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Dissertation advisor: Kirsten Bomblies Brian Arnold

EVOLUTIONARY DYNAMICS OF A MULTIPLE-
PLOIDY SYSTEM IN ARABIDOPSIS ARENOSA

ABSTRACT

Whole-genome duplication (WGD), which leads to polyploidy, has been
implicated in speciation and biological novelty. In plants, many species have
experienced historical bouts of WGD or exhibit extant ploidy variation, which is likely
representative of an early stage in the evolution of new polyploid lineages. To elucidate
the evolutionary dynamics of autopolyploids and species with multiple ploidy levels, |
develop population genetic theory in Chapter 2 that | use in Chapter 4 to extract
information about the evolutionary history of Arabidopsis arenosa, a European
wildflower that has diploid and autotetraploid populations. Chapter 3 involves a
separate project exploring the ascertainment bias in restriction site associated DNA
sequencing (RADseq). In Chapter 2, | develop coalescent models for autotetraploid
species with tetrasomic inheritance and show that the ancestral genetic process in a
large population without recombination may be approximated using Kingman’s

standard coalescent, with a coalescent effective population size 4N. Using this result, |

il



was able to use existing coalescent simulation programs to show in Chapter 4 that, in A.
arenosa, a widespread autotetraploid race arose from a single ancestral population. This
autopolyploidization event was not accompanied by immediate reproductive isolation
between diploids and tetraploids in this species, as | find evidence of extensive
interploidy admixture between diploid and tetraploid populations that are
geographically close.

To draw these conclusions about population history in Chapter 4, | used a
reduced representation genome-sequencing approach based on restriction digestion.
However, | was bothered by the possibility that sampling chromosomes based on
restriction digestion may introduce a bias in allele frequency estimation due to
polymorphisms in restriction sites. To explore the effects of this nonrandom sampling
and its sensitivity to different evolutionary parameters, we developed a coalescent-
simulation framework in Chapter 3 to mimic the biased recovery of chromosomes in
RAdseq experiments. We show that loci with missing haplotypes have estimated
diversity statistic values that can deviate dramatically from true values and are also
enriched for particular genealogical histories. These results urge caution when applying
this technique to make population genetic inferences and helped me tailor analyses in

Chapter 4 to accommodate for this particular method of DNA sequencing.
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CHAPTER 1 - INTRODUCTION

Whole-genome duplication (WGD) has occurred in many organisms across
eukaryotic kingdoms and has profoundly shaped genome evolution (Kellis et al. 2004;
Dehal and Boore 2005; Jiao et al. 2011). These large-scale genomic events are
implicated in increased genomic complexity and are associated with adaptive radiations
of major lineages throughout the tree of life (Dehal and Boore 2005; Jiao et al. 2011).
WGD is particularly frequent in plants; ancient WGD events are estimated to have
occurred in 30-100% of angiosperm lineages (Stebbins 1950; Grant 1981; Masterson
1994; Cui et al. 2006). Thus, many of the diploid genomes we observe today are in fact
derivatives of polyploidy ancestors, making the evolutionary dynamics of WGD an
important component of genome architecture across the tree of life.

Although WGD has occurred numerous times throughout the evolutionary
history of plants, many extant plant species are known to have multiple ploidy levels
(see for review Ramsey and Schemske 1998; Soltis et al. 2010), showing that polyploidy
remains an active force in plant evolution. The probability neopolyploids persist and give
rise to stable populations depends on many factors including the rate at which
polyploids arise, fertility defects of higher ploidy individuals, and the degree to which
ploidy levels are reproductively isolated (Thompson and Lumaret 1992). Species with
multiple ploidies provide a glimpse of the early evolutionary processes by which

polyploids arise from diploid populations and form demographically stable populations.



There are two major classes of polyploids: autopolyploids, which form from
within-species WGD and generally randomly segregate homologs, and allopolyploids,
which have a hybrid origin and usually diploid-like inheritance (Ramsey and Schemske
1998; Parisod et al. 2010; Bomblies and Madlung 2014). These two types of polyploids
differ dramatically from one another. Both types involve an increase in the haploid
number of chromosomes per cell, but allopolyploidy is accompanied by the numerous
effects of hybridization between two species, while autopolyploids are much more
similar to the diploid parents from which they arose (Doyle et al. 2008). Autopolyploids
were once thought vanishingly rare compared to allopolyploids, but they are much
more common than previously suspected (Soltis et al 2007). Historically, autopolyploids
may not have been recognized because they look morphologically similar to their diploid
progenitor, and many autopolyploids that display diploid-like pairing of chromosomes
during meiosis have been misclassified as allopolyploids (Soltis et al 2007).

Autotetraploids are an extremely common form of autopolyploid and arise via
unreduced gamete formation within diploid populations. These tetraploids may come
directly from the union of unreduced gametes, or they may arise from triploid
intermediates, which arise from unreduced gametes fusing with haploid gametes and
may produce some tetraploid progeny (Ramsey and Shemske 1998). Autotetraploids
likely depend on their diploid progenitor for a source of mates during early stages of
demographic establishment, and later on as an occasional source of genetic variation.
Support for the degree to which autopolyploids may admix with their diploid progenitor

comes from numerous data that shed light on the ability of autotetraploids to exchange



genetic information with diploids (Thdrsson et al. 2001, Stahlberg 2009, Husband and
Sabara 2011, Oberle et al. 2012, Sonnleitner et al. 2013, Clark et al. 2015). The ability of
autopolyploids to exchange genes with their diploid ancestor, either through semi-
fertile interploidy crosses or the continued production of unreduced gametes in
diploids, may enhance the probability spontaneously-arisen autopolyploids give rise to a
stable population. If true, then it should be no surprise that numerous studies document
evidence for interploidy gene flow in species with multiple ploidies (Petit et al. 1999).
Thus, either nascent autopolyploidy does not serve as a particularly strong reproductive
barrier to gene flow, or there is selection for multiploidy systems with incomplete
isolation between ploidy levels.

However, autopolyploids may be self-reliant in multiple ploidy systems that are
self-compatible or if whole-genome duplication is coupled with a break down in the self-
incompatibility (SI) system. There is no clear consensus as to whether autopolyploidy is
associated with self-compatibility, as some studies group auto- and allo-tetraploids
(Mable 2004, Barringer 2007), but Sl need not necessarily breakdown in
neoautopolyploids that were derived from diploids with an intact Sl system since these
polyploids contain a single Sl locus as in the diploid progenitor (Pandey 1977).
Regardless of what the consensus may be, there will invariably be exceptions to the rule
as there are numerous examples of autopolyploids with intact and perturbed S| systems,
suggesting flexible evolutionary paths to stable autopolyploid populations. The presence

of an Sl system has important consequences for autopolyploid evolution in demographic



establishment, gene flow with its diploid ancestor, and the long-term evolution of
genomic load in populations.

Autotetraploids often exhibit tetrasomic inheritance (arising from random
segregation of all four homologs), which presents an intriguing problem that has
important implications for population genetic analysis of genomic data (Bever and
Felber 1992). Compared to diploid populations, autotetraploid populations contain
twice as many homologs per individual, enabling higher effective sizes and greater
amounts of genetic diversity (Moody et al. 1993, Arnold et al. 2012). However, we may
not necessarily observe this in nature as nonequilibrium demography can greatly
diminish levels of genetic variation. For example, since autotetraploids arise from a rare
mutational process in which diploids produce diploid gametes (nondisjunction), entire
populations may arise from relatively few individuals (Thompson and Lumaret 1992,
Ramsey and Schemske 1998). This population bottleneck would reduce levels of genetic
variation that would only recover over longer periods of evolutionary time.

Another important difference between individuals of different ploidy is
heterozygosity. For example, if a particular gene has two alleles segregating in a
population, A and a, potential autotetraploid genotypes include aaaa, Aaaa, AAaa,
AAAa, or AAAA, three of which are heterozygous (Bever and Felber 1992). Diploids have
only three possible genotypes: aa, Aa, and AA. Thus, not only do autotetraploids have
the potential for giving rise to populations with greater effective sizes, but they also
have more possibilities for diversity within individuals. This could be advantageous if

diversity within an individual is beneficial, such as at loci involved in pathogen resistance



or at loci in which deleterious recessive alleles segregate. In the latter case, more
possibilities for heterozygosity ensure more individuals have at least one perfectly
functional allele.

However, the enhanced ability of autotetraploids to mask deleterious recessives
is a double-edged sword. Although more individuals have at least one functional allele,
deleterious recessives in autotetraploid populations effectively experience relaxed
selection, which acts mostly on homozygotes (i.e. aaaa). Population genetic theory
predicts deleterious recessive mutations to have higher frequencies at equilibrium in
autotetraploid populations when compared to diploid populations (Ronfort 1999).
Consequently, more deleterious mutations accumulate in autotetraploid genomes
because they may reach higher frequencies at mutation-selection balance and persist
for longer periods of evolutionary time before going extinct (Ronfort 1999)..

Despite the evolutionary significance and intriguing nature of autotetraploids,
surprisingly little genomic data exists for these species. Thus, | have dedicated my thesis
to generating new theory, original genomic analyses, and novel genomic datasets to
enhance our understanding of the evolutionary dynamics of autopolyploidy. In Chapter
2, | extend a body of theory, called the “Coalescent”, to autotetraploid organisms.
Coalescent theory is frequently used in population genetics as a means to interpret
patterns of genetic variation and reconstruct the evolutionary history of populations.
The results presented in this chapter enable the use of coalescent theory with genomic
data from autotetraploids. Chapter 3 does not directly study the genomics of

autotetraploid evolution but involves a quantification of the ascertainment biases



intrinsic to a genomic technology | later use in Chapter 4. | discovered that this genomic
technology called RADseq (Restriction-site Associated DNA sequencing), an extremely
popular sequencing method among biologists studying non-model-organism genomics,
underestimates genetic diversity. The degree to which this ascertainment bias affects
diversity statistics is locus-specific, so these results helped tailor my analyses of RADseq
datasets. Finally in chapter 4, using genomic data that | generated, | reconstructed the
history of a species with multiple ploidy levels, diploid and autotetraploid. This study
represents the first reconstruction of evolutionary history in a multiple ploidy system to

illuminate how autotetraploids evolve from and interact with diploid ancestors.



CHAPTER 2 — EXTENDING COALESCENT
THEORY TO AUTOTETRAPLOIDS

2.1 Abstract

We develop coalescent models for autotetraploid species with tetrasomic
inheritance. We show that the ancestral genetic process in a large population without
recombination may be approximated using Kingman’s standard coalescent, with a
coalescent effective population size 4N. Numerical results suggest that this
approximation is accurate for population sizes on the order of hundreds of individuals.
Therefore, existing coalescent simulation programs can be adapted to study population
history in autotetraploids simply by interpreting the timescale in units of 4N
generations. We also consider the possibility of double reduction, a phenomenon
unique to polysomic inheritance, and show that its effects on gene genealogies are

similar to partial self-fertilization.

2.2 Introduction

Polyploidy, which results from whole-genome duplication, is a significant
evolutionary force throughout the tree of life. It is particularly widespread in higher
plants but also occurs in fishes, amphibians, reptiles, insects, and even a mammal
(Leggat and lwama 2003, Gregory and Mable 2005, Sexton 1980, Gallardo et al. 1999). In

plants, estimates of the proportion of angiosperm species that have experienced



genome doubling during their evolutionary history varies from 30% to 100% (Stebbins
1950, Grant 1981, Masterson 1994, Ciu et al 2006), and polyploidy is thought to be a
potent mechanism of sympatric speciation (Wood et al 2009).

Polyploids can arise via interspecific hybridization (allopolyploids) or intraspecific
genome duplication (autopolyploids), e.g. through the fusion of unreduced gametes
(Stebbins 1947). Allopolyploids, born from the union of distinct genomes, frequently
exhibit bivalent pairing and disomic inheritance. As a result, the duplicated chromosome
sets are only partially homologous (homeologous) and follow separate evolutionary
paths if they do not pair and recombine. Conversely, autotetraploids contain four non-
diverged sets of chromosomes that are fully homologous. During meiosis, these
homologs may form multivalents or bivalents with random chromosome pairing,
resulting in tetrasomic inheritance in both cases.

Autotetraploids were once thought vanishingly rare compared to allopolyploids,
but they are much more common than previously suspected (Soltis et al 2007).
Numerous wild plant species have been demonstrated to exhibit tetrasomic inheritance
with random chromosome pairing, despite forming only bivalents at meiosis | (Table
S2.1 and references therein, Soltis et al. 2007). However, allele segregation in
autopolyploids can become much more complex than that of diploids when
chromosomes form multivalents from crossing over with more than one homolog during
meiosis, as this may lead to double reduction. Double reduction occurs when
multivalents are resolved such that segments of sister chromatids migrate to the same

pole at meiosis |, allowing, for example, an ABBB genotype to produce AA gametes



(Haldane 1930, Mather 1935). Among cytologically characterized natural autotetraploid
plants, multivalent formation is less common than bivalent pairing but is still present in
enough species to merit attention in theoretical models.

The body of literature on theoretical population genetics of polyploids has grown
but is still very small in comparison to the work done on diploids (Bever and Felber
1992, Otto and Whitton 2000). Studies have characterized equilibrium genotype
proportions (Haldane 1930), genetic drift and levels of genetic variation (Wright 1938,
Moody et al. 1993), as well as population structure of autotetraploid populations
(Ronfort et al 1998, Luo et al 2006). A few studies have considered the effects of double
reduction on the equilibrium frequencies of neutral and deleterious alleles (Crow 1954,
Butruille and Boiteux 1999). The gene genealogical or coalescent approach to
population genetics (Hudson 1983, Tajima 1983) has proven a useful framework for
interpreting genetic variation. Coalescent models have been applied to data from
tetraploid species, but the justification for this has not been elucidated. The ability to
extract all the information from a set of DNA sequences collected from natural
populations will help answer questions about autopolyploid evolution. For example, do
most autopolyploids experience severe bottlenecks from the formation event? How
many independent formation events do most autopolyploid species experience? Is there
gene flow between ploidy levels? How old are these autopolyploid populations and how
evolutionarily stable is tetrasomic inheritance? What does genome structure look like in
natural populations, in terms of evolutionarily important parameters such as the

population mutation and recombination rates?



Despite the increasing awareness of autopolyploidy, the burgeoning advances in
DNA sequencing technology, and the utility of these data for studying evolution, few
studies have analyzed nuclear DNA sequence variation in natural populations of
autotetraploids (St. Onge et al. 2012, Jgrgensen et al. 2011, Tiffin and Gaut 2001). Here
we develop a coalescent model for autotetraploids in order to facilitate the analysis of
DNA sequence data. Specifically, we derive the coalescent effective population size
(Sjodin et al 2005) for autotetraploid species. We consider both double reduction and
the possibility of partial selfing. Our mathematical results hold in the limit as the
population size tends to infinity, but we show that they are numerically very accurate
when the population size is only moderately large (in the hundreds). These results
provide a mathematical framework to explicitly model DNA sequence evolution in
autotetraploid populations, which may be employed to estimate mutation and
recombination rates, infer ancestral demography, and detect various types of selection
from DNA sequence data sets of diploids. In short, we show how standard coalescent
models or simulations may be applied to autotetraploids with only minor modification,
thus allowing for detailed predictions to be made about patterns of genetic variation
and for population history and the evolutionary forces acting on natural populations to

be inferred from DNA sequence data.

2.3 Theory

Kingman (1982a, 1982b) gave a formal proof of the existence of what he called

the ‘n-coalescent’—now simply coalescent or Kingman’s coalescent—as the ancestral
y
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genetic process for a sample from a large haploid population. Specifically, for a genetic
locus at which all variation is selectively neutral and there is no intra-locus
recombination, the genetic ancestry of a sample of size n may be modeled as a process
in which each pair of lineages ancestral to the sample ‘coalesces’ with rate equal to one.
Derivations of the coalescent begin with the computation of single-generation
probabilities (i.e. of coalescence) then proceed by taking a limit as the population size
(N) tends to infinity, rescaling time in units proportional to N generations so that a
coalescence rate of one per pair of lineages is obtained. Coalescent models have been
extended to include population subdivision and migration, changes in population size
over time, recombination, and natural selection. Efficient software is available to
simulate samples of genetic data (Hudson 2002, Ewing and Hermisson 2010).
Kingman’s derivation of the coalescent is valid only for haploid population
models (this includes the diploid monoecious Wright-Fisher model, because it can be
reduced to a haploid model). In particular, Kingman assumed that genetic lineages are
‘exchangeable’ as in the haploid population models of Cannings (1974). The general
formalism for treating diploids or other (non-exchangeable) population structures was
developed by Mdhle (1998a, 1998b, 1998c). It has been applied in a variety of situations
to show that Kingman’s coalescent is robust to deviations from Kingman’s original
assumptions, but also to describe an augmented set of ancestral genetic processes that
are closely related to Kingman’s coalescent; see Wakeley (2008) for a review. Here we
use Mohle’s technique to derive the ancestral genetic process at a single neutral locus

without recombination in an autotetraploid species.
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Sample size of two chromosomes
Consider a Wright-Fisher population of N autotetraploid, monoecious individuals
that create gametes via tetrasomic inheritance with no recombination (i.e. no double

reduction, which is considered later). That is, an individual with four distinct alleles at a
locus produces (2) =6 kinds of gametes, each with equal frequency. Generations are

non-overlapping. Each of the N offspring that form the next generation is created by the
union of two gametes sampled randomly with replacement from all possible gametes of
the parental generation. Thus each individual is produced by selfing with probability
1/N. Due to the added structure in which each gamete contains two distinct parental
copies of each locus, and in contrast to the diploid monoecious case, samples of
chromosomes from a tetraploid species are not exchangeable. In particular, the
conditional probability of coalescence depends on whether two genetic lineages are
within the same individual or in separate individuals. For example, without
recombination and double reduction, two lineages cannot coalesce in the immediately
previous generation if they are within the same individual and came from the same
gamete.

We can construct a single-generation transition matrix P for an ancestral process
that accounts for the specific details of tetrasomic inheritance by setting up an
absorbing Markov chain that has three states for a sample size of n=2: (1) two distinct

lineages within the same individual, (2) two lineages in separate individuals, and (3) a
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single lineage that is the common ancestor of the two lineages. As we trace them back
in time, the two lineages may travel between states one and two until they ultimately
coalesce. Transition probabilities are calculated by conditioning on two pieces of
information: whether or not lineages came from the same gamete in the previous
generation and the particular pattern of ancestry.

For instance, if both lineages are in the same individual (state 1), they coalesce in
the previous generation if they came from different gametes (probability 2/3) produced
by the same parent (probability 1/N) and trace back to the same chromosome in that
parent (probability 1/4), (See Figure 2.1). Thus, Py 3 = 1/6N. This is in agreement with
Wright 1938, who showed that the “proportion of unlike pairs of genes” decays by a
factor of 5/6 for self-fertilizing autotetraploids. If two lineages are in separate
individuals (state 2) the probability of coalescence must be computed for all possible
patterns of shared ancestry that potentially result in identity by descent (Table S2.2),

with the marginal probability of coalescence being P, 3 = 1/4N after simplification.

D)

Figure 2.1 A diagram of a tetraploid individual, showing the two diploid gametes that
united to create it. If chromosomes are sampled without replacement, after the first
lineage is sampled, with probability 2/3 we sample the second lineage from a different
gamete, which came from the same parent with probability 1/N (where N if the
population size) assuming random mating. Conditional on these events, these two
sampled lineages coalesce with probability 1/4.
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Applying the same logic to calculate the probabilities of other possible
transitions, we get the following 3-by-3 single-generation transition matrix P with states

1, 2, and 3 represented by rows one, two, and three respectively:

11 2( 1) 1]
3

2N 3 N 6N
p_| 3 (1_1) |
AN N AN
0 0 1

This matrix describes the exact, discrete-time ancestral process for the two lineages. As
in Kingman’s coalescent, we seek a continuous-time approximation which will be
accurate when the population size is large. Specifically, we take the limit N — o0, with
time rescaled by N, in order to test whether the ancestral limit process converges to
Kingman’s coalescent.

Mohle (1998a) obtained a useful convergence result for Markov processes with
two timescales such as the one described by the matrix above. Since P contains terms
that become increasingly different in the limit N —, we can use Moéhle’s result to

construct a continuous-time approximation. We rewrite P in three parts, such that

P=F+§+o(l)
N N (1)
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P and S =lim

‘N — o

where F =lim N(P -F). Matrix F contains the “fast” events that

N
occur frequently on the timescale of the original discrete-time process (i.e. the
movement of lineages from within to between gametes), whereas matrix S contains the
“slow” events (i.e. coalescence). The terms in S/N become very small as N tends to
infinity. These events occur on the timescale of N generations. While Mohle’s result
allows for additional terms, of o(1/N), which tend to zero more quickly than 1/N, in our
case these terms are equal to zero.

If the matrix E =1lim,__ F’ exists, the continuous-time approximation to our
ancestral process involves the “fast” events instantaneously reaching their equilibrium
(E), after which they enter the slower process of coalescence described by rate matrix G
= ESE (Mohle 1998a). More formally, M6hle’s Theorem 1 (Mohle 1998a) states that the

rescaled ancestral process converges to lim P = Ee'. Together matrices E and G

N—

describe the rescaled ancestral process, with time measured in units of N generations.

Applying this theorem to our discrete-time matrix above, we have

o2 ] 12 1]

3 3 2 3 6

3 1

F=|0 1 0 S=|= -1 -
and 4 4

0 0 1 0 0 0

such that
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0 R —

0o 1 0 T 3

E=[0 1 0| and G=|0 .
= an = -— —1.

4 4

0 0 1] 0o 0 0

Here, we see that if lineages start out in state 1 (within the same individual),
they may remain in that state if they came from the same gamete (F;,;) or different
gametes from the same parent (S;,1). However, our continuous-time approximation for
large populations shows that the number of generations the lineages remain in state 1 is
negligible on the timescale of N generations, so they immediately travel to separate
individuals (from state 1 to state 2 since E; ;=1). Once in state 2, the pair of lineages
enter the coalescence process given by G, which is a simple exponential process in
which coalescence occurs with rate equal to 1/4 (on the timescale of N generations),
which agrees with forward-time models of autotetraploid populations (Moody et al.
1993). If time is rescaled again, by the constant factor four, so that one unit of time is
equal to 4N generations, then the rate of coalescence is one, just as Kingman’s
coalescent. That is, we have shown for a sample size of two that the coalescent process
for an autotetraploid species without double reduction converges to the same limiting
ancestral process as a haploid population model when the coalescent effective size is

defined as N. = 4N.
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Extension to larger samples

Convergence to Kingman’s coalescent for a sample of size two does not
guarantee convergence for larger samples. It must also be true that pairwise coalescent
events dominate the limiting ancestral process (Mohle and Sagitov 2001). In the case of
an autotetraploid without double reduction, we must check that multiple coalescent
events between lineages within a single individual are negligible in the limit N =®_ For
example, four lineages within a single individual will coalesce in two pairs in the
immediately previous generation with probability 1/6N, which is of the same order of
magnitude as the rate of pairwise coalescence. In fact, such events become negligible in
the limit because four lineages in a single individual will be overwhelmingly more likely
to be descended from two pairs of lineages in two different individuals. We show this by
briefly repeating our previous analysis, using Mdhle’s (1998a) technique, or eq. (1), but
for a sample of n=4.

We construct this more complicated ancestral process by defining a new
absorbing Markov chain with seven states which include all possible configurations of
four lineages. Transient states 1 through 5 account for all possible ways lineages can be
distributed within and between individuals (Table 2.1). States 6 and 7 are both
absorbing, with the former representing single, pairwise coalescence events and the
latter defined to include all possible multiple coalescent events. States 6 and 7
absorbing in the sense that here we are concerned only with the process during which
there are four ancestral lineages. However, the coalescent process resumes on the

remaining ancestral lineages, if more than one remain, with a new transition matrix
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appropriate for the smaller sample size. As in the derivation for n=2, transition
probabilities between states can be calculated by conditioning on patterns of ancestry.
All possible patterns for four lineages, along with their associated conditional transition

probabilities, are shown in Table S2.3.

Table 2.1 Markov states that account for all possible configurations of four lineages in
an autotetraploid population, with two types of absorbing states to assess the relative
probabilities of single and multiple coalescence events.

