta-

tions, we analyze a leading order perturbative expression for the error in the second-order

Trotter formula. The insights gained from this analysis raise an interesting point: although

there is not a strong correlation between N and the Trotter error, other chemical properties

play a decisive role in the Trotter error. This forces us to reconsider how we conceptualize

the scaling of quantum chemistry simulation relative to prior results in quantum simulation,

e.g. [1, 11, 162, 4, 71, 34, 35, 140, 224, 195].

8.2 Analysis of Trotter error operator

The second-order Trotter-Suzuki decomposition allows us to approximate the propaga-

tor as a series of unitaries corresponding to the individual Hamiltonian terms. In particular,

the second-order3 Trotter formula gives us,

UTS
H (∆t) ≡

m−1∏
α=0

Um−α

(
∆t

2

) m∏
α=1

Uα

(
∆t

2

)
(8.9)

where,

Uα

(
∆t

2

)
= e−iHα∆t/2. (8.10)

3Note that in work that focuses on high-order Trotter-Suzuki formulas Eq. (8.9) is often called the first-
order Trotter Suzuki formula because it is the lowest iteration order in Suzuki’s iterative construction of
high-order splitting formulas.
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The second-order formula applies each unitary twice with the second half of the Trotter

series in reverse order of the first half to cancel out error terms in the ground state energy

that would arise at first-order in ∆t. We use this to make the approximation, valid for

sufficiently small values of ∆t, that

U = eiHt ≈
(
UTS (∆t)

)µ
, ∆t = t/µ. (8.11)

Poulin et al. [224] focus on bounding the error in this approximation with the Baker-

Campbell-Hausdorff (BCH) formula,

log
(
eXeY

)
= X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + ... (8.12)

By recursively applying Eq. (8.12) to Eq. (8.9), the error operator may be written as V =∑∞
j=1 V

(j). The leading order term in this expansion is,

V (1) = −∆2
t

12

∑
α≤β

∑
β

∑
γ<β

[
Hα

(
1− δα,β

2

)
, [Hβ, Hγ ]

]
(8.13)

with errors on the order of O
(
∆4
t

)
.

The leading order shift in the energy of the ith eigenstate is given by non-degenerate

perturbation theory as,

∆Ei = 〈ψi|V (1) |ψi〉+O
(
∆4
t

)
(8.14)

where H |ψi〉 = Ei |ψi〉. Solving the electronic structure problem requires fixed precision in

the energy, i.e. ∆E = O (1). This suggests that we must shrink the time step for larger

problem instances in order to offset any increase in Trotter error. In order to make the

leading order shift in the energy eigenvalue at most δ it suffices to take

µ=O

t
√√√√1

δ

〈∑
α≤β

∑
β

∑
γ<β

[
Hα

(
1− δα,β

2

)
, [Hβ, Hγ ]

]〉 . (8.15)
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Higher-order Trotter-Suzuki algorithms can be used to reduce the scaling of µ; however they

require a number of gates that scales exponentially with the order of the Trotter formula.

This means that for many problems with modest error tolerances, the second-order Trotter

formula Eq. (8.9) yields the most efficient results. Although a similar expression based on

degenerate perturbation theory must be used for molecules near disassociation, in most

practical cases Eq. (8.15) will accurately predict the required Trotter number in the limit

of small δ.

In practice, it is difficult to determine precisely how this error scales with problem size

for real molecules. By inspection of Eq. (8.13), a loose bound of µ = O
(
N5
)

is obtained

[224]. This bound is obtained by recognizing that the double commutator sum in Eq. (8.13)

contains O(N12) terms but only O(N10) such terms are non–zero. In some cases, such

as large molecules represented in a local orbital basis, many of these interactions can be

neglected and the actual scaling of µ needed to achieve chemical accuracy may be closer to

µ = Õ
(
N3
)

or µ = Õ
(
N3/2

)
.

All of these scalings follow from worst case assumptions about the error and liberal

application of the triangle inequality. Such arguments are not sufficient to explain the data

in Figure 8.1 which does not show a clear dependence of µ on N . We therefore focus in the

remainder on two quantities: (a) the error in the ground state energy and (b) the operator

norm of the Trotter error operator. While (a) is the best measure of the error in quantum

chemistry simulation, we also focus on (b) because it upper bounds (a) and because it can

be well approximated without diagonalizing the Hamiltonian.

In the numerics that follow we construct error operators by explicitly computing all

O(N10) nonzero terms in Eq. (8.13). Once all the terms in the error operator are con-

structed, we simplify the resulting expression by normal-ordering the result. Here normal-
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ordering refers to a sorting process where any chain of creation and annihilation operators

that result from Eq. (8.13) are reordered such that creation operators always occur at the

left-most part of the chain. This reordering is done by using the anti-commutation rela-

tions in Eq. (8.5). For example, a2a1a
†
1a
†
3 = a†1a

†
3a1a2 − a†3a2. These normal-ordered terms

are then grouped, allowing their actions on computational basis states to be efficiently

computed.

The Trotter scheme we investigate does not use the coalescing strategies introduced in

[224], which would surely lead to even more error cancellation. We use a minimal spatial

basis (STO-6G). The Trotter series is ordered in the “interleaving” scheme introduced in

[140] and PQRS terms are ordered lexicographically. All molecular integrals in this work

were calculated at equilibrium configurations using the GAMESS electronic structure pack-

age [240, 122]. While computing the error operator is efficient, evaluating the error operator

on an eigenstate of the Hamiltonian cannot be performed in polynomial time on a classical

computer. Due to the expensive nature of these calculations, we limit our investigation to

benchmarks containing less than twenty spin orbitals. We study the scaling of the norm of

the Trotter error operator as this quantity is the focus of analytical bounds introduced in

[281] and [224]. Though the bounds in [224] are based on a upper bound for the operator

norm of the error operator, here we use the exact value of ‖V (1)‖.

8.2.1 Comparison of norm of error operator and ground state error

An important question to ask is, “how does the error in the simulated ground state

energy compare to that predicted by the norm of the error operator?” This is important

for two reasons. The first reason is that there can be substantial cancellation in the sum

implicit in Eq. (8.14). This effect is also discussed in [224]. The second reason is that
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Figure 8.2: A comparison between the norm of the error operator and the error induced in
the ground state. Notice that in many cases the basis of natural orbitals have the lowest
Trotter error (especially for examples with large Trotter error).

the ground state may only have limited overlap with the eigenstates of the error operator

that have large eigenvalues. We will discuss these two effects in detail later, but for now it

suffices to ask how substantial the differences between the two measures are.

Figure 8.2 shows that substantial differences exist between the computed Trotter error

and the norm of the error operator. In particular, for O, F and Ne these discrepancies

can be as large as sixteen orders of magnitude. Other molecules, such as H2O and HF

differ by only two orders of magnitude. This shows that existing estimates of the error can

ludicrously overestimate the error in Trotter Suzuki formulas if the properties of the ground

state are not also taken into account. Similar comparable results have also been observed

for random many-body Hamiltonians [226].

To see this, let us consider Ne. By the convention for second-period atoms, Ne is

given 10 spin orbitals in a minimal basis but it also has 10 electrons. This means that

all of its spin orbitals will be occupied, i.e. |ψ0〉 = |1〉⊗10. If we consider the action
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of a single normal-ordered term from Eq. (8.14), αa†p1 · · · a†p5aq1 · · · aq5 , then we see that

〈ψ0|αa†p1 · · · a†p5aq1 · · · aq5 |ψ0〉 = 0 unless {p1, . . . , p5} = {q1, . . . , q5} up to permutations.

Thus, the vast majority of the terms present in the error operator will evaluate to zero,

irrespective of the magnitude of their coefficients. A similar argument can be made for

F and O except that the ground state will no longer precisely be the Hartree-Fock state

and instead will be a linear combination of computational basis states. Nonetheless, it is

easy to see that the vast majority of these expectation values will be zero for these highly

constrained systems. We therefore expect from this argument that molecules that have spin

orbitals that are nearly fully occupied will have abnormally low error compared to molecules

that are half filled where the dimension of the space is maximal for a given number of basis

functions. This not only justifies the shockingly small error in N, O, F, and Ne but also

explains why only considering the norm of the error operator obscures this trend.

For most benchmarks there is still evidence of correlation between the norm of the error

operator and the Trotter error. This means that trends in the norm of the error operator

are often reflected in the simulation error. As we have seen, the properties of the molecules

in question can change the nature of this relationship.

8.2.2 Dependence on basis

In addition to showing that Trotter error in the ground state is usually substantially

less than the error operator norm, Figure 8.2 suggests that the error is also basis dependent.

While previous works have focused on the local and canonical basis sets, this figure suggests

that using natural orbitals can often lower Trotter error by several orders of magnitude

relative to a local orbital basis.

Furthermore, we argue that the discrepancy between error norm and ground state

260



Table 8.1: Ratio of ground state error to error operator norm for molecular hydrogen in
various basis sets.

Basis Type Orbitals error / norm

STO-6G local 4 0.2063
3-21G local 8 0.0568
6-31G local 8 0.0592

6-31++G local 12 0.0328

STO-6G canonical 4 0.1131
3-21G canonical 8 0.0231
6-31G canonical 8 0.0242

6-31++G canonical 12 0.0108

STO-6G natural 4 0.1131
3-21G natural 8 0.0472
6-31G natural 8 0.0547

6-31++G natural 12 0.0194

error increases with the number of spin orbitals to such an extent that the former should

not be used to make arguments about the asymptotic scaling of the latter. One can always

add more spin orbitals to a molecular Hamiltonian but given a reasonable orbital basis,

the ground state and physically meaningful excited states will have increasingly limited

occupancy in high energy orbitals. In this context, the energy of an orbital is understood

to mean the energy of a single electron occupying that orbital in the absence of other

electrons (appropriate for atomic orbitals) or in the presence of the average density of all

other electrons (appropriate for the canonical orbitals). Additionally, the natural orbital

basis is known to have the property that states with an odd number of excitations from

ground state reference often have negligible overlap with the exact ground state [26].

While the error operator will inevitably contain many terms involving excitations to and

from these high energy spin orbitals, eigenstates of physical interest (e.g. the ground state)

are superpositions of configurations which have a limited number of excitations. Accord-
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ingly, terms involving combinations of high energy orbitals are not expected to significantly

contribute to the error induced in relevant eigenstates despite increasing the norm of the

error operator. This principle is demonstrated in Table 8.1 which shows the ratio between

ground state error and error norm for molecular hydrogen in various basis sets.

8.2.3 Dependence on nuclear charge

Figure 8.3 indicates that Trotter error norm correlates especially well with the maxi-

mum nuclear charge, as further demonstrated in Figure 8.4. The local basis is formed from

the set of orthogonal atomic orbitals which are obtained for molecules using Löwdin sym-

metric orthogonalization on the original non-orthogonal local Gaussian orbitals [195]. These

Gaussian basis functions are constructed as approximations to eigenfunctions of Hydrogen-

like systems, with some fitting adjustments. As such, we can determine the scaling behavior
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by considering the eigenfunctions of Hydrogen-like systems which are simple enough to per-

mit analytical determination of how each term in the Hamiltonian will scale with nuclear

charge. We begin by writing the eigenfunctions of a single electron in the potential of a

point charge Z in a convenient way,

ψn`m (ρ, θ, φ) =

√(
2Z

n

)3 (n− `− 1)!

2n (n+ `)!
e−

ρ
n

(
2ρ

n

)`
L2`+1
n−`−1

(
2ρ

n

)
Y m
` (θ, φ) (8.16)

where ρ = rZ, L2`+1
n−`−1

(
2ρ
n

)
is a generalized Laguerre polynomial of degree n − ` − 1, and

Y m
` (θ, φ) is a spherical harmonic of degree ` and order m. With the convention,

ϕp (σi) = ψp (ρi, θi, φi)χ (si) ∝ Z3/2 (8.17)

dσi =
ρ2
i dρi
Z3

sin (θi) dθi dφi dsi ∝ Z−3 (8.18)

∇2 = Z2

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ

)
+

Z2

ρ2 sin2 (θ)

∂2

∂φ2
+

Z2

ρ2 sin2 (θ)

∂2

∂φ2
∝ Z2 (8.19)

where χ (si) is a spin assignment and σ represents all degrees of freedom for an electron,

we rewrite Eq. (8.3) and Eq. (8.4) in terms of ρ, assuming a single nuclei,

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2

2
− Z2

ρ

)
ϕq(σ) (8.20)

hpqrs =

∫
dσ1 dσ2

ϕp (σ1)ϕq (σ2)ϕs (σ1)ϕr (σ2)

|ρ1 − ρ2|/Z
. (8.21)

For both integrals, factors of Z from the differential volume elements dσ cancel with factors

of Z from the spin orbitals ϕ and we find that,

|hpq| = Θ
(
Z2
)

(8.22)

|hpqrs| = Θ (Z) . (8.23)

Thus, it is clear that we can upper bound the scaling of individual Hamiltonian terms

with nuclear charge as O
(
Z2

max

)
. While this result is rigorous only when the orbital basis

is the basis of true atomic orbitals, we expect qualitatively similar behavior in other bases.

263



101

Max nuclear charge

10−1

100

101

102

103

104

105

N
or

m
of

er
ro

r
op

er
at

or

B

N

Na 
AlSiP S Cl

HeH+ Li

H

HF

Be

C

H2

O
2O

r2 − value = 0.994179

Li

H2Be

C

H Ne 
F

 Mg

Figure 8.4: The norm of the error operator appears extremely well correlated with the
maximum nuclear charge in a molecule when using a local basis of atomic orbitals. The
black line is the line of best fit for a Z6

max scaling.

101

Max nuclear charge

10−1

100

101

102

N
or

m
of

er
ro

r
op

er
at

or

Be

B

C

N

O

Ne

HeH+
Li

H

HF

BeH2

CH2

H2O

slope = 5.036918± 0.131107

r2 − value = 0.991935

Li

F

Figure 8.5: The norm of the error operator appears also well correlated with the maximum
nuclear charge in a molecule when using the canonical basis of molecular orbitals. The black
line is a least squares fit to the data which is roughly consistent with a Z5

max scaling.

264



Assuming the hpq terms dominates the error in the Trotter formula then Eq. (8.13) implies

that the Trotter error should scale as O(Z6
max). This scaling is qualitatively consistent with

the empirical scaling in Figure 8.4 which fits Z6
max scaling to the norm of the error operator

with an r2-value of 0.994. Comparable results to this scaling have also been observed in

diffusion Monte Carlo algorithms [65, 129].

These results imply that if an atomic basis is used then the error in the second-order

Trotter-Suzuki formula scales at most as

‖V (1)‖ ∈ O
(
N4Z6

max +N10Z3
max

)
. (8.24)

This result is a direct consequence of bounds on the Trotter-Suzuki error in [140] and the

observation that double commutators of the one- and two-body terms produce at most

N4 and N10 terms respectively. This implies that the computational complexity of per-

forming the simulation on an arbitrary state, given fixed error tolerance of chemical accu-

racy, is O(N4(N2Z3
max +N5Z

3/2
max)). However, our numerical results are consistent with an

O(N4Z3
max) which suggests that this scaling may be loose. It also important to note that

the gate depth can be further reduced by using interleaving and nesting as per [140], which

is significant when the algorithm is implemented on systems where quantum operations can

be executed in parallel. It is also worth noting that the one-body terms dominate the two-

body terms in every numerical example that we considered. Larger molecules with more

hpqrs terms may lead to Trotter errors that scale as O(Z3
max) rather than O(Z6

max). More

extensive numerical results may be needed to determine the conditions under which the

two-body terms asymptotically dominate the one-body terms (if such conditions exist).

Figure 8.5 shows that these error estimates are pessimistic for the molecules considered

when using the canonical basis. While the error norm is still strongly correlated to nuclear

charge, unlike the scaling in the local basis, the fit to a Z6
max scaling is less convincing.
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Instead, the data empirically seems to follow a Z5
max scaling. Intuitively, this is easy to

envision because the molecular orbitals are inherently delocalized and thus it is natural to

expect that the maximum nuclear charge should make less of an impact in this basis. We

also see no evidence of explicit scaling with N over this range in Zmax. It is interesting

to note that although the number of non-negligible integrals in a local orbital basis can

be quadratically or quartically smaller than the size of an untruncated canonical molecular

orbital basis, the scaling with Zmax seems to be better by a linear factor. This suggests

interesting trade-offs between the two methods and hints that neither is intrinsically superior

for quantum simulation.

