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Abstract

Stratified medicine has tremendous potential to deliver more effective therapeutic

intervention to improve public health. For practical implementation, reliable predic-

tion models and clinically meaningful categorization of some comprehensible summary

measures of individual treatment effect are vital elements to aid the decision-making pro-

cess and bring stratified medicine to fruitful realization. We tackle the quantitative issues

involved from three fronts : 1) prediction model building and selection; 2) reproducibility

assessment; and 3) stratification. First, we propose a systematic model development

strategy that integrates cross-validation and predictive accuracy measures in the predic-

tion model building and selection process. Valid inference is made possible via internal

holdout sample or external data evaluation to enhance generalizability of the selected

prediction model. Second, we employ parametric or semi-parametric modeling to derive

individual treatment effect scoring systems. We introduce a stratification algorithm with

constrained optimization by utilizing dynamic programming and supervised-learning

techniques to group patients into different actionable categories. We integrate the strat-

ification and newly proposed prediction performance metric into the model development

process. The methodologies are first presented in single treatment case, and then extended

to two treatment cases. Finally, adapting the concept of uplift modeling, we provide

a framework to identify the subgroup(s) with the most beneficial prospect; wasteful,

harmful, and futile subgroups to save resources and reduce unnecessary exposure to

treatment adverse effects. The contribution of this dissertation is to provide an operational

framework to bridge predictive modeling and decision making for more practical appli-

cations in stratified medicine.
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Abstract

For a longitudinal study with time to event as the endpoint, an important objective is

to make prediction of the endpoint distribution, particularly for future population. The

Cox regression model is commonly used for such event time analysis. Conventionally,

the same dataset is used for model building, model selection and inference. It is unclear

how generalizable the results are, or how we can make valid inference about predict-

ing survival with patients’ baseline information with such a potentially over-optimistic

approach. A more appropriate prediction inference procedure can be constructed using

two independent datasets under similar study settings. The first set is used to conduct

model building and selection while the second one is used to make inference for pre-

diction with the final selected model. In this article, using the well-known Mayo liver

study data for illustration, we show that the conventional practice may produce an overly

optimistic model. We further propose a systematic, 3-step-in-1 dataset modeling strate-

gy utilizing cross-validation techniques, predictive performance measures, and holdout

samples to efficently obtain valid and more generalizable prediction.

KEY WORDS: Cox’s proportional hazard model; C-statistics; Cross-validation; General-

izability; Holdout sample; 3-in-1 dataset modeling strategy; Model selection; Overfitting;

Prediction accuracy measures; Survival analysis

1.1 Introduction

There are two major goals for conducting regression analysis: examining the associ-

ation of the outcome variable and the covariates, and making prediction for future out-

comes. The choice of the process for model building, selection and validation depends

on the aim of the investigation. Generally it is difficult, if not impossible, that the select-

ed model would be the correct one. On the other hand, a good approximation to the true

model can be quite useful for making prediction. Model building and selection should not
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be a stand-alone procedure, we need valid inference for prediction with the final model.

To establish a prediction model, the same observations in a dataset are often used

to build, select, and conduct inference. This traditional practice can lead to quite over-

ly optimistic and unreliable model at the end. To tackle this issue, we present a model

development strategy based on the well-known “machine learning” concept with addi-

tional inferential component. We recommend splitting the dataset randomly into two

pieces. The first part is used for model building and selection via conventional cross-

validation techniques; and the second part, often called the “holdout sample,” is used for

statistical inference based on the final selected model. Although conceptually this strat-

egy is applicable to the general regression problem, our focus is on censored event time

outcome variable.

The Cox proportional hazards (PH) model (Cox, 1972) is the most widely used model

in analyzing event time data. Its statistical procedures for making inferences about the

association between the event time and covariates are well developed and theoretical-

ly justified via martingale theory (Andersen and Gill, 1982). For prediction using Cox’s

model, van Houwelingen and Putter (2008) provide an excellent review of various pre-

diction methods in clinical settings. Other recent development in this area involves high-

dimensional data in which the number of observations is much smaller than the number

of variables (van Houwelingen et al., 2006; Witten and Tibshirani, 2010). For typical study

analyses, a vast majority utilizes all observations in the same dataset for model building

and validation, despite a growing concern of false positive findings (Ioannidis, 2005; Sim-

mons et al., 2011).

The goal of our investigation is to establish a Cox prediction model and draw reliable

inferences using such a model. We discuss in detail the model-building strategies from a

prediction point of view. We will use a well-known dataset from a Mayo Clinic Primary

Biliary Cirrhosis (PBC) study (Fleming and Harrington, 1991; Therneau and Grambsch,

2000) to guide us through each step of the process for conducting model building, selec-
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tion and inference.

The article is organized as follows. In Section 1.2, we describe our study example.

Section 1.3 summarizes various model building and selection procedures in the litera-

ture for the Cox model. Model evaluation based on predictive accuracy measures such as

a censoring-adjusted C-statistic is introduced, which can be used to identify the optimal

method among all candidate models to develop a final Cox model. Section 1.4 applies five

candidate model selection methods to the PBC dataset to demonstrate the conventional

model building, selection, and inference procedure. Section 1.5 presents some challenges

using the conventional process. It shows that the conclusion of such inference can be

quite misleading due to using an overly optimistic model building procedure. A predic-

tion model development strategy that integrates cross-validation in the model building

and validation, utilizes predictive measure to help identify the optimal model selection

method, and conducts valid prediction inference on a holdout dataset is proposed. This

3-in-1-dataset modeling procedure is illustrated in detail with the PBC data in Section

1.6. We conclude with discussion of potential issues and interesting research problems on

model selection in the Remarks section.

1.2 Mayo Clinic primary biliary cirrhosis (PBC) data

The Mayo clinical trial in PBC of the liver has been a benchmark dataset for illustration

and comparison of different methodologies used in the analysis of event time outcome

study (Fleming and Harrington, 1991; Therneau and Grambsch, 2000). The trial was con-

ducted between January 1974 and May 1984 to evaluate the drug D-penicillamine versus

placebo with respect to survival outcome. There were 424 patients who met the eligibil-

ity criteria for the trial, in which 312 cases participated in the double-blinded random-

ized placebo controlled trial and contained mostly complete information on the baseline

covariates. Six patients were lost to followup soon after their initial clinic visit and ex-

cluded from our study. The rest of the 106 cases did not participate in the randomized
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trial but were followed for survival with some basic measurements recorded.

Since there was no treatment difference with respect to the survival distributions at the

end of study, the study investigators combined the data from the two treatment groups to

establish models for predicting survival. In this article, we utilized data on all 418 patients

to establish a prediction model for the patient’s survival given their baseline covariates.

The average follow-up time of these 418 patients was 5.25 years. Like other studies, there

were missing covariate values among the patients ranging from 2 patients missing pro-

thrombin time (protime) to 136 patients missing triglyceride levels. For illustration, we

imputed the missing values with their group sample median.

The outcome variable is the time to death (timei). Censoring variable (deathi) for each

case i has value 1 if the death date is available, or value 0 otherwise. The patient’s baseline

information consists of

• Demographic attributes: age in years, sex

• Clinical aspects: ascites (presence/absence), hepatomegaly (presence/absence), spi-

ders (blood vessel malformations in the skin, presence/absence), edema (0 no ede-

ma and no diuretic therapy for edema, 0.5 edema untreated or successfully treated,

1 edema despite diuretic therapy)

• Biochemical aspects: serum bilirubin (mg/dl), albumin (g/dl), urine copper

(µg/day), prothrombin time (standardised blood clotting time in seconds), platelet

count (number of platelets × 10−3 per mL3), alkaline phosphotase (U/liter), ast (as-

partate aminotransferase, once called SGOT (U/ml)), serum cholesterol (mg/dl),

and triglyceride levels (mg/dl)

• Histologic stage of disease.

We applied logarithmic transformations to albumin, bilirubin, and protime in the process

of model building, based on analyses of this dataset in Fleming and Harrington (1991).
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To establish a prediction model, ideally one should have three similar but independent

datasets, or split the dataset randomly into three subsets. Using the observations from

the first subset, we fit the data with all model candidates of interest; using the data from

the second piece, we evaluate those fitted models with intuitively interpretable, model-

free criteria and choose a final model; and using the data from the third piece, we draw

inferences about the selected model. In practice, if the sample size is not large, we may

combine the first two steps with a cross-validation procedure.

We will use the PBC dataset to illustrate this model selection strategy in Section 1.6.

First we review some classical algorithms for model selection and introduce some model-

free, heuristically interpretable criteria for model evaluation.

1.3 Model building procedures and evaluation

Depending on the study question and subject matter knowledge, we may identify a set

of potential explanatory variables which could be associated with the survival outcome

in a Cox PH model, the hazard function at time t for an individual is:

λ(t|Z) = λ0(t)exp(β′Z),

where λ0(t) is an unknown baseline hazard function, Z = (z1, z2, . . . , zp)
′ is the vector

of explanatory variables of the individual, and β = (β1, β2, . . . , βp)
′ is a p × 1 vector of

coefficients of the explanatory variables Z1, Z2, . . . , Zp. We estimate the parameter β by

maximizing the partial likelihood:

L(β) =
∏
r∈D

exp(β′Zkr)∑
k∈Rr

exp(β′Zk)
,

where D is the set of indices of the failures, Rr is the set of indices of subjects at risk at

time tr, and kr is the index of the failure at time tr.

6



1.3.1 Variable selection methods

A classical variable selection method is the stepwise regression usingL(β) as the objec-

tive function and p-value as a criterion for inclusion or deletion of covariates. It combines

forward selection and backward elimination methods, allowing variables to be added

or dropped at various steps according to different pre-specified p-values for entry to or

stay in the model. Variations of stepwise regression method have been proposed. For

example, forward stepwise regression starts from a null model with intercept only, while

backward stepwise regression starts from a full model. We use forward stepwise proce-

dure, as backward stepwise selection may be more prone to the issues of collinearity.

To reduce overfitting (Harrell (2001); Section 1.5.1), we may introduce a penalty of

complexity of the candidate models for the stepwise procedures using Akaike infor-

mation criterion (AIC; Akaike (1974)) or Bayesian information criterion (BIC; Schwarz

(1978)). Both AIC and BIC penalizes degrees of freedom (k) which is the number of nonze-

ro covariates in regression setting, and their objective functions are:

AIC = −2 ∗ L(β) + 2 ∗ k; and

BIC =−2∗L(β)+ log(No. of Events)∗k. The AIC’s penalty for model complexity is less

than that of BIC’s. Hence, it may sometimes over-select covariates in order to describe the

data more adequately; whereas BIC penalizes more and may under-select covariates (Ac-

quah and Carlo, 2010). Note that we usually follow the principle of hierarchical models

when building a model, in which interactions are included only when all the correspond-

ing main effects are also included; however, this can be relaxed (Collett, 2003).

We can also select a model based on the maximization of a penalized partial likeli-

hood (Verweij and Van Houwelingen, 2006) with different penalty functions including L2

penalty, smoothing splines, and frailty models, which are studied extensively in the liter-

ature. Two commonly used methods are Lasso (Least Absolute Shrinkage and Selection

Operator) selection (Tibshirani, 1996) and Ridge regression methods (Van Houwelingen,

2001).
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Lasso Selection

Tibshirani (1996) proposed the Lasso variable selection procedures which was extend-

ed to the Cox model (Tibshirani, 1997). Instead of estimating β in the Cox model through

maximization of the partial likelihood, we can find the β that minimizes the objective

function {-logL(β) + λ1||β||1} (Park and Hastie, 2007), where

β̂ = argmin
β

{-logL(β) + λ1||β||1}.

Lasso imposes an L1 absolute value penalty, λ1||β||1 = λ1

∑p
j=1 |βj| to log L(β), with λ1 ≥

0. It does both continuous shrinkage and automatic variable selection simultaneously.

Notice that Lasso penalizes all βj(j = 1, . . . , p) the same way, and can be unstable with

highly correlated predictors, which is common in high-dimensional data settings (Grave

et al., 2011).

Different methods such as path following algorithm (Park and Hastie, 2007), coor-

dinate descending algorithm (Wu and Lange, 2008), and gradient ascent optimization

(Goeman, 2009) can be used to select variables and estimate the coefficients in Lasso

models. Instead of using cross-validation to select the tuning parameters, we will

consistently apply AIC or BIC to select models across various classical model selection

methods for illustration.

Ridge regression

The Ridge penalty is a L2 quadratic function, λ2||β||22 = λ2

∑p
j=1 βj

2 in a general penal-

ized regression setting. It achieves better prediction performance through a bias-variance

trade-off. Of note, this method always keeps all predictors in the model and hence cannot

produce a parsimonious model.
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There are other penalized regression methods such as elastic net (Zou and Hastie,

2005) which combines both L1 and L2 penalty, the smoothly absolute clipped deviation

(SCAD) penalty (Fan and Li, 2001, 2002), and various modification of the Lasso proce-

dures. Other variable selection procedures and different combinations of model selection

methods and algorithms to select the tuning parameter(s) have also been developed.

1.3.2 Model evaluation based on prediction capability

Many evaluation criteria can be used to select a model; however, if some covariates

are difficult to obtain due to cost or invasiveness, a heuristically interpretable criterion

is more informative than a purely mathematical one. Since it is desirable to examine the

predictive adequacy of the Cox model for the entire study period, one of such criteria is

the C(Concordance)-statistic (Pencina and D’Agostino, 2004).

C-statistics

To select a model with best predictive capability, C(Concordance)-statistics are

routinely used to evaluate the discrimination ability and quantify the predictability of

working models. Good predictions distinguish subjects with the event outcome from

those without the outcome accurately and differentiate long-term survivors from the

short-lived in survival context. The traditional C-statistic is a rank-order statistic for pre-

dictions against true outcomes (Harrell, 2001), and it has been generalized to quantify the

capacity of the estimated risk score in discriminating subjects with different event times.

Various forms of C-statistics are proposed in literature to provide a global assessment of

a fitted survival model for the continuous event time. However, most of the C-statistics

may depend on the study-specific censoring distribution.

Uno et al. (2011) proposed an unbiased estimation procedure to compute a modified

C-statistic (Cτ ) over a time interval (0, τ), which also has the same interpretation as Har-

rell’s C-statistic for survival data, except that Uno’s method is censoring-independent,
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and is given by (Uno et al., 2011) equations (5) and (6). This censoring-adjusted C-statistic

is based on inverse-probability-of-censoring weights, which does not require a specific

working model to be valid. The procedure is valid for both type I censoring without stag-

gered entry, and random censoring independent of survival times and covariates (other

conventional C-statistics may not be valid in this situation). A simulation study reported

in Uno et al. (2011) did not find the procedure to be sensitive to violation of the covariate

independent censoring assumption.

van Houwelingen and Putter (2008) and Steyerberg et al. (2010) provide a very help-

ful discussion of other assessments of predictive performance such as Brier score (Graf

et al., 1999; Gerds and Schumacher, 2006). We show, as an example, the model-free, more

recently developed censoring-adjusted C-statistic to evaluate the overall adequacy of the

predictive model.

1.4 Application of conventional model development and
inferences

The goal of this section is twofold: 1) to show the conventional way of analyzing time-

to-event data, using the Mayo clinic PBC dataset described in Section 1.2; and 2) to present

some challenges and limitations, which lead us to propose an alternative strategy for

selecting a model among several candidate model selection procedures and establishing

a more reliable prediction model.

1.4.1 Model Building

We apply five classical model selection algorithms to the PBC dataset for illustration.

These candidate methods are: forward selection, backward elimination, stepwise regres-

sion, Lasso, and Ridge regression. For each of these methods, we build a model using

AIC and BIC as model tuning criteria, respectively. For the Lasso and Ridge regres-
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sion method, AIC (or BIC) as a function of the regularization parameter λ is plotted and

evaluated to find the global minimum. Models are fitted using the λ at which the least

AIC (or BIC) is achieved. The results are shown in Table 1.1, which consists of two parts.

The first part summarizes all the resulting models via the aforementioned model building

processes. The second part of the table summarizes how we obtained these models.

As a reference, all but two covariates (sex and alk.phos) contributed to a “significant”

increase or decrease in risk ratio in univariate analysis (p < 0.005). Numerous studies

in the literature have used Cox models to identify prognostic factors on event outcome.

As shown in Table 1.1, the risk ratio estimates for each risk factor of interest can be very

sensitive to what other covariates are put in the same model for evaluation.

1.4.2 Selecting procedure using C-statistics

Using the entire PBC dataset, Table 1.2 summarizes the censoring-adjusted C-statistics

of the eight models presented in Table 1.1. The higher the measure, the better the model

predicts throughout the course of study.