Configuration State Description

@ 1 All 4 lineages within the same individual

@ @ 5 3 lineages within the same individual, 1 lineage in
separate individual
@ @ 3 2 pairs of lineages, each within the same individual
@ @ @ 4 2 lineages within the same individual, other 2
each in separate individuals
@ @ @ @ 5 All 4 lineages in separate individuals

6 Three lineages remain after single coalescence
event
7 One or two lineages remain after multiple

coalescence event

We obtain a new P which is now the 7-by-7 single-generation transition matrix
for a sample of size n=4 (not shown). The continuous-time approximation for a large
population is obtained by applying Mdhle’s theorem (1998a), decomposing P into three
separate matrices that contain events which occur on different timescales, as done
above. In the limit as N —, with time rescaled in N generations, we obtain matrices E

and G which describe the ancestral process:
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Similarly to the process for n=2, there is an instantaneous adjustment of the sample to a
state in which all lineages are in separate individuals (here state 5), independent of the
starting state. The sample then enters the continuous-time process given by G, in which
the rate of single coalescence events, on the timescale of N generations, is six times
greater than in the case of n=2, or 6*(1/4) = 3/2. This is identical to Kingman’s

coalescent, in which coalescence times are exponentially-distributed and occur with

rate equal to the number of pairs of lineages: (2)

Our result is analogous to the one obtained by Mdéhle (1998b) for a diploid
dioecious population. In the diploid case, even though two lineages in a single individual
cannot coalesce in the previous generation (thus violating exchangeability assumption
of Kingman’s coalescent), lineages quickly assume a state in which each is in a separate
individual, and the long-term coalescence rate is equal to one per pair of lineages when
time is measured in units of 2N generations. In the tetraploid monoecious case,
although lineages may travel together in gametes for some number of generations

without coalescing, they are overwhelmingly more likely to become scattered such that
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each is in a separate individual, and the long-term coalescence rate is equal to one per

pair of lineages when time is measured in units of 4N generations.

Accuracy for finite N

Although the continuous-time approximation applies in the limit as population
size tends to infinity, we would like to know the validity of this approximation for
smaller, finite populations. All the information about the ancestral process is contained
in the single-generation transition martix P, so we can analyze the dynamics of this
discrete-time process for a range of population sizes and compare them to the
continuous-time approximation that only allows single coalescent events. We
investigate the accuracy of two key features of the limiting ancestral process: that
coalescence events occur predominantly between pairs of lineages, and that the
majority of the ancestral process before coalescence is spent in state 5 (i.e. with all
lineages in separate individuals, making them exchangeable).

We can do this using standard theory of absorbing Markov chains, for example in
Chapter 11 of Grinstead and Snell (1997), by writing the transition matrix in canonical

block form,

0 I
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in which Q is a 5-by-5 matrix of transition probabilities among transient (non-
coalescent) states, R is a 5-by-2 matrix of transition probabilities from transient to
asborbing (coalescent) states, 0 is a 2-by-5 zero matrix, and I is the identity matrix (in
this case 2-by-2). Then, for each starting state, the 5-by-5 matrix inverse N=(1-Q)™"
contains the expected numbers of generations spent in each transient state before
absorption and the 5-by-2 matrix product NR contains the probabilities of absorption in
each absorbing state.

In terms of how genetic data are typically sampled, there are two extreme
starting states for the process: state 1 or state 5, in which a biologist samples all
chromosomes from a single autotetraploid individual or one chromosome from each of
four individuals. Given these starting states, the probability of a single coalescence
event (absorbing to state 6 rather than state 7) is plotted in Figure 2.2 for a range of
population sizes, indicating rapid convergence to an ancestral process involving
predominantly pairwise coalescence events. Likewise, Figure 2.3 shows that the fraction
of time spent in state 5 (when all lineages in separate individuals) approaches one
quickly as the population size increases. In Figure 2.3 the sample is assumed to start in
state 1, which may be considered the farthest from the transient-equilibirum (state 5) of
the limiting ancestral process. From Figure 2.2 and Figure 2.3, we conclude that the
limiting ancestral process for a sample of size n=4 should be quite accurate as long as

the population size is greater than about 100.

21



0.95 —

0.90 —

Probability

0.85 —

0.80 —

2 10 100 1000

Log Population Size

Figure 2.2 The probability of a single coalescence event, conditional on an absorbing
event, given the process started in state 1 (blue) or state 5 (red) for N up to 1000
autotetraploid individuals.
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Figure 2.3 The expected proportion of generations the Markov chain spends in state 1
(blue), state 2 (orange), state 3 (red), state 4 (green), or state 5 (black) for a range of

population sizes. Here the process starts in state 1 but spends a vast majority of its time
in state 5, even for small populations. These proportions were calculated from matrix N
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(see text). Note that state 4 is possible only when N =3 and state 5 is possible only
when N =4.
Extension to arbitrary sample size n

An exact calculation for larger sample sizes is not practical given complexity of
the model with n=4. However, a strong heuristic derivation can be made based on the

fact that when n<N, events that occur with probability O(1) or O(1/N) per generation

will dominate the ancestral process. In short, if n lineages are in fewer than n indviduals,
the most probable events are O(1) and these send the lineages into different individuals.
If instead each lineage is in a separate indvidual, the most probable events are O(1/N)
and these bring lineages into the same individual, possibly to coalesce. Due to the O(1)

transition probabilities, the chance that n lineages will ever be in fewer than n-1

individuals (other than when they are orgrinally sampled) is negligible if n<<N.

Thus, starting with n lineages in n individuals, we can accurately summarize the
process using a Markov chain with just three states: (1) n lineages are within n-1
individuals, (2) n lineages remain in n individuals, and (3) n-1 lineages arrived at by a

coalescent event (see Table S2.4). We have
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Applying Méhle’s theorem (1998a), we obtain matrices E and G:

|

n

|

.

24
E dG=0 "1
- and &= T12)2 (2]

0o 0 1
0 0 0

which demonstrates that the ancestral process, starting either in state 1 or state 2,
corresponds to Kingman’s standard ‘n-coalescent’ if time is measured in units of 4N

generations.

An ancestral process with double reduction

Autotetraploids contain four sets of homologous chromosomes, and crossovers
may potentially occur among any of them. When more than one crossover arises per
chromosome, they may involve different pairing partners and create multivalents at
metaphase |. Depending on how chromosomes segregate, double reduction may occur
at a particular locus if there is a crossover between this locus and the centromere
(Mather 1935, 1936, Crow 1954). Retrospectively, these lineages are automatically
identical by descent (i.e. they coalesce) in the previous generation. This is qualitatively
similar to the case of partial selfing studied by Nordborg and Donnelly (1997) and Mé&hle
(1998a), in which lineages within a single individual may coalesce in the immediately

previous generation if the individual was produced by selfing.
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Multivalent formation is a necessary precursor for double reduction (Mather
1935). Most established autotetraploids form bivalents at meiosis (see Table 52.3)
almost certainly because multivalents are associated with aneuploid gametes and thus
reduced fitness of progeny (reviewed in Comai 2005). Double reduction is thus a
phenomenon primarily of newly formed autotetraploids that have not adapted to a
genome-doubled state, but individuals capable of correctly segregating multivalents
could theoretically be selected for (Comai 2005). Depending on how meiotic
mechanisms evolve in a particular autotetraploid species, double reduction may not
occur over long enough periods of evolutionary time (i.e. on the coalescent timescale of
N generations) to have a significant effect. Nonetheless, the presence of double
reduction in at least some natural autopolyploids means that it merits consideration.
We will use Mo6hle’s technique here as well, with n=2, to study the effects of double
reduction on the coalescent process.

Consider a locus at some distance from the centromere, such that recombination
may occur between them. For simplicitly, we will assume that recombination does not
occur within the locus under consideration. Following Stift et al. (2008), the frequency of
double reduction (a) has a theoretical maximum value of 1/6, assuming that
chromosomes always form quadrivalents and one crossover occurs between the locus
and centromere. With probability 1/3, the recombined chromosomes migrate to the
same pole during meiosis | (assuming all chromosome pairs are equally likely to
segregate), and the probability that the two sister chromatids also migrate to the same

pole during meiosis Il is 1/2. Double reduction can be less than this maximum if
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recombination between the locus and centromere does not occur in every multivalent
association (i.e. the locus is distal to centromere) or if chromosomes form bivalents with
some probability at meiosis I. Thus, o may range from 0 to 1/6 and will differ between
loci.

To study an ancestral process for n=2 that includes double reduction, we define
an absorbing Markov chain with the same three states used previously. The resulting

matrix looks very similar to the one for tetrasomic inheritance:

lre 12 2 o 1
3 2N 3 3N 3 6N
.| 2 -t L
4N N 4N
0 0 1

This shows that double reduction increases the probability of coalescence from state 1
by an amount /3. Since double reduction does not affect lineages that came from
separate gametes, the transition probabilities for state 2 are unchanged. When in state
1, if lineages came from the same gamete in the previous generation, which occurs with
probability 1/3, there is a chance a that they were sister chromatids in the immediately
previous generation and thus coalesce. Importantly, the chance of this novel transition
when lineages are in state 1 does not depend on the population size N. There is no

reason to suppose that « is small, and we assume that it is a constant when we take
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the limit N = %_ Using M&hle’s theorem (1998) to obtain a continuous-time

approximation on the timescale of N generations, we have

-O 2 a
2+a 2+a
E=(0 1 0 |and
0 0 1
[ 3 2 3a 1
0 > = >+
(a+2)” a+2 2 +2) 2a+2)
1
ale 3 1, 3a
2(a+2) 4 4(a+2)
0 0 0

Unlike the previous models above, coalescence is now possible in both the “fast”
and “slow” processes. On the limiting timescale of N generations, lineages may
instantaneously coalesce instead of moving directly to state 2. This will create an
association of alleles within individuals. Once in state 2, lineages will remain in this state
for a majority of their ancestry but coalesce at a rate faster than 1/4 when time is
measured in untis of N generations. Thus double reduction decreases the long-term
coalescent N.. In addition, a single exponentially-distributed rate of coalescence (i.e. the

Kingman coalescent) is not sufficient to capture all the dynamics of an ancestral process
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with double reduction; with time rescaled in units proportional to N generations,
lineages may coalesce instantaneously if they were sampled from the same individual.

As previously mentioned, these effects are also observed in the coalescent
process with partial self-fertilization (Nordborg and Donnelly 1997, Mohle 1998b).
However, the two models are not identical for tetraploids. In the Supplementary Text,
we extend our model of coalescence for autotetraploids without double reduction to
included partial sefling, with probability s. We find that the maximum rate of double
reduction (o = 1/6) produces the same ancestral process as one with s = %, but that
there are slight quantitative differences between the two models. Figure 2.4 shows the
relationship between s and a, in terms of the parameter values that give the same
coalescent N, . The relationship is only slightly nonlinear; though mechanistically
distinct, selfing and double-reduction have very similar effects on patterns and levels of
genetic variation.

1/4 —

1/6 —

Selfing rate

112 —

I I l |
0 1/18 1/9 1/6

Probability of Double Reduction
Figure 2.4 The slightly non-linear relationship between double reduction and self-

fertilization. The maximum probability of double reduction (1/6) corresponds to a
selfing rate of 1/4.
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The coalescent with double reduction for abitrary n

Consider a sample of n alleles from a population such that k individuals contain
two alleles, / individuals contain three alleles, m individuals contain four alleles, and n-
2k-3/-4m alleles are in separate individuals. Unlike the extension to arbitrary n for the
model above, coalescence events may occur with O(1) if double reduction is possible.
Thus, the instantaneous adjustment of the sample involves both the movement of
lineages from within to between individuals and coalescence events. After this
instantaneous adjustment, the remaining lineages are in separate individuals and
coalesce with probability O(1/N).

The number of instantaneous coalescence events depends on the sample
configuration, i.e. the number of lineages within an individual. Following Nordborg and
Donnelly 1997, for each of the k individuals that contain two lineages, the number of
instantaneous coalescence events is X~Binomial(k, o/(a+2)), with the probability of
coalescence calculated above from the analysis with n=2. For the / individuals that
contain three lineages, the number of instantaneous coalescence events is Y~Binomial(/,
30/(0+2)): two of the lineages must come from the same gamete and coalesce with
probability a, but if they do not coalesce with probability 1-a, then they coalesce in
previous generations from double reduction with probability (a./(a+2)). Thus, the
overall probability of coalescence is a + (1-a)(o/(0+2)) = 30/(0+2). Applying the same
logic to the m individuals with four lineages (see Supplementary Text), the number of

coalescence events is Z=(Z1,Z,,Z3)~Multinomial(m, p=(p1,p2,p3)). Here, Z; is the number
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12a(1 -«
of single coalescence events that occur with probability p;= ﬁ, Z, is the number
a+

90’
of double coalescence events that occur with probability p,= W, and Zs is the
a+

number of times no lineages coalesce (i.e. four lineages within an individual get

4(a —1)

separated into four distinct individuals) with probability p3= (@12 . The number of
a+

lineages that remain after this instantaneous adjustment, n-X-Y-Z;-22,, are in separate

individuals and enter the “slow” process of coalescence with rate

+
47 4a+2)

n-X-Y-Z7-7,
2

1 3a
)(— —) if time is measured in units of N generations. The

coalescence rate calculated here is the same as above for n=2 but applied to each pair

of remaining lineages.

2.4 Discussion

Autotetraploids with tetrasomic inheritance have long been considered
vanishingly rare but now are increasingly recognized as a common phenomenon in plant
evolution (Soltis et al. 2007). Many established polyploid species or populations have
been shown to have tetrasomic inheritance (Table S2.1). Nuclear DNA sequence data
will provide invaluable insight into many unknown aspects of autopolyploid evolution,
such as the process of formation and establishment from relatively few individuals that
are at least partially reproductively isolated from their diploid progenitor. Here, we

extend the coalescent, a widely-used model in population genetics and phylogenetics,
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to autotetraploid populations to aid in the analysis of DNA sequence data sets from
these species.

Our results show that, although tetrasomic inheritance creates additional
configurations of lineages that have unique probabilities of coalescence compared to
those for diploid organisms, the ancestral process for autotetraploids without double
reduction converges to Kingman’s haploid coalescent model with time rescaled by 4N
generations. Intuitively, this convergence occurs because in a large, panmictic
population ancestral lineages quickly get separated to different individuals such that the
sample spends a majority of its history in a configuration in which lineages are
exchangeable.

Simulating data with the tetrasomic inheritance model without double reduction
would produce genealogies like those generated from diploid and haploid models, such
as Hudson’s ms (Hudson 2002), with the exception that the timescale of the process
must be interpreted differently. The time to the most recent common ancestor (Tyrca)
of a pair of lineages in an autotetraploid population is exponentially distributed with a
mean of one when time is measured in units of 4N generations. Thus a given value of
Twrea is interpreted as 4N X Tyrea rather than 2N X Tyrea as in diploid coalescent
models. From this it follows that, as has been previously demonstrated (Moody et al.
1993), autotetraploids are expected to have twice the levels of genetic variation as
diploids for a given demographic size. However, many demographic or biological factors
may lead to departures from this expectation, such as population history, the

distribution of offspring per individual, or nonrandom mating.
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A useful application of the coalescent is to infer ancestral demography. Little is
known about the characteristics of the bottlenecks associated with the formation of an
autotetraploid lineage, which can arise through the union of unreduced gametes
produced by diploids. Since autotetraploid formation events are relatively rare, but
potentially on the order of the genic mutation rate (Ramsey and Schemske 1998), entire
populations may be founded by a small number of individuals, resulting in a severe
genetic bottleneck. However, the severity of this bottleneck likely varies among cases as
certain environmental factors and alleles may greatly affect the rate of unreduced
gamete formation in diploids (Ramsey and Schemske 1998); higher rates can lead
directly to repeated autotetraploid formation or promote gene flow from diploids to
tetraploids. Multiple formation events or gene flow from diploid gene pools may
increase the effective population size during autotetraploid formation and reduce the
severity of the bottleneck. Several studies have documented multiple origins in
autotetraploids (Soltis et al. 1989, Wolf et al. 1990, Ptacek et al. 1994). Alternatively,
gene flow among ploidy levels may occur via inter-ploidy hybrids (i.e. triploids) if they
have non-zero fertility and produce some euploid gametes (Felber and Bever 1997,
Husband 2004).

The utility of the models developed here depends on the specific demographic
history of the autotetraploid population. If the present day autotetraploid race traces
back to relatively few individuals (i.e. ~10), then the sample size n, or number of

ancestral lineages, is not much smaller than the population size N. Since n<<N is a

critical assumption of the Kingman coalescent, the continuous-time models developed
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here in the context of large population size may not be applicable. Simulated gene
genealogies produced by standard coalescent programs such as Hudson’s ms may not
look like the actual pattern of ancestry that contains multifurcations, a likely gene tree
structure of small populations that affects predicted patterns of genetic variation.
Special simulation programs may be developed that can accommodate extreme
population size crashes, for example as in the metapopulation model of Wakeley and
Aliacar (2001). Alternatively, the distribution of pairwise coalescence and linkage
disequilibrium can be used to quantify the severity of the bottleneck, such as Li and
Durbin’s (2011) pairwise coalescent model, if multiple mergers are a likely feature of the
underlying genealogy. Simulations should be done to see if these models are robust to
such large population size reductions.

If mating is not random (i.e. self-fertilization occurs) or if the autotetraploids
form multivalents and exhibit double reduction, the ancestral process does not
converge to Kingman’s simple model. In these cases, Kingman’s coalescent does not
fully capture the relatively complicated ancestry of the sample of lineages because the
coalescent process cannot be described by a single exponential distribution; coalescent
events may occur instantly with a nonzero probability even as population size tends to
infinity. For sample sizes greater than two, simultaneous multiple mergers become an
issue. For instance, if four lineages are within the same individual that was created by a
selfing event, a simultaneous multiple merger occurs in the previous generation with
probability s/6, where s is the selfing rate (see Supplementary Text for details). This

probability is independent of population size and thus does not tend to zeroas N — .
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For a coalescent model with double reduction and four lineages within the same
individual, as N —>® gametes likely come from different parents unlike the selfing
model. However, a simultaneous multiple merger occurs at the locus of interest if both
gametes that formed the individual were produced by double reduction events with
probability a®. Thus, these ancestral processes are more complex than the Kingman
coalescent since coalescent events may happen on two separate timescales and
simultaneous multiple mergers likely occur.

The coalescent model with double reduction is similar to the many-demes
model, with its “scattering phase” and “collecting phase” (Wakeley 1999) and to the
coalescent with partial selfing (Nordborg and Donnelly 1997, Mohle 1998a). It is
interesting to note, however, that a maximum of two O(1) coalescence events may
occur in the instantaneous adjustment for four lineages sampled from within a single
tetraploid individual. This results from the fact that with probability of O(1) the two
gametes that form each individual came from different parents, and only each pair that
came from the same gamete may coalesce via double reduction. For finite N, more
coalescence events are possible if gametes originated from the same parent, but this
has probability O(1/N) and thus does not happen in the instantaneous adjustment.
Tetrasomic inheritance thus creates a genetic structure that has a mathematically
distinct ancestral process.

However, there are two observations which suggest that, at least in plants, self-
fertilization or double reduction may rarely affect results: first, of the established

autotetraploid plant species that have been documented and studied, multivalent
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formation (and thus the possibility of double reduction) and self-fertilization are both
rare. For example, among 24 species for which tetrasomic inheritance has been
molecularly confirmed, chromosome associations have also been examined in 11.
Among these, only two closely related species commonly form multivalents. Two other
species form multivalents only rarely, while the remainder show exclusively bivalent
associations at meiosis (Table S2.1). Thus in most of these examples, double reduction
would be rare or absent. Self-fertilization is also rare. Though selfing can in theory
promote the establishment of tetraploids by helping avoid minority cytotype exclusion
(Rodriguez 1996), it is very rare among polyploid species in nature (Stebbins 1947). The
majority of plant species we identified in the literature that have tetrasomic inheritance
are obligately outcrossing (see Table S2.1 notes for references). Selfing rates are
therefore generally zero for most autotetraploids. Thus, the simple tetrasomic
coalescent model may be widely applicable.

In conclusion, our results demonstrate that Kingman’s coalescent is robust to
tetrasomic inheritance, making existing coalescent models applicable for analyzing
population genomic data collected from natural autotetraploid populations that exhibit
this mode of inheritance. These models will greatly facilitate the study of the
evolutionary forces acting on these organisms. However, standard coalescent simulators
cannot be used to interpret these data if the autotetraploids self-fertilize at an
appreciable rate or if some loci experience double reduction, the latter being verified by

cytology and segregation studies.
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CHAPTER 3 - RADSEQ UNDERESTIMATES
DIVERSITY AND INTRODUCES
GENEALOGICAL BIASES DUE TO
NONRANDOM HAPLOTYPE SAMPLING

3.1 Abstract

Reduced representation genome-sequencing approaches based on restriction
digestion are enabling large-scale marker generation and facilitating genomic studies in
a wide range of model and non-model systems. However, sampling chromosomes based
on restriction digestion may introduce a bias in allele frequency estimation due to
polymorphisms in restriction sites. To explore the effects of this nonrandom sampling
and its sensitivity to different evolutionary parameters, we developed a coalescent-
simulation framework to mimic the biased recovery of chromosomes in restriction-
based short-read sequencing experiments (RADseq). We analyzed simulated DNA
sequence datasets and compared known values from simulations with those that would
be estimated using a RADseq approach from the same samples. We compare these
true" and "estimated" values of commonly used summary statistics =, 6,,, Tajima’s D,
and Fst. We show that loci with missing haplotypes have estimated summary statistic
values that can deviate dramatically from true values and are also enriched for
particular genealogical histories. These biases are sensitive to non-equilibrium
demography, such as bottlenecks and population expansion. In silico digests with 102

completely sequenced D. melanogaster genomes yielded results similar to our findings
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from coalescent simulations. Though the potential of RADseq for marker discovery and
trait mapping in non-model systems remains undisputed, our results urge caution when

applying this technique to make population genetic inferences.

3.2 Introduction

High-throughput sequencing technology has revolutionized evolutionary
genetics, enabling biologists to generate massive amounts of genomic data to address
diverse questions in ecology and evolution. Importantly, new techniques allow high-
throughput identification of variable sites (e.g. single nucleotide polymorphisms; SNPs),
even in species whose genomes are prohibitively large for sequencing or for which a
reference genome is unavailable. In these situations, it is often preferable to eschew
whole-genome sequencing in favor of a reduced-representation approach that can be
used to sample a fraction of the genome across many individuals at the same loci. A
promising new technology, restriction-associated DNA (RADseq), is becoming popular
for reducing genomic complexity in DNA libraries to sequence a small portion of the
genome across many individuals (reviewed in Davey et al. 2011). Hundreds of indexed
RAD libraries can be easily and inexpensively constructed and sequenced to characterize
levels and patterns of genetic variation throughout the genome, even for non-model
organisms. RADseq has already been employed in studies of population structure and
biogeography (Hohenlohe et al. 2010, Emerson et al. 2010, Gompert et al. 2010), allele
frequency estimation (Van Tassel et al. 2008), association studies (Parchman et al.

2012), genetic mapping (Baird et al 2008, Andolfatto et al. 2011, Pfender et al. 2011),
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selection and introgression (Hohenlohe et al. 2011, Gompert et al. 2012), and linkage
disequilibrium (Hohenlohe et al. 2012).

RADseq differs from other genome-sequencing approaches in that DNA
fragments for construction of a library of sequences are generated by digesting
genomes with a restriction enzyme, as opposed to random DNA shearing. Enzyme
digestion results in nonrandom cleavage that ensures primarily the same regions are
sampled across individuals. While powerful, the RADseq approach may be affected by
numerous, largely uncharacterized biases. Potential problems arising from PCR bias in
library construction, sequencing errors, and inaccurate genotyping with lower
sequencing depths have been recognized previously (Rokas and Abbot 2009), but these
biases are expected to affect all resequencing projects. RADseq has an additional
ascertainment bias whose effects have not been explored extensively: some recognition
sequences will themselves be polymorphic, resulting in missing data for some
chromosomes and thus nonrandom sampling of lineages in a sample (Figure 3.1).