8.2.4 Dependence on orbital structure

The terms that appear in the error operator include interactions between every orbital

in the basis set. This begs the question of whether terms in the Hamiltonian that involve

particular orbitals have larger contribution to the error. In order to assess this, we compute

the error operator for a number of different molecules and normal-order the resultant oper-

ator. We then sum the magnitudes of every remaining term that either create or annihilate

an electron in each of the orbitals. An example of this is provided in Figure 8.6, which

shows the marginal coefficient magnitudes of all terms in the error operator (after normal-

ordering) in terms of two spin orbitals they contain. Appendix 8.5.2 shows similar analysis

for other molecules in other basis sets. As we can see, terms which involve the inner shell

electrons dominate the norm of the error operator in the local basis.

We see from such figures that the inner orbitals, especially the single particle terms

which are on the diagonal of the plot above, have a substantial impact on the Trotter error.

This is not surprising as the inner atomic orbitals interact very strongly with nuclei so the
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single particle integrals are likely to be much larger than the interaction integrals for these

orbitals. Interestingly, although the valence shell electrons are often the most important

for determining the chemical properties of a molecule, the inner orbitals are the ones that

affect the error most significantly. This suggests that pseudo-potentials, which allow the

core electrons to be treated as effectively “frozen”, may provide a way to reduce the Trotter

error in some circumstances. We leave this as an open question for future work.

8.2.5 Dependence on structure of eigenstates

Due to the substantial discrepancy between error induced on the ground state and

operator norm, we might ask the following question: given the error operators for real

molecules, what is the distribution of errors that would be induced on a random ensemble

of vectors? This question is important as the answer will help us to identify the source
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of the observed error cancellation. We consider the ensemble of Haar random vectors

which form a unitarily invariant ensemble of vectors with uniformly distributed complex

elements. Unitary invariance ensures that the ensemble has uniform distribution in an

arbitrary complete, orthonormal basis such as the eigenbasis of the error operator.

Denoting vectors from the random ensemble as |v〉 and eigenvectors of the error op-

erator as |k〉 with eigenvalue λk, we are interested in analyzing properties of the following

distribution of expected errors given by,

∆E (v) =
∑
k

λk|〈v |k〉|2. (8.25)

First, note that
∑

k λk = 0. This is because if C = [A,B] =
∑

j λk |k〉〈k| then

∑
k

λk = Tr(C) = Tr(AB)− Tr(BA) = 0, (8.26)
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Figure 8.8: These are histograms of the eigenspecta of the error operators for various
molecular and atomic benchmarks in the local basis. Proceeding clockwise from the top
left, the molecules are water, Hydrogen Fluoride, Methylene, atomic Beryllium, atomic
Carbon and atomic Neon. Error operators for all of our benchmarks have surprisingly
similiar eigenspectra, regardless of the orbital basis. The source of this striking similarity
and the reason for the particular structure is unknown.

from the cyclic property of the trace. Since V (1) is the sum of such operators, it follows

that its trace is also zero. This implies that the Haar-expectation value of the error, over

all possible random states, is

EH(∆E(v)) =
∑
k

λkEH |〈v |k〉|2 =
1

2N

∑
k

λk = 0. (8.27)

This shows that there is no inherent bias that arises from Trotterization towards either

overestimating or underestimating the true expectation value.

This result does not represent the typical error that we expect to see in a simulation.

We also need to find the Haar variance of the expected error to estimate the typical variation

of simulation errors about the mean. It is then easy to see that the Haar variance is

VH(
∑
k

λk|〈v|k〉|2) =
∑
k

λ2
kVH(|〈v|k〉|2). (8.28)
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In Appendix 8.5.1, we derive the Haar variance of the squared projection,

VH
(
|〈v |k〉 |2

)
=

2

2N (2N + 1)
− 1

22N
, (8.29)

where N is the number of spin orbitals. Combining Eq. (8.29) and Eq. (8.28) and using

Chebyshev’s inequality, we see that with high probability over |v〉

| 〈v|V (1) |v〉 | ∈ O


√∑

k λ
2
k

2N

 . (8.30)

Eq. (8.30), surprisingly, shows that a concentration of measure argument causes the expec-

tation of the Trotter error to be asymptotically zero if (a) |v〉 is typical of a Haar random

state, (b)
∑

k λ
2
k ∈ o(22N ) and (c) |v〉 is chosen independently of the |k〉.

We do not expect a concentration of measure argument like this to hold for actual

quantum simulations because it would imply that the Trotter errors in eigenvalue estimation

shrink rapidly with system size for physically reasonable distributions of λk. Thus, it

is natural to expect that one or both of assumptions (a) and (c) are not reasonable for

eigenvalue estimation.

In Figure 8.7, we show the expected errors according to Eq. (8.25) over an ensemble of

Haar random vectors as well as the expected errors over the eigenstates of the Hamiltonian

for water. The results clearly show that the errors observed in this chemical example are

much greater than we would expect from Haar random states. Furthermore, we see little

evidence of concentration of measure of the errors about zero for the case where |v〉 is

an eigenvector of H; whereas the Haar random |v〉 lead to results that are much more

concentrated about zero error. This suggests that the discrepancies between the norm of

the error operator and the ground state error cannot be explained by a simple randomization

argument as the actual errors observed are much worse than would be otherwise expected.

Eq. (8.25) shows that the expected error is the convolution of the functions λk and

270



|〈v|k〉|2. Thus, we expect the distribution of errors to resemble the underlying distribution

of eigenvalues of V (1). This intuition can easily be seen by comparing Figure 8.7 to the

eigenspectrum of the water error operator in Figure 8.8a. As expected, the distribution

of errors for the random ensemble (Figure 8.7) resembles the error operator eigenspectrum

(Figure 8.8a) with concentration about the mean (as anticipated by Eq. (8.30)). Also, it

is interesting to note that the eigenspectra of the error operators for various molecules and

atoms studied in this paper bear a remarkable degree of similarity and appear extremely

structured as Figure 8.8 demonstrates. Additionally, every example has a sharp peak in its

spectrum about zero error. This suggests that much of the rift between the norm of the

error operator in Figure 8.2 may be due to the large number of eigenvectors with near-zero

eigenvalue.

8.3 Improved simulation methods inspired by classical ap-

proaches

Given the large disparity between error operator norm and error induced on the exact

ground state, any efficient method which allows one to approximate the error induced on

the ground state (which implies an estimate for the number of Trotter steps needed) would

be of critical importance for anyone wishing to actually run a quantum chemistry simulation

on a quantum computer. A natural way to address this problem is to directly evaluate the

error over a mesh in position and fit the data to a power law. This process can be made

efficient using the SWAP test, as proposed by Wiebe et al [288]. A major drawback of

this approach is that it requires roughly twice the qubits that the basic simulation used

and also the variance in the estimate returned by the SWAP test can be prohibitively

large. In this section, we propose an alternative method that estimates the error in the
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ground state energy by evaluating the error operator on a classical ansatz for the ground

state numerically. This method also allows the contribution to the error in the quantum

simulation from the Trotter error to be subtracted off of the final estimate, improving the

accuracy of the simulation without requiring additional quantum operations.

Perhaps the most well-known classical algorithm for solving the electronic structure

problem is a mean-field approach known as the Hartree-Fock method [145]. In this scheme,

single particle molecular orbitals are obtained using a self-consistent variational procedure in

which each particle is made to interact with the average density of the other particles. The

output of this calculation provides molecular orbitals which, together with a spin assign-

ment, are used to approximate the n-particle wavefunction as an anti-symmetric product

of the orbitals (known by chemists as a Slater determinant).

Unfortunately, the Hartree-Fock method is incapable of approximating dynamic elec-

tron correlation and is known to overestimate energies by an amount that is typically well

above the threshold of chemical accuracy. To correct for this problem, one can expand

the wavefunction in a basis of multiple Slater determinants and variationally solve for the

coefficients which minimize the electronic energy. In general, there are M =
(
N
n

)
valid con-

figurations for n electrons arranged into N spin orbitals. The ground state wavefunction in

Eq. (8.1) may be represented as a linear combinations of these arrangements,

|Ψ〉 =

M∑
i=1

ai |i〉 . (8.31)

The energies may be solved for variationally,

E = min
{ai}
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 → HCI |Ψ〉 = E |Ψ〉 (8.32)

where HCI
ij = 〈i|H |j〉. In chemistry this method is known as full configuration interaction

(FCI).
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FCI is strongly believed to be classically intractable because M scales combinatorially

with N and n. Accordingly, a common classical approach is to truncate the expansion

in Eq. (8.31) to include only configurations that represent a fixed number of excitations

from a reference configuration. Though this work and recent work [195] discuss using

different orbital basis choices, usually the reference is taken to be the Hartree-Fock state

(this orbital basis is known in chemistry literature as the “canonical basis”). This approach

defines a hierarchy of methods referred to as truncated configuration interaction (CI) which

approach exactness as the number of excitations is increased to the FCI space spanned by

N −n excitations. Fixing the maximum number of excitations at k, combinatorics suggests

that the number of basis functions in truncated CI scales as Θ
((

N−n
k

)(
n
k

))
. Truncation to

the level of single and double excitations is referred to as configuration interaction singles,

doubles (CISD) and is used for several purposes in this paper. Finally, we note that the

accuracy of truncated CI is extremely sensitive to the quality of the reference state and

it is therefore difficult to determine when these methods are expected to approximate the

ground state energy within even a fixed multiplicative error.

Since the error operator can be efficiently computed and normal-ordered in second

quantized form, we suggest evaluating the expectation value of this operator on a classical

ansatz for the ground state. In particular, we focus on the use of the configuration in-

teraction ansatz. Figure 8.9 illustrates the utility of this idea by showing the discrepancy

between actual error and the error from evaluation of the error operator using a classical

ansatz. Figure 8.10 shows the extent to which the effective error is reduced using a classical

ansatz.

Apart from estimating errors, CISD states may also be of use in coalescing schemes [224]

which use the Hartree-Fock approximation to determine whether a term in the Hamiltonian
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can be executed less frequently without significantly impacting the quality of the simulation.

This process can substantially reduce the costs of simulating molecules with many small,

but non–negligible, hpqrs terms but may fail if the Hartree-Fock approximation breaks down.

In such cases, the use of CISD states may lead to superior coalescing schemes at the price

of requiring more classical computing time to find the coalescing schedule.

Though the Hartree-Fock ansatz is usually not accurate enough to reduce error by an

order of magnitude, the use of a truncated CI ansatz often exhibits enough accuracy to

very substantially reduce effective error. While we focus on the CI ansatz to provide proof-

of-principle, we believe that more intelligent truncation schemes can substantially increase

ansatz accuracy without additional computational cost. For instance, the use of multi-

reference methods has been shown to greatly improve the quality of the classical solution in

many cases, especially near molecular dissociation limits where the exact electronic states

become nearly degenerate [145].

The idea of using a classical ansatz to reduce the effective error in a quantum calculation

is useful for two reasons. The first reason is that the error in a quantum simulation can

usually be reduced by approximating the error with a classical ansatz at the CISD level

of theory or greater, as demonstrated in Figure 8.10. The second (and perhaps more

important) reason this technique is useful is that it gives a realistic a priori estimate of the

error to expect in the quantum simulation (expected to be correct to at least an order of

magnitude) which provides a methodology for selecting the number of Trotter steps required

to obtain a desired precision. Finally, we point out that while the error operator might be

computationally costly to compute (albeit, efficient in the polynomial-time scaling sense),

Monte Carlo methods could be used to tractably sample the error operator expectation

values with a classical ansatz.
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8.3.1 Circuit for state preparation based on CI ansatz

In contrast to the Hartree-Fock states, CISD states are not computational basis states.

Instead they are a linear combination of quantum states that are formed by single and

double excitations away from a reference state which is often taken to be the Hartree-Fock

state. Although the CISD state can be efficiently computed for a given electronic structure

problem, preparing the state on a quantum computer is non-trivial. Here we present a

method based on state-of-the-art multi-qubit synthesis methods to prepare the CISD state.

Previous work has considered preparing this state using single qubit rotations and CNOT

gates [217, 276, 296]. Such gate sets are unrealistic for fault tolerant quantum computing so

we discuss the problem of compiling the state preparation circuit into Clifford and T gates.

In the following analysis we will take the cost of the circuit to be given by the number of

T gates because these gates are the most expensive gates to implement fault tolerantly in

error correcting codes such as the surface code.

Let us begin by assuming the initial state for the quantum simulation (i.e. the state

we wish to prepare) is of the form

|ψ〉 =
D∑
k=1

αk |jk〉 , (8.33)

where jk is a sequence of computational basis vectors that spans the space that state has

support over and D is the dimension of that space.

It is unrealistic to assume that the state |ψ〉 will be exactly preparable using gates from

the Clifford + T gate library. Instead, the initial state will typically have to be approximated

using these circuit elements. For years the Solovay-Kitaev algorithm provided the best

known method for solving this approximation problem, but recently more advanced methods

based on number theoretic results have provided much more efficient ways of performing

this decomposition [170, 234, 41].
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Therefore the problem of finding the best sequence of Clifford and T gates to approxi-

mate a multi-qubit unitary reduces to the following problem

1. Find integers x0, x1, y0, y1 such that

Up,q ≈ Ũp,q =
x0 + x1

√
2 + iy0 + iy1

√
2√

2
m .

and Ũ is a unitary that can be exactly synthesized using elements from the gate

library.

2. Find a sequence of Clifford and T gates that exactly implements Ũ .

Note that because we are interested in preparing a state, not implementing a multi-qubit

unitary, only the first column of U needs to be approximated. In particular, the first column

of Ũ should approximate |ψ〉 to within a fixed error tolerance δ.

Before proceeding it is necessary to briefly review number theoretic approaches to multi-

qubit circuit synthesis using Clifford and T gates. The key insight behind this strategy is

that the unitary matrices that can be prepared with such circuits take on a very special

form. The form can easily be seen from the Hadamard and T gates,

H =
1√
2

1 1

1 −1

 , T =

1 0

0 1+i√
2

 . (8.34)

It is then clear that any unitary matrix formed by a sequence of H and T gates will consist

of matrix elements that are of the form

Ũi,j =
x0 + x1

√
2 + iy0 + iy1

√
2√

2
m , (8.35)

for integer x0, x1, y0, y1. Since the remainder of the gate set consists of CNOT gates and

Pauli gates which have (complex) integer valued matrix elements, it is then clear that every
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unitary that can be formed by the gate library also has matrix elements whose denominators

are powers of
√

2 and whose numerators are in the ring of Gaussian integers Z[1/
√

2, i].

Just like ordinary fractions, these fractions also can be reduced. This notion of reducing

a fraction manifests itself as the least denominator exponent k. In order to understand this

concept concretely, it is necessary to introduce some terminology. Let ω = eiπ/4 and

Z[ω] = {aω3 + bω2 + cω + d|a, b, c, d ∈ Z}. (8.36)

Similarly, if we let D = {a2−b|a, b ∈ Z} denote the ring of dyadic fractions then we can

express the ring Z[1/
√

2, i] as

D[ω] = {aω3 + bω2 + cω + d|a, b, c, d ∈ D}. (8.37)

Then for every t ∈ D[ω] there is a notion of a least denominator exponent that describes

the fraction in Eq. (8.35) and uses the smallest value of m possible while requiring that

x0, x1, y0, y1 are integer. Or more formally, the least denominator exponent, k, is the small-

est non-negative integer such that t
√

2
k ∈ Z[ω].

The smallest denominator exponent measures the precision in the approximation U ≈ Ũ

because Eq. (8.35) allows arbitrary complex numbers to be represented with zero error in

the limit as k →∞. This means that the value of k used in the rounding process of the first

column of U is a key property for characterizing the complexity of the state preparation.