The two penalized regression methods yield slightly higher C-statistics. However,

models derived from these two methods use more variables than the classical methods.

The best single variable model, M4, has the lowest C-statistic. The predictive measures

of M1, M2 and M3 are close to the models derived from the two penalized regression

methods while using fewer variables. Inference for the difference in C between the

models shows a difference between M1 and M4, using the method proposed by Uno et al.

(2011). M1 appears as the most parsimonious model with reasonably good C-statistic of

0.790 among all these models.
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Table 1.1: Models derived from various classical model selection methods, using entire PBC data
set, hazard ratios exp(β̂) are presented.

Covariates M1 M2 M3 M4 Lasso Ridge
AIC BIC AIC BIC

logbili 2.334 2.372 2.279 2.688 2.213 2.137 2.016 1.651
edema 2.238 2.110 2.107 2.022 1.996 2.182 2.099
age 1.034 1.032 1.034 1.031 1.027 1.029 1.023
stage 1.386 1.394 1.412 1.366 1.326 1.369 1.284
lalb 0.120 0.119 0.128 0.168 0.180 0.166 0.199
lptime 8.164 7.267 8.004 6.535 5.513 7.715 6.898
ast 1.002 1.002 1.001 1.002 1.002
copper 1.002 1.001 1.001 1.001 1.001 1.002
ascites 1.320 1.291 1.407 1.498
trig 0.998 0.998 0.998 0.999 0.998 0.999
hepato 1.049 1.158 1.223
spiders 0.947 1.044
sex 1.057 1.063
chol 1.000 1.000
alk.phos 1.000 1.000
platelet 1.000 1.000
Note: All covariates were treated as continuous effects.

Model Selection Method
M1 Several model building procedures using BIC as stopping criterion came

up with this same model:
a. Forward selection, BIC; b. Backward elimination, BIC; c. Stepwise, BIC

M2 Backward elimination, AIC
M3 a. Forward selection, AIC; b. Stepwise, AIC
M4 Best single variable model, logbili (log(bilirubin)) is the most significant

variable (p < .00001)

1.4.3 Making statistical inferences for the selected model

Conventionally, once we find a desirable model, the risk score for this model can be

estimated and used to differentiate the risk of the subjects in the cohort. These risk scores

can be ranked to put subjects into different risk categories such as tertiles (or deciles if

there are more data). We choose M1, and the Ridge BIC model which has the highest

C-statistic in Table 1.2 for demonstration.
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Table 1.2: C-statistic of models using the full PBC dataset.

Model Selection Method Model Size C-Statistic
M4 1 0.748
M2 8 0.784
M1 6 0.790
M3 9 0.791
Lasso, AIC 11 0.794
Lasso, BIC 10 0.794
Ridge, AIC 16 0.796
Ridge, BIC 16 0.799
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Figure 1.1: Kaplan-Meier curves of the survival time, stratified by tertiles of risk scores from two
models: M1 - Six-variable model (left panel), and Ridge, BIC model (right panel).

Table 1.3 presents the summary statistics of the difference in survival distributions

depicted in Figure 1.1. The restricted mean survival time is computed as the area un-

der the KM survival curve, over the range from [0, tmax], where tmax (= 12.5 years) is the

maximum time for all KM curves considered and serves as a common upper limit for
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the restricted mean calculation. The overall logrank test, and the logrank tests for the

difference in survival distributions between any two risk categories all yield p-values <

0.00001. Both M1 and Ridge, BIC models produce similar results with little difference in

C-statistics, this further illustrates that M1 model is most preferable because it only takes

6 variables to achieve similar predictability.

Table 1.3: Summary statistics of the survival distributions by risk categories, scoring using the
entire dataset.

Model Selection Risk N Events/ Restricted Mean Median (95% CI)
Method Categories Total (se) in years (years)
Stepwise, BIC Low 14/140 11.31 (0.283) NA (NA, NA)

Medium 45/139 8.66 (0.393) 9.19 (7.70, 11.47)
High 102/139 4.21 (0.340) 2.97 (2.55, 3.71)

Ridge, BIC Low 14/140 11.36 (0.278) NA (NA, NA)
Medium 42/139 8.98 (0.381) 9.30 (7.79, NA)

High 105/139 3.98 (0.320) 2.84 (2.44, 3.55)

1.5 Challenges and a proposal

The aforementioned process of using the same dataset for model building, selection,

and inference has been utilized in practice. This conventional process has potential of

self-serving problem. In this section, we first summarize the reasons for the issue of over-

fitting, then we will use the PBC dataset to demonstrate such an overfitting problem with

this conventional process.

1.5.1 Overfitting Issue

If we use the same dataset to construct a prediction rule and evaluate how well this

rule predicts, the predictive performance can be overstated. Overfitting occurs when a

model describes the random variation of the observed data instead of the underlying

relationship. Generally an overfit model indicates better fit and smaller prediction error
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than in reality because the model can be exceedingly complex to accommodate minor

random fluctuation in observed data. This leads to the issue of over-optimism. We will

demonstrate some covariates can be selected as statistically significant risk predictors of

an event outcome even though there is no underlying relationship between them.

1.5.2 Noise variables become significant risk factors

Using the PBC dataset, we first randomly permutate the 418 survival time observa-

tions to break the ties between the observed or censored survival time and its covariate

vector Z. Then we apply various traditional methods including forward selection, back-

ward elimination, and stepwise regression to fit the data with newly permuted y′ and 16

original covariates. These two steps are repeated 5,000 times.

Table 1.4 shows the median, interquartile range, and the range of the number of vari-

ables selected in 5,000 simulations. Using AIC as tuning criterion tends to over-select

variables to achieve better model fit, while BIC tends to select fewer variables. Stepwise

regression with BIC picked up at least one variable 25% of the time.

Table 1.4: Summary statistics of the number of variables selected in 5,000 runs.

Selection Procedure Tuning Criterion Median (1st, 3rd) Quartile (Min, Max)
Forward Selection AIC 2 (1, 3) (0, 9)

BIC 0 (0, 1) (0, 3)
Backward Elimination AIC 3 (2, 4) (0, 11)

BIC 0 (0, 1) (0, 6)
Stepwise AIC 2 (1, 3) (0, 10)

BIC 0 (0, 1) (0, 4)

Consider one such realization, the risk ratio of the variable log(protime) is 11.5

(se=0.845, p=.0039). Using this single variable model to score the entire dataset, and

stratify the risk scores into two strata, we have the left panel of the Kaplan-Meier (KM)

plot in Figure 1.2. It appears that this model is a reasonable prediction tool for survival.
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Figure 1.2: An example of using a holdout sample to show the overfitting phenomena, using the
entire dataset.

If we randomly split the data into two parts, using the first half (called training data)

to fit the model using Stepwise BIC approach, the upper part of the right panel shows

some separation again; one may also pause here had we just given the training dataset.

However, if we go one step further, using the training model to score the holdout sample

(the other half) to evaluate the generalizability of the model, the lower right KM plot

shows no separation at all.

1.5.3 Utilizing cross-validation in model selection process

One way to address overfitting is to use cross-validation (CV) techniques. It is pre-

ferred to evaluate the prediction error with independent data (validation data) separated

from the data used for model building (training data). Two ways of conducting cross-

validation are:
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1. K-fold cross-validation

• Randomly partition the entire original dataset into K groups

• For k = 1, · · · , K, do the following:

– Retain a single kth group as validation data

– Use the rest (K − 1) groups as training data to estimate β and form predic-

tion rule

– Evaluate a predictive performance measure (e.g., C-statistic) using the val-

idation data

• Compute the average of the K predictive performance measures

All data are used for both training and validation, and each observation is used for

validation exactly once.

2. Monte-Carlo cross-validation

• Randomly subsample p percent of the entire dataset without replacement and

retain it as validation data

• Use the rest (1-p percent) data as training data to form prediction rule

• Evaluate the prediction model using the validation data

• Repeat the above steps M times

• Average the M estimates to obtain the final estimate of the predictive accuracy

measure

In this schema, the results may vary if the analysis is repeated with different random

splits; some observations may be selected more than once for training, while others

may not be selected for validation. However, these can be resolved by increasing

M , the number of times the CV is repeated.
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CV is especially useful when we do not have enough observations to set aside for test

set validation; it may address the overfitting issue.

1.5.4 3-in-1 dataset modeling proposal

We present the following strategy to help us select a model with best predictive accu-

racy, utilizing CV in model selection process. First we randomly partition a given dataset

into two parts, for example, Dtrain.val has 50% of the data and Dholdout has the rest.

1. Model Building:

For each candidate model selection method considered, use datasetDtrain.val to build

a model and apply cross-validation to find the predictive accuracy measures of

interest.

2. Model Selection:

Identify the “optimal” model selection method(s) that gives us the most acceptable

or highest predictive accuracy measures with a reasonable model size in Step 1. For

the final model, we can either

(a) Use the “optimal” method to refit the dataset Dtrain.val to obtain the prediction

equation for each subject; or

(b) Apply the average model obtained from the training data portion of Dtrain.val

to Dholdout to report how good it is, and future data for application (e.g., identi-

fying future study population for intervention).

While the first approach can provide a simple scoring system (a linear combination

of selected covariates in this example), the second approach as the “bagging” ver-

sion (Breiman, 1996) may have superior performance to the first one for “discrete”

procedure such as stepwise regression and Lasso.
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3. Statistical Inference:

Dataset Dholdout is not involved in any training process; therefore, it is best suited

for testing and reporting the predictive accuracy of the final model derived from

Dtrain.val using the optimal model selection method identified in Step 2 without

overfitting issue and biases. Additionally, using scores obtained from numerous

training models developed during the cross-validation procedure in Step 1, model

averaging can be applied to increase predictive accuracy in the holdout sample.

We now use the PBC data to illustrate this proposal.

1.6 Establishing a prediction model

Conventional model building strategies using the entire dataset without external data

validation may have limited application. For any given dataset, it will be ideal to be able

to

(1) develop a predictive model with validation, and

(2) report how well the model performs externally.

Hereafter, we apply our proposal to the PBC dataset using Monte Carlo cross-

validation to illustrate the idea.

1. First, retain a random 50% sample of data from the randomized trial portion of

the dataset and another 50% of the follow-up portion of the data. This holdout

dataset Dholdout consists of 209 observations and will be used to conduct inference,

and examine the generalizability of our model developed by the other half of the

dataset (called Dtrain.val).

2. Apply Monte Carlo CV to Dtrain.val dataset, use 2/3 of the 209 observations as train-

ing data, and the rest 1/3 observations (70 in this case) as validation data.
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3. In each CV run, evaluate the model selected by each candidate method using a

predictive measure of interest: censoring-adjusted C-statistic proposed by Uno et

al. (2011).

4. Repeat the model selection and computation of the above performance measure 200

times. The average over all 200 measures is presented in Table 1.5 using various

model selection methods. The C-statistic measures how well the model predicts

throughout the course of study.

Table 1.5: PBC Cross-validation dataDtrain.val: performance measures of different model selection
methods, using random cross-validation with 2/3 of observations as training data and 1/3 of data
as validation data.

Model Selection Method C- Median
Procedure Tuning Criterion Statistic Model Size
Forward AIC 0.737 6
Selection BIC 0.733 4
Backward AIC 0.742 7
Elimination BIC 0.740 4
Stepwise AIC 0.736 6

BIC 0.744 4
Lasso AIC 0.746 8

BIC 0.746 6
Ridge AIC 0.749 16

BIC 0.757 16

In Table 1.5, the three traditional methods (forward selection, backward elimina-

tion, and stepwise regression) have comparable predictive performance in this dataset,

with stepwise regression using BIC as stopping criterion yielding the highest censoring-

adjusted C-statistic of 0.744. The Lasso and Ridge model selection methods yield slightly

higher C-statistic than the other three methods with larger median model size. Ridge

regression with BIC as stopping criterion using all 16 covariates yields the best predictive

measure.

Stepwise regression using BIC as stopping criterion has comparable predictive per-

formance as Lasso and Ridge regression on this particular dataset. However, the median
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model size of stepwise, BIC method is 4, compared with 6 in Lasso and 16 in Ridge regres-

sion method. The difference in the predictive measures between the traditional methods

and the two penalized regression methods are not substantial in this dataset. Since CV-

based estimator like all statistics is subject to some variability, the observed differences

(if small) may be due to stochastic variation. If one decides that the slight difference

in predictive accuracy does not outweigh the ease of implementation and smaller num-

ber of variables used by the traditional methods, one may choose the method that gives

the highest predictive measures. In this case, stepwise regression using BIC as stopping

criterion performs very well.

We should be aware that the CV-based prediction measures, such as the highest C-

statistic of 0.757 derived from the Ridge BIC regression model, are optimistically biased

because the models with the best estimated prediction accuracy measures are selected.

Hence the true C-statistics may actually be lower.

1.6.1 Evaluating model’s generalizability

To examine the generalizability of the model fit, we use the holdout sample for the

evaluation and reporting. For the model selection method chosen by the CV procedure

with best predictive measures, say, stepwise using BIC as stopping criterion, the following

scoring algorithm is applied:

1. Use 2/3 of the Dtrain.val dataset to build a model called M1, the rest 1/3 of this

dataset is used to evaluate the predictive performance measures aforementioned.

2. Use β estimates from M1 to obtain a score for each subject in the holdout sample

Dholdout. This score r1 = exp(β̂Z), where Z is the covariate of each subject in dataset

Dholdout.

3. Repeat the above two steps 200 times, and we have r1, r2, r3, . . . , r200 for each subject

in the holdout sample derived from 200 training models M1,M2,M3, . . . ,M200.
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4. Take the average of r1, r2, r3, . . . , r200, which becomes the final risk score of the sub-

jects in the holdout sample. The distribution of this summary risk score (r) can be

obtained and used for risk profiling.

We stratify the summary risk scores (r) using tertiles of r. For the holdout sample,

Dholdout dataset, Figure 1.3 displays the Kaplan-Meier curves of the survival time strati-

fied by the risk scores using three risk categories. The left panel shows the results using

the optimal model selection method stepwise BIC identified in Table 1.5. For reference,

the right panel shows the scoring results using Lasso with BIC as stopping criterion, a

penalized regression method that used fewer variables than Ridge regression.
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Figure 1.3: Kaplan-Meier curves of the survival time, stratified by tertile of risk scores of the
holdout sample.

Table 1.6 and Table 1.7 present the summary statistics of the difference in survival dis-

tributions depicted in Figure 1.3. All the reported log-rank test p-values, and confidence

intervals based on the holdout sample are valid conditional on the scoring system derived
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from the training dataset. We also evaluate another schema by stratifying the risk scores

using four risk categories (low, medium low, medium high and high). The results (not

shown) are similar between the stepwise, BIC method and the Lasso penalized regression

method.

Table 1.6: Summary statistics of the survival distributions by risk categories, scoring using 200
training models on Dholdout dataset.

Model Selection Risk N Events/ Restricted Mean Median (95% CI)
Method Categories Total (se) in years (years)
Stepwise, BIC Low 7/70 11.16 (0.370) NA (NA, NA)

Medium 15/69 9.41 (0.606) NA (7.79, NA)
High 55/70 3.76 (0.365) 3.15 (2.66, 4.05)

Lasso, BIC Low 8/70 10.96 (0.406) NA (NA, NA)
Medium 16/69 9.48 (0.586) NA (7.79, NA)

High 53/70 3.74 (0.369) 3.15 (2.66, 4.05)
Note: restricted mean with upper limit = 12.1 years

Table 1.7: Logrank test p-values of the difference between the survival distributions by risk cate-
gories.

Survival Difference between Model Selection Method
Risk Categories Stepwise, BIC Lasso, BIC
Overall p < 10−7, χ2

(2)=124.63 p < 10−7, χ2
(2)=119.47

Pairwise Comparison
Low vs. Medium 0.0131 0.0151
Low vs. High < 10−7 < 10−7

Medium vs. High < 10−7 < 10−7

As for the final prediction model, the scoring system presented above used the average

model approach, which is an ensemble of 200 training models, no simple formula can be

expressed. Figure 1.4 displays the distribution of β̂ for each covariate obtained from 200

training models. The distribution of β̂ for log(bilirubin) concentrated around 0.9 with

low variability (mean risk ratio is 2.375), the best single prognostic factor. Other covari-

ates have a variety of distributions, with those covariates in the upper right region located

closely at zero (5th and 95th percentile equal zero) leading to a risk ratio of 1.000. Alterna-
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tively, we can use the stepwise regression method with BIC as stopping criteria to fit the

dataset Dtrain.val and obtain a prediction equation based on a linear combination of the

selected covariates. These covariates and their risk ratios exp(β̂) are: log(bilirubin), 2.195;

edema, 5.596; age, 1.044; hepato, 1.975 and spiders, 1.943.
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Figure 1.4: Distribution of β̂ obtained from the 200 training models for each covariate.