How does non-randomly missing data affect estimation of levels and patterns of
genomic variation necessary for population genetic inference? Here we address this
guestion by developing a coalescent-simulation framework to mimic the biased
recovery of haplotypes (hereafter genealogical bias) in RAD libraries. Our work is
consistent with but extends beyond that of Gautier et al. (2012) who also studied how
missing data biases estimates of expected heterozygosity and Fst. We analyze our

simulations with additional commonly used summary statistics (r, 0, Tajima’s D, Fst, and

38



Gene Genealogy Sequence Alignment

O L g ® <
g -&

TMRCA _‘ ' ‘
& *
—eo—o '

g o—
g
g

Figure 3.1 An example of a DNA sequence alignment (horizontal lines at right) along
with the underlying genealogy of the locus (left). Dots represent segregating mutations
in the sequence and where in the genealogy they occurred. The wider gray portion of
the sequence alignment represents the recognition sequence and a white dot indicates
a mutation in the recognition sequence. Haplotypes are not observed in a RADseq
experiment if mutations occur within this region. In this example, the true time to most
recent common ancestor (Tyrca) of the sample is lost since a mutation occurred within
the recognition sequence in the most divergent haplotype; the genealogy is thus
truncated to point "X" and results in incomplete sampling that is biased against recovery
of the most divergent haplotype(s).
the complete allele frequency spectrum) that are used to study demographic history
and detect selection. We explore how RADseq affects genome-wide estimates of these
statistics and how it impacts outlier analyses.

We show that RADseq nonrandomly subsamples the genome in two ways. First,
within a locus, variants in a recognition sequence result in missing data and therefore
truncate genealogies relative to the complete sample at these loci. This truncation
results in underestimates of commonly used diversity statistics st and 6,,. Estimates of

Tajima’s D are also less accurate, but Fst is relatively robust. Second, certain genealogies
]

are more likely to result in missing haplotypes than others, such that RADseq samples a
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biased subset of all genealogies. For example, loci with intermediate amounts of missing
data are more polymorphic than the simulation average and more likely have
genealogies with deeper divergences. We show with in silico digests of 102 completely
sequenced D. melanogaster genomes that our coalescent simulations capture the major
features of RADseq’s genealogical bias. We discuss our findings and provide general

guidelines for using RADseq for population genetic inference.

3.3 Results

RADseq Underestimates Polymorphism:

We generated simulated datasets for 100 haploid individuals and analyzed them
mimicking a RADseq protocol (see methods for details). In comparing “true” values of
summary statistics (ity, Oy, Dt) with “estimated” values (e, Owe, De, calculated from the
data using only chromosomes that would be sampled by RADseq), it is apparent that the
RADseq protocol results in systematic underestimation of polymorphism (Figure 3.2A).
Not surprisingly, increasing amounts of missing data exacerbates this bias, and there is a
strong positive correlation between chromosome sampling depth and estimates of
polymorphism (Figure 3.2A). Fortunately, a majority of loci have all chromosomes
sampled, especially for lower parameter values of 0 in the simulations (Figure 3.2B). We
found that m; is more sensitive to missing data than 6,:. Recombination decreases this
sensitivity and brings values of both mt; and 0, closer to the simulation parameter value
of O (Figure S3.1). The difference between estimated and true values is greater for loci

from simulated data sets with higher input values of 0 (Figure S3.2), though increasing
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the recombination rate tends to decrease this difference. This is because recombination
decreases correlations between variants in the recognition sequence and those in the

flanking sequence.
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Figure 3.2 (A) True and estimated values of m (red) and 0, (blue) from in silico RADseq as
a function of chromosome sampling depth for 6 = 0.01/bp without recombination. Here,
the simulation average of 0 is 1 per 100bp sequence read. Shaded regions show the 95%
bootstrap percentile confidence intervals (1000 simulations) for the mean of true values
of i (solid red) and 6, (solid blue) and estimated values of &t (shaded red) and 0,,
(shaded blue) from in silico RADseq. "Chromosome sampling depth" refers to the
number of chromosomes that are actually sampled (have intact restriction sites) in the
in silico experiment, and "true" values are those calculated using the complete data for
the same markers. The histograms in A (no recombination) and B (with recombination,
p = 0) show the proportion of each chromosome sampling depth in the data and
indicate that most markers are highly sampled with these simulation parameters,
especially for lower values of 0 (B).

Simulations of the double digest RADseq protocol (Peterson et al. 2012) produce
similar results. However, relative to the standard RADseq protocol, loci that have higher
chromosome sampling depths are less frequent in the double-digest protocol (Figure

$3.3) and have true and estimated values of t and 0,, that are even lower than
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simulation averages (Figure S3.4). As in the standard RADseq protocol, a lower
population mutation rate mitigates this effect (Figure S3.5).

Although by definition true and estimated summary statistics are identical when
all chromosomes are sampled, loci with complete data still tend to have lower
polymorphism than simulation averages (Table 3.1, Figure 3.2, Figure S3.2), particularly
for the double-digest protocol (Table 3.1, Figure S3.4, S5). This bias is exacerbated in the
double digest simulation when longer fragments were selected (350-450 instead of 150-
250bps). Thus, while completely sampled loci are not biased individually, they will not
capture the true genome-wide distribution of values. For simulations with higher
polymorphism and no recombination, estimates of means and variances are further

reduced below true simulation averages.

Table 3.1 Comparison of estimated values of summary statistics (0. or 7e) when all
chromosomes are sampled to true simulation averages (O, or 1,).

Mean Variance

Protocol 6 per bp Recombination No Recombination Recombination No Recombination
ewe/ewa /M, ewe/ewa Tt m, ewe/ewa Tee/T ewe/ewa T/

0.0001 0.994 0.995 0.991 0.990 0.994 0.996 0.990 0.990

Standard 0.001 0.987 0.982 0.988 0.984 0.988 0.980 0.988 0.979
0.01 0.956 0.933 0.940 0.909 0.941 0.901 0.904 0.837

0.0001 0.835 0.836 0.838 0.837 0.836 0.836 0.839 0.836

Double Digest 0.001 0.858 0.851 0.829 0.823 0.857 0.841 0.830 0.815
0.01 0.829 0.797 0.811 0.772 0.812 0.737 0.771 0.684

Notes: Results from two different simulation parameters of 8 are shown. When

recombination is present, p = 0. Results are given for both the standard and double
digest RADseq protocols.

42



Chromosome Sampling Depth is Correlated with Particular Genealogies:

Since the underlying genealogy of a sample of chromosomes at a locus provides
information about its evolutionary history, we examined how genealogies vary with
chromosome sampling depth using the allele frequency spectrum (AFS). The true AFS
present in the sequence flanking a restriction site, conditioning on the chromosome
sampling depth recovered in a RADseq experiment, shows that each respective sampling
depth has a unique AFS and thus contains a nonrandom subset of the “true” genealogies
(Figure 3.3A). Although recombination reduces this effect, a strong correlation between
the frequencies of polymorphisms within a read and frequencies of the recognition
sequence remains apparent in the AFS (Figure 3.3B). This is consistent with empirical
observations of significant LD on the scale of a 100-bp sequencing read observed in
many natural populations (e.g. Miyashita and Langley 1988, Hohenlohe et al. 2012,
Langley et al. 2012, Pool et al. 2012). Lastly, in agreement with their higher values of m,
loci with intermediate amounts of missing data in a RADseq experiment have
genealogies with a greater time to common ancestry (Tyrca’s, Nnot shown) relative to the
simulation average.

Non-equilibrium demography and population subdivision affects true and
estimated summary statistics

Non-equilibrium demographic processes can affect the AFS. Therefore we asked
what effect the introduction of a RADseq capture method can have on estimates of

summary statistics for populations not at equilibrium. To this end, we simulated data
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under two commonly used demographic models: a population bottleneck and

exponential growth. For the standard RADseq protocol, a population bottleneck
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Figure 3.3 Density plot of true allele frequency spectra (AFS) for loci with different
chromosome sampling depths (A) without and (B) with recombination. Each row
represents the AFS for a particular chromosome sampling depth with the density of a
particular allele frequency indicated as a heat map. The Z score fits a normal distribution
to the entries in each row, and each cell is colored based on this fitting. This shows that
loci with complete sampling (top of each graph) have an AFS characterized by abundant
low-frequency polymorphisms, whereas loci with more missing data have greater
proportions of intermediate frequency variants.

followed by growth slightly decreases the effect missing data has on estimating true

summary statistic values by slightly increasing the correlation between estimated and
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true values of 6,, and D (Figure 3.4). However, bottlenecks have little effect on estimates
of . Exponential population growth greatly reduces the sensitivity of ot and 6,, to
missing data and causes loci at all sampling depths to have estimated values of summary
statistics that more closely resemble their true values (Figure 3.4). Both of these
scenarios mitigate the effect missing data has on estimation of summary statistics
because effective population sizes are reduced (relative to an equilibrium population of

equal present size), particularly for the exponential growth model.
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Figure 3.4 Correlations between true and estimated values of summary statistics are
sensitive to non-equilibrium demography and chromosome sampling depth cutoffs.
Values for mt (gray), Oy (light gray), and Tajima’s D (black) under different demographic
models are plotted (solid lines = standard neutral model, dashed lines = bottleneck,
dotted lines = population expansion). The Y-axis is the correlation between true and
estimated values for loci that satisfy a given chromosome sampling depth cutoff (i.e.
with at least a minimum number of chromosomes with intact recognition sequences).
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A common goal of population genetic analyses is to detect and study population
structure and differentiation. To explore the effects of RADseq on a common metric of
genetic differentiation, Fst, we simulated two populations at demographic equilibrium
that exchange migrants at a constant rate per generation (described in methods,
performed only for the standard RADseq protocol). Unlike the results for metrics that
summarize the AFS within a population, the distribution of estimated Fsrfor loci with all
chromosomes sampled is nearly identical to the true distribution (Figure S3.6) for
effective migration rates of Nm = 10 and Nm = 1. This strong concordance breaks down
when populations exchange one migrant every ten generations (Nm = 0.1; Figure S3.6C).
Importantly, including loci with missing data biases the estimated Fsy distribution, since
missing data tends to inflate estimates of Fsr (Figure 3.5). This is consistent with the
results of Gautier et al. (2012) who considered biases of RADseq using a slightly
different population subdivision demographic model.

Fst, Ow, 7, and D outliers are sensitive to missing data

Although the levels and patterns of genetic variation in neutral loci that are
linked to locally adapted alleles will depend on demographic and selective
circumstances, it is interesting to consider outliers in the distributions of summary
statistics as potential metrics for detecting positive selection and local adaptation. In
particular, high Fst may indicate that a locus is in linkage disequilibrium with locally
adapted alleles. However, we show that missing data may inflate Fsr values, and rates of
false positives quickly increase as the chromosome sampling depth cutoff decreases,

especially when chromosome sample sizes among populations are allowed to vary as
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Figure 3.5 Estimated Fsr (solid line) as a function of chromosome sampling depth cutoff
per population (each consisting of 50 chromosome total) for three different migration
rates: Nm=10 (A), Nm=1 (B), and Nm=0.1 (C). The dashed line is the true simulation
average. Here, we condition on sample sizes being the same in both populations to
avoid inflated estimates of Fsr. Note that the Y-axes do not start at zero to more clearly
illustrate differences between true and estimated values.

little as 20% (Figure 3.6). Thus, it may be wise to constrain analyses to loci with
complete chromosome sampling, but of loci in the upper 5% tail of true Fsr distribution,
only 13%, 11% and 5% have complete chromosome sampling in both populations for
Nm =10, 1, and 0.1 respectively.

Within a population, genomic regions with low nucleotide diversity and left-

skewed site frequency spectra may indicate the presence of a recent selective sweep via
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Figure 3.6 Proportion of estimated Fst 5% outlier loci that are false positives (solid lines)
or false negatives (dashed lines) relative to the true distribution for different
chromosome sampling depth cutoffs (50 chromosomes per population in complete
sampling). Three different rates of migration are represented: Nm=0.1 (light gray),
Nm=1 (gray), and Nm=10 (black). If missing data is present, analyses were performed on
loci for which chromosome sample sizes are exactly the same in both populations (A) or
allowed to vary by 20% (B).

the hitchhiking effect (Maynard-Smith and Haigh 1974), or strong purifying selection
(Charlesworth 1993). We explored the effect of missing data on outlier analyses
involving the commonly used diversity statistics 6,, and . Specifically, we examined the
lower 5% tail of the distributions of these statistics to assess how missing data affects

false positive and false negative rates. Using different sampling depth cutoffs, rates of

false positives and false negatives increase with the inclusion of loci with missing data
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for both the standard RADseq protocol (Figure 3.7) and the double digest protocol
(Figure S3.7). Similar analyses with lower values of 6 (0.001/bp and lower) were not
possible since the 5% quantile of summary statistics contained the majority of loci due

to low levels of polymorphism.
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Figure 3.7 Proportion of estimated 7 (gray), O, (light gray), or D (black) outliers that are
false positives (solid lines) or false negatives (dashed lines) for inclusion in the lower 5%
tail for different chromosome sampling depth cutoffs.

Since loci with missing data have more false positives and negatives, a possible
solution is to limit outlier analyses to loci with complete chromosome sampling. If
outliers were evenly distributed across loci irrespective of missing data, 5% of loci in

each sampling depth category would be outliers. However, in agreement with the

results presented in Table 3.1, loci with complete sampling have slightly decreased
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diversity and are more likely to fall within the lower 5% tail of the true distribution of t
and 6,, and less likely to fall within the upper 5% tail (Table 3.2). Thus limiting analyses
to completely sampled sites may inadvertently enrich for loci that have experienced

recent positive selection or are highly constrained by strong purifying selection.

Table 3.2 Loci with complete sampling are more likely to fall within the lower 5% tail of
the true distribution of t and 6,

Protocol Tail Ratio
Lower tail 1.19 1.17
Standard
Upper tail 0.76 0.74

Lower tail 1.76 1.95
Double Digest

Upper tail 0.45 0.37

Notes: Shown are the ratios of the proportion of loci with complete chromosome
sampling depth that are true outliers to the proportion of true outliers in the entire
simulated data set.
In silico digestion of Drosophila melanogaster genomes

In order to test whether our framework captures the major biases associated
with RADseq, we performed in silico digests of 102 recently released Drosophila
melanogaster genome assemblies (Pool et al. 2012) using the standard RADseq protocol
(Baird et al. 2008). The choice of restriction enzyme greatly affects which features of the
genome are sampled (Figure 3.8A). The GC-rich recognition sequence of Eagl samples
exons more frequently than loci sampled at random and much more frequently than the
AT-rich Asel, which disproportionately samples intronic and intergenic regions. EcoRl,
which has an intermediate base composition, samples genomic regions at frequencies

similar to their abundance in the genome. Likely owing to different levels of
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polymorphism in different parts of the genome (e.g. due to stronger purifying selection
in exonic versus intergenic sequences), choice of restriction enzyme results in different

estimates of nucleotide diversity (Figure 3.8B).
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Figure 3.8 Results for the in silico digests 102 D. melanogaster genomes. (A) Proportion
of sites located in distinct regions of the genome when in silico digests are performed
with different enzyme recognition sequences. GC-rich recognition sequences sample
more exons, whereas AT-rich recognition sequences sample comparatively more introns
and intergenic regions. “Random” values are calculated from fragments selected at
random throughout the genome. (B) Box plots of true 7 for regions sampled by enzymes
with different recognition sequences. (C) The median true 7 (solid line) and estimated &
(dashed line) as a function of chromosome sampling depth for three different
recognition sequences. (D) Median of the ratio of estimated 7 to true mas a function of
the number of sampled chromosomes. Dark blue, purple, and cyan lines represent the
three different restriction enzymes used in the in silico digest of the D. melanogaster
genomes, and the dotted black line is from simulations with p=0.1/bp, 6=0.01/bp.

Similar to the simulation results, in regions of the genome where m; is higher, it is
more common for an intermediate number of chromosomes to be sampled (Figure
3.8C), which is consistent with the results of our simulations (above). This difference in

m. between loci with different chromosome sampling depths changes depending on the
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recognition sequence of the restriction enzyme used and increases as more polymorphic
regions of the D. melanogaster genome are sampled (i.e. with an enzyme with an AT-
rich recognition sequence). Again, we observe similar patterns in our simulation
framework (above), suggesting that our simulations accurately reflect much of the bias
associated with RADseq.

To compare our framework to the D. melanogaster data, we ran simulations
with an increased recombination rate (p=0.1/bp, 6=0.01/bp); p = 10*6 has been used
previously in demographic inference of this species (e.g. Thornton 2009). We then
recorded the median of the ratio expected to true 7 (7te/m;) for each locus with a
particular number of sampled chromosomes (Figure 3.8D). While our simulation
appears to accurately model the majority of genealogical bias, we did not perfectly
capture the dynamics of loci that have < 10 sampled chromosomes, perhaps as a result

of violations of the infinite sites mutation-model (see Discussion).

3.4 Discussion

RADseq provides a simple and inexpensive means of collecting genome-wide
sequence data from diverse non-model organisms (e.g. Emerson et al. 2010, Hohenlohe
et al. 2011, Gompert et al. 2012, Parchman et al. 2012). This approach is increasing in
popularity as a means of population genomic inference, but the effects of the
ascertainment bias associated with polymorphism in recognition sites have not been
extensively explored (but see Gautier et al. 2012). Biases can arise from mutations

segregating in the recognition sequence such that haplotypes are nonrandomly sampled
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for loci linked to these polymorphisms. Though it may seem comparatively rare for a
mutation to occur within a recognition sequence, these variants are frequent enough to
enable detailed population genetic analyses (e.g. Restriction Fragment Length
Polymorphisms, Botstein et al. 1980). Consequently, a thorough examination of RADseq
bias is essential for enabling detailed and accurate population genetic analyses based on
this methodology.

Our coalescent simulations model two separate RADseq protocols (Baird et al.
2008, Peterson et al. 2012) and show that in both cases true and estimated values of &t
and 0,, vary with the amount of missing data that would occur in a RADseq experiment.
Loci with higher m; and 0, generally have fewer sampled chromosomes. These loci also
have distinct frequency spectra and deeper divergence times. These patterns indicate
that certain genealogies are particularly prone to missing data in RADseq experiments.
Both e and 0y, and their correlations with true values decrease systematically as a
function of the chromosome sampling depth, making loci with higher diversity the most
strongly underestimated. Tajima’s D is also sensitive to missing data. One potential
solution might be to limit analysis to loci for which one can be certain of complete
sampling. However, while this will reduce bias from sampling particular branches of the
genealogy, it is important to remember that loci where RADseq samples all
chromosomes are also a non-random subset of genome-wide it and 6,, distributions.
Underestimated polymorphism has been previously observed in RADseq but was

attributed to conservative SNP calling (Hohenlohe et al. 2010).
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Loci with complete sampling for the double digest protocol have further
decreased estimates of diversity (compared to the true genome-wide estimate) than the
standard protocol because missing data may arise not only from mutations within
recognition sequences but also from novel restriction sites that cause some haplotypes
to be outside of the size-selection range. Indeed, this problem is exacerbated for the
simulation in which longer fragments were selected since there is a larger region within
which novel restriction sites may occur. In reality, segregating insertions or deletions
may also contribute to missing data by changing the length of sequences between cut
sites to outside the range of size selection, but this additional source of bias was not
modeled in this study.

Importantly, inclusion of loci with incomplete sampling may actually invert
relative estimates of w and 0, such that loci that are in reality more diverse will have
lower estimates for these parameters than loci with complete sampling that are taken
from less diverse regions. In practice, for a particular locus with incomplete
chromosome sapling depth, it may not be feasible to determine if chromosomes were
not sequenced from polymorphism in the restriction site or from low sequencing depth.

The correlations between estimated and true values of summary statistics are
also sensitive to non-equilibrium demography. Both population bottlenecks and
expansions increase correlations between true and estimated values. The greater
correlations presumably occur because both demographic scenarios decrease the
effective population size and therefore reduce genetic diversity, so fewer loci have

missing data and thus inaccurate estimates of summary statistics. Since natural
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populations likely have complex evolutionary histories, summary statistics may be
affected by a combination of multiple demographic events in addition to the population
mutation and recombination rates. Having estimates of these parameters a priori for a
given study system help predict how frequently loci will contain missing data and how
sensitive estimated values of summary statistics are to missing data.

We also explored the ability of RADseq datasets to detect population structure
and differentiation by calculating Fst between two populations at demographic
equilibrium that exchange migrants at a constant rate per generation.

The distribution of estimated Fst values for loci with all chromosomes sampled is very
similar to the true distribution. The relative robustness of Fsrto the RADseq protocol
suggests that this methodology is perhaps well suited to estimating rates of migration
between populations.

Since outliers in the distributions of summary statistics are frequently used as
metrics for detecting selection, we explored the sensitivity of Fst, 6., and m outliers to
missing data. We find that rates of false positives and false negatives increase for Fsr, 0y,
and & as chromosome sampling depth decreases, since missing data biases estimates.
This has important implications for outlier analyses as tests for selection or local
differentiation and indicates that empirical outliers obtained from RADseq experiments
where complete chromosome sampling cannot be established with certainty should be
interpreted with caution. Again, a potential solution is to restrict analyses to loci with
complete chromosome sampling depth, but with this correction a vast majority of true

Fst outliers would be missed since many true outliers have incomplete sampling.
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Moreover, since many investigators sequence diploid organisms, it may be difficult to
quantify the amount of missing data and the sample size variation among populations,
both of which would inflate estimated Fsr values.

Our in silico RADseq analyses of 102 D. melanogaster genomes were largely
consistent with the results of our simulations, in that polymorphism is underestimated,
especially for more diverse genomic regions. Although undoubtedly the populations
from which these samples are derived are experiencing non-equilibrium selective and
demographic processes that we did not model (Pool et al. 2012; Corbett-Detig and Hartl
2012), the overall congruence of our simulations with the Drosophila data suggest our
basic simulation framework captures the major biases that affect RADseq. One possible
explanation of the poor fit of our model at low chromosome sampling depths is that the
real data includes violations of the infinite-sites mutation model, such that mutations
recur within nascent recognition sequences on different haplotypes. This would
effectively inflate diversity relative to infinite-sites assumptions of the coalescent
simulations. Nonetheless it is clear that even though our simulations are relatively
simplistic, we have identified a major potential bias inherent to the RADseq
methodology.

The nucleotide composition of the recognition sequence affects which features
of the genome are sampled and this suggests an appealing means of tuning RADseq for
the specific goals of each respective study. For example, for the purpose of SNP
discovery, one may prefer to select an enzyme with an AT-rich recognition sequence;

conversely if the goal is to study genetic differentiation between divergent populations,
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GC-rich recognition sequences will generally access a higher proportion of conserved
regions of the genome and may increase the overlap in sampled loci between
populations. However, such choices must still be considered with appropriate caveats,
for instance, in species with DNA-methylation, CG sites are known to mutate at
significantly higher rates than the genomic average (Cooper et al. 1995). In this case,
using an enzyme which cuts sequences that contain these motifs may increase the
amount of missing data, and violate a tacit assumption of our model that the per-site
mutation rate in the recognition sequence is identical to that in the sequenced read. We
thus emphasize that because each restriction enzyme will access different genomic
regions, which may not have identical allele frequency spectra, the choice of restriction
enzyme will also affect population genetic inferences.

Our results are also consistent with those of Gautier et al. (2012), but our
interpretation of how RADseq affects estimates of diversity is different. In their study,
Gautier et al. state that RADseq results in overestimates of heterozygosity because they
only consider segregating sites that are observed after the in silico digest of simulated
fragments. This effect occurs because mutations in linked recognition sequences more
likely arise on the major allele haplotype, thus inflating minor allele frequencies and
estimates of heterozygosity. Here, we examine the effect that RADseq has on commonly
used diversity statistics per site and thus account for both observed and unobserved
segregating sites. Because variants in a recognition sequence truncate genealogies
relative to the complete sample at these loci, some true variants are not observed,

overall resulting in underestimates of w and 0,,.
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RADseq is an important emerging methodology, and is likely to see increased
use; it is therefore important to identify biases and where possible to develop a means
of accounting for them. In general, the assumption of identical per-site mutation rates in
the cut-site and sequenced read is likely to be reasonable. Given this assumption, it may
be possible to account for the genealogical bias of RADseq using our (or a similar)
coalescent simulation modification framework. That is, standard coalescent simulations
can be performed, and the resulting sequence digested and analyzed as we describe. If
the resulting biased summary statistics are then compared with empirically-obtained
RADseq summary statistics (e.g. using approximate Bayesian computation software such
as ABCreg; Thornton 2009), it may be possible both to directly account for this source of
bias in population genetic analyses and to recover unbiased estimates of the true
distributions of relevant summary statistics.

