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Abstract

This dissertation presents three independent essays in microeconomic theory.

Motivated by the rise of social media, Chapter 1 (co-authored with Yuhta Ishii)

builds a model studying the effect of an economy’s potential for social learning on

the adoption of innovations of uncertain quality. Provided consumers are forward-

looking (i.e. recognize the value of waiting for information), equilibrium dynamics

depend non-trivially on qualitative and quantitative features of the informational

environment. We identify informational environments that are subject to a saturation

effect, whereby increased opportunities for social learning slow down adoption

and learning and do not increase consumer welfare (possibly even being harmful).

We also suggest a novel, purely informational explanation for different commonly

observed adoption patterns (S-shaped vs. concave curves).

Chapter 2 (co-authored with Assaf Romm) studies the solution concept S∞W (one

round of elimination of weakly dominated strategies followed by iterated elimination

of strongly dominated strategies) in incomplete-information games. Under complete

information, Dekel and Fudenberg (1990) and Börgers (1994) motivate S∞W via its

connection with “approximate common certainty” (ACC) of admissibility. Under

incomplete information, we cast doubt on this connection: S∞W corresponds to

ACC of admissibility only when this is not accompanied by even the slightest
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changes to players’ beliefs about states of nature. If we allow for vanishingly small

perturbations to beliefs, then S∞W is a (generally strict) subset of the predicted

behavior, which we characterize in terms of a generalization of Hu’s (2007) perfect

p-rationalizable set.

Motivated by the literature on “choice overload”, Chapter 3 studies a boundedly

rational agent whose choice behavior admits a monotone threshold representation:

There is an underlying rational benchmark, corresponding to maximization of a

utility function v, from which the agent departs in a menu-dependent manner. The

severity of the departure is quantified by a threshold map δ, which is monotone with

respect to set inclusion. I axiomatically characterize the model, extending familiar

characterizations of rational choice. I classify monotone threshold representations

as a special case of Simon’s theory of “satisficing”, but as strictly more general than

both Tyson’s (2008) “expansive satisficing” model as well as Fishburn (1975) and

Luce’s (1956) model of choice behavior generated by a semiorder. I axiomatically

characterize the difference, providing novel foundations for these models.
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Introduction

This dissertation comprises three independent chapters that span topics in microe-

conomic theory, including social learning and informational free-riding, epistemic

game theory, and choice theory.

Motivated by the rise of social media, Chapter 1 (co-authored with Yuhta Ishii)

builds a model studying the effect of an economy’s potential for social learning on

the adoption of innovations of uncertain quality. In our model, a large population

of long-lived consumers faces stochastic opportunities to adopt a new product. Cap-

turing social learning, news about the product’s quality is generated endogenously,

based on the consumption experiences of past adopters. Provided consumers are

forward-looking (i.e. recognize the value of waiting for information), equilibrium

adoption dynamics must resolve the following tension: If too many consumers

adopt at any given time, then the expected amount of future information might

be so great that all consumers would strictly prefer to wait; conversely, if too few

consumers adopt, it might not be worthwhile for anyone to wait. Focusing on a class

of Poisson learning processes, we show that this tension depends non-trivially on

qualitative and quantitative features of the informational environment. We identify

informational environments that are subject to a novel saturation effect, whereby

increased opportunities for social learning slow down adoption and learning and

do not increase consumer welfare (possibly even being harmful). We also suggest a
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new, purely informational explanation for different commonly observed adoption

patterns (S-shaped vs. concave curves).

Chapter 2 (co-authored with Assaf Romm) studies the solution concept S∞W

(one round of elimination of weakly dominated strategies followed by iterated

elimination of strongly dominated strategies). Dekel and Fudenberg (1990) and

Börgers (1994) have proposed this solution concept in the context of complete

information games, motivating it by a characterization in terms of “approximate

common certainty” of admissibility. We examine the validity of this characterization

of S∞W in an incomplete information setting. We argue that in Bayesian games

with a nontrivial state space, the characterization is very sensitive to the way in

which approximate common certainty of admissibility is taken to interact with the

uncertainty already captured by players’ beliefs about the states of nature: We show

that S∞W corresponds to approximate common certainty of admissibility when

this is not allowed to coincide with any changes to players’ beliefs about states.

If approximate common certainty of admissibility is accompanied by vanishingly

small perturbations to beliefs, then S∞W is a (generally strict) subset of the predicted

behavior, which we characterize in terms of a generalization of Hu’s (2007) perfect

p-rationalizable set.

Motivated by the literature on “choice overload”, Chapter 3 studies a boundedly

rational agent whose choice behavior admits a monotone threshold representation:

There is an underlying rational benchmark, corresponding to maximization of a

utility function v, from which the agent departs in a menu-dependent manner. The

severity of the departure is quantified by a threshold map δ, which is monotone

with respect to set inclusion. This formalizes the intuition that large menus of

options may impose a cognitive strain on the agent, adversely impacting his ability

to discriminate between the available alternatives. I axiomatically characterize the

2



model, extending familiar characterizations of rational choice. I classify monotone

threshold representations as a special case of Simon’s theory of “satisficing”, but

as strictly more general than both Tyson’s (2008) “expansive satisficing” model as

well as Fishburn (1975) and Luce’s (1956) model of choice behavior generated by

a semiorder. Finally, I axiomatically characterize the difference, providing novel

foundations for these models.
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Chapter 1

Innovation Adoption by

Forward-Looking Social Learners1

1.1 Introduction

Suppose a new product of uncertain quality, such as a novel medical procedure or a

new movie, is released into the market. In recent years, the rise of internet-based

review sites, retail platforms, search engines, video-sharing websites, and social

networking sites (such as Yelp, Amazon, Google, YouTube, and Facebook) has

greatly increased the potential for social learning in the economy: If a patient suffers a

serious complication or a movie-goer has a positive viewing experience, this is more

likely than ever to find its way into the public domain; and there are more people

than ever who have access to this common pool of consumer-generated information.

1Co-authored with Yuhta Ishii. This chapter has benefited from very helpful comments by Dirk
Bergemann, Aislinn Bohren, Yeon-Koo Che, Martin Cripps, Marina Halac, Boyan Jovanovic, Aniko
Öry, Sven Rady, Larry Samuelson, Heather Schofield, Jesse Shapiro, Andy Skrzypacz, and seminar
audiences at Chicago Booth, ITAM, Kellogg, Kansas Workshop on Economic Theory, NASM 2014
(Minneapolis), and EEA/ESEM 2014 (Toulouse), in addition to the many people mentioned in the
Acknowledgments.
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This paper builds a model studying the effect of an economy’s potential for social

learning on the adoption of innovations of uncertain quality. Our key contribution

is a careful analysis of consumers’ informational incentives and their dependence

on quantitative and qualitative features of the news environment through which

social learning occurs. Our analysis has two main implications. First, quantitatively,

we suggest caution in evaluating the impact of increases in the potential for social

learning: We identify news environments that are subject to a novel saturation effect,

whereby beyond a certain level, increased opportunities for social learning can

slow down adoption and learning and do not increase consumer welfare (possibly

even being harmful). Second, at a qualitative level, we show that different news

environments give rise to observable differences in aggregate adoption dynamics:

This implies a new, purely informational explanation for two of the most commonly

observed adoption patterns (S-shaped vs. concave curves), which we support with

some suggestive evidence.

A central ingredient of our model is that consumers are forward-looking social

learners. In choosing whether to adopt an innovation, forward-looking consumers

recognize the option value of waiting for more information. With social learning,

this information is created endogenously, based on the consumption experiences of

other adopters. Equilibrium adoption dynamics must then resolve the following

tension: If too many consumers adopt at any given time, then the expected amount

of future information might be so great that all consumers would in fact strictly

prefer to wait; conversely, if too few consumers adopt, it might not be worthwhile

for anyone to wait. This tension depends non-trivially on the ease and nature

of information transmission and is the fundamental source of the results of the

preceding paragraph.

Forward-looking social learning is well documented empirically, notably in the

5



development economics literature studying the adoption of agricultural innova-

tions.2 However, its informational ramifications have largely remained unexplored

theoretically: Existing learning-based models of innovation adoption typically as-

sume either that learning is social but consumers are myopic (e.g. Ellison and

Fudenberg, 1993; Young, 2009), or that consumers are forward-looking but informa-

tion arrives purely exogenously (e.g. Jensen, 1982). In either case, the dependence

on the informational environment is trivial, both quantitatively (a greater ease of

information transmission is always beneficial) and qualitatively (absent other forces

such as consumer heterogeneity, different news environments alone do not give rise

to interestingly different adoption dynamics3).

Summary of Model and Results: In our model (Section 1.2), an innovation of

fixed, but uncertain quality (better or worse than the status quo) is introduced to a

large population of forward-looking consumers. In the baseline setting, consumers

are (ex ante) identical, sharing the same prior about the quality of the innovation,

the same discount rate, and the same tastes for good and bad quality. At each

instant in continuous time, consumers receive stochastic opportunities to adopt

the innovation. A consumer who receives an opportunity must choose whether to

irreversibly adopt the innovation or to delay his decision until the next opportunity.

In equilibrium, consumers optimally trade off the opportunity cost of delays against

2Studies of social learning in this domain include Besley and Case (1993, 1994); Foster and
Rosenzweig (1995); Conley and Udry (2010). There is also evidence for forward-looking social learning:
Bandiera and Rasul (2006) analyze the decision of farmers in Mozambique to adopt a new crop,
sunflower. They find that if a farmer’s network of friends and family contains many adopters of the
new crop, knowing one more adopter may make him less likely to initially adopt it himself. Munshi
(2004) compares farmers’ willingness to experiment with new high-yield varieties (HYV) across rice
and wheat growing areas in India. Farmers in rice growing regions, which compared with wheat
growing regions display greater heterogeneity in growing conditions that make learning from others’
experiences less feasible, are found to be more likely to experiment with HYV than farmers in wheat
growing areas.

3See the discussion in Footnote 13 under Related Literature.
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the benefit to learning more about the quality of the innovation.

Learning about the innovation is summarized by a public signal process, repre-

senting news that is obtained endogenously—based on the experiences of previous

adopters; and possibly also from exogenous sources, such as professional critics

or government watchdog agencies. To study the importance of quantitative and

qualitative features of the news environment, we employ a variation of the Poisson

models of strategic experimentation pioneered by Keller et al. (2005); Keller and

Rady (2010, 2014).4 Individual adopters’ experiences generate public signals at a

fixed Poisson rate which we use to quantify the potential for social learning. Quali-

tatively, there is a natural distinction (see also MacLeod, 2007; Board and Meyer-ter

Vehn, 2013; Che and Hörner, 2014) between bad news markets, where signal arrivals

(breakdowns) indicate bad quality and the absence of signals makes consumers more

optimistic about the innovation; and good news markets, where signals (breakthroughs)

suggest good quality and the absence of signals makes consumers more pessimistic.

For examples of innovations featuring learning via bad news (or the absence

thereof), recall the extensive social media coverage of of a battery fire in a Tesla

Model S electric car in October 2013, or the gradual increase of consumers’ con-

fidence in microwave ovens in the 1970s (following widespread initial concerns

over possible “radiation leaks”) or in risky new medical procedures such as gastric

bypass surgery.5 By contrast, learning via good news events (or their absence)

is common in award-focused industries (e.g. movies or books); or for (essentially

side-effect free) herbal remedies, beauty or fitness products. The news environment

may also be determined by limitations or usage practices of the available social

4Other papers using this “exponential bandits” framework include Bergemann and Hege (1998,
2005); Strulovici (2010); Bonatti and Hörner (2011); Klein and Rady (2011); Hörner and Samuelson
(2013); Halac et al. (2013, 2014); Halac and Prat (2014).

5The latter two examples are discussed in more detail in Section 1.4.1.
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learning systems, e.g. the fact that Facebook allows users to “Like” a product’s site,

but has no “Dislike” button; or that the overwhelming majority of book reviews on

Amazon.com and BarnesandNoble.com appear to be positive.6

Section 1.3 analyzes and contrasts equilibrium adoption behavior in bad and

good news markets. For tractability, we focus on perfect bad (respectively good) news

environments, in which a single signal arrival conclusively indicates bad (respectively

good) quality, so that equilibrium dynamics are non-trivial only in the absence

of signals. A key insight facilitating our analysis is that consumers’ equilibrium

incentives across time must satisfy a quasi-single crossing property (Section 1.3.1):

Absent signals, there can be at most one transition from strict preference for adoption

to strict preference for waiting, or vice versa, with a possible period of indifference in

between. This enables us to establish the existence of unique7 equilibria. Equilibrium

adoption dynamics admit simple closed-form descriptions, which are Markovian in

current beliefs and in the mass of consumers who have not yet adopted.

Under perfect bad news (Section 1.3.2), the unique equilibrium is characterized

by two times 0 ≤ t∗1 ≤ t∗2, which depend on the fundamentals: Until time t∗1, no

adoption takes place and consumers acquire information only from exogenous

sources; from time t∗2 on, all consumers adopt immediately when given a chance,

unless a breakdown occurs, in which case adoption comes to a permanent standstill.

If t∗1 < t∗2 , then throughout (t∗1 , t∗2) there is inefficiency in the form of partial adoption:

Only some consumers adopt when given a chance, with others free-riding on the

information generated by the adopters. The flow of new adopters on (t∗1, t∗2) is

uniquely determined by an ODE that guarantees consumers’ indifference between

adopting and delaying throughout this interval. Given that consumers are forward-

6Cf. Chevalier and Mayzlin (2006), which we discuss in greater detail in Section 1.4.1.

7Uniqueness is in terms of aggregate adoption behavior.
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looking, t∗1 < t∗2 occurs in economies with a sufficiently large potential for social

learning and not too optimistic consumers (on the other hand, if consumers are

myopic or if there are no possibilities for social learning, then necessarily t∗1 = t∗2).

By contrast, the perfect good news equilibrium (Section 1.3.3) features adoption

up to some time t∗ (which depends on the fundamentals) and no adoption from t∗

on (unless there is a breakthrough, after which all consumers adopt upon their first

opportunity). The key difference with perfect bad news is that equilibrium adoption

behavior is all-or-nothing: Regardless of the potential for social learning, there are

no periods during which only some consumers adopt when given a chance. This

highlights a fundamental way in which the nature of the news environment affects

consumers’ adoption incentives. During a period of time when, absent signals,

a consumer is prepared to adopt the innovation, he will be willing to delay his

decision only if he expects to acquire decision-relevant information in the meantime:

Since originally he is prepared to adopt the innovation, such information must make

him strictly prefer not to adopt. When learning is via bad news, breakdowns have

this effect, since they reveal the innovation to be bad. By contrast, under perfect

good news breakthroughs conclusively reveal the innovation to be good and hence

cannot be decision-relevant to a consumer who is already willing to adopt.

Turning to implications of the equilibrium analysis, Section 1.4.1 shows that

bad news and good news environments give rise to observably different adoption

patterns. Under perfect bad news, adoption curves (which plot the percentage of

adopters in the population against time) are S-shaped: Up to time t∗1 adoption is flat,

on (t∗1 , t∗2) adoption levels increase convexly (absent breakdowns), and from time t∗2

there is a concave increase. Convex growth throughout (t∗1 , t∗2) is tied to consumer

indifference during this region: As consumers grow increasingly optimistic absent

breakdowns, their opportunity cost to delaying goes up. To maintain indifference,

9



this increase is offset by an increase in the flow of new adopters, which raises

the odds that waiting will produce information allowing consumers to avoid a

bad innovation. By contrast, adoption under perfect good news occurs in concave

“bursts”: Up to time t∗ adoption levels increase concavely, then adoption flattens

out, possibly followed by another region of concave growth if a breakthrough

occurs. S-shaped and concave curves are arguably the two most widely documented

empirical adoption patterns, with the typical marketing textbook devoting a chapter

to this “stylized fact”.8 But as we discuss below under Related Literature, our

model appears to be the first to point to different market learning environments as

a possible source. Focusing on the aforementioned examples of good and bad news

markets, we present some suggestive evidence for our predictions, pointing to an

opportunity for more systematic empirical work.

Section 1.4.2 establishes the possibility of a saturation effect: If learning is via

perfect bad news and the potential for social learning is great enough that t∗1 < t∗2 ,

then holding fixed other fundamentals, any additional increase in opportunities for

social learning has no impact at all on (ex ante) equilibrium welfare levels. This is

because any benefits from increasing the potential for social learning are balanced

out by an expansion of the period (t∗1 , t∗2) of informational free-riding. As a result,

greater opportunities for social learning strictly slow down the adoption of good

products and do not translate into uniformly faster learning about the quality of

the innovation. In Section 1.4.3, we further build on this non-monotonicity in the

speed of learning to construct an example with heterogeneous consumers, where

increased opportunities for social learning are not only not beneficial, but in fact

8 Cf. Hoyer et al. (2012), Ch. 15, p. 425ff. and Keillor (2007) p. 46–61. The former type of curve is
sometimes referred to as “logistic” and the latter as “exponential” or “fast-break”. In economics,
S-curves are studied by Griliches (1957), Mansfield (1961, 1968), Gort and Klepper (1982), among
many others; for (essentially) concave curves see some of the “group A innovations” in Davies (1979).
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give rise to Pareto-decreases in ex ante welfare. By contrast, under perfect good news,

increasing the potential for social learning is (essentially) always strictly beneficial

and speeds up learning at all times.

Related Literature: We contribute to a large literature (spanning economics,

marketing, and sociology)9 that seeks to explain why the adoption of innovations

is typically a drawn-out process and why different innovations follow different

characteristic adoption patterns, notably the widely-documented S-shaped and

concave adoption curves.10 First, we identify a novel, purely informational source of

these regularities: Forward-looking social learners may delay adoption to gather

information about others’ experiences, but delay incentives (and hence adoption

patterns) are sensitive to the market learning environment.11 Existing models appear

to have overlooked this channel, appealing instead to (a combination of): (i) an

assumed heterogeneity of potential adopters, with a distribution of characteristics

that is imposed exogenously to fit the desired adoption pattern—as in “probit”

models12 or existing learning-based models;13 (ii) non-informational “spillover”

effects which, independently of the quality of the innovation, increase current adoption

as a function of past adoption—e.g. by a process of contagion as in “epidemic”

9See Geroski (2000) and Baptista (1999) for more comprehensive surveys.

10See footnote 8.

11This message is similar in spirit to Board and Meyer-ter Vehn (2013), who highlight the role of
the market learning process in a different setting, viz. a capital-theoretic model of firms’ incentives
to invest in quality and reputation.

12E.g. David (1969); Davies (1979); Karshenas and Stoneman (1993).

13 E.g. Jensen (1982), where players are forward-looking but information arrives purely exoge-
nously, obtains S-shaped adoption curves by assuming that players’ initial beliefs about quality are
uniformly distributed over some interval. In his model, and also if learning is social but consumers
are myopic (as in Young, 2009), a population of identical consumers would follow a cutoff rule, with
everyone adopting the innovation at beliefs above a certain threshold and not adopting otherwise,
which rules out convex growth in adoption levels regardless of the news environment.
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models,14 or due to pure payoff externalities resulting from learning-by-doing

(Jovanovic and Lach, 1989) or network effects (Farrell and Saloner, 1985, 1986); (iii)

supply-side factors such as pricing (e.g. Bergemann and Välimäki, 1997; Cabral,

2012). To highlight the explanatory power of informational incentives alone we

abstract away from (i)–(iii), but we do not wish to deny that a combination of these

factors is likely often at play as well. Second, however, we investigate the effect

of increased opportunities for social learning and obtain predictions (notably the

saturation effect) that are outside the scope of existing models.

Our Poisson learning framework borrows from the strategic experimentation

literature (Keller et al., 2005; Keller and Rady, 2010, 2014),15 but we depart in two

key respects: First, since our focus is on large market applications, we assume that

any individual’s influence on public aggregate information is negligible. Second, we

assume that adoption is irreversible rather than allowing for continuous back-and-

forth switching; this is natural for innovations such as medical procedures or movies,

for which “consumption” is usually a one-time event, or for technologies with large

switching costs. An important theoretical implication is the absence from our

model of the encouragement effect, which is central to the strategic experimentation

literature.16 This makes our analysis more tractable—e.g., in contrast with the

14E.g. Mansfield (1961, 1968); Bass (1969, 1980); Mahajan and Peterson (1985); Mahajan et al. (1990).

15These papers feature learning via perfect good news, imperfect good news, and perfect and
imperfect bad news, respectively. Bolton and Harris (1999), the founding paper of this literature, has
learning based on Brownian motion.

16According to this effect, individuals have an incentive to increase current experimentation to
drive up beliefs and induce more future experimentation by others; it requires crucially that (i)
individuals have a direct influence on opponents’ information and (ii) they can adjust experimentation
as a function of beliefs. There is no encouragement effect in Keller et al. (2005), but again (i) and (ii)
are crucial in generating asymmetric switching equilibria, in which players take turns experimenting
at different beliefs.
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aforementioned papers, our equilibria are unique (at the aggregate level).17 More

substantively, we obtain differences between bad and good news environments that

do not arise under strategic experimentation, as well as novel comparative statics

with respect to the potential for social learning.18

In independent and contemporaneous work, Che and Hörner (2014) employ a

similar variation of Keller et al. (2005) to model learning about a new product by a

large population of consumers. However, they perform a normative analysis: Signals

about past adopters’ experiences are only visible to a benevolent mediator, who

based on his information makes adoption recommendations that maximize social

welfare subject to a credibility constraint. To counterbalance informational free-

riding, the optimal mechanism under both good and bad news generally features

regions of selective over-recommendation.19

Finally, informational externalities in social learning are also studied by the

observational learning literature (e.g. Banerjee, 1992; Bikhchandani et al., 1992; Smith

and Sørensen, 2000, where the timing of players’ moves is exogenous; and Chamley

and Gale (1994); Rosenberg et al. (2007); Murto and Välimäki (2011), which like

our paper feature endogenous timing). The key difference is that in this literature

players hold private information about a payoff-relevant state variable and make

17Moreover, we do not need to restrict to Markovian strategies.

18Specifically, under both perfect good and perfect bad news (resp. Keller et al., 2005; Keller and
Rady, 2014), the unique symmetric MPE features mixing throughout an intermediate region of
beliefs, whereas in our model partial adoption arises only under perfect bad news. Also, in both
Bolton and Harris (1999) and Keller and Rady (2014), an increase in the number of players or signal
informativeness makes players willing to experiment at more pessimistic beliefs, whereas we obtain
the opposite result under bad news.

19This is true when consumers are myopic, which is Che and Hörner’s main focus. In section
5, they also consider a version of forward-looking consumers, but this is quite different from our
model, because consumers are restricted to choosing a single time at which to “check-in” with the
mediator and are not able to observe any information prior to this time. Under perfect good news
(they do not consider perfect bad news), they show that the optimal policy in this case is sometimes
fully transparent.
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inferences by observing others’ actions, whereas all relevant news in our model is

public and derived from previous adopters’ experiences (which better captures social

learning via centralized internet-based review platforms). Given the assumption

of private information, a particular focus of this literature is on the possibility of

herding and informational cascades. By contrast, none of the cited papers derive

adoption curves or study the way in which they are shaped by qualitative features

of the news environment.20

1.2 Model

1.2.1 The Game

Time t ∈ [0,+∞) is continuous. At time t = 0, an innovation of unknown quality

θ ∈ {G = 1, B = −1} and of unlimited supply is released to a continuum population

of potential consumers of mass N̄0 ∈ R>0. Consumers are ex ante identical: They

have a common prior p0 ∈ (0, 1) that θ = G; they are forward-looking with common

discount rate r > 0; and they have the same actions and payoffs, as specified below.

At each time t, consumers receive stochastic opportunities to adopt the inno-

vation. Adoption opportunities are generated independently across consumers

and across histories according to a Poisson process with exogenous arrival rate

ρ > 0.21 Upon an adoption opportunity, a consumer must choose whether to adopt

the innovation (at = 1) or to wait (at = 0). If a consumer adopts, he receives an

20At a quantitative level, our saturation effect is somewhat reminiscent of Chamley and Gale’s
(1994) result that as the number of players increases, the rate of investment and the information flow
are eventually independent of the number of players.

21Stochasticity of adoption opportunities can be seen as capturing the natural assumption that
consumers face cognitive and time constraints, making it impossible for them to ponder the decision
whether or not to adopt the innovation at every instant in continuous time.
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expected lump sum payoff of Et[θ], conditioned on information available up to time

t, and drops out of the game. If the consumer chooses to wait or does not receive

an adoption opportunity at t, he receives a flow payoff of 0 until his next adoption

opportunity, where he faces the same decision again.

1.2.2 Learning

Over time, consumers observe public signals that convey information about the

quality of the innovation. To highlight the importance of qualitative and quantitative

features of the informational environment, we employ a variation of the Poisson

learning models of Keller et al. (2005) and Keller and Rady (2010, 2014): Let Nt

denote the flow of of consumers newly adopting the innovation at time t, which

we define more precisely in Section 1.2.3. Then, conditional on quality θ, public

signals arrive according to an inhomogeneous Poisson process with arrival rate

(εθ + λθ Nt)dt, where λθ > 0 and εθ ≥ 0 are exogenous parameters that depend on

the quality θ of the innovation. The signal process summarizes news events that are

generated from two sources:

First, the social learning term λNt represents news generated endogenously,

based on the experiences of other consumers: It captures the idea of a flow Nt of

new adopters each generating signals at rate λ dt.22 Thus, the greater the flow of

consumers adopting the innovation at t, the more likely it is for a signal to arrive at

t, and hence the absence of a signal at t is more informative the larger Nt. Second,

22By letting the social learning component of the signal arrival rate at time t, λNt, depend only on
the flow of adopters Nt at time t itself, we are effectively assuming that each adopter can generate a
signal only once, namely at the time of adoption. This is appropriate for innovations such as new
movies or medical procedures, for which “consumption” is a one-time event and quality is revealed
upon consumption. For durable goods (e.g. cars or consumer electronics), it might be more natural
to allow adopters to generate signals repeatedly over time, which can be captured by replacing
λNt with λ

´ t
0 Ns ds. This would yield results that are qualitatively similar to those presented in the

following sections.
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we also allow for (but do not require) signals to arrive at a fixed exogenous rate ε dt,

representing information generated independently of consumers’ behavior, e.g. by

professional critics or government watchdog agencies.

For tractability, we focus on learning via perfect Poisson processes, where a single

signal provides conclusive evidence of the quality of the innovation. Qualitatively, we

can then distinguish between learning via perfect bad news, where εG = λG = 0

and εB = ε ≥ 0, λB = λ > 0, so that the arrival of a signal (called a breakdown) is

conclusive evidence that the innovation is bad; and learning via perfect good news,

where εB = λB = 0 and εG = ε ≥ 0, λG = λ > 0, so that a signal arrival (called a

breakthrough) is conclusive evidence that the innovation is good. As motivated in the

Introduction and Section 1.4.1, the distinction between bad news and good news

can be seen to reflect the nature of news production in different markets.

Quantitatively, we use Λ0 := λN̄0 as a simple measure of the potential for social

learning in the economy, summarizing both the likelihood λ with which individual

adopters’ experiences find their way into the public domain and the size N̄0 of the

population which can contribute to and access the common pool of information.

Evolution of Beliefs: Under perfect bad news, consumers’ posterior on θ = G

permanently jumps to 0 at the first breakdown, while under perfect good news,

consumers’ posterior on θ = G permanently jumps to 1 at the first breakthrough.

Let pt denote consumers’ no-news posterior, i.e. the belief at t that θ = G conditional

on no signals having arrived on [0, t). Given a flow of adopters Ns≥0, standard

Bayesian updating implies that

pt =
p0e−

´ t
0 (εG+λG Ns)ds

p0e−
´ t

0 (εG+λG Ns)ds + (1− p0)e−
´ t

0 (εB+λB Ns)ds
.23 (1.1)

23Definition 1.2.1 imposes measurability on N, so this expression is well-defined.
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In particular, if Nτ is continuous in an open interval (s, s + ν) for ν > 0, then pτ for

τ ∈ (s, s + ν) evolves according to the ODE

ṗτ = ((εB + λBNτ)− (εG + λGNτ)) pτ(1− pτ).

Note that the no-news posterior is continuous. Moreover, it is increasing under

perfect bad news and decreasing under perfect good news.

1.2.3 Equilibrium

Since our main interest is in the aggregate adoption dynamics of the population,

we take as the primitive of our equilibrium concept the aggregate flow Nt≥0 of

consumers newly adopting the innovation over time and do not explicitly model

individual consumers’ behavior. Given our focus on perfect news processes, con-

sumers’ incentives are non-trivial only in the absence of signals: Under perfect

bad news, no new consumers adopt after a breakdown, while under perfect good

news all remaining consumers adopt at their first opportunity after there has been a

breakthrough. Therefore, we henceforth let Nt denote the flow of new adopters at t

conditional on no signals up to time t and define equilibrium in terms of this quantity.