1.6.2 Reducing overfitting via 3-in-1 proposal

We examine the performance of different scoring algorithms when there is no underly-

ing relationship between survival time observations and covariates in a high-dimensional

setting using simulations on the PBC dataset as follows. We keep the original survival

time observations (timei, deathi), simulate 50 independent binary random variables with

event rates ranging from 0.001 to 0.981 with 0.02 increment and 160 independent nor-

mal random variables with the same mean and standard deviation as the ten continuous
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covariates in PBC dataset (16 variables for each covariate distribution).

We randomly partition the dataset into two halves: Dtrain.val and Dholdout, each has 209

observations (n < p). Applying stepwise regression with BIC as stopping criteria to the

datasets, we present Figure 1.5 as follows:

• Leftmost panel: using the training dataDtrain.val to build a model, and score on itself

(conventional way)

• Middle panel: using the training data Dtrain.val to build a model, but score on the

holdout sample Dholdout

• Rightmost panel: apply our 3-in-1 modeling strategy similar to the procedure de-

scribed in Section 1.6 with Stepwise BIC as the only candidate method considered,

obtain an average model derived from 200 training models obtained during the CV

process using Dtrain.val, score the holdout sample Dholdout using this average model.
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Figure 1.5: Kaplan-Meier curves of three scoring methods, using stepwise regression method with
BIC as stopping criterion.
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The leftmost panel shows overfitting using conventional same dataset modeling way;

the other two panels did not show separation of the KM curves. Applying the average

model derived from 200 training models in the spirit of bagging (i.e., bootstrap aggre-

gate), all three KM curves almost overlap each other, leading to the correct conclusion

that there is no relationship between the survival time and covariates.

The example shows that a combination of cross-validation and holdout sample is

useful in combating overfitting.

1.7 Remarks

It is important to consider model building, selection and inference processes simul-

taneously as a package. The usual practice of using the same dataset for implementing

procedures for these three steps may result in invalid inference as we demonstrated in this

chapter. One may question about the efficiency issue for splitting the dataset for the final

inference. However, with the conventional method, it is difficult to quantify the reliability

of our claim at the end after an extensive, iterative model building process. This is prob-

ably why there are numerous false positive findings in all the scientific investigations. In

fact, the sizes (or event rates) of most studies in practice may be too small for building

reliable models for making valid inference.

We proposed a 3-in-1 dataset modeling strategy, achieving model building, selection,

and holdout inference in one dataset. Cross-validation techniques are utilized to provide

a sanity check for model fit to assess whether its predictive performance is acceptable.

We can then select the optimal model building method to develop the final model and

proceed with the inference part using the holdout sample, leading to more reproducible

results and better application.

Needless to say, model building does not only depend on statistical grounds,

knowledge of subject matter is absolutely essential in selecting the most appropriate
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model tailored to our needs. We focused on several classical methods and found that

careful implementation of these methods could help us find a reasonably good predictive

model. While censoring-adjusted C-statistic was used to evaluate predictive performance

for illustration, other predictive measures or model evaluation methods can be consid-

ered. For example, Tian et al. (2007) proposed model evaluation based on the distribution

of estimated absolute prediction error. Uno et al. (2011) looked at the incremental values

of predictors. Furthermore, the candidate model selection methods considered were p-

resented mainly under the framework that n > p. For the review on high-dimensional

regression with survival outcomes, we refer to Sinnot and Cai’s Chapter in Klein et al.

(2013). They described some of the existing literature on dimension reduction, shrinkage

estimation procedures with a range of penalty functions, and some hybrid procedures

with univariate screening followed by shrinkage.

As mega datasets (genomic, data warehouse) become increasingly available, together

with the ease of data storage and rapid development of data mining methodologies in

censored data, these have enabled us to utilize more information for model development.

It would be of interest to see how other datasets and predictive measures perform using

our scoring algorithm. Moreover, what proportion of samples should we retain for hold-

out sample, other cross-validation techniques with different partition schema can also be

considered to fine-tune our model building strategies. Additionally, we tend to develop

methods separately for each step of the model building, selection and inference process.

If one aims at making efficient and valid inference about a parameter, say, the restricted

mean survival time, a more consistent and integrated process using criteria to increase the

precision of the final inference procedure should be considered. These questions remain

an area of active research.

With the advent of the information age and the vast growth in the availability of

massive amount of data, the challenges presented a unique window of opportunity for us

to re-examine our conventional model selection strategy. Alternative modeling strategies

in the analysis of censored outcome data could be considered to utilize the data and
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increase the overall model predictability in this Big Data era and dawn of personalized

medicine age.
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Abstract

In predictive medicine, one generally utilizes the current study data to construct

a stratification procedure, which groups subjects with baseline information and forms

stratum-specific prevention or intervention strategies. A desirable stratification scheme

would not only have a small intra-stratum variation, but also have a “clinically

meaningful” discriminatory capability across strata to avoid unstable and overly sparse

categorization. We show how to obtain an optimal stratification strategy with such

desirable properties from a collection of candidate models. Specifically, we fit the data

with a set of regression models relating the outcome to its baseline covariates. For each

fitted model, we create a scoring system for predicting potential outcomes and obtain the

corresponding optimal stratification rule. Then, all the resulting stratification strategies

are evaluated with an independent dataset to select a final stratification system. Lastly,

we obtain the inferential results of this selected stratification scheme with a third indepen-

dent holdout dataset. If there is only one current study dataset available and the study

size is moderate, we combine the first two steps via a conventional cross-validation pro-

cess. We illustrate the new proposal using an AIDS clinical trial study for binary outcome

and a cardiovascular clinical study for censored event time outcome.

KEY WORDS: Cox regression model; Cross-validation; Dynamic programming; Predic-

tion score; Stratified medicine

2.1 Introduction

To construct a prediction procedure for the future subject’s outcome via its baseline

information, a common practice at the first step is to fit the current data with a para-

metric or semi-parametric regression model, which relates the subject’s outcome to its

covariates. If the model is a reasonable approximation to the true one, the resulting indi-

vidual predicted value would be close to its outcome value. Such predicted values create
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a scoring system for all future subjects. On the other hand, when the regression model is

misspecified, the scoring system can have systematic bias for some score values. To elimi-

nate the bias, one may further calibrate the continuous scoring system nonparametrically

(Tian et al., 2014). However, the calibrated prediction for subjects with a given score can

be quite unstable due to the sparseness of the observations in the neighborhood. Conse-

quentially the resulting prediction procedure in such a fine level may not perform well for

practical usage. To this end, we often then group the scores into several strata and uses the

average of observed outcome values in one stratum to predict outcomes from new sub-

jects classified into the same stratum for making targeted prevention or intervention. A

desirable stratification scheme would have a small intra-stratum variation and a clinically

meaningful discriminatory capability to avoid unstable and overly sparse groupings. To

the best of our knowledge, there are no systematic approaches one can take to construct

an optimal stratification with such desirable features.

As an example to illustrate the current practice in stratified medicine, we utilize the da-

ta from a clinical study for treating HIV diseases (Hammer et al., 1997). This trial (ACTG

320) was a randomized, double-blind, placebo-controlled clinical study conducted by the

AIDS Clinical Trials Group. It successfully demonstrated the overall efficacy of a com-

bination of two nucleoside regimen with a protease inhibitor Indinavir for treating HIV-

infected patients. The combination treatment concept has since been well adopted for

the current HIV patient’s management. However, the combination therapy may not be

a good choice for patients who do not have a reasonable chance to respond to the treat-

ment considering the associated economical cost and potential toxicity. Therefore, in the

development of personalized medicine, it is an important step to predict the response

probability for individual patient receiving the intervention treatment. Here, we show

a conventional, ad hoc procedure to construct such a stratification scheme using the pa-

tients’ baseline variables. For this study, there were 537 patients treated by the three drug

combination who had complete baseline information. One of the endpoints was a bina-

ry outcome Y, indicating whether the patient’s HIV-RNA viral level was under an assay
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detectable level (500 copies/mL) at week 24 or not. A non-responder to the treatment

was defined as the RNA level being above 500 copies/mL at week 24 or an informative

dropout before week 24 due to treatment failure. The observed overall response rate

was 45%. To build a predictive scoring system, for illustration, let us consider a rather

simple additive logistic regression model for Y with four baseline covariates: age, sex

(female=1, male=0), CD4 count (CD40), and the log10 of HIV-RNA (log10 RNA0). The nu-

merical RNA level is used and all log10 RNA0 measures below log10(500) are replaced by

0.5 log10(500) = 1.35 in our analysis. We then fit the entire dataset with the model and the

resulting individual predicted response rate is:

ψ(−0.508 + 0.044age− 0.493sex + 0.004CD40 − 0.346 log10 RNA0), (2.1)

where ψ(s) = {1 + exp(−s)}−1 is the anti-logit function. The 537 predicted response rates

range from 0.09 to 0.93. If the model is reasonably good, a future subject with a high

score tends to respond to the treatment. A conventional way to group those patients is

to stratify them into, for instance, four consecutive categories with roughly equal sizes

by using the quartiles of the predicted scores. The empirical average response rates for

these strata are 31%, 42%, 38%, and 67%, respectively. Unfortunately this ad hoc stratifi-

cation scheme does not have discriminatory capability across all the strata. The average

response rates are not monotonically increasing over the ordered strata, potentially due to

the inadequate prediction model (2.1) or an improper grouping of the prediction scores.

In this article, we present an optimal and systematic stratification strategy incorporat-

ing model selection from a collection of candidates which satisfy certain clinically mean-

ingful criteria. Specifically, in Section 2.2, we show how to obtain an optimal grouping

scheme for each candidate scoring system created from a regression model. For example,

with the predicted response rates (2.1), we consider all possible discretization schemes,

whose stratum sizes would be at least 10% of the study sample size and any two consec-

utive stratum-specific average response rates are monotonically increasing with an incre-

mental value of at least 20% to ensure a discrimination capability for future population.

We then choose the best stratification, which minimizes a certain overall prediction error
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(2.3) among all the possible stratification schemes with such desirable features. Dynamic

programming techniques are utilized to solve this nontrival optimization problem. With

the data from the HIV example and model (2.1), this results in three categories with the

stratum-specific average response rates of 11%, 42% and 69% and stratum sizes of 65, 343,

and 129, respectively. Note that if model (2.1) is appropriate, future patients classified to

the first stratum may not benefit much from this rather costly three-drug combination

therapy especially for regions where the resource is limited.

In Section 2.3, we consider a collection of candidate scoring systems and utilize the

method in Section 2.2 to obtain the optimal stratification for each scoring system. To

avoid the overfitting problem, we then use an independent dataset to evaluate all the

resulting stratification schemes with respect to a clinically interpretable prediction error

measure, which also quantifies the within-stratum heterogeneity, to select the final strati-

fication scheme. The last step is to make inferences for the selected prediction procedure

using a third independent dataset. If the data are from a single study with a moderate

size, one may combine the model building and evaluation processes via a cross-validation

procedure. In Section 2.4, we generalize the new proposal to handle censored event time

outcomes and illustrate the procedure using the data from a cardiovascular study (Braun-

wald et al., 2004) in Section 2.5. We conclude with additional observations and potential

generalizations in Section 2.6.

2.2 An optimal stratification procedure for a specific scor-
ing system

In this section, we show how to obtain an optimal grouping system from a single

working model such as (2.1). Let Y be the outcome variable and V be a vector of

“baseline” covariates. Assume that the conditional mean µ(V ) = E(Y |V ) is the parame-

ter of interest for future prediction. To estimate µ(V ) when the dimension of V is more

than one, we generally use a working model which relates Y to Z, a function of V . For
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example, µ(V ) = g(β′Z), where g(·) is a given smooth monotone function. Let the data

consist of n independent copies {(Yi, Vi, Zi), i = 1, · · · , n} of (Y, V, Z). An estimate β̂ for

β can be obtained via a regularized estimation procedure, for example, the least absolute

shrinkage and selection operator (lasso) (Tibshirani, 1996), especially when the dimension

of Z is large. If the regression model is a reasonable approximation to the true one, the

resulting estimator µ̂(V ) = g(β̂′Z) would be close to µ(V ), and a large µ̂(·) indicates that

the subject would have a large outcome value Y .

As an example, for the binary outcome Y in the HIV study discussed in the Introduc-

tion, one may use a logistic model with lasso or ridge regularization to obtain µ̂(·). Here,

the regression parameter estimate β̂ is obtained by minimizing the loss function

− log{L(β)}+ λ‖β‖pp, (2.2)

where L(β) is the likelihood function, λ is the tuning (penalty) parameter and ‖β‖pp is the

pth power of the Lp norm for the vector β. The (2.2) results in the standard lasso and ridge

regression with p = 1 and 2, respectively. The score (2.1) in the Introduction gives the

individual predicted response rate based on the simple additive logistic regression with

four baseline covariates and λ = 0.

Suppose that we group n subjects into K consecutive strata S1, S2, · · · , SK based on

the score µ̂(·). Let Ȳk be the empirical mean of Y ′i s in the kth stratum, k = 1, · · · , K. For

a future subject being classified to the kth stratum, we predict the individual outcome

with the corresponding stratum-specific mean Ȳk. To evaluate the performance of this

stratification, one may consider a loss function:

1

n

K∑
k=1

∑
i∈Sk

|Yi − Ȳk|, (2.3)

which also quantifies the average within stratum variation. When all the scores are dis-

tinct, an optimal stratification, which minimizes (2.3), would result in n strata with only

one member in each stratum and the observed prediction error is zero. However, the pre-

diction error for future observations with such an overly sparse stratification would be

34



unacceptably high. To increase the prediction precision while ensuring stable subgroups,

one may group the subjects with a minimal stratum size of at least a certain fraction p0 of

the sample size n. This minimum size requirement may also be clinically meaningful be-

cause a general medical guideline for disease prevention or intervention generally is not

aiming to a very small subpopulation. Moreover, to ensure that the stratification scheme

has a clinically meaningful discriminatory capability, namely, yielding meaningful dif-

ferences in group-specific average outcomes between subgroups, we further impose a

constraint for all candidate stratification schemes such that

Ȳk − Ȳk−1 ≥ d; for k = 2, · · · , K, (2.4)

where d is a given positive value, representing the minimum clinically meaningful incre-

ment.

Consider all possible stratifications which satisfy (2.4) with a minimum stratum size

fraction of at least p0. To obtain an optimal stratification scheme by minimizing (2.3) is a

rather challenging problem. In Appendix A.1, we show how to identify the boundary val-

ues {ĉ0, ĉ1, · · · , ĉK−1, ĉK} of the consecutive strata via dynamic programming (Taha, 2003),

that is, Sk = {i | ĉk−1 < µ̂(Vi) ≤ ĉk, i = 1, · · · , n}, k = 1, 2, · · · , K. Without loss of generali-

ty, here we assume that ĉ0 = −∞ and ĉK =∞. Note that we use L1 norm (2.3) to evaluate

the prediction error, which is more heuristically interpretable than, for example, the one

with the L2 norm. Furthermore, if the regularized estimator β̂ of the working regression

model converges to a constant vector β0 and the resulting score estimate µ̂(v) converges to

a deterministic function µ̃(v) for all v, the above empirical optimal stratification scheme,

in the limit, minimizes, with respect to c = {−∞ = c0 < c1 < · · · < cK−1 < cK =∞}, the

limit of (2.3):

L(c) = E
∣∣Y − f(V |c)

∣∣ subject to

{
pr(ck−1 < µ̃(V ) ≤ ck) ≥ p0

µ̄k − µ̄k−1 ≥ d
, (2.5)

where

f(V |c) =
K∑
k=1

I(ck−1 < µ̃(V ) ≤ ck)µ̄k,
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I(·) is the indicator function and µ̄k = E(Y | ck−1 < µ̃(V ) ≤ ck). The justification of

this asymptotic property is given in Appendix A.2. Note that using the lasso regularized

estimation procedure, the estimators β̂ and µ̂(·) are stabilized asymptotically. This large

sample property of the optimal stratification scheme is essential to ensure its stability

under the cross-validation setting discussed in Section 2.3.

2.3 Selecting an optimal stratification scheme from a col-
lection of competing score systems

For a prediction score system created by a given working regression model, one can

obtain its optimal stratified prediction procedure as presented in Section 2.2. To make

inferences about the resulting stratified prediction procedure, for instance, constructing a

valid confidence interval estimate for the mean response value of each stratum, one may

utilize an independent dataset to avoid overly optimistic inferential conclusions. To this

end, with data from a single study, we may split the data into two independent parts, say,

I and II. Using the data from Part I, we obtain the optimal stratification scheme. Then

we use the data from Part II to make inferences for prediction. Moreover, if there is a

collection of competing stratified score systems considered as potential candidates, we

further split the data from Part I into two independent parts, say, Ia and Ib. The data

from Part Ia are used for obtaining the optimal stratification schemes for each candidate

scoring system as we did in Section 2.2, whereas data from Part Ib are used for evaluating

all candidates and selecting the best stratification scheme.