In fact, the problem of bounding the error in this approximation problem as a function of

k has already been solved by Kliuchnikov [170]:

‖(U − Ũ) |0〉 ‖ ≤ 2(D + 2)2−4k + 2
√

2(D + 2)2−2k, (8.38)

where D is the number of nonzero components of the state |ψ〉 = U |0〉. As a technical

point, the dimension of Ũ is at most D + 2 rather than D because the first column of U
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must have at least two zero-valued components in order to guarantee that a solution exists

to the Diophantine equation for Ũ . This requires enlarging the Hilbert space dimension

by two in the worst case scenario, which may require adding at most an additional qubit.

However, the CISD state vector will likely have many zero valued components so this extra

qubit will often not be needed in practice.

Using Eq. (8.38) we see that the state preparation error can be made less than δ by

choosing

k =

⌈
1

4

[
1 + log2

(
D + 2

(
√

1 + δ − 1)2

)]⌉
. (8.39)

This means that if D is polynomial in n then k ∈ O(log(n/δ)).

Once the unitary Ũ has been found then the task of decomposing the unitary into

fundamental operations remains a non-trivial problem. This problem is addressed by Giles

and Selinger in [119]. The idea behind this approach is to decompose Ũ into a series of two

level unitary operations. These two level unitary operations are then implemented using

a Clifford circuit and a series of controlled operations to map each two level subspace to

a single qubit. This process involves first identifying pairs of levels that can be simplified

and then performing circuits of the form HwT xHyT z to the two level subspace such that

the denominator exponent is systematically reduced. Once the least denominator exponent

is reduced to 0 then the subspace either takes the form [ωp, 0]T or [0, ωp]T for integer p.

Thus, the inverse of the state preparation circuit can be found (up to a global phase) by

performing this reduction process iteratively of the D dimensional initial state until only

one nonzero component remains and then mapping this component to |0〉 using a Clifford

circuit and a multiply controlled not gate.

At most k reduction steps are needed to reduce each two level subspace and there are

at most (D + 2)− 1 subspaces that must be looped through. Therefore, there are at most
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k(D + 1) reduction steps taken. Each reduction step consists of applying at most two H

gates and two T x gates to each subspace, as well as a multiply controlled not gate to map

the final state to one proportional to |0〉. Hence, in order to assess the cost of the algorithm

we need to compute the costs of each of these gates.

Let us imagine that we need to perform a gate on the subspace span(|j〉 , |k〉). We want

to map this to span(|2n − 1〉 , |2n − 2〉) so that the gate can be applied to the last qubit. By

performing a sequence of O(n) X gates, we can map

span(|j〉 , |k〉)→ span(|j ⊕ k ⊕ 2n − 1〉 , |2n − 1〉),

where ⊕ is bitwise exclusive or. There are two cases that we need to consider. If j ⊕ k = 1

mod 2 then the least significant bit of j ⊕ k ⊕ 2n − 1 is 0. This means that the state

|j ⊕ k ⊕ 2n − 1〉 can be mapped to |2n − 2〉 using a sequence of n − 1 zero-controlled not

gates while not affecting |2n − 1〉. Otherwise, if j ⊕ k = 1 mod 2 then we can reduce this

case by finding the least significant bit where j and k differ and swap that bit with the

least significant bit. Since |2n − 1〉 is an eigenstate of the swap operator, the swap does not

affect that vector. Hence in either case we can perform the subspace mapping using O(n)

Clifford operations.

In order to apply the H and T gates required by the synthesis algorithm on the correct

qubits, we need to implement controlled variants of these circuits. There are many con-

structions for these controlled gates [24, 155, 244]. Here we anticipate that the cost of state

preparation for the CISD state will be sub-dominant to the cost of the simulation. This

means that minimizing the number of qubits needed is an important design goal. Let us

define Λm(G) to be the m-controlled version of the gate G. Then the gate Λm(H) can be

implemented using two Λn−1(X) gates, a Λ1(H) gate and an ancilla qubit,
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• •
...

...

• •
0 • 0

H

Controlled T q gates can be performed similarly,

• •
...

...

• •
• •

0 T q 0

The resulting circuits can be further optimized by noting that many of the Toffoli gates

needed to perform the reductions of the least denominator exponent are redundant. In

particular we can express the simplified reduction circuit as,

• •
... . . .

...

• •
0 • • • 0

H • • . . .

0 T q

The gate Λ1(H) requires 2 T -gates [119], and the Toffoli gates can be implemented, up to

an irrelevant phase, using 4 T -gates [155, 244] and an ancilla qubit. The entire process

requires at most N + 4 qubits, which is typically less memory than is required for the

quantum simulation and eigenvalue estimation phases of the algorithm. This means that

the additional four qubits required for the state preparation algorithm will not impact the

memory requirements of the overall simulation algorithm.

For the present problem, the CISD state is in C2N+1
(recall one additional qubit is

needed to ensure a solution to the norm equations for synthesis). This means that we also
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need to consider the cost of implementing ΛN (X) gates. Although highly time-efficient

constructions for the multiply controlled circuits can be made using the circuits of [155],

they require a large number of qubits. In order to ensure that the space complexity of state

preparation does not dominate the algorithm, we use the less time-efficient construction

of Barenco et al [24] to compile the ΛN (X) gates. Using Corollary 7.4 from [24] and the

Λ2(iX) gate from [155, 244] to implement the Toffoli gate, the cost of implementing such

circuits is at most

Tcount

(
ΛN (iX)

)
≤ 32(N − 3). (8.40)

At most N + 4 qubits, where N ≥ 5, are needed to implement these gates [24].

The reduction of each of the two dimensional subspaces requires two steps. First,

the application of the ΛN (X) gates to mark the subspace and a sequence of k controlled

operations to reduce the denominator exponent of that subspace. This reduction process

requires k steps, each of which involves at most two Λ1(H) and two Λ2(T q). Including the

cost of the two ΛN (X) gates, the total cost of the reduction is at most 22k + 64(N − 3)

T -gates. At most D + 1 reduction steps are required in this process as well as potnentially

a swap of the final state into the |0N+1〉 state (which can be performed using Clifford

operations). Thus the overall T–count for this process is

(22k + 64(N − 3))(D + 1). (8.41)

This also is the T–count for for preparing the CISD state from the |0N+1〉 state because

the necessary circuit can be found by taking the Hermitian conjugate of the resultant gate

sequence. Thus using Eq. (8.39) the total number of non-Clifford operations required in the

state preparation scales at most as
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O
(
D log

(
D

δ

)
+ND

)
(8.42)

If the approach of Wang et al [276], coupled with recent methods for decomposing

single qubit rotations into T gates, is used to prepare the CISD state then the resultant T -

count scales at most as Õ(2neNne/ne!) log(1/δ). If ne ≈ N/2 then this method is inefficient,

whereas ours is not since D ∈ O(N4) for CISD states. If ne ≤ 3 then the method of Wang

et al does provide superior scaling as N increases, though cases where ne ≤ 3 and N is large

may be rare. In contrast, the method of Ortiz et al [217] requires Õ(D2N2 log(1/δ) gates,

which is nearly quadratically slower than our method.

As a final point, the cost of the state preparation algorithm is O(N5) in worst case

scenarios. This can be comparable to, or greater than, the cost of quantum simulation in

the limit of large N . This means that using a näıve CISD approximation in cases with half

filling may seriously degrade the performance of the algorithm. This means that in order

to see the performance advantages promised by recent algorithms, which have scaling near

O(N4), sophisticated state preparation methods are needed in cases where the Hartree-Fock

state has poor overlap with the FCI ground state.

8.4 Conclusion

Our work calls into question the basic assumption that the error in Trotter-Suzuki based

methods for simulating quantum chemistry is explicitly a function of the number of spin

orbitals used to represent the system. We find through numerical evidence that such errors

do not seem to be directly related to the number of spin orbitals in the system for small

molecules. We observe this lack of correlation for a variety of orbital bases including local,

283



canonical and natural orbitals. Instead, we see that chemical features such as the maximum

nuclear charge is a strong indicator of the complexity of a simulation. We argue that the

errors should scale as O(Z6
max) for an atomic orbital basis, which is in close agreement

with the scaling observed numerically. We also observe that some atoms, such as Oxygen,

Fluorine and Neon, have vanishingly small Trotter errors despite available error bounds

predicting large Trotter errors for these molecules. We show that this discrepancy can be

understood as a consequence of the large filling fraction for these molecules. This suggests

that chemical features of a molecule may be much better predictors of the number of Trotter

steps needed in a simulation than the number of spin orbitals assigned to the molecule.

We further analyze the errors and see that the discrepancy between the observed Trotter

error and the norm of the error operator does not arise from random cancellation. Indeed,

the errors observed are much greater than what would be expected if the ground state

were a Haar random state that was chosen independently from the eigenvectors of the

error operator. Furthermore, we observe that the distribution of eigenvalues of the error

operator is highly structured and has many near-zero eigenvalues, which likely is the cause

of the orders of magnitude separation between the Trotter error and the norm of the error

operator.

We also use the error operator to improve quantum simulation methods by providing

a computationally efficient algorithm for estimating the error in a simulation. This leads to

two applications: (a) compensating for Trotter error in a quantum simulation by subtracting

the prediction off the result and (b) predicting the number of Trotter steps needed in a

simulation. Finally, we provide a quantum algorithm for preparing CISD states that is

polynomially more efficient than existing methods and may provide a viable alternative to

adiabatic state preparation in cases where the Hartree-Fock approximation to the ground
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state leads to poor success probability.

There are several natural avenues of inquiry that this work reveals. First, although this

work shows strong numerical evidence for small molecules we do not have sufficient evidence

to state conclusively that the error in the Trotter-Suzuki formula is independent of N in the

asymptotic limit. Larger numerical experiments may be needed to shed more light on the

scaling of Trotter–Suzuki errors in this regime. Secondly, Ferredoxin is often suggested as

a strong candidate for quantum chemistry simulation but Fe2S2 has large nuclear charges

which make it a challenging molecule from the perspective of simulation. This suggests that

there may be other large organic molecules with smaller nuclear charges that may be even

more natural targets for quantum simulation. Finally, although our work has suggested

that the number of spin orbitals in a molecule may not uniquely characterize the cost of a

quantum chemistry simulation, it does not provide a simple criteria for determining which

molecules are easy or hard to simulate. Finding molecular features, beyond the maximum

nuclear charge and the filling fraction, that can be used to predict the relative difficulty

of simulation would not only constitute an important step forward for quantum chemistry

simulations but would also be an important contribution to quantum chemistry as a whole.
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8.5 Appendix

8.5.1 Computation of Haar Expectations

In order to determine whether the error cancellations observed for ground state quan-

tum simulations arise because of properties of the eigenstates of the Hamiltonian, we need

to determine whether these results would also be typical of random vectors. Here we provide

a derivation, for completeness, of the Haar expectation value and variance of the |〈v|k〉|2.

In the following we will take k to be fixed and v to represent the Haar random variable.

We will also use the convention that EH denotes the expectation value of a quantity over

a set of Haar random vectors, and VH denotes the variance over the set. To be clear,

EH |〈v|k〉|2 =
∫
U∈Haar | 〈0|U † |k〉 |2dU .

We wish to compute the variance,

VH(|〈v|k〉|2) = EH(|〈v|k〉|4)− EH(|〈v|k〉|2)2, (8.43)

of the square of the overlap of an arbitrary Haar random vector, |0〉, with an eigenvector

of an arbitrary Hermitian operator (in this case, the Trotter error operator), |k〉. We begin

by stating the correspondence,

|v〉 〈v| = U |0〉 〈0|U † (8.44)

where U is the unitary Gram matrix which affects a basis transformation into the error

operator eigenbasis (for instance), and |v〉 represents |0〉 in the error operator eigenbasis.

We are interested in the projection of this state onto an eigenvector of the error operator,

ak = 〈k |v〉 = 〈k|U |0〉 (8.45)

|ak|2 = 〈k|U |0〉 〈0|U † |k〉 (8.46)

= tr
[
|k〉 〈k|U |0〉 〈0|U †

]
.
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We compute this trace in two steps. From the unitary invariance of the Haar measure we

have that

∫
U(n)

[
U |0〉 〈0|U †

]
dU =

I

2N
(8.47)

Therefore

EH(|ak|2) = tr

[
|k〉〈k| I

2n

]
=

1

2N
. (8.48)

Thus, EH(|ak|2) = 1
2N

, and hence EH(|ak|2)2 = 1
22N .

Focusing on the remaining component of the variance,

|ak|4 = 〈k|U |0〉 〈0|U † |k〉 〈k|U |0〉 〈0|U † |k〉 (8.49)

= tr
[
(|k〉 〈k|)⊗2 U⊗2 (|0〉 〈0|)⊗2 U †⊗2

]
.

To further evaluate the trace we follow the treatment in [142] which uses the spectral

theorem to derive orthogonal projectors onto symmetric and antisymmetric subspaces. This

begins by defining a flip operator, F ∈ C22N×22N
,

F (|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉 . (8.50)

From this definition it is clear that

F = πsym − πantisym (8.51)

I⊗2 = πsym + πantisym. (8.52)

Thus,

πsym =
1

2

(
I⊗2 + F

)
(8.53)

πantisym =
1

2

(
I⊗2 − F

)
. (8.54)
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Since tr
[
I⊗2
]

= 22N and tr(F) = 2N ,

tr [πsym] =
2N
(
2N + 1

)
2

(8.55)

tr [πsym] =
2N
(
2N − 1

)
2

. (8.56)

Since |0〉 〈0|⊗|0〉 〈0| is entirely symmetric, it is straight forward to see from unitary invariance

that

∫
U(n)

[
U⊗2 (|0〉 〈0|)⊗2 U †⊗2

]
dU =

2

2N (2N + 1)
πsym. (8.57)

Thus,

EH(|ak|4) =
2

2N (2N + 1)
tr
[
πsym (|k〉 〈k|)⊗2

]
=

2

2N (2N + 1)
. (8.58)

Finally, we arrive at the variance of |ak|2,

VH(|ak|2) =
2

2N (2N + 1)
− 1

22N
. (8.59)

This gives us the variance in the |ak|2 terms, which in turn allows us to find the deviation

from the expected error for a quantum chemistry simulation. The key point here is that

the standard deviation is on the order of the expectation value which means that we expect

relatively large fluctuations in the probabilities that correspond to particular eigenvalues of

the Trotter error operator. Hence we do not expect a concentration of measure result to

hold in high dimensional spaces.
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8.5.2 Contributions of orbitals to Trotter error operator

In Section 8.2 we provided evidence that transitions involving the inner-most electrons

contribute most to the error in the quantum simulation. This is perhaps surprising given

that transitions involving the valence electrons, rather than the core electrons, are typically

more relevant for understanding the properties of a molecule. We present additional nu-

merical results in Figure 8.11 that examine this for water and Beryllium hydride. These

results confirm the intuition developed earlier that interactions involving the two inner–most

orbitals significantly impact the errors in the ground state energy.

We also observe a rough correlations between the magnitudes of the error coefficients

in the expansion of the error operator and their contribution to the ground state error in

the local orbital basis. This suggests that looking at the contribution of the inner orbitals

is the most significant for the error for these molecules and that the aggregate contributions

of the error coefficients correlates roughly with the ground state error.

The analogous data for natural orbital basis in Figure 8.11 defies this approximate cor-

respondence for both water and Beryllium hydride. For the case of water, interactions that

involve orbitals 7 and 8 are the second-largest contributors to the error in the ground state

energy. The significance of these transitions is not apparent in the corresponding plots of

the magnitude of the Hamiltonian coefficients nor the magnitudes of the error coefficients in

the expansion of the error operator. Similarly, for Berylium Hydride, interactions involving

orbitals 7 and 8 may be expected to have a significant impact on the error in the ground-

state energy but the data suggests that they do not. These results underscore the challenges

faced when attempting to understand the nature of the error operator from solely looking

at the magnitudes of the error coefficients.
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(b) Water, local basis, error coefficients.
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(c) Water, local basis, error contributions.
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(d) Water, natural basis, Hamiltonian co-
efficients.
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(e) Water, natural basis, error coefficients.
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(f) Water, natural basis, error contribu-
tions.
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(g) Beryllium hydride, local basis, Hamil-
tonian coefficients.
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(h) Beryllium hydride, local basis, error
coefficients.
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(j) Beryllium hydride, natural basis,
Hamiltonian coefficients.