Reflecting the assumption that aggregate adoption behavior is predictable with

respect to the news process of the economy, we require that Nt be a deterministic

function of time. We consider all such functions which are feasible in the following

sense:

Definition 1.2.1. A feasible flow of adopters is a right-continuous function

N : [0,+∞) → R such that Nt := N(t) ∈ [0, ρN̄t] for all t ∈ [0,+∞), where

N̄t := N̄0 −
´ t

0 Nsds.

Here N̄t denotes the mass of consumers remaining in the game at time t. We
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require that Nt ≤ ρN̄t so that Nt is consistent with the remaining N̄t consumers inde-

pendently receiving adoption opportunities at Poisson rate ρ. Any feasible adoption

flow Nt≥0 defines an associated no-news posterior pN
t as given by Equation (1.1).

In equilibrium, we require that at each time t, Nt is consistent with optimal

behavior by the remaining N̄t forward-looking consumers: A consumer who receives

an adoption opportunity at t optimally trades off his expected payoff to adopting

against his value to waiting, given that he assigns probability pN
t to θ = G and that

he expects the population’s adoption behavior to evolve according to the process

Ns≥0. For this we first define the value to waiting.

Let Σt denote the set of all right-continuous functions σ : [t,+∞) → {0, 1},

each of which defines a potential set of future times at which, absent signals, a

given consumer might adopt if given an opportunity. Under the Poisson process

generating adoption opportunities, any σ ∈ Σt defines a random time τσ at which,

absent signals, the consumer will adopt the innovation and drop out of the game.24

Let WN
t (σ) denote the expected payoff to waiting at t and following σ in the

future, given the aggregate adoption flow Ns≥0. Specifically, if learning is via perfect

bad news, σ prescribes adoption at the random time τσ if and only if there have

been no breakdowns prior to τσ, yielding

WN
t (σ) := E

[
e−r(τσ−t)

(
pN

t − (1− pN
t )e
−
´ τσ

t (ε+λNs) ds
)]

,

where the expectation is with respect to the Poisson process generating adoption

opportunities.

24Formally, let (Xs)s≥t denote the stochastic process representing the number of arrivals generated
on [t, s] by a Poisson process with arrival rate ρ, and let (Xs−)s>t denote the number of arrivals on
[t, s). Then τσ := inf{s ≥ t : σs × (Xs − Xs−) > 0}, with the usual convention that inf∅ := +∞. It is
well-known that the hitting time of a right-continuous process of an open set is an optional time.
Therefore, the expectations in the definition of the value to waiting are well-defined.
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If learning is via perfect good news, then following σ means that at any adoption

opportunity prior to τσ, adoption occurs only if there has been a breakthrough, and

at τσ adoption occurs whether or not there has been a breakthrough. For any time

s ≥ t, denote by τs the random time at which the first adoption opportunity after s

arrives. Then WN
t (σ) is given by

E

[ (
pte−

´ τσ

t (ε+λNs) ds + (1− pt)

)
e−r(τσ−t) (2pτσ − 1) +

+ pt

τσˆ

t

(ε + λNs) e−
´ s

t (ε+λNk) dke−r(τs−t)ds
]

,

where the expectation is again with respect to the Poisson process generating

adoption opportunities.

The value to waiting at t is the payoff to waiting and behaving optimally in the

future:

Definition 1.2.2. The value to waiting given a feasible adoption flow Nt≥0 is the

function WN : R+ → R+ defined by WN
t := supσ∈Σt

WN
t (σ) for all t.

We are now ready to formally define equilibrium:

Definition 1.2.3. An equilibrium is a feasible adoption flow Nt≥0 such that

(i). WN
t ≥ 2pN

t − 1 for all t such that Nt < ρN̄t; and

(ii). WN
t ≤ 2pN

t − 1 for all t such that 0 < Nt.

Condition (i) says that if some consumers who receive an adoption opportunity

at t decide not to adopt, then the value to waiting, WN
t , must weakly exceed the

expected payoff to immediate adoption, 2pN
t − 1. Similarly, condition (ii) requires

that if some consumers adopt at time t, then the value to waiting must be weakly

less than the payoff to immediate adoption. Thus, at all times, Nt is consistent with
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consumers optimally trading off the expected payoff to immediate adoption against

the value to waiting.25

1.3 Equilibrium Analysis

1.3.1 Quasi-Single Crossing Property for Equilibrium Incentives

We now proceed to equilibrium analysis. As a preliminary step, we first establish

a useful property of equilibrium incentives under both perfect bad news and

perfect good news. Suppose that Nt≥0 is an arbitrary feasible flow of adopters,

with associated no-news posterior pN
t≥0 and value to waiting WN

t≥0 as defined in

Definition 1.2.2. In general, the dynamics of the trade-off between immediate

adoption at time t (yielding expected payoff 2pN
t − 1) and delaying and behaving

optimally in the future (yielding expected payoff WN
t ) can be quite difficult to

characterize, with (2pN
t − 1)−WN

t changing sign many times. However, when Nt≥0

is an equilibrium flow, then for any t,

2pN
t − 1 < WN

t =⇒ Nt = 0; and

2pN
t − 1 > WN

t =⇒ Nt = ρN̄t;

and this imposes considerable discipline on the dynamics of the trade-off. Indeed,

the following theorem establishes that 2pN
t − 1 and WN

t must satisfy a quasi-single

crossing property:

25Note that Definition 1.2.3 is essentially Nash equilibrium, i.e. we do not impose subgame
perfection. The motivation is that in a continuum population any individual consumer’s behavior
has a negligible impact on aggregate adoption levels, so that any off-path history in which the flow of
adopters differs from the equilibrium flow is more than a unilateral deviation from the equilibrium
path. Thus, off-path histories do not affect individual consumers’ incentives on the equilibrium path
and are unimportant for equilibrium analysis.
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Theorem 1.3.1. Suppose that learning is either via perfect bad news (λB > 0 = λG) or

via perfect good news (λG > 0 = λB). Let Nt≥0 be an equilibrium, with corresponding

no-news posteriors pN
t≥0 and value to waiting WN

t≥0. Then WN
t≥0 and 2pN

t≥0 − 1 satisfy

single-crossing, in the following sense:

• If (λB − λG)(WN
t − (2pN

t − 1)) < 0, then (λB − λG)(WN
τ − (2pN

τ − 1)) < 0 for

all τ > t.

• If (λB − λG)(WN
t − (2pN

t − 1)) ≤ 0, then (λB − λG)(WN
τ − (2pN

τ − 1)) ≤ 0 for

all τ > t.

The proof is in Appendix A.1. We briefly illustrate the intuition for the first

bullet point when learning is via perfect bad news. Suppose that immediate

adoption is strictly better than waiting today (and hence also in the near future

provided there are no breakdowns).26 Then in the near future all consumers adopt

upon their first opportunity, so the no-news posterior strictly increases while the

number of remaining consumers strictly decreases. Because information is generated

endogenously, this means that the flow of information must be decreasing over time.

As a result, immediate adoption becomes even more attractive relative to waiting,

and consequently immediate adoption continues to be strictly preferable at all times

in the future.

With any equilibrium Nt≥0, we associate two cutoff times 0 ≤ t∗1 ≤ t∗2 ≤ +∞:27

If learning is via perfect bad news, set

t∗1 := inf{t ≥ 0 : Nt > 0} and t∗2 := sup{t ≥ 0 : Nt < ρN̄t}; 28 (1.2)

26This follows from the continuity of the equilibrium value to waiting, which is established in
Lemma A.1.1 in the Appendix.

27With the convention that inf∅ = +∞ and sup∅ = 0.
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Figure 1.2: Perfect Good News

if learning is via perfect good news, set

t∗1 := inf{t ≥ 0 : Nt < ρN̄t} and t∗2 := sup{t ≥ 0 : Nt > 0}. (1.3)

Thus, if Nt≥0 is a perfect bad news equilibrium it features no adoption (Nt = 0)

for all t < t∗1 and immediate adoption (Nt = ρN̄t) for all t > t∗2 absent breakdowns;

while under perfect good news Nt≥0 features immediate adoption prior to t∗1 and no

adoption after t∗2 absent breakthroughs. Moreover, under both perfect bad and good

news, Theorem 1.3.1 implies that at all times t ∈ (t∗1 , t∗2), consumers are indifferent

(2pN
t − 1 = WN

t ) between adopting and delaying.29 This is illustrated in Figures 1

and 2. In Sections 1.3.2 and 1.3.3 we will build on this observation to establish the

existence of unique equilibria under both perfect bad and good news. The cutoff

times, as well as the flow of adopters between t∗1 and t∗2 , are fully pinned down by

28Recall that N̄t := N̄0 −
´ t

0 Ns ds > 0 denotes the remaining population at time t.

29Suppose learning is via perfect good news. Consider t ∈ (t∗1 , t∗2). By the definition of t∗1 and t∗2 ,
there exist k ∈ (t∗1 , t) and l ∈ (t, t∗2) such that Nk < ρN̄k and Nl > 0. Since N is an equilibrium, this
implies 2pk − 1 ≤Wk and 2pl − 1 ≥Wl , whence by Theorem 1.3.1 2pt − 1 = Wt. The argument for
perfect bad news is analogous.
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the parameters. Looking ahead to Section 1.3.3, we will see that the perfect good

news equilibrium satisfies t∗1 = t∗2 = t∗; thus, adoption behavior is all-or-nothing,

with all consumers adopting upon first opportunity up to time t∗ and adoption

ceasing from then on absent breakthroughs. By contrast, for suitable parameters the

perfect bad news equilibrium in Section 1.3.2 features a non-empty region (t∗1, t∗2).

Maintaining indifference throughout (t∗1 , t∗2) requires a form of informational free-

riding, which we term partial adoption, whereby only some consumers adopt when

given the chance (i.e. Nt ∈ (0, ρN̄t) at each t ∈ (t∗1, t∗2)). We will see that partial

adoption has important implications for the shape of the adoption curve and for

the impact of increased opportunities for social learning on welfare, learning, and

adoption dynamics.

1.3.2 Equilibrium under Perfect Bad News

Assume that learning is via perfect bad news. The following theorem builds on

the analysis of the previous section to establish the existence of an equilibrium

Nt≥0, which is uniquely pinned down by the parameters. At all t, Nt is Markovian

in the associated no-news posterior pt and the time-t potential for social learning

Λt := λN̄t:30

Theorem 1.3.2 (Equilibrium under PBN). Fix r, ρ, λ, N̄0 > 0, ε ≥ 0, and p0 ∈ (0, 1).

There exists a unique equilibrium. Furthermore, in the unique equilibrium, Nt is Markovian

in (pt, Λt) for all t: There exists a non-decreasing function Λ∗ : [0, 1] → R ∪ {∞} and

30Recall that N̄t := N̄0 −
´ t

0 Ns ds denotes the remaining population at time t.
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some p∗ ∈ [1
2 , 1) such that

Nt =


0 if pt < p∗ and Λt > Λ∗(pt)

r(2pt−1)
λ(1−pt)

− ε
λ ∈ (0, ρN̄t) if pt ≥ p∗ and Λt > Λ∗(pt)

ρN̄t if Λt ≤ Λ∗(pt).

(1.4)

The proof of Theorem 1.3.2 is in Appendix A.2.2. Here we sketch the basic

argument. Fix parameters r, ρ, N̄0 > 0, ε, λ ≥ 0, and p0 ∈ (0, 1), and suppose

that Nt≥0 is an equilibrium. By the previous section, Equation (1.2) defines cutoff

times 0 ≤ t∗1 ≤ t∗2 ≤ +∞ such that Nt = 0 if t < t∗1, Nt = ρN̄t if t > t∗2, and at all

t ∈ [t∗1, t∗2), consumers are indifferent between adopting immediately and waiting

for more information.

Partial adoption during (t∗1 , t∗2): Lemma A.2.1 in Appendix A.2.2 shows that the

flow of adopters at all times t ∈ (t∗1, t∗2) must satisfy Nt =
r(2pt−1)
λ(1−pt)

− ε
λ ∈ (0, ρN̄t)—

thus, adoption throughout (t∗1, t∗2) is partial, with only some consumers adopting

when given a chance and others free-riding on the information generated by the

adopters. Heuristically, maintaining consumer indifference requires that the cost

and benefit of delaying be equal:

Benefit of Delay︷ ︸︸ ︷
(ε + λNt) (1− pt)dt︸ ︷︷ ︸

Probability of
breakdown

(0− (−1))︸ ︷︷ ︸
Benefit:

Avoid Bad Product

=

Cost of Delay︷ ︸︸ ︷
(1− (ε + λNt) (1− pt)dt)︸ ︷︷ ︸

Probability of
no breakdown

(2pt+dt − 1)rdt︸ ︷︷ ︸
Cost:

Discounting

.

(1.5)

Delaying one’s decision by an instant is beneficial if a breakdown occurs at that

instant, allowing a consumer to permanently avoid the bad product. The gain in this

case is (0− (−1)) = 1, and this possibility arises with an instantaneous probability

of (ε + λNt) (1− pt)dt. On the other hand, if no breakdown occurs, which happens
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with instantaneous probability 1− (ε + λNt) (1− pt)dt, then consumers incur an

opportunity cost of (2pt+dt − 1)rdt, reflecting the time cost of delayed adoption.31

Ignoring terms of order dt2 and rearranging yields Nt =
r(2pt−1)
λ(1−pt)

− ε
λ .32

Determining the cutoff times: Next, we derive an alternative description of t∗1

and t∗2 in terms of the evolution of the no-news posterior pt and the potential for

social learning Λt. To state this description, we define the following notation. For

any p ∈ (0, 1) and Λ ≥ 0, let

G(p, Λ) :=

∞̂

0

ρe−(r+ρ)τ
(

p− (1− p)e−(ετ+Λ(1−e−ρτ))
)

dτ.

G(p, Λ) represents the payoff to adopting at the next opportunity absent break-

downs, given that the current belief is p, that the remaining potential for social

learning is Λ, and that absent breakdowns the remaining Λ/λ consumers adopt at

their first opportunity in the future.

Define cutoff posteriors p, p, and p] as follows. Let p be the lowest posterior

at which a consumer to whom adoption opportunities arrive at rate ρ is willing to

adopt immediately if all information in the future arrives exclusively through the

exogenous new source; that is,

2p− 1 = G(p, 0)⇔ p :=
(ε + r)(r + ρ)

2(ε + r)(r + ρ)− ερ
.

Define p := limρ→∞ p = ε+r
ε+2r to be the lowest belief at which a hypothetical

consumer to whom adoption opportunities arrive continuously would be willing

31Note that ρ does not enter into this expression, because in the indifference region consumers
obtain the same continuation payoff regardless of whether or not they obtain an adoption opportunity
in the time interval (t, t + dt) and hence are indifferent between receiving an opportunity to adopt
or not.

32A bit more precisely, ignoring terms of order dt2, the right hand side of Equation 1.5 is given
by (1− (ε + λNt) (1− pt)dt)(2(pt + ṗtdt)− 1)rdt = r(2pt − 1)dt. Further rearrangement yields the
desired expression.
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to adopt immediately if all information in the future arrives exclusively through

the exogenous new source. Define p] := limε→∞ p = ρ+r
ρ+2r to be the lowest belief

at which a consumer to whom adoption opportunities arrive at rate ρ would be

willing to adopt immediately even if all uncertainty were to be completely resolved by

the next adoption opportunity.33

Finally, define the function Λ∗ : [0, 1]→ R+ ∪ {+∞} as follows. Let Λ∗(p) = 0

for all p ≤ p, Λ∗(p) = +∞ for all p ≥ p], and for all p ∈ (p, p]), let Λ∗(p) ∈ R+ be

the unique value such that 2p− 1 = G(p, Λ∗(p)).34 Thus, if the current posterior

is p ∈ [p, p]) and the current potential for social learning in the economy is Λ∗(p),

then consumers are indifferent between adopting now or at their next opportunity

absent breakdowns, provided that all remaining Λ∗(p)/λ consumers also adopt at

their first opportunity in the future.

Then, letting p∗ := min{p, p]}, Lemma A.2.3 in Appendix A.2.2 shows that

t∗2 = inf{t ≥ 0 : Λt < Λ∗(pt)} and t∗1 = min{t∗2 , sup{t ≥ 0 : pt < p∗}}.35

Equilibrium dynamics given initial parameters: From the previous two steps,

it is clear that any equilibrium must take the Markovian form in Equation (1.4), with

Λ∗ and p∗ as defined above. It remains to show how Equation (1.4) uniquely pins

down the evolution of Nt as a function of the initial parameters; and to verify that

Nt≥0 thus obtained does indeed constitute an equilibrium (in particular, is feasible).

Here we sketch the former argument, relegating the latter to Appendix A.2.2. Note

first the following two special cases: If ε = 0 and p0 ≤ 1
2 , then Equation (1.4) implies

that Nt = 0 for all t. Second, if ε ≥ ρ (so that p∗ := min{p, p]} = p]), then because

33Thus, for all p > p], limΛ→∞ G(p, Λ) < 2p− 1 and for all p < p], limΛ→∞ G(p, Λ) > 2p− 1.

34Note that such a value must exist given that p ∈ (p, p]) and is unique because G(p, Λ)− (2p− 1)
is strictly decreasing in p and strictly increasing in Λ on this domain.

35We impose the convention that if {t ≥ 0 : pt < p∗ = 1
2} = ∅, then sup{t ≥ 0 : pt < p∗ = 1

2} :=
0.
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Λ∗(p) = +∞ for all p ≥ p], Nt = 0 as long as Λt > Λ∗(pt) and Nt = ρN̄t as soon

as Λt ≤ Λ∗(pt). Throughout the rest of the paper, we will be particularly interested

in equilibria that feature a non-empty partial adoption region (t∗1 , t∗2). Since the two

cases above preclude this regardless of other parameters, we henceforth rule them

out (Appendix A.2.2 discusses the second case in more detail):

Condition 1.3.3. The rate at which exogenous information arrives is smaller than

the rate at which consumers obtain adoption opportunities: ε < ρ.

Condition 1.3.4. Either ε > 0 or p0 ∈ (1
2 , 1).

Given these conditions, Figure 1.3 illustrates how the unique equilibrium is

obtained as a function of the parameters. Regions (2) and (3) represent values of

(pt, Λt) corresponding to the first line of Equation (1.4), so that no adoption takes

place in these regions. Region (4) corresponds to partial adoption as given by the

second line of Equation (1.4). Finally, region (1) corresponds to the third line of

Equation (1.4) and thus to immediate adoption.

If (p0, Λ0) is in region (2), then initially no adoption occurs and the no-news

posterior drifts upward according to the law of motion ṗt = pt(1− pt)ε, while Λt

remains unchanged at Λ0. This yields a unique time 0 < t∗1 = t∗2 at which (pt, Λt)

hits the boundary separating regions (2) and (1); subsequently consumers adopt

immediately upon an opportunity so that Nt = ρe−ρ(t−t∗2)N̄t∗2 uniquely pins down

the evolution of (pt, Λt). If (p0, Λ0) is in region (3), then again no initial adoption

occurs and the no-news posterior drifts upward according to the law of motion

ṗt = pt(1− pt)ε, while Λt remains unchanged at Λ0. However, now this yields a

unique time 0 < t∗1 at which (pt, Λt) hits the boundary separating regions (3) and

(4), and at this time Λt∗1 = Λ0 > Λ(pt∗1 ) = Λ(p), so that we must have t∗1 < t∗2.

From t∗1 on the evolution of (pt, Λt) is uniquely pinned down by the second line of
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Figure 1.3: Partition of (pt, Λt) when ε < ρ

Equation (1.4).36 Thus, t∗2 is uniquely given by the first time t at which Λt = Λ∗(pt),

at which point (pt, Λt) enters region (1). Similar arguments show that when (p0, Λ0)

starts in region (4), we have t∗1 = 0 and t∗2 > t∗1 is the first time at which (pt, Λt),

evolving according to the second line of Equation (1.4), enters region (1). Finally,

if (p0, Λ0) is in region (1), then 0 = t∗1 = t∗2 and absent breakdowns all consumers

adopt upon their first opportunity from the beginning.

Conditions for partial adoption: As seen above, whether or not the equilibrium

features a period of partial adoption depends on the fundamentals. More specifically,

Figure 1.3 shows that if consumers are forward-looking and not too optimistic

36Specifically, combining the second line of Equation (1.4) with Equation (1.1) yields the ODE
ṗt = rpt(2pt − 1), which pins down pt uniquely given the initial value pt∗1

= p:

pt =
pt∗1

2pt∗1
− er(t−t∗1)(2pt∗1

− 1)
.

Plugging this back into Nt =
r(2pt−1)
λ(1−pt)

− ε
λ uniquely pins down Λt = λN̄t. Note that since pt∗1

> 1
2 , pt

given above is strictly increasing and reaches p] in finite time. Thus t∗2 = inf{t : Λt < Λ∗(pt)} < +∞.

28



(p0 < p]), then t∗1 < t∗2 holds whenever the potential for social learning Λ0 is

sufficiently large. The following lemma states this precisely:

Lemma 1.3.5. Fix ρ, ε and p0 satisfying Conditions 1.3.3 and 1.3.4. Assume p0 < p].

Then for all r > 0, there exists Λ̄0(r) > 0 such that t∗1(Λ0) < t∗2(Λ0)
37 if and only if

Λ0 > Λ̄0(r).

Proof. Set Λ̄0(r) := max{Λ∗(p0), Λ∗(p)} and see Appendix A.2.4 . �

On the other hand, if as in existing learning-based models of innovation adoption,

learning is purely exogenous (λ = 0 and ε > 0) or consumers are myopic (“r = +∞”),

then there is never any partial adoption, regardless of other parameters. In the

former case, 0 = Λt < Λ∗(p) for all p > p, so by Theorem 1.3.2 no consumers adopt

until the no-news posterior hits p (at t∗1 = t∗2) and from then on all consumers adopt

immediately when given a chance. The latter case corresponds to p = p = 1
2 and

Λ∗(p) = +∞ for all p > 1
2 , so t∗1 = t∗2 = inf{t : pt >

1
2}. Thus, the possibility of

partial adoption in equilibrium hinges crucially both on consumers being forward-

looking and on there being opportunities for social learning.

1.3.3 Equilibrium under Perfect Good News

We now turn to study equilibrium behavior when learning is via perfect good news.

As under perfect bad news, there is a unique equilibrium Nt≥0, and Nt is Markovian

in the state variables (pt, Λt). Surprisingly, however, the equilibrium is all-or-nothing,

regardless of the potential for social learning in the economy. There is a cutoff belief

p∗ above which all consumers adopt if given an opportunity and below which no

consumers adopt:

37Note that by the Markovian description of equilibrium dynamics, Λ0 is a sufficient statistic
for equilibrium; i.e., holding all other fundamentals fixed, Λ0 fully pins down the corresponding
no-news equilibrium adoption flow, beliefs and cutoff times t∗1(Λ0) and t∗2(Λ0).
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Theorem 1.3.6 (Equilibrium under PGN). Let r, ρ, λ, N̄0 > 0, p0 ∈ (0, 1), and ε ≥ 0.

There exists a unique equilibrium. Moreover, in the unique equilibrium, Nt is Markovian in

(pt, Λt) (or equivalently (pt, N̄t)) for all t and satisfies:

Nt =


ρN̄t if pt > p∗

0 if pt ≤ p∗,
(1.6)

where

p∗ =
(ε + r)(ρ + r)

2(ε + ρ)(ε + r)− ερ
.

To prove Theorem 1.3.6 we again invoke the quasi-single crossing property for

equilibrium incentives established in Theorem 1.3.1. As we saw in Section 1.3.1,

this implies that in any equilibrium, there are times 0 ≤ t∗1 ≤ t∗2 ≤ +∞ defined by

Equation (1.3) such that absent breakthroughs, Nt = ρN̄t if t < t∗1, Nt = 0 if t > t∗2,

and throughout (t∗1, t∗2) consumers are indifferent between adopting immediately

and waiting for more information.

The key observation (Lemma A.2.6 in Appendix A.2.3) is that we must in fact

have t∗1 = t∗2 =: t∗. To see the intuition, suppose t∗1 < t∗2 . Then consumers would be

indifferent between adopting and delaying at each time t ∈ (t∗1 , t∗2). Moreover, there

is t ∈ (t∗1, t∗2) and ∆ ∈ (0, t∗2 − t) such that Nτ > 0 throughout [t, t + ∆).38 As with

perfect bad news, we can compare a consumer’s payoff to adopting at t with the

payoff to delaying his decision by an instant:

r(2pt − 1)dt + pt(λNt + ε)dt
(

1− ρ

r + ρ

)
.

The first term represents the gain to immediate adoption if no breakthrough

occurs between t and t + dt, which happens with instantaneous probability (1−

38By definition of t∗2 , there exists t ∈ (t∗1 , t∗2) such that Nt > 0. By right-continuity of N, we must
then have Nτ > 0 for all τ > t sufficiently close.
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pt(λNt + ε)dt). Just as with perfect bad news, the gain to adopting immediately in

this case is r(2pt+dt − 1)dt, representing time discounting at rate r and the fact that

at t + dt the consumer remains indifferent between adopting given an opportunity

and delaying. Ignoring terms of order dt2 yields r(2pt − 1)dt. The second term

represents the gain to immediate adoption if there is a breakthrough between t

and t + dt, which happens with instantaneous probability pt(λNt + ε)dt > 0. Now

the situation is very different from the perfect bad news setting: A breakthrough

conclusively signals good quality, so a consumer who delays his decision by an

instant will adopt immediately at his next opportunity. This results in a discounted

payoff of ρ
r+ρ , reflecting the stochasticity of adoption opportunities. On the other

hand, by adopting at t, the consumer receives a payoff of 1 > ρ
r+ρ immediately. Thus,

regardless of whether or not there is a breakthrough between t and t + dt, there is a

strictly positive gain to adopting immediately at t, contradicting indifference at t.

The above argument illustrates a fundamental difference between the bad news

and good news setting. In order to maintain indifference over a period of time

between immediate adoption and waiting, it must be possible to acquire decision-

relevant information by waiting: Consumers who are prepared to adopt at t will be

willing to delay their decision by an instant only if there is a possibility that at the

next instant they will no longer be willing to adopt. In the bad news setting, this is

indeed possible, because a breakdown might occur. On the other hand, if learning

is via good news, this cannot happen: A breakthrough between t and t + dt reveals

the innovation to be good, so consumers strictly prefer to adopt from t + dt on; if

there is no breakthrough, then consumers remain indifferent at t + dt, so in either

case the information obtained is not decision-relevant.39

39Note that breakthroughs do of course convey decision-relevant information at beliefs where
consumers strictly prefer to delay. But during a region of indifference, this cannot be the case.
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Given that t∗1 = t∗2 = t∗, Theorem 1.3.6 follows from the observation that pt ≤ p∗

if and only if t ≥ t∗ (Lemma A.2.7 in Appendix A.2.3). It is worth noting that if

ε = 0, then p∗ = 1
2 , so regardless of the discount rate r, consumers behave entirely

myopically. If ε > 0, then consumers’ forward-looking nature is reflected by the

fact that the cutoff posterior p∗ below which consumers are unwilling to adopt is
(r+ρ)(r+ε)

2(r+ρ)(r+ε)−ρε
> 1

2 . In both cases, the cutoff posterior does not depend on λ or N̄0:

Social learning only affects the time t∗ at which adoption ceases conditional on no

breakthroughs.

1.4 Implications

1.4.1 Adoption Curves: S-Shaped vs. Concave

The differing informational incentives of bad and good news environments have

observable implications. Consider the adoption curve of the innovation, which plots

the percentage of adopters in the population against time. Conditional on no news

up to time t, this is given by At :=
´ t

0 Ns/N̄0 ds.

Theorems 1.3.2 and 1.3.6 translate directly into different predictions for the shape

of the adoption curve, as summarized by the following corollary: Under perfect bad

news, At exhibits an S-shaped (i.e. convex-concave) growth pattern, where the region

of convex growth coincides precisely with the partial adoption region (t∗1, t∗2). By

contrast, under perfect good news, adoption proceeds in concave "bursts":

Corollary 1.4.1. Perfect Bad News: In the unique equilibrium of Theorem 1.3.2, At has

the following shape: For 0 ≤ t < t∗1 , At = 0; for t∗1 ≤ t < t∗2 , At is strictly increasing and

convex in t; for t ≥ t∗2, At is strictly increasing and concave in t. If the first breakdown

occurs at time t, then adoption comes to a standstill from then on.
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Perfect Good News: In the unique equilibrium of Theorem 1.3.6, At = 1− e−ρt for all

t < t∗, which is strictly increasing and concave. If there is a breakthrough prior to t∗, then

the proportion of adopters is given by 1− e−ρt for all t; if the first breakthrough occurs at

s > t∗,40 then adoption comes to a temporary standstill between t∗ and s, and for all t ≥ s,

the proportion of adopters is strictly increasing and concave and given by 1− e−ρ(t∗+t−s).
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Figure 1.4: Adoption curve under PBN conditional on no breakdowns (ε = 0)

Figures 1.4 and 1.541 illustrate the differing adoption patterns. As we discussed

in the Introduction, both patterns have been widely documented empirically, but

our model differs from existing explanations in identifying a purely informational

source of this regularity: We predict S-shaped adoption curves in bad news markets

with a sufficiently large potential for social learning and sufficiently forward-looking

and not too optimistic consumers (so that t∗1 < t∗2 by Lemma 1.3.5), and concave

adoption patterns in good news markets (or in bad news markets with little potential

for social learning and with very optimistic and impatient consumers).