Suppose that there are several optimal stratification schemes available with the data

from Part Ia. In this section, we show how to evaluate them and choose the “best” one. Let

the data from Part Ib be denoted by n∗ independent identically distributed observations

{(Y ∗i , V ∗i , Z∗i ), i = 1, · · · , n∗}, where a generic variable “A∗” is defined as “A” in Section 2.2.

For each candidate scoring system, we obtain its optimal stratified counterpart from the

data of Part Ia with boundary points {ĉ0, ĉ1, · · · , ĉK} and the stratum-specific prediction
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values {Ȳk, k = 1, · · · , K}. To evaluate the predictive performance of such a stratification

scheme with the data from Part Ib, we consider the following loss function, reflecting the

within-stratum variation for the prediction accuracy:

L∗ =
1

n∗

K∑
k=1

∑
µ̂(V ∗i )∈(ĉk−1,ĉk]

|Y ∗i − Ȳk|, (2.6).

where n∗ =
∑K

k=1 n
∗
k and µ̂(V ∗i ) = g(β̂′Z∗i ). An optimal stratification scheme is chosen

which minimizes (2.6) among all the candidates under consideration. On the other hand,

a parsimonious model may be appealing in practice if its (2.6) is greater than but still

comparable to the minimum value of (2.6) derived from a complex model.

Now, since the sizes of Parts Ia and Ib may be small, one may use the Monte-Carlo

cross-validation (MCCV) method (Xu and Liang, 2001; Yong et al., 2013) to obtain a more

stable (2.6). Specifically, we randomly split Part I dataset into Ia and Ib, say, N times. For

the jth split, we repeat the above model building and evaluation procedure for each can-

didate model and obtain L∗j from (2.6). We then compute the average, L̄∗ = N−1
∑N

j=1 L∗j .

For each candidate model, we refit the entire Part I data and let the final realized stratifi-

cation rule be denoted byM∗. The pair (L̄∗,M∗) reflects the magnitude of the estimated

within-stratum variation and the model complexity of each candidate. The selection of

an “optimal” stratification rule would be based on such pairs. With the data from Part II,

we then construct confidence interval estimates for the stratum-specific mean values of

the outcome variables for the final selected stratification scheme. It is important to note

that the lasso regularized regression coefficient estimate is stabilized asymptotically for

each regression model fitting in the above cross-validation process. It follows that for

each candidate regression model, the final refitted stratification scheme would minimize

(2.5) in the limit.

We now use the data from the HIV study to illustrate our proposal. For this study, oth-

er than the four baseline variables discussed in the Introduction, there are seven baseline

covariates and two short-term marker values at week 4 including CD4 count (CD44) and

log10 RNA (log10 RNA4), which may be relevant to the outcome and have potential pre-
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dictive values. The additional baseline covariates are race (non-Hispanic White, African

American, other), injection-drug use, hemophilia, CD8 count, weight, Karnofsky perfor-

mance score, and months of prior zidovudine therapy. There are very few missing covari-

ate values. Any missing covariates are replaced by their corresponding sample averages

from the observed counterparts.

In our analysis, we first randomly split the entire dataset of 537 patients into Part I and

Part II evenly with sample sizes of 268 and 269, respectively. The number N of the MCCV

is 200 and the sizes of Part Ia and Ib are equal for each cross-validation. For illustration,

we consider four different working models in which the first three are various logistic

regression models with lasso regularization methods and tuning parameters selected via

a 20-fold cross-validation procedure built in theR package glmnet (Friedman et al., 2010).

The fourth model is a null model using the overall mean response proportion in Part

Ia to predict future outcomes for each cross-validation run. Table 2.1 summarizes the

composition of each model. We also present L̄∗ obtained by averaging the 200 L∗j values;

and for the corresponding M∗, we report its number of informative baseline covariates

needed for computing the score µ̂(V ) and number of nonzero regression coefficients in

β̂ to summarize its complexity. Note that for all candidate stratification schemes, we use

the incremental value of d = 0.2 and the minimum stratum size fraction of p0 = 0.1 in the

Part Ia training data.

From Table 2.1, Models 1 and 3 have almost the same L̄∗ values, but theM∗ of Model

1 has fewer baseline covariates involved and the resulting predicted response rate is

ψ(−0.231−0.075 log10 RNA0−0.459 log10 RNA4 +0.00036CD40 +0.0028CD44 +0.0288age).

With this final selected stratification scheme M∗, there are three strata whose ĉ1 = 0.25

and ĉ2 = 0.45. The stratum-specific means and numbers of observations are 0.06 (n =

51), 0.36 (n = 107), and 0.62 (n = 110), respectively. Note that these stratum-outcome-

average estimates may be biased due to the extensive model building, evaluation and

selection. To obtain valid inferences for this final prediction procedure, we use the above
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Table 2.1: Regression model candidates, E(Y |V ) = β′Z, for study ACTG 320, L̄∗ and the com-
plexities ofM∗ (#var = the number of informative covariates and ‖β‖0 = the number of nonzero
components of β̂).

Model Candidate independent variables dim(Z) L̄∗ M∗
#var ‖β̂‖0

1 age, sex, CD4 count and log10RNA at baseline 6 0.415 5 5
and week 4

2 all baseline covariates plus their first-order 78 0.465 12 14
interaction terms

3 all baseline covariates and CD4 and log10RNA 105 0.414 13 20
at week 4 plus their first-order interaction terms

4 none 0 0.484 0 0

stratification boundary values ĉ1 and ĉ2 to group subjects from Part II. The resulting point

and 0.95 confidence interval estimates for the three stratum-average response rates are

0.17 (0.06, 0.28), 0.41 (0.31, 0.51) and 0.65 (0.57, 0.73), with stratum size n = 47, 91, and 131

respectively as displayed in Figure 2.1. Note that the above inferential results would be a

valid and final assessment on the practical value of this prediction scheme.

2.4 Generalization to cases with event time as the outcome
variable

If the outcome T is the time to a specific event, potentially this variable T may be

censored and the mean or median value of the outcome variable cannot be estimated

well. A common summary parameter of interest is the event rate at a specific time point τ .

However, this measure does not include information about the event occurrence profile.

On the other hand, the restricted mean survival time (RMST) is a clinically meaningful

summary for such a distribution (Royston, 2009; Royston and Parmar, 2011; Zhao et al.,

2013). Specifically, let Y = TI(T ≤ τ) + τI(T > τ) and µ(V ) = E(Y |V ) =
∫ τ

0
S(t|V )dt as

defined in Section 2.2, where S(t|V ) = pr(T > t | V ). Here, µ(V ) is the average event-

free time for all subjects with covariate V , which would be followed up to time point τ .
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Figure 2.1: Stratum-specific point and 95% confidence intervals for the response rates with the
Part II data (denoted by dots) of ACTG 320 with cutoff points ĉ1 = 0.25 and ĉ2 = 0.45.

Often, the outcome T (and Y ) may be right censored by an independent random variable

C. However, one can always observe (X, V,∆), where X = min(T,C) and ∆ is a binary

variable, which is one if X = T and zero otherwise. Therefore, the observed data consist

of n independent copies {(Xi, Vi,∆i), i = 1, · · · , n} of (X, V,∆). Note that Yi = min(Ti, τ)

is observed when ∆i = 1 or Ti ≥ τ .

Inferences about µ(V ) under the one- and two-sample and regression settings have

been extensively studied (Zucker, 1998; Tian et al., 2014). For example, to estimate the

RMST for a single group, the area under the Kaplan-Meier curve is a nonparametric con-

sistent estimator. To create a scoring system for µ(V ), one may use the Cox (1972) pro-

cedure to model the relationship between the survival function S(t|V ) of the event time

and its covariates V :

log{− logS(t|V )} = log{− logS0(t)}+ β′Z,
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where S0(·) is an unknown baseline survival function, and β is the regression coefficient

vector. A regularized estimate β̂ of β can be obtained by minimizing

− log(PL(β)) + λ‖β‖pp,

where PL(·) is the partial likelihood function. The S0(t) can then be estimated by

exp{−Λ̂0(t)}, where Λ̂0(t) is the Breslow estimate for the underlying cumulative hazard

function (Breslow, 1972). It follows that the RMST for subjects with the covariate V can

be estimated as

µ̂(V ) =

∫ τ

0

exp{−Λ̂0(t)eβ̂
′Z}dt.

For any scoring system, we can then use the same technique described in Section 2.3

to obtain an optimal stratification scheme. Specifically, in the limit, we are interested in

minimizing (2.5). Assuming that the censoring time is independent of the survival time

T and covariates V, the prediction error in (2.5) can be estimated as

n−1

K∑
k=1

∑
i∈Sk

wi|Yi − Ȳk|,

where wi = {∆i + (1 − ∆i)I(Ti ≥ τ)}/Ĝ(Yi) and Ĝ(·) is the Kaplan-Meier estimate for

the censoring distribution using the entire dataset (Part I and II). Here, Ȳk is a consistent

estimator for the kth stratum-specific RMST, which is the weighted average∑
i∈Sk

wiYi∑
i∈Sk

wi
.

With the same constraints as described in Section 2.2, an optimal stratification can be ob-

tained via the dynamic programming technique given in Appendix A.1. If the estimated

RMST converges to a deterministic limit as the sample size increases, it follows from a

similar argument in Appendix A.2, the finite sample stratified scheme would have the

same asymptotic property as that for the non-censored case.

To select the “best” scoring model from the competing scoring systems, one can utilize

the procedure in Section 2.3 with the weighted version of (2.6) to evaluate the candidate
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stratification schemes via the cross-validation using the data from Part Ia and Ib iterative-

ly. The inference of the prediction procedure with the final selected model can then be

made accordingly with the data from Part II.

2.5 An illustrative example with censored event time out-
comes

We use the data from a cardiovascular clinical trial “Prevention of Events with An-

giotensin Converting Enzyme Inhibition” (PEACE) to illustrate the proposal with an

event time outcome variable. The PEACE trial is a double-blind, placebo-controlled

study (Braunwald et al., 2004) of 8290 patients enrolled to investigate if the addition of an

Angiotensin-converting-enzyme (ACE) inhibitor therapy trandolapril at a target dose of 4

mg/day to the conventional therapy would provide benefit with respect to, for example,

the patient’s specific cardiovascular event-free survival. For illustration of our proposal,

the outcome variable is assumed to be the time to death, nonfatal myocardial infarction

or coronary revascularization, whichever occurred first. There are 2110 patients (25%),

who experienced this composite event with the median follow-up time of 54 months. The

0.95 confidence interval estimate for the hazard ratio is (0.86, 1.02) with a p-value of 0.15

based on the logrank test. Since there was no statistically significant treatment effect, we

combined the data from the two treatment groups for our illustration. The Kaplan-Meier

curve for the entire dataset is given in Figure 2.2. The overall observed event times in

months range between 0.1 and 81.5 with an interquartile range of 12.8 and 42.4. If we

let τ = 72 (months), the estimated restricted mean event time for the entire group is 60.4

months. This suggests that for future patients in this study population, one expects to

have an average of 60.4 months event-free with a follow-up time of 72 months.

Based on the results by Solomon et al. (2006), we considered the following baseline co-

variates for prediction: the study treatment indicator, age, gender, left ventricular ejection

fraction, history of myocardial infarction, history of hypertension, history of diabetes, and
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Figure 2.2: The Kaplan-Meier estimate for the time to the composite endpoint with the entire
PEACE dataset.
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Table 2.2: Regression model candidates, log{− logS(t|V )} = log{− logS0(t)} + β′Z, for study
PEACE, L̄∗ and the complexities ofM∗ (#var = the number of informative covariates and ‖β‖0 =
the number of nonzero components of β̂).

Model Candidate independent variables dim(Z) L̄∗ M∗
#var ‖β̂‖0

1 age, gender, left ventricular ejection fraction, 10 16.919 6 7
history of myocardial infarction, history of
hypertension, history of diabetes, eGFR,
ACE inhibitor treatment

2 variables in Model 1 plus three treatment 13 16.903 6 9
and eGFR interaction terms

3 variables in Model 1 plus their first-order 55 16.966 6 9
interaction terms

4 none 0 18.649 0 0

estimated glomerular filtration rate as a 4-category discretized version represented by 3

indicator variables eGFR1, eGFR2 and eGFR3 with cut-points of 45, 60, and 75. We imput-

ed the missing covariate values with their corresponding sample mean counterparts for

continuous variables and the most frequently observed category for binary variables. We

then randomly split the data evenly into Parts I and II with 4145 patients each. Moreover,

for Part I data, we randomly split it evenly for the cross-validation process with 200 iter-

ations. Several candidate models are considered and listed in Table 2.2. Note that Model

2 is built upon the observation that there is potential treatment and eGFR interaction re-

ported by Solomon et al. (2006).

For each regression candidate model, we use the incremental value of d = 3 months

and the minimum stratum fraction of p0 = 0.1. Table 2.2 summarizes the L̄∗ for the

optimal stratification based on each regression working model as well as the numbers of

informative covariates used in computing the estimated scores and nonzero regression

coefficients of β̂ forM∗. Model 2 has the smallest L̄∗ and yields three strata with cutoff

points ĉ1 = 56.5 and ĉ2 = 60.5 months. The range of estimated RMST is from 51.0 to

63.8 months in Part I dataset. The corresponding estimated RMSTs for three strata are

54.5, 58.7 and 62.3 months, respectively. To make inferences about the prediction of this
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Figure 2.3: Stratum-specific Kaplan-Meier estimates and 95% confidence intervals for RMSTs ob-
tained from Part II data of PEACE study with ĉ1 = 56.5 and ĉ2 = 60.5.

selected final stratification scheme, we apply it to the Part II data. The corresponding

Kaplan-Meier curves for three strata are given in Figure 2.3. Based on the restricted area

under the Kaplan-Meier curves derived from 1000 bootstrap samples, the point and 0.95

confidence interval estimates for the stratum-specific restricted mean survival times are

54.3 (51.0, 57.2), 58.9 (57.7, 60.0) and 62.0 (61.2, 62.8) months, for the three strata with

n=245, 1350, and 2550 respectively.
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2.6 Remarks

A common practice in predictive medicine is to create an ordered category system

to classify future subjects with their “baseline” information. A desirable quantitative s-

tratification procedure would have both a small overall prediction error and a reason-

able discriminatory capability across the strata. In this article, we provide a systematic

approach to construct such a stratification rule. To achieve the first goal, we utilize a

heuristically interpretable metric (a loss function based on the L1 norm) for quantifying

the prediction error. Moreover, the stratification requires a minimum size of the stratum

to avoid having unstable small strata. The choice of the minimum size does not have

a rigorous rule. It depends on the amount of “information” of the training set Part Ia,

which is usually quantified by the sample size or the observed event rate. To enhance the

discriminatory ability of the scheme, we set a minimum incremental value between two

consecutive stratum-specific predicted values at the model building stage. The choice

of this value depends on clinical inputs. For example, for the cardiovascular study, the

range of the RMST scores is from 51.0 to 63.8 (months) based on the Part I training data,

which is relatively narrow. A choice of an incremental value of 3 months for illustration

in Section 2.5 seems appropriate.

An obvious extension of the new proposal is to construct an optimal stratification

procedure for treatment selections based on data either from randomized clinical trials or

observational studies. In such a case, one needs to predict the treatment effect measured

by the difference of potential clinical outcomes of the patient under different treatments

rather than the outcome itself. Unfortunately, the L1 loss function utilized in this article

cannot be trivially generalized to deal with this important problem. Further research

on the choice of a clinically meaningful metric for quantifying the prediction error for

treatment selections is warranted.
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Abstract

Stratified medicine brings enormous potential and promise to deliver more effec-

tive therapy to targeted patient populations. In this article, we propose a systemat-

ic procedure to identify subpopulations with a minimal clinically important Successive

Average Treatment Effect (SATE) for treatment selection. First, we build a prediction mod-

el utilizing baseline information to create a predicted individual treatment effect scoring

system. One approach is to fit the data of each treatment group with a separate regression

model candidate relating the outcome to its baseline covariates in the training stage. We

then apply a constrained optimization algorithm via dynamic programming to catego-

rize the scores into subgroups. The performance of this stratification rule is immediately

evaluated using an independent dataset during the validation stage, and the results of

the prediction accuracy metric are used for model selection. Cross-validation process

is employed for the aforementioned steps when there is only one study dataset avail-

able. Lastly, we apply the selected model to obtain the final stratification scheme. The

evaluation of the scheme’s practicality and corresponding influential results are obtained

using a third independent holdout dataset to circumvent the problem of overfitting and

enhance reproducibility. We illustrate the proposal using an AIDS clinical trial study for

non-censored outcome, and a study on advanced heart failure patients for censored even-

t time outcome to identify subgroups with most beneficial prospect, wasteful, harmful,

and futile aspects. Our goal is to help bring stratified medicine one step closer to practical

applications.