2 4 6 8 10 12 14

Orbital number

2

4

6

8

10

12

14

O
rb

it
al

nu
m

be
r

|Error coefficients|

0

4

8

12

16

20

24

28

32

36

(k) Beryllium hydride, natural basis, error
coefficients.
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Figure 8.11: These plots show the coefficients of normal-ordered terms in the Hamiltonian
and error operator as well as expectation values of the error operator terms for the ground
state. The terms are binned according to the orbitals involved in the term. This plot shows
the marginal distribution of the magnitudes of these terms.
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Chapter 9

Exploiting Locality in Quantum Chemistry

Simulation

Apart from minor modifications, this chapter originally appeared as [195]:

“Exploiting Locality in Quantum Computation for Quantum Chemistry”. Jarrod McClean,
Ryan Babbush, Peter Love and Alán Aspuru-Guzik. Journal of Physical Chemistry Letters.
Volume 5, Number 24: 4368-4380. 2014.

Abstract

Accurate prediction of chemical and material properties from first principles quantum

chemistry is a challenging task on traditional computers. Recent developments in quantum

computation offer a route towards highly accurate solutions with polynomial cost, however

this solution still carries a large overhead. In this perspective, we aim to bring together

known results about the locality of physical interactions from quantum chemistry with ideas

from quantum computation. We show that the utilization of spatial locality combined with

the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum

algorithms for quantum chemistry and provide numerical examples to help illustrate this

point. We combine these developments to improve the outlook for the future of quantum

chemistry on quantum computers.

291



9.1 Introduction

Within chemistry, the Schrödinger equation encodes all information required to predict

chemical properties ranging from reactivity in catalysis to light absorption in photovoltaics.

Unfortunately the exact solution of the Schrödinger equation is thought to require exponen-

tial resources on a classical computer, due to the exponential growth of the dimensionality

of the Hilbert space as a function of molecular size. This makes exact methods intractable

for more than a few heavy atoms [262].

Richard Feynman first suggested that this scaling problem might be overcome if a

more natural approach was taken [107]. Specifically, instead of painstakingly encoding

quantum information into a classical computer, one may be able to use a quantum system

to naturally represent another quantum system and bypass the seemingly insurmountable

storage requirements. This idea eventually developed into the field of quantum computation,

which is now believed to hold promise for the solution of problems ranging from factoring

numbers [251] to image recognition [209, 13] and protein folding [221, 18].

Initial studies by Aspuru-Guzik et. al. showed that these approaches might be partic-

ularly promising for quantum chemistry [11]. There have been many developments both in

theory [77, 243, 296] and experimental realization [175, 12, 223, 279] of quantum chemistry

on quantum computers. The original gate construction for quantum chemistry introduced

by Whitfield et al. [285] was recently challenged as too expensive by Wecker et al. [281].

The pessimistic assessment was due mostly to the extrapolation of the Trotter error for

artificial rather than realistic molecular systems, as was analyzed in detail in a followup

study by many of the same authors [224]. They subsequently improved the scaling by

means of several circuit enhancements [140]. The analysis of the Trotter error on realistic

molecules in combination with their improvements led to a recent study where an estimate
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of the calculation time of Fe2S2 was reduced by orders of magnitude [224]. In this paper,

we further reduce the scaling by exploiting the locality of physical interactions with local

basis sets as has been done routinely now in quantum chemistry for two decades [64, 121].

These improvements in combination with others make quantum chemistry on a quantum

computer a very attractive application for early quantum devices. We describe the scaling

under two prominent measurement strategies, quantum phase estimation and Hamiltonian

averaging, which is a simple subroutine of the recently introduced Variational Quantum

Eigensolver approach [223].

Additionally, recent progress in accurate and scalable solutions of the Schrödinger equa-

tion on classical computers has also been significant [64, 10, 121, 145, 247, 52]. Some of

these results have already appeared in the quantum computation literature in the context

of in depth studies of state preparation [277, 272]. A general review of quantum simula-

tion [59, 116] and one on quantum computation for chemistry [163] cover these topics in

more depth. However many developments that utilize fundamental physical properties of

the systems being studied to enable scalability have not yet been exploited.

In this study, we hope to bring to light results from quantum chemistry as well as

their scalable implementation on quantum computers. We begin by reviewing the standard

electronic structure problem. Results based on the locality of physical interactions from

linear scaling methods in quantum chemistry are then introduced with numerical studies

to provide quantification of these effects. A discussion of the resulting impact on the most

common quantum algorithms for quantum chemistry follows. We also investigate instances

where a perfect oracle is not available to provide input states, demonstrating the need for

advances in state preparation technology. Finally, we conclude with an outlook for the

future of quantum chemistry on quantum computers.

293



9.1.1 Electronic structure problem

To frame the problem and set the notation, we first briefly introduce the electronic

structure problem of quantum chemistry [145]. Given a set of nuclei with associated charges

{Zi} and a total charge (determining the number of electrons), the physical states of the

system can be completely characterized by the eigenstates {|Ψi〉} and corresponding eigen-

values (energies) {Ei} of the Hamiltonian H

H = −
∑
i

∇2
Ri

2Mi
−
∑
i

∇2
ri

2
−
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

ZiZj
|Ri −Rj |

+
∑
i,j>i

1

|ri − rj |
(9.1)

where we have used atomic units, {Ri} denote nuclear coordinates, {ri} electronic coor-

dinates, {Zi} nuclear charges, and {Mi} nuclear masses. Owing to the large difference in

masses between the electrons and nuclei, typically the Born-Oppenheimer approximation is

used to mitigate computational cost and the nuclei are treated as stationary, classical point

charges with fixed positions {Ri}. Within this framework, the parametric dependence of

the eigenvalues on {Ri}, denoted by {E({Ri})j} determines almost all chemical properties,

such as bond strengths, reactivity, vibrational frequencies, etc. Work has been done in the

determination of these physical properties directly on a quantum computer [162].

Due to the large energy gaps between electronic levels with respect to the thermal

energy scale kBT , it typically suffices to study a small subset of the eigenstates corresponding

to the lowest energies. Moreover, for this reason, in many molecules the lowest energy

eigenstate |Ψ0〉, or ground state, is of primary importance, and for that reason it is the

focus of many methods, including those discussed here.

9.1.2 Second quantized Hamiltonian

Direct computation in a positional basis accounting for anti-symmetry in the wavefunc-

tion while using the Hamiltonian described is referred to as a first quantization approach

294



and has been explored in the context of quantum computation [162, 280, 283]. The first

quantized approach has also been realized in experiment [187]. One may also perform first

quantized calculations in a basis of slater determinants. This was introduced as a rep-

resentation of the electronic wavefunction by qubits in [11] (the compact mapping) and

the efficiency of time evolution in this basis was recently shown [264]. The second quan-

tized approach places the antisymmetry requirements on the operators. After choosing

some orthogonal spin-orbital basis {ϕi} with a number of terms M , the second quantized

Hamiltonian may be written as [145]

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras (9.2)

with coefficients determined by

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
ϕq(σ) (9.3)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕr(σ1)ϕs(σ2)

|r1 − r2|
(9.4)

where σi now contains the spatial and spin components of the electron, σi = (ri, si). The

operators a†p and ar obey the fermionic anti-commutation relations

{a†p, ar} = δp,r (9.5)

{a†p, a†r} = {ap, ar} = 0 (9.6)

For clarity, we note that the basis functions used in quantum chemistry (such as atom-

centered Gaussians) are frequently parameterized on the nuclear coordinates {Ri}, which

can result in a dependence on the nuclear positions of the electronic integral terms {hpqrs}.

For notational simplicity the dependence of the integrals on the nuclear positions in this

work will remain implied.
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9.1.3 Spatial locality

It is clear by inspection that the maximum number of terms in the second-quantized

Hamiltonian scales as O(M4). M can be quite large to reach chemical accuracy for systems

of interest, and the number of terms present in the Hamiltonian is a dominant cost factor

for almost all quantum computation algorithms for chemistry. However, due to the locality

of physical interactions, one might imagine that many of the terms in the Hamiltonian are

negligible relative to some finite precision ε. While this depends on the basis, it is this

observation that forms the foundation for the linear-scaling methods of electronic structure

such as linear scaling density functional theory or quantum Monte Carlo [10, 290, 11]. That

is, in a local basis, the number of non-negligible terms scales more like O(M2), and advanced

techniques such as fast multipole methods techniques can evaluate their contribution in

O(M) time.

These scaling properties are common knowledge within the domain of traditional quan-

tum chemistry, however they have not yet been exploited within the context of quantum

computation. They are clearly vitally important for the correct estimate of the asymptotic

scaling of any method [11, 285, 77, 281]. For that reason, we review the origin of that scaling

here for the most common and readily available local basis, the Gaussian atomic orbital

basis. We follow loosely the explanation presented by Helgaker, Jørgensen, and Olsen [145],

and refer readers to this text for additional detail on the evaluation of molecular integrals

in local basis sets. The two elements we will consider here are the cutoffs due to exponen-

tially vanishing overlaps between Gaussians basis functions and a bound on the value of the

largest integral.

By far the most common basis used in electronic structure calculations is a set of atom-

centered Gaussian (either Cartesian or “Pure” spherical) functions. While the precise result
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can depend on the angular momentum associated with the basis function, for simplicity,

consider only Gaussian S functions, which is defined by

|Ga〉 = exp
(
−ar2

A

)
(9.7)

where rA is the vector from a point A which defines the center of the Gaussian. One property

of Gaussian functions that turns out to be useful in the evaluation of molecular integrals

is the Gaussian product rule. This rule states simply that the product of two spherical

Gaussian functions may be written in terms of a single spherical Gaussian function on the

line segment connecting the two centers. Consider two spherical Gaussian functions, |Ga〉

and |Gb〉 separated along the x-axis.

exp
(
−ax2

A

)
exp

(
−bx2

B

)
= Kx

ab exp
(
−px2

p

)
(9.8)

where Kx
ab is now a constant pre-exponential factor

Kx
ab = exp

(
−µX2

AB

)
(9.9)

and the total exponent p, the reduced exponent µ, and the Gaussian separation XAB are

given by

p = a+ b (9.10)

µ =
ab

a+ b
(9.11)

XAB = Ax −Bx (9.12)

That is, the product of two spherical Gaussians is a third Gaussian centered between the

original two that decays faster than the original two functions, as given by the total ex-

ponent p. The overlap integral of two spherical Gaussian S functions may be obtained

through application of the Gaussian product rule after factorizing into the three Cartesian
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dimensions, followed by Gaussian integration and is given by

Sab = 〈Ga|Gb〉 =

(
π

a+ b

)3/2

exp

(
− ab

a+ b
R2
AB

)
(9.13)

where RAB is the distance between the Gaussian centers A and B. Clearly this integral

decays exponentially with the square of the distance between centers, and one may deter-

mine a distance ds such that beyond that distance, the integrals will be smaller than 10−k

in magnitude.

ds =

√√√√a−1
min log

[(
π

2amin

)3

102k

]
(9.14)

where amin is the minimal Gaussian exponent a (most diffuse function) in the set of Gaussian

basis functions {|Ga〉}. While the exact decay parameters will depend on the basis set, it

is generally true from this line of reasoning that there is a characteristic distance, beyond

which all overlap integrals are negligible. This means that the number of interactions per

basis function becomes fixed, resulting in a linear number of significant overlap integrals.

As kinetic energy integrals are just fixed linear combinations of overlap integrals of higher

angular momentum, the same argument holds for them as well.

For S orbitals, the two-electron Coulomb integral may be written as

hacbd =
SabScd
RPQ

erf(
√
αRPQ) (9.15)

where erf is the error function, P and Q are Gaussian centers formed through application

of the Gaussian product rule to |Ga〉 |Gb〉 and |Gc〉 |Gd〉 respectively. RPQ is the distance

between the two Gaussian centers P and Q and α is the reduced exponent derived from P

and Q. For clarity, this may be bounded by the simpler expression

hacbd ≤ min

(
4α

π
SabScd,

SabScd
RPQ

)
(9.16)
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The first of these two expressions in the min function comes from the short range bound

and the latter from the long range bound of the error function. These bounds show that the

integrals are determined by products of overlap terms, such that in the regime where over-

lap integrals scale linearly, we expect O(M2) significant two-electron terms. Moreover, as

seen in the long range bound of the two-electron integral, there is some further asymptotic

distance beyond which these interactions may be completely neglected, yielding an effec-

tively linear scaling number of significant integrals. This limit can be quite large however,

thus practically one expects to observe a quadratic scaling in the number of two-electron

integrals (TEI).

Additionally, we note from the form of the integrals, that the maximal values the two-

electron integrals will attain are determined by the basis set parameters, such as the width

of the Gaussian basis functions or their angular momentum. The implication of this, is

that the maximal integral magnitude for the four index two-electron integrals, |hTEI
max| will

be independent of the molecular size for standard atom centered Gaussian basis sets, and

may be treated as a constant for scaling analysis that examine cost as a function of physical

system size with fixed chemical composition. The overlap and kinetic energy integrals will

similarly have a maximum independent of molecular size past a very small length scale.

However, the nuclear attraction integrals must also be considered.

While not typically considered a primary source of difficulty due to the relative ease

of evaluation with respect to two-electron integrals, we separate the nuclear attraction

integrals here due to the fact that the maximal norm of the elements may change as well.

The nuclear attraction matrix element between S functions may be written as

hnuc
ab = −

∑
i

ZiSab
RPi

erf (
√
pRPi) (9.17)

where Zi is the nuclear charge and RPi refers to the distance between the Gaussian center
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P with total exponent p formed from the product |Ga〉 |Gb〉 to the position of the i’th

nuclei. Following from the logic above, from the exponentially vanishing overlap Sab, at

some distance, we expect only a linear number of these integrals to be significant. However,

each of the integrals considers the sum over all nuclei, which can be related linearly to the

number of basis functions in atom centered Gaussian basis sets. Thus the maximal one-

electron integral is not a constant, but rather can be expected to scale with the Coulomb

sum over distant nuclear charges. A conservative bound can be placed on such a maximal

element as follows.

The temperature and pressure a molecule reside in will typically determine the minimal

allowed separation of two distinct nuclei, and will thus define a maximum nuclear density

ρmax. Denote the maximum nuclear charge in the systems under consideration as Zmax.

The maximal density and the number of nuclei will also define a minimal radius that a

sphere of charge may occupy rmax,

r3
max =

3ZmaxNnuc

4πρmax
(9.18)

where Nnuc is the number of nuclei in the system. Modeling the charge as spread uniformly

within this minimal volume and using the maximum of the error function to find a bound

on the maximum for the nuclear attraction matrix element, we find

|hnuc
ab | < 4πρmaxSab

∣∣∣∣∫ rmax

0
r2dr

1

r

∣∣∣∣
= 2πρmaxSabr

2
max

= βabN
2/3
nuc (9.19)

where βab is now a system size independent quantity determined only by basis set parameters

at nuclei a and b, and the size dependence is bounded as O(N
2/3
nuc ). Atom centered Gaussian

basis sets will have a number of a basis functions which is a linear multiple of the number
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of nuclei, and as such we may now bound the maximal one-electron integral (OEI) element

as

|hOEI
max| < βOEI

maxM
2/3 (9.20)

9.1.4 Effect of truncation

The above analysis demonstrates that given some integral magnitude threshold, δ,

there exists a characteristic distance d between atomic centers, beyond which integrals may

be neglected. If one is interested in a total precision ε in the energy Ei, it is important to

know how choosing δ will impact the solution, and what choice of δ allows one to retain a

precision ε.

By specification, the discarded integrals are small with respect to the rest of the Hamil-

tonian (sometimes as much as 10 orders of magnitude smaller in standard calculations). As

such, one expects a perturbation analysis to be accurate. Consider the new, truncated

Hamiltonian Ht = H + V , where V is the negation of the sum of all removed terms, each

of which have magnitude less than δ.