40This occurs only if ε > 0.

41Associated parameter values: ε = 1/2, r = 1, ρ = 1, λ = 0.5, and p0 = 0.7.
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Figure 1.5: Adoption curves under PGN (blue = breakthrough before t∗; yellow = breakthrough after
t∗; pink = bad quality)

The convex42 growth region of At under perfect bad news coincides precisely

with the partial adoption region (t∗1, t∗2) and is tied to consumer indifference in

this region: Conditional on no breakdowns during this period, consumers grow

increasingly optimistic about the quality of the innovation, which increases their

opportunity cost of delaying adoption. To maintain indifference, the benefit to

delaying adoption must then also increase over time: This is achieved by increasing

the arrival rate of future breakdowns, which improves the odds that waiting will

allow consumers to avoid the bad product. But since the arrival rate of information

is increasing in the flow Nt of new adopters, this means that Nt must be strictly

increasing throughout (t∗1, t∗2). Since Nt represents the rate of change of At, this is

equivalent to At being convex.43 As we discussed following Lemma 1.3.5, partial

adoption depends on the joint assumption of forward-looking consumers and social

42The regions of concave growth under both perfect bad and good news result simply from the
gradual depletion of the population of remaining consumers.

43This argument for convex growth does not rely on linearity of λNt; it remains valid as long as
the rate at which the bad product generates breakdowns at t is increasing in Nt.
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learning. This is why we are able to generate S-shaped adoption curves even

when consumers are ex ante identical, whereas existing learning-based models with

myopic consumers (Young, 2009) or purely exogenous learning (Jensen, 1982) must

appeal to specific distributions of consumer heterogeneity.44

Our predictions suggest the need for empirical work that would systematically

investigate the qualitative and quantitative features of consumer learning about

different innovations and compare the associated adoption patterns. Here we

provide some suggestive evidence:

Figure 1.6: Adoption of microwaves by US households (Source: Guenthner et al. (1991)).

Learning via bad news events (or their absence) seems especially plausible in

the case of new technologies or medical procedures whose introduction was accom-

44See footnote 13. One exception is Kapur (1995), where a finite number of identical firms engage
in a sequence of waiting contests to adopt a new technology and more information is revealed when
more firms adopt during a given waiting contest. This can be viewed as a form of forward-looking
social learning. He shows that the mean duration of waiting contests shrinks over time, suggesting a
crude approximation of convex diffusion.
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panied by initial safety concerns: For example, following Raytheon’s introduction to

the US market of the first countertop household microwave oven in 1967, the 1970s

were characterized by widespread concerns about possible “radiation leaks”, stirred

up for instance by a Consumers’ Union (1973) report which concluded that “we

are not convinced that they are completely safe to use”45 and by Paul Brodeur’s

1977 bestseller The Zapping of America.46 Thus, it seems plausible that some con-

sumers would have delayed their purchase in the hope of learning whether previous

adopters experienced any adverse effects, as suggested for instance by Wiersema

and Buzzell (1979).47 Consistent with our predictions for bad news markets, the

microwave is a textbook example of an innovation with an S-shaped adoption

pattern: Figure 1.6 shows the convex growth in US adoption levels through the

late 1980s, with later growth slowing to reach ownership levels of around 97% in

2011.48 A second example is bariatric surgery, a collection of surgical weight loss

procedures (including gastric bypass and gastric band surgery) which began gaining

momentum in the mid-1990s. As with any major surgery, complications are possible,

with typical health advice websites containing statements such as “a small degree

of risk, including death, is inherent to all types of surgery” and “Because bariatric

surgery is a relatively new surgical specialty, there are not yet enough medical

45Consumers’ Union (1973), p. 221

46The FDA’s Bureau of Radiological Health disagreed with the concerns. For details see Wiersema
and Buzzell (1979).

47Ibid., p. 2. We note that adoption levels remained relatively low throughout the 1970s despite the
fact that the entry of Japanese firms onto the US market in the mid-1970s brought with it substantial
price decreases (from $550 in 1970 to as low as $150 in 1978, ibid. p. 2 and p. 5), possibly lending
further plausibility to safety concerns as the primary source of delays.

48Williams (2014), p. 2.
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data to predict with certainty which patients will have better outcomes.”49 Again,

consistent with some patients deciding to delay the procedure to learn whether

previous adopters suffered serious complications, the available data suggests an

S-shaped growth pattern.50

Figure 1.7: 2013 cumulative box office sales for various blockbuster (left) and independent (right)
movies (Source: http://www.the-numbers.com).

Concave adoption patterns have been studied in the marketing literature under

the name “fast-break product life cycles”, with movies (Figure 1.7), books, music

49http://health.usnews.com/health-conditions/heart-health/
information-on-bariatric-surgery/overview#4.

50According to Buchwald and Oien (2009) p. 1609 and Buchwald and Oien (2013) p. 428, the
annual number of procedures performed worldwide (i.e. the number of new adoptions) increased
from 40,000 in 1998 to 146,301 in 2003 and to 344,221 in 2008, and then plateaued at 340,768 in 2011.
We note that an explanation in terms of reduced costs does not seem possible: For example, in the
US the number of annual procedures increased from 13,386 to 121,055 between 1998 and 2004, while
the average cost per procedure saw only a limited decrease, from $10,970 to $10,395; cf. Zhao and
Encinosa (2007) Table 1, p. 6.
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and similar leisure-enhancing products as canonical examples.51 Consistent with

our predictions, these domains appear to better fit the good news than the bad news

model. For example, in a 2003–2004 study of consumer reviews of a representative

sample of 6405 books on Amazon.com and BarnesandNoble.com, Chevalier and

Mayzlin (2006) find that reviews “are overwhelmingly positive overall at both

sites,”52 suggesting that social learning in this domain proceeds via good news

signals (or their absence) rather than via bad news signals: On a scale from one

(worst) to five (best) stars, the modal review in the study is 5 stars, the mean star

rating exceeds 4, and the fraction of 1-star ratings is in the range of 0.03–0.08.53

As far as exogenously generated news is concerned, it would again appear that

positive events, such as Academy Award, Grammy Award, or Booker Prize wins,

receive far greater coverage than the occasional damning review by a critic (for

this reason, Board and Meyer-ter Vehn (2013)54 also cite the movie industry as an

example of a good news market). Based on our model, we would also conjecture

concave adoption patterns for (essentially side-effect free) herbal remedies and other

alternative medical treatments, and for many beauty and fitness products, for which

anecdotal evidence suggests that consumer learning is primarily about “whether

they actually work” (i.e. good news events or their absence).

51Cf. Keillor (2007), pp. 51–61.

52Chevalier and Mayzlin (2006), p. 347.

53Ibid., Table 1, p. 347.

54Board and Meyer-ter Vehn (2013) footnote 2, p. 2382.
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1.4.2 The Effect of Increased Opportunities for Social Learning

How does an increase in the potential for social learning Λ0 := λN̄0 affect welfare,

learning, and adoption dynamics? Again, the differing informational incentives of

bad and good news environments have important implications.

Under perfect bad news, an economy’s ability to harness its potential for social

learning is subject to a surprising saturation effect: Up to a certain cutoff level,

increasing Λ0 strictly increases ex-ante welfare, speeds up learning, and decreases

expected adoption levels of bad products while leaving adoption levels of good

products unaffected; but beyond this cutoff level, further increases in Λ0 are ex-ante

welfare-neutral, cause learning to slow down over certain periods, and strictly slow

down the adoption of good products. By contrast, there is no such saturation effect

under perfect good news.

Throughout this section we fix r, ρ, ε, and p0 and study the effect of increasing

Λ0 on ex-ante equilibrium welfare W0(Λ0); equilibrium cutoff times t∗1(Λ0), t∗2(Λ0);

no-news posteriors pΛ0
t ; and expected adoption levels At(Λ0, G) and At(Λ0, B)

conditional on good and bad quality, respectively.55

Perfect Bad News: The following proposition, which we prove in Ap-

pendix A.2.4, summarizes the saturation effect.

Proposition 1.4.2. Consider learning via perfect bad news. Fix r, ρ > 0, ε ≥ 0, and p0

satisfying Conditions 1.3.3 and 1.3.4 and such that p0 ∈ (p, p]).56 Consider Λ̂0 > Λ0 ≥

Λ∗(p0). Then:

55Note that because of the Markovian description of the equilibrium in Theorem 1.3.2 and
Theorem 1.3.6, Λ0 is a sufficient statistic for these quantities when all other parameters are fixed.

56We assume p0 ∈ (p, p]), so that t∗1 = 0, to focus on the inefficiency due to partial adoption
without having to take into account the effect of Λ0 on t∗1 . As we show in Appendix A.2.4, the
welfare-neutrality result remains valid if p0 ∈ (0, p], but now the cutoff-level above which it holds is
Λ∗(p) rather than Λ∗(p0).
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(i). Welfare Neutrality: W0(Λ̂0) = W0(Λ0).

(ii). Non-Monotonicity of Learning: There exists some t ∈ (t∗2(Λ0),+∞) such that

• pΛ0
t = pΛ̂0

t for all t ≤ t∗2(Λ0),

• pΛ0
t > pΛ̂0

t for all t ∈ (t∗2(Λ0), t),

• pΛ0
t < pΛ̂0

t for all t > t.

(iii). Slowdown in Adoption: For all t and θ = B, G, At(Λ0, θ) > At(Λ̂0, θ).

On the other hand, if Λ0 < Λ̂0 ≤ Λ∗(p0), then W0(Λ0) < W0(Λ̂0); pΛ0
t < pΛ̂0

t ;

At(Λ0, G) = At(Λ̂0, G) and At(Λ0, B) > At(Λ̂0, B) for all t.

The saturation effect obtains once Λ0 exceeds Λ∗(p0). This is precisely the level

above which the equilibrium features an initial partial adoption region (0 = t∗1 <

t∗2(Λ0)), so that consumers at time 0 are indifferent between delaying and adopting.

This immediately implies welfare-neutrality, because W0(Λ0) = 2p0 − 1 irrespective

of the value of Λ0 ≥ Λ∗(p0).57 This result is in stark contrast to the cooperative

benchmark in which consumers coordinate on socially optimal adoption levels: Here

increased opportunities for social learning are always strictly beneficial and for any

p0 > 1
2 the first-best (complete information) payoff of ρ

r+ρ p0 can be approximated in

the limit as Λ0 → ∞.58

(ii) and (iii) further illuminate the forces behind welfare-neutrality: Because an

increase in Λ0 affects learning dynamics in a non-monotonic manner, the impact

57As discussed in the previous footnote, as long as Λ̂0 > Λ0 > max{Λ∗(p), Λ∗(p0)}, the welfare-
neutrality result remains valid even if p0 < p in which case t∗1(Λ0) = t∗1(Λ̂0) > 0.

58The cooperative benchmark is derived in Section 3.2 of an earlier version of this paper, Frick and
Ishii (2014): It takes an all-or-nothing form, with no adoption below a cutoff belief ps and immediate
adoption above ps. Relative to this, equilibrium displays two types of inefficiency: First, because
ps < p, adoption generally begins too late. Second, whenever t∗1 < t∗2 , then once consumers begin to
adopt, the initial rate of adoption is too low. Cf. Frick and Ishii (2014), section 5.3.
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on a consumer’s expected payoff varies with the time t at which he obtains his

first adoption opportunity: If t ≤ t∗2(Λ0), his expected payoff is the same under

Λ0 and Λ̂0; if t ∈ (t∗2(Λ0), t), he is strictly worse off under Λ̂0, because in case the

innovation is bad he is less likely to have found out by then than under Λ0; finally,

if t > t, he is strictly better off under Λ̂0. Depending on Λ̂0, t adjusts endogenously

to balance out the benefits, which arrive at times after t, with the costs incurred at

times (t∗2(Λ0), t).

Similarly, by (iii), an increase in Λ0 strictly decreases At(Λ0, G) (which is harm-

ful), but also decreases At(Λ0, B) (which is beneficial), and welfare-neutrality is

achieved because these forces balance out in equilibrium. Figure 1.8 illustrates that

the strict slow-down in the adoption of good products is due to two effects: On the

extensive margin, the increase in Λ0 pushes out t∗2 (i.e. prolongs free-riding in the

form of partial adoption); on the intensive margin, the increase strictly drives down

the growth rate of At at all t < t∗2(Λ0).

0.2

0.4

0.6

0.8

t∗2(Λ0) t∗2(Λ̂0)

At(Λ0, G)

At(Λ̂0, G)

Adoption (%)

t

Figure 1.8: Changes in adoption levels of a good product as a result of increased opportunities for
social learning under PBN (Λ̂0 > Λ0)
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Since it only arises in the presence of partial adoption, the saturation effect

once again relies crucially on the interaction between forward-looking consumers

and social learning, setting us apart from models of myopic social learning or

forward-looking exogenous learning in which ex-ante welfare necessarily increases

in response to more informative signals (even if consumers are heterogeneous).59

Perfect Good News: Under perfect good news, there is no partial adoption.

Correspondingly, there is no saturation effect:60

Proposition 1.4.3. Consider learning via perfect good news. Fix r, ρ > 0, ε ≥ 0, and

p0 ∈ (p∗, 1).61 Suppose Λ̂0 > Λ0 ≥ 0.62 Then:

(i). Strict Welfare Gains: Provided ε > 0,63 we have W0(Λ̂0) > W0(Λ0).

(ii). Learning Speeds Up:

• 0 < t∗(Λ̂0) < t∗(Λ0)

• pΛ̂0
t < pΛ0

t for all t > 0

• pΛ̂0
t∗(Λ̂0)+k

= pΛ0
t∗(Λ0)+k for all k ≥ 0.

(iii). No Initial Slow-Down in Adoption:

59To define ex-ante welfare with myopic consumers, we assume that consumers’ payoffs are
discounted at some arbitrary rate r > 0, but that consumers behave myopically, i.e. ignore the option
value to waiting.

60Nevertheless, equilibrium behavior is not in general socially optimal, because p∗ exceeds the
socially optimal cutoff posterior. See Frick and Ishii (2014), sections 3.1 and 6.3.3.

61Recall that p∗ := (ε+r)(ρ+r)
2(ε+ρ)(ε+r)−ερ

is the equilibrium cutoff posterior under perfect good news. If
p0 ≤ p∗, then all consumers rely entirely on the exogenous news source from the beginning, so the
potential for social learning is irrelevant.

62If ε = 0 we assume that p0
(
1 + e−Λ0

)
< 1 so that t∗(Λ0) < ∞.

63Increasing Λ0 can increase welfare only if there are histories at which consumers’ preference for
adoption or delay is affected by information obtained via social learning. If ε = 0, then consumers
are (weakly) willing to adopt at all histories, since the equilibrium posterior always remains weakly
above 1

2 . Thus, in this case W(Λ0) = W(Λ̂0).
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• For all t ≤ t∗(Λ̂0), At(Λ̂0; θ) = At(Λ0; θ) = 1− e−ρt for θ = B, G.

1.4.3 More Social Learning Can Hurt: An Example

Assuming ex-ante identical consumers, Proposition 1.4.2 established a saturation

effect under perfect bad news: Beyond a certain level of Λ0, further increases in the

potential for social learning are welfare-neutral. Perhaps even more surprisingly, we

show in this section that when consumers are heterogeneous, increased opportunities

for social learning can bring about Pareto-decreases in ex-ante welfare. To illustrate

this, we introduce some heterogeneity in consumers’ patience levels.

Consider a population consisting of two types of consumers: There is a mass N̄p
0

of patient types with discount rate rp > 0 and a mass N̄i
0 of impatient types with

discount rate ri > rp. Because our aim is simply to construct an example exhibiting

welfare loss, we restrict attention to the perfect bad news setting. To simplify the

analysis we assume that ε = 0 and p0 > 1/2, but our arguments extend easily to

the case where ε > 0.

Recall from Section 1.3.2 that for any discount rate r > 0, we can define the

function Λ∗r implicitly for every p ∈ (1
2 , ρ+r

ρ+2r ):

2p− 1 = Gr(p, Λ∗r (p)) :=

∞̂

0

ρe−(r+ρ)τ
(

p− (1− p)e−Λ∗r (p)(1−e−ρt)
)

dτ.

Suppose p0 <
ρ+rp
ρ+2rp

and λ̂N̄p
0 > λN̄p

0 > Λ∗rp(p0) and consider first the game

consisting only of mass N̄p
0 consumers of type rp (and no consumers of type ri).

Then Theorem 1.3.2 implies that the two equilibria corresponding to information

structures λ and λ̂ both feature initial regions of partial adoption, so that Wp
0 (λ̂) =

Wp
0 (λ) = 2p0 − 1.

The following theorem states that provided the mass of impatient types is small,
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then in the game consisting of both types of consumers, the patient types’ ex-ante

payoffs continue to be 2p0 − 1 under both λ and λ̂; however, the impatient types’

ex-ante payoffs are strictly lower under λ̂ than under λ:

Theorem 1.4.4. Suppose 0 < rp < ri < +∞ and p0 ∈ (1
2 , ρ+rp

ρ+2rp
). Fix N̄p

0 > 0 and

λ̂ > λ > 0 such that λ̂N̄p
0 > λN̄p

0 > Λ∗rp(p0). Then there exists η > 0 such that whenever

N̄i
0 < η, then W i

0(λ̂) < W i
0(λ) and Wp

0 (λ̂) = Wp
0 (λ) = 2p0 − 1. Thus, whenever

N̄i
0 < η, the ex-ante payoff profile (W i

0(λ), Wp
0 (λ)) in the λ-equilibrium Pareto-dominates

the ex-ante payoff profile (W i
0(λ̂), Wp

0 (λ̂)) in the λ̂-equilibrium.

The proof is in Appendix A.2.6. The basic idea is as follows. Consider first

the equilibrium adoption flows that are generated under each of λ and λ̂ in the

game consisting solely of mass N̄p
0 of patient consumers of type rp. What are the

payoffs that a hypothetical impatient type ri (which does not exist in this game)

would obtain if he were to behave optimally when faced with these adoption flows

(and the expected future information they imply)? Since the patient types are

initially indifferent between adopting or delaying in both equilibria, a monotonicity

argument in types shows that in both cases the optimal strategy of the hypothetical

impatient type ri is to adopt upon first opportunity. Given this, the ex-ante payoff

of the hypothetical type ri under signal arrival rate γ ∈ {λ, λ̂} satisfies:

W i
0(γ) =

∞̂

0

ρe−(ri+ρ)τ p0

pγ
τ

(
2pγ

τ − 1
)

dτ.

By the non-monotonicity result for learning established in Proposition 1.4.2, there

exists t > t∗ := t∗2(λ) such that pλ̂
τ = pλ

τ for all τ ≤ t∗, pλ̂
τ < pλ

τ for all τ ∈ (t∗, t) and

pλ̂
τ > pλ

τ for all τ > t. We now exploit the expressions for the value to waiting of the

two types together with the deceleration of learning at times just after t∗ to obtain

the result. Intuitively, since Wp
0 (λ̂) = Wp

0 (λ) = 2p0 − 1, the cost of the deceleration
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in learning on (t∗, t) and the benefit of the acceleration in learning at times after t

must balance out in such a way that the patient type rp obtains the same ex-ante

payoff under λ and λ̂. But as a result, these adjustments must strictly hurt the less

patient hypothetical type ri, because relative to type rp, type ri weights the early

losses due to the slow-down in learning more heavily than the later benefits due to

the acceleration.

To complete the proof, we show that as long as N̄i
0 > 0 is sufficiently small,

we must still have W i
0(λ̂) < W i

0(λ) and Wp
0 (λ̂) = Wp

0 (λ). The first inequality

follows from a simple continuity argument. The second equality reflects the fact

that provided N̄i
0 is sufficiently small, the patient type must continue to partially

adopt initially in both equilibria.

Note that a crucial assumption underlying the above argument is that adoption

opportunities are stochastic and limited. When ρ is finite, the impatient types may

not receive any adoption opportunities for a long time. But as we saw above, if an

impatient type obtains his first adoption opportunity between t∗ and t, then the

information gained is strictly lower under the equilibrium with information process

λ̂ than under λ, which is precisely the cause of the impatient type’s welfare loss. If on

the other hand consumers were able to adopt freely at any time, then the impatient

types would incur no losses as all of them would adopt immediately at time 0 in

both the λ and λ̂-equilibrium. Thus, the above example illustrates an interesting

interaction between heterogeneity and delays due to limited opportunities for

adoption.
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1.5 Conclusion

This paper develops a model of innovation adoption when consumers are forward-

looking and learning is social. Our analysis isolates the effect of purely informational

incentives on aggregate adoption dynamics, learning, and welfare. We highlight

the role of the news environment in shaping these incentives; most importantly, in

determining whether or not there is informational free-riding in the form of partial

adoption. The presence or absence of partial adoption has observable implications,

suggesting a novel explanation for why adoption curves are S-shaped for some

innovations and concave for others. Moreover, partial adoption has important

welfare implications, entailing that increased opportunities for social learning need

not benefit consumers and can be strictly harmful.

To illustrate these points in the simplest possible framework, we have restricted

attention to perfect bad and good news Poisson learning. This made our equilibrium

analysis very tractable, yielding closed-form expressions for all key quantities and

allowing us to compute numerous comparative statics. Nevertheless, many of our

conclusions extend to more general information structures: Especially worth noting

is the fact that partial adoption relies crucially on the possibility of news events

that trigger discrete downward jumps in beliefs (although such events need not

conclusively signal bad quality as was the case under perfect bad news). Without

such events (e.g. when learning is based on imperfect good news Poisson signals

or Brownian motion), a similar logic as in Section 1.3.3 shows that there cannot

be continuous regions of partial adoption, because a consumer who is willing to

adopt cannot acquire decision-relevant information by delaying his decision by an

instant.64

64For this, we assume that there is no exogenous news. Details are available upon request.
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To highlight the implications of purely informational considerations, we have

abstracted away from forces emphasized by existing models of innovation adoption,

notably consumer heterogeneity and supply-side factors such as pricing. Neverthe-

less, exploring the way in which these forces interact with informational incentives

represents an interesting avenue for future theoretical work. To give a taste, Sec-

tion 1.4.3 shows that heterogeneity can further exacerbate the welfare implications

of informational free-riding.

Finally, our predictions lend themselves to empirical investigation. Section 1.4.1

provides some suggestive evidence for the prediction that S-shaped (respectively

concave) adoption curves are typical of bad (respectively good) news markets, but

a more systematic analysis is called for. The saturation effect implies that the

proportion of adopters of an innovation may grow more slowly in communities

with more potential consumers or with a greater ease of information transmission.

The former could be tested by contrasting the adoption paths of new agricultural

technologies across villages with different population sizes,65 while for the latter one

might exploit the staggered introduction of certain social media platforms across

different US cities or differences across states in legislation mandating the disclosure

of adverse medical events.

65This is related to Bandiera and Rasul’s (2006) finding which we discussed in footnote 2: They
find that an individual farmer’s likelihood of adoption is (from a certain point on) decreasing in
the number of adopters in his network. But then, in equilibrium, larger networks of farmers should
feature lower percentages of adoption.
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Chapter 2

Rational Behavior under Correlated

Uncertainty1

2.1 Introduction

In complete information games, Dekel and Fudenberg (1990) and Börgers (1994)

have proposed the solution concept S∞W (one round of elimination of weakly dom-

inated strategies followed by iterated elimination of strongly dominated strategies),

motivating it via its connection with “approximate common certainty” of admissibil-

ity. Admissibility (expected utility maximization with respect to some full-support

conjecture about opponents’ behavior) and iterated admissibility are commonly

used refinements of Bayesian rationality (e.g. Luce and Raiffa, 1957; Kohlberg and

Mertens, 1986).

Börgers’ interest in approximate common certainty of admissibility is driven

by epistemic considerations, namely the aim to establish an analog of Tan and

1Co-authored with Assaf Romm. This chapter has benefited from very helpful comments by
Elchanan Ben-Porath, Eddie Dekel, Marciano Siniscalchi, and two anonymous referees, in addition
to the many people mentioned in the Acknowledgments.
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da Costa Werlang’s (1988) well-known result that the behavioral implications of

common certainty of rationality are given by S∞ (iterated strong dominance). There

is a logical tension between admissibility (holding full-support beliefs about op-

ponents’ behavior) and common certainty of admissibility (which in general rules

out some opponent strategies). This tension disappears when common certainty

is relaxed to approximate common certainty in the sense of common p-belief for

p close to 1. Börgers (formalized by Hu (2007)) shows that S∞W encapsulates the

behavioral implications of the latter notion. Dekel and Fudenberg are motivated by

robustness considerations, focusing on the special case where approximate common

certainty of admissibility is the result of small amounts of payoff uncertainty. They

ask which strategies can arise if players behave according to iterated admissibility,

but there is vanishingly small payoff uncertainty, which they model via sequences

of elaborations converging to a game. Once again the answer to this question is

given by S∞W.

This paper examines the connection between approximate common certainty of

admissibility and S∞W in an incomplete information setting. Consider a Bayesian

game G with state space Θ in which each player i has first-order belief φi over Θ.

We obtain extensions of Börger’s and Dekel and Fudenberg’s characterizations of

S∞W, but show that these are very sensitive to the way in which uncertainty in the

form of approximate common certainty of admissibility is taken to interact with the

uncertainty (represented by each player i’s belief φi on Θ) that is already present in

G.

Interpreting S∞W in the interim-correlated sense of Dekel et al. (2007), Sec-

tion 2.3.1 extends Börgers’ characterization: We show that if there is common

p-belief of admissibility and of the fact that each player i’s first-order belief over Θ

is exactly φi, then for p close enough to 1, S∞W once again emerges as the set of
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behavioral implications (Theorem 2.3.1). In Appendix B.1, we provide an analogous

extension of Dekel and Fudenberg’s result: Proposition B.1.2 shows that S∞W is

the robust extension of W∞ under elaborations in which “sane” types may assign

vanishingly small probability to opponents being “crazy” (i.e. having very different

payoffs and beliefs as in the original game), but must themselves have exactly the

same beliefs (and payoffs) as in the original game.

However, these results break down when approximate common certainty of

admissibility is accompanied by vanishingly small perturbations to players’ beliefs

about states. In Section 2.3.2 we show that if there is common p-belief of admissibility

and of the fact that each player i’s first-order belief about Θ is “approximately” φi,

then the behavioral implications are given by a generalization of Hu’s (2007) perfect

p-rationalizable set (Theorem 2.3.5). But even in the limit as p goes to 1 and as

the uncertainty about φi becomes vanishingly small, this set is in general a strict

superset of S∞W.2

In addition to Börgers (1994), Dekel and Fudenberg (1990), and Hu (2007), our

paper connects more broadly with the growing literatures on epistemic conditions

related to admissibility and on the robustness of solution concepts to small amounts

of uncertainty. Within the former literature, an alternative epistemic characteri-

zation of S∞W is obtained by Schuhmacher (1999): Instead of relaxing common

certainty to common p-belief, he relaxes the rationality requirement implied by

admissibility to “ε-rationality”. Brandenburger et al. (2008) replace probabilistic

beliefs with lexicographic probability systems to obtain epistemic foundations for

iterated admissibility.3 Both these papers are set in a complete information en-

2Similarly, under elaborations in which sane types’ beliefs over Θ are allowed to be vanishingly
small perturbations of the beliefs in G, S∞W is in general a strict subset of the robust closure of W∞.

3See Dekel and Siniscalchi (2014) for a more comprehensive discussion of this literature.
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vironment. Within the latter literature, which was pioneered by Fudenberg et al.

(1988) and Kajii and Morris (1997), our paper relates most closely to Weinstein and

Yildiz (2007): They show that in incomplete information games satisfying a richness

assumption, any action in S∞ can be made uniquely rationalizable if we allow for

arbitrary perturbations to players’ entire hierarchy of beliefs. Put differently, this

means that any refinement of S∞ must be derived from restrictions on the class of

perturbations that we are considering. One of the contributions of our paper lies in

clarifying the nature of restrictions needed to obtain S∞W.

The rest of the paper is organized as follows. Section 2.2 introduces notation and

definitions. Section 2.3 contains our main results. Section 2.4 concludes. Appendix

B.1 extends Dekel and Fudenberg’s characterization to our setting, and Appendix

B.2 contains all proofs.