KEY WORDS: Cox regression model; Cross-validation; Dynamic programming; Predict-

ed Individual Treatment Effect Score (PITES); Reproducibility; Stratified medicine; Suc-

cessive Average Treatment Effect (SATE); Treatment selection; Uplift modeling
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3.1 Introduction

One main goal of stratified medicine is to empower healthcare providers to provide

the right therapeutic intervention to the right person based on individual patient’s profile

instead of vastly one-size-fit-all paradiam approach (WHO, 2013; Trusheim et al., 2007;

Hingorani et al., 2013). This quest has become a key global effort to bring more effec-

tive and efficient treatment strategy to the patients in need (Medical Research Coun-

cil, January 29, 2015; The White House, January 30, 2015; Collins and Varmus, 2015).

For practical implementation of the personalized treatment strategy, reliable prediction

models, clinically meaningful categorization of some comprehensible summary measures

of individual treatment effect (ITE) to aid the decision-making process are vital elements

to bring stratified medicine to fruitful realization.

First, to build a prediction model on the ITE, one approach (Cai et al., 2010; Zhao

et al., 2013; Claggett et al., 2014) is to fit the data of each treatment group 1 or 2 (for con-

trol) with a regression model relating the outcome of interest to its baseline covariates to

derive an effect score in the training stage. Then the models can be applied to all patients

to predict the potential outcome score should that individual be treated by the alternative

treatment group j (j = 1 or 2). The difference in their predicted scores constitutes a Predict-

ed Individual Treatment Effect Score (PITES). Now, the question is how to utilize this in-

formation to identify subpopulations with differential treatment effect. Similar problems

emerged in business sectors and have been approached via uplift modeling (Radcliffe

and Surry, 1999; Lo, 2002). This subfield of machine learning aims at predicting the causal

effect of an action (treatment) such as a marketing action on individuals’ response (Sołtys

et al., 2014). Its difficulty lies in the fundamental problem of causal inference (Holland,

1986) as a subject’s observed outcome is only known after treatment or control is admin-

istered, and never both. The approach has been successfully applied to a wide range of

problems in business and government sectors including presidential election campaigns

(Porter, 2013; Siegel, 2013a) to identify pockets of customers with good prospect for tar-
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Table 3.1: Uplift modeling response concepts in stratified medicine.

geted marketing. Siegel (2013b) provides a thorough overview of uplift modeling, and

most recently Jaroszewicz et al. provides some rationale and examples that uplift model-

ing is a viable approach for selecting treatment in personalized medicine (Jaskowski and

Jaroszewicz, 2012; Jaroszewicz and Rzepakowski, 2014). However, the majority of the

methodology and tools deal with non-censored data and there has been some effort to

turn censored data into non-censored data for the analyses (Štajduhar and Dalbelo-Bašić,

2012; Jaroszewicz and Rzepakowski, 2014).

Adapting the uplift concept (Radcliffe and Surry, 1999; Siegel, 2013b) to our context,

Table 3.1 describes the four scenarios of a patient’s response to either an active treat-

ment or a placebo. Identifying more targeted subpopulation of patients for future treat-

ment recommendation such that they are more likely to fall in the beneficial quadrant in

Table 3.1 can potentially save resources and reduce unneccessary exposure of treatment-

related adverse effects. To illustrate the concept, we use the data from a cardiovascular

clinical trial “The Beta-blocker Evaluation of Survival Trial” (BEST) with censored out-

come variables. The BEST trial is a double-blind, placebo-controlled study (BEST, 2001)

of 2708 patients with advanced chronic heart failure enrolled to investigate whether the

addition of a beta-adrenergic-receptor antagonist bucindolol (Buc) to the conventional

therapy would improve survival (primary endpoint) or provide clinical benefit with re-
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spect to hospitalization, for instance. The study did not find any significant difference in

mortality between the two groups (unadjusted hazard ratio of 0.90 with p=0.10), but they

reported some survival benefit in nonblack patients (BEST, 2001). Data for 2707 patients

was available in our analyses.

To identify subpopulations that may have a survival benefit, we first build a predic-

tive ITE scoring system using the restricted mean event time (RMET) up to τ = 36 months,

which is an interpretable and clinically meaningful summary of the survival function of

a censored event outcome Y (Royston, 2009; Royston and Parmar, 2011; Zhao et al., 2013;

Tian et al., 2014). For illustration, let us consider a regression model for all-cause mor-

tality outcome Y truncated at τ = 36 and weighted by the inverse probability weight

(w, described in Section 3.4) accounting for the censoring distributions of each treatment

group. We consider five baseline covariates: NYHA (New York Heart Association func-

tional class IV vs Class III), ischemic, smokeever (vs. non-smoker), black (vs. nonblack),

and a continuous measure of estimated glomerular filtration rate (eGFR); and fit the entire

dataset with the two-model approach using a log link function. An estimate β̂j for βj (j =

1, 2) can be obtained via a regularized estimation procedure, for example, the least abso-

lute shrinkage and selection operator (lasso) (Tibshirani, 1996). The resulting individual

predicted RMET had a patient been treated by Bucindolol is (µ̂1):

exp(3.26−0.28 NYHA−0.10 ischemic+0.029 smokeever−0.062 black+0.0026 eGFR). (3.1)

The individual predicted RMET had a patient been treated by placebo is (µ̂2):

exp(3.21− 0.17 NYHA− 0.028 ischemic− 0.0057 smokeever + 0.0025 eGFR). (3.2)

The 2707 PITES is the difference between µ̂1 and µ̂2, which range from -4.4 to 3.9 with

a mean of 0.5 month. If the models are reasonably good, a future subject with a high

PITES tends to respond to the treatment gaining survival time when being followed up

to 36 months. For decision making and patient communication, it would be useful to

stratify patients into, for instance, four consecutive categories with roughly equal sizes
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by using the quartiles of the predicted scores. Estimating the empirical RMET using the

area under the Kaplan-Meier curve over [0, τ ], the treatment difference in the average

survival time for patients in these strata are -0.8, 0.7, 0.8, and 2.0 months, respectively.

The Successive Average Treatment Effect (SATE), defined as the difference in average

treatment effect between successive strata, are 1.5, 0.1, and 1.2 months. This conventional

ad hoc stratification scheme unfortunately does not have discriminatory capability across

all the strata. The small value in SATE between strata may not constitute a clinically

meaningful different decision category. This may be due to the inadequate prediction

models (3.1) and (3.2) or an improper grouping of the prediction scores.

The authors proposed a systematic procedure to tackle the above undesirable situa-

tions in single treatment case (Yong et al., 2014). We extend their approach to treatment

selection problems in stratified medicine. Specifically, in Section 3.2, we demonstrate

how to obtain an optimal grouping scheme that satisfies certain clinically meaningful

criteria for each candidate PITES scoring system created from regression models using

the data from an AIDS clinical study for non-censored outcome. Here, with the PITES

generated from working models (3.1) and (3.2), we consider all possible discretization

schemes, whose minimum stratum sizes would be at least 2.5% of the entire study sample

size (n0=68) and any two consecutive stratum-specific treatment difference in empirical

RMET are monotonically increasing with an incremental value of at least 3 months to

ensure a discrimination capability for future population. We then choose the best strati-

fication, which minimizes a certain overall prediction error (3.12) among all the possible

stratification schemes with such desirable features. Dynamic programming techniques

are utilized to solve this nontrival optimization problem. With the data from the BEST

mortality example and models (3.1) and (3.2), this results in three categories with the

average treatment difference of -6.6, 0.5, and 5.0 months, respectively. Thus the SATE be-

tween neighboring strata are 7.1, and 4.5 months. Figure 3.1 displays their Kaplan-Meier

estimates of the survival function. Note that if the working models (3.1) and (3.2) are

appropriate, and the patients in each stratum are comparable, future patients classified
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to the stratum 3 will fall into the beneficial quadrant in Table 3.1 and should be our target

population for this potentially life-saving treatment. However, patients classified to the

stratum 1 and stratum 2 respectively belong to the harmful quadrant, and the wasteful

and futile quadrants. No such treatment should be recommended to avoid superflu-

ous exposure to adverse effects and save resources; alternative treatment could be seeked.

Figure 3.1: The stratum-specific Kaplan-Meier estimates for the time to death. Stratum obtained
by a dynamic programming stratification algorithm on a candidate model scoring system derived
from the entire BEST study data.

In Section 3.3, we aim at selecting the best model among a collection of candidate

scoring systems by utilizing the method in Section 3.2 to obtain the optimal stratification

for each scoring system. To avert the problem of overfitting, an independent validation

dataset is used to evaluate all the resulting stratification schemes with respect to an em-

pirical estimate of SATE and a prediction error measure quantifying the within-stratum

heterogeneity. Once a prediction procedure is selected, a third independent dataset can be

used to make inferences and assess the reproducibility of this scheme. If the data are from

a single study with a moderate size, one may combine the model building and evaluation
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processes via a cross-validation procedure. In Section 3.4, we generalize the proposal to

handle censored event time outcomes and continue to illustrate the proposal using the

BEST study data in Section 3.5. We conclude with remarks and potential generalizations

in Section 3.6.

3.2 An optimal stratification procedure for an individual
treatment effect scoring system

The authors showed how to obtain an optimal grouping scheme from a working mod-

el in the single treatment case (Yong et al., 2014). We now extend the procedure to the two

treatment case for non-censored outcomes in randomized trial settings utilizing dynamic

programing, supervised-learning approaches, and the uplift modeling concept that sub-

jects in a well-constructed stratum are comparable. Let Y1 and Y2 be the outcome variables

of treatment group 1 and control group 2 respectively, with V1 and V2 be the correspond-

ing vector of “baseline” covariates. We can use a working model relating Yj to Zj , a func-

tion of Vj , to estimate the conditional mean response µj(Vj) = E(Yj|Vj), where the group

index j = 1 or 2. For example, µj(Vj) = gj(β
′
jZj), where gj(·) is a given smooth monotone

function. Let the data consist of nj independent copies {(Yij, Vij, Zij), i = 1, · · · , nj} of

(Yj, Vj, Zj) for each group j=1, 2. An estimate β̂j for βj can be obtained via different vari-

able selection procedures. If the regression model is a reasonable approximation to the

true one, the resulting estimator µ̂j(Vj) = gj(β̂
′
jZj) would be close to µj(Vj). Thus for an

individual with baseline covariates V , we can predict the individual treatment effect by

the difference in the two conditional means, ν(µ1, µ2, V ) = g1(β̂′1Z)− g2(β̂′2Z). This ν(·) is

the Predicted Individual Treatment Effect Score (PITES), and a large PITES indicates that

a large treatment effect on the individual’s outcome is expected.

To illustrate the procedure for non-censored outcome, we utilize the data from a ran-

domized, double-blind, placebo-controlled clinical trial (ACTG 320) for treating HIV-

infected patients (Hammer et al., 1997). This study successfully demonstrated the overall
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efficacy of a combination of two nucleoside regimen with a protease inhibitor Indinavir,

and the combination treatment concept has since been well adopted for the current HIV

patient’s management. However, this particular combination therapy may not work well

for all patients from risk-cost-benefit perspectives, alternative treatment option may be

recommended if the clinical benefit is not high enough. For this study, one of the end-

points was a binary outcome Yj, indicating whether the patient’s HIV-RNA viral level in

group j was under an assay detectable level (500 copies/mL) at week 24 or not. A non-

responder to the treatment was defined as the RNA level being above 500 copies/mL at

week 24 or an informative dropout before week 24 due to treatment failure. Complete

baseline RNA information in terms of the log10 of HIV-RNA copies/ml (log10 RNA) are

available for 1080 patients (537 treated vs 543 placebo). Other baseline variables available

are age, male (vs female), race (non-Hispanic White, African American, other), injection-

drug use, hemophilia, CD4 count (CD4), CD8 count, weight, Karnofsky performance s-

core, and months of prior zidovudine therapy. Any missing covariates (very few) are

replaced by their corresponding sample averages from the observed counterparts. The

numerical RNA level is used and all log10 RNA measures below log10(500) are replaced

by 0.5 log10(500) = 1.35 in our analysis. A total of 242 subjects (of those 48% in treatment

group) do not have RNA values at week 24 and their outcomes are treated as a failure.

The observed overall difference in response rates between the two treatment groups is

0.39 (95% CI 0.34-0.44).

To build a predictive individual treatment effect scoring system, one may use a logistic

model to estimate µ̂j(·) for each treatment group and then obtain ν̂(·). Here, the regression

parameter estimate β̂j is obtained by minimizing the loss function

− log{L(βj)}+ λ1‖βj‖pp + λ2‖βj‖qq, (3.3)

where L(βj) is the likelihood function, λ1 and λ2 are the tuning (penalty) parameters,

‖βj‖rr (r = p or q) is the rth power of the Lr norm for the vector βj . When λ2 = 0, the (3.3)

results in the standard lasso and ridge regression with p = 1 and 2, respectively. When

p = 1 and q = 2, the (3.3) results in the elastic-net regularizaton paths (Zou and Hastie,
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2005). In this article, we consider an “elastic-net” candidate model with both λs’ equal

to 0.5. For each candidate model formulation, a PITES can be obtained for each subject,

leading to a candidate PITES scoring system.

To identify subgroups with different treatment responses, we aim at grouping the

subjects into K consecutive strata S1, S2, · · · , SK based on the PITES ν(·) and their ac-

tual responses such that a minimum clinically meaningful treatment effect increment d is

achieved between successive strata with respect to the stratum-specific mean difference

in treatment responses. Let Ȳ1k =
∑

i∈Sk
Yi1/n1k and Ȳ2k =

∑
i′∈Sk

Yi′2/n2k be the kth s-

tratum’s empirical mean of outcome Yi1’s and Yi′2’s in group 1 and 2 with stratum size

n1k and n2k respectively, k = 1, · · · , K. For a future subject in group j (j = 1 or 2) being

classified into the kth stratum, we first predict the individual’s treatment effect with the

aforementioned model based score ν(·). If the predictive model is adequate and the strati-

fication is grouping “response-alike” subjects successfully, the individual treatment effect

(ITE) response can also be non-parametrically estimated as the corresponding stratum-

specific treatment difference δk = Ȳ1k− Ȳ2k. One may consider the following loss function

to evaluate the performance of this stratification:

L =
1

n

K∑
k=1

{n1k + n2k

n1k ∗ n2k

}
∑
i,i′∈Sk

|(Yi1 − Yi′2)− δk|, (3.4)

where n =
∑K

k=1(n1k + n2k) is the total number of observations. This loss function con-

siders all possible pairwise treatment differences and quantifies their average difference

from the corresponding stratum-specific treatment effect reflecting within stratum varia-

tion.

To increase the prediction precision while ensuring stable subgroups, one may group

the subjects with a minimal stratum size of at least a certain fraction p0 of the total sample

size n leading to n0. Furthermore, to make sure each stratum has a reasonable repre-

sentation of each treatment group, one may impose a constraint that the minimum of

the two treatment group sizes in each stratum to be at least m. Finally, to ensure that

the stratification scheme has a clinically meaningful discriminatory capability, namely,
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yielding meaningful differences in group-specific average treatment differences between

subgroups, we further impose a constraint for all candidate stratification schemes such

that

δk − δk−1 ≥ d; for k = 2, · · · , K, (3.5)

where d is a pre-specified positive value, representing the minimum clinically meaningful

Successive Average Treatment Effect (SATE) that may warrant a different decision.

An optimal stratification scheme would minimize (3.4) while satisfying the afore-

mentioned constraints. There could be an enormous number of possible stratification

schemes and the problem of finding the optimal solution numerically is rather challeng-

ing. In Appendix A.1, the authors show how to identify the boundary values of the op-

timal stratification scheme ĉ = {ĉ0, ĉ1, · · · , ĉK−1, ĉK} of the K consecutive strata, where

Sk = {i | ĉk−1 < ν̂(Vi) ≤ ĉk, i = 1, · · · , n} for k = 1, 2, · · · , K; ĉ0 = −∞ and ĉK = ∞.

