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Abstract

Viral infections, such as HIV, are often treated with orally administered antiviral medica-

tions that are dosed at particular intervals, leading to periodic drug levels and hence periodic

inhibition of viral replication. These drugs generally bind to viral proteins and inhibit particu-

lar steps in the viral lifecycle, and resistance often evolves due to point mutations in the virus

that prevent the drug from binding its target. However, it has been proposed (Wahl & Nowak,

Proc Roy Soc B, 2000) that a completely different “cryptic” mechanism for resistance could

exist: the virus population may evolve towards synchronizing its lifecycle with the pattern of

drug treatment. If the lifecycle of the virus is a multiple of the dosing interval, it is possible

that over time the bulk of the virus population will replicate during trough concentrations of the

drug. In this thesis, we use stochastic mathematical models of viral dynamics to demonstrate

that cryptic resistance could plausibly provide a powerful fitness advantage to a wide variety

of viral strains whose expected lifecycle times are slightly less than the expected time between

doses of an antiviral drug, allowing them to survive drug regimes that would otherwise drive

infected cell populations to extinction. This in turn suggests that continuously-administered

antiviral drug treatments may be significantly more effective than periodically-administered

treatments in combatting viral infections.
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1 Introduction

Viral infections are a major cause of human morbidity and mortality. While vaccines to prevent
viral illnesses have existed for over a century, it is only in the past several decades that drug directly
targeting viral replication have been developed. Antiviral drugs now exist for pathogens including
the human immunodeficiency virus (HIV), hepatitis B and C viruses, influenza A and B viruses,
herpes simplex viruses, cytomegalovirus, Epstein Barr virus, and varicella zoster virus (chickenpox
virus). These drugs each target a specific phase of the virus’s lifecycle, and by binding to a viral
protein or otherwise interfering with a critical step in viral replication are able to reduce the virus’s
growth rate. Examples of viral functions targeted by antiviral drugs include binding of the viral
particle to the target cell membrane, transcription of the viral genome, integration of the virus in
the host cell genome, or post-translational cleavage of viral proteins.

Antiviral treatments that are initially successful at reducing viral loads may eventually be ren-
dered ineffective, in individual patients or in entire populations, by the emergence of drug-resistant
strains. Drug resistance occurs when a viral strain gains a mutation that allows it to replicate ef-
ficiently despite the presence of the drug, and this strain subsequently outcompetes the wildtype
strain to fix in the viral population. Resistance is generally accepted to be conferred by mutations
that interfere with the ability of the drug molecule to inhibit the intended viral target. For example,
for antivirals that block the fusion of viral particles with the target cell membrane, the mutations
which confer resistance can alter the shapes and chemical properties of viral proteins to either
prevent drug binding or allow the virus to enter the cell despite the presence of the drug.

There may, however, be another mechanism by which resistance can develop in viral popu-
lations. In a 2000 paper, Wahl and Nowak (1) hypothesized that a heretofore unobserved effect,
which they termed “cryptic resistance” may prevent a viral population from being suppressed by
an antiviral drug, without it needing to evolve the ability to alter drug binding or even complete
its lifecycle in the drug’s presence. This insight was motivated by the realization that drug levels
are not constant during the course of viral treatment, and hence the viral fitness in the presence of
the drug is also time-varying. Like most medications, antiviral drugs are administered in discrete
doses of constant size separated by approximately equal time intervals. Shortly after a dose, the
drug is absorbed and drug levels are high, and the relevant stage of the viral lifecycle is maximally
inhibited. However between doses, drug levels decay, and may eventually reach low levels where
it is not longer suppressive. This pattern repeats in a periodic pattern over the course of treatment.
These authors hypothesized that the virus could avoid the effects of the drug by always completing
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the targeted phase of it’s lifecycle at near the time when drug concentrations is at a minimum.
They suggested that if the length of the viral lifecycle was a mutable trait, the selection pressure of
treatment would push it to evolve to become approximately equal to the duration of time between
successive drug doses. The virus population would then become synchronized with the pattern of
drug levels. In this manner, the virus could sustain itself indefinitely by “hiding” from the high-
est concentrations of the drug, even though it has no means of counteracting the effects of drug
molecules when they are present.