2.2 Preliminaries

Throughout the paper we fix an incomplete information normal-form game G =

(I, Θ, (Ai, ui, φi)i∈I), where Θ is a finite set of states of nature, I is a finite set of

players, and for every i ∈ I, Ai is a finite set of strategies, ui : Ai × A−i ×Θ → R

denotes i’s state-dependent payoffs, and φi ∈ ∆◦(Θ) is i’s full-support belief about

Θ.4 We work with the following notions of admissibility, iterated dominance, and

approximate common certainty of admissibility:

4For expositional clarity, we assume that in G there is a single type for each player. With slight
adjustments, our results extend readily to games with finite type spaces.
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2.2.1 Interim Correlated Dominance

We interpret strong and weak dominance in the “interim correlated” sense of

Dekel et al. (2007).5,6 This allows any player’s conjectures about her opponents’

behavior to be correlated with her beliefs about the state of nature. As argued

by Dekel et al. (2007), allowing for this kind of correlation is the natural approach

in Bayesian games, because imposing independence on conjectures about states

and opponents’ behavior produces solution concepts which are very sensitive to

“redundant” aspects of the type space.7 Nevertheless, as we discuss in Section 2.4,

imposing the latter kind of independence on our definition of iterated dominance

would not fundamentally alter our results in Section 2.3.

Definition 2.2.1. Consider non-empty subsets Âj ⊆ Aj for every j, and let Â := ∏j Â

and Â−j := ∏i 6=j Âi. We say that αi ∈ ∆(Âj) strongly dominates ai ∈ Âi on Â if for

all beliefs µi : Θ→ ∆(Â−i),

∑
θ,a−i

φi(θ)µi(θ)[a−i](ui(αi, a−i, θ)− ui(ai, a−i, θ)) > 0.

αi ∈ ∆(Âi) weakly dominates ai ∈ Âi on Â if for all beliefs µi : Θ→ ∆(Â−i),

∑
θ,a−i

φi(θ)µi(θ)[a−i](ui(αi, a−i, θ)− ui(ai, a−i, θ)) ≥ 0,

with strict inequality for at least one such µi.

Denote by S(Â)i the set of all strategies ai ∈ Âi which are not strongly dom-

inated on Â by any αi ∈ ∆(Âi), and let S(Â) := ∏j S(Â)j. Let S1(Â) := S(Â),

5See also Battigalli and Siniscalchi (2003).

6Our notion of interim correlated weak dominance, which does not appear in Dekel et al. (2007),
is derived from their concept of strong dominance in the natural way.

7See Dekel et al. (2007) for details and examples.
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Sk+1(Â) := S(Sk(Â)) and S∞(Â) := ∩kSk(Â). Similarly, denote by W(Â)i the set of

all admissible strategies for player i on Â, i.e. all ai ∈ Âi which are not weakly dom-

inated on Â by any αi ∈ ∆(Âi), and let W(Â) := ∏j W(Â)j. Let W1(Â) := W(Â),

Wk+1(Â) := W(Wk(Â)) and W∞(Â) := ∩kWk(Â). If Âj = Aj for all j, we write

Sk(G), Wk(G) and SlWk(G) for Sk(Â), Wk(Â) and SlWk(Â), respectively.

The following lemma is an incomplete-information extension of Pearce’s well-

known result (Pearce, 1984): A strategy is not strongly dominated if and only if it is

a best response to some state-dependent belief about opponent strategies, and it is

admissible if and only if it is a best response to a state-dependent belief having full

support on the relevant set of opponent strategies in every state:

Lemma 2.2.2 (Equivalence of undominance and best response formulations). Let Âi

and Â−i be nonempty subsets of Ai and A−i, respectively. Suppose ai ∈ Âi. Then:

(i). ai ∈ S(Â)i if and only if ai is a best response in Âi to some λi : Θ→ ∆(Â−i).8

(ii). ai ∈W(Â)i if and only if ai is a best response in Âi to some λi : Θ→ ∆◦(Â−i).

2.2.2 Approximate Common Certainty of Admissibility

To model approximate common certainty of admissibility, we associate with G

an epistemic type structure: We let T =
(

I, (Θ× A−i, Ti, βi)i∈I
)

be the universal

type space in which each player i’s basic space of uncertainty is Θ× A−i.9 Then

each set of types Ti is a compact metric space and for each i, the belief βi : Ti →

∆ (Θ× A−i × T−i) is a homeomorphism.10 We will use T to model small amounts

8I.e., ai ∈ argmaxa′i∈Âi
∑θ,a−i

φi(θ)λi(θ)[a−i]ui(a′i, a−i, θ).

9Cf. Brandenburger and Dekel (1993) for details regarding the construction of this space.

10For any compact metric space M, we equip the set ∆(M) of probability measures on the Borel
σ-algebra of M with the weak∗ topology, under which ∆(M) is itself compact metric.
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of uncertainty about the fact that players choose admissible strategies. In our

incomplete information setting, it is natural to allow this uncertainty to interact

with the uncertainty already present in G: Player i’s uncertainty about opponents’

behavior might be accompanied by small doubts about opponents’ beliefs about

Θ and might be correlated with i’s own beliefs about Θ. This is captured in T

by the fact that each βi(ti) is a joint probability distribution on Θ × A−i × T−i

and that margΘ β j(tj) is not necessarily equal to φj. Let fi := margΘ×A−i
βi, let

Ω := Θ×Πi∈I(Ai × Ti), and denote by θ, ai and ti the projections from Ω onto Θ,

Ai and Ti, respectively.

Common p-belief: For any event E ⊆ Ω,11 and any ω ∈ Ω, let Eω :=

{(θ, a−i, t−i) ∈ Θ× A−i × T−i : (θ, ai(ω), ti(ω), a−i, t−i) ∈ E}. For any p ∈ (0, 1], we

define the following events:

• i p-believes E: Bp
i (E) := {ω ∈ Ω : βi(ti(ω))(Eω) ≥ p}

• mutual p-belief of E: Bp(E) :=
⋂

i∈I Bp
i (E)

• Bp,1(E) := Bp(E) and inductively Bp,n+1(E) := Bp(Bp,n(E)) for n ≥ 1

• common p-belief of E: CBp(E) :=
⋂

n∈N Bp,n(E).

Approximate common certainty (ACC) of admissibility: Define the event that

player i is rational given utility ui
12 by

Ri :=

{
ω ∈ Ω : ai(ω) ∈ argmaxa′i∈Ai ∑

θ∈Θ,a−i∈A−i

fi(ti(ω))(θ, a−i)ui(a′i, a−i, θ)

}
,

and the event that all players are rational by R :=
⋂

i∈IRi. Define

the event that player i’s first-order belief has full support by Pi :=

11An event is a measurable set w.r.t. the Borel σ-algebra on Ω.

12In Section 2.4 we briefly discuss the implications of allowing for perturbations of the utility.

54



{ω ∈ Ω : fi(ti(ω)) ∈ ∆◦(Θ× A−i)}, and that all players have full-support first-order

beliefs by P :=
⋂

i∈I Pi. Then R∩ P is the event that all players play admissible

strategies.

In the complete information setting where |Θ| = 1, Börgers (1994) and Hu

(2007) model approximate common certainty (henceforth ACC) of admissibility by

CBp(R∩P) as p→ 1, capturing the idea that players’ uncertainty (and higher-order

uncertainty) about opponents’ choice of admissible strategies becomes vanishingly

small. In the case where |Θ| > 1, we allow player’s doubts about opponents’

behavior to be accompanied by doubts about opponents’ beliefs about Θ (in the

sense that we do not impose that margΘ β j(tj) = φj). Correspondingly, a natural

definition of ACC should require both types of doubts to vanish.

We consider two ways of modeling this: Define the event that player i’s first-

order beliefs on Θ are φi by [φi] :=
{

ω ∈ Ω : margΘ βi (ti(ω)) = φi
}

, and let [φ] :=⋂
i∈I [φi]. For any ε > 0, define the event that player i’s first-order beliefs on

Θ are ε-close to φi by [φi, ε] :=
{

ω ∈ Ω :
∣∣|margΘ βi (ti(ω))− φi

∣∣ |∞ ≤ ε
}

, and let

[φ, ε] :=
⋂

i∈I [φi, ε].

In Section 2.3.1 we consider the behavioral implications of strong ACC of admis-

sibility, defined as SACCA(G) :=
⋂

p∈(0,1) ProjA CBp([φ] ∩R∩P), which imposes

common p-belief of the exact profile of priors φ. Section 2.3.2 considers the behavioral

implications of ACC of admissibility with perturbed priors, defined as

PACCA(G) := lim
p̄→1−,ε̄→0+

⋂
p∈[ p̄,1),ε∈(0,ε̄]

ProjA CBp([φ, ε] ∩R∩P), 13

which only imposes common p-belief of the fact that priors on Θ are perturbations

13Note that whenever 0 < p ≤ p′ < 1 and ε ≥ ε′ > 0, then ProjA CBp([φ, ε] ∩ R ∩ P) ⊇
ProjA CBp′([φ, ε′] ∩ R ∩ P). Thus, by finiteness of A there is p̄ ∈ (0, 1) and ε̄ > 0 such that
PACCA(G) = ProjA CB p̄([φ, ε̄] ∩R∩P) = ProjA CBp([φ, ε] ∩R∩P) for all (p, ε) ∈ [ p̄, 1)× (0, ε̄].
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of φ, where we require these perturbations to vanish in the limit as p→ 1.

Conditional p-belief: In the following, we will also need to consider the event

that in every state θ there is common p-belief in admissibility. For this we introduce

the notion of conditional p-belief: For any family F := {F1, . . . , FN} of events, define

the following events:

• i p-believes E conditional on Fk:

Bp
i (E | Fk) :=

{
ω ∈ Ω

∣∣∣∣ βi(ti(ω))(Fω
k ) > 0 and

βi(ti(ω))(Eω ∩ Fω
k )

βi(ti(ω))(Fω
k )

≥ p
}

• i p-believes E conditional on each Fk: Bp
i (E | F ) :=

⋂
n∈{1,...,N} Bp

i (E | Fk)

• mutual p-belief conditional on each Fk: Bp (E | F ) :=
⋂

i∈I Bp
i (E | F )

• Bp,1 (E | F ) := Bp (E | F ) and Bp,n+1 (E | F ) := Bp (Bp,n (E | F ) | F ) for all

n ≥ 1

• common p-belief conditional on each Fk: CBp (E | F ) :=
⋂

n∈N Bp,n (E | F ).

Letting E(θ) := {ω ∈ Ω | θ(ω) = θ} and E(Θ) := {E(θ)}θ∈Θ, the event that i

p-believes E in every state θ is then given by Bp
i (E | E(Θ)). We will make use of the

following relationship between conditional and unconditional p-beliefs:

Lemma 2.2.3. For any i ∈ I, p ∈ (0, 1], partition F = {F1, . . . , FN} of Ω, and θ ∈ Θ:

• Bp
i (E | F ) ⊆ Bp

i (E); and

• Bp
i (E) ∩ [φi] ⊆ B

max
{

1− 1−p
φi(θ)

,0
}

i (E | E(θ)).

2.3 S∞W and ACC of Admissibility

In a complete information setting, Börgers (1994) (formalized by Hu (2007)) shows

that for large enough p, we have that S∞W(G) = ProjA CBp(R∩P). In this section
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we examine the validity of this result under the two incomplete-information notions

of ACC of admissibility defined in Section 2.2.2.

2.3.1 Strong ACC of Admissibility

Consider first the behavioral implications of strong ACC of admissibility, as defined

by the set SACCA(G) in Section 2.2.2. In this case, we obtain an incomplete

information extension of Börgers’s (1994) characterization:

Theorem 2.3.1. There exists p̄ ∈ (0, 1) such that for all p ∈ [ p̄, 1) we have

S∞W(G) = ProjA CBp ([φ] ∩R∩P) = SACCA(G). (2.1)

The proof of Theorem 2.3.1 proceeds in two steps, both of which make use of an

incomplete information analog of Hu’s (2007) perfect p-rationalizable set: For any

A′ := ∏i∈i A′i ⊆ A and i ∈ I, let

Dp
i (A′) :=

{
ai ∈ A′i : ∃µ : Θ→ ∆◦(A−i) s.t. ai ∈ BRφi

A′i
(µ) and µ(θ)(A′−i) ≥ p ∀θ ∈ Θ

}
,

where BRφi
A′i
(µ) := argmaxa′i∈A′i

∑θ∈Θ,a−i∈A−i
φi(θ)µ(θ)(a−i)ui(a′i, a−i, θ). Inductively

define Λ̃p,0(A) = Dp(A) := ∏i∈I Dp
i (A) and Λ̃p,n+1 := Dp(Ai, Λ̃p,n

−i (A)) for all n ≥

0. Then the perfect p-rationalizable set of G is given by R̃p(G) :=
⋂

n∈N Λ̃p,n(A).

The first step in the proof of Theorem 2.3.1 shows that for large enough p,

the perfect p-rationalizable set R̃p(G) is precisely S∞W(G). This follows from an

extension of the key lemma from Börgers (1994) to our incomplete information

setting:

Lemma 2.3.2. There exists π ∈ (0, 1) such that for all i ∈ I, p ∈ [π, 1), and non-empty

Âi ⊆ Ai and Â−i ⊆ A−i, we have that ai ∈ Âi is in Dp
i (Âi, Â−i) if and only if the

following two conditions hold:

57



(i). ai ∈W(Âi × A−i)i, i.e. there is no αi ∈ ∆(Âi) which weakly dominates ai on A−i.

(ii). ai ∈ S(Âi × Â−i)i, i.e. there is no αi ∈ ∆(Âi) which strongly dominates ai on Â−i.

Corollary 2.3.3. There exists π ∈ (0, 1) such that for all i ∈ I and p ∈ [π, 1), we have

R̃p
i (G) = S∞W(G)i.

The second step in proving Theorem 2.3.1 is an extension of Theorem 5.1 from

Hu (2007) to our incomplete information setting. We show that for any p, R̃p(G) is

the set of strategy profiles which are played when in every state there is common

p-belief of the event [φ] ∩R∩P :

Proposition 2.3.4. For all p ∈ (0, 1), R̃p(G) = ProjA CBp ([φ] ∩R∩P | E(Θ)).

For any p ∈ (0, 1), Proposition 2.3.4 combined with the first part of Lemma 2.2.3

implies R̃p(G) ⊆ ProjA CBp ([φ] ∩R∩P). And for any p ∈ (0, 1) such that 1−
1−p

mini∈I,θ∈Θ φi(θ)
> 0, Proposition 2.3.4 along with the second part of Lemma 2.2.3

implies

ProjA CBp ([φ] ∩R∩P) ⊆ R̃
1− 1−p

mini∈I,θ∈Θ φi(θ) (G).

Letting π ∈ (0, 1) be as in Corollary 2.3.3, there exists p̄ ∈ (π, 1) such that for all p ≥

p̄ we have 1− 1−p
mini∈I,θ∈Θ φi(θ)

≥ π. Then for all p ≥ p̄, R̃
1− 1−p

mini∈I,θ∈Θ φi(θ) (G) = R̃p(G) =

S∞W(G). Hence, ProjA CBp ([φ] ∩R∩P) = R̃p(G) = S∞W(G), completing the

proof of Theorem 2.3.1.

2.3.2 ACC of Admissibility with Perturbed Priors

We now study the behavioral implications of ACC of admissibility with perturbed

priors, as defined by the set PACCA(G) in Section 2.2.2. In this case, Theorem 2.3.1

breaks down: S∞W(G) continues to be a subset of PACCA(G), but in general the

containment is strict.
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To see this, we first provide a characterization of PACCA(G) in terms of a

generalization of the perfect p-rationalizable set. Define the ε-perturbed perfect p-

rationalizable set to be R̃ε,p(G) :=
⋂

n∈N Λ̃ε,p,n(A), where for any A′ := ∏i∈i A′i ⊆

A and i ∈ I, we let

Λ̃ε,p
i (A′) :=

ai ∈ Ai :
∃φ′i ∈ ∆(Θ) & µ : Θ→ ∆◦(A−i) s.t.

ai ∈ BRφ′i
Ai
(µ) &

∣∣|φi − φ′i
∣∣ |∞ ≤ ε & µ(θ)(A′−i) ≥ p ∀θ ∈ Θ

 ,

and we inductively define Λ̃ε,p,0(A) = Λ̃ε,p(A) := ∏i∈I Λ̃ε,p
i (A) and Λ̃ε,p,n+1 :=

Λ̃ε,p(Λ̃p,n(A)) for all n ≥ 0. We have the following analog of Proposition 2.3.4:

Theorem 2.3.5. For all p ∈ (0, 1) and ε > 0, ProjA CBp ([φ, ε] ∩R∩P | E(Θ)) =

R̃ε,p(G).

By the same logic as in the paragraph following Proposition 2.3.4, Theorem 2.3.5

implies that there exists p̄ ∈ (0, 1) and ε̄ > 0 such that for all p ∈ [ p̄, 1) and ε ∈ (0, ε̄],

R̃ε,p(G) = R̃ε̄,p̄(G) = PACCA(G). Since R̃p(G) ⊆ R̃ε,p(G) for all p ∈ (0, 1) and

ε > 0, it follows from Theorem 2.3.1 that S∞W(G) ⊆ PACCA(G). However, as the

following example shows, this inclusion is generally strict:

Example 2.3.6. Consider the 2-player game G where A1 = {U, D}, A2 = {L, R},

Θ = {θ, θ′}, player 2 is indifferent across all outcomes and states, and 1’s payoffs

are given by:

θ L R

U 1 1

D 0 0

θ′ L R

U 0 1

D 1 0

Suppose that φ1 = φ2 =: φ assigns equal probability to θ and θ′. Then D /∈

S∞W(G)1 because it is weakly dominated by U under φ: Indeed, writing XY (for
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any X, Y ∈ A2) to denote the belief µ : Θ→ A2 such that µ(θ) = X and µ(θ′) = Y,

player 1’s expected payoffs from U and D given φ are summarized by

LL RL LR RR

U 1
2

1
2 1 1

D 1
2

1
2 0 0

On the other hand, consider the sequence of perturbed beliefs φn → φ given by

φn(θ) = 1
2 −

1
n , φn(θ′) = 1

2 +
1
n for n ≥ 3, and consider the sequence of conjectures

µn : Θ→ ∆◦(A2) given by µn(θ)[L] = µn(θ′)[L] = 1− 1
n2 , µn(θ)[R] = µn(θ′)[R] = 1

n2 .

Given φn, 1’s expected payoffs against µn from U and D are 1
2 −

1
n + (1

2 +
1
n )

1
n2 and

(1
2 +

1
n )(1−

1
n2 ), respectively. For large enough n, the latter is strictly greater than

the former, so D ∈ BRφn
(µn). Thus, Λ̃

1
n ,p,0
1 (A) = {U, D} = A1. Hence, for all

p ∈ (0, 1) and ε > 0, R̃ε,p(G) = A ) S∞W(G).

The preceding example has the special feature that R̃
1
n ,p(G) = ProjA1

CBp([φn] ∩

R∩P) for all p ∈ (0, 1) and large enough n. However, in general R̃ε,p(G) does not

impose common p-belief in any single profile (φ′1, φ′2) of ε-perturbed priors, instead

allowing each player to be uncertain about the way in which his opponents’ priors

are perturbed, about the way in which his opponents think his priors might be

perturbed etc. This additional uncertainty can generate additional behavior outside

S∞W(G): A given strategy might be played by player 1 only if player 1’s belief about

Θ is perturbed in a particular way φ′1 and if player 1 believes that player 2 plays

a particular strategy—but the latter choice of strategy by player 2 might in turn

require player 2 to believe that player 1 is willing to play some other strategy which

player 1 would only play under a different belief perturbation φ′′1 . The following

example illustrates this:
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Example 2.3.7. Consider the 2-player game G where A1 = {U, I, D}, A2 =

{L, M, R}, Θ = {θ, θ′}, and payoffs are summarized by the following two tables:

θ L M R

U 1, 0 0, 1
2 0, 1

I 1
2 , 0 1

2 , 1
2

1
2 , 0

D 0, 0 0, 1
2 0, 0

θ′ L M R

U 0, 1 0, 1
2 0, 0

I 1
2 , 0 1

2 , 1
2

1
2 , 0

D 1, 0 0, 1
2 0, 0

Suppose that φ1 = φ2 =: φ assigns equal probability to θ and θ′. Then for

any p ∈ (0, 1) and ε > 0, we have R̃ε,p(G) = A: Indeed, note first that under the

belief φ′1 ∈ ∆(Θ) with φ′1(θ) = α, player 1’s expected payoffs from U, I and D are

summarized by the following table (again XY denotes the belief that X is played in

θ and Y is played in θ′):

LL LR LM RR RL RM MM MR ML

U α α α 0 0 0 0 0 0

I 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

D 1− α 0 0 0 1− α 0 0 0 1− α

From this it is easy to see that Λ̃ε,p,0
1 (A) = {U, I, D} = A1, because U is rational-

izable under any φ′1 with α > 1
2 and D is rationalizable under any φ′1 with α < 1

2

(and I is a weakly dominant strategy). Similarly, under the belief φ′2 ∈ ∆(Θ) with

φ′2(θ) = α, player 2’s expected payoffs from L, R, and M are summarized by:
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UU UI UD IU II ID DU DI DD

L 1− α 0 0 1− α 0 0 1− α 0 0

M 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

R α α α 0 0 0 0 0 0

Thus, by the same reasoning as above Λ̃ε,p,0
2 (A) = {L, M, R} = A2, whence

R̃ε,p(G) = A.

On the other hand, fix ε > 0 sufficiently small and choose p = p(ε) sufficiently

close to 1. We claim that there is no φ′ := (φ′1, φ′2) ∈ ∆◦(Θ) with ||φ′ − φ|| ≤ ε

such that D ∈ ProjA1
CBp([φ′] ∩R ∩ P). The basic intuition is the following: An

easy adaptation of the arguments in Section 2.3.1 shows that if ε is sufficiently

small and p sufficiently close to 1, then for all φ′ with ||φ′ − φ|| ≤ ε, we have

ProjA1
CBp([φ′] ∩R∩P) = R̃p(Gφ′), where Gφ′ is the incomplete information game

with the same states of nature, actions and payoffs as G, but with belief profile

φ′ rather than φ. Now note that for any φ′ such that D ∈ Λ̃p,0
1 (Gφ′), we must

have φ′1(θ) < 1
2 and hence U /∈ Λ̃p,0

1 (Gφ′). But for p > 1
2 , U /∈ Λ̃p,0

1 (Gφ′) implies

L /∈ Λ̃p,1
2 (Gφ′): Indeed, for any conjecture µ : Θ → ∆◦(A1) which in each state

puts probability greater than 1
2 on Λ̃p,0

1 (Gφ′) (and hence on player 1 not playing U),

player 2 is strictly better off playing M than L. But then, at the next step of the

iteration, this means that D /∈ Λ̃p,2
1 (Gφ′): If player 1 puts probability greater than 1

2

on opponent strategies in Λ̃p,1
2 (Gφ′) (and hence on L not being played), then he is

strictly better off playing I than D.
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2.4 Discussion

Our positive result in Section 2.3.1 shows that in an incomplete information set-

ting, S∞W(G) continues to admit clean epistemic foundations. However, from a

modeler’s perspective, the discussion in Section 2.3.2 suggests caution in making

predictions based on S∞W, except in situations where common p-belief of an exact

profile of priors seems a reasonable assumption—for example, this might be the

case if the game is played in an experimental lab setting and prior to the start of the

game the experimenter publicly announces an “objective” probability distribution

φ on Θ to all players. Additional interpretations of ACC of admissibility naturally

spring to mind: For instance, if we further weaken ACC of admissibility to allow

players to entertain vanishingly small doubts about opponents’ state-dependent

payoffs,14 then it is easy to see that any action profile in S∞ can be predicted.15 Once

again, one might argue that in many situations a modeler would be hard-pressed to

rule out uncertainty in the form of such vanishingly small perturbations. If so, this

suggests caution in applying any refinement of rationality short of S∞.16

Finally, we note that while we have interpreted S∞W in the interim-correlated

sense of Dekel et al. (2007), working with an alternative notion of S∞W which

requires each player’s beliefs about opponents’ behavior and about the states of

14That is, we replace the event Ri for each player with the event Rε
i which requires ai(ω) to

be a best-response given beliefs fi(ti(ω)) and given a state-dependent utility function u′i such that
||u′i − ui||∞ ≤ ε.

15This notion can be regarded as as an incomplete information analog of the notion of “weak
convergence” also considered in Dekel and Fudenberg (1990), but since they study normal forms
derived from extensive form games they restrict to payoff perturbations which respect the associated
extensive form.

16In this sense, our conclusion would be similar in spirit to Weinstein and Yildiz (2007). However,
our point is simply that any given action a in S∞ can arise under ACC of admissibility with perturbed
payoffs, not that a will be uniquely rationalizable. To make this point, we can work with a more
limited subset of perturbations of the type space than Weinstein and Yildiz (2007) and we do not
need to impose any richness assumption on the game.
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nature to be independent would not fundamentally alter our results: Let S∞WI denote

this independent version of S∞W17 and let H denote the event that each player’s

first-order beliefs are independent across opponents’ behavior and states of nature.18

Then analogously to Theorem 2.3.1 above, we can establish that S∞WI(G) coincides

with ProjA CBp([φ] ∩R ∩ P ∩H) for p close enough to 1. We can also obtain an

analog of Theorem 2.3.5 under a suitably modified definition of the ε-perturbed

perfect p-rationalizable set. Finally, it is easy to see that in Example 2.3.6 we also

have ProjA CBp([φ, ε] ∩R∩P ∩H) = A ) S∞WI(G) for all p ∈ (0, 1) and ε > 0.

17Formally, S∞WI(G) is obtained by imposing on each instance of µi : Θ → ∆(Â−i) in Defini-
tion 2.2.1 the requirement that µi(θ) = µi(θ

′) for all θ, θ′. Note that we do allow for correlation
across opponents’ actions, because µi(θ) is not assumed to be a product measure; thus our definition
is less stringent than “interim independence” in the sense of Dekel et al. (2007).

18Hi := {ω : fi(ti(ω))(θ, a−i) = margΘ fi(ti(ω))(θ) ·margA−i
fi(ti(ω))(a−i) ∀(θ, a−i)} and H :=⋂

i∈I Hi.
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Chapter 3

Monotone Threshold

Representations1

3.1 Introduction

The classical model of rational choice is based on two fundamental postulates:

When choosing from a menu A, an agent considers acceptable precisely those

alternatives in A that are optimal according to some underlying preference ranking;

this preference ranking is assumed (1) to be independent of the particular menu at

hand and (2) to satisfy the axioms of a weak order.

These two postulates are jointly called into question by a growing literature

(spanning psychology, marketing, and behavioral economics) on the phenomenon

of “choice overload”.2 This literature has sought to corroborate the intuition that

individuals have limited cognitive resources, which are put under greater strain

1This chapter has benefited from very helpful comments by the audience at the 2011 Econometric
Society Meeting in St. Louis, Pietro Ortoleva, Chris Tyson, Faruk Gul, and two anonymous referees,
in addition to the many people mentioned in the Acknowledgments.

2For a detailed survey, including additional references, see Broniarczyk (2008).
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by larger menus of alternatives. In line with this intuition, but contrary to (1),

experimental studies suggest that agents’ choice procedures vary with the menu,

with consumers faced with larger menus resorting to greater use of simplifying

choice heuristics (e.g., Payne (1976); Payne et al. (1993)) and achieving lower levels

of choice accuracy relative to their “ideal” benchmark (e.g., Jacoby et al. (1974);

Malhotra (1982)).3 Contrary to (2), such choice heuristics typically do not involve

the maximization of an underlying weak order.4 5

This paper proposes a parsimonious extension of the classical model that accom-

modates these findings. As is well known, the classical model is equivalent to the

Weak Axiom, and when the domain X of alternatives is finite, to the existence of a

utility function v : X → R such that the set c(A) of acceptable alternatives in menu

A ⊆ X can be represented as

c(A) = {x ∈ A : max
y∈A

v(y)− v(x) = 0}. (3.1)

We generalize the classical utility maximizing representation in equation (3.1) to a

monotone threshold representation of the form

c(A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ δ(A)}, (3.2)

3 In these studies, subjects are asked to choose from sets of hypothetical alternatives (e.g., houses
in Malhotra (1982)), each of which is described in terms of a range of attributes. The ideal benchmark
is obtained by first eliciting consumers’ most preferred levels for each attribute on which the study
provides information.

4E.g., in Payne (1976), subjects facing menus of 6 or more alternatives frequently reported
using choice procedures reminiscent of Simon’s (1997) “satisficing” model and/or Tversky’s (1972)
“elimination-by-aspects” model.