Assuming a non-degenerate spectrum for H, from perturbation theory we expect the

leading order change in eigenvalue Ei to be given by

∆Ei = 〈Ψi|V |Ψi〉 (9.21)

if the number of terms removed from the sum is given by Nr, a worst case bound on the

magnitude of this deviation follows from the spectrum of the creation and annihilation

operators and is given by

|∆Ei| ≤
∑

{hi:|hi|<δ}
|hi| ≤ Nrδ (9.22)

where {hi : |hi| < δ} is simply the set of Hamiltonian elements with norm less than δ and

the first inequality follows directly from the triangle inequality. We emphasize that this is
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a worst case bound, and generically one expects at least some cancellation between terms,

such as kinetic and potential terms, when the Hamiltonian is considered as a whole. Some

numerical studies of these cancellation effects have been performed [224], but additional

studies are required. Regardless, under this maximal error assumption, by choosing a value

δ ≤ ε

Nr
(9.23)

one retains an accuracy ε in the final answer with respect to the exact answer when measur-

ing the eigenvalue of the truncated Hamiltonian Ht. Alternative, one may use the tighter

bound based on the triangle inequality and remove the maximum number of elements such

that the total magnitude of removed terms is less than ε. From the looser but simpler

bound, we see a reduction of scaling from M4 to M2 would require removal of the order of

M4 terms from the Hamiltonian, this constraint on δ can be rewritten in terms of M as

δ ≤ ε

M4
(9.24)

While the perturbation of the eigenvalue will have a direct influence on energy projec-

tive measurement methods such as quantum phase estimation, other methods evaluate the

energy by averaging. In this case, we do not need to appeal to perturbation theory, and the

δ required to achieve a desired ε can be found directly.

〈Ht〉 = 〈Ψi|Ht |Ψi〉 (9.25)

= Ei + 〈Ψi|V |Ψi〉 (9.26)

We find that under our assumption of worst case error for averaging, the result is identical

to that of the first order perturbation of the eigenvalue Ei,

|∆〈Ht〉| ≤
∑

{hi:|hi|<δ}
|hi| ≤ Nrδ (9.27)
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In summary, we find that for both the consideration of the ground state eigenvalue and the

average energy of the ground state eigenvector, there is a simple formula for the value of

δ, which scales polynomially in the system size, below which one may safely truncate to

be guaranteed an accuracy ε in the final answer. Moreover it suggests a simple strategy

that one may utilize to achieve the desired accuracy. That is, sort the integrals in order of

magnitude, and remove the maximum number of integrals such that the total magnitude

of removed integrals is less than ε.

On the subject of general truncation, we note that while there exist may Hamiltonians

with the same structure as the second quantized electronic structure Hamiltonian that have

the property that removal of small elements will cause a drastic shift in the character of

the ground state, this has not been seen for physical systems in quantum chemistry. In

practice it is observed that removing elements on the order of δ = 10−10 and smaller is

more than sufficient to retain both qualitative and quantitative accuracy in systems of

many atoms [10, 290, 145, 11]. Moreover, the convergence with respect to this value may

be tested easily for any systems under consideration.

9.1.5 Onset of favorable scaling

While the above analysis shows that locality of interactions in local basis sets provides a

promise that beyond a certain length scale, the number of non-negligible integrals will scale

quadratically in the number of basis functions, it does not provide good intuition for the size

of that length scale in physical systems of interest. Here we provide numerical examples for

chemical systems in basis sets used so far in quantum computation for quantum chemistry.

The precise distance at which locality starts to reduce the number of significant integrals

depends, of course, on the physical system and the basis set used. In particular, larger, more
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Figure 9.1: The number of significant(magnitude > 10−15) spin-orbital integrals in the
STO-3G basis set as a function of the number of hydrogens in a linear hydrogen chain with
a separation of 1 a0 for the Hartree-Fock canonical molecular orbital basis(MO) and the
symmetrically orthogonalized atomic orbital basis (OAO). The sMO and sOAO, shows the
same quantity with a sharper cutoff (10−7) and demonstrates the advantage to localized
atomic basis functions at length scales as small as 10 Å.

diffuse basis sets are known to exhibit these effects at comparatively larger length scales

than minimal, compact basis sets. However the general scaling arguments given above hold

for all systems of sufficient size.

An additional consideration which must be made for quantum computation, is that as

of yet, no general technology has been developed for direct simulation in non-orthogonal

basis sets. This prohibits direct simulation in the bare atomic orbital basis, however the use

of Löwdin symmetric orthogonalization yields the orthogonal basis set closest to the original

atomic orbital basis set in an l2 sense [185, 194]. We find that this is sufficient for the systems

we consider, but note that there have been a number of advances in orthogonal basis sets

that are local in both the occupied and virtual spaces and may find utility in quantum
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computation [300]. Moreover, there has been recent work in the use of multiresolution

wavelet basis sets that have natural sparsity and orthogonality while providing provable

error bounds on the choice of basis [137]. Such a basis also allows one to avoid costly

integral transformations related to orthogonality, which are known to scale as O(M5) when

performed exactly. Further research is needed to explore the implications for quantum

computation with these basis sets, and we focus here on the more common atom-centered

Gaussian basis sets.

As a prototype system, we consider chains of hydrogen atoms separated by 1 Bohr

(a0) in the STO-3G basis set, an artificial system that can exhibit a transition to a strongly

correlated wavefunction [127]. We count the total number of significant integrals for values of

δ given by 10−15 and 10−7 for the symmetrically orthogonalized atomic orbital (OAO) basis

and the canonical Hartree-Fock molecular orbital (MO) basis. The results are displayed

in Fig. 9.1 and demonstrate that with a cutoff of δ = 10−7 the localized character of the

OAO’s allows for a savings of on the order of 6 × 106 integrals with respect to the more

delocalized canonical molecular orbitals. The s in the labeling of the orbital bases simply

differentiates between two possible cutoffs. These dramatic differences begin to present with

atomic chains as small as 10 Å in length in this system with this basis set.

As an additional example, we consider linear alkane chains of increasing length. The

results are displayed in Fig. 9.2 and again display the dramatic advantages of preserving

locality in the basis set. By the point one reaches 10 carbon atoms, a savings of almost 108

integrals can be achieved at a truncation level of 10−7.

Although localized basis sets provide a definitive scaling advantage in the medium-large

size limit for molecules, one often finds that in the small molecule limit canonical molecular

orbitals, the orbitals from the solution of the Hartree-Fock equations under the canonical
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condition, provide a more sparse representation. This is observed in Figs 9.1 and 9.2 for

the smallest molecule sizes, and the transition for this behavior will generally be basis set

dependent. The reason is that at smaller length scales, the “delocalized” canonical molecule

orbitals have similar size to the more localized atomic orbitals, but with the additional

constraint of the canonical condition, a sufficient but not necessary condition for the solution

of the Hartree-Fock equations that demands the Fock matrix be diagonal (as opposed to

the looser variational condition of block-diagonal between the occupied and virtual spaces).

A side effect of the canonical condition is that in the canonical molecular orbital basis

many of the hpqrs terms for distinct indices are reduced in magnitude. However, there are

not enough degrees of freedom present in the orbital rotations for this effect to persist to

larger length scales, and as a result local basis sets eventually become more advantageous.

Moreover, it is known that at larger length scales, the canonical conditions tend to favor

maximally delocalized orbitals, which can reduce the advantages of locality. These effects

have been studied in some detail in the context of better orbital localizations by relaxing the

canonical condition in Hartree-Fock and the so-called Least-Change Hartree-Fock method

coupled with fourth-moment minimization [300].
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Figure 9.2: The number of significant(magnitude > 10−15) spin-orbital integrals in the
STO-3G basis set as a function of the number of carbons in a linear alkane chain for the
Hartree-Fock canonical molecular orbital basis(MO) and the symmetrically orthogonalized
atomic orbital basis (OAO). The sMO and sOAO shows the same quantity with a sharper
cutoff (10−7) and demonstrates the dramatic advantage to localized atomic basis even at
this small atomic size.
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9.2 Quantum energy estimation

Almost all algorithms designed for the study of quantum chemistry eigenstates on a

quantum computer can be separated into two distinct parts: 1. state preparation and

2. energy estimation. For the purposes of analysis, it is helpful to treat the two issues

separately, and in this section we make the standard assumption in doing so, that an oracle

capable of producing good approximations to the desired eigenstates |Ψi〉 at unit cost is

available. Under this assumption, energy estimation for a fixed desired precision ε is known

to scale polynomially in the size of the system for quantum chemistry, however the exact

scaling costs and tradeoffs depend on the details of the method used. Here we compare

the costs and benefits of two prominent methods of energy estimation used in quantum

computation for chemistry: quantum phase estimation and Hamiltonian averaging.

9.2.1 Quantum phase estimation

The first method used for the energy estimation of quantum chemical states on a

quantum computer was quantum phase estimation [169, 2, 11]. The method works by

evolving the give quantum eigenstate |Ψi〉 forward under the system Hamiltonian H for

a time T , and reading out the accumulated phase, which can be easily mapped to the

associated eigenenergy Ei. While the basic algorithm and its variations can have many

different components, the cost is universally dominated by the coherent evolution of the

system.

To evolve the system under the Hamiltonian, one must find a scalable way to implement

the unitary operator U = e−iHT . The standard procedure for accomplishing this task is the

use of Suzuki-Trotter splitting [266, 259], which approximates the unitary operator(at first
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order) as

U = e−iHT =
(
e−iH(T/m)

)m
=
(
e−i(

∑
iHi)∆t

)m
≈
(∏

i

e−iHi∆t
)m

(9.28)

where ∆t = T/m and Hi is a single term from the Bravyi-Kitaev transformed system Hamil-

tonian. Higher order Suzuki-Trotter operator splittings and their benefits have been studied

in the context of quantum simulation [33], but we largely focus on the first order formula in

this work. If each of the simpler unitary operators e−iHi∆t has a known gate decomposition,

the total time evolution can be performed by chaining these sequences together.

The use of the Suzuki-Trotter splitting can be thought of as an evolution under an ap-

proximate Hamiltonian H̃, given by e−iH̃T , whose eigenspectrum deviates from the original

Hamiltonian by a factor depending on time-step ∆t. The precise dependence of this bias

depends on the order of the Suzuki-Trotter expansion used. The total resolution, ε, in the

energies of the approximate Hamiltonian H̃ is determined by the total evolution time T .

Thus to achieve an accuracy of ε in the final energy, one must utilize a time step ∆t small

enough that the total bias is less than ε and a total run time T such that the resolution is

better than ε. If the number of gates required to implement a single timestep ∆t is given

by Ng, then the dominant cost of simulation (all of which must be done coherently) is given

by

Nc = Ngd
T

∆t
e (9.29)

The total evolution time T required to extract an eigenvalue to chemical precision

εchem = 10−3 is typically set at the Fourier limit independent of molecular size and thus

can be considered a constant for scaling analysis. We then focus on the number of gates

per Suzuki-Trotter time step, Ng, and the time step ∆t required to achieve the desired

precision.

309



In a first order Suzuki-Trotter splitting, the number of gates per Trotter time step is

given by the number of terms in the Hamiltonian multiplied by the number of gates required

to implement a single elementary term for the form e−iHi∆t. The gates per elementary term

can vary based on the particular integral, however for simplicity in developing bounds we

consider this as constant here. The number of terms, is known from previous analysis in

this work to scale as O(M2) or in the truly macroscopic limit O(M). The number of gates

required to implement a single elementary term depends on the transformation used from

fermionic to qubit operators. The Jordan-Wigner transformation [156] results in non-local

terms that carry with them an overhead that scales as the number of qubits, which in this

case will be O(M). Although there have been developments in methods to use teleportation

to perform these non-local operations in parallel [77] and by improving the efficiency of the

circuits computing the phases in the Jordan-Wigner transformation [140], these issues can

also be alleviated by choosing the Brayvi-Kitaev transformation that carries an overhead

only logarithmic in the number of qubits, O(logM) [56, 243]. As a result, one expects the

number of gates per Suzuki-Trotter time step Ng to scale as O(M2 logM) or in a truly

macroscopic limit O(M logM).

To complete the cost estimate with fixed total time T , one must determine how the

required time step ∆t scales with the size of the system. As mentioned above, the use of the

Suzuki-Trotter decomposition for the time evolution of H is equivalent to evolution under

an effective Hamiltonian H̃ = H + V , where the size of the perturbation is determined by

the order of the Suzuki-Trotter formula used and the size of the timestep. Once the order

of the Suzuki-Trotter expansion to be used has been determined, the requirement on the

timestep is such that the effect of V on the eigenvalue of interest is less than the desired

accuracy in the final answer ε.
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This has been explored previously [140, 224], but we now examine this scaling in

our context. To find V , one may expand the k’th order Suzuki-Trotter expansion of the

evolution of H̃ into a power series as well as the power series of the evolution operator

exp [−i (H + V ) ∆t], and find the leading order term V . As a first result, we demonstrate

that for a k’th order propagator, the leading perturbation on the ground state eigenvalue

for a non-degenerate system is O(∆t)k+1.

Recall the power series expansion for the propagator

exp [−i (H + V ) ∆t] =

∞∑
j=0

(−i)j
j!

(H + V )j (∆t)j (9.30)

The definition of a k’th order propagator, is one is that correct through order k in the power

series expansion. As such, when this power series is expanded, V must make no contribution

in the terms until O((∆t)k+1). For this to be possible, it’s clear that V must depend on ∆t.

In order for it to vanish for the first k terms, V must be proportional to (∆t)k. Moreover,

due to the alternation of terms between imaginary and real at each order in the power

series with the first term being imaginary, the first possible contribution is order (∆t)k

and imaginary. As is common in quantum chemistry, we assume a non-degenerate and real

ground state, and thus the contribution to the ground state eigenvalue is well approximated

by first order perturbation theory as

E(1) = 〈Ψg|V |Ψg〉 (9.31)

however, as V is imaginary Hermitian and the ground state is known to be real in quantum

chemistry, this expectation value must vanish. Thus the leading order perturbation to the

ground state eigenvalue is at worst the real term depending on (∆t)k+1.

To get a more precise representation of V for a concrete example, we now consider

the first order (k = 1) Suzuki-Trotter expansion. As expected, the leading order imaginary
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error term is found to be

V (0) =
∆t

2

∑
j<k

i [Hj , Hk] (9.32)

whose contribution must vanish due to it being an imaginary Hermitian term. Thus

we look to the leading contributing error depending on (∆t)2, which has been obtained

previously[224] from a Baker-Campbell-Hausdorff(BCH) expansion to read

V (1) =
(∆t)2

12

∑
i≤j

∑
j

∑
k<j

[
Hi

(
1− δij

2

)
, [Hj , Hk]

]
(9.33)

Thus the leading order perturbation is given by third powers of the Hamiltonian operators.

To proceed, we count the number of one- and two-electron integrals separately as NOEI
int and

NTEI
int respectively. Their maximal norm elements are similarly denoted by hOEI

max and hTEI
max.

From this, we can draw a worst case error bound on the perturbation of the eigenvalue

given by

E(1) ≤ (∆t)2

12

∑
i≤j

∑
j

∑
k<j

∣∣∣∣Hi

(
1− δij

2

)
, [Hj , Hk]

∣∣∣∣
≤
(
|hOEI

max|NOEI
int + |hTEI

max|NTEI
int

)3
(∆t)2 (9.34)

≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3
(∆t)2

Where the first inequality follows from the triangle inequality and the second is a looser,

but simpler bound, that may be used to elucidate the scaling behavior. Holding the looser

bound to the desired precision in the final answer ε, this yields

∆t ≤
[

ε(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3
]1/2

(9.35)

We emphasize that this is a worst case bound, including no possible cancellation be-

tween Hamiltonian terms. Some preliminary work has been done numerically in estab-

lishing average cancellation between terms that shows these worst case bounds are too
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pessimistic [224]. Continuing, we expect the total scaling under a first order Suzuki-Trotter

expansion using a Bravyi-Kitaev encoding to be bounded by

Nc = Ngd
T

∆t
e ≤ Ng

ε∆t
≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)3/2
Nint logM

ε3/2
(9.36)

and in the large size limit where the number of significant two-electron integrals in a local

basis set scales quadratically and the number of significant one-electron integrals scales

linearly, this may be bounded by

Nc ≤ κ
(
|βOEI

max|M5/3 + |hTEI
max|M2

)3/2
(M2 +M) logM

ε3/2
(9.37)

where κ is a positive constant that will depend on the basis set and this expression scales

as O(M5 logM) in the number of spin-orbital basis functions.

