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Picard-Lefschetz oscillators for the Drinfeld-Lafforgue-Vinberg compactification

Abstract

We study the singularities of the Drinfeld-Lafforgue-Vinberg compactification BunG

of the moduli stack of G-bundles on a smooth projective curve for a reductive group

G. The study of these compactifications was initiated by V. Drinfeld (for G = GL2)

and continued by L. Lafforgue (for G = GLn) in their work on the Langlands cor-

respondence for function fields; unlike the work of Drinfeld and Lafforgue, however,

we focus on questions about the singularities of these compactifications which arise

naturally in the geometric Langlands program. A definition of BunG for a general

reductive group G is also due to Drinfeld (unpublished) and relies on the Vinberg

semigroup of G; this case will be dealt with in the forthcoming work [Sch]. In the

present work we focus on the case G = SL2. In this case the compactification can al-

ternatively be viewed as a canonical one-parameter degeneration of the moduli space

of SL2-bundles. We study the singularities of this one-parameter degeneration via the

weight-monodromy theory of the associated nearby cycles construction: We give an

explicit description of the nearby cycles sheaf together with its monodromy action in

terms of certain novel perverse sheaves which we call “Picard-Lefschetz oscillators”,

and then use this description to determine the intersection cohomology sheaf and

other invariants of the singularities. Our proofs rely on the construction of certain lo-

cal models for the one-parameter degeneration which themselves form one-parameter

families of spaces which are factorizable in the sense of Beilinson and Drinfeld. We

also include a first application on the level of functions.
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1. Introduction

1.1. Overview.

1.1.1. The relative compactification BunG. Let X be a smooth projective curve over

an algebraically closed field k, let G be a reductive group over k, and let BunG

denote the moduli stack of G-bundles on X. In this work we begin the study of the

singularities of a relative compactification BunG of BunG defined by Drinfeld. Recall

first that the diagonal morphism

∆ : BunG
∆−→ BunG×BunG

of BunG is not proper. Drinfeld has hence defined a larger stack BunG together with

a factorization of the diagonal ∆ as

BunG //

∆

((

BunG
∆̄
// BunG×BunG .

where the map ∆̄ is proper. For G = GL2 and for G = GLn certain open substacks

of BunG were used by Drinfeld and by L. Lafforgue in their seminal work on the

Langlands correspondence for function fields (see [Dr1], [Dr2], [Laf]). For a general

reductive group Drinfeld’s definition of BunG uses the Vinberg semigroup of G (see

[V] for Vinberg’s original work) and will appear in [Sch]. While the open substacks

used by Drinfeld and Lafforgue are smooth, the stack BunG is already singular for

G = SL2. The need to understand the singularities of BunG arises naturally in the

geometric Langlands program, such as in the study of the “miraculous duality” on

BunG introduced by Drinfeld and Gaitsgory (see [G2]).
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1.1.2. The degeneration VinBunG. In the present work we study the singularities of

BunG in the special case G = SL2. The case of a general reductive group will be

treated in [Sch]. For most of the article it is more convenient for us to work with

a minor modification of BunG which we denote by VinBunG and refer to as the

Drinfeld-Lafforgue-Vinberg degeneration of BunG. The degeneration VinBunG is the

total space of a Gm-bundle over BunG, so that the singularities are not affected by

this modification. For G = SL2 it is easy to state the definition of VinBunG: It

parametrizes triples (E1, E2, ϕ) consisting of two SL2-bundles E1, E2 on the curve X

together with a non-zero morphism of the associated vector bundles ϕ : E1 → E2.

Taking the determinant of the map ϕ defines a map

v : VinBunG −→ A1

whose fibers away from 0 ∈ A1 are isomorphic to BunG, and whose fiber over 0 con-

tains the singular locus of VinBunG. It is in this sense that VinBunG is a degeneration

of BunG. Although the Vinberg semigroup will not explicitly appear in the present

article, we remark that this degeneration of BunG is canonical in the sense that it is

induced by the canonical Vinberg semigroup degeneration of the group G.

1.1.3. The goal. In the present article we are interested on the one hand in the sin-

gularities of the map v, and on the other hand in the singularities of its total space

VinBunG. More precisely, we on the one hand want to understand the nearby cycles

sheaf of the family v together with its monodromy action, and on the other hand want

to determine the IC-sheaf of the total space VinBunG. These two tasks are however

related: Our approach will be to first obtain an explicit description of the nearby

cycles sheaf, and to then deduce information about the IC-sheaf from an explicit

understanding of the monodromy action on the nearby cycles. In fact, accessing the
2



IC-sheaf via the nearby cycles was our original motivation for introducing the modifi-

cation VinBunG of BunG. A direct calculation of the IC-sheaf appears to be difficult,

as we explain in Section 1.2.6 below.

1.2. Main results.

The main theorem of this article, Theorem 3.3.3 below, provides an explicit formula

for the nearby cycles perverse sheaf Ψ of the degeneration VinBunG, together with its

monodromy action. More precisely, we will give an explicit formula for the associated

graded GrΨ of the weight-monodromy filtration on Ψ as a representation of the

Lefschetz-sl2, so that the action of the lowering operator in sl2 coincides with the

action of the logarithm of the unipotent part of the monodromy. To give a rough

idea of the ingredients of this formula, we first discuss a natural stratification of the

special fiber v−1(0) of the family VinBunG.

1.2.1. The defect stratification. To each point ϕ : E1 → E2 of the special fiber v−1(0)

of the family VinBunG one can naturally associate an effective divisor D on the curve

X which measures the “defect” of the map ϕ, i.e., it yields a measure of “how singular”

the point ϕ : E1 → E2 is. The special fiber of VinBunG can then be stratified into

strata kVinBunG on which the defect k, i.e., the degree of the associated defect divisor

D, is equal to k. Associating to each point its defect divisor we obtain natural maps

pk : kVinBunG −→ X(k)

where X(k) denotes the k-th symmetric power of the curve X. Finally, let

jk : kVinBunG ↪−→ kVinBunG
3



denote the inclusion of a stratum into its closure, and let (jk)!∗ denote the corre-

sponding intermediate extension functor for perverse sheaves.

1.2.2. Main theorem about nearby cycles. Broadly speaking, our main theorem about

the nearby cycles of VinBunG (Theorem 3.3.3) expresses the associated graded GrΨ

as the direct sum

Gr Ψ =
⊕
k∈Z>0

(jk)!∗ p
∗
k Pk

where the Pk denote certain novel perverse sheaves on X(k) which we call Picard-

Lefschetz oscillators ; their definition is rather simple and originates in the classical

Picard-Lefschetz theory (see Section 3.2 below). By definition the Picard-Lefschetz

oscillators come equipped with actions of the Lefschetz-sl2, and our theorem in fact

asserts that the above isomorphism identifies the induced action of the Lefschetz-sl2

on the right hand side with its monodromy action on the left hand side. Finally, the

intermediate extension (jk)!∗ can be explicitly computed via certain finite resolutions

of singularities of the strata closures which are constructed using the smooth relative

compactifications of the map BunB → BunG defined by Drinfeld ([BG1]) and Laumon

([Lau]); see the actual formulation of Theorem 3.3.3 for a precise statement.

1.2.3. Intersection Cohomology. From the above explicit formula for the nearby cy-

cles one can deduce a description of the weight filtration of the restriction of the

IC-sheaf of VinBunG to the special fiber (see Theorem 3.4.1 below). Extracting this

description from the above formula essentially amounts to computing the perverse

kernel of the monodromy operator on the Picard-Lefschetz oscillators, which can be

done systematically using a variant of the classical Schur-Weyl duality. Furthermore,

exploiting the geometry of the defect stratification it is also possible to compute the

IC-stalks from this description of the weight filtration (see Remark 7.1.7).
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1.2.4. Stalks of the ∗-extension of the constant sheaf. Let

j : VinBunG
∣∣
A1r{0} ↪−→ VinBunG

denote the open inclusion of the inverse image of A1 r {0} under v. One ingredient

in our proof of the nearby cycles theorem which might be of independent interest

is the determination of the ∗-stalks of the ∗-extension j∗ of the constant sheaf on

VinBunG
∣∣
A1r{0} (see Section 6.4 below). In fact, we proceed by relating these stalks

to the cohomology Ω̃ of the “open” Zastava spaces from [FFKM], [BFGM].

1.2.5. Function-theoretic applications. The above stalk computation can also be used,

via the sheaf-function correspondence, to answer a natural question on the level

of functions; this application is given at the end of the article in Section 8 below.

The relation of this computation to Drinfeld’s “strange” invariant bilinear form on

the space of automorphic forms is explained in the forthcoming article [DW] by

Drinfeld and Wang. Its relation to the “asymptotic map” appearing in the work

[BK] of Bezrukavnikov and Kazhdan and the works [SakV], [Sak] of Sakellaridis and

Venkatesh will be discussed in the forthcoming work [Sch].

1.2.6. Non-factorization of the IC-sheaf. To motivate the next section, we now briefly

discuss one peculiarity exhibited by the IC-sheaf of VinBunG, which sets it apart from

similarly defined singular moduli spaces in the geometric Langlands program such as

Drinfeld’s relative compactifications BunB (see [BG1], [BFGM]). As was mentioned

in Section 1.2.1 above, one can naturally associate to any singular point of VinBunG

its defect divisor. The IC-stalk at the singular point will in fact essentially only

depend on this divisor; let us temporarily denote the IC-stalk at a singular point

with associated defect divisor D by ICD. A natural expectation is then that the

IC-sheaf “factorizes”, i.e., if D = D1 +D2 for two effective divisors D1 and D2 on X
5



with disjoint supports, then (up to shifts and twists) we have

ICD = ICD1 ⊗ ICD2 .

Less formally, one might expect that distinct points “cannot see each other” in the

sense that they contribute to the IC-stalk independently; this is indeed the case for

Drinfeld’s BunB (see [FFKM], [BFGM], and Section 1.3 below). However, it turns

out that the IC-sheaf of VinBunG does not factorize in this sense, which in turn

appears to make it difficult to carry out the approach of [BFGM] to compute the

IC-stalks directly, necessitating our approach via the nearby cycles. For an example

where a direct computation of the IC-stalks is possible in our setting, see Section 6.6,

where the case of defect 6 2 is treated and used in our proof of the nearby cycles

theorem. A geometric explanation for the lack of factorization of the IC-sheaf can be

found in the nature of the local models for VinBunG which we discuss next.

1.3. Proofs via local models.

A powerful technique in the study of singular moduli spaces in the geometric Lang-

lands program is to construct local models which feature the same singularities but

have the advantage of being factorizable in the sense of Beilinson and Drinfeld (see

e.g. [BD1], [BD2]). The utility of the factorization property is that it allows for

inductive calculations of sheaves on the moduli spaces which themselves factorize. A

prime example of this technique, and a major influence on the present article, is the

computation of the IC-sheaf of Drinfeld’s relative compactifications BunB by Braver-

man, Finkelberg, Gaitsgory, and Mirkovic in [BFGM]; in this case the local models

are the Zastava spaces introduced by Drinfeld, Feigin, Finkelberg, Kuznetsov and

Mirkovic (see [FFKM], [BFGM]). That the Zastava spaces are indeed factorizable in

fact implies that the IC-sheaf of Drinfeld’s BunB factorizes in the above sense.

6



1.3.1. Local models for VinBunG. To prove our main theorem about nearby cycles we

will construct certain local models (Y n)n∈Z>1
for the degeneration VinBunG, which

themselves form one-parameter families

v : Y n −→ A1 .

Their relationship with VinBunG is completely analogous to the relationship between

the Zastava spaces and Drinfeld’s BunB (see [BFGM], [BG2]): Broadly speaking, the

local model Y n features the same singularities as the open substack 6nVinBunG

of defect 6 n; hence the validity of the nearby cycles theorem and the IC-sheaf

computation for VinBunG is equivalent to the validity of the corresponding assertions

for the local models Y n for all n > 1. We will prove the nearby cycles theorem for

Y n by induction on n, making use of the following factorization property:

1.3.2. Factorization in families. The main difference between our local models Y n

and the Zastava spaces is that they actually do not factorize, but rather “factorize in

families”, i.e., the fibers of the map v : Y n → A1 are factorizable in compatible ways.

In fact, our local models can be also viewed as canonical one-parameter “Vinberg de-

generations” of the Zastava spaces. The fact that factorization holds only in families

is a natural explanation for the fact that the IC-sheaf of VinBunG and BunG does not

factorize either. Unlike the IC-stalks, the nearby cycles sheaf however does factorize

also in the present setting, and is thus amenable to an inductive computation.

1.3.3. The local models Y n for small n. As another ingredient of our proof of the

nearby cycles theorem, we mention the possibility to describe our local models Y n

in very concrete terms; this is a special feature of the case G = SL2 considered in

this article. For example, we construct natural embeddings of our local models Y n

into certain products of Beilinson-Drinfeld affine Grassmannians to derive explicit
7



equations in coordinates. In the simplest case of defect degree 6 1, which is simulta-

neously the base case of the inductive proof, these formulas show that the resulting

one-parameter degeneration

Y 1 −→ A1

essentially recovers the Picard-Lefschetz family x · y = t of hyperbolas degenerating

to a node. Similarly, a somewhat more involved analysis of the equations in the case

of defect degree 6 2 can be used to prove the appearance of the Picard-Lefschetz

oscillators in the formula for the nearby cycles. Although it is possible to give more

abstract and possibly quicker proofs of these statements using Koszul duality for

nearby cycles, we have tried in the current article to give a concrete proof when

possible, and have postponed using more abstract methods to the case of an arbitrary

reductive group G.

1.3.4. The case of an arbitrary reductive group. A generalization of the nearby cycles

theorem to an arbitrary reductive group G will appear in [Sch]. In this case, the

explicit formula for the nearby cycles is more complicated as it involves not only

the Picard-Lefschetz oscillators but also the combinatorics of the Langlands dual

group Ǧ of G. Although several features of the computation in the general case are

already visible for G = SL2, the SL2-case is significantly simpler not only due to the

reduced complexity and easier combinatorics: For example, the important Lemma

6.3.3 below, on which the approach of the proof in this article rests, fails for a general

reductive group.

1.4. Structure of the article.

We now briefly discuss the content of the individual sections.
8



In Section 2 we define the compactification BunG and the degeneration VinBunG

and explain their relationship. We then focus on VinBunG and introduce the afore-

mentioned defect stratification. To construct the stratification, but also to prepare

for the statement of the main theorem about nearby cycles, we use Drinfeld’s and

Laumon’s relative compactifications BunB to compactify the inclusion maps of the

individual strata.

In Section 3 we first recall some facts about nearby cycles, the weight-monodromy

filtration, the action of the Lefschetz-sl2, and the relationship between the nearby

cycles and the IC-sheaf. We then define the Picard-Lefschetz oscillators and state

our main theorems about the nearby cycles and the IC-sheaf of VinBunG.

In Sections 4 and 5 we first construct the local models for VinBunG and restate the

analogous theorem about nearby cycles in this context. We then study their geometry:

We discuss the aforementioned factorization in families, and construct embeddings

into a product of Beilinson-Drinfeld affine Grassmannians. We use these embeddings

on the one hand to construct Gm-actions which contract the local models onto the

strata of maximal defect, and on the other hand to derive the explicit equations for

the local models mentioned above.

In Section 6 we give the proof of the main theorem about nearby cycles. In Section

7 we deduce from it the aforementioned description of the IC-sheaf. In Section 8

we give the application on the level of functions related to the stalk computation

mentioned in Section 1.2.4 above.

1.5. Notation and conventions.

Since we will use a formalism of mixed sheaves, we for concreteness choose the

following setup: We assume the curve X is defined over a finite field, and work with
9



Weil sheaves over the algebraic closure of the finite field. For a scheme or stack Y ,

we will denote by D(Y ) the derived category of constructible Q`-sheaves on Y . We

will frequently abuse terminology and refer to its objects as sheaves. We fix once

and for all a square root Q`(
1
2
) of the Tate twist Q`(1). We normalize all IC-sheaves

to be pure of weight 0; for example, on a smooth variety Y the IC-sheaf is equal

to Q`[dimY ](1
2

dimY ). Given a local system E on a smooth dense open subscheme

U of a scheme Y , we refer to the intermediate extension of the shifted and twisted

local system E[dimY ](1
2

dimY ) to Y as the IC-extension of E. Our conventions for

nearby cycles are stated in Section 3.1.1 below.

Although we restrict to the case G = SL2 throughout the article, we will continue

to use the symbol G; we denote by B and B− the standard Borel and opposite Borel

subgroups of G = SL2, and by T the standard maximal torus. The arrow F ↪↪↪−→ E

denotes the inclusion of a subbundle F of a vector bundle E; a usual injective arrow

F ↪−→ E stands for an injection of coherent sheaves.

We will indicate the restriction of a space or a sheaf to a “disjoint locus” by the

symbol ◦, whenever there is no confusion about what the disjointness is referring to.

For example, we denote by

X(n1)
◦
× X(n2)

the open subset of the product X(n1) × X(n2) of symmetric powers of the curve X

consisting of those pairs of effective divisors with disjoint support, and refer to it

as the disjoint locus of X(n1) × X(n2). Similarly, for objects F1 ∈ D(X(n1)) and

F2 ∈ D(X(n1)) we denote by

F1

◦
� F2

the restriction of the exterior product F1 � F2 to the disjoint locus of the above

product. Finally, we denote by
◦
X(n) the open subscheme ofX(n) obtained by removing

10



all diagonals, i.e., the open subscheme consisting of all effective divisors of the form∑n
i=1 xi with all xi distinct.

2. The Drinfeld-Lafforgue-Vinberg compactification

2.1. The definition of the degeneration and the compactification.

2.1.1. Definition of VinBunG. We now define the Drinfeld-Lafforgue-Vinberg degen-

eration VinBunG for G = SL2. An S-point of VinBunG consists of the data of two

vector bundles E1, E2 of rank 2 on X × S, together with trivializations of their

determinant line bundles detE1 and detE2, and a map of coherent sheaves

ϕ : E1 −→ E2

satisfying the following condition: For each geometric point s̄ → S we require that

the map

ϕ|X×s̄ : E1|X×s̄ −→ E2|X×s̄

is not the zero map; in other words, the map ϕ|X×s̄ is required to not vanish generically

on the curve X × s̄.

The stack VinBunG admits a natural map

v : VinBunG −→ A1

11



which sends an S-point as above to the determinant

detϕ ∈ Γ(OX×S) = Γ(OS) = A1(S).

It will follow from Lemma 2.1.6 below that VinBunG is indeed an algebraic stack.