This study can serve as a useful guide for investigators using RADseq for
population-genomic analyses. From our simulations and empirical in silico digests, loci
with missing data give inaccurate estimates of summary statistics and may increase the
rate of false positives in outlier analyses. Thus identifying and pruning loci with
incomplete sampling will be important in any RADseq experiment aimed at accurately
estimating commonly used summary statistics. Since RADseq will generally produce
thousands or tens of thousands of markers throughout the genome, pruned datasets
that retain only loci with complete sampling will still be substantial (Figure 3.2).
However, if RADseq is to be used for demographic inference, it remains important to

recognize that ignoring loci with missing data, which are enriched for particular
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genealogical structures, will also affect estimation of evolutionary parameters and may
not accurately represent a "genome average" value. If many loci have high sequencing
depths such that sites with missing data can easily be detected by differences in
coverage, RADseq provides a powerful way to estimate genome-wide divergence among
populations to describe biogeographic patterns. Thus, though our findings urge caution,
with careful consideration of experimental design, data use, and interpretation, RADseq
will likely continue to develop as a powerful technique for addressing questions in

evolutionary biology.

3.5 Methods

Coalescent Simulations

We used Hudson’s ms (Hudson 2002) to simulate 10kb DNA fragments for 100
haploid individuals with different population mutation and recombination rates (i.e
0=4N.u and p= 4N,r, with u and r being the mutation and recombination rates,
respectively). Three values of 6 were used for simulations (0.0001, 0.001, or 0.01 per
bp), with either p = 0 and 0 = p. We first simulated a single population at demographic
equilibrium under each set of parameters above. To explore the effect of demographic
history on RADseq, we modeled a bottleneck in which the population shrunk to 25% of
the original size for 0.1N, generations, 0.1 N generations before present, after which it
recovered to its original size. We also modeled an exponential growth scenario in which
the population grows exponentially from 10% of its present day size over 0.2 N,

generations. Simulations were repeated 100,000 times for each parameter set.
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To explore the ability of RADseq to effectively detect population subdivision
using a common metric of genetic differentiation (Fst) we simulated two populations at
demographic equilibrium that exchange migrants at a constant rate per generation. We
simulated varying levels of population structure with 50 haploid individuals, or
chromosomes, per population with migration rates (Nm) of 10, 1, or 0.1, and

6=p=0.01/bp.

In silico RADseq experiment

Using custom Perl scripts, we performed an in silico digest by searching these
simulated fragments for a specific recognition sequence. Since Hudson’s ms (Hudson
2002) models DNA sequences with zeroes and ones, we used recognition sequences
consisting of 12 zeroes and ones. Assuming equal nucleotide base composition, this
motif occurs as frequently as a 6-base DNA restriction enzyme site (about 2.8 times per
10kb). Fragments that contained no recognition sequences were not analyzed. After the
in silico digest, we analyzed the sequence 100 bp to the right of each recognition
sequence to model the standard RADseq protocol (Baird et al. 2008). This length was
chosen because it is currently a commonly used read length in lllumina sequencing. We
compared “true” summary statistic values (before digest) with "estimated" ones (after
digest, using only chromosomes that would have been recovered in a RADseq
experiment). Here we focus exclusively on biases induced by restriction site
polymorphism, which ignores other potential sources of bias arising from sequencing

and alignment, such as other sources of nonrandom sampling of haplotypes, sequencing
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errors, and reference bias (reviewed in Rokas and Abbot 2009, Pool et al. 2010). These
are expected to be general issues for most or all resequencing projects and are not
addressed here.

Our simulation framework models the biased recovery of haplotypes in the
RADseq protocol due to restriction site polymorphism. At a particular locus, a
chromosome may not be sampled for two reasons: (1) a cut site, which is polymorphic
in the population, is not present on that chromosome or (2) a recognition sequence is
present within 100 bp to the right of another recognition sequence, resulting in a
fragment that is removed in the size-selection step and thus not sampled. As a result,
the number of chromosomes sampled to the right of a particular recognition sequence,
hereafter referred to as “chromosome sampling depth,” varies among loci and may be
less than the total 100 simulated DNA sequences. To demonstrate the effect of missing
data due to the RADseq protocol, in the results below, we either binned loci by
chromosome sampling depth or imposed cutoffs such that only loci with at least a
minimum number of sampled chromosomes are analyzed.

After the in silico digest of each fragment, we calculated the allele-frequency
spectrum (AFS) for the 100 bp to the right of each recognition sequence using all
simulated chromosomes (the “true” AFS). We also calculated the AFS using only
chromosomes that have the correct recognition sequence and would therefore be
sampled by a RADseq protocol (the “estimated” AFS). We then used these to calculate
typical summaries of the data such as average number of pairwise differences (t, Tajima

1983), Watterson’s 0 (6,,, Watterson 1975), Tajima’s D (Tajima 1989), and Fsr (Weir and
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Cockerham 1984). As above, true values for these summary statistics (i, O, D) were
calculated using all chromosomes at the locus, and estimated values (7te, Oye, De) Were
calculated only for chromosomes that would be sampled in a RADseq experiment.

For the simulations with population subdivision, for any one locus, chromosomes
are sampled according to criteria described above to mimic the RADseq protocol. Fst can
be inflated when one population has greater sampling depth, which may occur if a
recognition-site mutation rises to a higher frequency in one population than the other,
and this may confound inferences based on Fsr. Thus, for our analyses, we condition on
sample sizes being the same for both populations to avoid these artifacts that inflate

estimates of Fsr.

Double digest RADseq

We modified our framework to explore how summary statistics are affected by
another RADseq protocol recently developed by Peterson et al. (2012), which relies on
double digests. Briefly, this method requires first digesting the genome with two
restriction enzymes and then selecting those fragments that fall within a defined size
interval. We mimicked this process by sampling only fragments that were flanked by the
same two complete recognition sequences of 6 zeroes and ones that were either within
150-250 or 350-450bps of each other. The length of restriction sequence was chosen to
make the overall size of the mutational target associated with each chromosome at a
locus the same as the standard RADseq protocol mentioned above. We further required

that no additional cut sites be present in between that cause the fragment to be shorter
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than the selected size. We then sampled the 100bp immediately adjacent to the left
recognition sequence and analyzed this as described above for the standard RADseq
method. Although a double digest would normally involve sampling fragments flanked
by two distinct recognition sequences, we only use a single recognition sequence for
this in silico digest (repeated twice). However, since the sampling properties are the
same for any arbitrary sequence of a specified length, we still refer to this modified
framework as a “double digest.” All analyses presented for the double digest protocol

used the size selection with shorter fragments (150-250bps) unless otherwise stated.

Empirical confirmation with Drosophila melanogaster

To confirm whether the predictions of our simulation framework reflect biases
that could arise in an actual RADseq experiment, we performed in silico digests of 102
fully-sequenced hemizygous (i.e. only one chromosome is sampled) D. melanogaster
individuals (Pool et al. 2012). We acquired genome assemblies in fastq format from
www.dpgp.org and subsequently translated these to fasta format requiring a minimum
nominal base quality of 30. We masked regions of putative identity-by-descent,
described in Pool et al. (2012), using the conversion/masking script provided by
www.dpgp.org. We selected three different recognition sequences representing distinct
base compositions, Asel (TAATTA), EcoRI (GAATTC), and Eagl (GCCGGC), to digest the
assemblies in silico. Digests were performed as described above for coalescent
simulations mimicking the standard RADseq protocol (Baird et al. 2008). In brief, we

digested each genome with a specific recognition sequence and considered that
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chromosome to be sampled if there was not an additional recognition sequence within
100 bp to the right. In cases where there was missing data in the recognition sequence
(i.e. due to masked low-quality base calls, and not due to high-quality variants in the
recognition site), we excluded those chromosomes from calculations of both true and
estimated m. Each recognition site with at least one observed chromosome was
considered for downstream analysis if at least 100 of the chromosomes in the original
genome assemblies were covered by quality 30 or greater sequence through the entire

region spanned by the recognition sequence.
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CHAPTER 4 - SINGLE GEOGRAPHIC ORIGIN
OF AUTOTETRAPLOID ARABIDOPSIS ARENOSA
FOLLOWED BY INTERPLOIDY ADMIXTURE

4.1 Abstract

Whole-genome duplication (WGD), which leads to polyploidy, has been
implicated in speciation and biological novelty. In plants, many species exhibit ploidy
variation, which is likely representative of an early stage in the evolution of new
polyploid lineages. To understand the evolution of such multiploidy systems, we must
address questions such as whether polyploid lineage(s) had a single or multiple origins,
whether admixture occurs between ploidies, and the timescale over which ploidy
variation affects the evolution of populations. Here we analyze three genomic datasets
using nonparametric and parametric analyses, including coalescent-based methods, to
study the evolutionary history of Arabidopsis arenosa, a new model system for
understanding the molecular basis of autopolyploid evolution. Autotetraploid A.
arenosa populations are widely distributed across much of Northern and Central
Europe, while diploids occur only in Eastern Europe and along the southern Baltic coast;
the two ploidies overlap in the Carpathian Mountains. We find that the widespread and
variable autotetraploid likely arose from a single ancestral population ~11,000-30,000
generations ago in the Northern Carpathians, where its closest extant diploid relatives

are found today. Afterward, the tetraploid population split into at least four major
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lineages that colonized much of Europe. Reconstructions of population history suggest
substantial levels of interploidy admixture occurred in both directions, but only among
geographically proximal populations. We find two cases in which gene flow was likely
followed by selection on an introgressed locus, suggesting persistent interploidy gene

flow has a local influence on patterns of genetic variation in A. arenosa.

4.2 Introduction

Whole-genome duplication (WGD) has occurred in many organisms across
eukaryotic kingdoms and has profoundly shaped genome evolution (Kellis et al. 2004;
Dehal and Boore 2005; Jiao et al. 2011). These large-scale genomic events are
implicated in increased genomic complexity and are associated with adaptive radiations
of major lineages throughout the tree of life (Dehal and Boore 2005; Jiao et al. 2011).
WGD is particularly frequent in plants; ancient WGD events are estimated to have
occurred in 30-100% of angiosperm lineages (Stebbins 1950; Grant 1981; Masterson
1994; Cui et al. 2006). WGD is also implicated in speciation as it is one of the few
processes that may instantaneously give rise to reproductive isolation due to the lower
success of interploidy crosses, and may thus serve as a mechanism of sympatric
speciation (Wood et al. 2009).

Many extant plant species are known to have multiple ploidy levels (see for
review Ramsey and Schemske 1998; Soltis et al. 2010), showing that polyploidy remains
an active force in plant evolution. It has also been suggested that the establishment of

new autotetraploid populations may be affected by interploidy gene flow (Ramsey and
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Schemske 1998). Thus for species with ploidy variation, it is important to understand the
dynamics of polyploid formation and establishment, interploidy gene flow, and the
evolutionary timescale over which multiple ploidies coexist and shape species-wide
patterns of genetic variation. New genomic approaches and methods to reconstruct
polyploid history (Arnold et al. 2012) hold promise to enable new detailed
understanding of evolutionary dynamics in multiploidy systems.

There are two major classes of polyploids: autopolyploids, which form from
within-species WGD and generally randomly segregate homologs, and allopolyploids,
which have a hybrid origin and usually diploid-like inheritance (Ramsey and Schemske
1998; Parisod et al. 2010; Bomblies and Madlung 2014). Of these, autopolyploids have
received less attention in the evolutionary genetics literature, though in several species
previous studies documented that autopolyploids arose multiple times and/or from
more than one individual (Soltis et al. 1989; Brochmann and Elven 1992; Van Dijk and
Bakx-Schotman 1997; Seagraves et al. 1999; Yamane et al. 2003; Yang et al. 2006; Luo et
al. 2014). There is now good evidence that autopolyploids are more common than was
previously appreciated (Soltis et al. 2010). Their often tetrasomic mating system (arising
from random segregation of all four homologs) presents an intriguing problem and has
important implications for autopolyploid population genetics.

Here, we reconstruct the evolutionary history of autotetraploid Arabidopsis
arenosa. This species is newly being developed as a model for understanding the
molecular basis of autopolyploid evolution (Hollister et al. 2012; Yant et al. 2013); for

this it is particularly important to understand the evolutionary history of the polyploid
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lineage and the degree of interploidy admixture in more detail. This species is an
obligate outcrosser closely related to A. lyrata and the widely used model A. thaliana
(Al-Shehbaz and O’Kane 2002), both of which have sequenced and annotated genomes
(The Arabidopsis Initiative 2000; Hu et al. 2011). Autotetraploid A. arenosa has high
genetic diversity (Hollister et al. 2012; Schmickl et al. 2012; Hohmann et al. 2014), and
populations are widely distributed through much of Central and Northern Europe, while
diploids are found in the Balkans, Eastern Europe and along the southern Baltic Coast in
Poland; the two types overlap in the Carpathian Mountains (Schmickl et al. 2012; Kolar
et al.2015). Previous work suggested that the tetraploids experience gene flow from
diploids, but not the reverse (Jgrgensen et al. 2011). However, the age of the polyploid
lineage is not known, nor is it known whether it arose once or has multiple origins.

We use both parametric and nonparametric analyses of three distinct genomic
sequencing datasets to infer the number and timing of autotetraploid origins in A.
arenosa, estimate the geographic location of origin(s), and quantify the extent and
direction(s) of interploidy gene flow. We find that the populations we sampled of the
widespread autotetraploid A. arenosa likely arose from a single ancestral population,
probably in the Northern Carpathians approximately ~11,000-30,000 generations ago.
Thereafter, the tetraploid lineage split into at least three major lineages that colonized
much of Europe. We find evidence that geographically proximal diploid and tetraploid
populations experienced ancient bidirectional interploidy admixture, and in rare cases,

introgressed haplotypes may have come under selection in the recipient population. The
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methods we use and develop will be applicable in a wide range of species with ploidy

variation.

4.3 Results

Genomic Data and assessment of ploidy and inheritance

We collected seed samples from 6 diploid and 14 tetraploid A. arenosa
populations from across much of its European range (Figure 4.1) and used three
different genome datasets (summarized in Table S4.1) to analyze their population
history. First, we generated a Restriction-Associated DNA sequencing (RADseq; Peterson
et al. 2012) dataset for 358 plants. We complemented this with two additional genome
datasets with overlapping population samples: (1) whole-genome sequencing of
population pools (PoolSeq) which sampled 89 of these plants (Wright et al. 2014), and
(2) a previously generated whole-genome sequencing dataset (IndSeq) that sampled a
subset of 16 of these plants (Yant et al. 2013). The IndSeq dataset, though it samples
fewer plants, serves as a standard, since it does not suffer from ascertainment biases
potentially present in RADseq and PoolSeq data (Cutler and Jensen 2010; Arnold et al.
2013; Gautier et al. 2013) and has higher sequencing depths per chromosome, allowing
more accurate single-nucleotide polymorphism (SNP) calls. We determined genotypes
using the GATK (McKenna et al. 2010), which accommodates diploid and tetraploid
samples, and only considered biallelic sites with sequencing depth cutoffs of 8 or higher
per individual. All three datasets produce similar estimates of allele frequencies, though

estimates of genetic diversity differ; relative to the IndSeq dataset, RADseq
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underestimates diversity, while PoolSeq overestimates it (Tables S4.2 and S4.3,
Supplementary Methods). Both of these follow expected trends based on previously

identified biases in such datasets (Cutler and Jensen 2010; Arnold et al. 2013).
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Figure 4.1 Map of central Europe with sample collection sites. Diploids are labeled D1
through D6 and colored in hues of red to yellow. Tetraploids are labeled T1 through T14
and colored in hues of light blue to purple. Both number and coloring schemes
correspond to a longitudinal gradient from East to West. Tetraploids collected from
railway habitats are labeled with X’s. Our sampling includes collection sites within
Romania (D1, T1), Hungary (D5, D6), Slovakia (T2, T3, T5, D2, D3), Poland (T4, T6),
Austria (T7-T10), and Germany (T11-T14).

We previously assessed ploidy for several of these A. arenosa populations by
flow cytometry (Hollister et al. 2012), but not all individuals were sampled. Therefore,

we assessed the ploidy of each individual sampled here bioinformatically using the
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RADseq dataset and the simple logic that, at polymorphic sites, raw SNP count data for
diploid and autotetraploid samples should be different. Specifically, the distribution of
non-reference base counts for all polymorphic sites within a single diploid individual
should resemble a binomial distribution with a mean of 0.5, while the same distribution
for an autotetraploid should be trimodal, due to an amalgamation of three distinct
binomial distributions with means of 0.25, 0.5, and 0.75, as autotetraploids have three
types of heterozygotes. Using the RADseq dataset, limiting ourselves to filtered
heterozygous sites within an individual that have sequencing depths of at least 30,
counting the number of non-reference base calls and comparing them to simulated
expected distributions using a G statistic (see Materials and Methods), we easily
discriminated between samples of different ploidy (Figure S4.1, Table S4.4). With the
exception of one putatively tetraploid individual found in an otherwise diploid
population (and excluded from subsequent demographic analyses), all samples from a
collection site were of the same ploidy. This is consistent with previous findings in A.
arenosa (Schmickl et al. 2012, Kolar et al. 2015). The one tetraploid we found in a
diploid population is a potentially spontaneous neotetraploid in population D5 (as
opposed to a migrant from a tetraploid population), as it is genetically similar to diploids
sampled from the same population (Figure S4.2). Although two additional diploid
samples did not have simple binomial non-reference base count distributions, they were
likely diploid (see Materials and Methods).

An important assumption when modeling autotetraploid data using the

coalescent is that chromosomes are exchangeable (Arnold et al. 2012). This assumption
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would be violated if there were restricted recombination to certain chromosome pairs,
as would occur if chromosomes have pairing partner preferences. Structure between
duplicated chromosome sets due to pairing preferences should create an enrichment of
alleles at 50% frequency relative to an allele frequency spectrum (AFS) of a population
with unstructured chromosomes (Hollister et al. 2012). Neither the IndSeq nor the
RADSeq datasets display an excess of alleles at 50% frequency (Figure S4.3A), and
tetraploid genotype proportions closely resemble those expected under Hardy-
Weinberg equilibrium for tetrasomic inheritance (Figure S4.3B). These data confirm that
the assumption of random chromosome assortment is not violated and that A. arenosa
populations retain fully tetrasomic inheritance (as previously shown for a smaller set of

samples in Hollister et al. (2012)).

Principal component analysis suggests a single geographic origin of the tetraploids

To study the genetic relatedness of sampled A. arenosa populations, we used
principal component analysis (PCA), a non-parametric approach that allows for multiple
ploidies. For this analysis we used the RADseq dataset, which included the largest
number of individuals sampled. Since PCA is sensitive to sample sizes (Novembre and
Stephens 2008), we used a subsampling approach to control for the disparity in diploid
and tetraploid representation within the RADseq dataset. A PCA of only diploids (10
individuals per population, 11,758 SNPs) shows there are two distinct groups within our
diploid samples (Figure 4.2A), one found in the Carpathian Mountains in Romania and

Slovakia (D1-D3) and another in the biogeographically distinct Pannonian Basin in
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Southern Slovakia and Central Hungary (D4-D6). To study the relationship of the
tetraploids with these diploid gene pools, we added a subsample of 30 tetraploids from
across the A. arenosa range (6,117 SNPs, Figure 4.2B) and found that all tetraploids

group with Northern Carpathian diploids (D2 and D3).

‘9 — 0 — D4
04%&) DS@OC& D2
I D5 < D3
— % o D2 o ©
2 o wns L Df@o
0 . S w - .
© D6 8 .01 3.
o | o |
! [ I I I 1 ! [ I I I 1
-10 -5 0 5 10 -10 -5 0 5 10
PC1 (21.6%) PC1 (19.5%)
C D2
[ J
¥ L
— [ J
x
S &
—
A o z oy
y o “oew DI
= i~
= T5»> &
~ g 4
(@] 1
a
g, - D3

[ I I I I 1
-40 -20 0 20 40 60

PC1 (18.9-19.2%)

Figure 4.2 PCA of diploid and tetraploid A. arenosa. (A) PCA of all diploid populations
separates groups D1-D3 and D4-D6 on PC1. PC2 primarily corresponds with latitude. (B)
PCA as in (A), but including a subsample of tetraploids. Axes in (A) and (B) are labeled
with the proportion of the total variance explained by that principal component. (C) PCA
of single tetraploid individuals with diploid populations D1-D3. A separate PCA was
performed for each tetraploid, 10 individuals from each of 14 tetraploid populations,
and superimposed onto the same PC axes. Populations T1, T2, and T5, which have
admixed with populations D1, D2, and D3, respectively, are labeled to show how they
radiate out from the tetraploid group towards the diploid population with which they
have exchanged alleles. Axes are labeled with the range of the percent of the total
variance explained by that principal component across the 140 PCAs represented.
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These PCA results contain two important pieces of information: (1) the
tetraploids, despite their high genetic diversity, are all comparatively closely related,
and (2) within our sampling the tetraploids are most closely related to Northern
Carpathian diploids. To better visualize the relationship between the tetraploids and the
closest diploid relatives we sampled, we performed another PCA using just Carpathian
diploids (D1-D3). To circumvent the large differences in sample sizes between diploids
and tetraploids, we used 30 diploids (10 per population) and a single tetraploid
individual to elucidate how each tetraploid relates to the principal component space of
diploid genetic variation. We repeated this analysis 140 times, sampling 10 individuals
from each of 14 tetraploid populations, and superimposed the results onto the same
pair of principal component axes (415,718 SNPs, Figure 4.2C). The tetraploids cluster
together between the three diploid populations, suggesting there is a single tetraploid
gene pool within our sample (which was sampled broadly across the tetraploid A.
arenosa range). As before, the tetraploid gene pool is more closely related to the
Northern Carpathian diploids than the Southern Carpathian diploid population we
sampled. Three tetraploid populations radiate from the central cluster towards each of
the three diploid populations, suggesting there may have been admixture. In each case,
the populations where admixture is suggested are the most geographically proximal to
each respective diploid. We further explore the possibility of admixture below using
coalescent analyses. A single PCA with these 30 Carpathian diploids and 30 tetraploids

from across the range yields similar results (Figure S4.4).
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Demographic modeling affirms a single geographic tetraploid origin with ancient
interploidy admixture

The above analyses suggested autotetraploid populations arose from a single
ancestral population, with potential admixture among geographically proximal diploid
and tetraploid populations. To verify this result and quantify admixture proportions, we
explicitly modeled the history of these populations using the coalescent. We modeled
groups of three populations in each case, in an approach we call “trio analyses.” In each
analysis, we constructed models of one diploid and two tetraploid populations, and
tested which of two models better fits observed polymorphism data: (1) a single
tetraploid origin allowing for subsequent interploidy admixture between geographically
proximal populations (model A in Figure 4.3) or (2) two independent tetraploid origins
with potential admixture between tetraploid populations (model B in Figure 4.3). While
it would be possible to generate increasingly complex models, limiting analyses to trios
avoids the problem of excess empty categories in the multidimensional allele frequency
spectrum (AFS) that would occur if more populations were included in each analysis.

For each trio analysis, we always included one tetraploid that is geographically
distant from diploids and displayed no evidence of interploidy admixture according to
simple demographic models (i.e. T7 and T13, Figure S4.5). In addition to a one-time,
bidirectional admixture event in which populations are allowed to potentially exchange
a larger proportion of genetic lineages, low levels of equilibrium migration among

demes is also allowed. For these analyses, we used 4-fold degenerate sites (coding sites
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Figure 4.3 Models of population trios used to infer the number of times the tetraploid
arose from a diploid ancestor. A present-day tetraploid population (T) may share more
genetic variation with a geographically proximal diploid population (D) than a second,
geographically distant tetraploid population (T’) because of interploidy admixture
(Model A) or because of a second, independent origin of a tetraploid population from
the diploid ancestor (Model B). In addition to equilibrium migration rates between all
populations, a one-time, bidirectional admixture event was allowed (black arrows).
where mutations to any base will not alter amino acid sequence) of populations from
our RADseq dataset, since these data produced similar model parameter estimates as
the IndSeq data (Table S4.5, See Materials and Methods below).