The goal of this project is use mathematical models to explore whether cryptic resistance could
plausibly arise in a viral population subjected to antiviral treatment. We start by augmenting well-
established models for viral infection dynamics to account for distinct phases of the viral lifecycle.
This model includes a maturation rate, which can be varied to change the viral lifecycle length.
Fluctuating drug concentrations are incorporated as a periodic time-dependent infectivity of the
virus. We then use this model to understand how the length of the viral lifecycle determines the
fitness of a viral strain in the presence of period drug levels. Deterministic differential equation
models are used initially, and later replaced with a stochastic formulation. We use two methods
to evaluate the potential success of a cryptic resistance strategy. First, we examine viral fitness
in a single-strain infection by determining the growth rate and eventual equilibrium level of the
virus, and look for the lifecycle length that optimizes these values. Secondly, we simulate the
more evolutionarily-relevant scenario where competition between multiple strains occurs within a
single infected individual. In this case we look for the strain that outcompetes the others and is
able to persist despite drug treatment. In each case, we are interested in whether strains that are
synchronized to the drug dose schedule - that is, have lifecycle lengths that are an integer multiple
of the time between drug doses - are able to take over the viral population, and thereby confer
cryptic resistance.

2 The basic viral dynamics model

The dynamics of viral populations within infected individuals have been studied mathemati-
cally for decades, with applications to diseases such as HIV, Hepatitis B, and Hepatitis C (2, 3, 4,
5). The simplest viral dynamics models divide the relevant cells populations in the body into com-
partments based on their state of infection, and use a system of differential equations to describe
the change in these populations over time. The size of the population of healthy cells is described
by state variable x, the population of infected cells by y, and a population of free viruses v. Healthy
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cells are produced at a rate λ, die with rate constant dx, and are infected at a rate proportional to the
product of v and an infection rate constant b. Infected cells die with rate constant dy and produce
free virus particles at a rate k. Free viruses are cleared from the system at rate c. A schematic
diagram of this model is shown in Figure 1.

Figure 1: The basic viral dynamics model. A flow diagram conceptualizing the basic viral dynamics
model. Ellipses represent populations, and arrows represent changes in population. Uninfected cells (x) are
produced at a rate λ and die at a rate dx. They become infected upon contact with free virus (v) at a rate b.
Infected cells (y) produce free virus at a rate k, and die at a rate dy. Free virions are cleared from the system
at a rate c.

The overall model is represented by the following system of equations:

dx

dt
= λ− bxv − dxx

dy

dt
= bxv − dyy

dv

dt
= ky − cv

(2.0.1)

This model has two equilibria, which can be determined by setting dx
dt

= dw
dt

= dy
dt

= 0. At the
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“uninfected” equilibrium, the infection is not able to take hold:

x∗ =
λ

dx

y∗ = 0

v∗ = 0

(2.0.2)

At the “infected” equilibrium, the infection persists:

x∗ =
cdy
bk

y∗ =
λ

c
− dxdy

bk

v∗ =
dy
c

(2.0.3)

Standard stability analysis shows that there is always one and only one stable equilibria for
this system, and the choice of equilibria is determined by the value of a parameter composition
called the basic reproductive ratio, R0 = bλk

dxdyc
. This quantity describes the average number of

new cells that would be infected by a single infected cell introduced into a population of otherwise
susceptible cells. This can be understood by taking the product of all the steps in this process: the
average lifetime of an infected cell (1/dy), the rate of virion production k, the average lifetime of
those virions (1/c), the rate at which virions infect new cells, per time and target cell level (b), and
the target cell level before infection (λ/dx). If R0 > 1, the population of infected cells will grow
to reach the infected equilibrium, Eq. (2.0.3), while if this R0 < 1, the population of infected cells
will immediately decrease towards zero, Eq. (2.0.2).