2.1.2. Definition of BunG. We now recall the definition of the Drinfeld-Lafforgue-

Vinberg compactification BunG for G = SL2, following Drinfeld. This definition, as

well as Section 2.1.3 below, will not be used in the rest of the article, and is given for

reasons of motivation only.

An S-point of BunG consists of the following data: Two vector bundles E1 and E2

of rank 2 on X × S together with trivializations of their determinant line bundles

detE1 and detE2; a line bundle L on S; and a map of coherent sheaves

ϕ : E1 −→ E2 ⊗ pr∗L,

where pr∗L denotes the pullback of L along the projection map pr : X × S → S.

Similarly to above we require the above data to satisfy the following condition: For

each geometric point s̄→ S we require that the map

ϕ|X×s̄ : E1|X×s̄ −→ (E2 ⊗ p∗L)|X×s̄

is not the zero map; in other words, the map ϕ|X×s̄ is required to not vanish generically

on the curve X × s̄.

Similarly to VinBunG, the stack BunG admits a natural map

v̄ : BunG −→ A1/Gm

12



to the quotient of A1 by Gm with respect to the quadratic action, defined by remem-

bering only the line bundle L together with the global section of its square

detϕ : OS −→ L⊗2.

2.1.3. Compactifying the diagonal of BunG. We now explain why we call the stack

BunG the Drinfeld-Lafforgue-Vinberg compactification. To do so, let

b : BunG −→ BunG and ∆̄ : BunG −→ BunG×BunG

denote the natural maps. If the characteristic is not equal to 2, the map b is an etale

map onto its image in BunG of degree 2. If the characteristic is equal to 2, the map

b is radicial onto its image in BunG. To explain the above terminology, note on the

one hand that the diagonal morphism of BunG

∆ : BunG −→ BunG×BunG

naturally factors as

BunG
b
//

∆

((

BunG
∆̄
// BunG×BunG .

On the other hand we have the following lemma, which can be easily checked from

the definitions:

Lemma 2.1.4. The map

∆̄ : BunG −→ BunG×BunG
13



is schematic and proper. The fiber of the map ∆̄ over a point (E1, E2) in BunG×BunG

is equal to the projectivization P(Hom(E1, E2)) of the vector space of all homomor-

phisms of coherent sheaves E1 → E2.

2.1.5. The relation between VinBunG and BunG. Next consider the natural map

VinBunG −→ BunG

defined by taking L to be the trivial line bundle OS on S and by not changing the

remaining data. Then the square

VinBunG //

v

��

BunG

v̄

��

A1 // A1/Gm

commutes, where the bottom arrow is the natural projection map. In fact one sees

directly from the definitions:

Lemma 2.1.6. The above square is cartesian. Thus the map

VinBunG −→ BunG

is a Gm-bundle, and in particular the stacks BunG and VinBunG, as well as the maps

v and v̄, are smooth-locally isomorphic.

Note that Lemmas 2.1.6 and 2.1.4 imply that BunG and VinBunG are indeed

algebraic stacks.
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Remark 2.1.7. Because of Lemma 2.1.6 above, we will restrict our attention to the

Drinfeld-Lafforgue-Vinberg degeneration VinBunG for the entire article. The study

of the singularities of BunG, or the study of the map v̄, immediately reduces to the

study of VinBunG and the study of the map v due to the cartesian square of Lemma

2.1.6.

2.2. The G-locus, the B-locus, and the defect-free locus.

Consider again the natural map v : VinBunG → A1, which on the level of k-points

is defined by sending a triple (E1, E2, ϕ) to the determinant detϕ of the map ϕ. We

will call the fiber of the map v over 0 ∈ A1 the B-locus of VinBunG, and denote it

by VinBunG,B. We will call the inverse image of A1 r {0} under v the G-locus of

VinBunG and denote it by VinBunG,G. Thus, on the level of k-points, the G-locus

VinBunG,G consist precisely of those triples (E1, E2, ϕ) for which the map ϕ is an

isomorphism. Similarly, the B-locus VinBunG,B consist precisely of those triples for

which the determinant

detϕ : OX −→ OX

equals the zero map, i.e., for which the induced maps on fibers

ϕ|x : E1|x −→ E2|x

have rank 6 1 at every point x ∈ X. In other words, the B-locus consists of those

triples for which the map ϕ has generic rank 1 on the curve X.

The G-locus of VinBunG in fact naturally decomposes as a product:

Lemma 2.2.1. The natural map

VinBunG,G −→ BunG × (A1 r {0})
15



(E1, E2, ϕ) 7−→ (E1, detϕ)

is an isomorphism.

Proof. By definition the G-locus of VinBunG is equal to the mapping stack

Maps(X , SL2 \GL2 / SL2)

parametrizing maps from the curve X into the quotient stack SL2 \GL2 / SL2 for the

action by left and right translations. But after identifying the quotient GL2 / SL2 for

the action from the right with Gm via the determinant map, we see that the remaining

action of SL2 from the left on this quotient is trivial, and the result follows. �

2.2.2. The defect-free locus. We now define an open substack

0VinBunG ⊂ VinBunG

which will be referred to as the defect-free locus of VinBunG. This terminology is in

line with the notion of defect defined in Section 2.3 below. To define the open substack

we require the triple (E1, E2, ϕ) to additionally satisfy the following condition: For

each s̄→ S we require the map

ϕ|X×s̄ : E1|X×s̄ −→ (E2)|X×s̄

to not vanish at any point of the curve X × s̄. In particular the defect-free locus

contains the G-locus VinBunG,G.

Proposition 2.2.3. The restriction of the map v : VinBunG → A1 to 0VinBunG is

smooth; in particular the open substack 0VinBunG is smooth.

16



Proof. Let Mat>1
2×2 denote the variety of 2 × 2 matrices over k of rank > 1, and

abbreviate

Q := SL2 \Mat>1
2×2 / SL2 .

By definition, the defect-free locus 0VinBunG is equal to the mapping stack Maps(X,Q),

and the above map

v : 0VinBunG = Maps(X,Q) −→ Maps(X,A1) = A1

is equal to the map induced on mapping stacks by the determinant map

d : Q −→ A1 .

The above mapping stacks are objects of classical algebraic geometry; we will now

consider the corresponding derived mapping stacks, which are objects of derived

algebraic geometry. In the present context, this should be considered as nothing

more than a convenient formalism when dealing with tangent complexes. We denote

the derived mapping stacks and the map between them by

vder : Mapsder(X,Q) −→ Mapsder(X,A1) ,

and will show that the map vder is smooth. Since the base change of vder along the

natural map

A1 = Maps(X,A1) −→ Mapsder(X,A1)

agrees with the map v between classical mapping stacks, establishing that vder is

smooth suffices to prove the lemma.

To prove that the map vder is indeed smooth, we will show that the fiber of its

relative tangent complex

Trel := TMapsder(X,Q) /Mapsder(X,A1)
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at any geometric point of Mapsder(X,Q) is concentrated in degrees −1 and 0. To do

so, let

TQ/A1 −→ TQ −→ d∗TA1
+1−→

denote the usual tangent complex triangle on the double quotient Q associated to

the determinant map d : Q→ A1. We claim that the complex TQ/A1 is concentrated

in degree −1. Indeed, since the map d is smooth, it suffices to show that the tangent

complex of each fiber of d is concentrated in degree −1. But since the action of

SL2× SL2 on any fiber of the determinant map

Mat>1
2×2 −→ A1

is transitive with smooth stabilizers, the fibers of the map d are classifying stacks of

smooth groups, proving the claim that TQ/A1 is concentrated in degree −1. We can

now show that the fiber of the relative tangent complex Trel at any given geometric

point f : X → Q of Mapsder(X,Q) is concentrated in degrees −1 and 0. Namely,

since we are using derived mapping stacks, taking the fiber of the usual tangent

complex triangle

Trel −→ TMapsder(X,Q) −→ v∗derTMapsder(X,A1)
+1−→

on Mapsder(X,Q) at the point f yields a triangle

Trel|f −→ RΓ(X, f ∗TQ) −→ RΓ(X, f ∗d∗TA1)
+1−→ .

But pulling back the tangent complex triangle on Q above along the map f and then

applying RΓ(X,−) yields the triangle

RΓ(X, f ∗TQ/A1) −→ RΓ(X, f ∗TQ) −→ RΓ(X, f ∗d∗TA1)
+1−→ ,
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whose second map agrees with the second map of the previous triangle. Thus

Trel|f = RΓ(X, f ∗TQ/A1) ,

and hence Trel|f is indeed concentrated in degrees −1 and 0 as desired. �

2.2.4. Remarks about the Vinberg semigroup. The terminology “G-locus” and “B-

locus” stems from the more general context of the Vinberg semigroup: The Vinberg

semigroup of a reductive group admits a natural stratification indexed by the para-

bolic subgroups of the reductive group; this stratification induces a stratification of

the degeneration VinBunG, which specializes to the stratification into the G-locus

and the B-locus in the case of G = SL2. For further motivation for this notation see

Section 2.3 below.

2.3. The defect stratification.

2.3.1. Definition of the defect. The B-locus VinBunG,B possesses a natural stratifi-

cation by the following notion of defect. Let (E1, E2, ϕ) be a k-point of VinBunG,B.

Then the map ϕ admits a unique factorization

E1 −→→ M1 ↪−→ M2 ↪↪↪−→ E2

where M1 and M2 are line bundles on the curve X, the first map is surjective, the

middle map is an injection of coherent sheaves, and the last map is a subbundle map.

We call the effective divisor on the curve X corresponding to the injection M1 ↪→M2

the defect divisor ; its degree will be called the defect.
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2.3.2. Stratification by defect. We now stratify the B-locus VinBunG,B into loci of

constant defect, according to the factorization of the map ϕ above. We first set up

the notation. Recall that the moduli stack BunB classifying B-bundles on X admits

a natural map

q : BunB −→ BunT

which induces a bijection between the sets of connected components

π0(BunB) = π0(BunT ) = Z.

Let BunT,n denote the connected component of BunT consisting of degree n line

bundles, and define BunB,n and BunB−,n in the same way. Furthermore, let k ∈ Z>0

be a non-negative integer and let X(k) denote the k-th symmetric power of the curve

X.

Next define a map

X(k) × BunB −→ BunT

as the composition

X(k) × BunB
id×q−→ X(k) × BunT

twist−→ BunT ,

where the second map sends a pair (D,L) consisting of an effective divisor D and a

line bundle L to the twisted line bundle L(−D).

Using the previous map we now form the fiber product

BunB− ×
BunT

(
X(k) × BunB

)
,

from which we will now construct a map to the B-locus VinBunG,B. By definition,

a point of this fiber product consists of a B−-bundle E1 −→→M1, an effective divisor

D, a B-bundle M2 ↪↪↪−→ E2, and an identification M1
∼= M2(−D). Thus, given two
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integers n1, n2 with n1 = n2 − k we can define a map

fn1,k,n2 : BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
−→ VinBunG,B

by sending the above point to the triple (E1, E2, ϕ) where the map ϕ is defined as

the composition

ϕ : E1 −→→ M1 = M2(−D) ↪−→ M2 ↪↪↪−→ E2 .

We then have the following stratification of the B-locus VinBunG,B:

Proposition 2.3.3.

(a) The map fn1,k,n2 is a locally closed immersion and thus defines an isomorphism

onto a smooth locally closed substack

(n1,k,n2)VinBunG,B ↪−→ VinBunG,B .

(b) On the level of k-points, the B-locus VinBunG,B is equal to the disjoint union

VinBunG,B =
⋃

(n1,k,n2)

(n1,k,n2)VinBunG,B ,

where the union runs over all triples (n1, k, n2) with n1, n2 ∈ Z, k ∈ Z>0, and

n1 = n2 − k.

(c) On the level of k-points, the closure of a stratum (n1,k,n2)VinBunG,B is equal

to the union of strata
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(n1,k,n2)VinBunG,B =
⋃
d1>0
d2>0

(n1−d1,k+d1+d2,n2+d2)VinBunG,B .

(d) Let k ∈ Z>0. Then the locus in VinBunG,B obtained by requiring that the

defect is at most k naturally forms an open substack

6kVinBunG,B ⊂ VinBunG,B .

(e) The union of all strata (n1,k,n2)VinBunG,B of fixed defect k ∈ Z>0 naturally

forms a locally closed substack

kVinBunG,B ↪−→ VinBunG,B

which is isomorphic as stacks to the disjoint union

kVinBunG,B =
∐
n1,n2

(n1,k,n2)VinBunG,B .

We will prove Proposition 2.3.3 in Section 2.4.7 below, using certain compact-

ifications f̄n1,k,n2 of the maps fn1,k,n2 that we introduce next. A posteriori, these

compactified maps are in fact resolutions of singularities of the strata closures (see

Corollary 2.4.8 below).

2.4. Compactifying the maps fn1,k,n2.

2.4.1. Overview. The goal of this section is to compactify the maps fn1,k,n2 introduced

above. These compactifications will be used to to prove Proposition 2.3.3 above, and
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are constructed using the relative compactifications BunB of Drinfeld and Laumon.

Since the compactifications of the maps fn1,k,n2 are also used in the description of the

nearby cycles sheaf in Section 3 below, we begin with a brief review of the relative

compactifications of Drinfeld and Laumon.

Recall first that the map BunB → BunG is schematic but not proper; relative

compactifications have been defined by G. Laumon for G = GLn (see [Lau]) and

by V. Drinfeld for an arbitrary reductive group G (see [BG1]), and have been of

great importance in the geometric Langlands program. For G = GLn and n > 2,

Laumon’s compactification and Drinfeld’s compactification differ. However, in the

case of interest G = SL2 of the present paper, the two compactifications agree; we

will denote them by BunB. We now recall the definition of BunB for G = SL2 and

then use it to compactify the maps fn1,k,n2 from Section 2.3.2 above. For more details

on BunB we refer the reader to [BG1].

2.4.2. Definition of BunB. Let G = SL2. An S-point of BunB consists of the data of

a vector bundle E of rank 2 on X × S with trivialized determinant, a line bundle L

on X×S, and an injection of coherent sheaves L ↪−→ E which remains injective after

being restricted to X × s̄ for any geometric point s̄→ S. The definition of BunB− is

analogous.

2.4.3. Basic properties. The open substack of BunB obtained by requiring that the

above injection of sheaves is a subbundle map is naturally identified with BunB and is

dense in BunB. Furthermore, the maps BunB → BunG and BunB → BunT naturally

extend to BunB, and the extended map BunB → BunG is schematic and proper

when restricted to connected components of BunB. Finally, for G = SL2 the map

BunB → BunT is in fact smooth.
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2.4.4. Stratification of BunB. The stack BunB possesses the following stratification.

For a connected component BunB,n with

n ∈ Z = π0(BunB) = π0(BunB)

and an integer k ∈ Z>0, consider the map

X(k) × BunB,n+k −→ BunB,n

defined as

(D,L ↪↪↪−→ E) 7−→ (L(−D) ↪→ L ↪↪↪−→ E) .

This map is in fact a locally closed immersion, and as k ranges over Z>0 the corre-

sponding locally closed substacks stratify BunB,n:

BunB,n =
⋃

k∈Z>0

(X(k) × BunB,n+k)

Finally, note that the map

X(k) × BunB −→ BunT

from Section 2.3.2 above is in fact equal to the composition

X(k) × BunB −→ BunB
q̄−→ BunT .

2.4.5. Compactifying the maps fn1,k,n2. We now define the above-mentioned compact-

ifications f̄n1,k,n2 of the maps fn1,k,n2 from Section 2.3.2 above. To do so, observe first

that the maps

X(k) × BunB,n+k −→ BunB,n
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from Section 2.4.4 above naturally extend to maps

X(k) × BunB,n+k −→ BunB,n .

We can therefore enlarge the fiber product from Section 2.3.2 by replacing BunB and

BunB− by BunB and BunB− , and define the compactified map

f̄n1,k,n2 : BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
−→ VinBunG,B

in the exact same fashion as the map fn1,k,n2 . We then have:

Lemma 2.4.6. The map f̄n1,k,n2 is finite.

Proof. We first show that the map is quasifinite. This can easily be deduced from the

definitions and from the stratification of BunB in Section 2.4.4, as follows. Consider

the induced stratification of the fiber product

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
with the strata

(
BunB−,n1−d1 ×X(d1)

)
×

BunT

(
X(k) ×X(d2) × BunB,n2+d2

)
,

where the integers d1, d2 ∈ Z>0 are varying. We claim that the fiber over any k-point

of VinBunG,B can meet at most finitely many of the above strata. Indeed, any k-point

of VinBunG,B admits a unique factorization

ϕ : E1 −→→ M1 ↪−→ M2 ↪↪↪−→ E2
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as in Section 2.3.1 above; if m ∈ Z>0 denotes its defect, then one sees from the

definition of f̄n1,k,n2 that only the strata with

d1 + k + d2 = m

can meet its fiber.

Hence it suffices to prove that f̄n1,k,n2 is quasifinite when restricted to any such

stratum; this follows from the unique factorization of the map ϕ above together with

the fact that the map

X(d1) ×X(k) ×X(d2) −→ X(d1+k+d2)

defined by adding effective divisors is quasifinite.

To show that the map f̄n1,k,n2 is finite it now suffices to show that it is proper. To

do so, consider first the fiber product

BunB−,n1
×

BunG

VinBunG ×
BunG

BunB,n2

where the two maps VinBunG → BunG are the two maps remembering only the

bundles E1 and E2, respectively. Thus the fiber product parametrizes the data of

a point (E1, E2, ϕ) of VinBunG together with a point E1 → M1 of BunB−,n1
and a

point M2 → E2 of BunB,n2 .

Consider now the closed substack Y of the above fiber product obtained by requir-

ing that the map ϕ factors through the map E1 → M1 and also through the map

M2 → E2:
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E1

��

ϕ
//

''

E2

��

M1

77

M2

We claim that the closed substack Y is in fact isomorphic to the stack

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
.

Indeed, given an S-point of Y as above, the map ϕ is forced to factor as

E1 −→M1
i−→M2 −→ E2 ,

and the datum of the map i : M1 → M2 is equivalent to the datum of the map ϕ.

Moreover, the definition of VinBunG forces the map i : M1 → M2 to be injective

when restricted to X × s̄ for any geometric point s̄ → S. Since M1 and M2 have

degrees n1 and n2 when restricted to each X × s̄ and since n1 = n2 − k, the datum

of the map i above is in turn equivalent to the datum of an S-point of X(k).