9.2.2 Hamiltonian averaging

The quantum phase estimation algorithm has been central in almost all algorithms for

energy estimation in quantum simulation. However, it has a significant practical drawback

in that after state preparation, all the desired operations must be performed coherently. A

different algorithm for energy estimation has recently been introduced [223, 296] that lifts

all but an O(1) coherence time requirement after state preparation, making it amenable to

implementation on quantum devices in the near future. We briefly review this approach,

which we will call Hamiltonian averaging, and bound its costs in applications for quantum

chemistry.

As in quantum phase estimation, in Hamiltonian averaging one assumes the eigenstates

|Ψi〉 are provided by some oracle. By use of either the Jordan-Wigner or Bravyi-Kitaev

transformation, the Hamiltonian may be written as a sum of tensor products of Pauli
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operators. These transformations at worst conserve the number of independent terms in

the Hamiltonian, thus we may assume for our worst case analysis the number of terms is

fixed by Nint and the coefficients remain unchanged. From the provided copy of the state

and transformed Hamiltonian, to obtain the energy one simply performs the average

〈H〉 =
∑

i,j,k,...∈x,y,z
hijk...〈σi1 ⊗ σj2 ⊗ σk3 ...〉 (9.38)

by independent Pauli measurements on the provided state |Ψi〉 weighted by the coefficients

hijkl..., which are simply a relabeling of the previous two-electron integrals for convenience

with the transformed operators. As |Ψi〉 is an eigenstate, this average will correspond to

the desired eigenvalue Ei with some error related to sampling that we now quantify.

Consider an individual term

Xijkl... = hijkl...σ
i
1 ⊗ σj2 ⊗ σk3 ... (9.39)

it is clear from the properties of qubit measurements, that the full range of values this

quantity can take on is [−hijkl..., hijkl...]. As a result, we expect that the variance associated

with this term can be bounded by

Var [Xijkl...] ≤ |hijkl...|2 (9.40)

Considering a representative element, namely the maximum magnitude integral element

hmax, we can bound the variance of H as

Var [H] ≤ N2
int|hmax|2 (9.41)

The variance of the mean, which is the relevant term for our sampling error, comes

from the central limit theorem and is bounded by

Var [〈H〉] ≤ Var [H]

N
(9.42)
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where N is the number of independent samples taken of 〈H〉. Collecting these results, we

find

Var [〈H〉] ≤
∑ |hijkl...|2

N
≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2
N

(9.43)

Now setting the variance to the desired statistical accuracy ε2 (which corresponds to a

standard error of ε at a 68% confidence interval), we find the number of independent samples

expected, Ns, is bounded by

Ns ≤
(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2
ε2

(9.44)

If a single independent sample of 〈H〉 requires the measurement of each of the Nint quanti-

ties, then the bound on the total cost in the number of state preparations and measurements,

Nm is

Nm ≤
Nint

(
|βOEI

max|M2/3NOEI
int + |hTEI

max|NTEI
int

)2
ε2

(9.45)

which if one considers the large size limit,such that the number of two-electron integrals

scales quadratically and the number of one-electron integrals scales linearly, we find

Nm ≤ κ
(M +M2)

(
|βOEI

max|M5/3 + |hTEI
max|M2

)2
ε2

(9.46)

where κ is a positive constant that depends upon the basis set. It is clear that this expression

scales as O(M6) in the number of spin-orbital basis functions. We see from this, that

under the same maximum error assumptions, Hamiltonian averaging scales only marginally

worse in the number of integrals and precision as compared to quantum phase estimation

performed with a first order Suzuki-Trotter expansion, but has a coherence time requirement

of O(1) after each state preparation. Note that each measurement is expected to require

single qubit rotations that scale as either O(M) for the Jordan-Wigner transformation or
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O(logM) for the Bravyi-Kitaev transformation. However, we assume that these trivial

single qubit rotations can be performed in parallel independent of the size of the system

without great difficulty, and we thus don’t consider this in our cost estimate. This method

is a suitable replacement for quantum phase estimation in situations where coherence time

resources are limited and good approximations to the eigenstates are readily available.

Additional studies are needed to quantify the precise performance of the two methods

beyond worst case bounds.

9.3 Using imperfect oracles

A central assumption for successful quantum phase estimation and typically any energy

evaluation scheme is access to some oracle capable of producing good approximations to

the eigenstate of interest, where a “good” approximation is typically meant to imply an

overlap that is polynomial in the size of the system. Additionally, a supposed benefit of

phase estimation over Hamiltonian averaging is that given such a good (but not perfect)

guess, by projective measurement in the energy basis, in principle one may avoid any bias

in the final energy related to the initial state. Here we examine this assumption in light of

the Van-Vleck catastrophe [270], which we review below, and examine the consequences for

measurements of the energy by QPE and Hamiltonian averaging.

The Van Vleck catastrophe [270] refers to an expected exponential decline in the quality

of trial wavefunctions, as measured by overlap with the true wavefunction of a system, as

a function of size. We study a simple case of the catastrophe here in order to frame the

consequences for quantum computation. Consider a model quantum system consisting of a

collection of N non-interacting two level subsystems with subsystem Hamiltonians given by

Hi. These subsystems have ground and excited eigenstates |ψig〉 and |ψie〉 with eigenenergies
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Eg < Ee, such that the total Hamiltonian is given by

H =
∑
i

Hi (9.47)

and eigenstates of the total Hamiltonian are formed from tensor products of the eigenstates

of the subsystems. As such the ground state of the full system is given by

|Ψg〉 =
N−1⊗
i=0

|ψig〉 (9.48)

Now suppose we want to measure the ground state energy of the total system, but the

oracle is only capable of producing trial states for each subsystem |ψit〉 such that 〈ψit|ψig〉 =

∆, where |∆| < 1. The resulting trial state for the whole system is

|Ψt〉 =
N−1⊗
i=0

|ψit〉 (9.49)

From normalization of the two level system, we may also write the trial state as

|ψit〉 = ∆ |ψig〉+ e−iθ
√

1−∆2 |ψie〉 (9.50)

where θ ∈ [0, 2π). Moreover, from knowledge of the gap, one can find the expected energy

on each subsystem, which is given by

〈ψit|Hi |ψit〉 = ∆2Eg + (1−∆2)Ee (9.51)

For the case of Hamiltonian averaging on the total system, the expected answer is given

by

E = 〈Ψt|H |Ψt〉

=
N−1∑
i=0

〈ψit|Hi |ψit〉

= N(∆2Eg + (1−∆2)Ee) (9.52)
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which yields an energy bias from the true ground state, εb, given by

εb = N(∆2Eg + (1−∆2)Ee)−NEg

= N(1−∆2)(Ee − Eg)

= N(1−∆2)ω (9.53)

where we denote the gap for each subsystem as ω = (Ee−Eg). As such, it is clear that the

resulting bias is only linear in the size of the total system N .

Quantum phase estimation promises to remove this bias by projecting into the exact

ground state. However, this occurs with a probability proportional to the square of the

overlap of the input trial state with the target state. In this example, this is given by

|〈Ψt|Ψg〉| = |∆|2N (9.54)

which is exponentially small in the size of the system. That is, quantum phase estimation is

capable of removing the bias exactly in this example non-interacting system, but at a cost

which is exponential in the size of the system. The expected cost of removing some portion

of the bias may be calculated by considering the distribution of states and corresponding

energies.

Consider first the probability of measuring an energy with a bias of ε(M) = M(1−∆2)ω.

For this to happen, it is clear that exactly M of the subsystems in the measured state are

in the excited state. It is clear that this is true for

 N

M

 eigenstates, and the square of

the overlap with such an eigenstate is
(
∆2
)N−M (

1−∆2
)M

or

P (ε(M)) =

 N

M

(∆2
)N−M (

1−∆2
)M

(9.55)
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which is clearly a binomial distribution. As a result, in the large N limit, this distribution

is well approximated by a Gaussian and we may write

P (ε(M)) ≈ 1√
2πσ2

exp

[
−1

2

(
M − N̄

σ

)2
]

(9.56)

N̄ = N(1−∆2) (9.57)

σ2 = N∆2(1−∆2) (9.58)

Bringing this together, we find that the probability of measuring a bias of less than ε(M)

is given by

P (< ε(M)) =
1√

2πσ2

∫ M

0
dM ′ exp

[
−1

2

(
M ′ − N̄

σ

)2
]

=
1

2

[
erf

(
M − N̄√

2σ2

)
+ erf

(
N̄√
2σ2

)]
(9.59)

where erf is again the error function.

Thus the expected cost in terms of number of repetitions of the full phase estimation

procedure to remove a bias of at least ε(M) from this model system is

C(< ε(M)) =
1

P (< ε(M))

= 2

[
erf

(
M − N̄√

2σ2

)
+ erf

(
N̄√
2σ2

)]−1

(9.60)

We plot the expected cost function for a range of oracle guess qualities ∆ on a modest

system of N = 100 in Fig 9.3. From this, we see that the amount of bias that can feasibly

be removed depends strongly on the quality of the oracle guess. Generically, we see that

for any fixed imperfect guess on the subsystem level(|∆| < 1), there will be an exponential

cost in phase estimation related to perfect removal of the bias.

This problem can be circumvented by improving the quality of the subsystem guesses

as a function of system size. In particular, one can see that if |∆| is improved as (1−1/(2N))
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Figure 9.3: A log log plot of the expected cost in number of repetitions of measuring an
energy with a bias ε(M) as a function of M in quantum phase estimation for different values
of the oracle quality ∆. A system of N = 100 non-interacting subsystems is considered.
A perfect, unbiased answer corresponds to M = 0 with expected cost O(∆2N ), however
to aid in visualization this plot is provided only beyond M = 1. In general one sees that
depending on the oracle quality ∆, different fractions of the bias may be removed with ease,
but there is always some threshold for imperfect guesses (|∆| < 1) such that there is an
exponential growth in cost.
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then |∆|2N is O(1). However, as the subsystems in a general case could be of arbitrary size,

classical determination of a subsystem state of sufficient quality may scale exponentially in

the required precision and thus system size. Moreover, one would not expect the problem to

be easier in general cases where interactions between subsystems are allowed. As a result,

further developments in variational methods [223], quantum cooling [292], and adiabatic

state preparation [11, 14, 272] will be of key importance in this area. Moreover improvements

in the ansatze used to prepare the wave function such as multi-configurational self consistent

field calculations(MCSCF) [277, 272] or unitary coupled cluster (UCC) [296] will be integral

parts of any practical quantum computing for quantum chemistry effort.

9.4 Adiabatic computation

A complementary solution for the problem of molecular simulation on quantum com-

puters is that of adiabatic quantum computation. It is not known to show the same direct

dependence on the overlap of the initial guess state as QPE, which may allow it to solve

different problems than the quantum phase estimation or variational quantum eigensolver in

practice. In [14], Babbush et al. show how to scalably embed the eigenspectra of molecular

Hamiltonians in a programmable physical system so that the adiabatic algorithm can be

applied directly. In this scheme, the molecular Hamiltonian is first written in second quanti-

zation using fermionic operators. This Hamiltonian is then mapped to a qubit Hamiltonian

using the Bravyi-Kitaev transformation [56, 243]. The authors show that the more typical

Jordan-Wigner transformation cannot be used to scalably reduce molecular Hamiltonians

to 2-local qubit interactions as the Jordan-Wigner transformation introduces linear locality

overhead which translates to an exponential requirement in the precision of the couplings

when perturbative gadgets are applied. Perturbative gadgets are used to reduce the Bravyi-
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Kitaev transformed Hamiltonian to a 2-local programmable system with a restricted set of

physical couplings. Finally, tunneling spectroscopy of a probe qubit [29] can be used to

measure eigenvalues of the prepared state directly.

While the exact length of time one must adiabatically evolve is generally unknown,

Babbush et al. argue that the excited state gap could shrink polynomially with the number

of spin-orbitals when interpolating between exactly preparable noninteracting subsystems

and the exact molecular Hamiltonian in which those subsystems interact. This would imply

that adiabatic state preparation is efficient. Their argument is based on the observation

that molecular systems are typically stable in their electronic ground states and the natural

processes which produce these states should be efficient to simulate with a quantum de-

vice. Subsequently, Veis and Pittner analyzed adiabatic state preparation for a set of small

chemical systems and observed that for all configurations of these systems, the minimum

gap occurs at the very end of the evolution when the state preparation is initialized in an

eigenstate given by a CAS (complete active space) ground state [272]. The notion that

the minimum gap could be bounded by the physical HOMO (highest occupied molecular

orbital) - LUMO (lowest unoccupied molecular orbital) gap lends support to the hypothesis

put forward by Babbush et al.

9.4.1 Resources for adiabatic quantum chemistry

In the adiabatic model of quantum computation, the structure of the final problem

Hamiltonian (encoding the molecular eigenspectrum) determines experimental resource re-

quirements. Since programmable many-body interactions are generally unavailable, we will

assume that any experimentally viable problem Hamiltonian must be 2-local. Any 2-local
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Hamiltonian on n qubits can be expressed as,

H = α · 1 +
n∑
i=1

~βi · ~σi +
n−1∑
i=1

n∑
j=i+1

~γij · (~σi ⊗ ~σj) (9.61)

where ~σi = 〈σxi , σyi , σzi 〉 is the vector of Pauli matrices on the ith qubit, α ∈ R is a scalar

and ~βi ∈ R3 and ~γij ∈ R9 are vectors of coefficients for each possible term.

In addition to the number of qubits, the most important resources are the number of

qubit couplings and the range of field values needed to accurately implement the Hamilto-

nian. Since local fields are relatively straightforward to implement, we are concerned with

the number of 2-local couplings,

n−1∑
i=1

n∑
j=i+1

card (~γij) (9.62)

where card (~v) is the number of nonzero terms in vector ~v. Since the effective molecular

electronic structure Hamiltonian is realized perturbatively, there is a tradeoff between the

error in the eigenspectrum of the effective Hamiltonian, ε, and the strength of couplings

that must be implemented experimentally. The magnitude of the perturbation is inversely

related to the gadget spectral gap ∆ which is directly proportional to the largest term in

the Hamiltonian,

max
ij

{
‖ ~γij (ε)‖∞

}
∝ ∆ (ε) . (9.63)

Thus, the smaller ∆ is, the easier the Hamiltonian is to implement but the greater the error

in the effective Hamiltonian. In general, there are other important resource considerations

but these are typically scale invariant; for instance, the geometric locality of a graph or the

set of allowed interaction terms. The Hamiltonian can be modified to fit such constraints

using additional perturbative gadgets but typically at the cost of using more ancilla qubits

that require greater coupling strength magnitudes.
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9.4.2 Estimates of qubit and coupler scaling

The Bravyi-Kitaev transformation is crucial when embedding molecular electronic

structure in 2-local spin Hamiltonians due to the fact that this approach guarantees a

logarithmic upper-bound on the locality of the Hamiltonian. A loose upper-bound (i.e.

overestimation) for the number of qubits needed to gadgetize the molecular electronic Hamil-

tonian can be obtained by assuming that all terms have the maximum possible locality of

O (log (M)) where M is the number of spin-orbitals.

In general, the number of terms produced by the Bravyi-Kitaev transformation scales

the same as the number of integrals in the electronic structure problem, O
(
M4
)
; however,

as pointed out in an earlier section, this bound can be reduced to O
(
M2
)

if a local basis

is used and small integrals are truncated. Using the “bit-flip” gadgets of [165, 157] to

reduce M2 terms of locality log (M), we would need M2 log (M) ancillae. Since the number

of ancilla qubits is always more than the number of logical qubits for this problem, an

upper-bound on the total number of qubits needed is O
(
M2 log (M)

)
.

The number of couplings needed will be dominated by the number of edges introduced

by ancilla systems required as penalty terms by the bit-flip gadgets. Each of the O
(
M2
)

terms is associated with a different ancilla system which contains a number of qubits equal

to the locality of that term. Furthermore, all qubits within an ancilla system are fully

connected. Thus, if we again assume that all terms have maximum locality, an upper-

bound on the number of couplers is O
(
M2 log2 (M)

)
. Based on this analysis, the adiabatic

approach to quantum chemistry has rather modest qubit and coupler requirements.
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9.4.3 Estimates of spectral gap scaling

In [14], Babbush et al. reduce the locality of interaction terms using perturbative

gadgets from the “bit-flip” family, first introduced in [165] and later generalized by [157].