We find that among our samples the single tetraploid origin model is
unambiguously supported in all trio analyses (Table $4.6). In cases involving
geographically proximal tetraploids and diploids, we also find evidence of subsequent

interploidy admixture. For example, tetraploids T1, T2, T5, and the railway tetraploids

(T4, T6, T14) share more genetic variation with Carpathian diploid populations than
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tetraploid populations further within the tetraploid range (i.e. T7 and T13; Figure 4.2C,
Figure S4.5). Nevertheless, population trio analyses show these admixed tetraploid
populations diverged from the same ancestral population as T7 and T13 (Table S4.6A,B),
and that allele sharing thus reflects subsequent admixture, not independent origins.
Analyses of the same populations present in the PoolSeq dataset validated these results
(Table S4.7).

Unidirectional gene flow from diploid to tetraploid A. arenosa was previously
reported (Jgrgensen et al. 2011). However, in our models, maximum likelihood
estimates (MLEs) of bidirectional admixture proportions strongly suggest that
interploidy gene flow occurred among geographically proximal populations in both
directions (Table 4.1). This result holds for 4-fold degenerate as well as noncoding sites
(Table S4.8) and for both RADseq and PoolSeq datasets. Moreover, this result is robust
to higher sequencing depths and thus greater genotype-calling accuracy (Table S4.9).
Similar models that only allow for unidirectional admixture from diploids to tetraploids
invariably have significantly lower likelihoods than those that allow bidirectional
admixture (Table S4.10).

Interploidy admixture appears to be a local effect, as we estimated admixture
proportions using tetraploid populations that are geographically distant from any
diploid and found these are near zero (Table S4.11). For these populations, models that
do not allow for any interploidy admixture fit the data significantly better than those
that do allow admixture (Table S4.10B). The PoolSeq data again gives the same results

(Table S4.10C). Major interploidy admixture events (as opposed to ongoing background
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Table 4.1 MLEs of model parameters using population trios.

Population Trio

D3,T5,T7 D1,T1,T7 D2,T2,T7 D1,T4,T7
Parameter 63,669 sites 93,914 sites 75,373 sites 82,122 sites
Adm 0.22 0.25 0.33 0.24
DT (0.08,0.41) (0.12,0.39) (0.13,0.44) (0.09, 0.34)
Adm 0.44 0.09 0.22 0.10
™ (0.25,0.54) (0.06, 0.19) (0.14, 0.35) (0.02,0.18)
T 6877 9317 5023 6995
Adm (4546, 9153) (7354, 12162) (4129, 8439) (4253, 9920)
D 8318 12629 7077 7814
1 (6100, 12106) (9312, 16276) (5731, 11076) (4762, 11674)
D 33837 55298 40911 49139
2 (20046, 37053) (35567, 68114) (30388, 70942) (30707, 61092)
N 79142 60119 43930 50600
D (52419, 93859) (44793, 72179) (34351, 65234) (38264, 66971)
N 45256 118047 48340 42253
T (33292, 59610) (86096, 137344) (37030, 76297) (27038, 64637)
N 96011 96725 77614 59750
T (70612, 122310) (71698, 121498) (59388, 122849) (38873, 92965)

Notes: MLEs were obtained using the RADseq dataset, with 95% parametric bootstrap
Cls shown below each number. Shown are the admixture proportions from diploids to
tetraploids (Admpr) and tetraploids to diploids (Admrp) going backwards in time, the
time of admixture (Tagm), the divergence time between tetraploids (D;) and the
ancestral tetraploid and diploid (D;), and the population sizes of the diploid (Np),
admixed tetraploid (Nt), and the outgroup tetraploid (Ny). Divergence times are
expressed in generations, population sizes are in haploid number of chromosomes, and
the number of sites used in each analysis is listed below the trio.

levels of admixture) may also be relatively ancient; for all trio analyses involving
populations with interploidy admixture, the 95% parametric bootstrap Cls for the timing
(in generations) of large-scale admixture events overlap with the Cls for the divergence

time of the two tetraploid populations in the trio (Table 4.1).

The ancestral tetraploid is most closely related to Northern Carpathian diploids
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We modified the trio analysis used above to confirm the likely geographic origin
of the autotetraploid. Here, we used two diploid populations and one tetraploid
population in each analysis to test whether tetraploids are more closely related to a
particular diploid gene pool within our sample, while again accounting for interploidy
admixture when present (Figure S4.6). Since we already established above that the
tetraploids are more closely related to Carpathian diploids (D1-D3) than to Pannonian
diploids (D4-D6, Figure 4.2), we only used Carpathian diploid populations. When the
Romanian diploid (D1) is included, the tetraploid population used is consistently more
closely related to one of the Slovakian diploid populations (either D2 or D3; Table
S4.12). This explicit modeling of population history agrees with results from PCA (Figure
4.2B) and suggests that the ancestral tetraploid population is derived from a diploid
lineage whose closest extant relatives (within our sample) are found in the Northern
Carpathian Mountains today. This area corresponds to what Schmickl et al. (2012) called

the “cradle of speciation” for the A. arenosa species complex.

Age of the tetraploid lineage

To estimate the age of the tetraploid, we constructed a model for coalescent
analyses using a population from the oldest tetraploid split (T1 in Romania) and the
closest diploid relative in our sample (D3 in Slovakia). The estimate of the oldest
tetraploid divergence in our sample serves as a lower bound to the age of the tetraploid,
assuming this split occurred soon after the ancestral tetraploid arose in the Northern

Carpathians. Likewise, the estimate of the divergence between the ancestral tetraploid
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and the closest diploid relative serves as an upper bound to the age of the tetraploid.
We estimated these divergence times by constructing a model of four populations
(T1,T5,D1,D3) that accounts for interploidy admixture (Figure 4.4). The MLE for the
divergence between the Romanian and Slovakian tetraploids (T1 and T5) is ~15,000
generations, while the MLE for the divergence between the ancestral tetraploid and
Slovakian diploid D3 is ~19,000 generations. Thus, the ancestral tetraploid arose
~15,000-19,000 generations ago (or ~11,000-28,000 generations using the 95%

parametric bootstrap confidence intervals, Figure 4.4).

27,638
Time (19425, 34876)
‘ \ 19093
(15651, 28351)
15359
11650, 21592
. = ( )
e
v T1 2
D3 T5 —
— S. Carpathian

N. Carpathian

Figure 4.4 Coalescent model to estimate the age of the tetraploid. Divergence times (in
generations) are shown for the oldest tetraploid split (T5 and T1) and for the split
between the ancestral tetraploid and its potential diploid progenitor (D3 and the
ancestor of T5 and T1). 95% parametric bootstrap confidence intervals of divergence
times are listed below estimates in parentheses. This model accounts for interploidy
admixture between geographically close diploids and tetraploids (bidirectional black
arrows among N. Carpathian and S. Carpathian populations).
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Genetic structure within tetraploids reveals distinct clades and multiple migration
routes

To better understand the demographic history of the tetraploid lineage after it
arose, we conducted three separate analyses using only tetraploids: STRUCTURE,
Treemix, and PCA (Figure 4.5). STRUCTURE results indicate that tetraploid populations in
our sample fall into five major clades that roughly correspond to geographic origin. The
exception is that samples collected from railroads defy the general trend of isolation-by-
distance (Figure 4.5A). Population graph analysis with Treemix, a program that
constructs a population tree and allows admixture, supports the STRUCTURE results of
five tetraploid clades, although bootstrap support for a few nodes are low (Figure 4.5B).
We also performed coalescent analyses using one population from each of the four non-
railroad clades, and this showed that the tree topology in Figure 4.5B fits the data
significantly better than all other possible topologies (Table S4.14). PCA broadly agrees
with STRUCTURE and Treemix results (Figure 4.5C), and the patterning of individuals
within the first two principal components resembles the null expectation of a stepping-
stone model across Europe (Novembre and Stephens 2008). However, principal
component three (Figure 4.5D) highlights differences between Southwest German
(Swabian) and Alpine clades. All three analyses in Figure 4.5 show that the
geographically diffuse, panmictic network of railroad tetraploids has admixed with a
population from the Alpine clade, T11, which grows on a railway in the Alps. Nearby
population T10 was also collected near a railway and exhibits low levels of admixture

(Figure 4.5A). Although Treemix results suggest admixture between T1 and the railroad
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tetraploids, this may be an artifact of not including D1 with which they have admixed

(Table 4.1, Figure 4.2C, Figure S4.4).
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Figure 4.5 Genetic structure within the tetraploid. (A) STRUCTURE groups tetraploids
into five major clades that correspond to geographic regions, with the exception of
tetraploids collected from railroads, which cluster together irrespective of geography.
There has been extensive admixture between these railway tetraploids and a population
from the Alpine clade, T11. (B) Population graph analysis with Treemix supports
STRUCTURE results of five clades with admixture and reveals the evolutionary
relationships among clades. Migration edges (red arrows) indicate evidence for
admixture, with numbers indicating migrant ancestry percentages. Bootstrap values
under 90% are shown. (C) PCA using the first two principal components shows
individuals cluster according to geographic region (colored according to STRUCTURE
results) with the exception of the admixed T11. (D) The third principal component
reveals the genetic structure between the Swabian (SW German) and Alpine clades. PCA
axes are labeled with percent of the total variance explained by that principal
component.

From Treemix analysis (Figure 4.5B) and corroborating coalescent simulations we

can infer the oldest split within our sample separates the Southern Carpathian

82



tetraploid from other populations, suggesting an early migration event likely along the
Carpathian Mountains into Romania (T1), while the second oldest split involved a
lineage that we sampled from the Swabian Alb in Southwestern Germany (T12, T13).
Tetraploids sampled from the Alps (mostly in Austria) are more closely related to
Slovakian tetraploids from the Northern Carpathian Mountains (Figure 4.5B), suggesting
they may represent a single colonization route along the Carpathian mountains into the
Alps. The PCA in Figure 4.5D agrees with the interpretation that the Swabian and Alpine

lineages represent separate radiations out of an ancestral Slovakian clade.

Interploidy admixture introduced alleles that came under selection

Among several populations, we found evidence of bidirectional admixture. This
may increase levels of genetic variation in both ploidies and raises the possibility that
gene flow could introduce adaptive alleles. We thus looked for regions of the genome in
which proximal diploid and tetraploid populations have experienced selection on the
same set of genetic variants where these were likely transferred by gene flow (rather
than representing shared ancestral variation). We identified candidate events using
admixed populations in the PoolSeq dataset. We scanned both admixed population
pairs for regions in which both ploidies displayed evidence of selection on similar sets of
geographically unique SNPs. Specifically, we identified loci with significantly low values
of Fay and Wu’s H (Fay and Wu 2000) that also display an excess of high-frequency,
geographically unique shared variants compared to genome-wide patterns. We required

that both populations display evidence of selection because we do not know the
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direction of admixture for particular loci. Furthermore, finding haplotypes under
positive selection in one population, but not in the other, could also be explained by
selection preceding neutral gene flow. This method is thus conservative and will not
detect all loci that may have experienced selection after admixture.

We find only two examples where there is evidence by our criteria of selective
events following admixture in likely introgressed genomic regions. These signals are not
due to fluctuations in sequencing depth, as local depths are similar to genome-wide
averages (Figure S4.7). First, in populations D1 and T1, only one region has 5% outlier
low values of Fay and Wu’'s H in both populations, indicating an excess of high-frequency
derived variants (Figure 4.6A). Using only shared SNPs unique to D1 and T1 relative to all
other sampled populations, we calculated 0y, a metric sensitive to high-frequency
derived variants (Fu 1995). Elevated 6y, in this genomic region suggests it is enriched for
geographically unique, high frequency shared variants in both populations (Figure 4.6B).
These polymorphisms are closely linked (Figure 4.6C,D). This metric contrasts with the
version of O, used in Fay and Wu’s H, which uses all SNPs. We find no evidence of
selection in other populations at this locus, suggesting the allele found in these two
populations may be locally adaptive (Figure S4.8). Two genes within this region have
many high-frequency derived SNPs (relative to the A. lyrata reference and other A.
arenosa populations) that are shared among D1 and T1, one of which causes an amino
acid change (Table S4.15). The two genes are orthologs of A. thaliana genes AT3G63330
and AT3G63340, both of which encode protein phosphatases of otherwise unknown

function (Table S4.16).
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Figure 4.6 Evidence for selection following admixture. (A) Fay and Wu’s H for 100 SNP
windows is below the 5% quantile (dashed line) for both D1 (gray) and T1 (black) near
the end of chromosome 5. (B) 64 calculated in 50 SNP windows, using only shared
variation unique to D1 and T1. Both D1 (gray) and T1 (black) have an excess of high
frequency-shared variation. The dashed lines show the genome-wide 95% quantile for
each distribution. (C,D) Allele frequency plots for the region spanning the thick black line
on the x-axis in (A) and (B) show a strong enrichment of geographically-unique, high-
frequency shared variation for D1 (C) and to a lesser degree for T1 (D). In (C), alleles in
D1 that are also present in T1 but absent from other Carpathian diploids (D2, D3) are
shown. In (D), alleles in T1 are shown if present in D1, but absent from other tetraploids
(T5, T7). Many of these variants fall within genic regions (black lines above C and D).

Second, we found a single genomic region distinct from the one identified in D1

and T1 in which admixture may have been followed by positive selection in populations
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D3 and T5 (Figure S4.9). Although selection is not apparent in most other populations at
this locus, it may be occurring in a second geographically proximal diploid population D2
(Figure S4.10) that has admixed with T2 (Table 4.1). This region contains a single gene
with numerous high-frequency shared SNPs, one nonsynonymous, in D3 and T5. These
polymorphisms are absent from other tetraploid populations, but are also present in D2
(Table S4.17). The single gene with high frequency derived polymorphisms in D3 and T5
encodes a protein with pollen allergen domains that is highly homologous to three A.
thaliana genes in the B-expansin family (AT2G45110, AT1G65680, AT1G65681, Table
S4.18). The proteins encoded by these genes are involved in loosening of plant cell walls
e.g. during the penetration of pollen tubes through the stigma and style during sexual
reproduction (Cosgrove et al. 1997). Expansins may also be important for cell growth in
polyploids, and two expansins, including AT1G65680, were found to be under selection

in polyploid A. arenosa in our previous work (Yant et al. 2013).

4.4 Discussion

Here, we analyze three genomic datasets to assess the demographic history of
autotetraploid A. arenosa and its diploid relatives. We find that the widespread
autotetraploid lineage in A. arenosa likely radiated from a single ancestral population
~11,000 - 30,000 generations ago from a diploid lineage closely related to populations
found in the Northern Carpathians today. Since A. arenosa is generally perennial (Al-
Shehbaz and O’Kane 2002), but flowers every year, with railway populations biennial or

annual (K Bomblies, P Baduel & B Hunter, unpublished), each generation likely
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corresponds to one or two years. These results extend previous work on A. arenosa,
which suggested the Carpathian Mountains as a center of diversity for the species
(Schmickl et al. 2012; Hohmann et al. 2014). Work on other autotetraploids has shown
that autotetraploid lineages often arise from more than a single individual (Soltis et al.
1989; Brochmann and Elven 1992; Van Dijk and Bakx-Schotman 1997; Seagraves et al.
1999; Yamane et al. 2003; Yang et al. 2006; Luo et al. 2014), showing that WGD is likely
an ongoing mutational process. For A. arenosa, the ancestral autotetraploid lineage was
likely comprised of multiple individuals (since it is highly diverse and obligately
outcrossing), but our analyses strongly suggest that only a single polyploid population
gave rise to all our samples of the currently widespread autotetraploid. Unreduced
gamete formation from diploids, perhaps elevated in cold stress conditions during
periods of glaciation, may have played an important role in the formation of this
ancestral gene pool (Ramsey and Schemske 1998).

Our result of a single geographic origin of tetraploid A. arenosa is limited to the
sampling used in this study. A denser sampling of populations from the Northern
Carpathians, or a broader sampling of diploids from the Balkans (Schmickl et al., 2012)
and coastal regions of the Baltic Sea (Kolar et al. 2015), as well as tetraploids from these
areas, may confirm or change conclusions about tetraploid origins. However, in our
population trio analyses above, if a sampled tetraploid population arose from a
different, unsampled diploid ancestor, it would have the same time to the most recent
common ancestor (TMRCA) to the sampled diploid as the unsampled diploid population

from which it arose. However, according to our reconstructions of demographic history,
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all sampled tetraploid populations share the same TMRCA with the diploids that we
sampled for this study. Thus we can rule out that a more distantly related diploid than
the Northern Carpathian diploids gave rise independently to any of the tetraploids
within our sample. However, we cannot formally rule out that there were two
independent origins from very closely-related unsampled diploids that recently diverged
from Northern Carpathian diploids.

Polyploidy is unusual in that it can immediately present a strong gene flow
barrier between ploidies even in sympatry, due to the low fertility of progeny from
interploidy crosses (e.g. triploids; Ramsey and Schemske 1998). Nevertheless, the
autopolyploidization of A. arenosa did not create immediate reproductive isolation, as
our parametric and nonparametric analyses detect multiple, independent cases of
interploidy admixture between geographically proximal populations. Our
reconstructions of evolutionary history show this admixture was likely extensive,
ancient, and importantly, bidirectional. This is in contrast to a previous report for A.
arenosa, which suggested that gene flow had occurred only from diploids to tetraploids,
not the reverse (Jgrgensen et al. 2011). Bidirectional gene flow among ploidies is,
however, consistent with findings from other plant species (Thérsson et al. 2001;
Stahlberg 2009).

Gene flow from diploids to tetraploids can occur without the formation of
triploids, since diploids produce unreduced gametes at some frequency that can fertilize
tetraploids, or neo-tetraploids can arise spontaneously that can also fertilize established

tetraploids (Ramsey and Schemske 1998). Our observation of an apparently newly
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formed tetraploid in a diploid population supports the possibility that the latter
mechanism can occur in A. arenosa. Gene flow from tetraploids to diploids, on the other
hand, necessitates the formation of triploids, since there is no known mechanism of
nondisjunction by which tetraploids can make haploid gametes to regenerate diploids.
Though triploids have low fertility, they generally do retain some fertility, allowing gene
flow to occur via a so-called “triploid bridge” (Ramsey and Schemske 1998). That this is
possible in the Arabidopsis genus is supported by the observation that triploids in A.
thaliana can generate viable aneuploids and populations ultimately resolve to stable
diploids and tetraploids over several generations of selfing (Henry et al. 2005). We did
not identify any triploids in our sampling of 358 plants, but previous studies have
observed rare triploids in A. arenosa (Kolnik 2007; Jgrgensen et al. 2011, Kolar et al.
2015), which may suffice to yield substantial gene flow over evolutionary timescales.
Since estimates of interploidy gene flow tend to be older than several thousand
generations in our models (Table 4.1), it is possible that some degree of interploidy
reproductive isolation has evolved and that triploids were once more abundant than
they are now.

What the consequences are for diploids of the influx of tetraploid alleles or vice
versa is not known. We speculate that interploidy admixture, while generally neutral or
likely at times deleterious, could occasionally result in the exchange of beneficial
haplotypes. That introgressed regions are beneficial and subsequently experience
positive selection seems to be rare, but we do find two cases where admixed

populations seem to have experienced selection in introgressed genomic regions (Figure
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4.6, S9). In both cases, there is evidence of a strong selective sweep in the admixed
diploid and a weaker signature of selection in the corresponding tetraploid. This pattern
may be explained by autotetraploids generally having weaker responses to selection
(Hill 1971), from selection taking place further in the past in the tetraploid, or both.
While these results may also be explained by parallel selection on haplotypes
segregating in both ploidies as standing genetic variation, we do not think this is likely as
the hitchhiking effect is stronger than expected if the selected SNP(s) persisted as
neutral variant(s) as long as the divergence time between D1 and T1 (~35,000
generations). Parallel selection on standing variation this old would likely produce a
softer sweep undetectable by Fay and Wu’s H (Messer and Petrov 2013). Ultimately,
having haplotype information for this region would resolve this uncertainty. It is also
possible these loci are not adaptative, but experienced selection upon introgression due
to other factors such as meiotic drive (Derome et al. 2004).

After the ancestral tetraploid population arose from its diploid progenitor, it
colonized much of Europe via at least four distinct migration routes from its likely origin
in the Northern Carpathian Mountains. One lineage is represented in our sample by a
single population from the Southern Carpathians that diverged from other tetraploids
~12,000 generations ago (S. Carpathian clade, Figure 4.5). This is the oldest tetraploid
divergence time in our sample, and this colonization may have been possible from large
ice-free swaths within the Carpathians, even during the last glacial maximum (reviewed
in Ronikier 2011). At least two tetraploid lineages then independently colonized

southwest Germany and the Alps, diverging from each other ~8,000 generations ago.
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The dating of these events strongly depends on the mutation rate we estimated from
the data (see Methods) and used in coalescent analyses, but these dates can simply be
rescaled if a different mutation rate is discovered.

The migration route of the populations found currently in the Southwestern
German Swabian Alb region is unclear and may have occurred along the chains of
limestone hills that run across Germany north of the Alps. Finally, a fourth lineage
liberated itself from the generally montane niche that other tetraploid lineages are
found in and colonized railroad habitats across Central and Northern Europe. This
genetically and phenotypically distinct “railroad ecotype” has rapidly traversed large
geographic distances such that populations sampled from disparate parts of the range
remain very similar, which is not true of the other tetraploid lineages. This suggests a
rapid and recent range expansion, likely facilitated by migration along railway networks.
To this last point are clearly a few exceptions: we sampled one population from a
railway in the Alps (T11) that is genetically primarily an Alpine type. This second
colonization of railway habitats may have been facilitated by admixture with the more
prevalent railway ecotype found in other parts of Europe (Figure 4.5).

In sum, we show that A. arenosa autotetraploids we sampled from 14 widely
distributed populations all originated from a single ancestral population that likely arose
~11,000 - 30,000 generations ago in the Northern Carpathian Mountains. This
population subsequently split into at least four distinct lineages that colonized the
Southern Carpathians, Southwestern Germany, the Alps, and the railways of Central and

Northern Europe. We also show evidence that there has been bidirectional interploidy
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admixture among geographically proximal diploid and tetraploid populations.
Tetraploids that colonized the Alpine region, where no diploids occur, show no evidence
of past interploidy admixture. In two instances gene flow between diploids and
tetraploids exchanged sets of variants that are associated with selection in both
ploidies, suggesting that bidirectional admixture may have functional consequences,
though whether the alleles that came under selection are adaptive remains to be tested.
Nevertheless, these results suggest that interploidy admixture within multiple-ploidy
systems may shape patterns of variation. Our recovery of an apparently newly formed
tetraploid individual in a population of diploids suggests that polyploids do arise
sporadically within A. arenosa diploid populations. The occasional formation of
neotetraploids could provide an additional mechanism for gene flow from diploids to
tetraploids, and has at least the theoretical potential to generate novel tetraploid
lineages, though no independent lineages appear yet to have established themselves

widely.

4.5 Methods

Generation of DNA sequence data

We used three DNA sequence datasets in this analysis: Restriction-associated
DNA sequencing (RADseq), individual whole-genome sequences (IndSeq), and whole-
genome sequencing of population pools (PoolSeq, Table S4.1). The generation of the

IndSeq and PoolSeq datasets was described previously (Yant et al. 2013, Wright et al.
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2014). We generated the RADseq dataset using a modified a double digest RADseq

protocol (Supplementary Methods; Peterson et al. 2012).

DNA sequence alignment and variant calling

For all datasets, we aligned DNA sequences to the Arabidopsis lyrata reference
genome (Hu et al. 2011) using Stampy v1.0.21 (Lunter and Goodson 2011) with default
parameter values. For the IndSeq and PoolSeq datasets, we removed PCR duplicates
using Picard (http://picard.sourceforge.net/). We locally realigned reads around indels
for all datasets using the Genome Analysis Toolkit (GATK v2.7; McKenna et al. 2010).
We called sequence variants for the IndSeq and RADseq datasets using the GATK. To
maximize variant detection within and between populations for each dataset, we
genotyped all individuals irrespective of ploidy simultaneously as diploid or tetraploid,
with individual genotypes later extracted from the appropriate file. Potential variants
were filtered using the GATK VariantFiltration tool (Supplementary Methods). To call
variants in the PoolSeq dataset, we used SNAPE (Raineri et al. 2012, as described in
Wright et al. 2014). We also used an additional data filtration step to remove loci that

likely contain spuriously mapped sequence reads (Supplementary Methods).