Finally, note that the map f̄n1,k,n2 is equal to the composition of the inclusion map

of

Y = BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
into the fiber product

BunB−,n1
×

BunG

VinBunG ×
BunG

BunB,n2

with the projection of the latter to VinBunG. Since the inclusion map is a closed

immersion and the projection map is proper by Section 2.4.3, we conclude that f̄n1,k,n2

is proper, finishing the proof. �
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2.4.7. Proof of stratification results. Using Lemma 2.4.6 we can now prove the strat-

ification results of Proposition 2.3.3 above. Before doing so, we state the following

corollary, which follows from the fact that the map

BunB −→ BunT

is smooth for G = SL2 (see Section 2.4.3 above).

Corollary 2.4.8 (of Lemma 2.4.6). The compactified map

f̄n1,k,n2 : BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
−→ (n1,k,n2)VinBunG,B

is a resolution of singularities of the closure of the stratum (n1,k,n2)VinBunG,B.

Finally we prove Proposition 2.3.3:

Proof of Proposition 2.3.3 (a). We use the same notation as in Section 2.3.2. We first

show that the map fn1,k,n2 is a monomorphism of algebraic stacks. Thus we need to

check that the data

E1 −→→M1 −→M2 ↪↪↪−→ E2

on X × S can be reconstructed from the composite map ϕ : E1 −→ E2. Indeed, the

line bundle M1 can be recovered as the image im(ϕ), and the factorization through

M1 corresponds to the factorization

E1 −→→ im(ϕ) ↪−→ E2 .

One can argue dually for M2, and hence fn1,k,n2 is a monomorphism.

We now show that fn1,k,n2 is in fact a locally closed immersion. Let B denote the

boundary of
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Y = BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
,

i.e., the closed complement in Y of the open substack

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
.

Since the map f̄n1,k,n2 is proper, the image of the boundary Z under f̄n1,k,n2 is a closed

substack of VinBunG; let U denote its open complement. We claim that taking the

inverse image of U under f̄n1,k,n2 yields the cartesian square

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
� �

open
//

��

fn1,k,n2

**

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
f̄n1,k,n2

��

U � �
open

// VinBunG

This follows from the fact that any point of VinBunG lying in the image of the

boundary Z must have defect strictly greater than k.

The diagonal map of the above square is precisely the map fn1,k,n2 , which has

already been shown to be a monomorphism. Thus the left vertical arrow is also a

monomorphism; but being the base change of the proper map f̄n1,k,n2 , the left vertical

arrow is also proper, and hence it must be a closed immersion. This establishes the

desired factorization of the map fn1,k,n2 , showing that it is indeed a locally closed

immersion.

Finally, the assertion about smoothness follows from the fact that the map BunB− −→

BunT is smooth. �
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Proof of Proposition 2.3.3 (b) through (e). Part (b) follows immediately from the fact

that every map ϕ : E1 → E2 factors uniquely as

ϕ : E1 −→→M1 ↪−→M2 ↪↪↪−→ E2

as in Section 2.3.1 above. Part (c) follows from the definition of the map f̄n1,k,n2

together with the stratifications of BunB and BunB− in Section 2.4.4. Part (d) follows

from the formula for the strata closure in part (c). For part (e), note that by part (c)

each stratum (n1,k,n2)VinBunG,B is closed in the open substack 6kVinBunG,B. Thus

the natural map

∐
n1,n2

(n1,k,n2)VinBunG,B −→ 6kVinBunG,B

is a closed immersion, and the claim follows. �

3. Statement of main theorems

3.1. Preliminaries about nearby and vanishing cycles.
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3.1.1. Conventions. Given a map Y → A1 we will denote by

Ψ : D(Y |A1r{0}) −→ D(Y |{0})

the unipotent nearby cycles functor in the perverse and Verdier-self dual renormal-

ization, i.e., we shift and twist the usual unipotent nearby cycles functor by [−1](−1
2
)

so that it is t-exact for the perverse t-structure, preserves the weights, and commutes

with Verdier duality literally and not just up to twist. We will refer to Ψ simply

as the nearby cycles, and we denote the analogously shifted and twisted unipotent

vanishing cycles functor simply by Φ. We denote the logarithm of the unipotent part

of the monodromy operator by

N : Ψ −→ Ψ(−1) ,

and will refer to it simply as the monodromy operator. The monodromy operator N

admits the factorization N = var ◦ can into the natural maps

can : Ψ −→ Φ and var : Φ −→ Ψ(−1) .

In the above normalization, the usual triangle relating Ψ and Φ reads

F |∗Y |{0} [−1](−1
2
) −→ Ψ(F )

can−→ Φ(F )
+1−→

for any object F ∈ D(Y ). We refer the reader to [B] and [BB, Sec. 5] for more

background on unipotent nearby and vanishing cycles.

3.1.2. Monodromy and weight filtrations and Gabber’s theorem. We now recall some

facts about the monodromy and weight filtrations on nearby cycles; we refer the

reader to [De, Sec. 1.6] and [BB, Sec. 5] for proofs.
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Given a perverse sheaf F on Y |A1r{0}, the endomorphism N acts nilpotently on

the perverse sheaf Ψ(F ), and thus induces the monodromy filtration on Ψ(F ). The

latter filtration is the unique finite filtration

Ψ(F ) = Mn ⊇ Mn−1 ⊇ · · · ⊇ M−n ⊇ 0

by perverse sheaves Mi satisfying that

N(Mi) ⊂ Mi−2(−1)

for all i, and that the induced maps

N i : Mi/Mi−1 −→
(
M−i/M−i−1

)
(−i)

are isomorphisms for all i > 0. In particular the operator N acts on the associated

graded perverse sheaf Gr(Ψ(F )), and we have the following well-known lemma:

Lemma 3.1.3. The action of N on the associated graded Gr(Ψ(F )) extends canoni-

cally to an action of the “Lefschetz-sl2”, i.e.: There exists a unique action of the Lie

algebra sl2(Q`) on Gr(Ψ(F )) such that the action of the lowering operator of sl2(Q`)

coincides with the action of N , and such that the Cartan subalgebra of sl2(Q`) acts on

the summand Gr(Ψ(F ))i = Mi/Mi−1 with Cartan weight i. Thus the decomposition

Gr(Ψ(F )) =
⊕
i

Mi/Mi−1

agrees with the decomposition of the sl2(Q`)-representation Gr(Ψ(F )) according to

Cartan weights. We will refer to the Lie algebra sl2(Q`) in this context as the

Lefschetz-sl2.

In the case that F is a pure perverse sheaf, the monodromy filtration satisfies

Gabber’s theorem, which we state for the case of weight 0:
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Proposition 3.1.4 (Gabber). Assume that F is a pure perverse sheaf of weight 0.

Then the subquotients of the monodromy filtration on Ψ(F ) are pure, and the weight

of the subquotient Gr(Ψ(F ))i = Mi/Mi−1 is equal to i. In other words, the monodromy

filtration agrees with the weight filtration of Ψ(F ). In particular, the weight of each

subquotient as a Weil sheaf agrees with its Cartan weight with respect to the action

of the Lefschetz-sl2.

Finally, recall on the one hand that the i-th primitive part Pi of Ψ(F ) is defined

as the kernel of the map

N : Gri(Ψ(F )) −→ Gri−2(Ψ(F )) .

On the other hand, consider the filtration induced on the kernel

ker
(
N : Ψ(F )→ Ψ(F )(−1)

)
⊂ Ψ(F )

by the monodromy filtration on Ψ(F ) by means of intersecting the kernel with the

monodromy filtration. We then have the following well-known lemma:

Lemma 3.1.5. The i-th subquotient of the latter filtration is canonically isomorphic

to the i-th primitive part Pi. Less precisely, the associated graded of the kernel of

N : Ψ(F ) → Ψ(F )(−1) agrees with the kernel of N acting on the associated graded

Gr(Ψ(F )).

3.1.6. Intersection cohomology from nearby cycles. As above let Y be a scheme or

stack, let Y → A1 be a map, and let ICY denote the IC-sheaf of Y , normalized to be

pure of weight 0 as mentioned in Section 1.5. Consider the monodromy operator

N : Ψ(ICY ) −→ Ψ(ICY )(−1)
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acting on the nearby cycles of the IC-sheaf of Y , and let ker(N) ⊂ Ψ(ICY ) and

im(N) ⊂ Ψ(ICY )(−1) denote its perverse kernel and image. Note furthermore that

for the IC-sheaf of Y , the usual triangle for the map can : Ψ → Φ is in fact a short

exact sequence of perverse sheaves

0 // ICY |∗Y |{0} [−1](−1
2
) // Ψ(ICY )

can
// Φ(ICY ) // 0 .

For example from Beilinson’s gluing description ([B]) applied to the IC-sheaf of Y

one verifies:

Lemma 3.1.7. The above short exact sequence in fact coincides with the short exact

sequence

0 // ker(N) // Ψ(ICY )
N

// im(N) // 0 ,

i.e., we have

ker(N) = ICY |∗Y |{0} [−1](−1
2
) ,

im(N) = Φ(ICY ) .

In particular, one can obtain the restriction ICY |∗Y |{0} [−1](−1
2
) and the vanishing

cycles Φ(ICY ) from understanding the monodromy action on Ψ(ICY ).

3.1.8. Nearby cycles of the Picard-Lefschetz family of hyperbolas. We now recall the

well-known computation of the nearby cycles for the family of hyperbolas xy = t,

i.e., the nearby cycles for the map

d : A2 −→ A1, (x, y) 7−→ x · y .
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This example in fact plays a key role in the nearby cycles computation for VinBunG,

as will become clear in the next two sections and in the proof of the main theorem

about nearby cycles in Section 6 below.

To state the result, let C = d−1({0}) be the fiber of d over 0 ∈ A1, i.e., the reducible

node in A2 formed by the union C = Cx ∪Cy of the two coordinate axes Cx and Cy.

Let p denote the origin of A2, i.e., the intersection of Cx and Cy, and let δp denote the

pushforward of the constant sheaf Q` along the inclusion p ↪→ C. Let (Q`)C denote

the constant sheaf on C and let ix,∗(Q`)Cx and iy,∗(Q`)Cy denote the pushforwards of

the constant sheaves from Cx and Cy to C. Thus the IC-sheaf of C is equal to

ICC = ix,∗(Q`)Cx ⊕ iy,∗(Q`)Cy .

Applying the nearby cycles functor to the IC-sheaf ICA2 = Q`[2](1) of A2 one finds:

Lemma 3.1.9. The weight-monodromy filtration on Ψ(ICA2) is equal to

Ψ(ICA2) ) (Q`)C [1](1
2
) ) δp(

1
2
) ) 0 ,

and the corresponding associated graded object equals

Gr Ψ(ICA2) = δp(−1
2
) ⊕ ICC ⊕ δp(

1
2
) .

Furthermore, the action of the monodromy operator N on Gr Ψ(ICA2) identifies Gr1 =

δp(−1
2
) with Gr−1(−1) = δp(

1
2
)(−1) = δp(−1

2
), and the action on Gr0 = ICC is trivial.

In particular, as a representation of the Lefschetz-sl2 the direct sum Gr−1 ⊕ Gr1 is

isomorphic to the standard representation of the Lefschetz-sl2.

3.2. Picard-Lefschetz oscillators.
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3.2.1. Factorization structures. Assume we are given, for each n ∈ Z>0, a perverse

sheaf Fn ∈ D(X(n)) on the symmetric power X(n) of the curve X. Here and below

we denote by

add : X(n1) ×X(n2) −→ X(n)

the map defined by adding effective divisors. Then we define a factorization structure

on the collection of perverse sheaves Fn to be a collection of compatible isomorphisms

(add∗Fn)
∣∣∗
X(n1)

◦
×X(n2)

∼= Fn1

◦
� Fn2

for any n1 + n2 = n. If there is no ambiguity about which factorization structure

is being considered on a given collection of perverse sheaves Fn, then we also abuse

terminology and refer to the collection of perverse sheaves Fn as factorizable.

3.2.2. External exterior powers. Recall that to any local system E on the curve X,

placed in cohomological degree 0, one can associate its n-th external exterior power

Λ(n)(E) on the symmetric power of the curve X(n). Namely, the n-fold exterior

product E � · · · � E on the n-th power Xn carries a natural equivariant structure

with respect to the action of the symmetric group Sn on Xn. Thus its pushforward

p∗(E � · · ·� E) along the natural map

p : Xn −→ X(n)

carries a natural action of Sn, and we define Λ(n)(E) by taking Sn-invariants of the

pushforward p∗(E � · · ·� E) against the sign character of Sn.

This construction is functorial and satisfies the basic properties listed in the next

lemma (see for example [G1, Sec. 5] for proofs).

Lemma 3.2.3.
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(a) Over the disjoint locus
◦
X(n) the n-th external exterior power Λ(n)(E) is again

a local system.

(b) The shifted object Λ(n)(E)[n] is a perverse sheaf. In fact, it is equal to the

intermediate extension of its restriction to the disjoint locus.

(c) Let D =
∑

k nkxk ∈ X(n) be a divisor on X, with the points xk distinct. Then

the ∗-stalk of Λ(n)(E) at the point D is equal to

⊗
k

Λnk(E) .

(d) The collection of perverse sheaves Λ(n)(E)[n] is factorizable in the sense of

Section 3.2.1 above.

3.2.4. Definition of Picard-Lefschetz oscillators. Let V denote the 2-dimen-sional

standard representation of the Lefschetz-sl2:

V = Q`(
1
2
)⊕Q`(−1

2
)

We denote by

V := V ⊗Q`X

the corresponding constant local system of rank 2 on the curve X together with the

induced action of the Lefschetz-sl2. For any integer n > 1 we then define the Picard-

Lefschetz oscillator Pn on X(n) to be the n-th external exterior power of V , shifted

and twisted as follows:

Pn := Λ(n)(V ) [n](n
2
)
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Thus by Lemma 3.2.3 above Pn is a perverse sheaf on X(n), and carries an action

of the Lefschetz-sl2 by the functoriality of the external exterior power construction.

Furthermore the definition and Lemma 3.2.3 together show:

Lemma 3.2.5. Let the symmetric group Sn act on the n-fold tensor power V ⊗· · ·⊗V

by permuting the factors and additionally multiplying by the sign of the permutation,

and consider the local system on the disjoint locus
◦
X(n) associated to this represen-

tation. Then the IC-extension of this local system is equal to the Picard-Lefschetz

oscillator Pn. In particular the perverse sheaf Pn is semisimple. Finally, the natural

factorization structure on the collection of Picard-Lefschetz oscillators Pn respects the

action of the Lefschetz-sl2.

Our choice of the term Picard-Lefschetz oscillators is due, on the one hand, to the

appearance of the sign character in the action of the symmetric group in Lemma

3.2.5 above; and, on the other hand, due to the appearance of the representation

V : For n = 1 the Picard-Lefschetz oscillator P1 equals, up to shifts and twists, the

constant rank-2 local system on the curve X whose fiber is equal to the standard

representation V of the Lefschetz-sl2; the latter is precisely the summand of the

associated graded of the nearby cycles sheaf of the Picard-Lefschetz family from

Section 3.1.8 above consisting of those summands supported on the singular locus

{p} of the map d : A2 → A1.

3.3. Nearby cycles for VinBunG.

To state our main theorem about nearby cycles for VinBunG we will need the

following definition:
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3.3.1. Placing Picard-Lefschetz oscillators on VinBunG. We now define versions of

the Picard-Lefschetz oscillators on the strata closures of the defect stratification of

the B-locus from Section 2.3 above. More precisely, we define versions P̃n1,k,n2 of the

Picard-Lefschetz oscillators Pk on the relative compactifications

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
from Section 2.4 above; the latter map onto the strata closures in VinBunG via the

compactified maps

f̄n1,k,n2 : BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
−→ VinBunG,B

introduced in Section 2.4.5 above.

To state the definition, let (n1, k, n2) be any triple with n1 = n2 − k, as before.

Then we define P̃n1,k,n2 as

P̃n1,k,n2 := ICBunB−,n1

�
BunT

Pk � ICBunB,n2
,

i.e., as the ∗-restriction of the external product

ICBunB−,n1

� Pk � ICBunB,n2

from the product space

BunB−,n1
× X(k) × BunB,n2

to the fiber product

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
,

shifted by [− dim BunT ] and twisted by (−dim BunT

2
). Since the IC-sheaf of BunB is

constant for G = SL2 by Section 2.4.3, we can rephrase the definition of P̃n1,k,n2 as
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follows. Let g denote the genus of the curve X and let sk denote the integer

sk := dim BunB−,n1
+ dim BunB,n2 − dim BunT = 3g − 3 + 2k .

Furthermore let

pn1,k,n2 : BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
−→ X(k)

denote the natural forgetful map. Then we can equivalently define:

P̃n1,k,n2 := p∗n1,k,n2
Pk [sk](

sk
2

)

Finally, the action of the Lefschetz-sl2 on the Picard-Lefschetz oscillator Pk induces

an analogous action on P̃n1,k,n2 .

3.3.2. Main theorem about nearby cycles. We can now state our main theorem about

nearby cycles for VinBunG. Recall from Section 2.2 that the G-locus VinBunG,G

is smooth, so that its IC-sheaf is constant up to shifts and twists. Applying the

nearby cycles functor Ψ to this shifted constant sheaf and passing to the associated

graded of its weight-monodromy filtration, we obtain a perverse sheaf on the B-locus

VinBunG,B carrying the monodromy action of the Lefschetz sl2. The result then is:

Theorem 3.3.3. There exists an isomorphism of perverse sheaves

Gr Ψ(ICVinBunG,G
) ∼=

⊕
(n1,k,n2)

f̄n1,k,n2,∗ P̃n1,k,n2

which identifies the action of the Lefschetz-sl2 on the right hand side via the Picard-

Lefschetz oscillators with the monodromy action on the left hand side. As before the

direct sum runs over all triples (n1, k, n2) with n1, n2 ∈ Z, k ∈ Z>0, and n1 = n2− k.
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3.3.4. Remark. By Section 2.4 above, the summands f̄n1,k,n2,∗ P̃n1,k,n2 on the right

hand side of Theorem 3.3.3 are equal to the intermediate extension of the perverse

sheaf

ICBunB−,n1
�

BunT

Pk � ICBunB,n2

from the stratum (n1,k,n2)VinBunG,B to its closure in VinBunG,B.

3.4. Intersection cohomology of VinBunG.

To state our main theorem about the IC-sheaf of VinBunG, we introduce the fol-

lowing notation. Given a representation ρ of the symmetric group Sk, we denote

by IC(ρ) the IC-extension of the corresponding local system on the disjoint locus of

X(k). Furthermore, using the same notation as in the definition of P̃n1,k,n2 above, we

define

ĨC(ρ)n1,k,n2 := ICBunB−,n1

�
BunT

IC(ρ) � ICBunB,n2

on the fiber product

BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
.