In addition to determining stability, larger R0 entails larger infected cell and free virus popula-
tions and smaller healthy cell populations at equilibrium. This can be seen by rewriting Eq. (2.0.3)
as

x∗ = x =
λ

dx

(
1

R0

)
y∗ =

λ

dy

(
1− 1

R0

)
v∗ =

λ

c

(
1− 1

R0

)
.

(2.0.4)
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The basic viral dynamics model can be further simplified by using the fact that for the vast
majority of infections, the parameters governing the dynamics of free virions tend to be much
higher than those governing the dynamics of cells. Virus is produced in large quantities and is
rapidly cleared in vivo. This implies the viral population tends to reach a “quasi-steady state” level
with respect to the level of infected cells, and suggests that a separation of timescales can be be
applied to the system (2, 6). By setting dv

dt
= 0 we get the relation v = k

c
y, which then allows us to

replace v in the system of Eq. (2.0.1), and obtain the reduced system

dx

dt
= λ− bxv − dxx

dy

dt
= bxv − dyy

(2.0.5)

where b in this model equals bk/dy in the previous one. One could repeat the stability analysis
for this system, and would find after incorporating the parameter substation for b, the equilibria
are equivalent to Equations (2.0.2) and (2.0.2), and R0 again determines the stable equilibrium.
Throughout the rest of the sections of the paper analyzing deterministic models, we will therefore
simply model uninfected and infected cells, and assume viral loads are proportional to levels of
virus-producing cells.

This basic model can be used to understand viral evolution. In the simplest analysis, one can
simply consider two viral strains and track cells infected with either by y1 and y2, each with unique
parameters (b1, dy1) and (b2, dy2) leading to a three-equation system. Stability analysis of this
augmented system (2) leads to the insight that there is competitive exclusion between the strains,
and only the one with the highest R0 value will remain at the infected equilibrium.

3 Deterministic viral dynamics models of cryptic resistance

3.1 Incorporating maturation time into the basic viral dynamics model

The standard viral dynamics model makes the simplifying assumption that infected cells pro-
duce new virus particles as soon as they are infected. In reality, a virus must complete many stages
of its lifecycle prior before new virions are created. These stages many include uncoating the viral
particle, transcription and translation of the viral genome, copying of the viral genome, assembly of
viral proteins, or even cell-cycle dependent events. The exact steps depend on the particular mode
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of replication of the virus, of which there are many variations in nature. However, the common
effect is that there is a time-lag in virus production, a necessary pre-requisite for the emergence of
“cryptic resistance”.

We created the simplest possible model that captures the finite length of the viral lifecycle and
the fact that any particular drug acts only on a particular phase of the lifecycle. To do this, we
subdivided the infected cell population into two subpopulations, “immature” (w) and “mature”
infected cells (y) (Figure 2). When healthy cells were initially infected, they were added to the
recently infected cell population. These cells transition to a mature state sate with rate constant
m, in which they can go on to produce virus and infected other cells at rate b. It is this latter
process that we will assume the drug inhibits, as discussed in the next section. Recently infected
cells die without maturing with rate constant dw. Other aspects of the model are the same, and it is
described the system of equations

dx

dt
= λ− bxy − dxx

dw

dt
= bxy −mw − dww

dy

dt
= mw − dyy

(3.1.1)

Similar models to this have been used previously to study multiple stages of the viruses life-
cycle (7). This system’s equilibria can again be found by setting dx

dt
= dw

dt
= dy

dt
= 0. Like the

basic viral dynamics model, it has an infected and an uninfected equilibrium. At the “uninfected”
equilibrium, the infection is not able to take hold:

x∗ =
λ

dx

w∗ = 0

y∗ = 0

(3.1.2)
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Figure 2: The basic viral dynamics model with infected cell maturation time. A flow diagram for the
viral dynamics model that incorporates two stages of the viral lifecycle, with a time lag between them. El-
lipses represent populations, and arrows represent changes in population. Uninfected cells (x) are produced
at a rate λ and die at a rate dx. They become infected upon contact with free virus (v) at a rate b, first
entering the immature stage (w). Immature cells die at a rate dw and progress to a mature stage (y) at rate
m. Mature infected cells can produce virus and lead to infection of other cells at rate b, or die at a rate dy.