Bioinformatic assessment of ploidy
To determine the ploidy of each sample, we compared non-reference base count
distributions of each sample to those expected of a diploid, triploid, and tetraploid. We

simulated the expected distribution for diploids as Binomial(n=30, p=1/2), since we only
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considered sites with a minimum sequencing depth of 30. To model triploids, we
constructed a compound distribution in which non-reference base counts were
simulated from either Binomial(n=30, p=1/3) or Binomial(n=30, p=2/3) with probability
2/3 or 1/3, respectively, as expected for a neutral mutation frequency spectrum (Fu
1995). For tetraploids, we simulated non-reference base counts from Binomial(n=30,
p=1/4), Binomial(n=30, p=1/2), or Binomial(n=30, p=3/4) with probability 6/11, 3/11, or
2/11, respectively. We compared observed non-reference base counts of each sample

to these simulated expected distributions using a G statistic in which

G=2),0;*In (%), where O;are observed frequencies and E; are expected

frequencies. For calculating G, we categorized alternate base count proportions greater
than 0.2 and less than 0.8 into twelve bins (increments of 0.05) to avoid sequencing
errors that occur at low frequencies. Using G to select the best-fit model for each
sample, we show all samples from a collection site were of the same ploidy (Table S4.4)
with three exceptions: a putative neotetraploid in an otherwise diploid population
(Figure S4.2), and two samples that were likely diploid but not well-modeled by our
expected diploid distribution due to greater, unexplained variance in base count

frequencies (Figure S4.11).

Principal Component Analysis
We performed principal component analysis (PCA) in R using the package
adegenet 1.3-5 (Jombart and Ahmed 2011), which accommodates for variable ploidy. All

PCAs used SNPs in which all individuals had a sequencing depth of at least 8x. For the
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single tetraploid PCA, we allowed up to 30% of individuals to have a sequencing depth

of less than 8x and coded that site as missing for those individuals.

Coalescent analyses

We fit demographic models in population trio analyses to observed data using
fastsimcoal2 (Excoffier et al. 2013), a program that uses the coalescent (Kingman 1982)
to simulate multi-dimensional AFS and a modified expectation-maximization algorithm
to search parameter space and find maximum likelihood estimates (MLEs) for model
parameters. After MLEs are obtained, we compared model likelihoods with Akaike
information criterion (AIC) to assess which model had a higher probability of being
correct given the candidate set of models. To avoid an excess of zeroes in higher-
dimensional AFS used for analysis, we used only three populations and sampled only 6
tetraploids and 9-12 diploids for each population. We only considered sites in which all
individuals had a sequencing depth of at least 8x, using the common allele of 24 A.
lyrata genomes as the reference allele.

Since demographic analyses are potentially sensitive to an enrichment of high-
frequency alleles due to misspecification of the ancestral allele, we attempted to correct
the three-dimensional AFS for mispolarized alleles using the following extension of the
technique described in Baudry and Depaulis (2003). Although we excluded sites with
more than two segregating bases from analyses, multiple mutations may occur at a site
and go undetected if the same mutation occurs twice within the species tree. We

calculated the probability of a biallelic site experiencing multiple mutations using the
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proportion of triallelic sites in the sample, empirically derived estimates of transition
and transversion rates, and equation 3 in Baudry and Depaulis (2003). After an
uncorrected, unfolded 3D AFS was obtained from the data, we constructed a folded 3D
AFS. We multiplied each entry in the folded 3D AFS by the empirically obtained
probability of a biallelic site experiencing more than one mutation to obtain frequency-
specific proportions of mispolarized alleles. We used these proportions to reorient a
proportional number of alleles in the respective unfolded category (Figure S4.12).

To construct 95% parametric bootstrap confidence intervals (Cls), we simulated
the same number of sites used in the analysis 100 times, using linkage blocks of 260bp
(insert size) for the RADseq dataset or 5kb for the IndSeq and PoolSeq datasets, and a
population recombination rate that is roughly twice as large as the population mutation
rate. We estimated the mean population recombination rate per bp using LDhat (Auton
and McVean 2007) on diploid whole-genome sequences, specifically from an 800kb
segment on chromosome 2 in four individuals from population D3. We chose this
chromosomal segment due to even and high sequencing depths. For each simulated
dataset, we ran 50 instances of fastsimcoal2 to infer the MLEs of parameter values,
which were then used to construct confidence intervals.

In order to obtain absolute values for model parameters, a mutation rate must
be specified. We calculated the mutation rate for noncoding and 4fold-degenerate sites
using a simple isolation-migration (IM) model with populations D2 and D3. We obtained
100 MLEs of all parameter values, including the mutation rate, using 50 fastsimcoal2

runs each time to obtain parameter estimates. We repeated this analysis separately for
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noncoding and 4fold-degenerate sites. The mode of the 100 MLEs for the mutation rate
was assumed to be near the true mutation rate, since this held true for 100 datasets
simulated with a known mutation rate (Figure S4.13). We thus used a mutation rate of

3.7x10°® and 4.3x10°® for noncoding and 4fold-degenerate sites, respectively.

Comparison of demographic inference among genomic datasets.

In order to evaluate the sensitivity of demographic inference to dataset type, we
generated a simple IM model for diploid populations D2 and D3 for all three datasets
and calculated the maximum likelihood estimates (MLEs) of model parameters using
fastsimcoal2 (Excoffier et al. 2013). IndSeq and RADseq datasets produced very similar
MLEs of parameter values for divergence time and comparable migration rates when
only 4-fold degenerate sites (sites which can sustain any mutation without causing an
amino acid change) were used (Table $4.5). Thus we used this functional category of
sites for coalescent-based reconstructions of history; the use of noncoding sites caused

results to differ more significantly between datasets (Table S4.5).

Reconstruction of tetraploid history

We characterized tetraploid population structure using STRUCTURE v2.3.4
(Pritchard et al. 2000), selecting a value of K populations that corresponded to the last
largest increase in likelihood before likelihood values approached an asymptote with
increasing values of K. We constructed population graphs of the tetraploids with

Treemix (Pickrell and Pritchard 2012), using population T1 as root and adding migration
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edges until residuals did not appreciably decrease (two in our case). We bootstrapped
the data by generating 1000 replicates, subsampling every three SNPs each time, and
using Newick Utilities (Junier and Zdobnov 2010) to summarize results. Noncoding sites

were used for Treemix analysis.
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CHAPTER 5 — CONCLUSIONS AND FUTURE
DIRECTIONS

A major goal of evolutionary biology is to discover the processes that give rise to
the stunning organismal diversity on Earth. Natural genetic variation among individuals,
which arises from mutations in DNA, creates new phenotypes on which natural selection
may act, driving change in populations. Commonly studied mutations are small DNA
lesions in which a single nucleotide changes, creating a polymorphism that segregates in
a population, or a set of nucleotides are inserted/deleted. However, the process of DNA
replication and division may go awry in another important way that gives rise to cells
with twice the DNA content. This single mutational event, called whole-genome
duplication (WGD), not only creates large-scale phenotypic changes but also gives rise to
populations that have different evolutionary dynamics than the population(s) from
which they arose (Ramsey and Schemske 2002, Bever and Felber 1992).

| have dedicated my thesis to the study of whole-genome duplication, which is a
beautiful error in DNA replication and division that has substantially contributed to
organismal diversity in the plant kingdom (Stebbins 1950, Grant 1981, Masterson 1994,
Cui et al. 2006). In particular, | have chosen to extend our knowledge about
autotetraploids, which arise from WGD events within a diploid species. | began my
studies extending an important body of population genetic theory to autotetraploids
(Chapter 2), and | applied this theory to revolutionary genomic datasets collected from

A. arenosa, a species that has diploid and autotetraploid populations (Chapter 4). In the
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interim, | took time to question the utility of a popular method | chose to use for
sequencing DNA (Chapter 3). The work presented in this thesis goes beyond previous
studies of autopolyploids in terms of the amount of data used and the complexities of
analyses, and it is the first of its kind to address questions surrounding the evolutionary
dynamics of multiple ploidy systems.

However, more work needs to be done both on the A. arenosa system and other
multiple ploidy systems. For example, although | rigorously demonstrated in Chapter 4
that the autotetraploid race in A. arenosa arose from a single ancestral population and
subsequently experienced interploidy admixture, | was only able to extend my
conclusions to the populations included in our sampling. There are other areas within
the A. arenosa range in which diploids and tetraploids grow in geographically close
localities (see Chapter 4 Discussion), and it will be important to study these regions to
see if these tetraploid populations arose from independent ancestral populations or if
they arose from the same ancestral population I've discovered. To accomplish this, | am
currently collaborating with researchers at the University of Olso who have extensively
sampled A. arenosa across its entire range (Kolar et al. 2015). | will help them use the
same type of analyses | created in Chapter 4 to directly extend my previous results to
the entire species. Knowing how frequently autotetraploids arise from diploids will give
us greater insight into how the WGD process contributes to species diversity.

In addition, more studies need to be done on multiple ploidy systems from
different species. A. arenosa is an obligate-outcrosser, meaning that only gametes from

distinct individuals may contribute to progeny in the next generation. However, the

100



evolutionary dynamics of multiple ploidy systems with plants that are self-compatible,
or capable of self-fertilization, may be very different from those observed in A. arenosa.
For instance, the ability to self-fertilize increases the chance of contributing progeny to
the next generation, especially if mates are limited, as is the case with a neopolyploid in
a predominately diploid population (Rausch and Morgan 2005). Self-compatible
neotetraploids may thus have a much greater chance to give rise to established
polyploid populations relative to self-incompatible tetraploids (Rausch and Morgan
2005). Consequently, multiple ploidy systems with self-compatibility may contain

numerous, independently derived polyploidy lineages.
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SUPPLEMENTARY MATERIAL FOR CHAPTER 2

Supplementary Text

Extending Coalescent Theory to Self-Fertilizing Autotetraploids
For a population of autotetraploids that self-fertilize with probability s, the

single-generation transition matrix for the ancestral process is given by

1 1 s |

s 3U=9 g

3 1 1
P-| — l-—
AN N AN

0 0 1

Using the result of Mdhle 1998 and collecting the “fast” events, which occur on the
timescale of single generations, into matrix F and the “slow” events, which occur on the

timescale of N generations, into matrix S, we obtain

s 2(1-)

- z 0O 0 0
3 6
F=| O 1 Ofand S = 3 -1 1
4 4
0 0 1 0o 0 o0
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in the limit as N tends to infinity. Here, F =lim,__ P and S=1lim, . N(P-F). If the limit

N — o0

E =lim,__F' exists, the continuous-time approximation to this ancestral process with

partial selfing is characterized by matrices

-0 4 -45 s ] -0 125 =225 +10 4 -4y
4 -3 4 - 3s 9s* —245+16 9s* —245+16
1 1
E=|0 1 0 and G =0 -
4 -3¢ 4 -3¢
0 0 1 0 0 0

where G = ESE (Mohle 1998).

Note on extending double reduction to arbitrary n

If four lineages are within an individual and double reduction is possible, three
types of events may occur for each pair of lineages in the instantaneous adjustment of
the sample: (1) two lineages come from the same gamete and coalesce in the
immediately previous generation via double reduction with probability o, (2) two
lineages come from the same gamete, do not coalesce in the immediately previous

generation, but coalesce in later generations via double reduction with probability

04

(I-a) , or (3) two lineages get separated into distinct individuals before any

a+2
2
a+

coalescence event with probability (1-a)(—2). Putting these probabilities together, if

four lineages are within an individual, a double coalescence event occurs in the
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instantaneous adjustment of the sample with probability o +2a(1-a)

a
a+2

a single coalescence event occurs with probability Z(a(l—a)( 2 2))+2((1—a)2(

and no coalescence events occur with probability (1-a)2(

instantaneous coalescence events for m individuals that contain four lineages is

Multinomial with length m and probability vector p containing the three probabilities

described above.

Supplementary Tables

o+

2
a+2

Table S2.1 Plant species with confirmed tetrasomic inheritance

2
) . Thus, the number of

Chromosome associations

Species (metaphase I) Reference(s)
Acacia nilotica 1
Actinidia chinensis 2
Allium nevii 3
Arabidopsis lyrata 4
Biscutella laevigata 5,6
Centaurea jacea Bivalents 7
Chrysanthemum boreale Bivalents 8
Dioscorea trifida 9
Epilobium angustifolium Mostly Bivalents, Some quadrivalents 10, 11
Heuchera grossulariifolia Mostly Bivalents, Some quadrivalents 12
Heuchera micrantha 13
Lotus corniculatus Bivalents 14,15
Maclura pomifera 16
Medicago sativa 17
Paspalum notatum™* Mostly quadrivalents 18
Paspalum simplex Mostly quadrivalents 19
Prunus spinosa Bivalents 20
Rorippa amphibia 21
Rorippa sylvestris 21
Rutidosis leptorrhynchoides 22
Thymus praecox 23
Tolmeia menziesii Bivalents 24
Turnera ulmifolia Bivalents 25, 26
Bivalents 27,28

Vaccinium corymbosum

Note: This table lists species that have been demonstrated to be genetically tetrasomic,
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meaning that four alleles segregate at single loci. It is meant to show that numerous
species have been demonstrated to have tetrasomic inheritance, even if cytologically
diploidized, and is not meant to be an exhaustive list.

** Paspalum notatum has tetrasomic inheritance at most markers, but in apmoctic
lines has disomic inheritance around the apospory (apomixis) locus.
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Table S2.2 Patterns of ancestry used to calculate transition probabilities for the
ancestral process of 2 lineages sampled from an autotetraploid population. Balls
represent autotetraploid individuals, and lines are the transmission of gametes. From
left to right, the columns containing probabilities represent the probability of observing
the pattern of ancestry and the conditional transition probabilities for the Markov chain.

Pattern P{Pattern} P11 P12 P13

L Bl 1
N 6 6
N -1 1

3

Pattern P{Pattern} P21 P22 P23

w N

Zﬂ‘_
[§S)
A=

=0
=0
=h

o 3

2. (V-DN-2)

<

N
4o V=DV -2) 331
N* 16 4 16

N -DWN -2)(N -3)
N}

Y

Note: For example, for the pattern of ancestry in which two autotetraploids are half-
sibs, the probability of coalescence is 1/16 because, conditional on this pattern, there is
a 1/4 chance that the two lineages in separate individuals came from the same parent
and a 1/4 chance that they originated from the same chromosome. For the case in
which two autotetraploids are full-sibs, the probability of coalescence is twice as great
since it may occur in each of the two parents.

s
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Table S2.3 Patterns of ancestry used to calculate transition probabilities for the
ancestral process of 4 lineages sampled from an autotetraploid population. Balls
represent autotetraploid individuals, and lines are the transmission of gametes. From
left to right, the columns containing probabilities represent the probability of observing
the pattern of ancestry and the conditional transition probabilities for the Markov chain.

Pattern P{Pattern} P11 P12 Pi3 P Pis P16 P17
1 1 2 1
N 6 3 6
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]
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N-1 2 s
N’® 36 18 36
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Pattern P{Pattern} Pa1 Pay Pa3 Pyq Pas Pae Py
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Table S2.4 Patterns of ancestry that are O(1) and O(1/N) used in constructing the
coalescent process for an arbitrary sample size n.

Pattern P{Pattern} Number of Parents  P{Coalescence|Pattern}

?‘ ? ?' ?) 1

g n—+0(%) 2n-1 0
N N

1 2 n

2n 1 1 1
3 5 “es -n|l—+0| — _ _
1 2 3 n
2n 1 1
3 5 ves 3 5 I- ) N+O(A]2) 2n 0
1 n
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Figure S3.1 True and estimated values of m and 6,, as a function of the chromosome
sampling depth for 6 = p = 0.01/bp. Light gray regions show the 95% bootstrap
percentile confidence intervals (1000 simulations) for simulations with recombination,
and dark gray regions are from simulations without recombination. In the absence of
recombination, true values of summary statistics vary more as a function of the
chromosome sampling depth and estimated values are lower.
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Figure S3.2 Mean values of m. (solid red) and 0. (solid blue) for loci with different
sampling depth cutoffs (i.e. loci that have at least the specified number of sampled
chromosomes with intact recognition sequences). Dashed lines represent the true
simulation average for m (red) and 6 (blue). (A) 6=p=0.01/bp, (B) 6=p=0.001/bp, (C)
6=p=0.0001/bp. Since 100bp sequences were analyzed, averages on the y-axis are 100
times greater than the per bp parameter values.
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Figure $3.3 Chromosome sampling depth proportions for the standard (red) and double
digest (blue) RADseq protocols. The upper graph shows sampling depths for
6=p=0.01/bp and the lower graph for 6=p=0.001/bp.

120



1.5

Pi

0.5

0.0

0 20 40 60 80 100

Chromosome Sampling Depth

Figure S3.4 True 7 (solid lines) and estimated m (dashed lines) vary as a function of
chromosome sampling depth for the standard (blue) and double-digest (red) RADseq
protocols. Dotted lines represent the true simulation averages of m. Loci with higher
chromosome sampling depths (i.e. near 100) have true and estimated values of & that
are below the true simulation average, especially for the double-digest RADseq
protocol.
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Figure S3.5 Mean values of m. (solid red) and 0. (solid blue) for loci with different
sampling depth cutoffs (CSDC, i.e. loci that have at least the specified number of
sampled chromosomes with intact recognition sequences). Dashed lines represent the
true simulation average for it (red) and 0 (blue). (A) Standard RADseq with 6=p=0.01/bp,
(B) double digest RADseq with 6=p=0.01/bp, (C) standard RADseq with 6=p=0.001/bp,
(D) double digest with 8=p=0.001/bp. Since 100bp sequences were analyzed, averages
on the y-axis are 100 times greater than the per bp parameter values.
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Figure S3.6 Distribution of estimated Fst when all haplotypes are sampled (blue) versus
the true distribution (black), for Nm=10 (A), Nm=1 (B), and Nm=0.1 (C).
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Figure S3.7 Proportion of estimated m (red), 6y, (blue), or D (purple) 5% outlier loci that
are false positives (solid lines) or false negatives (dashed lines) relative to the true
distribution for different chromosome sampling depth cutoffs. (A) Standard RADseq

protocol. (B) Double digest protocol.

123



SUPPLEMENTARY MATERIAL FOR CHAPTER 4
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Generation of double-digest RADseq dataset

We used only one methylation-insensitive restriction enzyme (HpyCH4V) to
generate blunt-end DNA fragments. We constructed adapters to have T overhangs and
custom barcodes as described in Peterson et al. (1) and combined the A-tailing step with
the adapter-ligation step. We sequenced. DNA libraries on an Illumina HiSeq 2500 at the
Harvard University Center for Systems Biology core facility. We used custom Perl scripts

to sort sequence reads according to adapter barcodes.

GATK filter expression for VariantFiltration

RADseq data
"QD < 2.0 || MQ < 40.0 || HaplotypeScore > 13.0 || MappingQualityRankSumTest < -
12.5" --filterName "TET.3.21.14"

Individual whole-genome sequences

"D < 2.0 || FS > 600 || MQ < 40.0 || HaplotypeScore > 13.0 ||
MappingQualityRankSumTest < -12.5 || ReadPosRankSum < -8.0" --filterName
"TET.2.10.14"

Filtering loci with spuriously mapped sequence reads

Allele frequency spectra for all populations, both diploid and tetraploid,
exhibited an enrichment of alleles at a frequency of 50% in the sample, which can arise
from reads mapped to duplicate loci, or in the case of tetraploids, from chromosome

pairing preferences. In the former case, we expect read coverage to be higher at these
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sites. Consequently, we created an additional data filtration step to exclude loci at
which reads mapped from potentially paralogous loci as follows: Using 8 diploid whole-
genome sequences for populations D2 and D3, we targeted loci with erroneously
mapped reads by identifying annotated genes or intergenic segments (no longer than
2kb) in which all 8 diploids were heterozygous at more than 2 sites within the defined
region. We excluded these loci from all downstream analyses, as it is unlikely for all 8
diploids from two distinct populations to be heterozygous at 3 or more sites within a
gene or intergenic segment according to Hardy-Weinberg equilibrium. We used only
diploid genomes for this analysis in order to prevent ascertainment bias against

potentially diploidized loci in the autotetraploids.

Concordance between datasets

Despite the different DNA library preparations and variant calling methods, allele
frequency estimates from the RADseq and PoolSeq datasets are highly correlated with
the same polymorphic sites identified in the IndSeq dataset (Pearson’s r ~80%, Table
S4.2). However, estimates of genetic diversity differ (Table S4.3). As expected, RADseq
underestimates diversity relative to IndSeq (2), while PoolSeq estimates are only slightly
elevated. The difference between 0xt and 0y (as calculated in (3) and (4), respectively) is
larger for RADseq and PoolSeq than IndSeq, which may be attributable to a variety of
differences between the datasets (i.e. sample sizes) or the way they are
bioinformatically processed. For example, large-sample SNP calling with GATK may

cause a slight excess of intermediate-frequency alleles (5) while pooled data creates
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challenges for calling low-frequency SNPs since sequencing errors occur at similar
frequencies (6).
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Supplementary Figures
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Figure S4.1 Ploidy assessment of individuals. Expected (gray) and observed (colored)
histograms of raw, non-reference base counts for diploids (red) and tetraploids (blue) at
all polymorphic sites with at least 50X sequencing depth. The x-axis of each histogram is
the frequency of a non-reference base within an individual. See main text for further
details.
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Figure S4.2 Candidate neoautotetraploid in population D5. An individual collected from
population D5 may be a spontaneously arisen autotetraploid. (A) Histogram of
unfiltered, non-reference base counts for individual D5-21 (blue) superimposed on the
expected distribution for an autotetraploid individual (red). (B) The same set of
histograms for another individual from population D5, which show the sample is diploid.
All other individuals from population D5 resembled this pattern with the exception of
D5-21. (C) Principal Component Analysis shows D5-21 (black dot near arrow) is closely
related to other diploids from population D5 (circled in green).
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Figure S4.3 Population genetic data of autotetraploids consistent with tetrasomic
inheritance. (A) Allele frequency spectra from autotetraploid populations do not display
an enrichment of intermediate-frequency alleles at 50% for RADseq datasets. (B)
Genotype proportions (y-axis) as a function of allele frequency (x-axis) for each
tetraploid population along with expected values under tetrasomic inheritance. These
data are consistent with autotetraploidy and tetrasomic inheritance in A. arenosa.
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Figure S4.4 PCA of D1,D2, and D3 with subsample of tetraploids. PCA of 30 Carpathain
diploids (D1-D3) and the same number of tetraploids from across the range.
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Drift Parameter

Figure S4.5 Treemix' population graph for the RADseq dataset. Only bootstrap values
below 90% are shown. Adding 5 migration edges (green arrows) allowed the RADseq
population graph to fit the data best. This graph suggest a single origin of the tetraploid
race, but bootstrap support for important nodes are low. However, there appears to be
extensive interploidy admixture between diploid and tetraploid populations that are

geographically close.
1. Pickrell, J. K., & Pritchard, J. K. (2012). Inference of Population Splits and Mixtures from Genome-Wide
Allele Frequency Data. PLoS Genetics, 8. doi:10.1371.
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D Origin D’ Origin Unknown Origin

Time

Figure S4.6 Population trio analysis of two diploids and one tetraploid. The geographic
origin of the tetraploid race may be inferred if certain models explain the data better
and suggest tetraploids are more closely related to particular diploid gene pools (here,
either D or D’). However, the tetraploid may be more distantly related to the diploids
(far right), which arose from an ancestral population with an unknown geographic
location.
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Figure S4.7 Local sequencing depths for regions potentially under selection. Sequencing
depths for D1 (A), D2 (B), D3 (C), T1 (D), T5 (E), and T7 (F) within the region shown in
Figure 6. Each point represents the average sequencing depth of a 50bp window using
only sites with a depth of at least 15x (the sequencing depth cutoff used for analyses).
The solid purple line is the median genome-wide depth for 50bp windows, while the
dashed green line is the median for the region shown in Figure 6. Likewise, (G-L) are
sequencing depths for the same populations, in the same order (D1 (G), D2 (H), D3 (1),
T1 (J), T5 (K), and T7 (L)), for the region shown in Figure S9.
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Figure S4.8 Fay and Wu’'s H near end of chromosome 5 for other populations. Fay and
Wu’s H calculated for 100 SNP windows near the end of chromosome 5 for T7 (A), T5
(B), D3 (C), and D2 (D). The black line on the x-axis corresponds to the same region
highlighted in Figure 6, and the dashed line represents the 5% quantile for each
distribution.
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Figure S4.9 Evidence of selection after admixture between D3 and T5. (A) Fay and Wu'’s
H for 100 SNP windows is below the 5% quantile (dashed line) for both D3 (gray) and T5
(black) on chromosome 4. (B) 6y calculated in 50 SNP windows, using only shared
variation unique to D1 and T1. Both D1 (gray) and T1 (black) have an excess of high
frequency-shared variation. Allele frequency plots for the region spanning the black line
on the x-axis show a strong enrichment of geographically-unique, high-frequency shared
variation for D1 (C) and T1 (D). In panel (C), alleles in D3 that are also present in T5 but
absent from another Carpathian diploid (D3) are highlighted. These alleles were allowed
to be present in D2 due to its close relation to D3. Likewise, for panel (D), alleles in T5
are highlighted if present in D3 but absent from other tetraploids (T1, T7). Thus, many of
the high-frequency alleles in these admixed populations are shared and not present in
other populations or the same ploidy. Many of these variants fall within genic regions
(black lines above C and D).
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Figure S4.10 Fay and Wu’s H on chromosome 4 for other populations. Fay and Wu’s H
calculated for 100 SNP windows on chromosome 4 for T7 (A), T1 (B), D1 (C), and D2 (D).
The black line on the x-axis corresponds to the same region highlighted in Figure S9, and
the dashed line represents the 5% quantile for each distribution. There appears to be no
evidence of selection at this locus in other populations except for D2 (D), a diploid
population geographically close to D3 and T5.
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Figure S4.11 Other potential polyploid samples within diploid population D6. Although
the alternate base count frequencies for individual D6-12 (A) and D6-26 (B) were best
modeled by the triploid and tetraploid models, respectively, the raw data suggest they
are diploid with greater, unexplained variance in base count frequencies around an
expected mean (for diploids) of 0.5.
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Figure S4.12 Correction of 3D-AFS for demographic inference. Allele frequency spectra
were corrected for ancestral state misspecification, which creates an excess of high-
frequency derived alleles. Shown here is an application of the technique in Baudry and
Depaulis 2003 to a two-dimensional frequency spectrum of two tetraploid samples each
containing six individuals (or 24 haplotypes). The black arrows point to the high-
frequency allele categories in the uncorrected (left) and corrected (right) spectra; note
the number of variants fixed in one sample and high frequency in the other decrease
after correction. The excess of high-frequency variants in the uncorrected spectrum is
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likely due to ancestral state misspecification from multiple mutations occurring between
A. arenosa and the A. lyrata reference panel.
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Figure S4.13 Estimation of mutation rate from simulated data. Histogram of the
maximum likelihood estimates of mutation rates from 100 data sets simulated with
fixed parameter values. The vertical line shows the input mutation rate value used to
simulate the data, which is very close to the mode of the distribution.
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Supplementary Tables

Table S4.1 Population and sample size composition of each data set.