Using the projection maps pn1,k,n2 from Section 3.3.1 above one can equivalently

define

ĨC(ρ)n1,k,n2 := p∗n1,k,n2
IC(ρ) [sk](

sk
2

)

where the integers sk are defined as in Section 3.3.1 above. We can then state:
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Theorem 3.4.1. The associated graded with respect to the weight filtration of the

restriction ICVinBunG

∣∣∗
VinBunG,B

[−1](−1
2
) is equal to:

⊕
(n1,k,n2,r)

f̄n1,k,n2,∗ ĨC(ρk−r,r)n1,k,n2 ⊗Q`(
k
2
− r) .

Here we denote by ρ(k−r,r) the irreducible representation of Sk corresponding to the

Young diagram with k− r boxes in the first column and r boxes in the second column.

The direct sum runs over all quadruples (n1, k, n2, r) where n1, n2 ∈ Z and k, r ∈ Z>0,

satisfying that n1 = n2 − k and 0 6 r 6 k
2
.

Theorem 3.4.1 yields an explicit answer for the primitive parts Pi; in general it is

however not clear how to compute the IC-stalks from the Pi. In the present situation

it is however possible, due to a geometric fact visible on the level of the local models

we will construct in Section 4 below. For this reason we comment on the computation

of IC-stalks in Remark 7.1.7 below.

3.5. Stalks of the ∗-extension.

The next result is related to the study via BunG of Drinfeld’s and Gaitsgory’s

“miraculous duality” functor (see [G2] for the latter). To state it, let

jG : VinBunG,G ↪−→ VinBunG
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denote the open immersion of the G-locus, and let in1,k,n2 denote the inclusion of the

stratum

(n1,k,n2)VinBunG,B = BunB−,n1
×

BunT

(
X(k) × BunB,n2

)
into the B-locus VinBunG,B. Our result then expresses the ∗-restriction along in1,k,n2

of the ∗-extension along jG of the constant sheaf on the G-locus VinBunG,G in terms

of a certain complex Ω̃k. This complex has already appeared implicitly in the work

[BG2] of Braverman and Gaitsgory, and is defined as follows.

3.5.1. Definition of Ω̃k. Let 0Z
k denote the open Zastava space from [FFKM], [BFGM];

see Section 4.1.5 below for its definition. As is explained in Section 4.1.5, the space

0Z
k is smooth and comes equipped with a projection map to the k-th symmetric

power of the curve

πZ : 0Z
k −→ X(k) .

We then define Ω̃k as the pushforward

Ω̃k := πZ,!
(
IC

0Zk

)
= πZ,!

(
(Q`)0Zk [dim

0Zk ](1
2

dim
0Zk)

)
.

We refer the reader to Section 6.4.1 below for a more detailed discussion of the

complex Ω̃k. We will in fact express the above ∗-restriction in terms of the Verdier

dual

D Ω̃k = πZ,∗
(
IC

0Zk

)
of Ω̃k.

Using the same notation as before, our result reads:

Theorem 3.5.2. The ∗-restriction of the ∗-extension of the IC-sheaf of the G-locus

i∗n1,k,n2
jG,∗ ICVinBunG,G
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is equal to

ICBunB−,n1
�

BunT

((
DΩ̃k[2k](k) ⊗ H∗(A1 r {0})[1](1

2
)
)
� ICBunB,n2

)
.

Following a suggestion of Drinfeld, we have also used this theorem to give an

application on the level of functions via the sheaf-function correspondence for `-adic

sheaves; see Section 8 below. Furthermore, using Koszul duality for nearby cycles

one can deduce from Theorem 3.5.2 above a simple description of the stalks of the

nearby cycles Ψ in terms of the complex Ω̃, which in turn yields an application to

the work of Sakellaridis and Venkatesh. This will be discussed, in the context of an

arbitrary reductive group, in the forthcoming article [Sch].

4. Local models for VinBunG

4.1. The absolute and relative local models.
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4.1.1. Definition of the relative model. Let n ∈ Z>1. An S-point of the relative local

model Y n
rel consists of the data of a triple (E1, E2, ϕ) on X × S as in the definition

of VinBunG, together with a line subbundle L1 ↪↪↪−→ E1 and a line quotient bundle

E2 −→→ L2, satisfying the following conditions: For every geometric point s̄ → S we

require the restriction to X × s̄ of the composite map

L1 ↪↪↪−→ E1
ϕ−→ E2 −→→ L2

to be an isomorphism generically on the curve X × s̄. Furthermore, for each s̄ → S

we require the resulting injection of line bundles

L1|X×s̄ ↪−→ L2|X×s̄

to be of relative degree n, i.e., we require it to correspond to an effective divisor of

degree n on the curve X × s̄. Note that these conditions in particular imply that the

composite map L1 → L2 is an injection of coherent sheaves on X × S.

4.1.2. Definition of the absolute model. Next consider the natural map

Y n
rel −→ BunT

defined by remembering only the line bundle L2. We define the absolute local model

Y n as the fiber of this map over the trivial line bundle OX ; i.e., the absolute model

Y n is obtained from the relative model Y n
rel by requiring the “background” line bundle

L2 to be the trivial line bundle. It is not hard to see that the absolute local model

Y n is in fact a scheme.

4.1.3. More definitions. The following definitions and notation apply to both Y n and

Y n
rel. We only state them for Y n, the case of Y n

rel being analogous. By construction

the space Y n admits a forgetful map to VinBunG, and in particular a natural maps
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to A1 = T+
adj. Using the latter map we define the G-locus Y n

G and the B-locus Y n
B as

for VinBunG in Section 2.2 above. The defect-free locus 0Y
n of Y n is defined exactly

as for VinBunG; i.e., it is the inverse image of 0VinBunG under the forgetful map

Y n → VinBunG. As for VinBunG we have:

Lemma 4.1.4. The restriction of the map Y n
G → A1 to the defect-free locus 0Y

n
G is

smooth; in particular the open subscheme 0Y
n
G of Y n is smooth.

The space Y n furthermore admits a natural projection map to the n-th symmetric

power of the curve

π : Y n −→ X(n) .

Namely, recall that an S-point of X(n) consists of a line bundle L on X × S together

with a map of coherent sheaves L → OX×S which is injective of relative degree n

whenever restricted to X × s̄ for every geometric point s̄ → S. The map π is then

defined by only remembering the composite map of line bundles L1 → L2 = OX×S.

As for VinBunG,B every k-point in the B-locus Y n
B admits a unique factorization

L1 ↪↪↪−→ E1 −→→M1 −→M2 ↪↪↪−→ E2 −→→ L2

with notation as above. As before we call the effective divisor corresponding to

M1 ↪→ M2 the defect divisor and its degree the defect. The B-locus Y n
B is stratified

according to defect degrees just like VinBunG,B. To state the analogous result, we

first recall:

4.1.5. Zastava spaces. In [FFKM], [BFGM] certain local models for the relative com-

pactifications BunB from Section 2.4, the Zastava spaces, were introduced. We recall

now their definition for G = SL2.
46



Let n ∈ Z>0. Then an S-point of the relative Zastava space Zn
rel consists of an

S-point L ↪→ E of BunB together with a “background” line bundle L′ on X × S and

a surjection E � L′, subject to the following conditions. First, one requires that for

every geometric point s̄→ S the restriction of the composite map

L ↪−→ E −→→ L′

to X × s̄ is an isomorphism generically on the curve X × s̄. Second, the resulting

injective map of line bundles L ↪→ L′ on X × S is required to be of relative degree n

on each X × s̄.

As before one defines an absolute version Zn of Zn
rel by forcing the “background”

line bundle L′ to be the trivial line bundle. The absolute Zastava space Zn is in fact

a scheme. Next, the notation

Zn
(BunT,d)

refers to the relative version, but with the degree of the “background” line bundle L′

being required to be equal to the integer d. Similarly, for the opposite Borel B−, the

space

Z−,n(BunT,−n)

parametrizes the data

L′ ↪↪↪−→ E −→ L

where now L′ is a “background” line subbundle of E of degree −n, and the composite

map L′ → L is required to be an isomorphism generically on X of relative degree n.

We denote by 0Z
n the open subscheme of the absolute Zastava space obtained by

requiring that the injection L ↪→ E is in fact a subbundle map, and similary for the

relative versions. We will refer to 0Z
n and its relative versions as the open Zastava
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space. Finally, the absolute and relative Zastava spaces afford natural maps

πZ : Zn −→ X(n)

defined as in Section 4.1.3 above; the absolute Zastava spaces are in fact factorizable,

in the sense of Section 5.1, with respect to these maps.

We refer the reader to [FM], [FFKM], and [BFGM] for more background on the

Zastava spaces.

4.1.6. The G-locus of Y n in terms of Zastava spaces. Let Y n
c=1 denote the fiber of

the natural map Y n → A1 over the element c = 1 ∈ A1. Then directly from the

definitions one sees that Y n
c=1 agrees with the open Zastava space 0Z

n. In fact we

have the following analog for the G-locus Y n
G of Lemma 2.2.1 for VinBunG. Given an

S-point

L1 ↪↪↪−→ E1

∼=−→ E2 −→→ OX×S

of Y n
G we can define an S-point

L1 ↪↪↪−→ E1 −→→ OX×S

of 0Z
n by composing the last two maps; furthermore, we obtain the S-point detϕ of

A1. Then Lemma 2.2.1 above implies:

Lemma 4.1.7. The natural map

Y n
G −→ 0Z

n × (A1 r {0})

defined by the above association is an isomorphism. Under this isomorphism, the

natural map Y n
G → A1 r {0} corresponds on the right hand side to the projection

onto the second factor. The projection map π : Y n
G → X(n) corresponds on the
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right hand side to the projection onto the first factor followed by the projection map

πZ : 0Z
n → X(n).

4.1.8. Stratification of the B-locus of the local model. The stratification of the B-

locus of VinBunG from Proposition 2.3.3 above takes the following form for the local

model Y n. Let n1, k, n2 ∈ Z>0 be non-negative integers satisfying n1 + k + n2 = n.

Then as in Section 2.3.2 above there exist natural maps

f̄n1,k,n2 : Z−,n1

(BunT,−n) ×
BunT

(
X(k) × Zn2

)
−→ Y n

B ,

and the analogous result is:

Corollary 4.1.9. The maps f̄n1,k,n2 are proper, and their restrictions

fn1,k,n2 : 0Z
−,n1

(BunT,−n) ×
BunT

(
X(k) × 0Z

n2
)
−→ Y n

B

are isomorphisms onto smooth locally closed substacks

(n1,k,n2)Y
n
B ↪−→ Y n

B .

As the triples (n1, k, n2) range over all triples of non-negative integers satisfying n1 +

k + n2 = n, the substacks (n1,k,n2)Y
n
B form a stratification of the B-locus Y n

B . On the

level of k-points the closure of a stratum is equal to the finite disjoint union of strata

(n1,k,n2)Y n
B =

⋃
d1>0
d2>0

(n1−d1,k+d1+d2,n2−d2)Y
n
B

Given any non-negative integer k ∈ Z>0, the locus 6kY
n
B in Y n

B obtained by requiring

the defect to be at most k is open in Y n
B . The locus kY

n
B obtained by requiring the
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defect to be exactly k is locally closed, and isomorphic as schemes to the disjoint

union

kY
n
B =

∐
n1,n2

(n1,k,n2)Y
n
B .

Finally, the locus nY
n
B of maximal defect is closed in Y n

B and isomorphic to the sym-

metric power X(n).

4.2. Restatements of the main theorems for the local models.

We claim that to prove the main theorem about nearby cycles, Theorem 3.3.3

above, it suffices to establish its analog for the absolute local models Y n, for all

integers n > 0. This can be shown analogously as in the work [BFGM], where a

similar interplay between Drinfeld’s compactification BunB and the Zastava spaces

is used. In our context, it can be achieved by first comparing the absolute and

the relative local model to each other; the relative model then allows for a direct

comparison to VinBunG.

To the state this analog of Theorem 3.3.3 for Y n, let n1, k, n2 ∈ Z>0 be non-negative

integers satisfying n1 + k + n2 = n, and recall the compactified maps

f̄n1,k,n2 : Z−,n1

(BunT,−n) ×
BunT

(
X(k) × Zn2

)
−→ Y n

B

from Section 4.1.8. Similarly as before let

P̃n1,k,n2 := IC
Z
−,n1
BunT ,−n

�
BunT

Pk � ICZn2

denote the ∗-restriction of the external product

IC
Z
−,n1
BunT ,−n

� Pk � ICZn2
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from the product space

Z−,n1

(BunT,−n) ×X
(k) × Zn2

to the fiber product

Z−,n1

(BunT,−n) ×
BunT

(
X(k) × Zn2

)
,

shifted by [dim BunT ] and twisted by (dim BunT

2
). Since the Zastava spaces are smooth

for G = SL2, we can equivalently define P̃n1,k,n2 as

P̃n1,k,n2 = p∗n1,k,n2
Pk [2n− 2k](n− k)

where similarly to above we denote by

pn1,k,n2 : Z−,n1

(BunT,−n) ×
BunT

(
X(k) × Zn2

)
−→ X(k)

the forgetful map. The analog of Theorem 3.3.3 then reads:

Theorem 4.2.1. There exists an isomorphism of perverse sheaves

Gr Ψ(ICY n
G

) ∼=
⊕

(n1,k,n2)

f̄n1,k,n2,∗ P̃n1,k,n2

which identifies the action of the Lefschetz-sl2 on the right hand side via the Picard-

Lefschetz oscillators with the monodromy action on the left hand side. Here the direct

sum runs over all triples (n1, k, n2) of non-negative integers satisfying n1+k+n2 = n.
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5. Geometry of the local models

5.1. Factorization in families.

Unlike the Beilinson-Drinfeld affine Grassmannian (see [BD1]) or the Zastava spaces

(see [BFGM]), the local models Y n are not literally factorizable. Instead, they are

factorizable in families, i.e., the fibers of the map Y n → A1 are factorizable in a

compatible way:

5.1.1. Factorization in families. The spaces Y n are factorizable in families in the

sense of the following lemma.

Proposition 5.1.2. For any integers n1 + n2 = n the natural map

X(n1)
◦
× X(n2) −→ X(n)

defined by adding effective divisors induces a cartesian square

Y n1
◦
×
A1
Y n2 //

πn1×πn2

��

Y n

πn

��

X(n1)
◦
× X(n2) // X(n)

where the top horizontal arrow commutes with the natural maps to A1.

Broadly speaking, Proposition 5.1.2 follows from the fact that generically on the

curve X, the datum of a point of Y n is the trivial datum except for the determinant

of the middle map ϕ. More precisely, Proposition 5.1.2 will be a direct consequence

of the following easy lemma:
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Lemma 5.1.3. Let k be a non-negative integer, let

L ↪↪↪−→ E1
ϕ−→ E2 −→→ OX×S

be an S-point of the local model Y k, and let

d := det(ϕ) ∈ Γ(X × S,OX×S) = Γ(S,OS) = A1(S)

denote its image under the usual map Y k → A1. Furthermore let U ⊂ X × S denote

the dense open subscheme of X × S on which the composite map L → OX×S is an

isomorphism. Then over U the data of the above S-point takes the simple form

OU
i1

↪↪↪−→ OU ⊕OU

(
1 0
0 d|U

)
−→ OU ⊕OU

pr1−→→ OU .

Proof. Composing the middle map ϕ either with the rightmost or the leftmost arrow

we obtain the splittings

L|U �
� //

∼=

::E1|U // // OU and L|U �
� //

∼=
99

E2|U // // OU

over the open subscheme U . These splittings in turn induce trivializations of the

SL2-bundles E1 and E2 which are compatible with the middle map ϕ, so that ϕ must

be of the matrix form as above, but with an a priori unknown entry in the lower right

corner. The fact that det(ϕ) = d on X × S however forces the entry in the lower

right corner to be equal to d|U ∈ Γ(U,OU). �

We can now prove Proposition 5.1.2:
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Proof of Proposition 5.1.2. We need to construct a natural isomorphism

Y n1
◦
×
A1
Y n2 ∼=

(
X(n1)

◦
× X(n2)

)
×
X(n)

Y n

which respects the forgetful maps to X(n1)
◦
× X(n2) and to A1. To do so, let us first

define a map from the right hand side to the left hand side. Thus we are given an

S-point

L ↪↪↪−→ E1
ϕ−→ E2 −→→ OX×S

of Y n, an S-point L1 ↪→ OX×S of X(n1), and an S-point L2 ↪→ OX×S of X(n2), such

that the subsheaf L1⊗L2 ↪→ OX×S coincides with the subsheaf L ↪→ OX×S obtained

from the S-point of Y n. Let

d := det(ϕ) ∈ Γ(X × S,OX×S) = Γ(S,OS) ,

and let U , U1, U2 denote the open subschemes of X × S on which the maps

L ↪−→ OX×S, L1 ↪−→ OX×S, L2 ↪−→ OX×S

are isomorphisms. Then by definition of the right hand side we have

U1 ∩ U2 = U and U1 ∪ U2 = X × S .

We now define an S-point of Y n1 by gluing together the required data on U1 and U2.

Namely, on the one hand we restrict the datum

L ↪↪↪−→ E1
ϕ−→ E2 −→→ OX×S

to the open subscheme U2, and on the other hand we consider the datum

OU1

i1
↪↪↪−→ OU1 ⊕OU1

(
1 0
0 d|U1

)
−→ OU1 ⊕OU1

pr1−→→ OU1
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over the open subscheme U1. By Lemma 5.1.3, these two data agree on the intersec-

tion U1 ∩ U2 = U , and thus can be glued to form an S-point of Y (n1). We construct

an S-point of Y (n2) analogously, and by construction they together form an S-point

of the left hand side as desired.

We define a map from the left hand side to the right hand side in a similar fashion:

Consider the S-points of Y n1 and Y n2 arising from a given S-point of the left hand

side, and let d ∈ Γ(S,OS) be their common image in A1(S). These S-points of Y n1

and Y n2 give rise to open subschemes U1 and U2 of X × S defined exactly as in

Lemma 5.1.3, and by definition of the left hand side we have that U1 ∪ U2 = X × S.