Extended from the single treatment methodology developed in Yong et al. (2014), we pro-

pose a solution via dynamic programming algorithm (see examples in Taha (2003)). The

concept is illustrated through a simple hypothetical example in the Appendix A.3. Specif-

ically, the additional complexity of handling two treatment cases lies upon the determi-

nation of all possible groupings that satisfy the constraints. The Dynamic Programming

Stratification (DPS) algorithm can be run more efficiently if the dimension of stratification

operation can be reduced, for instance, by pregrouping subjects with very similar scores

numerically and/or clinically to control for oversplitting. For the HIV study example,

patients with an PITES of 0.1731 can be pregrouped with those with 0.1734 for a d of 0.1.

Note that we use L1 norm (3.4) to evaluate the prediction error because of its more in-

terpretable quality. Other measures such as L2 norm can be used instead without added

difficulty.
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3.3 Selecting an optimal stratification scheme from a col-
lection of competing PITES systems

To circumvent the problem of overfitting and enhance reproducibility in prediction

models, Figure 3.2 summarizes the data-splitting approach and objectives as present-

ed in Yong et al. (2013, 2014) when there are data from a single study only. Consider

any collection of candidate PITES systems generated from the Part Ia training data, we

show how to evaluate them and choose the “best” one in this section. Let the valida-

tion data from Part Ib be denoted by n∗ independent identically distributed observations

{(Y ∗i , V ∗i , Z∗i ), i = 1, · · · , n∗}, where a generic variable “A∗” is defined as “A” in Section 3.2.

For each candidate scoring system, we obtain its optimal stratification scheme from the

Part Ia training data with boundary points ĉ = {ĉ0, ĉ1, · · · , ĉK} and the stratum-specific

treatment difference {δk = Ȳ1k − Ȳ2k; k = 1, · · · , K}. To evaluate the predictive perfor-

mance of this stratification scheme with the data from Part Ib, we consider the following

loss function that captures the incosistency between training and validation samples, and

reflects the deviation of pairwise difference from the stratum-specific treatment differ-

ences:

L∗ =
1

n∗

K∑
k=1

{n
∗
1k + n∗2k
n∗1k ∗ n∗2k

}
∑
i,i′∈S∗k

|(Y ∗i1 − Y ∗i′2)− δk|, (3.6)

where the PITES is ν(V ∗i ) = g1(β̂′1Z
∗
i ) − g2(β̂′2Z

∗
i ) for the two-model approach; β̂j(j =

1, 2) and δk are derived from the Part Ia training data. The kth stratum S∗k contains Part Ib

observations such that their scores ν(V ∗i ) ∈ (ĉk−1, ĉk], for k = 1, . . . , K. To obtain a more

stable (3.6), Monte-Carlo cross-validation (MCCV) method is employed. Specifically, s-

tratified by treatment assignment, we randomly split Part I dataset into Ia and Ib, say,

N times, as shown in Figure 3.2. For the rth split, we repeat the above model building

and evaluation procedure for each candidate model and obtain L∗r from (3.6). We then

compute the average, L̄∗ = N−1
∑N

r=1 L∗r.

Given a stratification scheme obtained from a training sample that satisfies our pre-
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Model Testing, statistical inference 

Conduct inference, data not involved in any 

training process, best suited for testing 

 

 

 
 

 Part Ia 
 𝑇𝑟𝑎𝑖𝑛, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 

 Part Ib 
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒, 𝑠𝑒𝑙𝑒𝑐𝑡 

 Part II 
 

𝑯𝒐𝒍𝒅𝒐𝒖𝒕  
𝑰𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 

Model Building from Part Ia training data 

For each candidate model selection method,  

build a model & apply MCCV to find the 

predictive measure of interest (e.g, L1 loss) 

   

Model Selection from Part Ib validation data 

Identify “optimal” model selection method(s) 

that gives the best predictive measure(s) with 

reasonable model size 

Figure 3.2: 3-in-1 dataset modeling scheme. A dataset is randomly partitioned into Part I and Part
II for modeling building and selection, and statistical inference.
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specified constraints, we can also evaluate how well the scheme performs empirically

with respect to the Successive Average Treatment Effect (SATE) between neighboring s-

trata in a new sample. To this end, we define a weighted SATE measure W to be the

weighted average of the empirical SATE estimates dk:

W =

{
0, if K = 1, since there is zero successive difference in one stratum∑K

k=2wkdk if K ≥ 2

(3.7)

where

w = (w2, · · · , wK) =


1 if K = 2

1∑3
k=1 nk

(n1 + n2

2
, n2

2
+ n3) if K = 3

1∑K
k=1 nk

(n1 + n2

2
, n2

2
+ n3

2
, · · · , nK−1

2
+ nK) if K ≥ 4

dk = δk − δk−1

Note that
∑K

k=2 wk = 1 and the kth stratum size is nk = n1k + n2k, for k = 1, · · · , K.

Let us denote the W obtained from the training and validation data by Wtrain and Wval

respectively.

Lastly, the “best” model should not only have a small L∗ in (3.6), big W in (3.7), but

also a parsimonious attribute for pragmatic application. Hence we refit the entire Part I

data for each treatment group and let the final realized models be denoted by M∗
1 and

M∗
2. These measures reflect the model complexity of each candidate scoring system. The

selection of an “optimal” stratification rule would be based on the mean values of L∗

(L̄∗),W derived from the validation data during the N MCCVs (W̄val), andM∗
js’. Confi-

dence interval estimates for the stratum-specific treatment differences can be constructed

using the data from Part II holdout data based on the selected “optimal” stratification

rule.

We now use the HIV study data to elucidate our proposal. First, we randomly split

the entire dataset of 1080 patients evenly by treatment group to compile Part I (269 pa-

tients on treatment) and Part II holdout data (268 patients on treatment) with sizes of

540 each. A total of N = 200 MCCVs with 270 observations each in Part Ia and Part
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Table 3.2: Study ACTG 320 regression model candidates, E(Yj |V ) = β′jZ, where j = 1 for treat-
ment and j = 2 for control group; the complexities ofM∗j (‖β̂j‖0 = the number of nonzero com-
ponents of β̂j), and the mean values of L∗,Wtrain, andWval derived from 200 CV runs are shown.

Model Candidate independent dim M∗1 M∗2 Results from 200 CV
ID variables at baseline (Z) #var ‖β̂1‖0 #var ‖β̂2‖0 L̄∗ W̄train W̄val

1 age,sex,CD4,log10RNA 4 4 4 4 4 0.495 0.208 0.072
2 all baseline covariates 77 10 10 11 11 0.501 0.239 0.022
3 plus their first-order 77 12 75 12 75 0.496 0.424 0.030
4 interaction terms 77 12 28 12 25 0.494 0.317 0.037
5 none 0 0 0 0 0 0.516 0 0

Ib for every cross-validation is used to find the “optimal” model among several candi-

date PITES scoring systems. For illustration, we consider five working models in which

the first one is the simple logistic regression model with four baseline variables. The

second, third, and fourth models with all baseline covariates and their first-order interac-

tion terms are logistic regression models using lasso, ridge, and elastic-net regularization

methods respectively. Their tuning parameters fitted with are selected via a 10-fold cross-

validation procedure built in theR package glmnet (Friedman et al., 2010). The fifth mod-

el is a null model using the overall mean treatment and control response proportions in

Part Ia to predict the future outcomes for each cross-validation run. Table 3.2 summarizes

the model candidate form, the complexity of the correspondingM∗
j (j = 1, 2) with respect

to the number of informative baseline covariates (#var) needed to compute the score ν(·),

and the number of nonzero regression coefficients in β̂j . The W̄train, L̄∗ and W̄val are the

averages of the 200 corresponding measures derived from the Part Ia training and Part Ib

validation data respectively during the CV process. For all stratification schemes, we use

the SATE value d of 0.1 (or 10%) and the minimum stratum proportion of 0.1 (or n0 = 54)

to enhance the stability of the estimates.

From Table 3.2, Models 1, 3, and 4 have similar L̄∗ values. However, Model 1 is a

simpler model involving fewer baseline covariates as reflected by M∗
1 and M∗

2. It also

has the highest W̄val of 0.072, and thus is our selected model to proceed. Based on 200
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CVs, with at least 50% of the chance, Model 1 selects 3 strata and Models 2-4 select 3 or

4 strata. More complex model candidates appear to fit the training data better attaining

higher W̄train values which are expected to be at least 0.1 according to our pre-specified

constraint. However, when the training stratification schemes are applied to the Part

Ib validation data, the 0.1 differences between strata may not hold. Overfitting in the

training data and the relatively small sample sizes may contribute to this phenomenon.

We fit Model 1 to the entire Part I data for each treatment group to obtain the following

models: had the subject been treated with the three drug combination, the response rate

is:

ψ(−0.0233 + 0.0373 age + 0.370 male− 0.443 log10 RNA0 + 0.00212 CD40); (3.8)

had the subject been treated by placebo, a two-drug combination, the response rate is:

ψ(−16.424 + 0.010 age + 16.696 male− 0.672 log10 RNA0 − 0.00192 CD40), (3.9)

where ψ(s) = {1 + exp(−s)}−1 is the anti-logit function.

The PITES ν(·) is the difference in the individual predicted response rates generat-

ed by (3.8) and (3.9). Applying our DPS algorithm to these ν(·) scores in Part I data, a

stratification scheme with ĉ = (ĉ1, ĉ2, ĉ3) = (0.262, 0.327, 0.524) gives rise to four strata with

sizes 63, 119, 302, and 56. The stratum-specific treatment difference δks’ are 16.5%, 27.4%,

40.4%, and 64.6% for k = 1, 2, 3, and 4. These point estimates may be biased due to the

extensive model training, validation, and selection. To obtain valid inferences for this fi-

nal prediction procedure and stratification scheme, we fit models (3.8) and (3.9) using Part

II holdout data to generate PITES, and then group the subjects by ĉ. The resulting point

and 0.95 confidence interval estimates based on 1000 bootstrap samples for the four stra-

tum treatment differences δk, k = 1, . . . , 4, are 4.0% (0.0%, 13.6%), 34.7% (19.9%, 48.9%),

42.1% (34.1%, 50.9%) and 61.7% (39.7%, 81.0%), with stratum size nk = 49, 114, 333, and

44 respectively as displayed in the top panel of Figure 3.3. The three SATE point esti-

mates dk = δk − δk−1 for k = 2, 3, 4, and the corresponding 95% bootstrap confidence
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intervals are 30.7% (13.1%, 47.9%), 7.4% (-9.6%, 24.1%), 19.6% (-3.5%, 40.8%) as shown in

the bottom panel. The L andW derived from Part II data are 0.48 and 16.7% respective-

ly. Table 3.3 summarizes the baseline characteristics of the four strata obtained from this

final stratification scheme. To examine whether there is any imbalance between the treat-

ment groups within each strata, Fisher’s exact test and chi-square test are performed for

treatment comparison association for categorical variables depending on the sample size.

For continuous variables, Wilcoxon rank-sum test is performed. There is no statistically

significant difference between the treatment groups within each stratum at α = .05 level

of significance. The results suggest that future patients classified into Stratum 1 may con-

sider alternative treatment options, while the Stratum 4 patients are more likely to receive

higher than average treatment benefit.

Figure 3.3: ACTG 320 Part II data: Stratum-specific point estimates and 95% confidence intervals
for the treatment difference in response rates δk, k = 1, . . . , 4 (top panel) and for the empirical
Successive Average Treatment Effect dk, k = 2, 3, 4 (bottom panel).
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3.4 Generalization to cases with event time as the outcome
variable

We extend the proposal to handle censored outcome in this section. Let Tij be

the time to an event of interest for the ith subject in the jth treatment group G1,

where i = 1, . . . , nj; j = 1 for treatment group 1 and j = 2 for control group G2.

The restricted mean event time (RMET) is a clinically meaningful summary measure

to describe the event profile, and will be used as the scores to evaluate the treat-

ment differences for subjects being followed up to a pre-specified time point τ . Let

Yij = TijI(Tij ≤ τ) + τI(Tij > τ), then the average event-free time for subjects in group j

with covariate Vij is µj(Vij) = E(Yij|Vij) =
∫ τ

0
Sj(t|Vij)dt, where Sj(t|Vij) = pr(Tij > t | Vij).

Suppose the outcome Tij (and Yij) is right censored by an independent random variable

Cij, one can still observe (Xij, Vij,∆ij), where Xij = min(Tij, Cij) and ∆ij is one if

Xij = Tij indicating the event is met, and zero otherwise for censored outcome Tij > Cij .

The observed data now consist of nj independent copies {(Xij, Vij,∆ij), i = 1, · · · , nj} of

(Xj, Vj,∆j) for each group j = 1, 2.

To obtain the ν(·) based on the difference between µ1(·) and µ2(·), we need to formulate

how to estimate µj(Vj). Extensive studies (Zucker, 1998; Andersen et al., 2004; Tian et al.,

2014) have been conducted and we will present three major approaches to create our

candidate PITES scoring systems. First, as summarized in Yong et al. (2014), one may use

the Cox (1972) procedure to model the relationship between the survival function Sj(t|Vj)

of the event time and its covariates Vj for each treatment group j:

log{− logSj(t|Vj)} = log{− logS0j(t)}+ β′jZj,

where S0j(·) is an unknown baseline survival function, and βj is the regression coefficient

vector. A regularized estimate β̂j of βj can be obtained by minimizing a loss function sim-

ilar to (3.3), with L(βj) being the partial likelihood function instead. The S0j(t) can then

be estimated by exp{−Λ̂0j(t)}, where Λ̂0j(t) is the Breslow estimate for the underlying
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cumulative hazard function (Breslow, 1972). It follows that the RMET for subjects with

the covariate V can be estimated as

µ̂j(V ) =

∫ τ

0

exp{−Λ̂0j(t)e
β̂j
′
Z}dt. (3.10)

For the second and third approaches, we use an approach similar to the accelerated

failure time model and adopt Tian et al. (2014)’s proposal to estimate the RMET via direct

modeling with the baseline covariates instead of channeling through the hazard function

for each treatment group j:

µ̂j(V ) = η−1{β̂′jZ}, (3.11)

where η(·) is a given smooth and strictly increasing link function and Z ′ = (1, V ′). We

employ the identity link η(v) = v and the log link η(v) = log(v) functions to create some

of our candidate PITES scoring systems. Notice that (3.11) can exceed τ for an individual

with covariates V because of model misspecification; here our focus is on the ranking of

ν(·) derived from the difference between µ̂1 and µ̂2.

To obtain an optimal stratification scheme using the DPS algorithm in Section 3.3 given

a scoring system, we desire to minimize the prediction error estimated by the L1 loss in

a measure of differential event time difference (Yi1 − Yi′2) from its average empirical esti-

mate, accounting for the group censoring distribution. Let δk = Ȳ1k− Ȳ2k be the difference

in the two consistent estimators Ȳ1k and Ȳ2k for the kth stratum-specific RMET in treatment

group and control group, respectively. The two estimators are the weighted average of

the event times defined as:

Ȳ1k =

∑
i∈Sk

wi1Yi1∑
i∈Sk

wi1
, and Ȳ2k =

∑
i′∈Sk

wi′2Yi′2∑
i′∈Sk

wi′2

where wi1 = {∆i1 + (1 − ∆i1)I(Ti1 ≥ τ)}/Ĝ1(Yi1) and wi′2 = {∆i′2 + (1 − ∆i′2)I(Ti′2 ≥

τ)}/Ĝ2(Yi′2); Ĝj(·) is the Kaplan-Meier estimate for the jth group’s censoring distribution

derived from the Part I data, j = 1, 2. For a stratification scheme with K strata with the

kth stratum Sk comprising of n1k and n2k observations from treatment group 1 and control

group 2 respectively, where k = 1, · · · , K, the effective kth stratum size for each group can
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be estimated by m1k =
∑

i∈Sk
wi1 and m2k =

∑
i′∈Sk

wi′2 accounting for the censoring

distribution. Similar to (3.4), we want to minimize the following loss function:

L =
1

n

K∑
k=1

(m1k +m2k)

(m1k ∗m2k)

∑
i,i′∈Sk

wi1 ∗ wi′2 ∗ |(Yi1 − Yi′2)− δk| (3.12)

If we have a collection of competing scoring systems, one can evaluate each candidate

stratification scheme via the cross-validation using the data from Part Ia and Ib iteratively.