5Another well documented manifestation of “choice overload” is that consumers are more likely
to “walk away” from larger menus without making any choice (e.g., Iyengar and Lepper (2000)).
This is not the focus of the present paper. However, if “walking away” is modeled as an outside
option x∗ that is available in every menu A and has value v(x∗), then the monotone threshold model
in equation (3.2) could accommodate agents who never choose x∗ from some binary menu {x∗, y1}
where v(y1) > v(x∗), but sometimes choose x∗ from the larger menu {x∗, y1, y2, . . . , yn}.
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where δ is a threshold function mapping menus of alternatives to nonnegative real

numbers and we assume that δ is weakly increasing with respect to set inclusion.

The fully rational agent of the classical model ranks alternatives in any menu

according to the weak order represented by v. The monotone threshold model

captures a boundedly rational agent who departs from the maximization of v in

a menu-dependent way. To model this departure in a parsimonious manner, the

agent is assumed to maximize a menu-dependent semiorder, according to which

y is preferred to x in A if and only if v(y) exceeds v(x) by more than δ(A). The

semiorder is consistent with the underlying rational benchmark v in the sense that

v(y) is preferred to v(x) only if v(y) > v(x); but it is less discriminating, with the

threshold δ(A) quantifying the menu-dependent extent of the departure from v.

Going back to Luce (1956), menu-independent semiorders have been used to

model cognitively constrained agents who either deliberately resort to simplifying

heuristics that ignore small differences in some decision-relevant criteria (e.g., price

differences of a few cents) and/or are simply unable to discriminate between some

alternatives (e.g., similar varieties of toothpaste). Moving beyond this, the threshold

δ of the agent’s menu-dependent semiorder in our model is monotonic with respect

to set inclusion, making the departure from the rational benchmark more severe

the larger the menu. Thus, Lucean “limited discrimination” is paired with an

“overload effect”, enabling us to capture the finding that larger menus exacerbate

agents’ cognitive limitations, decreasing choice accuracy and increasing their use of

simplifying heuristics.

Relying on observable choice data alone, how can an external observer test

whether an agent’s behavior is consistent with the monotone threshold model?

Remarkably, Section 3.2 shows that all observable implications of the monotone

threshold model are fully encapsulated by the acyclicity of a simple relation Sc
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derived from the agent’s choice data c (Theorem 3.2.4); Sc encodes two intuitive

ways in which c reveals one alternative to be superior to another according to

any rational benchmark from which the agent could conceivably be departing.

This characterization answers a question left open in Aleskerov et al. (2007)6 and

can equivalently be stated in terms of a relaxation of the Weak Axiom which we

call Occasional Optimality. Our proof provides a fully constructive procedure for

obtaining a monotone threshold representation 〈v, δ〉 for given choice data c.

In Section 3.3, we relate the monotone threshold model to other threshold models

in the literature and build on the characterization result of Section 3.2 to provide new

foundations for these models. We show that adding the well-known Contraction

axiom (Sen’s α) to Occasional Optimality yields Luce’s (1956) model of choice

generated by a menu-independent semiorder, which differs from the monotone

threshold model in that it is consistent with postulate (1) of the classical model and

does not accommodate the “overload effect”. On the other hand, adding the Strong

Expansion axiom (Sen’s β) to Occasional Optimality yields Tyson’s (2008) “expansive

satisficing” model; this is consistent with postulate (2) of the classical model, in

that the agent’s preference over the options in any given menu is assumed to be a

weak order rather than a semiorder, and hence cannot accommodate agents who in

the face of large menus resort to heuristics that ignore small differences between

alternatives. Finally, the intersection of Luce’s and Tyson’s models is precisely the

classical model, and all aforementioned models are special cases of Simon’s theory

of “satisficing” as axiomatized by Aleskerov et al. (2007).

6In Chapter 5, Aleskerov et al. (2007) introduce the concept of a monotone threshold represen-
tation, which they refer to as “utility maximization with an isotone threshold”. However, while
Aleskerov et al. provide necessary and sufficient conditions for a choice function to admit a general
threshold representation, where the threshold map δ is not required to be nondecreasing with
respect to set inclusion (we discuss this model in Section 3.3), their study of monotone threshold
representations (pp. 190-193) only establishes a (straightforward) necessary condition for this more
restrictive type of representation to exist.
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Other Related Literature: In addition to the aforementioned papers, our model

relates to Ortoleva’s (2013) representation of an agent who dislikes large menus

because of the greater “cost of thinking” involved in choosing from them. However,

at a methodological level, Ortoleva’s primitive is a preference over lotteries of menus,

whereas our primitive is the agent’s choice from menus, which is arguably more

readily observable. At the conceptual level, Ortoleva’s agent anticipates always

choosing an optimal element from any menu, but might sometimes dislike larger

menus because identifying their optimal elements entails a greater cost of thinking;

our agent, on the other hand, does not always choose an optimal (according to the

underlying rational benchmark) element from every menu, precisely because his

cognitive limitations prevent him from doing so.

More broadly, our approach in this paper fits into an emerging literature in

decision theory that seeks to characterize bounded rationality in terms of axioms

on observable choice behavior. Some deviations from the fully rational paradigm

that have been studied include status quo bias (Masatlioglu and Ok, 2005), framing

effects (Salant and Rubinstein, 2008), sequential elimination of options (Mandler

et al., 2012; Manzini and Mariotti, 2007, 2012), limited attention (Masatlioglu et al.,

2012; Ellis, 2014), and sequential consideration of options (Caplin and Dean, 2011;

Masatlioglu and Nakajima, 2013).

Among these, our paper relates most closely to Masatlioglu et al. (2012) and

Manzini and Mariotti (2012). However, Masatlioglu et al. (2012) study an agent

who maximizes a stable, menu-independent weak order in any given menu, but

departs from the classical paradigm in that this maximization is carried out only

over a limited subset of alternatives from the menu (his “consideration set”). This

departure can be viewed as a reaction to choice overload which is in some sense

the opposite of our model: Our agent always considers all items in any given menu,
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but as a result of the taxing nature of this process perceives coarser preferences in

larger menus. The agent in Manzini and Mariotti (2012) also employs the heuristic

of ignoring small differences in some decision-relevant criteria, but their model

prescribes the successive application of multiple semiorders (each representing a

different decision-relevant dimension) until a single alternative from a given menu

is left over; moreover, in contrast with our “overload effect”, the semiorders that are

applied are again assumed to be menu-independent.

3.2 Monotone Threshold Representations

Throughout this paper, let X 6= ∅ denote a finite set of alternatives and let A :=

{A ⊆ X : A 6= ∅} denote the set of menus (which are assumed to be non-empty). A

and B always denote menus, and x, y, z alternatives. A choice correspondence on X

is a map c : A → A such that c(A) ⊆ A for all A; by definition, we only consider

non-empty choice correspondences. We study the class of choice correspondences

which admit a monotone threshold representation:

Definition 3.2.1. A choice correspondence c on X admits a threshold representation if

there exist functions v : X → R and δ : A → R+ such that for every A,

c(A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ δ(A)}.

We call v the fully rational benchmark and δ the departure threshold of the representation.

The threshold representation 〈v, δ〉 is called a monotone threshold representation (MTR)

if δ is nondecreasing with respect to set inclusion, i.e. δ(A) ≤ δ(B) whenever A ⊆ B.

As motivated in the introduction, the monotone threshold model captures two

anomalies: The agent has “limited discrimination” between the alternatives in

any menu A, represented by the fact that his choices from A do not maximize
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v, but rather the semiorder7 according to which y is preferred to x if and only

if v(y) − v(x) > δ(A). Moreover, there is an “overload effect”, captured by the

assumption that the extent δ(A) of the departure in A from the rational benchmark

v is more severe the larger A. We interpret c(A) as the set of alternatives that

the agent considers acceptable after being presented with and contemplating the

entire menu A; these are the alternatives which we might observe him select on

different occasions. To keep the departure from the classical model as parsimonious

as possible, we are not concerned with predicting the relative frequency with which

any particular alternative is chosen.8 For the same reason, we do not seek to model

other menu-dependent departures from fully rational choice, such as the “attraction

effect”,9 which we view as orthogonal to the “choice overload” phenomenon.

3.2.1 Characterization

Our main result, Theorem 3.2.4, identifies testable conditions on an agent’s choice

behavior c that are equivalent to c admitting a monotone threshold representation.

We first define the following revealed preference relations:

Definition 3.2.2. Given a choice correspondence c on X, the induced relations Pc,

7 A relation K on X is a semiorder if it is irreflexive (∀x ∈ X ¬xKx), semitransitive (for all w, x, y,
z ∈ X such that wKx and xKy, we have wKz or zKy), and satisfies the interval order condition (for all
w, x, y, z ∈ X such that wKx and yKz, we have wKz or yKx).

8By contrast, taking as primitive an agent’s stochastic choice rule, Fudenberg et al. (2014) study
so-called “Additive Perturbed Utility” representations. As a special case, they consider an agent who
has “limited discrimination”, in the sense that his choices are “more uniform” the larger the menu
he faces. In contrast with the monotone threshold model, their representation assumes that for any
menu A, all alternatives from A are chosen with strictly positive probability.

9Cf. Huber et al. (1982) for the original formulation of this effect and Ok et al. (2015) for an
axiomatic model.
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Qc, Rc and Sc on X are defined as follows.10 For all x, y ∈ X:

(i). xPcy if and only if x 6= y and c({x, y}) = {x};

(ii). xRcy if and only if there exists A such that x ∈ c(A) and y ∈ A r c(A);

(iii). xQcy if and only if there exists A such that y ∈ A and c(A) * c(A ∪ {x});

(iv). xScy if and only if xRcy or xQcy.

If c encodes a rational agent’s choice behavior, then c is generated by a weak

order W. In this case, it is easy to see that W = Pc = Rc = Qc, so that W can be

uniquely identified by observing the agent’s choices from binary menus. Suppose,

on the other hand, that c represents the choice behavior of a boundedly rational

agent, in the sense captured by the monotone threshold model. Then there is an

underlying rational benchmark, represented by v, but the agent’s choice behavior

departs from v-maximization in a menu-dependent manner captured by a threshold

map δ. Consequently, observing c will not, in general, fully reveal the rational

benchmark. However, as a result of the agent’s “limited discrimination” and the

“overload effect”, Rc and Qc each reveal useful information about v, and in general

this exceeds the information that is revealed by Pc alone:

Due to the agent’s “limited discrimination”, his choices from any given menu A

are generated by the semiorder LA given by xLAy if and only if v(x)− v(y) > δ(A).

This has the implication that even if x 6= y and the agent does not perceive a

preference for x over y in the direct pairwise comparison (i.e., ¬xPcy), the agent’s

preferences over other alternatives might nevertheless reveal that v must rank x

higher than y. Two instances of this are worth noting:

10Relations Pc and Rc are familiar to the literature, cf. Tyson (2008) and Aleskerov et al. (2007).
The definitions of relations Qc and Sc appear to be new.
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First, there might be a menu A ⊇ {x, y} and some z ∈ A such that in A, z is

perceived preferred to y but not to x (zLAy but ¬zLAx). This will be the case if and

only if x ∈ c(A) and y ∈ A r c(A), i.e. xRcy.

Second, there might be a menu B ⊇ {x, y} and some w ∈ B such that in B, x

is perceived preferred to w but y is not (xLBw but ¬yLBw). Note that in this case

y might still be chosen from B and from any other menu containing x and y, so

we need not have xRcy. However, because of the “overload effect” one observable

manifestation of this situation is the following: Suppose that w ∈ c(B r {x}), but

w /∈ c(B), so that xQcy. Then in B r {x}, no alternative is perceived preferred

to w (in particular, ¬yLBr{x}w). But the “overload effect” makes the agent less

discriminating in B than in B r {x}. Thus, in menu B the agent also does not prefer

any alternative from B r {x} to w. Since w /∈ c(B), the only possible conclusion is

that xLBw but ¬yLBw.

In both of the above cases we must have v(x) > v(y). So if c admits a monotone

threshold representation, then any rational benchmark v from which the agent

might conceivably be departing must extend Rc and Qc. Hence, even if the choice

data does not allow us to fully identify the rational benchmark v, we can at the

very least conclude that the relation Sc, which subsumes both Rc and Qc, must be

acyclic.11 Remarkably, we will see in Theorem 3.2.4 that acyclicity of Sc is not only

necessary for c to admit a monotone threshold representation, but in fact completely

encapsulates all the observable implications of the model. To fully bring out the

connection with the classical model, we note that acyclicity of Sc can also be stated

in terms of a relaxation of the Weak Axiom. Consider the following two equivalent

formulations of the Weak Axiom:

11A relation K on X is called acyclic if for all n ∈N and x1, x2, . . . , xn ∈ X such that xiKxi+1 for
all i = 1, . . . , n− 1, we have ¬xnKx1.
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(Equivalent Formulations of the Weak Axiom).

• Formulation 1: For all A, for all x ∈ c(A), and for any B including x: If

c(B) ∩ A 6= ∅, then x ∈ c(B).

• Formulation 2: For all A, for all x ∈ c(A), and for any B including x: c(B) ⊆

c(B ∪ {y}) for all y ∈ A.

In both formulations, a particular kind of optimality requirement is imposed

on all elements of c(A). In the language of Definition 3.2.2, Formulation 1 requires

all elements in c(A) to be Rc-maximal. It is easy to see that this is equivalent to

Formulation 2, which imposes Qc-maximality on all elements in c(A).

On the other hand, a relation K on a finite set X is acyclic if and only if every

non-empty subset A ⊆ X has a K-maximal element.12 Therefore, acyclicity of

Sc = Rc ∪ Qc is equivalent to every menu A containing at least one distinguished

element xA which is both Rc-maximal and Qc-maximal. This is the content of the

following relaxation of the Weak Axiom, where the changes are highlighted in

boldface:

Condition 3.2.3 (Occasional Optimality). For all A, there exists xA ∈ A such that

for any B including xA:

(i) If c(B) ∩ A 6= ∅, then xA ∈ c(B). And

(ii) c(B) ⊆ c(B ∪ {y}) for all y ∈ A.

If Occasional Optimality holds, then applying (i) with B = A it is clear that

xA ∈ c(A). Hence, while the Weak Axiom requires that any alternative we might

observe the agent choose from A will be Sc-optimal, Occasional Optimality requires

12Cf., for example, Kreps (1988), Propositions 2.7 and 2.8 (p. 12-13).
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only that at least some of the agent’s potential choices from A are optimal, thus

justifying the name of the axiom.13

We are now ready to state the representation theorem:

Theorem 3.2.4. Suppose c is a choice correspondence on X. The following are equivalent:

(i). c admits a monotone threshold representation;

(ii). the relation Sc is acyclic;

(iii). c satisfies Occasional Optimality.

The proof is in Appendix C.1. The argument that (ii) implies (i) is fully con-

structive: If Sc is acyclic, then we can construct a weak order Wc on X that extends

Sc. The utility v is then constructed in such a way as to represent Wc while also

satisfying the following “increasing differences” property:

If v(x) > v(y) and v(x) > v(w), then v(x)− v(w) > v(y)− v(z) for all z. (3.3)

This property allows us to inductively define the threshold δ as follows:

• set δ({x}) := 0 for all x ∈ X;

• if |A| ≥ 2 and c(A) = argmaxA v, set δ(A) := maxB(A δ(B);

• if |A| ≥ 2 and c(A) ) argmaxA v, set δ(A) := maxA v−minc(A) v.

By an inductive argument involving several cases, we verify that 〈v, δ〉 thus con-

structed is indeed an MTR of c.

13The move from the universal imposition of a certain property in the Weak Axiom to the
requirement that it hold only on a distinguished subset of elements in the Occasional Optimality
axiom is in the same spirit as other relaxations of the Weak Axiom in the recent literature on
boundedly rational choice, for example the Reducibility axiom in Manzini and Mariotti (2012) or the
WARP with Limited Attention axiom in Masatlioglu et al. (2012). Note that despite the existential
formulation of these axioms, they are (at least in principle) testable by observation, because the
global domain X of alternatives is assumed to be finite.
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3.3 Related Threshold Models

In this section, we contrast the monotone threshold model with related models in

the literature.

Taking their cue from Simon’s theory of “satisficing”, according to which agents

choose “alternative[s] that meet or exceed specified criteria,” but that are “not

guaranteed to be either unique or in any sense the best,”14 Aleskerov et al. (2007)

study choice correspondences c which admit a satisficing representation (SR): There

exist functions u : X → R and θ : A → R such that for every A, we have that

c(A) = {x ∈ A : u(x) ≥ θ(A)}. Setting u = v and δ(A) = maxy∈A v(y)− θ(A), it

is clear that any satisficing representation can be converted into a general threshold

representation and vice versa; but Example C.2.1 in Appendix C.2 exhibits a choice

correspondence with a satisficing representation that does not admit a monotone

threshold representation. Thus, the satisficing model incorporates the intuition of

an agent who departs from maximization of a rational benchmark v in a menu-

dependent manner, but unlike the monotone threshold model, it is too general to

capture the fact that this departure is due to “choice overload” caused by larger

menus. In the previous section, our argument that Qc reveals the agent’s preference

relied on the “overload effect”, but the argument for Rc did not. Hence, it comes as

no surprise that the satisficing model is fully characterized by acyclicity of Rc, as is

shown in Aleskerov et al.15

On the other hand, the monotone threshold model is strictly more general than

the following two special cases of the satisficing model: Luce’s (1956) model of choice

14Simon (1997) p. 125.

15Cf. Aleskerov et al. (2007), Corollary 5.4 (p. 167). Aleskerov et al. refer to acyclicity of Rc as the
Strong Axiom of Revealed Strict Preference and to satisficing representations as “over-value” choice
rules.
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generated by a menu-independent semiorder16 is equivalent to a constant threshold

representation (CTR) with menu-independent threshold δ ∈ R+. Tyson (2008) studies

choice correspondences c which admit an expansive satisficing representation (ESR):

There exists a satisficing representation 〈u, θ〉 of c with the property that whenever

A ⊆ B and maxy∈A u(y) ≥ θ(B), then θ(A) ≥ θ(B).

Like the monotone threshold model, the constant threshold model satisfies

“limited discrimination”, violating postulate (2) of the classical model (as formulated

in the introduction). But since the departure threshold is independent of menu

size, it is consistent with postulate (1) and does not capture an additional “overload

effect”. By contrast, the expansive satisficing model can accommodate an “overload

effect”, whereby larger menus make agents less discriminating, but unlike the

monotone threshold model, it is consistent with postulate (2) of the classical model,

because Tyson’s agent can be seen as “locally rational”: Tyson17 shows that the ESR

model is equivalent to the agent maximizing a menu-dependent preference relation

PA in each A, where these preference relations are coarser than an underlying weak

order W18, and more so the larger the menu,19 but additionally, each menu-dependent

preference PA is itself a weak order.

To axiomatically elucidate the gap between the monotone threshold and CTR

and ESR models, the following lemma builds on Theorem 3.2.4 to obtain novel

foundations for the latter two representations. Recall the following two well-known

conditions, which are jointly equivalent to the Weak Axiom (cf. Sen and Bordes):20

16The model was later axiomatized by Jamison and Lau (1973) and Fishburn (1975).

17Cf. Tyson (2008) Theorem 3 (p. 58) and Theorem 5B (p. 59).

18In the sense that
⋃

A∈A PA ⊆W.

19 In the sense that if x, y ∈ A ⊆ B and xPBy, then xPAy (i.e. the relations are “nested”).

20Cited in Tyson (2008), p. 56.
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Condition 3.3.1 (Contraction/Sen’s α). For all A, B such that A ⊆ B, we have

c(B) ∩ A ⊆ c(A).

Condition 3.3.2 (Strong Expansion/Sen’s β). For all A, B such that A ⊆ B and

c(B) ∩ A 6= ∅, we have c(A) ⊆ c(B).

Lemma 3.3.3. Suppose c is a choice correspondence on X. Then:

(i). c admits a CTR if and only if c satisfies Occasional Optimality and Contraction.

(ii). c admits an ESR if and only if c satisfies Occasional Optimality and Strong Expansion.

Proof. See Appendix C.1. �

Since Contraction and Strong Expansion are jointly equivalent to the Weak

Axiom, the class of choice correspondences admitting both a CTR and an ESR is

precisely the class of choice correspondences with a classical utility maximizing rep-

resentation. On the other hand, Example C.2.2 (respectively C.2.3) in Appendix C.2

exhibits a choice correspondence which admits a CTR but not an ESR (respectively,

an ESR but not a CTR), showing that Strong Expansion (“local rationality”) and

Contraction (“menu-independence”) are independent in the presence of Occasional

Optimality. Finally, Example C.2.4 exhibits a choice correspondence with an MTR

that admits neither a CTR nor an ESR, showing that the monotone threshold model

can simultaneously accommodate failures of postulates (1) and (2) of the classical

model. Figure 3.1 summarizes the relationships between the various threshold

models.

We conclude with a brief discussion of the example showing that the monotone

threshold model is strictly more general than the ESR model. The violation of

Strong Expansion in this example takes the following form: For some menu A and

alternatives x, y ∈ A and z /∈ A with v(z) > v(y) > v(x), we have that x, y ∈ c(A),
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Figure 3.1: Relationship between various threshold models (SR, TR, MTR, ESR, CTR and MAX
denote the class of choice functions admitting a satisficing, threshold, monotone threshold, expansive
satisficing, constant threshold and utility maximizing representation, respectively).

y, z ∈ c(A ∪ {z}), and x /∈ c(A ∪ {z}). Concretely, such a situation might arise if

a consumer employs a “rule of thumb” of ignoring price differences of less than

10 cents when faced with menus of A’s size or larger, and if x, y, z are (otherwise

equally attractive) candy bars priced at $.99, $.95, and $.87, respectively. The example

relies crucially on the consumer’s “limited discrimination”: Adding z to A indirectly

helps him choose between x and y, even though his heuristic does not directly

discriminate between the two—a situation that cannot arise if a consumer is “locally

rational” in the sense of Tyson’s model.21

This example appears consistent with findings from consumer psychology. As

discussed in the introduction, a consumer’s choice accuracy from menus that exceed

21More precisely, in Tyson’s model, if ¬zPA∪zy and zPA∪zx, then because PA∪{z} is a weak order,
we must in fact have that yPA∪{z}x (i.e., the consumer directly perceives a preference for y over x in
A ∪ {z}). But by nestedness (see footnote 19), this implies yPAx, contradicting x ∈ c(A).
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a certain size is in general far from perfect,22 but various studies also suggest that the

addition of alternatives to a menu can have an ambiguous effect on choice accuracy—

summarizing these findings, Broniarczyk (2008) writes that “the addition of product

alternatives to a choice set initially increases a consumer’s choice accuracy, but the

continued addition of product options results in a decrease in a consumer’s choice

accuracy.”23 While the measures of choice accuracy employed by this literature

vary, one indicator is a consumer’s worst-possible choice from a menu. Contrary to

these findings, the ESR model implies that either c(A ∪ {z}) = {z} (so that choice

accuracy is perfect) or c(A) ⊆ c(A ∪ {z}) (so that the worst-possible choice from

c(A ∪ {z}) is at least as bad as from c(A)). By contrast, the monotone threshold

model allows that c(A) * c(A∪ {z}) 6= {z}, and hence can accommodate improved,

but still imperfect, choice accuracy as a result of adding z to A.

22E.g., in Malhotra (1982), consumers’ average probability of choosing the alternative from a menu
A that is closest (in terms of Euclidean distance) to their ideal benchmark is 0.34 if |A| = 15 and 0.23
if |A| = 25. Recall footnote 3 for an explanation of the ideal benchmark.

23Broniarczyk (2008) p. 12.
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Appendix A

Appendix to Chapter 1

A.1 Proof of Theorem 1.3.1

This appendix establishes the quasi-single crossing property for equilibrium incen-

tives (Theorem 1.3.1). All remaining proofs are in Appendix A.2. We will make

use of the following five lemmas which are proved in Appendix A.2.1. For an

equilibrium adoption flow Nt≥0, denote the associated value to waiting by WN
t≥0

and the no-news posterior by pN
t≥0.

Lemma A.1.1. If Nt≥0 is an an equilibrium, then WN
t is continuous in t.

Lemma A.1.2. Suppose that Nt≥0 is an equilibrium and that WN
t < 2pN

t − 1 for some

t > 0. Then there exists some ν > 0 such that WN
t is continuously differentiable in t on the

interval (t− ν, t + ν) and

ẆN
t =(r + ρ + (εG + λGρN̄t)pN

t + (εB + λBρN̄t)(1− pN
t ))W

N
t

− ρ(2pN
t − 1)− pN

τ (εG + λGρN̄t)
ρ

ρ + r
.

Lemma A.1.3. Suppose that Nt≥0 is an equilibrium and that WN
t > 2pN

t − 1 for some

t > 0. Then there exists some ν > 0 such that WN
t is continuously differentiable in t on the
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interval (t− ν, t + ν) and

ẆN
t = (r + pN

t εG + (1− pN
t )εB)WN

t − pN
t εG

ρ

ρ + r
.

The final two lemmas focus on learning via perfect bad news (PBN):

Lemma A.1.4. Let Nt≥0 be an equilibrium under PBN. Suppose that ε > 0 or p0 > 1
2 .

Then limt→∞ pN
t = µ(ε, Λ0, p0) and limt→∞ WN

t = ρ
ρ+r (2µ(ε, Λ0, p0)− 1), where

µ(ε, Λ0, p0) :=


1 if ε > 0,

p0
p0+(1−p0)e−Λ0

if ε = 0.

Lemma A.1.5. Suppose that learning is via PBN. Suppose that ε = 0 and p0 ≤ 1
2 . Then

the unique equilibrium satisfies Nt = 0 for all t.

Henceforth we drop the superscript N from W and p.

Proof of Theorem 1.3.1 under Perfect Good News:

Let ε = εG ≥ 0 = εB and λ = λG > 0 = λB.

Step 1: Wt = 2pt − 1 =⇒Wτ ≥ 2pτ − 1 for all τ ≥ t:

Suppose Wt = 2pt − 1 at some time t and suppose for a contradiction that at

some time s′ > t, we have Ws′ < 2ps′ − 1. Let

s∗ = sup{s < s′ : Ws = 2ps − 1}.

By continuity, s∗ < s′, Ws∗ = 2ps∗ − 1, and Ws < 2ps − 1 for all s ∈ (s∗, s′). Then by

Lemma A.1.2, the right hand derivative of Ws − (2ps − 1) at s∗ exists and satisfies:

lim
s↓s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗ (ε + λρN̄s∗)
r

ρ + r
> 0.

This implies that for some s ∈ (s∗, s′) sufficiently close to s∗ we have Ws > 2ps − 1,

which is a contradiction.
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Step 2: Wt > 2pt − 1 =⇒Wτ > 2pτ − 1 for all τ > t:

Suppose by way of contradiction that there exists s′ > t such that Ws′ = 2ps′ − 1.

Let

s∗ = inf{s > t : Ws = 2ps − 1}.

By continuity, s∗ > t, Ws∗ = 2ps∗ − 1, and Ws > 2ps − 1 for all s ∈ (t, s∗). Note

that ps∗ ≥ 1
2 , because Ws∗ is bounded below by 0. Moreover, by Lemma A.1.3 the

left-hand derivative of Ws − (2ps − 1) at s∗ exists and is given by:

lim
s↑s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗
r

ρ + r
ε.

If ε > 0, this is strictly positive, implying that for some s ∈ (t, s∗) sufficiently close

to s∗, we have Ws < 2ps − 1, which is a contradiction. If ε = 0, then for all s ∈ (t, s∗),

we have ps∗ = ps and Ws = e−r(s∗−s)Ws∗ = e−r(s∗−s)(2ps∗ − 1) ≤ 2ps∗ − 1. Thus,

Ws ≤ 2ps − 1, again contradicting Ws > 2ps − 1. �

Proof of Theorem 1.3.1 under Perfect Bad News:

Let ε = εB ≥ 0 = εG and λ = λB > 0 = λG. If ε = 0 and p0 ≤ 1
2 , then by

Lemma A.1.5 Nt = 0 for all t, so the proof of Theorem 1.3.1 is obvious. We now

prove the theorem under the assumption that either ε > 0 or p0 > 1
2 .

Step 1: Wt = 2pt − 1 =⇒Wτ ≤ 2pτ − 1 for all τ ≥ t:

Suppose that Wt = 2pt − 1 and suppose for a contradiction that Ws′ > 2ps′ − 1

for some s′ > t. Let s := inf{s > s′ : Wt ≤ 2ps − 1} < ∞, since by Lemma A.1.4

limt→∞ 2pt − 1 > limt→∞ Wt. Let s := sup{s < s′ : Ws ≤ 2ps − 1}. Then s < s,

Ws = 2ps − 1, Ws = 2ps − 1, and Ws > 2ps − 1 for all s ∈ (s, s). Lemma A.1.3
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together with the fact that Ns = 0 for all s ∈ (s, s) implies the following two limits:

Ls := lim
s↓s

(
Ẇs −

d
ds
(2ps − 1)

)
= (r + (1− ps)ε)(2ps − 1)− 2ps(1− ps)ε

Ls := lim
s↑s

(
Ẇs −

d
ds
(2ps − 1)

)
= (r + (1− ps)ε)(2ps − 1)− 2ps(1− ps)ε.