At the “infected” equilibrium, the infection persists:

x∗ =
dy
b

(
m+ dw
m

)
=

λ

dx

(
1

R0

)
w∗ =

λ

m+ dw
− dxdy

bm
=

λ

m+ dw

(
1− 1

R0

)
y∗ =

λ

dy
− dx

b

(
m+ dw
m

)
=

λ

dy

(
1− 1

R0

) (3.1.3)

where the formula for the basic reproductive ratio is now
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R0 =
λbm

dxdy(m+ dw)
. (3.1.4)

As in the basic model, the stability of each equilibrium hinges on the value of R0. When
the basic reproductive ratio exceeds unity, the infected equilibrium is the only stable equilibrium
of the system, and when the ratio is less than one, the uninfected equilibrium is the only stable
equilibrium. Incorporating maturation time into the model reduces the rate at which the viral
population grows, and R0 is reduced by a factor equal to the probability that a immature cell
survives to mature, m/(dw +m).

Again analogous the basic viral dynamics model, stability analysis of a multi-strain version of
this model would show that the strain with the highest R0 value would outcompete the other and
take over the whole viral population at equilibrium. Since R0 is monotonically increasing with m,
this shows that in agreement with intuition, it is always better for a virus to mature as quickly as
possible. Higher maturation rates also result in lower levels of uninfected host cells, lower levels
of immature cells, and higher levels of mature cells. If immature cells do not die (dw = 0), then
R0, x∗, and y∗ do not depend on m.

In order for there to be any potential benefits to a lag in virus production (low m), the inherent
reproductive advantage to a fast viral generation time would need to be outmatched by an advan-
tage to delaying viral assembly time. In the subsequent sections, we will demonstrate how in the
presence of a periodically fluctuating drug, reducing the maturation time can indeed provide such
an advantage.

3.2 Incorporating periodic drug concentrations into the viral dynamics model

Could fluctuations of antiviral drug concentration favor the synchronization of viral lifecycle
to the period of the drug dosing, therefore leading to “cryptic resistance”? This was the hypothesis
provided by Wahl and Nowak (1) which we set out to test. To do so, we incorporated periodic
antiviral drug concentrations into the viral dynamics model. We assumed that drugs prevent new
infections from occurring, by reducing the b term. This heuristically captures many drug actions
that may occur intra- or extra-cellularly, such as preventing viral budding, creating defective viri-
ons, binding and deactivating free virions, or preventing viral entry.

Antiviral drug concentration was first incorporated into the model in the simplest way: as an
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on-off switch. The drug was assumed to be taken at doses separated by an interval T , and to totally
inhibit new infections for a time fT thereafter. For the last (1 − f)T before each dose, the drug
was assumed to be inactive. This simple switch was meant to model the time-dependent drug
concentrations, and therefore viral fitness levels, expected from periodic dosing schedules. We
also expected that the dichotomy between the fitness of viruses whose lifecycles were synchronous
versus those who were asynchronous would be maximized with this drug scheme.