In particular, once a stratification scheme with boundary values (ĉ0, ĉ1, · · · , ĉK) leading to

the stratum-specific treatment difference estimates δk (k = 1, · · · , K) is derived from Part

Ia data, we can assess the predictive performance of this stratification scheme using Part

Ib validation data {(X∗ij, V ∗ij ,∆∗ij) and the derived ν(V ∗ij); i = 1, · · · , n∗; j = 1, 2}. First, we

identify the stratum membership of each Part Ib observation by finding its corresponding

stratum S∗k such that ν(V ∗ij) ∈ (ĉk−1, ĉk],∃k ∈ {1, · · · , K}. Then the following loss function

can be estimated:

L∗ =
1

n∗

K∑
k=1

(m∗1k +m∗2k)

(m∗1k ∗m∗2k)
∑
i,i′∈S∗k

w∗i1 ∗ w∗i′2 ∗ |(Y ∗i1 − Y ∗i′2)− δk| (3.13)

where n∗ =
∑K

k=1(n∗1k + n∗2k) is the total number of observations in Part Ib data.

An alternative way to estimate RMET consistently is by the area under the Kaplan-

Meier (KM) curve over [0, τ ]. Let Rjk be these empirical measures derived from group

j in stratum k. We impose an additional constraint (3.14) other than those described in

Section 3.2 to account for the difference in estimated RMET based on the inverse proba-

bility weight measures w due to small sample sizes and the within-stratum variation in w

estimates.

[R1k −R2k]− [R1(k−1) −R2(k−1)] ≥ d (3.14)

An appealing feature of this constraint is to make sure that the graphical display using

KM curves is coherent with our stratification results, especially when the sample size is

small. Lastly, one can impose another constraint to control the minimum observed event
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rate in each stratum to be at least 0.05 (say), such that there is minimal information to

generate strata with higher quality and stability. An optimal stratification can then be

obtained via the dynamic programming technique as described in Section 3.2 and the

Appendix A.1 of Yong et al. (2014). For evaluation, the empirical estimate of weighted

SATEW will be based on the treatment difference derived from the KM estimated RMET

Rjk in the next section.

3.5 An illustrative example with censored event time out-
comes

We use the BEST study on advanced chronic heart failure patients described in Section

3.1 to illustrate the proposal with another event time outcome variable. Clinical benefit

may be defined by a combination of mortality and morbidity. Here we consider the event

time as the time to a composite of all-cause mortality or hospitalization because of heart

failure, whichever occurred first. There were 1420 patients (660 treated vs 760 placebo)

experienced this composite event with an average follow-up time of 2 years. If we let

τ = 36 (months), the KM estimated RMETs for the entire treatment group and control

group are 23.2 and 21.2 months, respectively. This suggests that patients treated with

Bucindolol expect to have an average of 23.2 months heart failure hospitalization event-

free survival when they are being followed for up to 36 months, compared with 21.2

months in placebo group. Fitting the inverse-probability weighted regression models

with a log link using the five baseline covariates as in Section 3.1 and (3.11) to the entire

data and then stratify the PITES using our algorithm with d = 3 months and n0 = 68

(or p0 =.05 of Part I data) gives rise to four strata depicted in Figure 3.4. The estimated

treatment differences in RMETs for the four strata are -0.9, 2.3, 6.8, and 10.1 months with

a SATE estimate of 3.2, 4.5, and 3.3 months respectively. The L and weighted SATEW are

14.9 and 3.6 respectively. However, we do not know whether this stratification scheme
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Figure 3.4: The stratum-specific Kaplan-Meier estimates for the time to death or hospitalization
due to heart failure. Stratum obtained by DPS algorithm on a candidate model scoring system
derived from the entire BEST study data.

can be improved.

To select the best performing model from a collection of candidate working models,

we consider the candidate variables as described in Table 3.4. The null model does not

contain any variables and serves as a background reference model. The other 14 candi-

date PITES ν(·) scoring systems are generated by the three aforementioned approaches,

with the µ̂j estimated via (3.10) for Cox PH models, or via (3.11) for the identity link and

log link models. For candidate independent variables, other than the five baseline vari-

ables described in Section 3.1, we consider the following baseline covariates for predic-

tion: age, male (vs female), body mass index >30, current smoker (smokecurrent), history

of hypertension (hx_hyp), history of diabetes (diab), ischemic as the cause of heart fail-

ure, atrial fibrillation (afib), left ventricular ejection fraction (lvef), systolic blood pressure

(sbp), heart rate, and estimated glomerular filtration rate as a 4-category discretized ver-

sion represented by 3 indicator variables eGFR1, eGFR2 and eGFR3 with cut-points of 45,
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60, and 75.

Table 3.4: Study BEST regression model candidates description

Model Model Description dim(Z)
ID Candidate independent variables Link function;

at baseline variable selection procedure
1 eGFR, NYHA, smokeever, ischemic, black identity link; Lasso 5
2 eGFR, NYHA, smokeever, ischemic, black log link; Lasso 5
3 eGFR, NYHA, smokeever, ischemic, black Cox PH; Lasso 5
4 main effects: identity link; Lasso 18
5 age, male, black, lvef, sbp, log link; Lasso 18
6 heart_rate, NYHA, smokecurrent, Cox PH ; Lasso 18
7 smokeever, hx_hyp, diab, Bagged ensemble∗ of 100 model 4 18
8 ischemic, afib, bmi>30, Bagged ensemble∗ of 100 model 5 18
9 eGFR, eGFR1, eGFR2, eGFR3 Bagged ensemble∗ of 100 model 6 18

10 all baseline covariates plus identity link; Lasso 150
11 their first-order log link; Lasso 150
12 interaction terms Cox PH; Lasso 150
13 Cox PH; Ridge penality 150
14 Cox PH; Elastic-net penality 150
15 None NA 0
*mean of a bagged ensemble of 100 models
Model 4 to 9 use the same set of variables listed; same for Model 10 to 14

We randomly split the data evenly into Parts I and II with 1353 and 1354 patients

each. Moreover, the Part I data are evenly split for the cross-validation process with 200

iterations. For each regression model candidate, we use a SATE value of d = 3 months

and the minimum stratum fraction of p0 = 0.05 (or n0 = 68) during the CV training and

validation process. Figure 3.5 depicts the distribution ofW measures derived from Part

Ia training (Wtrain) and Part 1b validation (Wval) data during the CV process. Notice that

Wval values are generally smaller than the Wtrain values, indicating that over-training

may lead to more irreproducible results. Table 3.5 summarizes the L̄∗ for the optimal

stratification of each candidate PITES scoring system, and the W̄train and W̄val obtained

during the 200 CVs. The numbers of informative baseline covariates used in computing

the estimated treatment difference scores and nonzero regression coefficients of β̂j for

M∗
j (j = 1, 2) are also shown. Model 1 is an inverse-probability-weighted regression model
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Figure 3.5: The weighted Successive Average Treatment Effects (weighted SATE) obtained from
200 cross-validations. The left and right panel respectively depict the results derived from part Ia
training data and part Ib validation data.

on truncated Y at τ = 36 with the identity link. It has the smallest L̄∗ and similar W̄val of

2.6 as Model 2, and is our selected model to proceed. The final working models used to

generate individual predicted RMET score had a patient been treated by Bucindolol is

(µ̂1):
11.36− 7.41 NYHA− 2.79 ischemic + 3.55 smokeever − 2.01 black + 0.16 eGFR. (3.15)

The individual predicted RMET score had a patient been treated by placebo is (µ̂2):
17.44− 3.27 NYHA− 1.77 ischemic− 0.73 smokeever − 2.90 black + 0.08 eGFR. (3.16)

The PITES derived from µ̂2 - µ̂1 has a mean of 1.6 month and a range from -9.6 to 15.1

months in Part I dataset. Stratified the PITES by our DPS algorithm, three strata with

cutoff points ĉ1 = -3.7 and ĉ2 = 5.1 months are obtained. To make inferences about the

prediction of this selected final stratification scheme, we apply models (3.15) and (3.16) to

the Part II holdout data. The mean estimated ITE scores is 1.7 month with a range from

-9.5 to 17.5 months. Table 3.6 summarizes the stratum-specific treatment effects and the

estimated successive average treatment effects dk in Part I training data and that of Part

II holdout data. The corresponding KM curves for the three strata with n∗k = 61, 1096,
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and 197 for k = 1, 2, and 3 respectively are given in Figure 3.6. Applying the stratification

scheme of (ĉ1, ĉ2) = (-3.7, 5.1), models (5.1) and (5.2) to 1000 bootstrap holdout samples,

the point estimates and 0.95 confidence intervals for the SATE are 2.7 (-4.6, 10.7), and 4.2

(0.3, 8.4) months. The L andW derived from the Part II data are 15.1 and 3.5 respectively.

The baseline characteristics for the patients are shown in Table 3.7 by stratum and treat-

ment. There is no significant difference in the characteristics shown between treatment

and placebo groups within each stratum. However, across strata, Stratum 3 appears to

have more males, more blacks, more obese as indicated by BMI>30, and much younger

patients (a mean age of 49 vs around 70 years old in Stratum 1) with a very high percent-

age of ever smokers. There are almost no NYHA class IV classification in Stratum 3, and

their kidney functions are fairly normal with a mean eGFR of around 108 vs around 37 for

the older patients in Stratum 1 or 61 in Stratum 2. These results suggest a reasonable dif-

ferentiation between Stratum 2 and Stratum 3. In particular, future patients with similar

scores and characteristics as Stratum 3 patients fall into the “Should-Treat” quadrant in

Table 3.1, such treatment are more likely to yield beneficial clinical benefit defined above

in this target subpopulation.
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Figure 3.6: Stratum-specific Kaplan-Meier estimates obtained from Part II data of BEST study with
ĉ1 = −3.7 and ĉ2 = 5.1.

Table 3.5: Study BEST regression model candidates, the complexities ofM∗j (‖β̂j‖0 = the number
of nonzero components of β̂j for j = 1, 2); and the results from 200 CV runs including L̄∗, L̄∗∗ and
mean values of weighted SATE derived from Part Ia data (W̄train) and Part Ib data (W̄val).

Model Treatment modelM∗1 Control modelM∗2 Results from 200 CV
ID # covariates ‖β̂1‖0 # covariates ‖β̂2‖0 L̄∗ W̄train W̄val

1 5 5 5 5 15.59 4.42 2.59
2 5 5 1 1 15.62 4.71 2.60
3 5 5 5 5 15.60 4.75 1.53
4 16 16 5 5 16.05 5.44 1.92
5 15 15 5 5 16.02 5.43 2.02
6 15 15 12 12 15.99 5.97 1.03
7 18 18 18 18 16.27 5.89 1.73
8 18 18 18 18 16.25 5.95 1.90
9 18 18 18 18 16.14 6.51 0.90

10 16 16 17 22 16.24 5.95 1.47
11 17 17 14 15 16.20 5.61 1.43
12 15 16 16 17 16.17 7.19 0.57
13 18 150 18 150 18.10 10.48 -0.15
14 18 40 18 41 16.75 8.94 0.14
15 0 0 0 0 15.90 0 0
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Table 3.6: Stratification results of Model 1, the empirical Kaplan-Meier estimated RMET for each
strata, the corresponding treatment difference, and the estimated SATE values.

Data Stratum k 1 2 3
Part I Treatment µ̂1k (#event/n1k) 12.4 (31/40) 21.8 (287/547) 30.8 (22/90)
(Training) Control µ̂2k (#event/n2k) 14.2 (35/48) 20.4 (306/535) 24.0 (43/93)

δk = µ̂1k − µ̂2k -1.8 1.4 6.8
dk = δk − δk−1 NA 3.2 5.4

Part II Treatment µ̂1k (#event/n∗1k) 18.6 (21/36) 23.4 (267/535) 29.0 (32/106)
(holdout) Control µ̂2k (#event/n∗2k) 19.7 (15/25) 21.8 (319/561) 23.2 (42/91)

δk = µ̂1k − µ̂2k -1.1 1.6 5.8
95% Confidence Interval for δk (-8.2, 6.0) (-0.0, 3.3) (2.1, 9.6)
dk = δk − δk−1 NA 2.7 4.2
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3.6 Remarks

Stratified medicine, the grouping of patients based on disease risk or response of ther-

apy (WHO, 2013), has tremendous potential to deliver more effective and efficient thera-

peutic intervention to improve public health. We worked on several aspects to promote its

likelihood of implementation in clinical setting. Incorporating the concept of uplift mod-

eling (a.k.a. true-lift modeling), an advanced data-mining subfield with successful busi-

ness applications and established guidelines (Kane et al., 2014), we provided a framework

to utilize baseline information to identify the subgroup(s) with most beneficial prospect;

wasteful, harmful, and futile subgroups to save resources and reduce unnecessary expo-

sure to treatment adverse effects. We tackled the issue from three fronts: 1) stratification;

2) model building and selection; and 3) reproducibility assessment. First, we proposed

a stratification algorithm with constrained optimization by utilizing dynamic program-

ming and supervised-learning techniques. Second, we proposed several metrics to eval-

uate the prediction performance during training and cross-validation stages to select the

best model from a collection of competing scoring systems for the predicted individual

treatment effect scores (PITES). Lastly, the final stratification system was evaluated using

an independent holdout dataset to draw inferential conclusions.

Our objective is to predict and stratify patients into actionable categories by optimiz-

ing a pre-defined clinically meaningful benefit as the Successive Average Treatment Ef-

fect (SATE) for future treatment recommendations. Importantly, the existence of optimal

classifier depends on the magnitude of SATE, the adequacy of the prediction model, the

treatment effect, the number of observations, and the information available as reflected

by the observed event rate in censored outcomes. It is possible that the study population

cannot be further subgrouped with respect to the desirable clinically meaningful SATE

if there is no heterogeneous treatment effect among the study population, the prediction

model is inadequate, or if the desirable clinical benefit is higher than the reality. Fur-

thermore, while our HIV study and cardiology examples did not contain genetic marker
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information, any prediction models with any baseline covariates can form a candidate

PITES scoring system to compete. As pointed out in Yong et al. (2013), association can

vary depending on what variables are put in a prediction model, it would be important

to evaluate competing models with respect to our common final goal.

We incorporated reproducibility evaluation via an independent holdout dataset be-

cause we only have one such dataset for illustration while attempting to accomplish mod-

el building, selection, and evaluation for reproducibility. The ideal approach to evaluate

the final model is to use an independent dataset that is not involved in the model building

and selection stage. Otherwise, the true prediction error can be underestimated, some-

times substantially (Hastie et al., 2009; Siontis et al., 2015). For discussions of the holdout

dataset rationale and cross-validation, the practical implementation and issues involved

can be found in the cross-validation literature such as Schorfheide and Wolpin (2013);

Rao and Fung (2008); and Esbensen and Geladi (2010). Our focus is to propose an anal-

ysis framework to enable some sort of reproducibility assessment in light of a growing

concern of irreproducibility in scientific research (Ioannidis, 2005; Loscalzo, 2012; Collins

and Tabak, 2014) and the emergence of preemptive medicine based on prediction. To this

end, we also imposed a minimum stratum sample size constraint which can be relaxed

to n0=1. We found that the reproducibility performance is reduced when there are too

many strata based on a handful of observations. In fact, the more personalized and u-

nique the subgroups become via overfitting, the less likely the results can be reproduced

without finding a bigger pool of subjects who behave like the training samples. Hence

there is a trade-off between very personalized intervention strategy versus reproducibil-

ity. Fortunately, with the advent of technology and Big data era, finding patients with

similar characteristics have become more achievable every day. Thus this type of inten-

sive machine-learning techniques can be useful.

The data analytics team for the 2012 presidential election used uplift modeling to

identify likely voters early on for fundraising and voter-mobilization efforts (Siegel,

2013b; Porter, 2013). In a similar spirit, early identification of sub-populations who are (or
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are not) likely to experience a treatment benefit can potentially save lives and resources,

while alleviating adverse treatment effects. Our proposed concepts and procedures

could be adapted in vast areas of application, ranging from identifying people with

life-threatening diseases who can be offered more targeted treatment strategy, to finding

those with risky behavior who can be trained to improve wellness. Intervention or ther-

apeutic treatment programs can then be developed via multidisciplinary collaborations.

With an ever-growing bank of available data, it would be important to extend similar

method to observational data. More targeted treatment and cost-effective strategies can

be developed to improve public health. The contribution of this paper is to provide an

operational framework to bridge predictive modeling and decision making for more

practical applications in stratified medicine.
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A. Appendices



A.1 The Dynamic programming algorithm for optimal s-
tratification

We will describe the dynamic programming algorithm for identifying the optimal

grouping in this section. Below we first provide a brief introduction to the dynamic pro-

gramming algorithm. To this end, assume that our objective is to find the minimum total

cost of n stages:

min
{at}

n∑
t=1

ct(st, at),

where st is the state of stage t, at ∈ At(st) is the action we take at stage t, and ct(st, at) is the

cost associated with state st and action at. The state of the next stage st+1 is determined

by both st and at: st+1 = ft(st, at), t = 1, . . . , n−1. If we know that the minimum total cost

from stage m+ 1 through stage n starting at state sm+1 is

Cm+1(sm+1) = min
{at}

n∑
t=m+1

ct(st, at),

then the optimal cost from stage m starting at state sm is simply

Cm(sm) = min
am∈Am(sm)

{cm(sm, am) + Cm+1(fm(sm, am))} .