Because Ws > 2ps − 1 for all s ∈ (s, s), we need Ls ≥ 0 and Ls ≤ 0. Rearranging this

implies:

r(2ps − 1) ≥ (1− ps)ε

and

r(2ps − 1) ≤ (1− ps)ε.

But if ε > 0, then ps > ps, so this is impossible. On the other hand, if ε = 0 and

p0 > 1
2 , then for all s ∈ (s, s), we have that ps = ps > 1

2 and Ws = e−r(s−s)Ws.

Since Ws = 2ps − 1, this implies Ws = e−r(s−s)(2ps − 1) < 2ps − 1, contradicting

Ws > 2ps − 1. This completes the proof of Step 1.

Step 2: Wt < 2pt − 1 =⇒Wτ < 2pτ − 1 for all τ > t:

Suppose that Wt < 2pt − 1, let s := inf{s′ > t : Ws′ ≥ 2ps′ − 1}, and suppose

for a contradiction that s < ∞. By continuity, Wτ < 2pτ − 1 for all τ ∈ [t, s) and

Ws = 2ps − 1. Furthermore, by Lemma A.1.4, there exists some s ≥ s such that

2ps − 1 = Ws and 2ps − 1 > Ws for all s > s. Lemma A.1.2 implies the following

two limits:

Hs := lim
s↑s

(
Ẇs −

d
ds
(2ps − 1)

)
= r(2ps − 1)− (ε + λρN̄s) (1− ps)

Hs := lim
s↓s

(
Ẇs −

d
ds
(2ps − 1)

)
= r(2ps − 1)− (ε + λρN̄s) (1− ps).

As usual, because Ws < 2ps − 1 for all s ∈ (t, s) and for all s > s, we must have
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Hs ≥ 0 and Hs ≤ 0. But since ps ≥ ps, this is only possible if s = s =: s∗ and

Hs∗ = Hs = Hs = 0.

Thus,

r(2ps∗ − 1) = (ε + λρN̄s∗) (1− ps∗).

Now consider any s ∈ [t, s∗). Because ps ≤ ps∗ and N̄s ≥ N̄s∗ , we must have

r(2ps − 1) ≤ (ε + λρN̄s) (1− ps).

Combining this with the fact that Ws < 2ps − 1 yields

rWs < (ε + λρN̄s) (1− ps) < (2ps −Ws) (ε + λρN̄s) (1− ps) + ρ(2ps − 1−Ws).

Rearranging we obtain:

0 < −rWs + ρ(2ps − 1−Ws) + (2ps −Ws) (ε + λρN̄s) (1− ps).

By Lemma A.1.2, the right-hand side is precisely the derivative d
ds (2ps − 1)− Ẇs.

But then for all s ∈ [t, s∗), 2ps − 1 > Ws and 2ps − 1−Ws is strictly increasing,

contradicting continuity and the fact that 2ps∗ − 1 = Ws∗ . �

A.2 Remaining Proofs

A.2.1 Proofs of Lemmas A.1.1–A.1.5

Proof of Lemma A.1.1: Note the following recursive formulations for WN
t . If learn-

ing is via perfect bad news, then

WN
t =

ˆ ∞

t
ρe−(r+ρ)(s−t) pN

t
pN

s
max

{(
2pN

s − 1
)

, WN
s

}
ds.
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If learning is via perfect good news, WN
t satisfies:

WN
t =

ˆ ∞

t
ρe−(r+ρ)(s−t)

(
pN

t

(
1− e−

´ s
t (ε+λNk) dk

)
+

pN
t e−

´ s
t (ε+λNk) dk

pN
s

max
{(

2pN
s − 1

)
, WN

s

})
ds.

From this it is immediate that WN
t is continuous in t. �

Proof of Lemma A.1.2: Suppose that WN
t < 2pN

t − 1 for some t > 0. By

Lemma A.1.1 WN
t is continuous in t, and so is 2pN

t − 1. Hence there exists ν > 0

such that WN
τ < 2pN

τ − 1 for all τ ∈ (t − ν, t + ν). Because N is an equilibrium

this implies that Nτ = ρN̄τ for all τ ∈ (t− ν, t + ν). Thus, Nτ is continuous at all

τ ∈ (t− ν, t + ν). From this it is immediate that WN
τ is continuously differentiable

in τ for all for all τ ∈ (t− ν, t + ν), because we have that

WN
τ =

t+νˆ

τ

ρe−(ρ+r)(s−τ)
(

pN
τ e−

´ s
τ (εG+λG Nx)dx − (1− pN

τ )e
−
´ s

τ (εB+λB Nx)dx
)

ds

+ e−(r+ρ)(t+ν−τ)
(

pN
τ e−

´ t+ν
τ (εG+λG Nx)dx + (1− pN

τ )e
−
´ t+ν

τ (εB+λB Nx)dx
)

WN
t+ν

+

t+νˆ

τ

ρe−(ρ+r)(s−τ)pN
τ

(
1− e−

´ s
τ (εG+λG Nx)dx

)
ds

+ e−(r+ρ)(t+ν−τ)pN
τ

(
1− e−

´ t+ν
τ (εG+λG Nx)dx

) ρ

ρ + r
.

The derivative of WN
τ can be computed using Ito’s Lemma for processes with jumps.

Given the perfect Poisson learning structure, the derivation is simple and we provide
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it here for completeness. As above, for any ∆ < t + ν− τ we can rewrite WN
τ as

WN
τ =

τ+∆ˆ

τ

ρe−(ρ+r)(s−τ)
(

pN
τ e−

´ s
τ (εG+λG Nx)dx − (1− pN

τ )e
−
´ s

τ (εB+λB Nx)dx
)

ds

+ e−(r+ρ)∆
(

pN
τ e−

´ τ+∆
τ (εG+λG Nx)dx + (1− pN

τ )e
−
´ τ+∆

τ (εB+λB Nx)dx
)

WN
τ+∆

+

τ+∆ˆ

τ

ρe−(r+ρ)(s−τ)pN
τ

(
1− e−

´ s
τ (εG+λG Nx)dx

)
ds

+ e−(r+ρ)∆ pN
τ

(
1− e−

´ τ+∆
τ (εG+λG Nx)dx

) ρ

ρ + r
.

Since this is true for all ∆ ∈ (0, t + ν − τ), the right hand side of this identity,

which we denote R∆, is continuously differentiable with respect to ∆ and satisfies

d
d∆ R∆ ≡ 0. Taking the limit as ∆→ 0 and since ẆN

τ = lim∆→0
d

dτ WN
τ+∆ by continuous

differentiability, we then obtain:

ẆN
τ = (r + ρ + (εG + λGNτ)pτ + (εB + λBNτ)(1− pτ))WN

τ

− ρ(2pτ − 1)− pτ(εG + λGNτ)
ρ

ρ + r
.

Plugging in Nτ = ρN̄τ yields the desired expression. �

Proof of Lemma A.1.3: The proof of continuous differentiability of WN
t follows

along the same lines as in the proof of Lemma A.1.2. Lemma A.1.1 again implies

that if WN
t > 2pN

t − 1, then there exists ν > 0 such that WN
τ > 2pN

τ − 1 for all

τ ∈ (t− ν, t + ν). By the definition of equilibrium, Nτ = 0 for all τ ∈ (t− ν, t + ν).

Hence, WN
τ satisfies

WN
τ = e−r(t+ν−τ)

(
pN

τ e−εG(t+ν−τ) + (1− pN
τ )e
−εB(t+ν−τ)

)
WN

t+ν

+ pN
τ

t+νˆ

τ

εGe−(εG+r)s ρ

ρ + r
ds.
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From this it is again immediate that WN
τ is continuously differentiable in τ.

To compute the derivative, we proceed as above, rewriting WN
τ as

WN
τ = e−r∆

(
pN

τ e−εG∆ + (1− pN
τ )e
−εB∆

)
WN

t+∆ + pτ

τ+∆ˆ

τ

εGe−(εG+r)s ρ

ρ + r
ds

for any ∆ < t + ν− τ.

Differentiating both sides of the above equality with respect to ∆ and taking the

limit as ∆→ 0, we obtain:

ẆN
τ = (r + pN

τ εG + (1− pN
τ )εB)WN

τ − pN
τ εG

ρ

ρ + r
,

as claimed. �

Proof of Lemma A.1.4: Consider first the case in which ε > 0. Then trivially

pN
t → 1 as t → ∞. But for any t, ρ

ρ+r
(
2pN

t − 1
)
≤ WN

t ≤
ρ

ρ+r . This implies

that limt→∞ WN
t = ρ

ρ+r as claimed.

Now suppose that ε = 0 and p0 > 1/2. Then note that WN
t ≤ 2pN

t − 1 for all t:

Indeed, suppose that WN
t > 2pN

t − 1 for some t. We can’t have that WN
s > 2pN

s − 1

for all s ≥ t, since otherwise WN
t = 0, contradicting WN

t > 2pN
t − 1 > 0. But then

we can find s > t such that WN
s = 2pN

s − 1 and WN
s′ > 2pN

s′ − 1 for all s′ ∈ (t, s).

This implies Ns′ = 0 for all s′, and hence WN
t = e−r(s−t)WN

s = e−r(s−t)(2pN
s − 1) =

e−r(s−t)(2pN
t − 1), again contradicting WN

t > 2pN
t − 1 > 0.

Let N∗ := limt→∞
´ t

0 Nsds = supt
´ t

0 Nsds ≤ N̄0. Let p∗ := limt→∞ pN
t = supt pN

t .

For any ν > 0 we can find t∗ such that whenever t > t∗, then e−λ
´ t

t∗ Ns ds > 1− ν.

Because 2pN
t − 1 ≥ WN

t for all t, we can then rewrite the value to waiting at time t
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as:

WN
t =

∞̂

t

ρe−(r+ρ)τ
(

pN
t − (1− pN

t )e
−λ
´ τ

t Nsds
)

dτ

≤ ρ

r + ρ

(
pN

t − (1− pN
t )(1− ν)

)
for all t > t∗. Moreover, by optimality WN

t ≥
ρ

ρ+r (2pN
t − 1) for all t, so combining

we have

ρ

ρ + r
(2p∗ − 1) ≤ lim

t→∞
inf WN

t ≤ lim
t→∞

sup WN
t ≤

ρ

r + ρ
(p∗ − (1− p∗)(1− ν)) .

Since this is true for all ν > 0, it follows that

lim
t→∞

WN
t =

ρ

r + ρ
(2p∗ − 1).

But the above is strictly less than 2p∗ − 1, so for all t sufficiently large we must have

2pN
t − 1 > WN

t . Then for all t sufficiently large, we have Nt = ρN̄t. Thus, N∗ = N̄0

and therefore p∗ = µ(ε, Λ0, p0). �

Proof of Lemma A.1.5: Suppose that Nt≥0 is an equilibrium and suppose for a

contradiction that t∗1 := inf{t : Nt > 0} < ∞. Pick t ≥ t∗1 such that Nt > 0. By

right-continuity of N, we have Nτ > 0 for all τ > t sufficiently close to t. This

implies that

ˆ ∞

t∗1
ρe−(r+ρ)(s−t)

(
pN

t∗1
− (1− pN

t∗1
)e
−
´ s

t∗1
λNk dk

)
ds >

ρ

r + ρ

(
2pN

t∗1
− 1
)
≥ 2pN

t∗1
− 1,

(A.1)

where the second inequality holds because pN
t∗1
= p0 ≤ 1

2 . But the integral on the

left-hand side is the expected payoff at time t∗1 to adopting at the first opportunity in

the future, conditional on no breakdown having occurred prior to this opportunity.

By optimality of the value to waiting, this is weakly less than WN
t∗1

. Hence, (A.1)
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implies that WN
t∗1

> 2pt∗1 − 1. By continuity of WN and pN, it follows that for all

s ≥ t∗1 sufficiently close to t∗1, WN
s > 2pN

s − 1 and hence Ns = 0, contradicting the

definition of t∗1 .

This leaves N ≡ 0 as the only candidate equilibrium. In this case WN
t = 0 ≥

2p0 − 1 = 2pN
t − 1 for all t, so this is indeed an equilibrium.

�

A.2.2 Equilibrium under Perfect Bad News (Theorem 1.3.2)

In this section we prove Theorem 1.3.2. For this we do not impose Conditions 1.3.3

or 1.3.4. Recall the following definitions which we motivated in Section 1.3.2: Define

p :=
(ε + r)(r + ρ)

2(ε + r)(r + ρ)− ερ
,

p :=
ε + r

ε + 2r
,

p] :=
ρ + r

ρ + 2r
,

and define p∗ := min{p, p]}. Define G : [0, 1]×R+ → R by

G(p, Λ) :=

∞̂

0

ρe−(r+ρ)τ
(

p− (1− p)e−(ετ+Λ(1−e−ρτ))
)

dτ.

We extend the function to the domain [0, 1]× (R+ ∪ {+∞}) by defining:

G(p,+∞) :=
ρ

ρ + r
p.

Finally, define the non-decreasing function Λ∗ : [0, 1]→ R+ ∪ {+∞} by
Λ∗(p) = 0 if p ≤ p,

2p− 1 = G(p, Λ∗(p)) if p ∈ (p, p])

Λ∗(p) = +∞ p ≥ p].
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The proof of Theorem 1.3.2 proceeds in three steps. Suppose that Nt≥0 is an

equilibrium with associated cutoff times t∗1 and t∗2 as defined by Equation (1.2). We

first show in Lemma A.2.1 that if t∗1 < t∗2 , then at all t ∈ (t∗1 , t∗2), Nt is pinned down

by a simple ODE. Second, Lemma A.2.3 provides a characterization of t∗1 and t∗2 in

terms of the evolution of (pt, Λt). Given these two steps, it is easy to see that if an

equilibrium exists, it is unique and must take the Markovian form in Equation (1.4)

of Theorem 1.3.2. Finally, to verify equilibrium existence, Lemma A.2.4 shows that

the adoption flow implied by Equation (1.4) is feasible.

Characterization of Adoption between t∗1 and t∗2

Lemma A.2.1. Suppose Nt≥0 is an equilibrium with associated no-news posterior pt≥0 and

cutoff times t∗1 and t∗2 as defined by Equation (1.2). Suppose that t∗1 < t∗2 . Then at all times

t ∈ (t∗1 , t∗2),

Nt =
r(2pt − 1)
λ(1− pt)

− ε

λ
.

Proof. By definition of t∗1 and t∗2 and Theorem 1.3.1, we have 2pt − 1 = WN
t at

all t ∈ (t∗1, t∗2). Because pt is weakly increasing, this implies that pt and WN
t are

differentiable at almost all t ∈ (t∗1 , t∗2) (with respect to Lebesgue measure).

Using again the fact that 2pt − 1 = WN
t at all t ∈ (t∗1, t∗2) we obtain for all

t ∈ (t∗1 , t∗2):

WN
t = e−r(t∗2−t)

(
pt + (1− pt)e−

´ t∗2
t (ε+λNs)ds

)
(2pt∗2 − 1)

= e−r(t∗2−t)
(

pt − (1− pt)e−
´ t∗2

t (ε+λNs)ds
)

,
(A.2)

where the second equality follows from Equation (1.1). Consider any t ∈ (t∗1 , t∗2) at

which WN
t and pt are differentiable. Combining the fact that ṗt = pt(1− pt)(ε+λNt)
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with (A.2), we obtain:

ẆN
t = (r + (ε + λNt)(1− pt))WN

t . (A.3)

Furthermore, because WN
t = 2pt − 1 for all t ∈ (t∗1 , t∗2), we must have:

ẆN
t = 2ṗt = 2pt(1− pt)(ε + λNt). (A.4)

Combining (A.3), (A.4) and the fact that WN
t = 2pt − 1 then yields

Nt =
r(2pt − 1)
λ(1− pt)

− ε

λ

for almost all t ∈ (t∗1 , t∗2). By continuity of pt and right-continuity of Nt, the identity

must then hold for all t ∈ (t∗1 , t∗2). �

As an immediate corollary of Lemma A.2.1 we obtain:

Corollary A.2.2. The posterior at all t ∈ (t∗1 , t∗2) evolves according to the following ordinary

differential equation:

ṗt = rpt(2pt − 1).

Given some initial condition p = pt∗1 , this ordinary differential equation admits a unique

solution, given by:

pt =
pt∗1

2pt∗1 − er(t−t∗1)(2pt∗1 − 1)
.

Characterization of Cutoff Times

Lemma A.2.3. Let Nt≥0 be an equilibrium with corresponding no-news posterior pt≥0 and

cutoff times t∗1 and t∗2 as defined by Equation (1.2), and let Λt≥0 := λN̄t≥0 describe the

evolution of the economy’s potential for social learning. Then

(i). t∗2 = inf{t ≥ 0 : Λt < Λ∗(pt)}; and
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(ii). t∗1 = min{t∗2 , sup{t ≥ 0 : pt < p∗}}.1

Proof. We first prove both bullet points under the assumption that either ε > 0 or

p0 > 1
2 . Note that in this case Lemma A.1.4 implies that limt→∞ 2pt− 1 > limt→∞ Wt,

whence t∗2 < +∞. Moreover, pt is strictly increasing for all t > 0.

For the first bullet point, note that by definition of t∗2 := sup{t ≥ 0 : Nt < ρN̄t},

we have that 2pt− 1 ≥Wt = G(pt, Λt) for all t ≥ t∗2 . This implies that Λt∗2 ≤ Λ∗(pt∗2 ).

Moreover, for all t > t∗2, Λt < Λt∗2 and pt > pt∗2 , so since Λ∗ is non-decreasing

we have Λt < Λ∗(pt). Suppose that 0 < t∗2. Then by continuity we must have

2pt∗2 − 1 = Wt∗2 = G(pt∗2 , Λt∗2 ) and so Λt∗2 = Λ∗(pt∗2 ). But since for all s < t∗2 we have

Λs ≥ Λt∗2 and ps < pt∗2 , this implies Λs ≥ Λ∗(ps). This establishes (i).

For (ii), it suffices to prove the following three claims:

(a) If t∗2 > 0, then pt∗2 < p].

(b) If t∗1 > 0, then pt∗1 ≤ p.

(c) If t∗1 < t∗2 , then pt∗1 ≥ p.

Indeed, given (a) and (b), we have that if 0 < t∗1 = t∗2, then pt∗1 ≤ p∗. Given (a)-(c),

we have that if 0 < t∗1 < t∗2, then pt∗1 = p = p∗. If 0 = t∗1 < t∗2, then (c) implies that

p0 ≥ p = p∗. In all three cases (ii) readily follows. Finally, if 0 = t∗1 = t∗2 , then there

is nothing to prove.

For claim (a), recall from the above that if t∗2 > 0, then Λt∗2 = Λ∗(pt∗2 ), whence

pt∗2 < p] because Λ∗(p]) = +∞.

For claim (b), note that if t∗1 > 0, then for all t < t∗1, we have Nt = 0. Then for

all t < t∗1, Wt ≥ 2pt − 1 and by the proof of Lemma A.1.3, Ẇt = (r + (1− pt)ε)Wt.

1We impose the convention that if {t ≥ 0 : pt < p∗ = 1
2} = ∅, then sup{t ≥ 0 : pt < p∗ = 1

2} :=
0.
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Since Wt∗1 = 2pt∗1 − 1, we must then have

0 ≥ lim
τ↑t∗1

Ẇτ − 2ṗτ = (r + (1− pt∗1 )ε)(2pt∗1 − 1)− 2pt∗1 (1− pt∗1 )ε

= r(2pt∗1 − 1)− ε(1− pt∗1 ),

which implies that

pt∗1 ≤
ε + r

ε + 2r
=: p.

Finally, for claim (c), note that if t∗1 < t∗2, then Lemma A.2.1 implies that for all

τ ∈ (t∗1 , t∗2),

0 ≤ Nτ =
r(2pτ − 1)
λ(1− pτ)

− ε

λ
.

This implies that for all τ ∈ (t∗1 , t∗2),

pτ ≥
ε + r

ε + 2r
=: p,

and hence by continuity pt∗1 ≥ p as claimed. This proves the lemma when either

ε > 0 or p0 > 1
2 . Finally, if ε = 0 and p0 ≤ 1

2 , then by Lemma A.1.5 Nt = 0 for all t.

Thus, by definition, t∗1 = t∗2 = +∞. Moreover, pt = p0 ≤ 1
2 and Λt = Λ0 > 0 for all

t, so inf{t : Λt < Λ∗(pt) = 0} = sup{t : pt < p∗ = 1
2} = +∞, as required. �

Given Lemmas A.2.1 and A.2.3, it is immediate that if an equilibrium exists, then

it must take the form of the adoption flow given by Equation (1.4) in Theorem 1.3.2.

Moreover, it is easy to see that given initial parameters, Equation (1.4) uniquely

pins down the times t∗1 and t∗2 as well as the joint evolution of pt and Nt at all times

(we elaborated on this in the main text), and that whenever t∗1 < t∗2 < +∞, then

2pt − 1 = Wt for all t ∈ [t∗1, t∗2 ]. Provided feasibility is satisfied, it is then easy to

check that this adoption flow constitutes an equilibrium.
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Feasibility

It remains to check feasibility, which is non-trivial only at times t ∈ (t∗1 , t∗2).

Lemma A.2.4. Suppose Nt≥0 is an adoption flow satisfying Equation (1.4) in Theorem 1.3.2

such that t∗1 < t∗2 . Then for all t ∈ (t∗1 , t∗2), Nt ≤ ρN̄t.

Proof. It suffices to show that

lim
t↑t∗2

Nt ≤ ρN̄t∗2 .

The lemma then follows immediately since ρN̄t − Nt is strictly decreasing in t at all

times in (t∗1 , t∗2).

To see this, suppose by way of contradiction that ρN̄t∗2 < limt↑t∗2 Nt. By continuity

this means that there exists some ν > 0 such that ρN̄t < Nt for all t ∈ (t∗2 − ν, t∗2).

Note that from the indifference condition at t∗2 , we have that 2pt∗2 − 1 = G(pt∗2 , λN̄t∗2 ).

Furthermore because Λ∗(pt) is increasing in t, 2pt − 1 < G(pt, Λt) for all t < t∗2 .

Since at all t ∈ (t∗2 − ν, t∗2), Nt > ρN̄t, this implies that Wt > G(pt, Λt) > 2pt − 1.

But this is a contradiction since we already checked that the described adoption

flow satisfies the condition that Wt = 2pt − 1 for all t ∈ (t∗1 , t∗2). �

Equilibrium under Perfect Bad News without Condition 1.3.3

In this section, we discuss the case where ρ ≤ ε, so that Condition 1.3.3 is violated.

The previous sections established the equilibrium characterization of Theorem 1.3.2

without assuming Condition 1.3.3 . If ρ ≥ ε, then p∗ = p], so because Λ∗(p) = +∞

for all p > p], we have:

Nt =


0 if Λt > Λ∗(pt),

ρN̄t if Λt ≤ Λ∗(pt).
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pt

Λt

1

Λ∗(p)

(2) (1)

p p]

Figure A.1: Partition of (pt, Λt) when ε ≥ ρ

Thus, there is no region of partial adoption. As a result, it is easy to see that the

saturation effect discussed in Section 1.4.2 is no longer present and welfare always

strictly increases in response to an increase in the potential for social learning:

Proposition A.2.5. Fix r > 0 and p0 ∈ (0, 1) and suppose that ε ≥ ρ > 0. Then W0 is

strictly increasing in Λ0.

A.2.3 Equilibrium under Perfect Good News (Theorem 1.3.6)

Theorem 1.3.6 follows immediately from Lemma A.2.6 and Lemma A.2.7:

Lemma A.2.6. Let Nt≥0 be an equilibrium with associated cutoff times t∗1 and t∗2 given by

Equation (1.3). Then t∗1 = t∗2 =: t∗.

Proof. Suppose for a contradiction that t∗1 < t∗2 . From the definition of these cutoffs

and Theorem 1.3.1 , we have that 2pt − 1 = Wt for all t ∈ (t∗1, t∗2). Then for all
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t ∈ (t∗1 , t∗2) and ∆ ∈ (0, t∗2 − t) we have:

Wt =pt

t+∆ˆ

t

(ε + λNτ) e−
´ τ

t (ε+λNs)dse−r(τ−t) ρ

ρ + r
dτ+

(
(1− pt) + pte−

´ t+∆
t (ε+λNs)ds

)
e−r∆ (2pt+∆ − 1) ,

where the first term represents a breakthrough arriving at some τ ∈ (t, t + ∆) in

which case consumers adopt from then on, yielding a payoff of e−r(τ−t) ρ
ρ+r ; and the

second term represents no breakthrough arriving prior to t + ∆ in which case, due

to indifference, consumers’ payoff can be written as e−r∆ (2pt+∆ − 1).

Note that we must have pt ≥ 1
2 on (t∗1, t∗2), since Wt is bounded below by 0.

Moreover, by the definition of t∗2, there exists t ∈ (t∗1, t∗2) such that Nt > 0. By

right-continuity of N, we can pick ∆ ∈ (0, t∗2 − t) sufficiently small such that Nτ > 0

for all τ ∈ (t, t + ∆). Then,

pt

t+∆ˆ

t

(ε + λNτ) e−
´ τ

t (ε+λNs)dse−r(τ−t) ρ

ρ + r
dτ

< pt

t+∆ˆ

t

(ε + λNτ) e−
´ τ

t (ε+λNs)ds ρ

ρ + r
dτ = pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
ρ

ρ + r
.

This implies that

Wt < pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
ρ

ρ + r

+
(
(1− pt) + pte−

´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

≤ pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
+
(
(1− pt) + pte−

´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

= 2pt − 1,

where the final equality comes from Bayesian updating of beliefs. This contradicts

Wt = 2pt − 1. Thus, t∗1 = t∗2 . �
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Lemma A.2.7. Let Nt≥0 be an equilibrium with corresponding cutoff time t∗ := t∗1 = t∗2

and no-news posterior pt≥0. Then

pt ≤ p∗ ⇔ t ≥ t∗,

where

p∗ =
(ε + r)(ρ + r)

2(ε + ρ)(ε + r)− ερ
.

Proof. Define

Ht := pt

ˆ ∞

0
(ε + λNt+τ) e−(ετ+

´ t+τ
t λNsds) ρ

r + ρ
e−(r+ρ)τ dτ.

Thus, Ht represents a consumer’s expected value to waiting at time t given that from

t on he adopts only if there has been a breakthrough and given that the population’s

flow of adoption follows Ns≥0. By optimality of Wt, we must have Ht ≤Wt for all t.

For any posterior p ∈ (0, 1), let

H(p, 0) := p
ˆ ∞

0
εe−ετ ρ

r + ρ
e−(r+ρ)τ dτ = p

ρε

(r + ρ)(ε + r + ρ)
.

H(p, 0) represents a consumer’s expected value to waiting at posterior p, given that

he adopts only once there has been a breakthrough and given that breakthroughs

are only generated exogenously.

Now note that by definition of t∗, Nt > 0 if and only if t < t∗. This implies that

H(pt, 0) < Ht if t < t∗ and H(pt, 0) = Ht = Wt if t ≥ t∗; moreover, 2pt − 1 ≥ Wt

if t < t∗ and 2pt − 1 ≤ Wt if t ≥ t∗. Finally, note that p∗ := (ε+r)(ρ+r)
2(ε+ρ)(ε+r)−ερ

has the

property that 2p− 1 ≤ H(p, 0) if and only if p ≤ p∗.

Combining these observations, we have that if t < t∗, then 2pt − 1 ≥Wt ≥ Ht >

H(pt, 0), so pt > p∗. And if t ≥ t∗, then 2pt − 1 ≤ Wt = H(pt, 0), so pt ≤ p∗, as

claimed. �
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A.2.4 Comparative Statics under PBN (Proposition 1.4.2)

As in the text, we impose Conditions 1.3.3 and 1.3.4 throughout this section. Define

Λ0 := max{Λ∗(p0), Λ∗(p)}. We first prove Lemma 1.3.5 from Section 1.3.2:

Proof of Lemma 1.3.5: We show that t∗1(Λ0) < t∗2(Λ0) if and only if Λ0 > Λ0.

Suppose first that Λ0 > Λ0. Then by the proof of the first part of Lemma A.2.3,

we must have t∗2 > 0 and Λt∗2 = Λ∗(pt∗2 ). If t∗1 = t∗2 =: t∗, then by claims (a) and (b)

in the proof of Lemma A.2.3, we must have pt∗ ≤ p. But combining these statements,

we get

Λt∗ = Λ0 > Λ∗(p) ≥ Λ∗(pt∗) = Λt∗ ,

which is a contradiction.