Furthermore, by Lemma 5.1.3 the restriction of the data on X × S comprising the

S-point of Y n1 to the intersection U1 ∩ U2 agrees with the restriction of the data

comprising the S-point of Y n2 . Thus the two data can be glued to form an S-point

of Y n, and we have constructed the converse map. Finally, it is immediate from the

constructions that the two maps are inverse to each other and respect the forgetful

maps to X(n1)
◦
× X(n2) and to A1. �

5.1.4. Factorization of the fibers. For a scalar c ∈ A1 let Y n
c denote the fiber of the

map Y n → A1 over c. Thus Y n
c=0 is equal to the B-locus Y n

B of Y n, and Y n
c=1 is equal

to the open Zastava space 0Z
n from Section 4.1.5 above. Furthermore, since the top

horizontal arrow in Proposition 5.1.2 commutes with the natural maps to A1, we find:

Corollary 5.1.5. The spaces Y n
c are factorizable in the usual sense, i.e., the addition

of effective divisors induces a cartesian square

Y n1
c

◦
× Y n2

c
//

πn1×πn2

��

Y n
c

πn

��

X(n1)
◦
× X(n2) // X(n)
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In particular, the B-locus Y n
B is factorizable in the usual sense.

5.2. Embedding, section, and contraction.

In this section we construct a Gm-action on Y n which contracts Y n onto a section

of the projection map π : Y n → X(n). This action can be constructed in various

ways; here we construct it via a specific embedding of Y n into a product of Beilinson-

Drinfeld affine Grassmannians which we discuss first. This embedding will also be

used in Section 5.3 below to derive explicit equations for the local models Y n.

5.2.1. Embeddings for Zastava spaces. Let GrnG −→ X(n) denote the Beilinson-Drinfeld

affine Grassmannian for G = SL2, which parametrizes SL2-bundles on the curve X

together with a trivialization away from an effective divisor of degree n. Recall from

[BFGM] that the absolute Zastava space Zn from Section 4.1.5 affords a natural

locally closed embedding

Zn ↪−→ GrnG

which commutes with the natural projections to X(n). On k-points, this embedding

associates to a point

L ↪−→ E −→→ OX

of Zn the SL2-bundle E together with the trivialization of E obtained by splitting

the surjection E � OX away from the zero locus of the composite map L→ OX .

Next consider the Zastava space parametrizing the data

L′ ↪↪↪−→ E −→ OX
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with notation as in previous sections. Note that here the map on the right is allowed

to have zeroes, the line bundle on the right is fixed to be OX , while the “background”

line bundle L′ on the left is allowed to vary. Unlike the absolute Zastava space from

Section 4.1.5 above, this Zastava space is obtained from the relative Zastava space

BunT,−n
Z−,n by forcing the line bundle L “on the right” to be equal to OX ; we denote

this Zastava space by Z̃−,n for simplicity. An embedding of Z̃−,n into GrnG is defined

exactly as for Zn.

5.2.2. Sections for Zastava spaces. Next we briefly review some constructions for the

Zastava space Zn from [BFGM]; we will use these constructions in Sections 5.2.8 and

5.2.11 below to make similar constructions for the local models Y n. First, recall that

the projection map

πZ : Zn −→ X(n)

admits a natural section sZ which on k-points sends an effective divisor D to the

point

OX(−D)
i1
↪−→ OX ⊕OX

pr1−→→ OX

of the Zastava space Zn.

The case of Z̃−,n is analogous: The projection

πZ− : Z̃−,n −→ X(n)

admits a natural section sZ− defined by sending an effective divisor D ∈ X(n) to the

point

OX(−D)
i1

↪↪↪−→ OX(−D)⊕OX(D)
pr1−→ OX

of Z̃−,n.
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5.2.3. Contractions for Zastava spaces. Next recall from [MV] that any cocharacter

λ̌ : Gm → T naturally gives rise to an action of Gm on the Beilinson-Drinfeld affine

Grassmannian GrnG which leaves the forgetful map GrnG → X(n) invariant. It is

shown in [BFGM] that the (−2ρ̌)-action of Gm preserves the subspace Zn; moreover,

it contracts Zn onto the section sZ , i.e., the action map extends to a map

A1 × Zn −→ Zn

such that the composition

Zn = {0} × Zn ↪−→ A1 × Zn −→ Zn

is equal to the composition of projection and section

Zn πZ−→ X(n) sZ−→ Zn .

The next lemma provides a modular interpretation of the (−2ρ̌)-action of Gm on

Zn, which will be used below; it can be proven by chasing through the definitions.

Lemma 5.2.4. The action of an element a ∈ Gm(S) = Γ(S,OS)× on an S-point

L
i

↪−→ E
p−→→ OX

of the Zastava space Zn via the (−2ρ̌)-action of Gm yields the point

L
a·i
↪−→ E

1
a
·p
−→→ OX .

Similarly, the (2ρ̌)-action of Gm on GrnG contracts Z̃−,n onto the section sZ− from

Section 5.2.2 above. Just as for Zn we have the following modular interpretation:
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Lemma 5.2.5. The action of an element a ∈ Gm(S) = Γ(S,OS)× on an S-point

L
i

↪↪↪−→ E
p−→ OX

of the Zastava space Z̃−,n via the (2ρ̌)-action of Gm yields the point

L
1
a
·i

↪↪↪−→ E
a·p−→ OX .

5.2.6. Embeddings for the local models Y n. Combining the embeddings of Zn and

Z̃−,n from Section 5.2.1 above, we obtain a locally closed embedding

Z̃−,n ×
X(n)

Zn ↪−→ GrnG ×
X(n)

GrnG .

We now construct the embedding of Y n mentioned above by in turn constructing a

closed immersion

τ : Y n ↪−→ Z̃−,n ×
X(n)

Zn .

Namely, if

L ↪↪↪−→ E1 −→ E2 −→→ OX×S

is an S-point of Y n, we can on the one hand compose the middle map ϕ with the

surjection on the right and obtain the S-point

L ↪↪↪−→ E1 −→ OX×S

of Z̃−,n. On the other hand, composing ϕ with the subbundle map on the left yields

an S-point

L −→ E2 −→→ OX×S

of Zn, and by construction the two points in fact lie in the fiber product over X(n)

above; we have thus defined the map τ .
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Lemma 5.2.7. The map τ is a closed immersion.

Proof. Given an S-point of Z̃−,n ×X(n) Zn, represented by the outer rhombus in the

next diagram, we show that there is at most one dotted arrow ϕ making both triangles

commute.

E1

h1

""
ϕ

��

L
/�

g1

??

g2
��

OX×S

E2

h2

<< <<

Since the existence of such an arrow is a closed condition, this will prove the lemma.

To prove the uniqueness of the dotted arrow, we form the difference δ : E1 → E2 of any

given two such dotted arrows, and show that δ = 0. Namely, by the commutativity

assumptions for each dotted arrow, the map δ descends to a map δ̄ : E1/L → E2

whose composite with h2 is 0. Thus the map δ̄ factors through the kernel of h2,

which itself is the trivial line bundle, and we need to show that the resulting map

E/L→ OX×S is zero.

To do so, observe first that since g1 is a subbundle map, the quotient E/L is itself

a line bundle; its restriction to any X × s̄ has degree n > 1. We prove the above

vanishing by showing that in fact the vector space of maps

HomOX×S
(E/L,OX×S) = H0(X × S, (E/L)∗)

vanishes, where (E/L)∗ denotes the dual line bundle of E/L. For the latter, it

suffices to show that the sheaf pushforward R0p∗((E/L)∗) along the projection map

p : X × S → S vanishes. By the theorem on cohomology and base change, this in
60



turn can be checked on the geometric fibers of the projection p, where it holds for

degree reasons. �

5.2.8. The section for the local models Y n. Next we construct a section of the pro-

jection map

π : Y n −→ X(n) .

First recall that an S-point of X(n) consists of a line bundle L on X × S together

with a map of coherent sheaves L → OX×S which is injective of relative degree n

whenever restricted to X × s̄ for every geometric point s̄→ S. The latter condition

automatically forces the map L→ OX×S to be injective. Furthermore, let L∗ denote

the dual line bundle of L on X × S. Then we define the section

s : X(n) −→ Y n

by associating to an S-point L→ OX×S of X(n) the S-point

L
i1
↪−→ L⊕ L∗ ϕ−→ OX×S ⊕OX×S

pr1−→→ OX×S

of Y n, where the map ϕ in the middle is defined as the composition

L⊕ L∗ pr1−→→ L ↪−→ OX×S
i1
↪−→ OX×S ⊕OX×S .

It is clear from the definitions that the map s is indeed a section of π. Furthermore,

by construction the section s factors through the B-locus Y n
B of Y n. In fact we have

the following two lemmas, both of which follow easily from the definitions:

Lemma 5.2.9. The section s induces an isomorphism of X(n) with the stratum of

maximal defect nY
n
B .
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Lemma 5.2.10. The section sZ− × sZ of the projection

πZ− × πZ : Z̃−,n ×
X(n)

Zn −→ X(n)

induced by the sections sZ and sZ− from Section 5.2.2 factors through the closed

subspace Y n, and in fact agrees with the section s.

5.2.11. The contraction for the local models Y n. We now construct a Gm-action on

Y n which contracts it onto the section s, in the sense of Section 5.2.3 above. One can

construct this action in various ways; here we construct it using the embedding from

Section 5.2.6. Namely, let us define a Gm-action on the fiber product GrnG ×X(n) GrnG

by acting on the first factor via the cocharacter 2ρ̌ of G = SL2 and on the second

factor via the cocharacter −2ρ̌.

Lemma 5.2.12. This Gm-action preserves the locally closed subspace Y n and con-

tracts it onto the section s.

Proof. We first show that the action indeed preserves Y n. By Section 5.2.3, we need

to show that an S-point of Z̃−,n×X(n) Zn which lies in Y n still lies in Y n after acting

by an element a ∈ Gm(S) = Γ(S,OS)×. In view of the embedding of Lemma 5.2.7

and the modular descriptions of Lemma 5.2.4 and Lemma 5.2.5, we have to show

that if the outer rhombus of the diagram

E1

h1

""
ϕ

��

L
/�

g1

??

g2
��

OX×S

E2

h2

<< <<

62



admits a dotted arrow ϕ as shown, then the same holds for the following rhombus:

E1

a·h1

""

��

L
/�

1
a
·g1

??

a·g2
��

OX×S

E2

1
a
·h2

<< <<

This can indeed be achieved by defining the dotted arrow as a2 · ϕ, and hence we

have shown that Y n is preserved by the Gm-action. The second statement follows

from the construction together with Lemma 5.2.10. �

5.2.13. The contraction principle and preservation of weights. Having constructed a

Gm-action on Y n which contracts Y n onto the section s of the projection map π

in the sense of Section 5.2.3 above, we arrive at the following consequences for the

restriction along the section s. First, the well-known contraction principle (see for

example [Br, Sec. 3] or [BFGM, Sec. 5]) for contracting Gm-actions states:

Lemma 5.2.14. For any Gm-monodromic object F ∈ D(Y n) there exists a natural

isomorphism

s∗F ∼= π∗F .

Since by [BBD, Sec. 5] the ∗-pullback does not increase the weights and the ∗-

pushforward does not decrease the weights, we obtain:

Corollary 5.2.15. Let F ∈ D(Y n) be Gm-monodromic, and assume in addition that

F is pure of some weight w. Then the complex s∗F = π∗F is again pure of weight w.
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5.3. Explicit equations and generalized Picard-Lefschetz families.

In this section we use the embedding τ from Section 5.2.6 to find explicit equations

for the fibers of the projection π : Y n → X(n). We will primarily be concerned with

the fiber of π over the point nx ∈ X(n). The case of a general point
∑
nkxk ∈ X(n)

follows from this case via factorization.

5.3.1. Fibers of Zastava spaces. Following for example [MV], we use the following no-

tation for the semi-infinite orbits in the affine Grassmannian GrG = SL2(k((t)))/SL2(k[[t]]).

Given any integer i ∈ Z the N(k((t)))-orbit of the point

(
ti 0
0 t−i

)
in GrG will be denoted by Si, and its N−(k((t)))-orbit by T i. Using the modular

interpretation of these orbits it is not hard to show (see for example [BFGM]):

Lemma 5.3.2. By passing to the fibers over the point nx ∈ X(n), the embeddings of

Zn and Z̃−,n into GrnG from Section 5.2.1 above induce identifications

Zn|nx ∼= Sn ∩ T 0

and

Z̃−,n|nx ∼= Sn ∩ T 0 .

To make the above intersections of semi-infinite orbits more explicit, we will write

matrix representatives for elements of GrG = SL2(k((t)))/SL2(k[[t]]). We have the

following well-known lemma:

Lemma 5.3.3. The following two maps are isomorphisms:
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(a)

An −→ Sn ∩ T 0

(a−n, . . . , a−1) 7−→
(

1 0∑
ait

i 1

)

(b)

An −→ Sn ∩ T 0

(b0, . . . , bn−1) 7−→
(
tn

∑
bit

i

0 t−n

)

5.3.4. The fibers of the local models Y n. Let Sn denote the fiber of the projection

π : Y n → X(n) over the point nx ∈ X(n). Let 0Sn denote the defect-free open

subscheme of Sn, i.e., the open subscheme obtained by intersecting Sn with the defect-

free locus 0Y
n of Y n.

We will now use the closed embedding τ from Section 5.2.6 to find equations for Sn

and 0Sn. In fact, when describing the embedding on the level of fibers, the exposition

seems to be clearer if one at first uses a slight variant τ̃ of the embedding τ where

one slightly enlarges the target; we will remove this “redundancy” afterwards (see

Corollary 5.3.7 below).

Namely, instead of τ we will at first use the closed embedding into the larger target

τ̃ : Y n ↪−→ Z̃−,n ×
X(n)

Zn × A1 ,

where the map to the last factor A1 = T+
adj is the usual map Y n → A1. Thus over

the point nx ∈ X(n) we obtain a closed embedding

Sn ↪−→ (Sn ∩ T 0)× (Sn ∩ T 0)× A1 .
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Denote by Mat2×2 the affine space of 2×2 matrices over k, i.e., the Vinberg semigroup

of G = SL2. Then one can verify directly from the modular interpretation of Y n:

Lemma 5.3.5.

(a) The above embedding identifies Sn with the closed subscheme of the product

(Sn ∩ T 0)× (Sn ∩ T 0)× A1

consisting of those elements (M1,M2, d) which satisfy that

M−1
1

(
1 0
0 d

)
M2 ∈ Mat2×2(k[[t]]).

Note that this condition is indeed independent of the choice of representatives

for M1 and M2.

(b) The open subscheme 0Sn of Sn is obtained by additionally requiring that eval-

uation of the matrix

M−1
1

(
1 0
0 d

)
M2 ∈ Mat2×2(k[[t]])

at t = 0 does not yield the zero matrix
(

0 0
0 0

)
. Note that this condition is again

independent of the choice of representatives for M1 and M2.

Using the isomorphisms of Lemma 5.3.3 above we obtain:

Lemma 5.3.6. Via Lemma 5.3.3, consider Sn as a closed subscheme of the affine

space An×An×A1 with coordinates (b0, . . . , bn−1, a−n, . . . , a−1, d). Then Sn is defined
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by the following n equations:

a−nb0 = d

a−nb1 + a−n+1b0 = 0

a−nb2 + a−n+1b1 + a−n+2b0 = 0

...

a−nbn−1 + a−n+1bn−2 + · · ·+ a−1b0 = 0

Proof. In the notation of Lemma 5.3.3 and Lemma 5.3.5, let

g = a−nt
−n + . . .+ a−1t

−1,

f = b0t
0 + . . .+ bn−1t

n−1,

M1 =
(

1 0
g 1

)
,

M2 =
(
tn f
0 t−n

)
.

We then have

M−1
1

(
1 0
0 d

)
M2 =

(
tn f
−gtn −gf+dt−n

)
.

Observe that all matrix entries except the one in the lower right corner already lie in

k[[t]] automatically. The entry in the lower right corner equals

−gf + dt−n = dt−n −
n−2∑
k=−n

(∑
i+j=k

aibj

)
tk

Thus the integrality condition of Lemma 5.3.5 (a) translates to the asserted equations.

�

Using the first equation in Lemma 5.3.6 one eliminates the last coordinate and

obtains finally:
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Corollary 5.3.7. The scheme Sn is equal to the closed subscheme of the affine space

An × An defined by the following (n− 1) equations:

a−nb1 + a−n+1b0 = 0

a−nb2 + a−n+1b1 + a−n+2b0 = 0

...

a−nbn−1 + a−n+1bn−2 + · · ·+ a−1b0 = 0

For the open subscheme 0Sn of Sn we have:

Lemma 5.3.8. The open subscheme 0Sn of Sn is obtained by removing from Sn the

closed subscheme defined by additionally requiring that

a−n = 0 = b0

and

a−n+1bn−1 + · · ·+ a−2b2 + a−1b1 = 0.

Proof. We continue to use the notation from the proof of Lemma 5.3.6, and simply

write out the condition stated in Lemma 5.3.5 (b). Namely, evaluating the matrix

(
tn f
−gtn −gf+dt−n

)
∈ Mat2×2(k[[t]])

at t = 0 yields the matrix (
0 b0

−a−n −
∑

i aibi

)
,

and the assertion follows. �
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In a similar fashion one easily checks:

Lemma 5.3.9. In terms of the coordinates of Corollary 5.3.7, the composite map

Sn −→ Y n −→ A1

sends a point (ai, bj)i,j to the scalar a−nb0. Furthermore, the contracting Gm-action

from Lemma 5.2.12 acts quadratically on each coordinate:

c · (ai, bj)i,j = (c2ai, c
2bj)i,j

5.3.10. Equations for other fibers. Let
∑m

k=1 nkxk be a point of X(n), with the xk

distinct. Then since the space Y n factorizes in families in the sense of Proposition

5.1.2, the fiber of Y n over the point
∑
nkxk is equal to the iterated fiber product

Sn1 ×
A1

Sn2 ×
A1
· · · ×

A1
Snm ,

and one can write explicit equations for the latter space using Corollary 5.3.7 and

Lemma 5.3.9.

5.3.11. The classical Picard-Lefschetz situation for S1. Specializing to n = 1 in Corol-

lary 5.3.7, Lemma 5.3.8, and Lemma 5.3.9, we see that the family S1 → A1 recovers

the classical Picard-Lefschetz family of hyperbolas degenerating to a node: The space

S1 is isomorphic to the affine plane A2 with the two coordinates (a−1, b0), and the

map S1 → A1 sends a point (a−1, b0) to the product a−1 · b0 ∈ A1. The B-locus S1
B

consists of the union of the two coordinate axes.

Next we make explicit the stratification of the B-locus S1
B induced by the defect

stratification of Y 1
B, using the analogous notation for the strata. By Corollary 4.1.9
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above the B-locus S1
B is stratified by the three strata

(1,0,0)S1
B , (0,1,0)S1

B , and (0,0,1)S1
B .

In terms of the Picard-Lefschetz family, the strata (1,0,0)S1
B and (0,0,1)S1

B form the

two axes of the node S1
B, with the point of their intersection removed from both.