Thus we can start from the minimum cost Cn(sn) = minan cn(sn, an) at stage n to consecu-

tively find the optimal solutions at stages n− 1, n− 2, · · · , 2 and 1.

Our problem is more complicated than the formulation above due to the presence

of constraints, but the basic principle remains the same. Without loss of generality, we

assume that the data consists of {(Yi, wi, µ̂(Vi)), i = 1, 2, · · · , n}, with µ̂(V1) < µ̂(V2) <

· · · < µ̂(Vn). Here Yi and wi are response and associated nonnegative weight for the ith

observation. The objective is to group n observations into K strata: Sk, k = 1, · · · , K, such

that
K∑
k=1

∑
i∈Sk

|Yi − Ȳ (Sk)|wi,

is minimized under the constraints that

nk ≥ np0 and Ȳ (Sk)− Ȳ (Sk−1) ≥ d,
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where p0 is the minimum stratum fraction, Si denotes the set of observations in the ith

stratum: S1 = {1, 2, · · · , n1}, Sk =
{∑(k−1)

j=1 nj + 1,
∑(k−1)

j=1 nj + 2, · · · ,
∑(k−1)

j=1 nj + nk

}
, k =

2, · · · , K and

Ȳ (S) =

∑
i∈S wiYi∑
i∈S wi

, for S ⊂ {1, · · · , n}.

Here d and p0 are given a priori but K is unknown. To this end, we consider the optimal

grouping for the lastm observations {n−m+1, n−m+2, · · · , n}with the first stratum Smj1

comprised of j observations, where m ≥ np0. That is, Smj1 = {n−m+ 1, · · · , n−m+n1},

Smjk =
{
n−m+

∑(k−1)
j=1 nj + 1, n−m+

∑(k−1)
j=1 nj + 2, · · · , n−m+

∑(k−1)
j=1 nj + nk

}
, k =

2, · · · , Km minimizes
Km∑
k=1

∑
i∈Smjk

|Yi − Ȳ (Smjk)|wi,

under the constraints that n1 = j,

nmjk ≥ np0 and Ȳ (Smjk)− Ȳ (Smj(k−1)) ≥ d.

Here j = 1, 2, · · · ,m. Let Lmj be the minimum L1 loss for grouping the lastm observations

with j observations in the first stratum under the constraint above. Let the corresponding

optimal grouping Smj1, · · · , SmjKm be denoted by Gmj . If there is no stratification satisfy-

ing the constraints, e.g., when j < np0, then Lmj = +∞. In such a case, we let Gmj = φ for

convenience in notations. Also, denote Ȳ (Smj1) by Ȳmj.

Like the standard dynamic programming algorithm, we start from the last observation

and (G11, L11) can be obtained easily since (G11, L11) = ({n}, 0) if 1 ≥ np0 and (φ,+∞)

otherwise. Assume that for 1 ≤ m < n we have obtained

(G11, L11, Ȳ11)
(G21, L21, Ȳ21) (G22, L22, Ȳ22)
(G31, L31, Ȳ31) (G32, L32, Ȳ32) (G33, L33, Ȳ33)

· · ·
(Gm1, Lm1, Ȳm1) (Gm2, Lm2, Ȳm2) · · · (Gmm, Lmm, Ȳmm).

We can construct {G(m+1)j, L(m+1)j} based on the previous set of optimal solutions as fol-

lows. If j < np0, then

(G(m+1)j, L(m+1)j) = {φ,+∞}.
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For np0 ≤ j ≤ m+1, since the first stratum of size j is fixed, we should choose the optimal

grouping strategy that minimizes the loss of the remaining m + 1 − j observations. To

examine the minimum incremental constraint between consecutive groups, we need and

only need to consider the first two strata. Let i be the number of members of the second

group, i.e., the group after the first j observations, we may define

i∗ = argmin
i

cj(i), i = 1, · · · ,m+ 1− j

where

cj(i) =

{∑n−m−1+j
i=n−m |Yi − Ȳ(m+1)j|wi + L(m+1−j)i if Ȳ(m+1)j − Ȳ(m+1−j)i ≥ d

∞ if Ȳ(m+1)j − Ȳ(m+1−j)i < d
.

This step of finding i∗ is not difficult since it involves onlyO(m+1−j) summations. How-

ever, we can further simplify the computation by keeping the ranks of {Ll1, Ll2, · · · , Lll}

for all l ≤ m. To identify i∗, we only need to examine the constraint of the grouping with

the smallest L(m+1−j)i : Ȳ(m+1)j − Ȳ(m+1−j)i ≥ d. If the constraint is satisfied, then i∗ is i-

dentified, otherwise we examine the constraint of the grouping with the second smallest

L(m+1−j)i and et al. Normally, we can find i∗ well before exhausting all L(m+1−j)i.Once i∗ is

identified, L(m+1)j = cj(i
∗) and if L(m+1)j <∞, G(m+1)j = {S(m+1)j1}∪G(m+1−j)i∗ . Therefore,

one may construct (G(m+1)j, L(m+1)j), j = 1, 2, · · · ,m+1 by tracking (Gm̃j̃, Lm̃j̃), 1 ≤ m̃ ≤ m

and 1 ≤ j̃ ≤ m̃, for m = 1, 2, · · · , n − 1. In the end, once (Gnj, Lnj), j = 1, · · · , n are ob-

tained, the optimal stratification is simply Gnj∗ , where j∗ = argminj Lnj, j = 1, 2, · · · , n.

The complexity of the algorithm is O(n3) and therefore the computation can be slow

when n is big. In such a case, one may pre-group observations with similar µ̂(Vi)s

together before applying the dynamic programming. One way to achieve this is to

divide the interval containing all the estimated scores into subintervals and represent

all the µ̂(Vi)s in the same subinterval by its center. In this way, we effectively reduce

the choices of potential grouping while using the original Yis and wis to calculate the

Ȳk and prediction error. The computation speed can be substantially improved without

sacrificing much precision in locating the optimal stratification scheme.
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A.2 Asymptotic properties for the optimal stratification
scheme

We first assume that β̂ − β0 = op(1) for properly chosen λ, where β0 belongs to a

compact set, the parameter space of interest. Without loss of generality, we also assume

that the score µ(Vi) is a continuous random variable with a bounded support and the joint

density function of the continuous components of (Yi, Vi) is continuously differentiable.

Furthermore, we assume that the outcome Yi is bounded. Let

Ln(c) = n−1

n∑
i=1

|Yi − f(Vi|c)
∣∣

and

L(c) = E|Yi − f0(Vi|c)
∣∣,

where c = (−∞ = c1 < c2 < · · · < cK =∞)′, µ̂(Vi) = g(β̂′Zi), µ(Vi) = g(β′0Zi),

f(Vi|c) =
K∑
k=1

µ̂Y (ck−1, ck)I(µ̂(Vi) ∈ (ck−1, ck]),

f0(Vi|c) =
K∑
k=1

µY (ck−1, ck)I(µ(Vi) ∈ (ck−1, ck])

µ̂Y (a, b) =
n−1

∑n
i=1 YiI(µ̂(Vi) ∈ (a, b])

n−1
∑n

i=1 I(µ̂(Vi) ∈ (a, b])
and µY (a, b) = E(Y |µ(Vi) ∈ (a, b]).

Firstly, we will show that

sup
c
|Ln(c)− L(c)| = op(1),

where the sup is over all c such that pr(µ(Vi) ∈ (ck−1, ck]) ≥ δ0 > 0. Since K is bounded

and takes only finite number of possible values, it is sufficient to show the above uni-

form convergence for fixed any fixed K. To this end, we note that the coverage number

N[](ε,F , L1) < ∞ for the class of functions F = {yI(g(β′z) ∈ (a, b]) | max(|a|, |b|, ‖β‖1) <

C0} or {I(g(β′z) ∈ (a, b]) | max(|a|, |b|, ‖β‖1) < C0}, where C0 < ∞ is a constant. Thus it

follows from the Glivenko-Cantelli theorem that

sup
max{|a|,|b|,‖β‖1}<C0

∣∣∣∣ n−1

n∑
i=1

YiI(g(β′Zi) ∈ (a, b])− E {YiI(g(β′Zi) ∈ (a, b])}
∣∣∣∣= op(1)
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and

sup
max{|a|,|b|,‖β‖1}<C0

∣∣∣∣ n−1

n∑
i=1

I(g(β′Zi) ∈ (a, b])− pr(g(β′Zi) ∈ (a, b])

∣∣∣∣= op(1),

which implies that

sup
(a,b,β)∈Ω0

∣∣∣∣ n−1
∑n

i=1 YiI(ĝ(β′Zi) ∈ (a, b])

n−1
∑n

i=1 I(ĝ(β′Zi) ∈ (a, b])
− E(Y |g(β′Zi) ∈ (a, b])

∣∣∣∣= op(1), (A.2.1)

where Ω0 = {a, b, β | pr(g(β′Zi) ∈ (a, b]) ≥ δ0,max{|a|, |b|, ‖β‖1} < C0}. Next, consider

Un(a, b, β) = n−1

n∑
i=1

I(g(β′Zi) ∈ (a, b])

∣∣∣∣ Yi − n−1
∑n

i=1 YiI(g(β′Zi) ∈ (a, b])

n−1
∑n

i=1 I(g(β′Zi) ∈ (a, b])

∣∣∣∣ .
It follows from (A.2.1) that

sup
(a,b,β)∈Ω0

∣∣∣∣ Un(a, b, β)− n−1

n∑
i=1

I(g(β′Zi) ∈ (a, b])
∣∣Yi − E(Y |g(β′Zi) ∈ (a, b])

∣∣ ∣∣∣∣= op(1).

Now, consider the class of functions F = {I(g(β′v) ∈ (a, b])|y − µ̃(a, b, β)| | (a, b, β) ∈ Ω0},

where µ̃(a, b, β) has continuous partial derivatives with respect to a, b and β. The covering

number of the class is finite as well, and it follows from the Glivenko-Cantelli theorem

that

n−1

n∑
i=1

I(g(β′Zi) ∈ (a, b])
∣∣Yi − E(Y |g(β′Zi) ∈ (a, b])

∣∣
uniformly converges to u(a, b, β) = E

{
I(g(β′Zi) ∈ (a, b])

∣∣Yi − E(Y |g(β′Zi) ∈ (a, b])
∣∣} over

the set Ω0 and thus

sup
(a,b,β)∈Ω0

∣∣∣∣ Un(a, b, β)− u(a, b, β)

∣∣∣∣= op(1).

Coupled with the fact that u(a, b, β̂)− u(a, b, β0) = op(1), it suggests that

sup
(a,b,β)∈Ω0

∣∣∣∣ Un(a, b, β̂)− u(a, b, β0)

∣∣∣∣= op(1).

Now, note the fact that

Ln(c) =
K∑
k=1

Un(ck−1, ck, β̂) and L(c) =
K∑
k=1

u(ck−1, ck, β0),

we have

sup
c

∣∣∣∣ Ln(c)− L(c)

∣∣∣∣= op(1).
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Secondly, we will derive the upper bound of L(ĉ) as n → ∞. To this end, let the

constraint be written as Sn(c) ≥ 0, where

Sn(c) =


Ȳ2 − Ȳ1 − d
· · ·

ȲK − ȲK−1 − d
n−1

∑n
i=1 I(c1 ≤ µ̂(Vi) ≤ c2)− p0

· · ·
n−1

∑n
i=1 I(cK−1 ≤ µ̂(Vi) ≤ cK)− p0

 .

We also define the limiting constraint by S0(c) ≥ 0, where

S0(c) =


µ̄2 − µ̄1 − d
· · ·

µ̄K − µ̄K−1 − d
pr(c1 ≤ µ(Vi) ≤ c2)− p0

· · ·
pr(cK−1 ≤ µ(Vi) ≤ cK)− p0

 .

Let c0 be the minimizer of L(c) subject to the constraint S0(c) ≥ 0 and ĉ be the mini-

mizer of Ln(c) subject to the constraint Sn(c) ≥ 0. Furthermore, we let

ĉε = argmin
c:S0(c)≥ε

Ln(c) and cε = argmin
c:S0(c)≥ε

L(c).

Under a rather mild condition that the numbers of strata of both stratification rules cε̃

and c0 are the same for some ε̃ > 0,

L(cε)→ L(c0) = L0, as ε→ 0.

A sufficient condition for the existence of such a ε̃ is that the optimal grouping c0 is unique

and the set {(c1, · · · , cK0) | S0(c) ≥ 0} is not contained by aK0−1 dimensional hyperplane

in RK0 , where K0 + 1 is the dimension of the vector c0. Now, since Sn(c)− S(c) = op(1),

pr
[
{c | S0(c) ≥ ε} ⊆ {c | Sn(c) ≥ 0}

]
→ 1, as n→∞,

which implies that

pr {Ln(ĉ) ≤ Ln(ĉε)} → 1 as n→∞.

86



Furthermore, by the definition of ĉε which minimizes Ln(c) under the constraint S0(c) ≥

ε,

Ln(ĉε) ≤ Ln(cε).

From the uniform convergence, for any δ > 0,

pr {Ln(cε) > L(cε) + δ/2} → 0 and pr {L(ĉ)− δ/2 > Ln(ĉ)} → 0 as n→∞.

Therefore, for any δ > 0, there exists an ε0 such that L(cε0) ≤ L0 + δ and

pr(L(ĉ) ≤ L0 + 2δ)

≥ pr {L(ĉ) ≤ Ln(ĉ) + δ/2 ≤ Ln(ĉε0) + δ/2 ≤ Ln(cε0) + δ/2 ≤ L(cε0) + δ}

≥ 1− pr {L(ĉ) > Ln(ĉ) + δ/2} − pr {Ln(ĉ) > Ln(ĉε0)} − pr {Ln(cε0) > L(cε0) + δ/2} → 1,

as n → ∞. It follows that the finite sample optimal stratification scheme minimizes

the limit of the total of intra-stratum predicted error. The estimated stratification scheme

approaches that of the optimal stratification scheme as the sample size goes to infinity.
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A.3 An example to illustrate the dynamic programming s-
tratification algorithm

Dynamic programming is employed to identify the optimal stratification scheme by

finding the solution of similar subproblems through recursive computations and Bell-

man’s principle of optimality (Bellman, 1952). To illustrate the concept, we first rank all

observations in the ascending order of the Predicted Individual Treatment Effect Score

(PITES) ν(·). Using (2.2) and an optional pregrouping scheme that may group observa-

tions with similar values of ν(·) (say, ±.0005), one can construct a hypothetical prediction

error matrix containing the stratum-specific Lij derived from each potential data combi-

nation by grouping observations from candidate stratum i to stratum j, for i ≤ j ≤ n:

Candidate Stratum Membership Optimal solution
@
@
@i
j 1 2 3 4 5 L(i)

1 0.5 0.1 0.4 0.2 0.6 0.5
2 0.4 0.2 0.7 0.5 0.4
3 ∞ 0.2 0.4 0.4
4 0.1 0.2 0.2
5 0.3 0.3

An∞ denotes the cost of a stratum that violates the constraints. Let L(i) be the L of

the optimal stratification scheme containing observations from stratum i to n(=5, in this

example), the optimal solution can be obtained from the following stages:

1. L(5) = L5,5 = 0.3

2. L(4) = min{L4,4 + L(5),L4,5} = min{0.1 + 0.3, 0.2} = 0.2

3. L(3) = min{L3,3 + L(4),L3,4 + L(5),L3,5} = min{∞, 0.2 + 0.3, 0.4} = 0.4

4. L(2) = min{L2,2 + L(3),L2,3 + L(4),L2,4 + L(5),L2,5}

= min{0.4 + 0.4, 0.2 + 0.2, 0.7 + 0.3, 0.5} = 0.4
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5. L(1) = min{L1,1 + L(2),L1,2 + L(3),L1,3 + L(4),L1,4 + L(5),L1,5}

= min{0.5 + 0.4, 0.1 + 0.4, 0.4 + 0.2, 0.2 + 0.3, 0.6} = 0.5

The optimal solution has an L of 0.5. There are two possible stratum combinations: 1)

{1,2} and {3,4,5}; or 2) {1,2,3,4} and {5}. In this article, the first index that gives the smallest

L(i) among all possible combinations is chosen as the optimal cutoff point. Hence the

optimal stratification scheme is ĉ = ĉ1 = the largest ν(·) of all observations in {1,2}.
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