The model becomes

dx

dt
= λ− bC(t)xy − dxx

dw

dt
= bC(t)xy −mw − dww

dy

dt
= mw − dyy

C(t) =

0 t mod T ≤ f

1 otherwise

(3.2.1)

Standard stability analysis reveals that the only true equilibrium of the system is the uninfected
equilibrium of the model without drug dynamics, Eq.(3.1.2). Due to periodic fluctuations in C, the
system cannot settle on a single equilibrium with infected cells present. However, we suspect that
due to the periodic nature of the differential equations, a “stable periodic equilibrium” might exist,
with nonzero infected cell populations and the property that (x(t), w(t), y(t)) = (x(t+ T ), w(t+

T ), y(t+ T )).

As long as we are not in a parameter regime where the dynamics of Eq. (3.2.1) are vastly
faster than the period of drug switching (which we expect to be true for most infections), we can
approximate R0 for this system to be the weighted average the value without drug, Eq. (3.1.4),
and what it would be if the drug always suppressed all infection, i.e. R0 = 0. This leads to
R0 = (1− f) λbm

dxdy(m+dw)
. However, we do not expect for this system that R0 alone determines the

ability of the infection to persist. This R0 calculation assumes that cells are equally like to be at
any phase of their lifecycle at any point of time in the drug cycle, where in reality, synchronization
with the dosing pattern may occur.

Due to the difficulty of analyzing systems with time-dependent coefficients analytically, we
instead chose to examine these dynamics numerically. Our goal was to determine the dynamics

12



Table 1: Parameter values used in numerically solving the viral dynamics model with maturation time and
periodic drug concentration dynamics. The units of cell concentration (“cell conc.”) are arbitrary but could
be a common medical unit such as cells per microliter.

Parameter Description Value Units

λ Input rate of uninfected cells 10 cell conc. · days−1

dx Death rate of uninfected cells 10−2 days−1

b Infection rate 0.01 (cell conc.)−1 · days−1

dw Death rate of immature cells 0 days−1

dy Death rate of mature cells 1 days−1

T Time between drug doses 2 days
f Fraction of the time that drug is active 0.85 N/A

of viral populations under this treatment regime, as a function of the length of the viral lifecycle.
Parameters for this analysis are given in Table 1 and were chosen according the following logic. In
the absence of the drug, we required R0 > 1 and chose R0 = 10. We required that the virus was
pathogenic, such that dy < dx. Within these constraints, we chose values of dx, dy, and λ that are
consistent with HIV infection (e.g.(8, 9)). We don’t think that our results are particularly sensitive
to the exact choices of these parameters within these constraints.

We allowed m to vary such that 1
m
∈ [0.5, 5.5].We chose a drug efficacy f so that R0(f) was

dramatically reduced but still greater than 1, allowing the infection to persist at low levels so that
we could compare the infection level cross different lifecycle lengths. We also suspected that
reducing the fraction of the time for which the reproductive window was open, (1 − f)T , would
ensure that high-level growth would require a maturation rate such that mT was approximately
an integer; in other words, synchronization. In order to assess the effect of m on viral fitness
independent of its direct value on R0, we set dw = 0, which removes the dependence of R0(f) on
m. This assumption is relaxed in later sections.

For the numerical solution, the drug treatment was assumed to begin after the infection had al-
ready been established, so the initial conditions were those characterizing the infected equilibrium
of the model without drug treatment, (3.1.2). The equations were integrated from time t = 0 until
the average size of each cell population over the last 20 days differed by no more than 1% from
the average population over the previous 20 days. Results were then reported at averages over the
previous 10 days.

We examined three different metrics of viral reproductive success as a function of m:
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1. The level of mature infected cells (y) at equilibrium.

2. The time until equilibrium was obtained.

3. The maximum growth rate of mature infected cells (dy
dt
) over the course of the simulation.

Figure 3: Outcomes of the viral dynamics model in the presence of on-off drug levels. Four outputs
from the numerical integration of Eq. (3.2.1) are plotted against the average viral lifecycle length. 1

m + 1
bx ,

where x is taken at equilibrium. a) Average mature infected cell population (y) at equilibrium. b) Maximal
rate of change in the level of infected cells (dy/dt). c) Time required to reach equilibrium population levels
. d) Minimum level of immature cells (w) achieved over the course of the simulation. Crosses represent data
points and lines denote interpolation between them.