Similarly, the stratum of maximal defect (0,1,0)S1
B corresponds to the point in which

the axes meet. As prescribed by Corollary 4.1.9 above the closure of either of the

strata (1,0,0)S1
B and (0,0,1)S1

B is obtained by adding the stratum of maximal defect

(0,1,0)S1
B.

6. Nearby cycles

In this section we prove the main theorem about nearby cycles for the local models,

Theorem 4.2.1, and hence also Theorem 3.3.3 for VinBunG, as explained in Section

4.2 above. The general structure of the argument occupies Sections 6.1 through 6.3

below. However, we postpone two key statements to separate sections later in the

text, hoping that this might bring out the structure of the argument better than a

logically linear proof. Moreover, each of the two statements requires proof techniques

that are somewhat different from the present section, possibly justifying the separate

treatment.

We will prove Theorem 4.2.1 by induction on the integer n appearing in its for-

mulation. We remark that our inductive procedure will implicitly also show that the
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full nearby cycles are in fact unipotent; this is needed to invoke the factorization of

the nearby cycles (see for example [BB, Sec. 5]) during the induction step.

6.1. The base case n = 1.

We begin by establishing the base case n = 1 of the induction by an explicit

calculation involving the geometry of the local models and the equations from Section

5.3 above.

Proposition 6.1.1. Theorem 4.2.1 holds for the case n = 1.

Proof. Since n = 1 the computation of GrΨ(ICY 1
G

) reduces to the computation of

GrΨ(ICS1G), where S1
G denotes the G-locus of the fiber S1 of the projection map π

studied in Section 5.3 above. We use the same notation as in Section 5.3.11 above

for the stratification of S1
B induced by the defect stratification of Y 1

B. We then have

to show that on the B-locus S1
B there exists an isomorphism

Gr Ψ(ICS1G) ∼= Q`
(1,0,0)S1B

[1](1
2
) ⊕

(
V ⊗Q`(0,1,0)S1B

)
⊕ Q`

(0,0,1)S1B
[1](1

2
)

which respects the action of the Lefschetz-sl2. To see this, recall first that the ex-

plicit description of S1
B in coordinates in Section 5.3.11 above shows that the strata

closures (1,0,0)S1
B and (0,0,1)S1

B form the two axes of the reducible node S1
B; similarly,

the stratum (0,1,0)S1
B corresponds to the point in which the axes meet. Furthermore,

by Section 5.3.11 above the family S1 → A1 is precisely the Picard-Lefschetz family

of hyperbolas, and hence the required calculation is precisely the assertion of Lemma

3.1.9 above. �
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6.2. Reduction to the stratum of maximal defect.

In the present and the next section we deal with the induction step from n− 1 to

n. The present section reduces the assertion of Theorem 4.2.1 to a simpler version

which takes place entirely on the stratum of maximal defect nY
n
B ; the latter case will

be established in the next section, modulo the two separate statements referred to

earlier.

From now on we abbreviate the right hand side of Theorem 4.2.1 by

Cn :=
⊕

(n1,k,n2)

f̄n1,k,n2,∗ P̃n1,k,n2 .

We first record:

Lemma 6.2.1. The perverse sheaf Cn is semisimple. The perverse sheaf Gr Ψ(ICY n
G

)

becomes semisimple after forgetting the Weil structure.

Proof. For Cn it suffices to show that the perverse sheaves P̃n1,k,n2 are semisimple

since the compactified maps f̄n1,k,n2,∗ are finite. This follows from Lemma 3.2.5 and

the definition of P̃n1,k,n2 as a shifted and twisted pullback of the Picard-Lefschetz

oscillator Pk in Section 3.3.1. The assertion about Gr Ψ(ICY n
G

) follows from Gab-

ber’s theorem (Proposition 3.1.4 above), together with the decomposition theorem of

Beilinson, Berstein, and Deligne from [BBD] for pure perverse sheaves. �

Over the course of proving Theorem 4.2.1 we will establish that Gr Ψ(ICY n
G

) is in

fact semisimple also as a perverse Weil sheaf; this is of course a posteriori also a

consequence of Theorem 4.2.1.
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6.2.2. Splitting according to loci of support. Lemma 6.2.1 is already sufficient to split

the perverse sheaves Gr Ψ(ICY n
G

) and Cn into direct sums according to where their

simple constituents are supported: Namely, we can decompose

Gr Ψ(ICY n
G

) =
(

Gr Ψ(ICY n
G

)
)

on nY n
B

⊕ (
Gr Ψ(ICY n

G
)
)

not on nY n
B

where all simple constituents of the first summand are supported on the stratum nY
n
B

and where all simple constituents of the second summand are not supported on nY
n
B .

Analogously we write

Cn =
(
Cn
)

on nY n
B

⊕ (
Cn
)

not on nY n
B
.

By definition both direct sum decompositions are respected by the action of the

Lefschetz-sl2. Thus to prove Theorem 4.2.1, it suffices to construct

(a) the isomorphism on the stratum of maximal defect

(
Gr Ψ(ICY n

G
)
)

on nY n
B

∼=
(
Cn
)

on nY n
B

(b) the isomorphism away from the stratum of maximal defect

(
Gr Ψ(ICY n

G
)
)

not on nY n
B

∼=
(
Cn
)

not on nY n
B

where both isomorphisms need to respect the action of the Lefschetz-sl2. The ex-

istence of the isomorphism (b) away from the stratum of maximal defect follows

directly from the induction hypothesis, as we explain in the next paragraph. For the

remainder of Section 6 we will then be concerned with establishing the isomorphism

(a) on the stratum of maximal defect.

6.2.3. The isomorphism away from the stratum of maximal defect. Recall from Corol-

lary 4.1.9 the open subscheme 6(n−1)Y
n
B of the B-locus Y n

B defined by allowing the
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defect degree to be at most n−1. Then as in Section 4.2 the induction hypothesis im-

plies the validity of Theorem 4.2.1 after restricting to the open subscheme 6(n−1)Y
n
B ,

i.e.:

Lemma 6.2.4. Assume the main theorem about nearby cycles for the local models,

Theorem 4.2.1, holds for the integer n− 1. Then on the open subscheme 6(n−1)Y
n
B of

Y n
B there exists an isomorphism of perverse sheaves

Gr Ψ(ICY n
G

)
∣∣∣∗
6(n−1)Y

n
B

∼=
⊕

(n1,k,n2)

(
f̄n1,k,n2,∗ P̃n1,k,n2

)∣∣∣∗
6(n−1)Y

n
B

which is compatible with the action of the Lefschetz-sl2.

Combining Lemma 6.2.4 and Lemma 6.2.1 above, we already know that the re-

striction of (Gr Ψ(ICY n
G

))not on nY n
B

to 6(n−1)Y
n
B is semisimple. Since by definition none

of the simple constituents of (Gr Ψ(ICY n
G

))not on nY n
B

are supported on the complement

of 6(n−1)Y
n
B , it must in fact be equal to the intermediate extension of its restriction

to 6(n−1)Y
n
B . Thus applying the intermediate extension functor to the isomorphism

in Lemma 6.2.4 yields the desired isomorphism (b) above.

6.3. The isomorphism on the stratum of maximal defect.

Recall from Corollary 4.1.9 that the stratum of maximal defect nY
n
B is canonically

identified with the symmetric power X(n) of the curve X via the natural projection

map Y n → X(n). Throughout this section we will identify nY
n
B and X(n) without

further mention. Observe furthermore that by definition of Cn we have

(
Cn
)

on nY n
B

= Pn

where Pn denotes the n-th Picard-Lefschetz oscillator as in Section 3.2.4 above.
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Lemma 6.3.1. The objects (Gr Ψ(ICY n
G

))on nY n
B

and (Cn)on nY n
B

admit natural factor-

ization structures which respect the action of the Lefschetz-sl2.

Proof. For (Cn)on nY n
B

= Pn this was already dealt with in Lemma 3.2.3 and Lemma

3.2.5 above. We now prove the assertion for (Gr Ψ(ICY n
G

))on nY n
B

. First, the factorization-

in-families of the local models Y n from Proposition 5.1.2 above, together with the

compatibility of GrΨ with fiber products (see for example [BB, Sec. 5]), shows that

on Y n1
B

◦
× Y n2

B we have:

Gr Ψ(ICY n
G

)
∣∣∣∗
Y

n1
B

◦
×Y n2

B

= Gr Ψ(ICY
n1
G

)
◦
� Gr Ψ(ICY

n2
G

)

Here the left hand side denotes the ∗-pullback of Gr Ψ(ICY n
G

) along the etale factor-

ization map

Y n1
B

◦
× Y n2

B −→ Y n
B .

The above identification respects the action of the Lefschetz-sl2 due to the comment

in Proposition 5.1.2 about compatibility with respect to maps to A1.

Next we claim that the above identification in fact induces an identification of the

desired summands:

(Gr Ψ(ICY n
G

))on nY n
B

∣∣∣∗
Y

n1
B

◦
×Y n2

B

= (Gr Ψ(ICY
n1
G

))on n1Y
n1
B

◦
� (Gr Ψ(ICY

n2
G

))on n2Y
n2
B

Indeed, using the identification without requirements on the support and the fact

that the stratum of maximal defect “factorizes” in the sense that the square

n1Y
n1
B

◦
× n2Y

n2
B

//

��

nY
n
B

��

Y n1
B

◦
× Y n2

B
// Y n

B
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is cartesian, one can identify both the left hand side and the right hand side with the

direct summand of the perverse sheaf

Gr Ψ(ICY n
G

)
∣∣∣∗
Y

n1
B

◦
×Y n2

B

consisting of those simple constituents supported on n1Y
n1
B

◦
× n2Y

n2
B . �

6.3.2. Simple constituents supported on the diagonal. Let ∆X denote the main diag-

onal

∆X = X ↪−→ X(n)

of the symmetric power X(n). The following lemma is crucial to our approach to the

proof of Theorem 4.2.1:

Lemma 6.3.3. For any n > 2, none of the simple constituents of the perverse sheaves

(Gr Ψ(ICY n
G

))on nY n
B

and (Cn)on nY n
B

are supported on the diagonal ∆X .

For (Gr Ψ(ICY n
G

))on nY n
B

the proof of Lemma 6.3.3 is the topic of Section 6.4 be-

low. The case of (Cn)on nY n
B

however follows directly from the definitions: Since

(Cn)on nY n
B

= Pn, this follows from the fact that the Picard-Lefschetz oscillator Pn is

the intermediate extension of a local system on the disjoint locus of X(n) by Lemma

3.2.5.

In the next lemma and below the union of all diagonals in X(n) refers to the

natural closed subscheme of X(n) complementary to the disjoint locus of X(n). From

the definition of factorizability one verifies:

Lemma 6.3.4. Let Fn be a factorizable collection of perverse sheaves on X(n), and

assume that for each n > 2 none of the simple constituents of Fn is supported on

the main diagonal ∆X . Then for any n > 2 none of the simple constituents of Fn
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is supported on the union of all diagonals in X(n). In particular, none of the simple

constituents of (Gr Ψ(ICY n
G

))on nY n
B

and (Cn)on nY n
B

is supported on the union of all

diagonals in X(n).

6.3.5. Generic agreement. Lemma 6.3.4 above shows that it suffices to construct the

desired isomorphism (a) above after restricting (Gr Ψ(ICY n
G

))on nY n
B

and (Cn)on nY n
B

to the disjoint locus
◦
X(n) of the symmetric power. Indeed, by Lemma 6.3.4 both

perverse sheaves are the intermediate extensions of their restrictions to the disjoint

locus, and hence the desired isomorphism can be obtained by intermediate extension

as well. As a first step towards the isomorphism on the disjoint locus, we construct

the following weaker version. Let

adddisj :
◦
Xn −→

◦
X(n)

denote the addition map from the disjoint locus of the cartesian product to the disjoint

locus of the symmetric product of the curve X. Then directly from the definition of

factorization we obtain:

Lemma 6.3.6. The isomorphism for n = 1 from Section 6.1 and the factorization

structure from Lemma 6.3.1 above together yield isomorphisms of the pullbacks

add∗disj

(
Gr Ψ(ICY n

G
)
)
on nY n

B

∼= add∗disj
(
Cn
)
on nY n

B

for any n > 2 which respect the action of the Lefschetz-sl2.

The addition map adddisj being a torsor for the symmetric group Sn, the pull-

backs add∗disj(Gr Ψ(ICY n
G

))on nY n
B

and add∗disj(Cn)on nY n
B

carry natural Sn-equivariant

structures. Thus to construct the desired isomorphism on the stratum of maximal
77



defect, it suffices to prove that the isomorphism between the pullbacks constructed

in Lemma 6.3.6 above in fact respects the Sn-equivariant structures.

This is one of the key computations of the present article, and is in fact part of

how the Picard-Lefschetz oscillators were found in the first place. Fortunately, in the

present situation it suffices to verify the case n = 2:

Lemma 6.3.7. To show that the isomorphisms

add∗disj

(
Gr Ψ(ICY n

G
)
)
on nY n

B

∼= add∗disj
(
Cn
)
on nY n

B

constructed in Lemma 6.3.6 above respect the natural Sn-equivariant structures for

all n > 2, it in fact suffices to verify the case n = 2.

Proof. Since the symmetric group Sn is generated by transpositions, it suffices to

verify that the above isomorphisms respect the equivariant structure for any trans-

position in Sn. Without loss of generality we may assume the transposition under

consideration interchanges the elements 1, 2 ∈ {1, . . . , n}. Factoring the map adddisj

as the composition
◦
Xn −→

◦
X(2) ×

◦
Xn−2 −→

◦
X(n)

and using that the isomorphisms in Lemma 6.3.6 are constructed via the factorization

structures then reduces the assertion to the case n = 2. �

The required assertion in the case n = 2 will be dealt with in Section 6.5 and

Section 6.6 below. Namely, we will give two different proofs, one via an abstract

calculation in the Grothendieck group, and another one via a direct computation of

the IC-sheaf of the local model Y 2 based on the explicit geometry available from

Section 5 above. This completes the proof of the main theorem about nearby cycles
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for the local models, Theorem 4.2.1, and hence also Theorem 3.3.3 for VinBunG,

modulo Sections 6.4 through 6.6 below.

6.4. Fighting simples on the main diagonal.

In this section we prove Lemma 6.3.3 for (Gr Ψ(ICY n
G

))on nY n
B

. As the lemma is part

of the induction step of the inductive proof of the main theorem, Theorem 4.2.1,

we are allowed to assume the validity of Theorem 4.2.1 for the integer n − 1 in the

course of the proof of Lemma 6.3.3. Using the inductive hypothesis, the question

about simples on the diagonal can be translated into a similar question about the

cohomology of the Zastava spaces. In the next two subsections we first discuss the

latter as well as its implications for the local models, and only then proceed to the

actual proof.

6.4.1. Compactly supported cohomology of open Zastava spaces. As in Section 4.1.5

let 0Z
n denote the open Zastava space, and as before let

πZ : 0Z
n −→ X(n)

denote the projection map. We now record some information about the object

Ω̃n := πZ,!
(
IC0Zn

)
= πZ,!

(
(Q`)0Zn [dim0Zn ](1

2
dim0Zn)

)
and will then apply it to the proof of Lemma 6.3.3. In fact, we will only need

to understand Ω̃n on a fairly coarse level, namely on the level of the Grothendieck

group. An expression of Ω̃n on the level of the Grothendieck group can fortunately

be extracted from the work [BG2] of Braverman and Gaitsgory. The study of Ω̃n as
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an object of the derived category is much more involved, and has been carried out

by Sam Raskin in the forthcoming article [R].

To state the description of Ω̃n in the Grothendieck group, let

add : X(i) ×X(j) −→ X(n)

denote the addition map of effective divisors as before; however, unlike before, here

we do not restrict to the disjoint locus of the product X(i)×X(j). Furthermore, using

the notation from Section 3.2.2 we denote by

Λ(j)(Q`X)[j](j)

the i-th external exterior power of the constant local system on the curve X, shifted

and twisted as indicated. The following description of Ω̃n in the Grothendieck group

then follows directly from Corollary 4.5 of [BG2]:

Lemma 6.4.2. In the Grothendieck group on X(n) we have:

Ω̃n =
∑
i+j=n

add∗

(
Q`X(i) � Λ(j)(Q`X)[j](j)

)
Here the sum runs over all pairs of integers (i, j) with 0 6 i, j,6 n and i+ j = n.

6.4.3. Stalks of the extension of the constant sheaf. We now explain how the object

Ω̃n arises in a sheaf-theoretic computation on the local models Y n. To do so, let

jG : Y n
G ↪−→ Y n

denote the open inclusion of the G-locus of Y n, and recall from Section 5.2.8 that

the inclusion of the stratum of maximal defect nY
n
B ↪→ Y n agrees with the section

s : X(n) ↪→ Y n under the identification nY
n
B = X(n). Furthermore let H∗c (A1 r {0})
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denote the compactly supported cohomology of A1 r {0}. Then, using the geometry

of the local models Y n discussed in Section 5 above, we can now prove:

Proposition 6.4.4.

s! jG,! ICY n
G

= Ω̃n ⊗ H∗c (A1 r {0})[1](1
2
)

Proof. Let πG denote the restriction of the projection map π : Y n → X(n) to the

G-locus Y n
G . Then jG,! ICY n

G
is Gm-equivariant for the Gm-action from Section 5.2.11

above, and hence the contraction principle from Lemma 5.2.14 above yields:

s! jG,! ICY n
G

= π! jG,! ICY n
G

= πG,! ICY n
G

On the other hand, in terms of the product decomposition of Y n
G from Lemma 4.1.7

above we have

ICY n
G

= IC0Zn � ICA1r{0} .

Thus the compatibility of the projection maps in Lemma 4.1.7 implies that

πG,! ICY n
G

= πZ,!(IC0Zn) ⊗ H∗c (A1 r {0})[1](1
2
) = Ω̃n ⊗ H∗c (A1 r {0})[1](1

2
) ,

as desired. �

6.4.5. The proof. We can now proceed to the proof of Lemma 6.3.3 for the perverse

sheaf (Gr Ψ(ICY n
G

))on nY n
B

. In line with the appearance of the lemma in the induction

step of the inductive proof of the main theorem, Theorem 4.2.1, we are allowed to

assume the validity of Theorem 4.2.1 for the integer n− 1 in the course of the proof.
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Proof of Lemma 6.3.3 for (Gr Ψ(ICY n
G

))on nY n
B

.