In the supplementary material presented in a later paper analyzing the scaling of gadget

constructions [63], it is shown that for bit-flip gadgets, λk+1/∆k = O (ε) and

max
ij

{
‖ ~γij (ε)‖∞

}
= O

(
λk

∆k−1

)
. (9.64)

Here, λ is the perturbative parameter, ∆ is the spectral gap, ε is the error in the eigen-

spectrum and ~γij is the coefficient of the term to be reduced. Putting this together and

representing the largest coupler value as γ, we find that ∆ = Ω
(
ε−kγk

)
, where Ω is the

“Big Omega” lower bound. Due to the Bravyi-Kitaev transformation, the locality of terms

is bounded by, k = O (log (M)); thus, ∆ = Ω
(
ε− log(M)γlog(M)

)
.

Prior analysis from this paper indicates that the maximum integral size is bounded by

γ ≤ |βOEI
max|M2/3. This gives us the bound,

∆ = Ω

(
ε− log(M)

∥∥∥βOEI
maxM

2/3
∥∥∥log(M)

)
. (9.65)

However, ∆ also depends polynomially on M2, the number of terms present. Though

known to be polynomial, it is extremely difficult to predict exactly how ∆ depends on M2

as applying gadgets to terms “in parallel” leads to “cross-gadget contamination” which

contributes at high orders in the perturbative expansion of the self-energy used to analyze

these gadgets [63]. Without a significantly deeper analysis, we can only conclude that,

∆ = Ω

poly (M)

∥∥∥∥∥βOEI
maxM

2/3

ε

∥∥∥∥∥
log(M)

 . (9.66)

This analysis indicates that the most significant challenge to implementing the adiabatic

approach to quantum chemistry is the required range of coupler values which is certain to

span at least several orders of magnitude for non-trivial systems.
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This calls attention to an important open question in the field of Hamiltonian gadgets:

whether there exist “exact” gadgets which can embed the ground state energy of arbitrary

many-body target Hamiltonians without the use of perturbation theory. A positive answer

to this conjecture would allow us to embed molecular electronic structure Hamiltonians

without needing large spectral gaps. For entirely diagonal Hamiltonians, such gadgets

are well known in the literature [16] but fail when terms do not commute [63]. Exact

reductions have also been achieved for certain Hamiltonians. For instance, “frustration-free”

gadgets have been used in proofs of the QMA-Completeness of quantum satisfiability, and in

restricting the necessary terms for embedding quantum circuits in Local Hamiltonian [203,

123, 70].

9.5 Conclusions

In this work, we analyzed the impact on scaling for quantum chemistry on a quantum

computer that results from consideration of locality of interactions and exploitation of

local basis sets. The impact of locality has been exploited to great advantage for some

time in traditional algorithms for quantum chemistry, but has received relatively little

attention in quantum computation thus far. From these considerations, we showed that in

practical implementations of quantum phase estimation using a first order Suzuki-Trotter

approximation, one expects a scaling cost on the order of O(M5 logM) with respect to

number of spin-orbitals, rather than more pessimistic estimates of O(M8)-O(M9)[281, 140]

or O(M5.5)-O(M6.5)[224] related to the use of unphysical random integral distributions or

the restriction to molecules too small to observe the effects of physical locality. We believe

that the combination of the algorithmic improvements suggested by Poulin and Hastings et

al [224, 140] with strategies that exploit locality presented here will result in even greater
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gains, and more work is needed in this area.

We also considered the cost of Hamiltonian averaging, an alternative to quantum

phase estimation with minimal coherence time requirements beyond state preparation. This

method has some overhead with respect to quantum phase estimation, scaling as O(M6)

in the number of spin-orbitals, but has significant practical advantages in coherence time

costs, as well as the ability to make all measurements in parallel. This method can at best

give the energy of the state provided when oracle guesses are imperfect, however it can

easily be combined with a variational or adiabatic approach to improve the accuracy of the

energy estimate. Moreover, while quantum phase estimation promises to be able to remove

the bias of imperfect oracle guesses, we demonstrated how the cost of removal may strongly

depend on how imperfect the guesses are.

Finally we analyzed the impact of locality on a complementary approach for quantum

chemistry, namely adiabatic quantum computation. This approach does not have a known

direct dependence on the quality of guess states provided by an oracle, and can in fact act

as the state oracle for the other approaches discussed here.

In all cases, the consideration of physical locality greatly improves the outlook for

quantum chemistry on a quantum computer, and in light of the goal of quantum chemistry

to study physical systems rather than abstract constructs, it is the correct to include this

physical locality in any analysis pertaining to it. We believe that with these and other

developments made in the area of quantum computation, quantum chemistry remains one of

the most promising applications for exceeding the capabilities of current classical computers.
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Chapter 10

Quantum Chemistry Simulation in a Solid-State

Spin Register

Apart from minor modifications, this chapter originally appeared as [279]:

“Quantum Simulation of Helium Hydride in a Solid-State Spin Register”. Ya Wang, Florian
Dolde, Jacob Biamonte, Ryan Babbush, Ville Bergholm, Sen Yang, Ingmar Jakobi, Philipp
Neumann, Alán Aspuru-Guzik, James D. Whitfield and Jørg Wrachtrup. arXiv preprint
1405.2696. 1-9. 2014.

Abstract

Ab initio computation of molecular properties is one of the most promising applications

of quantum computing. While this problem is widely believed to be intractable for classical

computers, efficient quantum algorithms exist which have the potential to vastly accelerate

research throughput in fields ranging from material science to drug discovery. Using a solid-

state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute

the bond dissociation curve of the minimal basis helium hydride cation, HeH+. Moreover, we

report an energy uncertainty (given our model basis) of the order of 10−14 Hartree, which

is ten orders of magnitude below desired chemical precision. As NV centers in diamond

provide a robust and straightforward platform for quantum information processing, our
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work provides several important steps towards a fully scalable solid state implementation

of a quantum chemistry simulator.

10.1 Introduction

Quantum simulation, as proposed by Feynman [107] and elaborated by Lloyd [183] and

many others [289, 298, 1, 33, 117], exploits the inherent behavior of one quantum system as a

resource to simulate another quantum system. Indeed, there have been several experimental

demonstrations of quantum simulators in various architectures including quantum optics,

trapped ions, and ultracold atoms [265]. The importance of quantum simulators applied to

electronic structure problems has been detailed in several recent review articles including

[297, 163, 58, 186, 116] and promises a revolution in areas such as materials engineering,

drug design and the elucidation of biochemical processes.

The computational cost of solving the full Schrödinger equation of molecular systems

using any known method on a classical computer scales exponentially with the number of

atoms involved. However, there is now a growing body of work proposing efficient quantum

simulations of chemical Hamiltonians, e.g. [11, 175, 285, 163, 77, 281, 264, 140]. A general

procedure to obtain molecular eigenenergies to a desired precision is: (i) mapping molecular

wave functions into the computational basis, (ii) preparing the quantum simulator into an

ansatz state which is close to an eigenstate of the simulated Hamiltonian Hsim, (iii) encoding

the energies into a relative phase by simulating the time evolution operator e−itHsim using

quantum gates, and (iv) extracting the energies to desired precision using a variant of

the quantum phase estimation algorithm [11, 183, 169]. Experimental realizations of the

quantum simulation of electronic structure began with the simulation of molecular hydrogen

using quantum optics [175] and liquid state NMR [97]. A calculation of the energy of the
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helium hydride cation in a photonics setup using a quantum variational eigensolver that

avoids phase estimation has also been performed [223].

Nitrogen-vacancy (NV) centers in diamond offer a scalable and precise platform for

quantum simulation which does not suffer from signal losses as the system size increases

and can avoid challenges such as the need for post-selected measurements. Progress to date

has shown that such systems are among the most accurate and most controllable candidates

for quantum information processing [125, 206, 230, 275, 207, 263, 96, 31, 95, 260, 22, 193].

Milestone demonstrations include high-fidelity initialization and readout [125, 206, 230, 275],

on-demand generation of entanglement [207, 263, 96, 31, 275, 95], implementation of quan-

tum control [151, 99, 95], ultra-long spin coherence time [22], non-volatile memory [193],

quantum error correction [275, 260], as well as a host of metrology and sensing exper-

iments [261, 94]. Several proposals to scale up the size of NV systems currently exist,

e.g. [30, 95]. Building on this premise, this is the first study reporting the use of a solid

state spin system to simulate quantum chemistry.

The chemical system we consider in this paper is the helium hydride cation, HeH+ (see

Fig. 10.1a), believed to be the first molecule in the early universe [101]. While HeH+ is

isoelectronic (i.e. has the same number of electrons) with the previously studied molecular

hydrogen, the reduced symmetry requires that we simulate larger subspaces of the full

configuration interaction (FCI) Hamiltonian Hsim. Specifically, we consider

Hsim = Te +Wee + VeN (R) + EN (R) (10.1)

in a minimal single particle basis with one site per atom. Here, Te and Wee are the kinetic

and Coulomb operators for the electrons, VeN is the electron-nuclear interaction, and EN

is the nuclear energy due to the Coulomb interaction between the hydrogen and helium

atoms. The last two terms depend on the internuclear distance R.
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Figure 10.1: Calculation of HeH+ molecular energy with NV spin register in
diamond (a) HeH+, molecule to be simulated. It consists of a hydrogen and a helium
nucleus, and two electrons. The distance (bond length) between the nuclei is denoted by R.
Dot-dashed line, straight line, and dotted arrow indicate the nucleus-nucleus, electron-
nucleus and electron-electron Coulomb interactions, respectively. (b) A nitrogen-vacancy
center in diamond, used as a quantum simulator. The electron spin is used for simulation
and the nuclear spin as the probe qubit for energy readout. (c) Energy level diagram for the
coupled spin system formed by the NV electron spin and nearby 14N nuclear spin. Optical
transitions between ground and excited state are used to initialize and measure the electron
spin state.

In this work, we consider the singlet (S = 0) sector of the electronic Hamiltonian in

a minimal single-electron basis consisting of a single site at each atom given by contracted

Gaussian orbitals. After taking symmetries into account, the Hamiltonian can be repre-

sented as a 3 × 3 matrix in the basis (Ψ1, Ψ6, 1√
2

(Ψ3 −Ψ4)) (see Methods). Each term

of the Hamiltonian in the single particle basis (e.g. 〈χi|(Te + VeN )|χj〉) is precomputed

classically at each internuclear separation R using the canonical spin orbitals found via the

Hartree-Fock (HF) procedure.

After obtaining Hsim through this (typically) efficient classical computation, we per-

form the quantum simulation of this molecule on a single-NV register, which consists of an

electronic spin-1 and an associated 14N nuclear spin-1 forming a qutrit pair (see Fig. 10.1b).
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The electronic spin-1 of the NV system acts as the simulation register through mapping the

molecular basis (Ψ1, Ψ6, 1√
2

(Ψ3 −Ψ4)) onto its ms = (1, 0,−1) states. The 14N nuclear

spin-1 is used as the probe register to read out the energies using the iterative phase esti-

mation algorithm (IPEA) [219], as shown in Fig. 10.1c. The controlled evolution e−itHsim

on the electron spin is implemented using optimal control theory, which helps to realize the

most precise simulation of quantum chemistry to date. Without post-selection and at room

temperature, our experimentally computed energy agrees with the corresponding classical

calculations to within chemical precision, with a deviation of 10−14 Hartree. By performing

the simulation process for different values of R, the electronic potential energy surfaces are

also experimentally obtained.

In order to efficiently sample the eigenenergy En as the size of the system grows, one

must prepare an ansatz state that has an overlap with the corresponding eigenstate |en〉 that

decreases at most polynomially in the system size. The phase estimation algorithm [169]

can then be used to project the ansatz state into the exact eigenstate with sufficiently high

probability.

One possible approach to realize this requirement is to use adiabatic state prepara-

tion [11, 97, 14, 272], the performance of which depends on the energy gap during the entire

evolution process. An alternative approach is to approximate the eigenstate with a trial

state. Such trial states can often be prepared based on classical approximate methods. In

our case, the simulation register is initialized in a trial state |τ〉 ∈ {|+1〉 , |−1〉}, express-

ible as a superposition of all the Hsim eigenstates, |τ〉 =
∑

k ak |ek〉. The probe register is

prepared in the state |ψ(0)〉 = (|0〉+ |−1〉)/
√

2 (see Methods).

In the next step, a controlled-U(t) gate for different times t, where U(t) = exp(−iHsimt),
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is applied to encode the energies into a relative phase, resulting in the state

|ψ(t)〉 =
1√
2

∑
k

ak(|0〉+ e−iEkt |−1〉) |ek〉 . (10.2)

The reduced density matrix of the probe register,

ρprobe(t) =
1

2

 1
∑

k |ak|2e−iEkt∑
k |ak|2eiEkt 1

 , (10.3)

contains the information about the energies in its off-diagonal elements. This information

is then transferred to the electron spin for readout by a nuclear spin π
2 -pulse and selective

π-pulses on the electron spin-1 (Fig. 10.2a).

To measure the energy precisely, we perform classical Fourier analysis on the signal for

different times (ts, 2ts, . . . , Lts). This readout method can help to resolve the probability

|ak|2 of each eigenstate |ek〉 and approximate the corresponding energy Ek. We choose ts

such that the sampling rate 1
ts
> |En|/π. To enhance the precision of the energy eigenvalues,

an iterative phase estimation algorithm is performed. A central feature of this algorithm

includes repeating the unitary operator U to increase readout precision. Expressing the

energy as a string of decimal digits, Ek = x1.x2x3 . . ., the first digit x1 can be determined

by the first round phase estimation process. Once x1 is known, the second digit x2 can be

iteratively determined by implementing the unitary operator Up, where p = 10. For the kth

iteration, p = 10k−1.

An increasingly precise energy can be obtained through continued iterations. However,

the repetitions and therefore the iterations are fundamentally limited by the coherence

time of the quantum system. Moreover, the accumulated gate errors become a dominant

limitation of the energy precision as the repetitions increase. To avoid such shortcomings,

the time evolution operators Up are realized and optimized with optimal control theory (see

Methods). The precision we reach in our experiments demonstrates that optimal control can
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Figure 10.2: Energy readout through quantum phase estimation algorithm (a)
Experimental implementation of the IPEA algorithm. The controlled gate U∗ is realized
using optimal control (see Methods). The x, y phases in the last π/2 pulse measure the real
and imaginary parts of the signal, respectively, which yield the sign of the measured energy.
The number of repetitions N = 10k−1 depends on the iteration k. (b) Experimental results
of iterative phase estimation algorithm to enhance the precision of measured energy for the
case of R = 0.9. The Fourier spectrum of the first iteration (k = 1) fixes the energy roughly
between −10 and 0 Hartree. The precision is then improved iteratively by narrowing down
the energy range. In each iteration, the energy range is divided into ten equal segments.
The red area indicates the energy range for the next iteration. After each iteration at least
one decimal digit, denoted by the number in the red area, is resolved. (c) The uncertainty
of the measured energy as a function of the iteration number.

overcome several difficult features found when scaling up the register size [95]. Although it

cannot be applied in large registers to generate the quantum gates directly, it can be used to

generate flexible smaller building blocks, ensuring high-fidelity control in future large scale

applications. In the present case, the method is unscalable because we compute the unitary

propagator using a classical computer. However, by using a Trotter-type gate sequence to

implement the propagators, e.g. [285], this can be designed with polynomially scaling.
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Fig. 10.2b shows our results of internuclear distance R = 90 pm with trial state |+1〉.

The position of the peak indicates the eigenvalue of molecular Hamiltonian with an offset

tr(Hsim)/3. The Fourier spectrum has only one major peak, which shows that the trial state

|+1〉 is close to the ground state. As the iterations increase, more precise decimal digits of

the ground state energy are resolved. After 13 repetitions the molecular energy is extracted

to be −1.020170538763387± 8× 10−15 Hartree, very close to the theoretic value, which is

-1.020170538763381 Hartree, with an uncertainty of ±1.4× 10−14 Hartree.
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Figure 10.3: Energy surfaces of the HeH+ molecule. The energy surface of the second
excited state can be obtained by subtracting energies of the the ground and first excited
states from the trace of Hsim, and is not shown. All the measured energies are obtained in
five iterations.