Suppose conversely that t∗1 < t∗2 . Then by the proof of Lemma A.2.3, we have that

Λ∗(pt∗1 ) < Λt∗1 = Λ0. That proof also implies that if 0 < t∗1 < t∗2, then pt∗1 = p ≥ p0;

and if 0 = t∗1 < t∗2 , then pt∗1 = p0 ≥ p. Thus, either way Λ0 > Λ0, as claimed. �

The following three subsections prove Proposition 1.4.2, by considering the effect

of an increase in Λ0 on welfare, learning, and adoption behavior, respectively.

Comparative Statics of Welfare

We prove a slightly more general result than in Proposition 1.4.2: We allow for any

p0 ∈ (0, 1) and show that

• if Λ̂0 > Λ0 > Λ0, then W0(Λ̂0) = W0(Λ0);

• if Λ0 ≥ Λ̂0 > Λ0, then W0(Λ̂0) > W0(Λ0).

If p0 ∈ ( p̄, p]) as in Proposition 1.4.2, then Λ0 = Λ∗(p0), so we get the result in

Proposition 1.4.2.
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To prove the first bullet point, consider Λ̂0 := Λ2
0 > Λ0 := Λ1

0 > Λ0 with

corresponding cutoff times ti
1 and ti

2, value to waiting W i
t , and no-news posteriors

pi
t for i = 1, 2. By Lemma 1.3.5, we have ti

1 < ti
2 for i = 1, 2. Moreover, by the proof

of Lemma A.2.3, we have max{p0, p} = p1
t1
1
= p2

t2
1
. Because Ni

t = 0 for all t < ti
1 for

both i = 1, 2, this implies that t1
1 = t2

1 = t1. Then

W2
t1
= 2p2

t1
− 1 = 2p1

t1
− 1 = W1

t1
.

But since there is no adoption until t1, we have W i
0 = e−rt1

pt1
p0

W i
t1

for i = 1, 2, whence

W1
0 = W2

0 .

For the second bullet point, suppose Λ1
0 < Λ2

0 ≤ Λ0. By Lemma 1.3.5, we must

have ti
1 = ti

2 =: ti. Let t̂ := min{t1, t2}. Then note that for all t ≤ t̂, p1
t̂ = p2

t̂

and Λi
t̂ = Λi

0. By Lemma A.2.3 this implies that either 0 = t1 = t2 or t1 < t2. If

0 = t1 = t2, then for all t > 0, we have 2pi
t − 1 > W i

t and

pi
t =

p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λi
0)

.

Thus, p1
t < p2

t for all t > 0 which implies that W1
0 < W2

0 .

If t1 < t2, then by definition of the cutoff times

W2
t1 > 2p2

t1 − 1 = 2p1
t1 − 1 ≥W1

t1 .

Since there is no adoption until t1, we have

W i
0 = e−rt1 pt1

p0
W i

t1 ,

which again implies that W1
0 < W2

0 , as required.
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Comparative Statics of Learning

In this section and Section A.2.4, we assume as in Proposition 1.4.2 that p0 ∈ ( p̄, p]).

This implies that t∗1 = 0 and Λ0 = Λ∗(p0) < +∞.

Note first that pΛ0
t is strictly increasing in Λ0 for all Λ0 ∈ (0, Λ∗(p0)) since in

this case t∗2(Λ0) = 0 so that

pΛ0
t =

p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λ0)
.

Suppose next that Λ̂0 > Λ0 ≥ Λ∗(p0). To prove the non-monotonicity result in

item (ii) of Proposition 1.4.2, we first prove the following lemma:

Lemma A.2.8. Suppose that Λ̂0 = λ̂ ˆ̄N0 > Λ0 = λN̄0 > Λ∗(p0), with corresponding

equilibrium flows of adoption N̂t≥0 and Nt≥0. Then

(i). 0 < t∗2(Λ0) < t∗2(Λ̂0).

(ii). For all t < t∗2(Λ0), λNt = λ̂N̂t.

Proof. Suppose that Λ̂0 > Λ0 > Λ0 = Λ∗(p0). Then by Lemma 1.3.5, we have

t∗2(Λ̂0), t∗2(Λ0) > 0. Let t∗2 = min{t∗2(Λ̂0), t∗2(Λ0)}. Then because p0 = pΛ0
0 = pΛ̂0

0 ,

the ODE in Corollary A.2.2 implies that at all times t < t∗2 , we have pΛ0
t = pΛ̂0

t = pt.

By Lemma A.2.1, this implies that for all t < t∗2 ,

λNt = λ̂N̂t. (A.5)

Note that Equation A.5 implies that

Λt∗2 = Λ0 −
ˆ t∗2

0
λNt dt < Λ̂0 −

ˆ t∗2

0
λ̂N̂t dt = Λ̂t∗2 .

Because pΛ0
t∗2

= pΛ̂0
t∗2

, Lemma A.2.3 implies that t∗2 = t∗2(Λ0) < t∗2(Λ̂0).

From this and Equation A.5, it is then immediate that λNt = λ̂N̂t for all t < t∗2 =

t∗2(Λ0). �
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Proof of item (ii) of Proposition 1.4.2: Suppose that Λ̂0 > Λ0 ≥ Λ∗(p0). By

Lemma A.2.8, t∗ := t∗2(Λ0) < t∗2(Λ̂0), λNt = λ̂N̂t, and pΛ0
t = pΛ̂0

t for all t ≤ t∗,

which proves the first bullet point.

To prove the second bullet point, we claim that there exists some ν > 0 such that

at all times t ∈ (t∗, t∗ + ν), we have pΛ0
t > pΛ̂0

t . To see this, we prove the following

inequality for the equilibrium corresponding to Λ0:

lim
t↑t∗

λNt < lim
t↓t∗

λNt. (A.6)

In other words, there is necessarily a discontinuity in the equilibrium flow of

adoption at exactly t∗. Indeed, because Nt = ρN̄t for all t ≥ t∗ and by continuity

of N̄t, feasibility implies that limt↑t∗ λNt ≤ limt↓t∗ λNt. Suppose for a contradiction

that limt↑t∗ λNt = limt↓t∗ λNt := λNt∗ . Then λNt∗ = λ̂N̂t∗ . Moreover, for all t > t∗,

we have λNt = ρΛt∗e−ρ(t−t∗), which is strictly decreasing in t. On the other hand,

λ̂N̂t satisfies

λ̂N̂t =


r(2pt−1)
(1−pt)

− ε if t < t∗2(Λ̂0)

ρΛt∗2(Λ̂0)
e−ρ(t−t∗2(Λ̂0)) if t ≥ t∗2(Λ̂0).

Thus, for t ∈ [t∗, t∗2(Λ̂0)), λ̂N̂t is strictly increasing in t. This implies that λ̂N̂t > λNt

for all t ∈ [t∗, t∗2(Λ̂0)). But then by Equation 1.1,

pΛ̂0
t∗2(Λ̂0)

> pΛ0
t∗2(Λ̂0)

,

which by Lemma A.2.3 implies

Λ̂t∗2(Λ̂0)
= Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0)

.

This yields that for all t ≥ t∗2(Λ̂0))

λ̂N̂t = ρe−ρ(t−t∗2(Λ̂0)Λ̂t∗2(Λ̂0)
> ρe−ρ(t−t∗2(Λ̂0)Λt∗2(Λ̂0)

= λNt.
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Thus, λ̂N̂t > λNt for all t > t∗ and hence pΛ̂0
t > pΛ0

t for all t > t∗. This implies

WΛ̂0
t∗ > WΛ0

t∗ . But this is a contradiction, because we have

WΛ̂0
t∗ = 2pΛ̂0

t∗ − 1 = 2pΛ0 − 1 = WΛ0
t∗ .

This proves that limt↑t∗ λNt < limt↓t∗ λNt. But then,

lim
t↓t∗

λ̂N̂t = lim
t↑t∗

λ̂N̂t = lim
t↑t∗

λNt < lim
t↓t∗

λNt.

Therefore there must exist some ν > 0 such that λ̂N̂t < λNt for all t ∈ [t∗, t∗ + ν).

Together with the fact that pΛ0
t∗ = pΛ̂0

t∗ , this implies that pΛ0
t > pΛ̂0

t for all t ∈

(t∗, t∗ + ν), proving the second bullet point.

Finally, for the third bullet point, observe first that there must exist some t > t∗

such that pΛ0
t = pΛ̂0

t . If not, then by continuity of beliefs pΛ0
t > pΛ̂0

t for all t > t∗,

and we once again get that WΛ̂0
t∗ > WΛ0

t∗ , which is false. Then t := sup{s ∈ (t∗, t) :

pΛ0
s > pΛ̂0

s } exists, with t > t∗ by the second bullet point. Further, by continuity,

pΛ0
t = pΛ̂0

t , which implies
´ t

0 λNsds =
´ t

0 λ̂N̂sds. This yields Λt < Λ̂t. But this

implies that λ̂N̂t > λNt for all t > t: Indeed, if t ≥ t∗2(Λ̂0), this is obvious. On the

other hand, if t ∈ (t∗, t∗2(Λ̂0)), then we must have λNs < λ̂N̂s for some s < t, which

implies that λNs′ < λ̂N̂s′ for all s′ ∈ (s, t∗2(Λ̂0)), because N is strictly decreasing and

N̂ is strictly increasing on this domain. To see that we also have λNs′ < λ̂N̂s′ for all

s′ ≥ t∗2(Λ̂0, note that from the above

pΛ̂0
t∗2(Λ̂0)

> pΛ0
t∗2(Λ̂0)

,

which as above implies that

Λ̂t∗2(Λ̂0)
= Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0)

.

Hence, λ̂N̂t > λNt for all t > t. Thus, in either case we get that pΛ̂0
t > pΛ0

t for all
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t > t, as claimed by the third bullet point. �

Comparative Statics of Adoption Behavior

Adoption of Good Products: For all t, At(Λ0, G) is constant in Λ0 for all Λ0 ≤ Λ∗(p0)

and strictly decreasing in Λ0 for all Λ0 > Λ∗(p0).

Proof. First note that because p0 ≥ p, t∗1(Λ0) = t∗1(Λ̂0) = 0.

Then at all Λ0 < Λ∗(p0), the adoption flow absent breakdowns satisfies Nt = ρN̄t

for all t. Thus, conditional on a good product we get At(Λ0, G) = At(Λ̂0, G) =

1− e−ρt for all t and all pairs Λ0, Λ̂0 ≤ Λ∗(p0).

Now suppose that Λ̂0 > Λ0 > Λ∗(p0). Note that Nt, N̂t > 0 for all t > 0 (recall

Condition 1.3.4). Let t∗ = t∗2(Λ0). By Lemma A.2.8, λNt = λ̂N̂t for all t < t∗. Then

for all t < t∗

Nt

N̄0
=

λNt

Λ0
=

λ̂N̂t

Λ0
>

λ̂N̂t

Λ̂0
=

N̂t
ˆ̄N0

. Therefore for all t < t∗, we have At(Λ0, G) > At(Λ̂0, G).

Finally note that for all t ≥ t∗, Nt = ρN̄t and so:

At(Λ0, G) = At∗(Λ0, G) +
(

1− e−ρ(t−t∗)
)
(1− At∗(Λ0, G))

At(Λ̂0, G) ≤ At∗(Λ̂0, G) +
(

1− e−ρ(t−t∗)
) (

1− At∗(Λ̂0, G)
)

where the second inequality follows from feasibility. But because At∗(Λ0, G) >

At∗(Λ̂0, G), At(Λ0, G) > At(Λ̂0, G) for all t > 0. �

Adoption of Bad Products: For all t > 0, At(Λ0, B) is strictly decreasing in Λ0.

Proof. Recall that At(λ, N̄0, B) denotes the expected proportion of adopters at time t
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conditional on θ = B, that is, letting Nt≥0 denote the associated equilibrium

At(λ, N̄0, B) :=

tˆ

0

(ε + λNτ) e−
´ τ

0 (ε+λNs)ds

 τˆ

0

Ns

N̄0
ds

 dτ + e−
´ t

0 (ε+λNs)ds
tˆ

0

Ns

N̄0
ds

=

tˆ

0

Nτ

N̄0
e−
´ τ

0 (ε+λNs)dsdτ,

where the final equality follows from integration by parts. Moreover, from the

Markovian description of equilibrium in Equation (1.4), it is easy to see that this

expression depends on λ and N̄0 only through Λ0 = λN̄0, so we can denote it by

At(Λ0, B). Then it suffices to prove the claim when λ is increased to λ̂ > λ holding

fixed N̄0, because for any Λ̂0 > Λ0 there exists N̄0 and λ̂ > λ such that Λ̂0 = λ̂N̄0

and Λ0 = λN̄0.

Let Nt≥0 and N̂t≥0 be the equilibrium under λ and λ̂, respectively. Note that

when p ≤ p0, Nt > 0 for all t > 0. Given an arbitrary strictly positive adoption flow

Ms≥0 and t > 0, note that the map

λ 7→
tˆ

0

Mτe−
´ τ

0 (ε+λMs)dsdτ

is strictly decreasing in λ. This implies that for all t > 0,

tˆ

0

Nτe−
´ τ

0 (ε+λNs)dsdτ >

tˆ

0

Nτe−
´ τ

0 (ε+λ̂Ns)dsdτ. (A.7)

We now show that

tˆ

0

Nτe−
´ τ

0 (ε+λ̂Ns)dsdτ ≥
tˆ

0

N̂τe−
´ τ

0 (ε+λ̂N̂s)dsdτ

which together with (A.7) implies the desired conclusion that At(λ̂N̄0, B) <

At(λN̄0, B) for all t > 0.
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To prove this, suppose that there exists some t > 0 such that

tˆ

0

Nτe−
´ τ

0 (ε+λ̂Ns)dsdτ <

tˆ

0

N̂τe−
´ τ

0 (ε+λ̂N̂s)dsdτ. (A.8)

Note that by the above result for good products, N̄0Aτ(λ, G) =
´ τ

0 Nsds ≥
´ τ

0 N̂sds =

N̄0Aτ(λ̂, G) for all τ ≥ 0 and so

tˆ

0

εe−
´ τ

0 (ε+λ̂Ns)dsdτ ≤
tˆ

0

εe−
´ τ

0 (ε+λ̂N̂s)dsdτ (A.9)

for all t ≥ 0. Inequalities (A.8) and (A.9) together imply:

tˆ

0

(
ε + λ̂Nτ

)
e−
´ τ

0 (ε+λ̂Ns)dsdτ <

tˆ

0

(
ε + λ̂N̂τ

)
e−
´ τ

0 (ε+λ̂N̂s)dsdτ.

But this is equivalent to

(
1− e−

´ t
0(ε+λ̂Ns)ds

)
<
(

1− e−
´ t

0(ε+λ̂N̂s)ds
)

,

which contradicts
´ t

0 Nsds ≥
´ t

0 N̂sds. This shows that for all λ̂ > λ and t > 0,

At(λ̂N̄0, B) < At(λN̄0, B), as required. �

A.2.5 Comparative Statics under PGN (Proposition 1.4.3)

We prove Proposition 1.4.3.

Strict Welfare Gains

Proof. If p0 > p∗ and ε > 0, then under both Λ0 and Λ̂0 consumers adopt immedi-

ately upon first opportunity until p∗ is reached and from then on delay adoption

until there has been a breakthrough. Moreover, the probability π∗ of a break-

through occurring prior to p∗ being reached is the same under both Λ0 and Λ̂0:
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π∗ = p0−p∗
1−p∗ . Because learning occurs at the same exogenous rate ε once p∗ is

reached, the continuation value W∗ conditional on p∗ being reached is also the same:

W∗ = p∗
´ ∞

0 εe−(ε+r)t ρ
r+ρ dt = 2p∗ − 1. So the only difference is that conditional on

no breakthroughs, the time t∗ at which p∗ is reached occurs earlier under Λ̂0. To see

that this is strictly beneficial, note that W0 is composed of the following two terms:

W0(Λ0) =
(

1− e−(r+ρ)t∗(Λ0)
) ρ

r + ρ
(2p0 − 1)

+ e−(r+ρ)t∗(Λ0)

(
π∗

ρ

r + ρ
+ (1− π∗)W∗

)
,

and similarly for Λ̂0. The first term represents the case when a consumer receives

an adoption opportunity prior to time t∗, and the second represents the case when a

consumer’s first adoption opportunity occurs after t∗. Conditional on either of these

cases occurring, the expected payoff is the same under both Λ0 and Λ̂0, but the

time-discounted probability e−(r+ρ)t∗ with which the second case occurs is strictly

greater under Λ̂0. This is strictly beneficial, because the expected payoff in the

second case is strictly greater:(
π∗

ρ

r + ρ
+ (1− π∗) (2p∗ − 1)

)
− ρ

r + ρ
(2p0 − 1)

=
r

r + ρ
(1− π∗) (2p∗ − 1) > 0.

�

Learning Speeds Up

Proof. If p0 > p∗, then conditional on no breakthroughs, all consumers adopt

immediately upon an opportunity until the time t∗ at which the cutoff posterior

p∗ is reached. By Theorem 1.3.6, we have that for all t < min{t∗(Λ̂0), t∗(Λ0)},

λNt = ρe−ρtΛ0 < ρe−ρtΛ̂0 = λ̂N̂t. Since p∗ = (ε+r)(ρ+r)
2(ε+ρ)(ε+r)−ερ

is independent of the
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potential for social learning, this implies that t∗(Λ̂0) < t∗(Λ0) and that pΛ̂0
t < pΛ0

t

for all t > 0. Moreover, once the cutoff posterior is reached, information is generated

at the constant exogenous rate ε, which means that conditional on t > t∗, beliefs

depend only on t− t∗, as summarized in the third bullet point. �

No Initial Slow-Down in Adoption

Proof. From Section A.2.5, t∗(Λ̂0) < t∗(Λ0). Thus, at all times t ≤ t∗(Λ̂0), all

consumers adopt upon first opportunity in both equilibria. �

A.2.6 Proof of Theorem 1.4.4

We first establish the following basic mathematical fact:

Lemma A.2.9. Suppose t > t∗ ≥ 0 and consider f , g : [0, ∞)→ R such that f (τ) = g(τ)

for all τ ≤ t∗, f (τ) < g(τ) for τ ∈ (t∗, t), and f (τ) > g(τ) for all τ > t. Suppose that
´ ∞

0 e−rτ f (τ)dτ =
´ ∞

0 e−rτg(τ)dτ for some r > 0. Then for all r̂ > r,

∞̂

0

e−r̂τ f (τ)dτ <

∞̂

0

e−r̂τg(τ)dτ.
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Proof. We have

0 =

∞̂

0

e−rτ(g(τ)− f (τ))dτ

=

tˆ

0

e−r̂τe(r̂−r)τ (g(τ)− f (τ)) dτ +

∞̂

t

e−r̂τe(r̂−r)τ (g(τ)− f (τ)) dτ

< e(r̂−r)t

 tˆ

0

e−r̂τ(g(τ)− f (τ))dτ +

∞̂

t

e−r̂τ (g(τ)− f (τ)) dτ


< e(r̂−r)t

∞̂

0

e−r̂τ (g(τ)− f (τ)) dτ.

This implies that
´ ∞

0 e−r̂τ f (τ)dτ <
´ ∞

0 e−r̂τg(τ)dτ, as claimed. �

To prove Theorem 1.4.4, fix 0 < rp < ri, ρ > 0, N̄p
0 > 0 and p0 ∈ (1

2 , ρ+rp
ρ+2rp

).

Consider λ̂ > λ > 0 such that λ̂N̄p
0 > λN̄p

0 > Λ∗rp(p0). As in the text, we assume that

there is no exogenous news source. The following lemma derives the equilibrium of

the game with a sufficiently small mass of impatient types:

Lemma A.2.10. There exists η > 0 such that whenever N̄i
0 < η, the unique equilibrium

for γ ∈ {λ, λ̂} takes the following form: There exists some t∗(γ) such that the equilibrium

flows Ni and Np of impatient and patient adopters satisfy:

Ni
t = ρN̄i

t for all t,

Np
t =


rp(2pt−1)
γ(1−pt)

− ρN̄i
t if t < t∗(γ)

ρN̄p
t if t ≥ t∗(γ).

Proof. Fix γ ∈ {λ, λ̂}. Pick η > 0 such that p0 > η+r
η+2r . Consider first the game

consisting only of mass N̄p
0 consumers of type rp (and no consumers of type ri). If

there were an exogenous news source in this game which generated signals at rate
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ε ≤ η, then by Theorem 1.3.2 type rp would always weakly prefer to adopt absent

breakdowns. Then it is easy to see that in the game with no exogenous news source

but with mass N̄i
0 < η of types ri, type rp will also always weakly prefer to adopt.

This implies that type ri must always strictly prefer to adopt.

Thus, Ni
t = ρN̄i

t for all t. Given this, the game reduces to one in which patient

types view the information generated by the impatient types as a non-stationary

exogenous news source which generates signals at rate εt = γρN̄i
t . Modifying the

arguments in the proof of Theorem 1.3.1, there must exist some t∗(γ) > 0 such that

rp is indifferent between adoption and delay for t ≤ t∗(γ), and rp strictly prefers

to adopt at all times t > t∗(γ). Then the unique equilibrium can be derived in the

same manner as in the proof of Theorem 1.3.2. �

Given Lemma A.2.10, we can follow the arguments in the proof of Proposi-

tion 1.4.2 to show that t∗(λ) < t∗(λ̂) and that there exists some t > t∗(λ) such

that

pλ
t


= pλ̂

t if t ≤ t∗(λ)

> pλ̂
t if t ∈ (t∗(λ), t)

< pλ̂
t if t > t.

Note that the ex ante expected payoff of type rk (k ∈ {p, i}) under arrival rate

γ ∈ {λ, λ̂} is given by

Wk
0 (γ) =

∞̂

0

ρe−(rk+ρ)τ p0

pγ
τ

(
2pγ

τ − 1
)

dτ.

Since rp is initially indifferent between adoption and delay under both λ and

λ̂, we have Wp
0 (λ) = Wp

0 (λ̂) = 2p0 − 1. But then applying Lemma A.2.9 yields

W i
0(λ) > W i

0(λ̂). This completes the proof of Theorem 1.4.4.
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Appendix B

Appendix to Chapter 2

B.1 Extension of Dekel and Fudenberg (1990)

In this section, we briefly discuss Dekel and Fudenberg’s (1990) characterization of

S∞W: They show that in a complete information game G, S∞W(G) represents the

set of strategies which survive iterated admissibility in a sequence of elaborations G̃n

converging to G, which differ from G in allowing for vanishingly small amounts of

payoff uncertainty. We extend this characterization to the incomplete information

game G defined in Section 2.2, but show that this result is once again very sensitive

to the way in which the small amounts of additional payoff uncertainty are taken to

interact with the uncertainty already present in G.

In our incomplete information setting, a sequence of elaborations is a sequence

of I-player games G̃n with the same underlying strategy sets Ai and the same

state space Θ as G. There are finite type spaces Ti for each player, and in each

G̃n, payoff functions are given by ũn
i : Ai × A−i × Θ × Ti → [0, 1] and beliefs by

κn
i : Ti → ∆◦(Θ× T−i). To capture the idea that payoff uncertainty is vanishingly

small, we consider sequences of elaborations G̃n which converge to G, in the sense that
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in each elaboration there is a “sane” type for each player which has exactly the same

payoffs as in G and assigns increasingly large probability to his opponents being sane.

Analogously to the two notions of ACC of admissibility we defined in Section 2.2.2,

the question arises whether or not to allow sane types’ uncertainty about opponents’

payoffs to coincide with small amounts of uncertainty about opponents’ beliefs

about Θ. Consider first the following strong notion of convergence, which requires

the sane types in each elaboration to have exactly the same marginal beliefs on Θ as

in G:

Definition B.1.1. A sequence of elaborations G̃n converges strongly to G, denoted

G̃n
S→ G, if for every i there exists a “sane” type t̄i ∈ Ti such that

(i). margΘ κn
i (t̄i) = φi for all n;

(ii). ũn
i (·, θ, t̄i) = ui(·, θ) for all θ ∈ Θ and for all n;

(iii). for all θ, κn
i (t̄i)({θ} × {t̄−i})→ φi(θ) as n→ ∞.

Then interpreting iterated dominance in both G and in each G̃n in the interim

correlated sense,1 we have the following extension of Dekel and Fudenberg’s main

result:

Proposition B.1.2 (Extension of Proposition 3.1 in Dekel and Fudenberg (1990)). Let

ā ∈ A. Then ā ∈ S∞W(G) if and only if there exists a sequence of elaborations G̃n
S→ G

such that āi ∈W∞(G̃n)(t̄i) for the sane type t̄i of each player i and for all n.

However, if we allow for vanishingly small perturbations to sane types’ beliefs

about Θ (i.e. in condition (i) of Definition B.1.1 we impose equality only in the limit

as n→ ∞), then S∞W(G) is once again only a (generally strict) subset of the behavior

1Interim correlated dominance in G̃n allows each type to hold correlated beliefs over states of
nature, opponent behavior, and opponent types; cf. Dekel et al. (2007) for the formal definition.
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predicted by W∞ in a sequence of elaborations. This is easy to see by considering

the game in Example 2.3.6, along with the sequence of elaborations with a single,

sane type t̄i for each player who has beliefs φn ∈ ∆(Θ) as in Example 2.3.6—here

D ∈W∞(G̃n)(t̄1) for all n even though D /∈ S∞W(G).2

B.2 Proofs

Proof of Lemma 2.2.2. Fix i and consider the 2-player game complete information

game G̃ with strategy sets Ã1 = Âi (with typical elements ai) and S̃2 = ÂΘ
−i (with

typical elements λi : Θ → Â−i), where player 1’s payoffs are given by g1(ai, λi) =

∑θ,a−i
φi(θ)λi(θ)[a−i]ui(ai, a−i, θ) and player 2’s payoffs are arbitrary.

Then ai is not strongly (respectively weakly) dominated in Âi if and only if ai

is not strongly (respectively weakly) dominated for player 1 in G̃, which by Pearce

(1984, Lemma 3) (respectively Pearce (1984, Lemma 4) ) is equivalent to the existence

of some λi ∈ ∆(ÂΘ
−i) (respectively λi ∈ ∆◦(ÂΘ

−i)) to which ai is a best response

in G̃. But this is equivalent to there being a belief λi : Θ → ∆(Â−i) (respectively

λi : Θ→ ∆◦(Â−i)) to which ai is a best response in Âi. �

Proof of Lemma 2.2.3. Immediate from the definitions. �

Proof of Theorem 2.3.1. Given Corollary 2.3.3 and Proposition 2.3.4, which are

proved below, the proof follows from the discussion in Section 2.3.1. �

Proof of Lemma 2.3.2. We adapt Börgers’s (1994) proof to our setting: By finiteness

of I and of the strategy sets for each player, it suffices to find π ∈ (0, 1) with the

required properties for some fixed i, Âi ⊆ Ai and Â−i ⊆ A−i. Note that by finiteness

2See the earlier working paper version of this paper for a general characterization of the robust
extension of W∞ under this notion of “convergence with perturbed priors”.
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of the strategy sets and because the correspondence mapping every p ∈ (0, 1) to

the set Dp
i (Ãi, Â−i) is non-empty valued and decreasing in p (with respect to set

inclusion), there exists π ∈ (0, 1) such that for all p ≥ π, Dp
i (Âi, Â−i) = Dπ

i (Âi, Â−i).

We claim that π is as required.

For the “only if” part, suppose that ai ∈ Dπ
i (Âi, Â−i). By definition of

Dπ
i (Âi, Â−i), ai is a best response in Âi to some µi : Θ → ∆◦(A−i). Hence, by

Lemma 2.2.2, there is no αi ∈ ∆(Âi) which weakly dominates ai on A−i, so con-

dition (i) holds. To establish condition (ii), consider a sequence (pn) such that

pn ∈ (π, 1) for all n and limn→∞ pn = 1. Then ai ∈ Dpn
i (Âi, Â−i) = Dπ

i (Âi, Â−i) for

all n. So for all n, ai is best response in Âi to some belief µn
i : Θ→ ∆(A−i) such that

µn
i (θ)[Â−i] ≥ pn for all θ. Passing to a subsequence if necessary, let µi denote the

limit of the µn
i . Then µi : Θ → ∆(Â−i) and ai is a best response in Âi to µi. Hence

by Lemma 2.2.2, there is no αi ∈ ∆(Âi) which strongly dominates ai on Â−i, so

condition (ii) is satisfied.