Let iB denote the inclusion of the B-locus Y n
B into Y n, and as before let jG denote

the open immersion of the G-locus Y n
G into Y n. Then on Y n

B the usual triangle for

the map can : Ψ→ Φ applied to the object jG,∗ ICY n
G

takes the form

i∗B jG,∗ ICY n
G

[−1](−1
2
) −→ Ψ(ICY n

G
)

N−→ Ψ(ICY n
G

)(−1)
+1−→ .

To better understand the object (Gr Ψ(ICY n
G

))on nY n
B

we will use the ∗-pullback of the

above triangle along s, i.e., the triangle

s∗ jG,∗ ICY n
G

[−1](−1
2
) −→ s∗Ψ(ICY n

G
)

N−→ s∗Ψ(ICY n
G

)(−1)
+1−→ .

More precisely, we will exploit the relation the latter triangle induces in the Grothendieck

group of perverse sheaves on X(n). Namely, let the image of s∗Ψ(ICY n
G

) in the

Grothendieck group on X(n) be expressed uniquely as a minimal Z-linear combi-

nation of simple perverse sheaves. Then we claim that none of the simple perverse

sheaves occurring in this expression is supported on the main diagonal ∆X of X(n).

Indeed, since the third term of the last triangle is a non-trivial twist of the middle

term s∗Ψ(ICY n
G

), it suffices to prove the analogous claim for the first term. However,

by Proposition 6.4.4 above, the first term is Verdier dual to the object

Ω̃n ⊗ H∗c (A1 r {0})[2](1).

Thus it in turn suffices to show the analogous claim for Ω̃n: If the image of Ω̃n in the

Grothendieck group of perverse sheaves on X(n) is expressed as a minimal Z-linear

combination of simple perverse sheaves, then none of the simples occurring in this

expression is supported on the main diagonal ∆X . This last claim however follows

directly from the explicit description of Ω̃n on the level of the Grothendieck group in
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Lemma 6.4.2 above: Each summand in this description is equal to the intermediate

extension to X(n) of a local system on the disjoint locus of X(n).

We have now established that none of the simple perverse sheaves occurring in the

minimal description of the image of s∗Ψ(ICY n
G

) in the Grothendieck group on X(n) is

supported on the main diagonal ∆X . From this we now deduce that the same holds for

the image of (Gr Ψ(ICY n
G

))on nY n
B

in the Grothendieck group; since (Gr Ψ(ICY n
G

))on nY n
B

is a perverse sheaf, this completes the proof.

To make the required deduction, note first that on the level of the Grothen-dieck

group the objects Ψ(ICY n
G

) and Gr Ψ(ICY n
G

) coincide. Thus any simple perverse sheaf

occurring in the minimal description of the image of the direct sum

s∗Gr Ψ(ICY n
G

) =
(

Gr Ψ(ICY n
G

)
)

on nY n
B

⊕
s∗
(

Gr Ψ(ICY n
G

)
)

not on nY n
B

in the Grothendieck group of X(n) cannot be supported on the main diagonal ∆X .

Hence to establish the desired claim for the first summand, it suffices to establish

the analogous claim for the second summand. The second summand can however be

dealt with via the induction hypothesis: Since we are allowed to assume the validity

of Theorem 4.2.1 for the integer n − 1, we may apply Lemma 6.2.4 above and may

hence make use of the identification

(
Gr Ψ(ICY n

G
)
)

not on nY n
B

∼=
(
Cn
)

not on nY n
B

from Section 6.2.3 above. This in turn reduces the assertion about the second sum-

mand to the analogous assertion for the object s∗ (Cn)not on nY n
B

. The next lemma

however provides a strengthening of this last assertion, and therefore completes the

proof of Lemma 6.3.3. �
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Lemma 6.4.6. For each triple (n1, k, n2) as in Theorem 4.2.1 the object s∗ f̄n1,k,n2,∗ P̃n1,k,n2

is a direct sum of cohomologically shifted simple perverse sheaves on X(n), none of

which is supported on the main diagonal ∆X .

Proof. First observe that the square

X(n1) ×X(k) ×X(n2)
section

//

add

��

Z−,n1

(BunT,−n) ×
BunT

(
X(k) × Zn2

)
f̄n1,k,n2

��

X(n)
s

// Y n
B

is cartesian, where the top arrow is the natural map formed by combining the three

section maps sZ− , s, and sZ from Section 5.2 above, and where the left horizontal

map is the addition map of effective divisors. Next, from the definition of P̃n1,k,n2

and the properness of f̄n1,k,n2 we obtain that

s∗ f̄n1,k,n2,∗ P̃n1,k,n2 = add∗ (Q`�Pk �Q`) [2n− 2k](n− k) .

Then the finiteness of the map add and the properties of Pk stated in Lemma 3.2.5

together yield the assertion. �

6.5. Finding the Picard-Lefschetz oscillators.

In this section we give the first proof that the isomorphism

add∗disj

(
Gr Ψ(ICY 2

G
)
)

on 2Y 2
B

∼= add∗disj
(
C2

)
on 2Y 2

B

constructed in Lemma 6.3.6 indeed respects the natural S2-equivariant structure; this

completes the proof of Theorem 4.2.1. In Section 6.6 below we give a second proof.
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The first proof is an abstract calculation in the Grothendieck group and essentially

a refinement of the arguments of Section 6.4, exploiting the specific expression for

Ω̃ given in Lemma 6.4.2 above. The second proof does not require this specific ex-

pression, but instead deduces the required assertion from an intersection cohomology

computation for the space Y 2 which relies on the geometry of the local models de-

veloped in Section 5 above; this is in fact how the Picard-Lefschetz oscillators were

found originally. We include this second proof as it also provides an example of a

direct IC-sheaf computation without passing through the nearby cycles, and might

illuminate how one can work with the local models in very explicit terms.

6.5.1. The first proof of the compatibility. We will show that the images of (Gr Ψ(ICY 2
G

))on 2Y 2
B

and (C2)on 2Y 2
B

= P2 in the Grothendieck group of perverse sheaves onX(2) agree; since

both are in fact semisimple perverse sheaves, this will prove the claim. When writ-

ing expressions in the Grothendieck group on X(2), we will for notational simplicity

denote by Q` and by sign the IC-extensions to X(2) of the constant and sign local

systems on the disjoint locus of X(2). First, from the definition one finds that

P2 = sign(1) + sign(0) + sign(−1) + Q`(0)

in the Grothendieck group.

To compute (Gr Ψ(ICY 2
G

))on 2Y 2
B

we exploit the relation in the Grothendieck group

induced by the triangle

s∗ jG,∗ ICY 2
G

[−1](−1
2
) −→ s∗Ψ(ICY 2

G
)

N−→ s∗Ψ(ICY 2
G

)(−1)
+1−→

from the proof in Section 6.4.5 above in the case n = 2. Namely, as a first step we

use this triangle to show that in the Grothendieck group the difference

(Gr Ψ(ICY 2
G

))on 2Y 2
B
− (Gr Ψ(ICY 2

G
))on 2Y 2

B
(−1)
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is equal to

Q`(0)−Q`(−1) + sign(1)− sign(−2) .

To see this, we need to compute the images of the first term of the triangle and of

(Gr Ψ(ICY 2
G

))not on 2Y 2
B

in the Grothendieck group: For the image of the first term of

the triangle we find the expression

Q`(1)− 2Q`(0) + Q`(−1)− sign(0) + 2 sign(−1)− sign(−2)

by Lemma 6.4.2, Lemma 6.4.4, and the fact that

H∗c (A1 r {0}) = Q`[−2](−1)⊕Q`[−1](0) .

For (Gr Ψ(ICY 2
G

))not on 2Y 2
B

we first invoke Lemma 6.2.4 and then compute its image in

the Grothendieck group to be

Q`(1)− sign(1)− 2Q`(0)− 2 sign(0)

by using the cartesian square from the proof of Lemma 6.4.6 above. We have now

established the above formula for

(Gr Ψ(ICY 2
G

))on 2Y 2
B
− (Gr Ψ(ICY 2

G
))on 2Y 2

B
(−1) .

But since (Gr Ψ(ICY 2
G

))on 2Y 2
B

is perverse, it can be reconstructed from this difference

by induction on the length, starting with a simple of minimal weight; executing this

algorithm yields

(Gr Ψ(ICY 2
G

))on 2Y 2
B

= sign(1) + sign(0) + sign(−1) + Q`(0)

as desired, completing the proof.
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6.6. Picard-Lefschetz oscillators via IC-stalks for small defect.

In this section we give the aforementioned second proof of the correctness of the

S2-equivariant structure. Namely, we will deduce the assertion from the following

explicit computation:

6.6.1. Intersection cohomology for Y 2. Our next goal is to prove:

Proposition 6.6.2. The restriction of the IC-sheaf of Y 2 to the stratum of maximal

defect 2Y
2
B = X(2) equals:

s∗ ICY 2 = Q`X(2) [3](3
2
) ⊕ Q`X(2) [5](5

2
)

We begin with the following lemma:

Lemma 6.6.3. None of the simple perverse sheaves occurring in the minimal Z-

linear combination of s∗ ICY 2 in the Grothendieck group of perverse sheaves on X(2)

is supported on the diagonal ∆X of X(2).

Proof. On the level of the Grothendieck group the object s∗ ICY 2 agrees up to twist

and sign with the ∗-restriction along s of the associated graded Gr ICY 2 |∗
Y 2
B

[−1](−1
2
).

The latter associated graded object is however a subobject of the perverse sheaf

GrΨ(ICY 2
G

) by Section 3.1; the claim hence follows from the analogous claim for

s∗GrΨ(ICY 2
G

). To prove the latter, we split GrΨ(ICY 2
G

) as a direct sum as in Sec-

tion 6.2.2 above: For the summand (Gr Ψ(ICY 2
G

))on 2Y 2
B

the needed assertion is then

precisely Lemma 6.3.3 above for n = 2. For the summand (Gr Ψ(ICY 2
G

))not on 2Y 2
B

the

needed assertion follows from the validity of Theorem 4.2.1 for n = 1 and Lemma 6.4.6

above. �
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As before we denote by

add : X
◦
× X −→ X(2)

the addition map of effective divisors. Complementarily to Lemma 6.6.3 we now

prove:

Lemma 6.6.4.

add∗s! ICY 2 = Q`X
◦
×X

[1](1
2
) ⊕ Q`X

◦
×X

[−1](−1
2
)

Proof. By the contraction principle (Lemma 5.2.14 above) and the factorization in

families (Proposition 5.1.2) above, we have to show that

(π1 × π1)! IC
Y 1

◦
×
A1
Y 1

= Q`X
◦
×X

[1](1
2
) ⊕ Q`X

◦
×X

[−1](−1
2
)

on the disjoint locus of X ×X. As in the proof of Proposition 6.1.1 above it suffices

to verify this at the level of ∗-stalks. To do this, note that the contracting Gm-action

on Y 1 induces a Gm-action on the fiber product Y 1
◦
×
A1

Y 1 by Lemma 5.3.9; this

action respects the product projection π1 × π1 and contracts the fiber product onto

the product section s1 × s1. Thus, applying the contraction principle again, we are

left to verify that the !-stalk of the IC-sheaf of the subvariety S1 ×A1 S1 ⊂ A4 at the

origin 0 ∈ A4 is equal to

IC S1 ×
A1

S1

∣∣∣!
0

= Q`[−1](−1
2
) ⊕ Q`[−3](−3

2
) .

But the equations from Section 5.3 show that the subvariety S1 ×A1 S1 ⊂ A4 is

precisely the affine quadric cone defined by the equation XY = ZW in A4; the

standard calculation of the IC-stalk at the vertex of the cone, for example via a

resolution of singularities, then yields the result. �
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By Corollary 5.2.15 above we already know that s∗ ICY 2 is pure of weight 0; com-

bining this with Lemma 6.6.3 and Lemma 6.6.4 above, we conclude that

s! ICY 2 = L1[−1](−1
2
)⊕ L2[−3](−3

2
)

where L1 and L2 can be either equal to the shifted constant sheaf (Q`)X(2) [2](1) or

to the IC-extension of the sign local system from the disjoint locus in X(2). Thus

to prove Proposition 6.6.2 above, we have to prove that both L1 and L2 are equal

to the constant sheaf, i.e., we have to rule out the appearance of sign local systems.

To do so, we will “compute over the diagonal”, for which we will utilize our concrete

understanding of the space S2 in coordinates. More precisely, since the stalk of the

IC-extension of the sign local system at a point on the diagonal ∆X of X(2) vanishes,

Proposition 6.6.2 will follow from the following lemma:

Lemma 6.6.5. The ∗-stalk of s! ICY 2 at any point on the diagonal ∆X is equal to

Q`[1](1
2
) ⊕ Q`[−1](−1

2
).

Proof. Since s! ICY 2 = π! ICY 2 by the contraction principle, Lemma 5.2.14 above, the

above ∗-stalk is equal to the compactly supported cohomology

H∗c (S2, ICY 2 |∗S2)

of the restriction ICY 2 |∗S2 . We thus have to show that these cohomology groups

are 1-dimensional in the relevant degrees 1 and −1; in doing so, the weights are

irrelevant, so we suppress them from the notation throughout the proof. To compute

these cohomology groups, we will use the long exact sequence in compactly supported
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cohomology

H∗c (61S2, ICY 2 |∗
61S2) −→ H∗c (S2, ICY 2 |∗S2) −→ H∗c (2S2, ICY 2 |∗

2S2B
)

associated to the pair (61S2, 2S2) consisting of the complementary open and closed

subvarieties

61S2 open
↪−→ S2 closed←−↩ 2S2

B .

Observe that the open subvariety 61S2 complementary to 2S2
B consists of the G-locus

S2
G as well as the strata 0S2

B and 1S2
B of the B-locus.

To analyze the term H∗c (2S2, ICY 2 |∗
2S2B

) in this sequence, observe that 2S2 consists of

precisely one point, which we will denote by p; hence this term is simply equal to the

stalk ICY 2 |∗p. But applying Verdier duality to our preliminary knowledge of s! ICY 2

in terms of L1 and L2 above, we already know that this stalk must be concentrated

in cohomological degrees −3 and −5.

To analyze the term H∗c (61S2, ICY 2 |∗
61S2), note first that since S1 and hence also

Y 1 are smooth by Section 5.3, the open locus 61Y
2 ⊂ Y 2 is smooth as well. Since

61S2 ⊂ 61Y
2 and since dimY 2 = 5 we hence conclude that

ICY 2

∣∣∗
61S2

= Q`61S2 [5] .

Combining the last two observations, the long exact sequence shows:

H1
c (S2, ICY 2 |∗S2) = H1

c (61S2,Q`[5])

H−1
c (S2, ICY 2 |∗S2) = H−1

c (61S2,Q`[5])

Thus the proof of the lemma is completed by the computation of the compactly

supported cohomology groups of the variety 61S2 on the right hand side in the next

lemma. �
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Continuing to suppress the weights from the notation due to their irrelevance for

the present question, we conclude the proof of Proposition 6.6.2 by showing:

Lemma 6.6.6.

H6
c (61S2,Q`) = Q`

H4
c (61S2,Q`) = Q`

Proof. From Section 5.3 above it follows that the subvariety S2 ⊂ A4 is the affine

quadric cone in A4 defined by the equation XY +ZW = 0; the closed subvariety 2S2
B

corresponds precisely to the vertex of the cone. The open subvariety 61S2 thus forms

a Gm-bundle over the smooth quadric surface in P3 and is hence smooth itself. Since

61S2 is 3-dimensional and irreducible, the first claim follows. For the second claim, we

can by Poincare duality equivalently compute H2(61S2,Q`). The latter cohomology

group can in turn be shown to be isomorphic to Q` using the Gysin sequence for the

first Chern class of the Gm-bundle 61S2 over the quadric surface in P3. �

6.6.7. The second proof of the compatibility. We now give the second proof that the

isomorphism

add∗disj

(
Gr Ψ(ICY 2

G
)
)

on 2Y 2
B

∼= add∗disj
(
C2

)
on 2Y 2

B

constructed in Lemma 6.3.6 is compatible with the equivariant structures on both

sides with respect to the symmetric group S2 = Z/2Z. More precisely, we will relate

the last question to the intersection cohomology computation in Proposition 6.6.2 of

the previous section, and play the symmetries coming from the S2-action and from

the action of the Lefschetz-sl2 off of each other.
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To make the task more explicit, observe first that the S2-equivariant structure on

the pullback add∗disj(Gr Ψ(ICY 2
G

))on 2Y 2
B

corresponds to a representation of the sym-

metric group S2 on the tensor product V ⊗ V of the standard representation

V = Q`(
1
2
)⊕Q`(−1

2
)

of the Lefschetz-sl2 with itself, as in Section 3.2.4. In particular this action of S2

must commute with the action of the Lefschetz-sl2. We now have to verify that the

action of the non-trivial element σ ∈ S2 = Z/2Z on V ⊗ V is given by flipping the

two factors and multiplying by −1.

Denote by Uk the irreducible representation of the Lefschetz-sl2 of highest weight

k ∈ Z>0. Then since by definition V = U1 the tensor product V ⊗ V decomposes as

the direct sum

V ⊗ V = Λ2V ⊕ Sym2 V = U0 ⊕ U2 .

Since the action of σ commutes with the action of the Lefschetz-sl2, the action of σ

respects this direct sum decomposition; as the summands are irreducible as represen-

tations of the Lefschetz-sl2, the action of σ on each of the summands must then be

given by multiplication by either +1 or −1. We have to show that σ acts by +1 on

U0 and by −1 on U2. To determine these signs, it is of course enough to know how

sigma acts on the lowest weight lines M0 = Q` of U0 and M2 = Q`(1) of U2. It is

precisely these signs on the lowest weight lines that we can access via the intersection

cohomology of Y 2, as we discuss next.

Let Gr(ICY 2 |∗
Y 2
B

[−1](−1
2
)) denote the associated graded perverse sheaf with respect

to the weight filtration on ICY 2 |∗
Y 2
B

[−1](−1
2
), and let

(Gr(ICY 2 |∗Y 2
B

[−1](−1
2
)))on 2Y 2

B
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denote its direct summand consisting of those simples which are supported on the

stratum of maximal defect 2Y
2
B. By Lemma 3.1.5 and Lemma 3.1.7 the latter object is

precisely the perverse kernel of the monodromy operatorN acting on (Gr Ψ(ICY 2
G

))on 2Y 2
B

.