Once the energies have been measured, we can obtain the potential energy surface

of the molecule by repeating the procedure for different distances R (see Fig. 10.3). The

ground state energy surface is obtained with trial state |+1〉 and first excited state energy

surface is obtained with trial state |−1〉.

We obtain the remaining eigenenergy (of the second excited state) without further

measurement by subtracting the ground and first excited state energies from the trace

of Hsim. The potential energy surfaces can be used to compute key molecular properties

such as ionization energies and vibrational energy levels. An important example is the

equilibrium geometry: we found the minimal energy for the ground state, −2.86269 Hartree,
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Figure 10.4: Polarization of 14N nuclear spin. (a) Experimental pulse sequence to
polarize the 14N nuclear spin. (b) Dynamical process during one polarization step. (c)
Initialization decay of nuclear spin under laser illumination. The fit (red line) shows an
exponential decay with time constant 1.9 ± 0.3 µs. The pulse sequence is shown in the
inset. (d) The contrast of electron spin Rabi oscillation in the mN = 0 subspace (here:
a measure for the degree of nuclear spin initialization) varies with the second laser pulse
length. (e) The electron spin Rabi oscillation in the mN = 0 subspace for 300 ns green
pulse duration.

at a bond length of 91.3 pm. In addition, we obtained a binding energy of 0.07738 Hartree

in our basis. To improve the accuracy of our results we would need to simulate the system

in a larger basis, thereby requiring more qutrits.

10.2 Methods

10.2.1 Computation of molecular Hamiltonians

The full configuration interaction Hamiltonian is a sparse matrix and each matrix

element can be computed in polynomial time. For a basis set with M orbitals, there are

M4 terms in the Hamiltonian but the Hamiltonian is of size M !
N !(M−N)! ≈ MN which is

337



exponential as the number of electrons grow. To generate the Hamiltonian, we fix the

nuclear configuration and then compute the necessary one- and two-body integrals which

parameterize the FCI matrix at each fixed bond length in the standard STO-3G basis [144],

using the PSI3 electronic structure package [80].

The minimal basis HeH+ system has two spatial orbitals which we denote as g (r) and

e (r) and two spin functions denoted as α (σ) and β (σ) which are eigenstates of the Sz

operator. We combine these to form four spin orbitals, χ1 = g (r)α (r), χ2 = g (r)β (σ),

χ3 = e (r)α (σ) and χ4 = e (r)β (σ). There are six possible two-electron Slater determi-

nants, Ψ1 = A(χ1χ2), Ψ2 = A(χ1χ3), Ψ3 = A(χ1χ4), Ψ4 = A(χ2χ3), Ψ5 = A(χ2χ4), and

Ψ6 = A(χ3χ4). More explicitly,

A(χiχj) =
1√
2

∣∣∣∣∣∣∣
χi (r1σ1) χj (r1σ1)

χi (r2σ2) χj (r2σ2)

∣∣∣∣∣∣∣ . (10.4)

States Ψ1, Ψ3, Ψ4, and Ψ6 have total projected spin of Mz = 0 whereas Ψ2 and Ψ5 have

projected values of Mz = 1 and Mz = −1 respectively. Only Ψ1 and Ψ6 are valid eigenstates

of the total spin operator S2; however, the symmetric and antisymmetric combinations of Ψ3

and Ψ4 yield the ms = 0 triplet and an additional singlet, respectively. When a computation

is requested on the singlet state, the PSI3 package computes the symmetry-adapted FCI

matrix in the basis of Ψ1, Ψ3, Ψ4 and Ψ6. By combining Ψ3 and Ψ4 we obtained the three

HeH+ singlet states used in this experiment: Ψ1, Ψ6 and 1√
2

(Ψ3 −Ψ4).

10.2.2 Sample characteristics

We use a nitrogen-vacancy center in high-purity diamond grown by microwave-assisted

chemical vapor deposition (CVD). The intrinsic nitrogen content of the grown crystal is

below 1 ppb and the 12C content is enriched to 99.9%. Experiments are performed at room
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temperature with an applied magnetic field of 11 gauss. The electron spin’s coherence times

are T ∗2 ≈ 80 µs and T2 ≈ 600 µs.

10.2.3 NV system

In a magnetic field B0 aligned along the NV symmetry axis, the electronic and nuclear

spin system has the Hamiltonian

H/~ = 2π∆S2
z + γeB0Sz + 2πAhfSzIz + 2πQI2

z + γNB0Iz

where Sz and Iz are the dimensionless spin-1 operators for the electrons and the 14N nucleus,

respectively. ∆ ≈ 2.87 GHz and Q ≈ −4.94 MHz are the zero-field splitting of the electronic

spin and quadrupole splitting of the nuclear spin. The hyperfine coupling coefficient is

Ahf ≈ 2.16 MHz. The Larmor frequencies are defined as ωi := γiB0, where γi is the

gyromagnetic ratio of the spin (electronic or nuclear).

10.2.4 System initialization

In the experiment, the 14N nuclear spin is initially in a thermal state. It is polarized

into the spin state |mI = 0〉 by means of optical pumping of the electron spin followed

polarization transfer realized with electron spin and nuclear spin control (see Fig. 10.4).

The second short laser pulse repolarizes the electron spin into |ms = 0〉, leaving the spins

in the state |ms = 0,mI = 0〉 [99]. In practice, the imperfect control and short T1 ≈ 1.9 µs

time of nuclear spin under laser illumination will result in imperfect polarization of the

nuclear spin. To enhance the polarization effect, we repeat the process two times and tune

the second laser pulse to an optimal length around 300 ns. The observed electron spin Rabi

oscillation in the mI = 0 subspace indicates a final polarization of around 60%. After the

polarization process, the electron spin is then prepared into the |ms = +1〉 or |ms = −1〉
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state by another microwave π pulse unconditional on the nuclear spin state. Note that only

the phase of the nuclear spin superposition state contains information in the IPEA process,

therefore imperfect polarization would not affect the accuracy of final energy measurement.

10.2.5 Controlled U(t) gate realization

In the experiment, every individual controlled gate U
′

= (e−iHsimt)p can be realized by

decomposing it into more basic but highly complicated microwave pulses. However, this

approach will accumulate considerable control errors. To avoid such shortcomings, we use

an alternative method, optimal control, which has recently been used to achieve high-fidelity

control in coupled NV centers in diamond [95].

To make the calculation feasible, another equivalent controlled gate U∗ = e−iH
′t with

the Hamiltonian H ′ = Hsim − tr(Hsim)/3 is calculated. This operation will only introduce

additional O(1) complexity. One then needs to add this constant value tr(Hsim)/3 back to

the final measured energies. To calculate U∗, we use the GRAPE algorithm [166] to optimize

the pulse sequence, with the final fidelity always larger than 0.99. For every controlled gate,

the pulse sequence consists of 10 pieces of 140 ns each. Two microwave frequencies are

applied simultaneously to control the electron spin, in the observed hyperfine peaks of the

|mI = −1,ms = 0〉 → |mI = −1,ms = +1〉 and |mI = −1,ms = 0〉 → |mI = −1,ms = −1〉

transitions. More details about the optimal control method can be found in reference [95].

10.2.6 A symmetry of the ground state energy problem

If we write the system Hamiltonian as H = T +K where diagonal T accounts for the

HF approximations and off-diagonal K accounts from the Born-Oppenheimer approximate

treatment of the problem. We note that whenever the support of K corresponds to the
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adjacency matrix of a bipartite graph, then H = T + K and L = T − K are cospectral.

This follows from the proof [299] that any bipartite (necessarily time-inversion symmet-

ric) Hamiltonian H is on the same orbit as −H under conjugation by diagonal unitarians

(e.g. there exists a diagonal unitary Λ such that ΛHΛ† = −H) where T is central under

this action. Hence, they represent the same ground-state energy problems, providing an

equivalent problem instance L to attempt state preparation on. It turns out that all of the

quantum chemistry algorithms realized to date [175, 97, 187] have this property including

our own demonstration, where the underlying graph corresponds to a tree. This observation

provides a second benchmark to be considered in future experiments.

10.3 Discussion

We will now briefly discuss several of the implications of this study. Current quantum

simulations cannot outperform classical devices. In large systems, the simulated propagators

can be implemented using Trotter sequences and should be accompanied by error correction.

Optimal control methods, as we have demonstrated here, should prove necessary to perform

these tasks with satisfactory precision.

We have demonstrated the most precise quantum simulation of molecular energies to

date, which represents an important step towards the advanced level of control required by

future quantum simulators that will outperform classical methods. The energies we obtained

for the helium hydride cation surpass chemical precision by 10 orders of magnitude (with

respect to the basis). The accuracy of our results can be increased by using a larger,

more flexible single-particle basis set but this will require a larger quantum simulator that

eventually will require error correction schemes [77].

Our study presents evidence that quantum simulators can be controlled well enough
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to recover increasingly precise data. The availability of highly accurate energy eigenvalues

of large molecules is presently far out of reach of existing computational technology, and

quantum simulation could open the door to a vast range of new technological applications.

The approach we took was based on iterative phase estimation [219] and optimal control

decompositions [95]—these will form key building blocks for any solid-state quantum sim-

ulator. Even more generally, this study would suggest that the techniques presented here

should be employed in any future simulator that will outperform classical simulations of

electronic structure calculations.
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High-fidelity spin entanglement using optimal control. Nat. Commun., 5 (2014).

[96] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer,
P. Neumann, F. Jelezko, and J. Wrachtrup. Room-temperature entanglement between
single defect spins in diamond. Nat. Phys., 8, 1 (2013).

[97] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu. NMR implementation of a
molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev.
Lett., 104, 030502 (2010).

[98] Q.-H. Duan and P.-X. Chen. Realization of Universal Adiabatic Quantum Computa-
tion with Fewer Physical Resources. Phys. Rev. A, 84, 4 (2011).

[99] M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, a. S. Zibrov,
P. R. Hemmer, and M. D. Lukin. Quantum register based on individual electronic
and nuclear spin qubits in diamond. Science, 316, 1312 (2007).

349
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[146] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear Integer Programming.
50 Years Integer Program., page 57 (2009).

[147] I. Hen and A. Young. Solving the Graph Isomorphism Problem with a Quantum
Annealer. Phys. Rev. A, 86 (2012).

[148] T. Hogg. Adiabatic quantum computing for random satisfiability problems. Phys.
Rev. A, 67, 22314 (2003).

[149] IBM. IBM ILOG CPLEX V12.1: User’s Manual for CPLEX, 2009.

[150] S. V. Isakov, I. N. Zintchenko, T. F. Ronnow, and M. Troyer. Optimized simulated
annealing code for Ising spin glasses. e-print arXiv: 1401.1084, pages 1–10 (2014).

[151] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. Obser-
vation of coherent oscillation of a single nuclear spin and realization of a two-qubit
conditional quantum gate. Phys. Rev. Lett., 93, (2004).

[152] M. Johanning, A. F. Varón, and C. Wunderlich. Quantum simulations with cold
trapped ions. J. Phys. B At., 42, 4009 (2009).

[153] J. Johansson, M. H. S. Amin, A. J. Berkley, P. Bunyk, V. Choi, R. Harris, M. W.
Johnson, T. M. Lanting, S. Lloyd, and G. Rose. Landau-Zener transitions in a super-
conducting flux qubit. Phys. Rev. B, 80, 12507 (2009).

[154] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P.
Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C.
Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose.
Quantum annealing with manufactured spins. Nature, 473, 194 (2011).

[155] C. Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev.
A, 87, 022328 (2013).

[156] P. Jordan and E. Wigner. über das paulische äquivalenzverbot. Zeitschrift für Phys.,
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T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup. Quantum error
correction in a solid-state hybrid spin register. Nature (2014).

[276] H. Wang, S. Ashhab, and F. Nori. Efficient quantum algorithm for preparing
molecular-system-like states on a quantum computer. Phys. Rev. A - At. Mol. Opt.
Phys., 79 (2009).

[277] H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoffmann. Quantum algorithm for
obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys., 10,
5388 (2008).

[278] L. Wang, T. F. Ronnow, S. Boixo, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M.
Martinis, and M. Troyer. Comment on: ”Classical signature of quantum annealing”.
e-print arXiv:1305.5837, pages 1–3 (2013).

[279] Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S. Yang, I. Jakobi,
P. Neumann, A. Aspuru-Guzik, J. D. Whitfield, and J. Wrachtrup. Quantum Sim-
ulation of Helium Hydride in a Solid-State Spin Register. e-print arXiv: 1405.2696,
pages 1–9 (2014).

[280] N. J. Ward, I. Kassal, and A. Aspuru-Guzik. Preparation of many-body states for
quantum simulation. J. Chem. Phys., 130, 194105 (2008).

[281] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer. Gate-count
estimates for performing quantum chemistry on small quantum computers. Phys.
Rev. A, 90, 1 (2014).

[282] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler. A Rydberg
quantum simulator. Nat. Phys., 6, 382 (2010).

[283] J. Welch, D. Greenbaum, S. Mostame, and A. A. Aspuru-Guzik. Efficient quantum
circuits for diagonal unitaries without ancillas. New J. Phys., 16, 033040 (2014).

[284] J. D. Whitfield. Unified views of quantum simulation algorithms for chemistry. e-print
arXiv: 1502.03771, pages 1–5 (2015).

[285] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure
Hamiltonians using quantum computers. Mol. Phys., 109, 735 (2011).

[286] J. D. Whitfield, P. J. Love, and A. Aspuru-Guzik. Computational complexity in
electronic structure. Phys. Chem. Chem. Phys., 15, 397 (2013).

[287] N. Wiebe, D. W. Berry, P. Hoyer, and B. C. Sanders. Higher Order Decompositions
of Ordered Operator Exponentials. J. Phys. A Math. Theor., 43, 1 (2010).

[288] N. Wiebe, D. W. Berry, P. Hoyer, and B. C. Sanders. Simulating quantum dynamics
on a quantum computer. J. Phys. A Math. Theor., 44, 445308 (2011).

362



[289] S. Wiesner. Simulations of many-body quantum systems by a quantum computer.
e-print arXiv: 9603028 (1996).

[290] A. J. Williamson, R. Q. Hood, and J. C. Grossman. Linear-scaling quantum Monte
Carlo calculations. Phys. Rev. Lett., 87, 246406 (2001).

[291] Z. Xing and W. Zhang. MaxSolver: An efficient exact algorithm for (weighted) max-
imum satisfiability. Artif. Intell., 164, 47 (2005).

[292] J.-S. Xu, M.-H. Yung, X.-Y. Xu, S. Boixo, Z.-W. Zhou, C.-F. Li, A. Aspuru-Guzik,
and G.-C. Guo. Demon-like algorithmic quantum cooling and its realization with
quantum optics. Nat. Photon. (2014).

[293] L. Xue, J. W. Godden, F. L. Stahura, and J. Bajorath. Design and evaluation of a
molecular fingerprint involving the transformation of property descriptor values into
a binary classification scheme. J. Chem. Inf. Comput. Sci., 43, 1151 (2003).

[294] D. Yu, X. Huang, H. Wang, Y. Cui, Q. Hu, and R. Zhou. Short-term Solar Flare Level
Prediction Using a Bayesian Network Approach. Astrophys. J., 710, 869 (2010).

[295] K. Yue and K. A. Dill. Forces of tertiary structural organization in globular proteins.
Proc. Natl. Acad. Sci. U. S. A., 92, 146 (1995).

[296] M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik,
and E. Solano. From transistor to trapped-ion computers for quantum chemistry. Sci.
Rep., 4, 9 (2014).

[297] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik. Introduc-
tion to Quantum Algorithms for Physics and Chemistry. In Quantum Inf. Comput.
Chem., volume 154 of Advances in Chemical Physics, pages 67–106. John Wiley &
Sons, Inc., 2014.

[298] C. Zalka. Efficient Simulation of Quantum Systems by Quantum Computers.
Fortschritte der Phys., 46, 877 (1998).

[299] Z. Zimborás, M. Faccin, Z. Kádár, J. D. Whitfield, B. P. Lanyon, and J. Biamonte.
Quantum Transport Enhancement by Time-Reversal Symmetry Breaking. Sci. Rep.,
3 (2013).
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