RADseq POOLseq INDseq
Population sample size Population sample size Population sample size
T1 20 T1 19 T11 3
T2 16 T5 9 T12 3
T3 20 T7 10 T14 2
T4 20 D1 13 D2 4
T5 19 D2 9 D3 4
T6 20 D3 19 Total 16

T7 20 D4 10
T8 20 Total 89

T9 20
T10 16
T11 20
T12 20
T13 20
T14 21
D1 12
D2 11
D3 21
D4 11
D5 15
D6 16
Total 358

Note: D’s represent diploid populations, and T’s represent tetraploid populations
according to Figure 1.

Table S4.2 Pearson correlation of allele frequencies in either the RADseq dataset (A) or
the POOLseq dataset (B) with the same alleles discovered in the INDseq data.

A RADseq population sample size correlation
D2 18 0.75
D3 38 0.85
T8 72 0.81
T11 72 0.87
T12 72 0.87
B POOLseq population sample size correlation
D2 18 0.77
D3 38 0.80
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Table S4.3 Estimates of the population mutation rate 0 using Watterson’s estimator

(Bw) and the average number of pair wise differences (0,;) for the three datasets: INDseq
(A), RADseq (B), and POOLseq (C).

INDseq

A Population O 0,

D2 0.022 0.023

D3 0.024 0.024

T8 0.039 0.039

T11 0.038 0.038

T12 0.039 0.039
RADseq

B Population Oy 0,

D2 0.017 0.019

D3 0.019 0.020

T8 0.020 0.027

T11 0.026 0.029

T12 0.025 0.028
POOLseq

C Population Oy 0,

D2 0.026 0.031

D3 0.024 0.031
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Table S4.4 Best-fit model of non-reference base counts for each individual.

Individual ~ BeSt Tindividual  BeSt [ individual  BeSt | individual  BeSt | individual  BeSt | individual BeSt | individual BeSt | individual ~BeSt |individual Best
Mo Model Model Model Model del Model Model

del del Model

D1-10 2 D3-7 2 D6-3 2 T2-9 4 T4-9 4 T7-1 4 T9-1 4 T11-13 4 T13-13 4
D1-13 2 D3-8 2 D6-4 2 T3-1 4 T5-1 4 T7-10 4 T9-10 4 Ti1-14 4 T13-14 4
D1-15 2 D3-9 2 D6-5 2 T3-10 4 T5-10 4 T7-11 4 T9-11 4 Ti1-15 4 T13-15 4
D1-16 2 D4-1 2 D6-7 2 T3-11 4 T5-11 4 T7-12 4 T9-12 4 Til-16 4 T13-16 4
D1-17 2 D4-10 2 D6-8 2 T3-12 4 T5-12 4 T7-13 4 T9-13 4 T11-17 4 T13-17 4
D1-18 2 D4-11 2 T1-12 4 T3-13 4 T5-13 4 T7-14 4 T9-14 4 Ti1-18 4 T13-18 4
D1-19 2 D4-12 2 T1-13 4 T3-14 4 T5-14 4 T7-15 4 T9-15 4 T11-19 4 T13-19 4
D1-24 2 D4-14 2 T1-14 4 T3-15 4 T5-15 4 T7-16 4 T9-16 4 T11-2 4 T13-2 4
D1-25 2 D4-18 2 T1-15 4 T3-16 4 T5-16 4 T7-17 4 T9-17 4 T11-20 4 T13-20 4
D1-5 2 D4-19 2 T1-16 4 T3-17 4 T5-17 4 T7-18 4 T9-18 4 T11-3 4 T13-3 4
D1-6 2 D4-2 2 T1-17 4 T3-18 4 T5-18 4 T7-19 4 T9-19 4 Ti1-4 4 T13-4 4
D1-8 2 D4-20 2 T1-18 4 T3-19 4 T5-19 4 T7-2 4 T9-2 4 T11-5 4 T13-5 4
D2-1 2 D4-3 2 T1-2 4 T3-2 4 T5-2 4 T7-20 4 T9-20 4 T11-6 4 T13-6 4
D2-10 2 D4-5 2 T1-21 4 T3-20 4 T5-3 4 T17-3 4 T9-3 4 T11-7 4 T13-7 4
D2-11 2 D5-1 2 T1-22 4 T3-3 4 T5-4 4 T7-4 4 T9-4 4 T11-8 4 T13-8 4
D2-2 2 D5-12 2 T1-23 4 13-4 4 T5-5 4 T7-5 4 T9-5 4 T11-9 4 T13-9 4
D2-3 2 D5-13 2 T1-26 4 T3-5 4 T5-6 4 T7-6 4 T9-6 4 Ti2-1 4 T14-1 4
D2-5 2 D5-16 2 T1-27 4 T3-6 4 T5-7 4 T17-7 4 T9-7 4 Ti2-10 4 T14-10 4
D2-6 2 D5-17 2 T1-3 4 T3-7 4 T5-8 4 T17-8 4 T9-8 4 Ti2-11 4 T14-11 4
D2-7 2 D5-18 2 T1-34 4 3-8 4 T5-9 4 T17-9 4 T9-9 4 T12-12 4 T14-12 4
D2-8 2 D5-2 2 T1-4 4 T3-9 4 T6-1 4 T8-1 4 T10-1 4 T12-13 4 T14-13 4
D2-9 2 T1-5 4 T4-1 4 T6-10 4 T8-10 4 Ti0-10 4 Ti2-14 4 T14-14 4
D3-1 2 D5-22 2 T1-6 4 T4-10 4 T6-11 4 T8-11 4 T10-11 4 T12-15 4 T14-15 4
D3-10 2 D5-23 2 T1-7 4 T4-11 4 T6-12 4 T8-12 4 T10-12 4 T12-16 4 T14-16 4
D3-11 2 D5-28 2 T1-8 4 T4-12 4 T6-13 4 T8-13 4 T10-13 4 T12-17 4 T14-17 4
D3-12 2 D5-4 2 T2-1 4 T4-13 4 T6-14 4 T8-14 4 T10-14 4 T12-18 4 T14-18 4
D3-13 2 D5-5 2 T2-10 4 T4-14 4 T6-15 4 T8-15 4 T10-15 4 T12-19 4 T14-19 4
D3-14 2 D5-6 2 T2-11 4 T4-15 4 T6-16 4 T8-16 4 Ti0-16 4 T12-2 4 T14-2 4
D3-15 2 D5-9 2 T2-12 4 T4-16 4 T6-17 4 T8-17 4 T10-2 4 T12-20 4 T14-20 4
D3-16 2 D6-11 2 T2-13 4 T4-17 4 T6-18 4 T8-18 4 T10-3 4 Ti2-3 4 T14-21 4
D3-17 2 T2-14 4 T4-18 4 T6-19 4 T8-19 4 T10-4 4 T12-4 4 T14-3 4
D3-18 2 D6-14 2 T2-15 4 T4-19 4 T6-2 4 T8-2 4 T10-5 4 T12-5 4 T14-4 4
D3-19 2 D6-17 2 T2-16 4 T4-2 4 T6-20 4 T8-20 4 T10-6 4 T12-6 4 T14-5 4
D3-2 2 D6-18 2 T2-2 4 T4-20 4 T6-3 4 T8-3 4 T10-7 4 T12-7 4 T14-6 4
D3-20 2 D6-2 2 T2-3 4 T4-3 4 T6-4 4 T8-4 4 T10-8 4 T12-8 4 T14-7 4
D3-21 2 D6-20 2 T2-4 4 T4-4 4 T6-5 4 T8-5 4 T10-9 4 T12-9 4 T14-8 4
D3-3 2 D6-25 2 T2-5 4 T4-5 4 T6-6 4 T8-6 4 Ti1-1 4 T13-1 4 T14-9 4
D3-4 2 T2-6 4 T4-6 4 T6-7 4 T8-7 4 Ti1-10 4 Ti3-10 4

D3-5 2 D6-27 2 T2-7 4 T4-7 4 T6-8 4 T8-8 4 Ti1-11 4 Ti3-11 4

D3-6 2 D6-29 2 T2-8 4 T4-8 4 T6-9 4 T8-9 4 Ti1-12 4 T13-12 4

Note: Three models of non-reference base count distributions were tested for each
individual: diploid (2), triploid (3), and tetraploid (4). Shown here is the model that fit
the observed data best using a G statistic (see Materials and Mehtods). Three samples,
highlighted in red, have non-reference base count distributions that best fit a polyploid
model despite being collected from an otherwise diploid population.
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Table S4.5 Contrasting the maximum likelihood estimates (MLEs) of a simple isolation-
migration (IM) model of two diploid populations (D2, D3) sequenced in all three

datasets.
A 4-fold degenerate sites B Noncoding sites
INDseq RADseq POOLseq INDseq RADseq POOLseq
np,=8, Np3=8 np,=18, np3=24 np,=18, np;=38 Npy=8, Np3=8 Npy=18, np3=24 np,=18, np;=38
Parameter 156,760 sites 47,113 sites 739,728 sites Parameter 11,325,439 sites 290,326 sites 8,639,105 sites
. 24615 21908 11866 . 63674 31351 33366
Divergence ;014 37480) (10691, 29631) (5880, 16953) Divergence s526, 71472) (26339, 39205) (31037, 48595)
N 155286 69113 60658 N 116702 73389 133504
D2 (79724, 181797) (46014, 89697) (29934, 74827) b2 (97389, 130965) (65452, 79065) (121756, 182340)
N 105791 111881 53458 N 165075 106324 148982
03 (58728, 128833) (73994, 130336) (27164, 66627) D3 (142798, 172954) (99061, 114846) (136730, 197768)
N 228276 448073 404866 N 221904 192970 308738
Anc (159393, 302083) (350585, 539454) (384179, 458626) Anc (166477,275901)  (174886,236687) (300853, 332773)
N..m 0.33 0.14 0.01 No.m 0.49 0.37 0.01
D277'D3D2 (0.012, 1.16) (0.006, 0.42) (0.005, 0.21) p277'D3D2 (0.29,0.90) (0.23,0.53) (0.01,0.10)
No.m 0.039 0.72 0.01 N..m 1.12 0.71 0.03
Dp37"'D2D3 (0.007, 0.789) (0.021,0.82) (0.004, 0.29) D3gab2D3 (0.66, 1.80) (0.54,1.14) (0.03,0.19)
Note: The analysis was repeated for both 4fold-degenerate and noncoding sites.

Beneath each dataset label are the sample sizes used for each diploid population.
Shown are the MLEs of divergence time (generations), population sizes (Np,, Np3, and

Nancestrat), and population migration rates (where mp;psis the migration rate from D2 to
D3).

Table S4.6 Comparison of model likelihoods using AIC to infer number of autotetraploid
origins with the RADseq dataset.

A D1,T1,T7

D2,T2,T7 D1,T4,T7 D3,T5,T7

Model A’ Model B | ModelA ModelB | Model A Model B | Model A Model B
Max log,,(Lhood;) | -57193.012  -57244.078 | -41399.139  -41424.2 | -47571.272 -47629.888 | -35150.671  -35183.609
AICi 263419.6 263654.7 190686.1 190801.5 219109.8 219379.7 161910.8 162062.5

Ai 0 235.1 0 115.4 0 269.9 0 151.7
w; ~1 8.9%10°2 ~1 8.7%10°% ~1 2.5%10°%° ~1 1.1%¥10-33

B D1,T1,T13 D2,T2,T13 D1,T4,T13 D3,T5,T13
Model A’ Model B | Model A Model B | Model A Model B | Model A Model B
Max log,,(Lhood;) | -54442.147  -54522.276 | -40612.069 -40652.252 | -44756.02  -44827.987 | -33922.588  -33955.301
AICi 250751.4 251120.4 187061.5 187246.5 206145.1 206476.5 156255.3 156405.9

Ai 0 369 0 185 0 331.4 0 150.6
w; ~1 7.5%1078! ~1 6.7*%10™ ~1 il 10 ~1 2.0*10°33

Notes: Using the RADseq data, the maximum likelihood of model A and model B was
computed for each population trio, with each trio consisting of a geographically
proximal diploid and tetraploid as well as a tetraploid outgroup, either T7 (A) or T13 (B).
The highlighted rows contain the Akaike weights, or the relative likelihood of each
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model given the candidate set of models. For all population trios examined, a single
origin of the tetraploid, model A, is unambiguously supported.

AIC, =2(d) - 2In(Lhood,)

Where d is the number of parameters (18)

A, = AIC, - min(AIC)

-0.5A,

Table S4.7 Comparison of model likelihoods using AIC to infer number of autotetraploid
origins with the PoolSeq dataset.

D1,T1,T7 D3,T5,T7

Model A’ Model B | Model A Model B

Max log,,(Lhood;) |-151899.163 -151959.533 | -114186.854 -137029.986

AICi 699557.5 699835.5 525885.9 631082.4
Ai 0 278 0 105196.5
w- ~1 4.3%10°% ~1 ~0

Note: Using the POOLseq data, the maximum likelihood of model A and model B was
computed for each population trio, with each trio consisting of a geographically
proximal diploid and tetraploid as well as a tetraploid outgroup T7. The highlighted rows
contain the Akaike weights, or the relative likelihood of each model given the candidate
set of models. The calculation of Akaike weights is described in Table S4.6.
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Table S4.8 MLEs of population trio models using noncoding sites.

Population Trio

Parameter D3,T5,T7 D1,T1,T7 D2,T2,T7 D1,T4,T7
Adm 0.53 0.43 0.50 0.30
oT (0.39, 0.59) (0.35,0.53) (0.37,0.56) (0.22,0.42)
Adm 0.26 0.17 0.20 0.12
i (0.16, 0.40) (0.12,0.28) (0.15, 0.35) (0.07,0.21)
T 4638 12484 4748 9752
Adm (3186, 7215) (10297, 15017) (3171, 6576) (7671, 13843)
D 6169 17361 6667 11099
1 (3885, 9808) (12428, 19641) (4104, 10298) (8650, 15990)
D 59295 110066 53875 80652
2 (41573, 75965) (95595, 133400) (32289, 49758) (61511, 95734)
N 43721 52198 27091 50824
© (31102, 61832) (45740, 59630) (17898, 35600) (42982, 61011)
N 36039 128686 53307 56704
T (24061, 53546) (100619, 142437) (34522, 73677) (45616, 74825)
N 69019 118502 71323 86845
o

(43314, 111716

)

(87292, 129380)

(43394, 100805)

(67725, 116131)

Notes: These values were obtained using noncoding sites in the RADseq dataset. Shown
are the admixture proportions from diploids to tetraploids (Admpr) and tetraploids to
diploids (Admyp) going backwards in time, the time of admixture (Tagm), the divergence
time between tetraploids (D;) and the ancestral tetraploid and diploid (D,), and the
population sizes of the diploid (Np), admixed tetraploid, and the outgroup tetraploid
(Nt). Divergence times are expressed in terms of generations, and population sizes are

in haploid number of chromosomes.

Table S4.9 MLEs of model parameters using population trios and higher sequencing

depth cutoffs (12X) for tetraploids.

Population Trio

Parameter
Adm,;
Adm;,

Tadm
Dl
DZ
ND
Ny
N,

D3,T5,T7 D1,T1,77 D2,T2,T7
0.32 0.34 0.25
0.42 0.11 0.22
6478 9681 5196
9019 10806 7391

30312 69589 26397
67156 48689 44285
46813 96627 60189
120788 84998 90689

D1,74,T7

0.13
0.12
5923
7167
40518
58470
38969
54572

Notes: These values were obtained using fourfold degenerate sites in the RADseq
dataset. Shown are the admixture proportions from diploids to tetraploids (Admp7) and
tetraploids to diploids (Admyp) going backwards in time, the time of admixture (Tadm),
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the divergence time between tetraploids (D;) and the ancestral tetraploid and diploid
(D,), and the population sizes of the diploid (Np), admixed tetraploid, and the outgroup
tetraploid (N1). Divergence times are expressed in terms of generations, and population
sizes are in haploid number of chromosomes.

Table S4.10 Relative likelihoods of models involving bidirectional, unidirectional, or no
admixture.

A D1,T1,T7
Model bidirecti unidirecti No ixture
# parameters 18 17 15
Max log,o(Lhood;) |-57178.569 -57198.122 -57191.146
AICi 263353 263441.1 263405
A; 0 88.1 52
w; ~1 7.4%1020  5.1%10-12
D2,T2,T7
Model bidirecti unidirecti No ixture
# parameters 18 17 15
Max log,o(Lhood;) |-41399.016 -41417.748 -41452.850
A]:(:i 190685.5 190769.8 190927.4
A; 0 84.3 241.9
w; ~1 4.9%10-19 3.0*10-%3
D1,14,T7
Model bidirectional unidirectional No admixture
# parameters 18 17 15
Max log,o(Lhood;) |-47563.871 -47576.324 -47582.698
AIC; 219075.7 219131.1 219156.4
A; 0 55.4 80.7
w; ~1 9.3*10°13 3.0*1018
D3,T5,T7
Model bidirectional unidirectional No admixture
# parameters 18 17 15
Max log,o(Lhood;) |-35149.814 -35165.802 -35227.818
A:[Ci 161906.9 161978.5 162260.1
Ai 0 71.6 353.2
w; ~1 2.8*10-16 2.0*10°77
B D4,T12,T13
Model bidirectional No admixture
# parameters 18 15
Max log,(Lhood;) |-38643.499 -38627.862
A]:Ci 177995.9 177917.9
A; 78 0
w; il 2SR ~1

147



Model
# parameters
Max log,q(Lhood;)

Model
# parameters
Max log,,(Lhood;)

D1,T1,T7

bidirecti unidirecti; No i e
18 17 15
-151900.68 -151905.32 -151939.09
699564.5 699583.9 699735.4

0 19.4 170.9
~1 6.1%10-> 7.8%10-38
D3,T5,T7
bidirecti unidirecti; No i e
18 17 15

-114133.72 -114152.50 -114140.05
525641.2 525725.7 525664.4
0 84.5 23.2
~1 4.5%1071° 9.2%10©

Notes: (A) Allowing gene flow from tetraploids to diploids (forward in time) confers a
significantly better fit of the model to the data. (B) As a negative control, models were
made with tetraploid populations that have not experienced admixture, and the model
with no admixture fits the data significantly better than one that allows for bidirectional
interploidy admixture. (C) These results are validated with the populations present in
the PoolSeq dataset.

Table S4.11 MLEs of model parameters using a population trio consisting of a diploid
and two tetraploids not suspected of having experienced any interploidy admixture.

Trio
Parameter D4,T12,T13
0.011
Admy; (0.007, 0.028)
0.010
Admy, (0.004, 0.027)
T 2703
Adm (1024, 5087)
D 3612
1 (2260, 6366)
D 60109
2 (36683, 61758)
N 100266
o (79327, 112840)
N 43082
T (24703, 68137)
N, 60322

(34134, 100754)

Notes: These values were obtained using four-fold fegenerate sites in the RADseq
dataset. Parameter labels correspond to those listed in Table 4.1.
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Table S4.12 Results of population trio analyses with two diploids and one tetraploid.

Diploid Tetraploid Population
Populations T1 T2 T4 T5 T7
D1, D2 (D1,D2) D2 D2 - D2
D1, D3 D3 - D3 D3 D3
D2, D3 - D3 - D3 (D2,D3)

Notes: The two diploid populations used are labeled in the leftmost column and the
tetraploid labeled along the top. Listed in the table is the diploid population that is sister
to the tetraploid, as that topology had the highest likelihood according to AIC analyses.
Since tetraploid populations T1, T2, T4, and T5 are admixed, trio analyses that do not
include the geographically proximal diploid population with which they have exchanged
genes were not performed. The AIC analyses to obtain these results are in Table S4.13.

Table S4.13 Akaike weights for population trio analyses of two diploids and one
tetraploid (Table S4.12).

D1,D2,T1 D1,D3,T1
Model* D1 D2  (D1,D2)| D1 D3 (D1,D3)

Max log,o(Lhood;) | -27146.995 -27153.65 -27140.506 | -31005.042 -30994.352 -31001.975

AICi 125046.5 125077.2 125016.6 142813.5 142764.3 142799.4
A; 29.9 60.6 0 49.2 0 35.1
w; 3.2¥107 6.9%10714 ~1 2.1%101 ~1 2.4%10°8

D1,D2,T2 D2,D3,T2
Model* D1 D2 (D1,D2) D2 D3 (D2,D3)

Max log,o(Lhood;) | -24928.226  -24927.594 -24929.801 | -19155.662 -19138.698 -19152.866

AICi 114828.7 114825.8 114836 88245.08 88166.96 88232.21
Ai 2.9 0 10.2 78.12 0 65.25
w; 0.19 4.9%103 0.81 1.1¥1017 ~1 6.8¥10715

D1,D2,T4 D1,D3,T4
Model* D1 D2 (D1,D2) D2 D3 (D2,D3)

Max log,,(Lhood;) | -25200.907 -25195.947 -25205.529 | -26415.776 -26396.409 -26417.042

AICI 116084.5 116061.6 116105.8 121679.1 121590 121685
Ai 22.9 0 44.2 89.1 0 95
w-: 1.1*¥10° ~1 2.5%10-10 4.5%10°20 ~1 2.3*%1021
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D1,D3,TS D2,D3,T5
Model* D1 D3 (D1,D3) D2 D3 (D2,D3)
Max |0910(Lh00di) -27599.888 -27591.275 -27607.842 | -19006.428 -18994.784 -18998.471
AICI 127132.2 127092.5 127168.8 87557.84 87504.21 87521.19
Ai 39.7 0 76.3 53.63 0 16.98
Wi 2.4*10° ~1 o7 PSR Op ~1 2.1*¥104
D1,D2,T7 D1,D3,T7 D2,D3,T7
Model* D1 D2 (D1,D2) D1 D3 (D1,D3) D2 (D2,D3)

Max log,,(Lhood}) | -26706.522  -26696.616 -26704.645

AICi 123018.1 122972.5 123009.4
Ai 45.6 0 36.9
w; AT ~1 9.7%10

-29445.383  -29426.321

135631 135543.2

87.8 0

8.6%1020 ~1

-29448.386 | -20531.748

135644.8 94582.19

101.6 58.23

8.7*10% 2.3*10°13

-20519.103

94523.96

0

il

Notes: The calculation of Akaike weights is described in Table S4.6.
*the diploid population to which the tetraploid is most closely related, with (D,D’)
representing the tetraploid being an outgroup to the two diploids used.