Its pullback to the disjoint locus ofX×X hence corresponds to the Z/2Z-subrepresentation

M0 ⊕M2 ⊂ U0 ⊕ U2 = V ⊗ V

formed by the direct sum of the lowest weight lines M0 and M2. Since M0 = Q` and

M2 = Q`(1) are of different weight, the signs by which σ acts on M0 and M2 can thus

be read off from the simple summands appearing in

(Gr(ICY 2 |∗Y 2
B

[−1](−1
2
)))on 2Y 2

B
,

or even its restriction to the disjoint locus in X(2). Namely, from the Tate twists of

the local systems on the right hand side in the next lemma we conclude that σ acts

by +1 on M0 and by −1 on M2, completing the proof.

Lemma 6.6.8. On the disjoint locus
◦
X(2) we have

(Gr(ICY 2 |∗Y 2
B

[−1](−1
2
)))on 2Y 2

B

∣∣∣∗◦
X(2)

=
(
Q`⊕ sign(1)

)
◦
X(2)

[2](1) ,

where sign(1) denotes the sign local system on
◦
X(2) twisted by 1.

Proof. For readability we erase from the notation all symbols indicating a restriction

to the disjoint locus of X(2), throughout the proof. Since (Gr(ICY 2 |∗
Y 2
B

[−1](−1
2
)))on 2Y 2

B

is a semisimple perverse sheaf, it suffices to perform the necessary calculation in the

Grothendieck group of perverse sheaves on X(2). But in the Grothendieck group the

latter object is equal to the difference

s∗ ICY 2 [−1](−1
2
) − s∗(Gr(ICY 2 |∗Y 2

B
)[−1](−1

2
))not on 2Y 2

B
.
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We first compute the second term: As before we invoke the validity of Theorem

4.2.1 for n = 1 and apply Lemma 6.2.4 above; the second term is thus equal to

the ∗-pullback along s of the kernel of the action of the monodromy operator N on

(C2)not on 2Y 2
B

. Using the exact same cartesian diagram as in the proof of Lemma 6.4.6

above one then computes that this second term is equal to

3 ·Q`(1) + sign(1) − 2 ·Q`(1) − 2 · sign(1) = Q`(1) − sign(1) .

Here, for notational brevity, we write Q` and sign for the perverse sheaves Q`[2](1)

and sign[2](1) of weight 0. However, by Proposition 6.6.2 above, the first term is

equal to

Q`(0) + Q`(1) .

Taking the difference of the two terms we find the desired expression

Q`(0) + sign(1) .

�

7. Intersection cohomology

In this Section we comment on how Theorem 3.4.1 about the intersection coho-

mology follows from Theorem 3.3.3, as well as on how Theorem 3.4.1 in turn can be

used to compute the IC-stalks.
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As Theorem 3.5.2 follows from Proposition 6.4.4 by the same argument as in Section

4.2, the present section concludes the proof of the main theorems stated in Section 3

above.

7.1. Intersection cohomology from nearby cycles.

7.1.1. Classical Schur-Weyl duality. Recall that, working over an algebraically closed

field of characteristic 0, the irreducible representations of the symmetric group Sk are

in one-to-one correspondence with Young diagrams consisting of precisely k boxes.

Furthermore, any Young diagram with at most m rows, but an arbitrary number of

boxes, gives rise to an irreducible representation of the general linear group GLm.

For a Young diagram D with precisely k boxes and at most m rows we denote ρD

and by UD the corresponding irreducible representations of Sk and GLm.

Let now Utaut denote the tautological m-dimensional representation of GLm. The

m-fold tensor product Utaut ⊗ . . . ⊗ Utaut carries the diagonal action of GLm as well

as the permutation action of the symmetric group Sk, and these actions commute.

The classical Schur-Weyl duality then states:

Lemma 7.1.2 (Classical Schur-Weyl duality). As a bi-representation of GLm and

Sk the k-fold tensor product Utaut ⊗ . . .⊗ Utaut decomposes as

Utaut ⊗ . . .⊗ Utaut =
⊕
D

UD ⊗ ρD

where the sum runs over all Young diagrams D consisting of precisely k boxes and at

most m rows.

We now apply this in the following context:
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7.1.3. Decomposing the Picard-Lefschetz oscillators. As in Section 3.2.4 above let

V = Q`(
1
2
)⊕Q`(−1

2
) .

As in Lemma 3.2.5 above let V ⊗ . . . ⊗ V denote the k-fold tensor product of V ,

together with the action of Sk defined by permuting the factors and multiplying

with the sign of the permutation. Since V is precisely the tautological 2-dimensional

representation of the Lefschetz-sl2, the appropriate variant of Lemma 7.1.2 above

yields:

Lemma 7.1.4. As a bi-representation of Sk and the Lefschetz-sl2 the k-fold tensor

product V ⊗ . . .⊗ V decomposes as

V ⊗ . . .⊗ V =
⊕

06 r6
k
2

Uk−2r ⊗ ρ(k−r,r) .

Here we denote by Uk−2r the irreducible representation of the Lefschetz-sl2 of hightest

weight k− 2r and by ρ(k−r,r) the irreducible representation of Sk corresponding to the

Young diagram with k− r boxes in the first column and r boxes in the second column.

7.1.5. Proof of Theorem 3.4.1. Observe first that Lemma 7.1.4 yields an explicit di-

rect sum decomposition into simple perverse sheaves of the Picard-Lefschetz oscillator

Pk by Lemma 3.2.5 above. We however only need the following consequence:

Lemma 7.1.6. The perverse kernel ker(N) of the monodromy operator N acting

on the Picard-Lefschetz oscillator Pk is equal to the IC-extension of the local system

on the disjoint locus of X(k) corresponding to the following representation of the

symmetric group Sk:
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⊕
06 r6

k
2

ρ(k−r,r) ⊗Q`(
k
2
− r)

Here, as before, we denote by ρ(k−r,r) the irreducible representation of Sk corresponding

to the Young diagram with k − r boxes in the first column and r boxes in the second

column; here the second tensor factor indicates the appropriate Tate twist.

To prove Theorem 3.4.1 it suffices, by Lemma 3.1.5 above, to compute the kernel

of the monodromy operator N on GrΨ(ICVinBunG,G
). Using Theorem 3.3.3 and the

fact that the maps f̄n1,k,n2 are finite, the assertion thus follows from Lemma 7.1.6

above.

7.1.7. Remark. Theorem 3.4.1 can also be used to compute IC-stalks: As in Section

4.2 above, to compute the IC-stalks of VinBunG along the strata of defect k we

can equivalently compute the IC-stalks of the local model Y k along the stratum of

maximal defect kY
k. Thus it suffices to derive an explicit formula for the restriction

s∗ ICY k of the IC-sheaf of Y k along the section s. To do so, note that Theorem 3.4.1

yields an explicit formula for s∗ ICY k in the Grothendieck group. But by Corollary

5.2.15 the complex s∗ ICY k is pure of weight 0, and one can show that this suffices to

reconstruct s∗ ICY k from its image in the Grothendieck group. We plan to return to

this argument and the resulting formulas elsewhere.
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8. An application on the level of functions

8.1. The statement.

8.1.1. The question. This section is separate from the main text; its goal is to answer

the following question on the level of functions. Let Fq be a finite field with q elements,

let X be a smooth projective curve over Fq, let G = SL2 over Fq, and consider BunG

over Fq. As above let

∆ : BunG
∆−→ BunG×BunG

denote the diagonal morphism of BunG and let Q`BunG
denote the constant sheaf on

BunG. Then we will answer the following question:

Question 8.1.2. Under the sheaf-function correspondence, what is the function on

BunG×BunG corresponding to the pushforward ∆∗Q`BunG
? I.e., what is the trace of

the action of the geometric Frobenius on the ∗-stalks of the pushforward ∆∗Q`BunG

at Fq-points of BunG×BunG?

In fact, following a suggestion of Drinfeld, we will use the compactification BunG of

the diagonal ∆: Answering the above question amounts to understanding the ∗-stalks

of the pushforward of the constant sheaf Q`BunG
along the natural map

b : BunG −→ BunG .

8.1.3. Notation. To state the answer to the above question we need to introduce the

following notation. First, given an Fq-point (E1, E2) of BunG×BunG, we denote by

IsomSL2(E1, E2)(Fq) the set of vector bundle isomorphisms E1 → E2 of determinant

1, i.e., the set of isomorphisms as SL2-bundles. Next, let ϕ : E1 → E2 be a non-zero
98



morphism of vector bundles which is not an isomorphism. Factoring ϕ as

E1 −→→ M1 ↪−→ M2 ↪↪↪−→ E2

as in Section 2.3.1 above we associate to ϕ its defect divisor Dϕ, which forms an

Fq-point of the symmetric power X(n) for some integer n. The defect divisor Dϕ can

be written as a sum

Dϕ =
∑
k

nk,ϕ xk,ϕ

where the xk,ϕ are distinct closed points of the curve X over Fq. We then denote by

dk,ϕ the degree of the residue field extension at the point xk,ϕ. We can now state:

8.1.4. The answer. With the above notation we have:

Proposition 8.1.5. Let (E1, E2) be an Fq-point of BunG×BunG. Then the trace of

the geometric Frobenius on the ∗-stalk at (E1, E2) of the pushforward ∆∗Q` is equal

to:

| IsomSL2(E1, E2)(Fq)| −
∑

ϕ ∈ Hom(E1,E2)(Fq)
ϕ is not an isomorphism

ϕ6=0

∏
k

(1− qdk,ϕ)

8.2. Reduction to a trace computation on BunG.

In this section we deduce Proposition 8.1.5 above from a computation on BunG

stated in Proposition 8.2.1 below; in the next section we will then prove Proposition

8.2.1. To state the proposition, recall from Section 2.1.3 the natural map

b : BunG −→ BunG ,
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and let z = (E1, E2, L, ϕ) be an Fq-point of the B-locus of BunG. Exactly as in

Section 8.1.3 above we can associate to the point z, via the defect divisor of the map

ϕ, the collection of closed points xk,ϕ and integers dk,ϕ. With this notation we have:

Proposition 8.2.1. The trace of the geometric Frobenius on the ∗-stalk of b∗Q` at

z is equal to

(1− q) ·
∏
k

(1− qdk,ϕ) .

From this Proposition 8.1.5 above follows via the Lefschetz trace formula:

Proof of Proposition 8.1.5. Consider the diagram

BunG

b

��

∆

��

P(Hom(E1, E2))

��

g
// BunG

∆̄

��

SpecFq
(E1,E2)

// BunG×BunG

where the square is cartesian. Since ∆̄ is proper, we can compute the desired trace via

the Lefschetz trace formula applied to g∗b∗Q` on the projectivization P(Hom(E1, E2))

of Hom(E1, E2): The desired trace is equal to

∑
z ∈ P(Hom(E1,E2))(Fq)

tr(Frob, z∗b∗Q`) .

To rewrite this formula, we abuse notation and denote again by z the Fq-point of

BunG obtained via the map g from the Fq-point z of P(Hom(E1, E2)). We then split

the sum according to whether the Fq-point z lies in the G-locus or the B-locus of
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BunG, i.e., according to whether the corresponding map ϕ is an isomorphism or not.

The summand corresponding to the B-locus is computed by Proposition 8.2.1 above

and contributes the second term in the formula in Proposition 8.1.5. To compute the

summand corresponding to the G-locus, recall first that the map

b : BunG −→ BunG

is not an open immersion: It forms an etale cover of degree 2 of the G-locus of

BunG if the characteristic is not 2, and defines a radicial map onto the G-locus if the

characteristic is equal to 2. To avoid having to distinguish these two cases, let

P IsomGL2(E1, E2) ⊂ PHom(E1, E2)

denote the quotient by Gm of the space of isomorphisms of vector bundles IsomGL2(E1, E2),

and let

r : IsomSL2(E1, E2) −→ P IsomGL2(E1, E2)

denote the natural map. Then the restriction of g∗b∗Q` to the open subscheme

P IsomGL2(E1, E2) is equal to r∗Q`. Since the map r is finite we conclude that the

contribution of the G-locus is equal to

∑
z ∈ P(Isom(E1,E2))(Fq)

tr(Frob, z∗b∗Q`) = | IsomSL2(E1, E2)(Fq)| ,

contributing the first term in the formula in Proposition 8.1.5. �

8.3. Proof of the trace computation via local models.

We now prove Proposition 8.2.1 above. First, we reduce the assertion to the analo-

gous assertion for VinBunG, or equivalently for the local models Y n, stated in Lemma

8.3.1 below. A minor reduction step is necessary since the map b above is not an
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open immersion. We then prove Lemma 8.3.1, using the results of Section 6.4 above.

To state the lemma let

jG : Y n
G ↪−→ Y n

denote the open inclusion of the G-locus of Y n, and let z be an Fq-point of the

stratum nY
n
B = X(n) of maximal defect. Then with the exact same notation as in the

previous two sections we have:

Lemma 8.3.1. The trace of the geometric Frobenius on the ∗-stalk of jG,∗ Q` at the

point z is equal to

(1− q) ·
∏
k

(1− qdk,ϕ) .

8.3.2. Reduction to the lemma. As in Section 4.2 above, knowing Lemma 8.3.1 above

for all integers n > 0 is equivalent to knowing the analogous assertion for VinBunG.

To deduce Proposition 8.2.1 from the latter, we first assume that the characteristic

is not equal to 2.

Denote by sign the sign local system on A1r{0}, and denote by v∗ sign its pullback

to the G-locus VinBunG,G along the natural map

v : VinBunG,G −→ A1 r {0} .

Furthermore, denote by

γ : VinBunG −→ BunG

the natural forgetful map, and let jVinBunG,G
denote the open inclusion of the G-locus

of VinBunG. Then chasing through the definitions one finds:

Lemma 8.3.3.

γ∗b∗Q`BunG
= jVinBunG,G,∗

(
Q`VinBunG,G

⊕ v∗ sign
)
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Since the Frobenius traces on the ∗-stalks of jVinBunG,G,∗Q`VinBunG,G
can be com-

puted on the local models Y n, Proposition 8.2.1 follows from Lemma 8.3.1 above

once we show that the second summand in Lemma 8.3.3 does not contribute. More

precisely, letting iVinBunG,B
denote the inclusion of the B-locus of VinBunG, we need

to show:

Lemma 8.3.4.

i∗VinBunG,B
jVinBunG,G,∗ v

∗ sign = 0

Proof. As before it suffices to prove the analogous statement on the local models Y n.

Thus we have to show that

s∗ jG,∗ v
∗ sign = 0 ,

where s and jG are as before and v denotes the natural map

Y n
G −→ A1 r {0} .

To prove this, note first that Lemma 5.3.9 above shows that jG,∗ v
∗ sign is naturally

Gm-equivariant for the contracting Gm-action constructed in Section 5.2 above. Ap-

plying the contraction principle (see Lemma 5.2.14) and Lemma 4.1.7 above, the

desired vanishing follows from the fact that the sign local system on A1 r {0} has

trivial cohomology. �

This concludes the reduction step under the assumption that the characteristic is

not equal to 2. If the characteristic is equal to 2, then the map b defines a radicial

map from BunG to the G-locus BunG,G. Thus the summand v∗ sign does not appear

in Lemma 8.3.3, and Lemma 8.3.4 is not even needed.
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8.3.5. Proof of Lemma 8.3.1. We begin by recalling the following trace computation.

As before let Λ(n)(Q`X) denote the n-th external exterior power on X(n) of the con-

stant local system Q`X on the curve X over Fq. Let D be an Fq-point of X(n). As

before we write

D =
∑
k

nkxk

for certain distinct closed points xk of the curve X and all nk > 1, and we let dk

denote the degree of the residue field extension at xk. We then have:

Lemma 8.3.6. The trace of the geometric Frobenius on the ∗-stalk of Λ(n)(Q`X) is

0 unless all nk are equal to 1. If all nk are equal to 1, then the trace is equal to

∏
k

(−1)dk+1.

To prove Lemma 8.3.1, we first apply Verdier duality to both sides of the equation

in Proposition 6.4.4 above, and then combine the result with Lemma 6.4.2 above

to obtain an expression for s∗jY n
G ∗ Q` in the Grothendieck group. Applying Lemma

8.3.6 above and taking into account that

H∗c (A1 r {0}) = Q`[−2](−1)⊕Q`[−1](0)

and that

dimY n
G = 2n+ 1 ,

we find the following formula for the trace of the geometric Frobenius on the ∗-stalk

of jY n
G ∗ Q` at a point D ∈ X(n)(Fq) = nY

n
B (Fq):

(1− q) ·
∑
i+j=n

∑
D1+D2=D

(−1)jqj ·
∏

x∈ supp(D2)

(−1)deg(x)+1
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Here the second sum runs over all pairs (D1, D2) of Fq-points D1 ∈ X(i), D2 ∈ X(j)

such that D1+D2 = D and such that the effective divisorD2 is simple, i.e., each closed

point occurring inD2 appears with multiplicity 1; furthermore, we write x ∈ supp(D2)

to denote that a closed point x of the curve X occurs in D2, and we let deg(x) denote

the degree of the residue field extension at the point x.

To reformulate the above formula, let

D =
∑
k

nkxk

for certain distinct closed points xk of the curve X, as before. Then the datum of a

pair (D1, D2) with the above properties is equivalent to the datum of a subset S of

the set of closed points {xk} occurring in the effective divisor D. We can then rewrite

the above formula as

(1− q) ·
∑
S

(−1)|S| · q
∑

x∈S deg(x)

where the sum ranges over all subsets S of the set of closed points occurring in the

effective divisor D ∈ X(n)(Fq). We do allow the set S to be the empty set, and in

this case the corresponding summand is equal to 1.

Finally, to deduce the formula in Lemma 8.3.1 from the above preliminary formula,

recall that the elementary symmetric polynomials in the variables X1, . . . , Xm are

precisely the coefficients appearing in the expansion of the product

m∏
k=1

(T +Xk)

as a polynomial in T . Taking m to be the number of closed points appearing in

the effective divisor D, setting T = 1, and setting Xk = −qdeg xk transforms the

preliminary formula to the desired one in Lemma 8.3.1.
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[MV] Mirković, I., Vilonen, K., Geometric Langlands duality and representations of algebraic groups
over commutative rings, Ann. of Math. 166 (2007), 95–143.

[R] Raskin, S., The geometric principal series category, forthcoming.

[Sak] Sakellaridis, Y., Inverse Satake transforms, arXiv:1410.2312.

[SakV] Sakellaridis, Y., Venkatesh, A., Periods and harmonic analysis on spherical varieties,
arXiv:1203.0039.

[Sch] Schieder, S., The Drinfeld-Lafforgue-Vinberg degeneration II: Principal nearby cycles for ar-
bitrary reductive groups and Langlands duality, in preparation.

[V] Vinberg, E. B., On reductive algebraic semigroups, E. B. Dynkin Seminar, Amer. Math. Soc.
Transl. Ser. 2 169, 145–182.

107