For the “if” part, suppose that ai ∈ Âi satisfies conditions (i) and (ii). By

Lemma 2.2.2, condition (i) implies that ai is a best response in Âi to some

λi,1 : Θ → ∆◦(A−i). Condition (ii) implies that ai is a best response in Âi to

some λi,2 : Θ → ∆(Â−i). Given any p ∈ [π, 1), ai is still a best response in Âi to

the convex combination λ
p
i := (1− p)λi,1 + pλi,2. Moreover, λ

p
i : Θ→ ∆◦(A−i) and

λ
p
i (θ)[Â−i] ≥ pλi,2(θ)[Â−i] = p for all θ. Hence, ai ∈ Dπ

i (Âi, Â−i). �

Proof of Corollary 2.3.3. We again adapt the argument in Börgers (1994): It is easy

to see that for any p ∈ (0, 1) and n ≥ 0, we have Λp,n+1
i (A) := Dp

i (Ai, Λp,n
−i (A)) =

Dp
i (Λ

p,n
i (A), Λp,n

−i (A)). Hence, R̃p
i (G) can be determined as follows: First delete

all strategies for every player j that are not a best response to any belief λj : Θ →

∆◦(A−j). Then, among all the remaining strategies, delete all strategies for every player

j that are not a best response to any belief λj : Θ → ∆◦(A−j) that in every state
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assigns probability at least p to the remaining strategies of the opponents. Iterate

this procedure until no further strategies can be deleted, which by the finiteness of

the strategy sets will happen in some finite number m of steps. The resulting sets of

strategies for each player i will be R̃p
i (G) = Λp,m

i (A).

Now let π be as found in Lemma 2.3.2. Then Lemma 2.3.2 implies that for

p ≥ π, the above procedure is equivalent to the procedure in which at each step all

strategies are eliminated that are either weakly dominated in the original game or

strongly dominated in the remaining reduced game. This in turn is equivalent to

first deleting all weakly dominated strategies, and then at each later step deleting

all strategies that are strongly dominated in the remaining game. This proves that

for all p ≥ π, we have R̃p
i (G) = S∞W(E)i, as claimed. �

Proof of Proposition 2.3.4 and of Theorem 2.3.5. We give a combined proof of

Proposition 2.3.4 and of Theorem 2.3.5 by showing that for all p ∈ (0, 1) and

for all ε ≥ 0,

ProjA CBp(([φ, ε] ∩R∩P | E(Θ)) = R̃ε,p(G).

Adapting the argument in Hu (2007) to our setting, we note first that for all n

ProjA Bp,n ([φ, ε] ∩R∩P | E(Θ)) = Λ̃ε,p,n(A).

To see this, we proceed by induction on n and repeatedly invoke Lemma B.2.1, which

is stated and proved below. For n = 0, applying Lemma B.2.1 with B = A−i ×

T−i yields ProjAi
([φi, ε] ∩Ri ∩ Pi) = Λ̃ε,p,0

i (A). Since ProjA ([φ, ε] ∩R∩P) =

∏i ProjAi
([φi, ε] ∩Ri ∩ Pi), it follows that ProjA Bp,0 ([φ, ε] ∩R∩P | E(Θ)) :=

ProjA ([φ, ε] ∩R∩P) = Λ̃ε,p,0(A) as required. Assuming the claim holds for n,
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apply Lemma B.2.1 with B = ProjA−i×T−i
Bp,n ([φ, ε] ∩R∩P | E(Θ)). This yields

ProjAi

(
Bp

i

(
Θ× Ai × Ti × ProjA−i×T−i

Bp,n ([φ, ε] ∩R∩P | E(Θ)) | E(Θ)
)

∩ ([φi, ε] ∩Ri ∩ Pi)

)
= Λε,p

i (Ai × ProjA−i
Bp,n ([φ, ε] ∩R∩P | E(Θ)))

= Λε,p,n+1
i (A),

where the last equality uses the induction hypothesis. Taking the product across all

i yields

ProjA

(⋂
i

Bp
i

(
Θ× Ai × Ti × ProjA−i×T−i

Bp,n ([φ, ε] ∩R∩P | E(Θ)) | E(Θ)
)

∩ ([φ, ε] ∩R∩P)
)
= Λε,p,n+1(A).

Finally, since Λε,p,n+1(A) ⊇ Λε,p,n(A) = ProjA Bp,n ([φ, ε] ∩R∩P | E(Θ)), we

can intersect the LHS of the previous equality with ProjA Bp,n ([φ, ε] ∩R∩P | E(Θ))

without affecting the equality. Performing this intersection and simplifying yields

ProjA Bp,n+1 ([φ, ε] ∩R∩P | E(Θ)) = Λε,p,n+1(A), as required.

Given this it is immediate that ProjA CBp(([φ, ε] ∩R∩P | E(Θ)) ⊆

R̃ε,p(G). For the converse, suppose ai ∈ R̃ε,p
i (G). Then by the pre-

vious paragraph, there is a sequence {tn
i }∞

n=1 ⊆ Ti such that (ai, tn
i ) ∈

ProjAi×Ti
Bp

i
(

Bp,n−1 ([φ, ε] ∩R∩P | E(Θ)) | E(Θ)
)

for all n. Since Ti is

compact metric, there is a subsequence {tnk
i }

∞
k=1 of {tn

i }∞
n=1 which con-

verges to some ti ∈ Ti. By continuity of βi, this implies (ai, ti) ∈

ProjAi×Ti
Bp

i
(

Bp,nk−1 ([φ, ε] ∩R∩P | E(Θ)) | E(Θ)
)

for all k. It follows that ai ∈

ProjAi
CBp ([φ, ε] ∩R∩P | E(Θ)), as required. �

Lemma B.2.1. For all B ⊆ A−i × T−i, p ∈ (0, 1) and ε ≥ 0,

ProjAi

(
Bp

i (Θ× Ai × Ti × B | E(Θ)) ∩ ([φi, ε] ∩Ri ∩ Pi)
)
= Λ̃ε,p

i

(
Ai × ProjA−i

B
)

.
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Proof of Lemma B.2.1. Suppose that

(ai, ti) ∈ ProjAi×Ti

(
Bp

i (Θ× Ai × Ti × B | E(Θ)) ∩ ([φi, ε] ∩Ri ∩ Pi)
)

.

Then fi(ti) has full support on Θ × A−i; for all θ ∈ Θ, we have
fi(ti)({θ}×ProjA−i

B)

fi(ti)({θ}×A−i)
≥ p; ai maximizes expected payoffs given fi(ti); and there ex-

ists φ′i ∈ ∆(Θ) such that
∣∣|φ′i − φ

∣∣ |∞ ≤ ε and such that φ′i(θ) = margΘ βi(ti)(θ) =

fi(ti)({θ} × A−i) for all θ. Defining µ : Θ→ ∆◦(A−i) by µ(θ)(a−i) =
fi(ti)(θ,a−i)

fi(ti)({θ}×A−i)
,

we get that µ(θ)(ProjA−i
B) ≥ p for all θ and ai ∈ BRφ′i (µ). This implies that

ai ∈ Λ̃ε,p
i

(
Ai × ProjA−i

B
)

, as required.

For the converse, suppose that ai ∈ Λ̃ε,p
i

(
Ai × ProjA−i

B
)

. Then there exists

µ : Θ→ ∆◦(A−i) such that µ(θ)(ProjA−i
B) ≥ p for all θ and such that ai ∈ BRφ′i

i (µ)

for some φ′i ∈ ∆(Θ) with
∣∣|φ′i − φi

∣∣ |∞ ≤ ε. Define a map Φi : A−i → A−i × T−i

by Φi(a−i) = (a−i, t−i[a−i]), where if a−i ∈ ProjA−i
B then t−i[a−i] is chosen such

that (a−i, t−i[a−i]) ∈ B and otherwise t−i[a−i] ∈ T−i is arbitrary. Consider the

type ti ∈ Ti given by βi(ti)(θ, a−i, t−i) = φ′i(θ) · µ(θ)
(

Φ−1
i (a−i, t−i)

)
for all θ, a−i,

and t−i. Then note that margΘ βi(ti) = φ′i ; fi(ti)(θ, a−i) = φ′i(θ) · µ(θ)(a−i) > 0

for all θ and a−i; and βi(ti)({θ}×B)
βi(ti)({θ}×A−i×T−i)

= µ(θ)(ProjA−i
B) ≥ p for all θ. Thus,

(ai, ti) ∈ ProjAi

(
Bp

i (Θ× Ai × Ti × B | E(Θ)) ∩ ([φi, ε] ∩Ri ∩ Pi)
)
, as required. �

Proof of Proposition B.1.2. We adapt the proof technique of Proposition 3.1 in

Dekel and Fudenberg (1990) to our setting: For the “only if” direction, suppose

ā ∈ S∞W(G). We construct a sequence of elaborations G̃n converging strongly to

G such that for the sane type t̄i of every player, we have āi ∈W∞(G̃n)(t̄i). Let Ti =

{t̄i, t̂i}, with ũn
i (·, θ, t̄i) = ui(·, θ) and ũn

i (·, θ, t̂i) := 0. Define κn
i : Ti → ∆(Θ× T−i) by

κn
i (ti)[θ, t̄−i] = (1− 1

n )φi(θ) and κn
i (ti)[θ, t̂−i] =

1
n φi(θ) for each ti. Clearly, G̃n

S→ G.

Step 1: āi ∈W(G̃n)(t̄i).

Since āi ∈ W(G)i, Lemma 2.2.2 yields µ̄i : Θ → ∆◦(A−i) to which āi is a best
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response in G. We can regard µ̄i as a map from Θ× T−i to ∆◦(A−i) which does not

depend on the opponents’ types. Since margΘ κn
i (t̄i) = φi and ũn

i (·, θ, t̄i) = ui(·, θ),

it follows that for type t̄i, āi is a best response to µ̄i in G̃n. Hence, by the analog of

Lemma 2.2.2 for elaborations, āi ∈W(G̃n)(t̄i).

Step 2: āi ∈W2(G̃n)(t̄i).

It suffices to find a map λi : Θ× T−i → ∆◦(A−i) such that supp(λi)(θ, t−i) =

∏j 6=i W(G̃n)(tj) for all (θ, t−i) and such that āi is a best response to λi in G̃n. Be-

cause κn
i (t̄i) assigns positive probability only to opponent type profiles t̄−i and

t̂−i, it suffices to define λ̄i = λi(·, t̄−i) : Θ → ∆◦(A−i) and λ̂i = λi(·, t̂−i) : Θ →

∆◦(A−i), where we need that supp(λ̄i)(θ) = ∏j 6=i W(G̃n)(t̄j) and supp(λ̄i)(θ) =

∏j 6=i W(G̃n)(t̂j) = A−i for all θ.

Since āi ∈ SW(G)i, āi is a best response to some µi : Θ → ∆(A−i) with

supp(µi)(θ) ⊆ W(G)−i ⊆ ∏j 6=i W(G̃n)(t̄j), where the last inclusion follows from

Step 1. Let µ′i : Θ→ ∆(A−i) be any map such that supp(µ′i)(θ) = ∏j 6=i W(G̃n)(t̄j) for

all θ. Let µ̄i : Θ → ∆◦(A−i) be as in Step 1, and let δ := minθ,a−i µ̄i(θ)[a−i] ∈ (0, 1).

Let β ∈ (0, 1) be sufficiently small (more precisely, we require β < δ
(n−1) ). Set

λ̄i = (1− β)µi + βµ′i, so that for all θ, supp(λ̄i(θ)) = supp(µ′i(θ)) = ∏j 6=i W(G̃n)(t̄j),

as required. Set λ̂i = µ̄i + β(n − 1)(µ̄i − µ′i); then for all θ, λ̂i(θ) ∈ ∆◦(A−i), as

required, because β was chosen sufficiently small and because supp(µ̄i(θ)) = A−i.

Finally, by construction, we have for all θ that

κn
i (t̄i)[θ, t̄−i]λ̄i(θ) + κn

i (t̄i)[θ, t̂−i]λ̂i(θ)

= φi(θ)

[
(n− 1)(1− β)

n
µi(θ) +

1 + β(n− 1)
n

µ̄i(θ)

]
.

So, since ũn
i (·, θ, t̄i) = ui(·, θ) and since āi is a best response to both µ̄i and µi in G,

āi is a best response for t̄i to λi = (λ̄i, λ̂i) in G̃n.

Iterating Step 2, we obtain that āi ∈W∞(G̃n)(t̄i), as claimed.
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For the “if” direction, suppose G̃n
S→ G and consider ā ∈ A such that āi ∈

W∞(G̃n)(t̄i) for the sane type t̄i of each player i and for all n. We show that

āi ∈ S∞W(G)i for all i.

Step 1: āi ∈W(G)i.

Since āi ∈ W(G̃n)(t̄i) for all n, there is a sequence of beliefs λn
i : Θ × T−i →

∆◦(A−i) to which āi is a best response for t̄i in G̃n. That is,

āi ∈ argmaxa′i∈Ai ∑
θ,t−i,a−i

κn
i (t̄i)[θ, t−i]λ

n
i (θ, t−i)[a−i]ũn

i (a′i, a−i, θ, t̄i).

Using conditions (i) and (ii) of the definition of strong convergence, we can rewrite

this as

āi ∈ argmaxa′i∈Ai ∑
θ

φi(θ)∑
a−i

(∑
t−i

κn
i (t−i|θ, t̄i)λ

n
i (θ, t−i)[a−i])ui(a′i, a−i, θ),

where κn
i (t−i|θ, ti) := κn

i (ti)[θ,t−i]

margΘ κn
i (ti)[θ]

(so that by condition (i) of strong convergence,

κn
i (t−i|θ, t̄i) =

κn
i (t̄i)[θ,t−i]

φi(θ)
). So, setting λ̂n

i (θ)[a−i] = ∑t−i
κn

i (t−i|θ, t̄i)λ
n
i (θ, t−i)[a−i] for

all θ and a−i yields beliefs λ̂n
i : Θ → ∆◦(A−i) to which āi is a best response in G,

where λ̂n
i has range ∆◦(A−i) because λn

i does. By Lemma 2.2.2, āi ∈ W(G)i, as

claimed.

Step 2: āi ∈ SW(G)i.

Since āi ∈W2(G̃n)(t̄i) for all n, there are beliefs µn
i : Θ× T−i → ∆(A−i) such that

supp µn
i (θ, t−i) = ∏j 6=i W(G̃n)(tj) for all θ and t−i and such that āi is a best response

for t̄i to µn
i in G̃n. As in Step 1, setting µ̂n

i (θ)[a−i] = ∑t−i
κn

i (t−i|θ, t̄i)µ
n
i (θ, t−i)[a−i]

yields beliefs µ̂n
i : Θ → ∆(A−i) to which āi is a best response in G. Taking limits

(passing to a subsequence if necessary) and using condition (iii) of the definition

of strong convergence, we have that limn µ̂n
i (θ)[a−i] = limn µn

i (θ, t̄−i)[a−i]. But

supp µn
i (θ, t̄−i) = ∏j 6=i W(G̃n)(t̄j) ⊆ W(G)−i, where the last inclusion follows from
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Step 1. So, µ̂i := limn µ̂n
i is a map from Θ into ∆(W(G)−i). Moreover, by continuity

āi is a best response to µ̂i in G. Hence, by Lemma 2.2.2, āi ∈ SW(G)i, as claimed.

Iterating the argument of Step 2, we conclude that āi ∈ S∞W(G)i, as required. �
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Appendix C

Appendix to Chapter 3

C.1 Proofs

Proof of Theorem 3.2.4. We will prove the equivalence of (i) and (ii). The equiva-

lence of (ii) and (iii) is immediate from the discussion in the main text.

(i)⇒ (ii): Suppose c admits an MTR 〈v, δ〉. We prove that for any x, y ∈ X, xScy

implies v(x) > v(y)—acyclicity of Sc then follows from acylicity of > on R. Suppose

that xScy, so either xRcy or xQcy. If xRcy, then there is some A with x ∈ c(A) and

y ∈ A r c(A). Then maxA v− v(x) ≤ δ(A) < maxA v− v(y), so v(x) > v(y). If

xQcy, then there exists A and z ∈ A such that y ∈ A, z ∈ c(A) and z /∈ c(A ∪ {x}).

Then maxA v− v(z) ≤ δ(A) ≤ δ(A ∪ {x}) < maxA∪{x} v− v(z), so we must have

v(x) = maxA∪{x} v > maxA v ≥ v(y).

(ii)⇒ (i): Suppose Sc is acyclic. By Szpilrajn’s (1930) Embedding Theorem, there

is a weak order (in fact even a strict total order) on X extending Sc.1 Thus, the set of

1Since X is finite, we can also directly construct such a strict total order Tc by means of a simple
inductive argument on the cardinality of |X|: If |X| = 1, there is nothing to prove. If |X| = n > 1,
pick any Sc-minimal element a ∈ X (such an a exists, because Sc is acyclic and X is finite). Supposing
that Sc has been extended to a strict total order Tc on X r {a}, setting xTca for all x ∈ X r {a} gives
a strict total order on X which extends Sc.
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weak orders on X extending Sc is non-empty, finite (since X is finite), and partially

ordered by set inclusion, so we can pick a minimal element Wc.2 Let Ec denote the

associated equivalence relation, i.e. xEcy iff ¬xWcy and ¬yWcx.

To construct the utility v : X → R, pick a single element from each equivalence

class of Ec and enumerate these elements in Wc-increasing order by x0, x1, . . . , xn−1

(where n is the number of equivalence classes). Then set v(y) := 2i for any y ∈ X

with yEcxi. Clearly v represents Wc, which extends Sc, so for all x, y ∈ X such

that xScy, we have v(x) > v(y). Note also that v satisfies the following “increasing

differences” condition: For all w, x, y, z ∈ X,

if v(x) > v(y) and v(x) > v(w), then v(x)− v(w) > v(y)− v(z). (C.1)

For every A, note that the set argmaxA v of v-maximal elements in A is contained

in c(A). Indeed, if not, then xRcy for some x ∈ c(A) and y ∈ argmaxA v, implying

v(x) > v(y) = maxA v, a contradiction. So we can inductively define the threshold

map δ : A → R+ as follows:

• set δ({x}) := 0 for all x ∈ X;

• if |A| ≥ 2 and c(A) = argmaxA v, set δ(A) := maxB(A δ(B);

• if |A| ≥ 2 and c(A) ) argmaxA v, set δ(A) := maxx,y∈c(A)(v(x) − v(y)) =

maxA v−minc(A) v.

To prove that v and δ constitute an MTR of c, we show by induction on the cardinality

of A that

(a) c(A) = {x ∈ A : maxA v− v(x) ≤ δ(A)};

2The proof does not rely on Wc being minimal. The reason we choose a minimal weak order
extension of Sc is so as not to attribute departures from rationality to the agent “unless absolutely
necessary”—specifically, if c satisfies the Weak Axiom, then the construction in the proof ensures
that Wc = Sc and δ ≡ 0.
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(b) if B ⊆ A, then δ(B) ≤ δ(A);

(c) δ(A) ≤ maxx,y∈A(v(x)− v(y)), and if |A| ≥ 2 and c(A) = argmaxA v, then

δ(A) ≤ maxx,y∈ArargmaxA v((v(x)− v(y)).

If |A| = 1, then (a), (b) and (c) obviously hold. If |A| ≥ 2 and (a), (b) and (c) hold

for sets of cardinality less than |A|, then we consider separately the cases where

c(A) = argmaxA v or c(A) ) argmaxA v.

Case 1: First, suppose that c(A) = argmaxA v. Then δ(A) := maxB(A δ(B) =

δ(B0), say. Thus, property (b) is immediate. If |B0| = 1, then δ(A) = δ(B0) = 0

and properties (a) and (c) are equally obvious. So suppose that |B0| ≥ 2. Since

δ(B0) ≥ 0 by inductive hypothesis, we certainly have c(A) = argmaxA v ⊆ {x ∈ A :

maxA v− v(x) ≤ δ(B0)}. To prove (a), we must also show that if w ∈ Ar argmaxA v,

then maxA v− v(w) > δ(B0). There are two cases to consider:

Suppose first that maxA v = maxB0 v. By (b) applied to sets of cardinality less

than |A|, we can assume that |B0| = |A| − 1, so B0 ∪ {z} = A for some z ∈ A. Then

we must have c(B0) = argmaxB0
v: Indeed, if not, we have c(B0) * c(B0 ∪ {z}) =

c(A) = argmaxA v. But then zQcy for all y ∈ B0, so v(z) > maxB0 v, contradicting

maxA v = maxB0 v. Thus, by inductive hypothesis and since |B0| ≥ 2, the second

part of (c) applies to B0 and yields δ(B0) ≤ maxx,y∈B0rargmaxB0
v(v(x) − v(y)) =

maxx,y∈B0rargmaxA v(v(x)− v(y)).

Suppose now that maxA v > maxB0 v. Then by (c) applied to B0, we again get

δ(B0) ≤ maxx,y∈B0(v(x)− v(y)) = maxx,y∈B0rargmaxA v(v(x)− v(y)).

So in either case, δ(B0) ≤ maxx,y∈B0rargmaxA v(v(x)− v(y)). But note that the in-

creasing differences property (C.1) implies that maxx,y∈B0rargmaxA v(v(x)− v(y)) <

maxA v − v(w) for all w ∈ A r argmaxA v. Thus, for all w ∈ A r argmaxA v,

maxA v − v(w) > δ(B0), establishing (a). Finally, property (c) holds for A, be-
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cause by the above we have δ(A) = δ(B0) ≤ maxx,y∈B0rargmaxA v(v(x) − v(y)) ≤

maxx,y∈ArargmaxA v(v(x)− v(y)).

Case 2: Now suppose that c(A) ) argmaxA v. Then δ(A) := maxA v −

minc(A) v > 0. Thus, c(A) ⊆ {x ∈ A : maxA v − v(x) ≤ δ(A)} is immediate.

Conversely, if z ∈ A r c(A), then yRcz for any y ∈ c(A), so v(z) < minc(A) v,

whence maxA v− v(z) > δ(A). This proves (a). Property (c) is immediate by defini-

tion of δ(A). Finally, to prove (b), consider B ⊆ A. If |B| = 1, then δ(B) = 0 < δ(A).

So suppose |B| ≥ 2. Again there are two cases:

First suppose that maxB v = maxA v. By inductive hypothesis, we can assume

|B| = |A| − 1, say B ∪ {z} = A for some z ∈ A. Then maxB v = maxA v ≥ v(z),

so ¬zQcy for some y ∈ B, whence c(B) ⊆ c(B ∪ {z}) = c(A). Thus, minc(B) v ≥

minc(A) v. So if B ) argmaxB v, then δ(B) := maxB v −minc(B) v ≤ maxA v −

minc(A) v = δ(A), as required. On the other hand, if c(B) = argmaxB v, then the

second part of (c) applied to B yields δ(B) ≤ maxx,y∈BrargmaxB v(v(x) − v(y)) <

maxA v−minc(A) v by the increasing differences property (C.1). So again δ(B) ≤

δ(A).

On the other hand, suppose maxB v < maxA v. Then part (c) applied to B yields

δ(B) ≤ maxx,y∈B(v(x)− v(y)) < maxA v−minc(A) v by the increasing differences

property (C.1). So again δ(B) ≤ δ(A), completing the proof. �

Proof of Lemma 3.3.3.

(i): Suppose first that c admits a CTR 〈v, δ〉. Then Occasional Optimality holds

by Theorem 3.2.4. To prove Contraction, suppose that x ∈ c(B) ∩ A with A ⊆ B.

Then maxB v − v(x) ≤ δ and maxB v ≥ maxA v, so maxA v − v(x) ≤ δ, whence

x ∈ c(A).

For the converse, suppose that c satisfies Occasional Optimality and Contraction.

By Theorem 3.2.4, c admits an MTR, 〈v, δ〉, say. By Luce (1956), c admits a CTR
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if and only if c is generated by a semiorder (a simple proof can be found in

Aleskerov et al. (2007)).3 Hence, it is sufficient to prove that c is generated by

Pc and that Pc is a semiorder,4 where Pc is as in Definition 3.2.2. To see that

Pc generates c, fix B. If x ∈ c(B) and y ∈ B, then applying Contraction with

A = {x, y} yields x ∈ c({x, y}), so ¬yPcx. Conversely, if x ∈ B r c(B), then

there exists y ∈ B such that v(y)− v(x) > δ(B) ≥ δ({x, y}). So c({x, y}) = {y},

whence yPcx. Hence, c(B) = {x ∈ B : ∀y ∈ B¬yPcx}, i.e. Pc generates c. We

now show that Pc is a semiorder: Irreflexivity is clear. If xPcy and yPcz, then

since Pc generates c and c is non-empty, we must have c({x, y, z}) = {x}. Thus,

v(x)− v(z) > δ({x, y, z}) ≥ δ({x, z}) ≥ 0, so that x 6= z and c({x, z}) = {x}, i.e.

xPcz. This shows that Pc is transitive. To prove that Pc is semitransitive, suppose to

the contrary that xPcy and yPcz, but ¬xPcw and ¬wPcz. xPcy and ¬xPcw together

with transitivity of Pc implies that ¬yPcw, so w ∈ c({x, y, w}) and y /∈ c({x, y, w}),

whence wScy. But yPcz and ¬wPcz implies z ∈ c({w, z}) and z /∈ c({w, z, y}), so

yQcw, whence yScw. This contradicts acyclicity of Sc (which holds by Theorem 3.2.4).

Finally, to prove that Pc satisfies the interval order condition, suppose to the contrary

that xPcy and wPcz, but ¬xPcz and ¬wPcy. Then by transitivity of Pc, we also

have ¬yPcz and ¬zPcy. Hence, z ∈ c({x, y, z}) and y /∈ c({x, y, z}), so zScy; also,

y ∈ c({w, y, z}) and z /∈ c({w, y, z}), so yScz. This again contradicts acylicity of Sc.

(ii): Tyson (2008) proves that c admits an ESR if and only if Pc is acyclic and c

satisfies Strong Expansion.5 By Theorem 3.2.4, Occasional Optimality is equivalent

to acyclicity of Sc, which implies acyclicity of Pc since Pc ⊆ Sc. So it suffices to prove

that if c satisfies Strong Expansion, then Sc ⊆ Pc. Suppose that xScy, so either xRcy

3Cf. Aleskerov et al. (2007) Theorem 3.2 (p. 66).

4Recall the definition of a semiorder in footnote 7.

5Cf. Tyson (2008) Theorem 5B (p. 59). Note that Tyson refers to acyclicity of Pc as Base Acyclicity.
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or xQcy. If xRcy, then there is B such that x ∈ c(B) and y ∈ B r c(B). Applying

Strong Expansion with A = {x, y} gives c({x, y}) = {x}, so xPcy. If xQcy, then

there is A such that y ∈ A and c(A) * c(A∪ {x}). Applying Strong Expansion with

B = A ∪ {x} yields c(A ∪ {x}) = {x}. Thus xRcy, and we are back in the previous

case. �

C.2 Separating Examples for Section 3.3

Example C.2.1 (SR * MTR). Let c be the choice correspondence on X = {x, y, z}

with satisficing representation 〈u, θ〉, where u(x) = 1, u(y) = 2, u(z) = 3,

θ({a}) = θ({a, b}) = 1 for all a, b, and θ({x, y, z}) = 3. Then c({x, z}) = {x, z}

and c({x, y, z}) = {z}, so yQcz and zRcy, producing the cycle ySczScy. Hence, by

Theorem 3.2.4, c does not admit an MTR.

Example C.2.2 (CTR * ESR). Let c be the choice correspondence on X = {x, y, z}

induced by the CTR 〈v, δ〉, where v(z) = 3, v(y) = 2, v(x) = 1, δ = 1. Then

c({x, y}) = {x, y} and c({x, y, z}) = {y, z}. So setting A = {x, y} and B = {x, y, z}

yields a violation of Strong Expansion. Thus, by Lemma 3.3.3 c does not admit an

ESR.

Example C.2.3 (ESR * CTR). Let c on X = {x, y, z} be given by c({x, y}) = {x, y},

c({x, z}) = {z} = c({y, z}), c(X) = X. Setting A = {x, z}, B = X yields a violation

of Contraction, so by Lemma 3.3.3 c does not admit a CTR. But 〈u, θ〉 with u(z) = 3,

u(y) = 2 = u(x), θ(X) = 1, θ({y, z}) = θ({x, z}) = θ({z}) = 3, θ(A) = 2 for all

other A is an ESR of c.

Example C.2.4 (MTR * ESR ∪ CTR). Let c be the choice correspondence on X =

{x, y, z} induced by the MTR 〈v, δ〉, where v(z) = 4, v(y) = 2, v(x) = 1, δ({a}),
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δ({a, b}) = 1 for all a, b ∈ X with a 6= b, and δ(X) = 2. Then c({y, z}) = {z},

c({x, y}) = {x, y}, and c({x, y, z}) = {y, z}. So setting A = {y, z} and B = {x, y, z}

yields a violation of Contraction, whence c does not admit a CTR. And setting

A = {x, y} and B = {x, y, z} yields a violation of Strong Expansion, whence c does

not admit an ESR.

136