Table S4.14 Likelihood analyses of tetraploid tree topologies using coalescent

simulations.

Tree topology Max logio(Lhoodi) AICi Ai wi
(T1,(T3,(T7,T13))) -473386.177 2180043.771 534.0062907 1.1015E-116
(T1,(T7,(T3,T13))) -473309.549 2179690.886 181.121332 4.67735E-40
(T1,(T13,(T3,T7)))* -473270.219 2179509.765 0 1
(T3,(T1,(T7,T13))) -473781.074 2181862.339 2352.574067 0
(T3,(T7,(T1,T13))) -474299.099 2184247.932 4738.167202 0
(T3,(T13,(T1,T7))) -474351.843 2184490.827 4981.062283 0
(T7,(T1,(T3,T13))) -474038.117 2183046.066 3536.300752 0
(T7,(T3,(T1,T13))) -474240.093 2183976.199 4466.434547 0
(T7,(T13,(T1,T3))) -474178.843 2183694.133 4184.367891 0
(T13,(T1,(T3,T7))) -473830.382 2182089.411 2579.645784 0
(T13,(T3,(T1,T7))) -474242.791 2183988.624 4478.859295 0
(T13,(T7,(T1,T3))) -474145.681 2183541.416 4031.651247 0

((T1,73),(T7,T13)) #2nd node earlier -473918.543 2182495.407 2985.642167 0
((T2,77),(T3,T13)) #2nd node earlier -473993.274 2182839.556 3329.791119 0
((T2,T13),(T3,T7)) #2nd node earlier -474029.421 2183006.019 3496.254195 0
((T1,T3),(T7,T13)) #1st node earlier -474068.016 2183183.756 3673.990727 0
((T1,T7),(T3,T13)) #1st node earlier -474274.129 2184132.941 4623.17611 0
((T1,T13),(T3,T7)) #1st node earlier -474065.13 2183170.465 3660.700207 0

Notes:

A simple divergence model (no migration) was used with 4 tetraploid

populations and 10 parameters in total. Calculation of Akaike weights are described in

Table S4.6.
*Most likely topology
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Table S4.15 Allele frequencies for each population for within the region under selection
as described in Figure 4.6.

mRNA PACID scaff position D1 T1 Functional Category D3 D2 T5 T7
16045957 5 21136047 1.00 1.00 SYNONYMOUS 1.00 1.00 NA 1.00
5 21136879 1.00 1.00 INTRON NA 1.00 1.00 1.00

5 21138079 1.00 1.00 INTRON 0.71 0.67 0.81 1.00

5 21138160 1.00 1.00 SYNONYMOUS 0.74 0.33 0.39 NA

5 21138231 1.00 1.00 INTRON 0.71 0.39 0.36 0.75

5 21138276 1.00 1.00 INTRON 0.39 0.50 0.64 0.65

5 21138294 1.00 1.00 INTRON 0.82 0.50 1.00 1.00

5 21138456 1.00 1.00 SYNONYMOUS 1.00 1.00 1.00 1.00

5 21138506 1.00 1.00 SYNONYMOUS 1.00 1.00 1.00 1.00

16036121 5 21139646 1.00 1.00 SYNONYMOUS 0.74 NA 0.61 0.55
16040231 5 21141284 0.77 0.82 SYNONYMOUS 0.00 0.00 NA 0.15
5 21141926 1.00 1.00 NON_SYNONYMOUS 0.79 1.00 1.00 0.60

5 21142084 1.00 1.00 SYNONYMOUS 1.00 1.00 1.00 1.00

5 21142422 1.00 1.00 NON_SYNONYMOUS NA NA NA NA

5 21142467 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 0.72 NA

16061301 5 21143198 1.00 1.00 INTRON 1.00 1.00 0.86 1.00
5 21143330 0.81 0.80 INTRON 0.00 0.00 0.00 0.00

5 21143412 1.00 1.00 SYNONYMOUS 1.00 0.83 0.92 0.80

5 21143418 0.85 0.79 SYNONYMOUS 0.00 0.00 0.00 0.00

5 21143512 0.88 0.84 INTRON 0.00 0.00 0.00 0.00

5 21143534 0.88 0.80 INTRON 0.00 0.00 0.00 0.00

5 21143592 0.85 0.91 INTRON 0.66 0.22 0.61 0.38

5 21143610 0.88 0.76 INTRON 0.00 0.00 0.00 0.00

5 21143624 1.00 1.00 NON_SYNONYMOUS 0.68 1.00 0.64 0.60

5 21144022 0.96 0.79 SYNONYMOUS 0.00 0.11 0.00 0.18

5 21144308 1.00 0.78 INTRON 0.00 0.17 NA 0.08

5 21144380 1.00 1.00 INTRON 1.00 1.00 1.00 1.00

5 21144468 1.00 0.80 SYNONYMOUS 0.00 0.06 0.00 0.00

5 21144675 0.92 0.80 INTRON 0.00 0.06 0.00 0.20

5 21144859 1.00 0.93 SYNONYMOUS 0.00 0.11 0.00 0.00

5 21144901 1.00 0.87 SYNONYMOUS 0.00 0.17 0.00 0.18

5 21145084 1.00 1.00 NON_SYNONYMOUS 0.00 0.28 0.00 0.08

5 21145197 1.00 1.00 INTRON 0.00 0.06 0.00 0.00

5 21145298 1.00 0.87 INTRON 0.00 0.17 0.00 0.13

16065113 5 21146677 1.00 0.83 INTRON 0.00 0.00 0.00 0.00
5 21146840 1.00 1.00 INTRON 0.00 0.00 NA 0.15

5 21147477 0.96 0.88 SYNONYMOUS 0.11 0.17 0.00 NA

5 21147565 0.96 0.88 NON_SYNONYMOUS 0.00 0.06 0.00 NA

5 21147869 1.00 0.89 SYNONYMOUS 0.00 0.00 0.00 0.15

5 21147895 1.00 0.89 NON_SYNONYMOUS (A218T) 0.00 0.00 0.00 0.00

5 21147942 1.00 0.82 INTRON 0.00 0.06 0.00 0.05

5 21148017 1.00 0.78 SYNONYMOUS 0.00 0.00 0.00 0.08

5 21148101 1.00 0.88 SYNONYMOUS 1.00 1.00 1.00 NA

5 21148132 1.00 0.89 INTRON 0.00 NA NA NA

5 21148208 1.00 0.87 INTRON 0.00 0.17 0.00 0.23

5 21148212 1.00 0.87 INTRON 0.00 0.00 0.00 0.23

5 21148901 1.00 0.84 NON_SYNONYMOUS 0.00 0.17 0.06 0.18

5 21148912 1.00 0.84 SYNONYMOUS 0.03 0.11 0.06 0.18

16036656 5 21151713 0.88 0.76 SYNONYMOUS 0.00 0.00 0.00 0.00
5 21152192 0.88 0.78 INTRON 0.00 0.56 0.00 0.00

5 21152858 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 1.00 1.00

5 21152958 1.00 1.00 NON_SYNONYMOUS NA NA NA NA

16062538 5 21154294 1.00 1.00 NON_SYNONYMOUS NA 1.00 1.00 NA
5 21154311 1.00 0.76 SYNONYMOUS 1.00 1.00 0.89 NA

5 21154445 1.00 1.00 NON_SYNONYMOUS 0.92 0.72 0.81 0.63

5 21154459 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 1.00 1.00

5 21154491 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 1.00 1.00

5 21154536 1.00 1.00 SYNONYMOUS 0.76 NA NA 1.00

5 21154579 1.00 0.79 NON_SYNONYMOUS 1.00 1.00 1.00 1.00

5 21154642 0.81 0.80 INTRON 0.74 0.78 0.31 0.00

5 21154675 0.81 0.82 INTRON 0.63 0.78 0.78 1.00

5 21154785 1.00 0.88 SYNONYMOUS 1.00 1.00 0.75 NA

5 21154826 1.00 0.78 NON_SYNONYMOUS 1.00 1.00 1.00 NA

5 21154927 1.00 0.93 NON_SYNONYMOUS 1.00 1.00 1.00 NA

5 21155017 1.00 0.91 NON_SYNONYMOUS NA 0.72 0.72 1.00

5 21155033 1.00 1.00 NON_SYNONYMOUS NA 1.00 0.72 1.00

5 21155106 1.00 1.00 SYNONYMOUS 0.63 0.61 0.67 0.58

5 21155127 1.00 1.00 SYNONYMOUS 1.00 1.00 0.83 1.00

5 21155406 1.00 1.00 SYNONYMOUS NA 1.00 0.72 1.00

5 21155737 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 0.92 1.00
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5 21157829 0.96 1.00 NON_SYNONYMOUS NA 1.00  0.83 1.00
16045888 5 21159411 1.00 0.83 SYNONYMOUS 0.00 011 031  0.00
5 21159999 1.00 0.80 SYNONYMOUS NA 0.00 025  0.00
5 21160203 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21160398 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21160404 1.00 0.86 SYNONYMOUS 0.00 0.00 000 000
5 21160570 1.00 1.00 NON_SYNONYMOUS 1.00 1.00  1.00 NA
5 21160839 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21161550 1.00 0.79 SYNONYMOUS 0.29 000 033 028
5 21161883 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21162041 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21162045 1.00 0.83 SYNONYMOUS 0.00 0.00 050 0.0
5 21162066 0.96 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21162191 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
16053029 5 21163545 1.00 1.00 NON_SYNONYMOUS 0.00 NA 0.17 NA
5 21163553 1.00 1.00 NON_SYNONYMOUS 1.00 NA 1.00 NA
5 21163620 1.00 1.00 NON_SYNONYMOUS 1.00 NA NA NA
5 21163684 1.00 1.00 SYNONYMOUS 1.00 NA 1.00 NA
5 21163745 1.00 0.99 NON_SYNONYMOUS 1.00 NA 1.00 045
5 21163843 1.00 1.00 SYNONYMOUS 1.00 100  1.00 NA
16065728 5 21164710 1.00 1.00 INTRON 1.00 NA 1.00  1.00
5 21164759 1.00 0.91 NON_SYNONYMOUS 1.00 100 075 068
5 21164827 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21164862 0.81 0.76 INTRON NA 072 061 060
5 21164884 0.77 1.00 INTRON NA 100  1.00  1.00
5 21164885 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21164946 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 NA 1.00
5 21165171 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21165216 1.00 1.00 INTRON 0.97 100 078 098
5 21165218 0.77 1.00 INTRON 1.00 1.00 NA NA
5 21165291 1.00 1.00 INTRON NA 100  1.00  1.00
5 21165343 1.00 1.00 INTRON 1.00 1.00  1.00 NA
5 21165355 1.00 1.00 INTRON 1.00 1.00  1.00 NA
5 21165416 1.00 1.00 INTRON 0.89 100  1.00  1.00
5 21165458 1.00 0.86 INTRON 0.89 0.8 092 070
5 21165558 1.00 1.00 INTRON 0.82 NA 0.89 075
5 21165581 1.00 1.00 INTRON NA NA 1.00 NA
5 21165619 1.00 1.00 INTRON 0.87 089 089 080
5 21165627 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21165666 1.00 1.00 NON_SYNONYMOUS 1.00 1.00  1.00 NA
5 21165689 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21165788 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21165794 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21165916 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21165964 1.00 0.91 SYNONYMOUS 1.00 100  1.00  1.00
5 21166046 1.00 0.83 INTRON 1.00 100  1.00  1.00
5 21166080 1.00 0.91 INTRON 1.00 0.83 1.00  1.00
5 21166164 1.00 1.00 NON_SYNONYMOUS NA NA 1.00  1.00
5 21166195 1.00 1.00 NON_SYNONYMOUS 1.00 078 100  1.00
5 21166198 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21166242 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21166284 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21166333 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21166414 1.00 1.00 INTRON NA NA 1.00  1.00
5 21166509 1.00 1.00 SYNONYMOUS NA NA 1.00 NA
5 21166612 1.00 1.00 INTRON 1.00 NA 1.00 NA
5 21166615 1.00 1.00 INTRON 1.00 NA 1.00 NA
5 21166680 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21166735 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21166767 1.00 1.00 INTRON NA NA 1.00  1.00
5 21166780 1.00 1.00 INTRON 1.00 NA 1.00  1.00
5 21166851 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21166873 1.00 1.00 NON_SYNONYMOUS 1.00 100  1.00  1.00
5 21166908 1.00 1.00 INTRON 1.00 NA 1.00  1.00
5 21166923 1.00 1.00 INTRON 1.00 0.83 1.00  1.00
5 21166969 1.00 1.00 INTRON NA NA 1.00  1.00
5 21166981 1.00 1.00 INTRON 1.00 NA 1.00  1.00
5 21167023 1.00 1.00 NON_SYNONYMOUS 1.00 NA 1.00  1.00
5 21167039 1.00 1.00 SYNONYMOUS 1.00 NA 1.00  1.00
5 21167056 1.00 1.00 NON_SYNONYMOUS 1.00 NA 1.00  1.00
5 21167098 1.00 1.00 NON_SYNONYMOUS 1.00 NA 1.00  1.00
5 21167225 1.00 1.00 SYNONYMOUS 0.92 NA 1.00  1.00
5 21167234 1.00 1.00 SYNONYMOUS 1.00 NA 1.00  1.00
5 21167290 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 NA 1.00
5 21167331 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21167342 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21167350 1.00 1.00 INTRON 1.00 100  1.00  1.00
5 21167382 1.00 1.00 SYNONYMOUS 1.00 100  1.00  1.00
5 21167404 1.00 1.00 NON_SYNONYMOUS 1.00 0.72 1.00  1.00
5 21167488 1.00 1.00 INTRON 1.00 100  1.00  1.00
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(GG R IR R RV IR T R}

21167509
21167593
21167596
21167603
21167645
21167738
21167833
21167901

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

INTRON
INTRON
INTRON
INTRON
INTRON
SYNONYMOUS
NON_SYNONYMOUS
NON_SYNONYMOUS

1.00 1.00
NA 1.00
1.00 1.00
1.00 0.78
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00

Table Notes: Allele frequencies are listed in the columns labeled by population.
Highlighted rows are high-frequency shared variants between D1 and T1 but absent
from other populations. NA represents sites with insufficient coverage (>10x).

Table S4.16 Annotated genes within the genomic region shown in Figure 4.6 C,D

mRNA PACID Scaffold Lower Coordinate Upper coordinate A. thaliana ortholog PANTHER
16047203 5 21117650 21118572
16063875 5 21118773 21120916 AT3G63250.1 homocysteine s-methyltransferase
16045618 5 21121211 21123181 AT3G63260.1 Serine/threonine-protein kinase
16049082 5 21126050 21132592 AT3G63280.1 Serine/threonine-protein kinase NEK
16060429 5 21132744 21134546 AT3G63290.1 Oxidoreductase
16045957 5 21135947 21138641 AT3G63300.1
16036121 5 21138867 21139874 AT3G63310.1
16040231 5 21140754 21142483 AT3G63320.1
16061301 5 21142600 21145560 AT3G63330.1 Protein Phosphatase 2C
16065113 5 21146408 21148971 AT3G63340.1 Protein Phosphatase 2C
16036656 5 21151672 21152962 AT3G63350.1 Heat shock transcription factor
16055279 5 21153475 21153827
16062538 5 21154273 21158242 AT3G63370.1
16045888 5 21158874 21162410 AT3G63380.1
16053029 5 21163489 21164010
16065728 5 21164587 21167936 AT3G63400 Peptidyl-prolyl cis-trans isomerase

Table notes: Highlighted genes display many sites that are high frequency in D1 and T1
and absent in other populations (See Figure 4.6, Table S4.15).

Table S4.17 Allele frequencies for each population for within region under selection as
described in Figure S4.9.

mRNA PAC ID scaff position D3 T5 Functional Category D2 D1 T1 T7
16045866 4 21965095 1.00 1.00 INTRON 0.61 0.88 0.45 0.40
4 21965325 1.00 1.00 NON_SYNONYMOUS 0.78 NA 1.00 0.80

4 21965498 1.00 1.00 SYNONYMOUS 0.72 NA 1.00 NA

16048949 4 21966694 0.87 1.00 SYNONYMOUS 0.06 0.00 0.21 0.48
4 21966700 0.87 1.00 SYNONYMOUS 0.06 0.00 0.21 0.45

4 21966706 1.00 1.00 SYNONYMOUS 0.72 1.00 1.00 1.00

4 21966811 1.00 0.81 SYNONYMOUS 0.00 0.00 0.00 0.25

4 21966878 0.95 0.78 INTRON 0.00 0.00 0.03 0.40

4 21966916 0.89 0.83 INTRON 0.22 0.69 0.37 0.38

4 21966988 1.00 1.00 INTRON 1.00 1.00 1.00 NA

4 21967195 1.00 1.00 INTRON 1.00 1.00 NA 1.00

4 21967205 1.00 1.00 INTRON 1.00 1.00 NA 1.00

4 21967240 0.95 0.81 INTRON 0.11 0.08 0.00 0.08

4 21967243 1.00 1.00 INTRON NA 1.00 0.99 NA

4 21967267 0.95 0.81 INTRON 0.06 0.00 0.01 0.05

4 21967301 1.00 0.97 INTRON 0.94 1.00 NA NA

4 21967305 1.00 0.94 INTRON 0.61 1.00 NA 1.00

4 21967315 1.00 1.00 INTRON 1.00 0.81 0.76 NA

4 21967333 1.00 1.00 INTRON 0.50 0.42 0.37 0.48

16059281 4 21971658 1.00 0.83 NON_SYNONYMOUS NA 0.00 0.00 0.00
4 21971684 1.00 0.89 SYNONYMOUS NA NA 0.11 0.85

4 21972086 1.00 1.00 INTRON 1.00 NA NA NA

16056840 4 21977109 1.00 1.00 INTRON 1.00 1.00 0.99 NA
4 21977131 1.00 0.81 INTRON 1.00 0.00 0.00 NA
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4 21977184 1.00 0.89 SYNONYMOUS 0.72 0.00 0.00 NA
4 21977403 1.00 0.78 INTRON 0.83 1.00 NA NA
16063626 4 21984705 1.00 1.00 SYNONYMOUS 0.83 0.42 0.32 0.35
4 21984756 1.00 1.00 SYNONYMOUS 1.00 NA 1.00 NA
4 21984820 1.00 0.94 NON_SYNONYMOUS (S45A) 0.67 0.00 0.00 0.00
4 21984834 1.00 1.00 SYNONYMOUS 1.00 1.00 1.00 NA
4 21984991 1.00 0.83 SYNONYMOUS 0.72 0.00 0.00 0.00
4 21985024 1.00 1.00 SYNONYMOUS 1.00 1.00 0.97 0.85
4 21985057 1.00 0.86 SYNONYMOUS 0.89 0.00 0.01 0.30
4 21985118 1.00 0.81 INTRON 0.83 0.00 0.00 0.00
4 21985470 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 NA 1.00
4 21985600 1.00 1.00 NON_SYNONYMOUS 1.00 NA 1.00 NA
4 21985615 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 1.00 NA
4 21985622 1.00 0.78 SYNONYMOUS 0.72 0.00 0.00 0.00
4 21985652 1.00 0.92 SYNONYMOUS 1.00 1.00 0.86 0.70
4 21985722 1.00 0.83 NON_SYNONYMOUS 0.83 0.15 0.29 0.00
4 21985882 1.00 0.78 INTRON 0.78 0.00 0.00 0.00
4 21985922 1.00 1.00 INTRON 1.00 NA NA 1.00
4 21985998 1.00 0.86 INTRON 0.72 0.08 0.00 0.00
4 21986013 1.00 0.86 INTRON 0.72 NA 0.46 0.30
4 21986074 1.00 1.00 INTRON 1.00 0.88 0.84 1.00
4 21986099 1.00 0.89 INTRON 0.72 0.00 0.00 0.00
4 21986112 1.00 0.89 INTRON 0.67 NA 0.00 0.00
4 21986115 1.00 1.00 INTRON 1.00 0.96 0.91 1.00
4 21986230 1.00 1.00 INTRON 1.00 NA 1.00 1.00
4 21986404 1.00 0.83 INTRON 1.00 0.00 NA 0.00
4 21986479 1.00 1.00 INTRON NA 0.73 0.89 1.00
4 21986487 1.00 1.00 INTRON 1.00 0.69 0.86 1.00
4 21986524 1.00 0.78 INTRON 0.67 0.00 0.00 0.00
4 21986735 1.00 0.89 INTRON 0.78 0.00 NA 0.00
4 21986753 1.00 0.89 INTRON 0.72 0.00 NA 0.00
4 21986845 1.00 0.92 INTRON 0.83 0.23 0.11 NA
4 21986898 1.00 0.92 INTRON 0.89 0.00 0.00 0.00
4 21986940 1.00 1.00 INTRON NA 0.46 1.00 1.00
4 21986941 1.00 1.00 INTRON NA 0.38 0.25 NA
4 21986944 1.00 1.00 INTRON 1.00 0.46 1.00 1.00
4 21986955 1.00 0.86 INTRON NA 0.00 0.00 0.00
4 21987008 1.00 0.81 INTRON 0.72 0.00 0.00 NA
4 21987011 1.00 0.81 INTRON NA 0.00 0.00 0.00
4 21987039 1.00 0.78 INTRON 0.78 0.00 0.00 0.00
4 21987046 1.00 0.78 INTRON 0.78 0.00 0.00 0.00
4 21987063 1.00 0.83 INTRON 0.72 0.00 0.00 0.00
4 21987164 1.00 0.81 SYNONYMOUS 0.56 0.00 0.00 0.00
4 21987624 1.00 1.00 SYNONYMOUS 1.00 1.00 1.00 NA
4 21987688 1.00 1.00 NON_SYNONYMOUS 1.00 1.00 1.00 NA
4 21988281 1.00 1.00 NON_SYNONYMOUS NA 1.00 NA 1.00
4 21988358 1.00 0.83 SYNONYMOUS 0.61 0.00 0.00 0.00

Table Notes: Allele frequencies are listed in the columns labeled by population.
Highlighted rows are high-frequency shared variants between D3 and T5 but absent
from other populations. NA represents sites with insufficient coverage (>10x).

Table S4.18 Genes within the genomic region shown in Figure S4.9 C,D

Lower Upper
mRNA PAC ID Scaffold Coordinate coordinate A. thaliana ortholog PANTHER PFAM
Matrixin, Putative peptidoglycan binding
16048372 4 21955708 21956963 AT2G45040.1 Matrix metalloproteinase domain
Transcription factor GATA, zinc
16048972 4 21962501 21963548 AT2G45040.1 finger (GATA type) GATA zinc finger
16045866 4 21964161 21966093
16048949 4 21966487 21967726 AT2G45070.4 Sec61beta-ProV protein Sec61beta family
16059281 4 21971631 21972418 AT2G45080.1 Cyclin
Transcription initiation factor I1B-

16056840 4 21976885 21980773 AT2G45100.1 related Brfl-like TBP-binding domain

AT2G45110.1, Pollen allergen, Rare lipoprotein A (RIpA)-
16063626 4 21984688 21988484 AT1G65680.1, AT1G65681.1 like double-psi beta-barrel

Table notes: Highlighted genes display many sites that are high frequency in D3 and T5
and absent in other populations (See Figure S4.9, Table S4.17).
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