These results are presented in Figure 3a)-c). Instead of plotting results as a function of the
average maturation time 1/m, which only represents one step of the complete lifecycle of the
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virus, we incorporated the average time for an infected cell to infect another cell, 1
bx

, were x is
the level of uninfected cells. Since we report results at equilibrium, x is the equilibrium value.
Therefore the average lifecycle length is given by 1

m
+ 1

bx
.

The infected cell level (which will be proportional the viral load), increased monotonically with
the length of the viral lifecycle. Therefore in this model, it is the strain with the slowest maturation
time, or the longest lifecycle length, that has the highest fitness by this measure. This was contrary
to our expectations that strains that were synchronized to the drug level (i.e. had lifecycle lengths of
2, 4, 6, etc days), would have optimal fitness. To examine this further, we decided to look at other
measures of fitness that might gives strains an advantage. If viral strains were to be in a situation
where they were directly competing, we hypothesized that equilibrium levels may not be the only
important fitness measure, because early growth may be more important for infecting many host
cells before another strain. We looked at the two measures of the growth rate of the infection:
the maximal rate of increase in mature infected cells over the course of treatment (dy/dt), and the
time until the equilibrium of all populations was reached. For the latter, we found that longer viral
life cycles were always better because they sped up the time to reach equilibrium and achieved
higher population sizes at equilibrium. This was believed to reflect the fact that in this model
as in the previous one, the viral strains with long maturation times would tend to have larger
immature infected cell populations at equilibrium, and thus could support higher mature infected
cell populations in the periods when the drug was inactive.

When looking at the maximal growth rate, we did find that strains with a lifecycle close to
the expected optimum did have a clear advantage. However, this was a temporary advantage that
tended to be most prominent at the beginning of the time course of the solution, and did not trans-
late to a larger population at equilibrium. It was believed to reflect the result of a tradeoff between
the rapid maturation of the immature infected cell population of strains with low maturation times
after the drug vanishes from the compartment and the high immature infected cell populations
sustained by the strains with longer maturation times.

Re-running the simulation for other values of f ranging from 0.5 to 0.95, we were unable
to find any sets of parameters in which viral strains whose lifecycle lengths approximated integer
multiples of the time between successive drug doses had higher equilibrium populations or attained
those populations more quickly than other viral strains.

Upon more closely examining the output of this model, we discovered an effect that suggested
that a differential equation based approach may not be ideal for examining the emergence of cryptic
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resistance. When we looked at the minimum value for the level of immature infected cells (w)
over the course of the simulation, we noticed that these values were becoming extremely low
during times when the drug was on, to the point where in any finite model they would be zero
(as low as 10−20). This is expected, as no new infections can occur when the drug is on, since
b → 0. In all viral strains, these levels quickly rebounded when the drug was turned off and
the few immature cells that survived began maturing at constant rates, infecting new cells and
increasing populations of infected cells. This ability for immature cells to mature at a constant
rate allows all strains to have infected cells mature when the drug is off and thereby replenish their
infected cell populations. However, the reproductive advantage enabling cryptic resistance was
believed to be that strains exhibiting cryptic resistance are able to have a much higher proportion
of their immature infected cells mature at opportune times than are strains not exhibiting cryptic
resistance. Thus, the constant rate of maturation of immature infected cells was hypothesized to
nullify the advantage of cryptic resistance, explaining its lack of reproductive success under ths
model.

If this hypothesis was correct, then cryptic resistance should be observed if the model con-
ditions are changed so that immature infected cells were discrete and matured a fixed amount of
time after they were infected. This would prevent immature infected cells from maturing at the op-
portune moment as the drug vanished from the compartment unless they had been infected at the
appropriate time, which would prevent all strains except those exhibiting cryptic resistance from
experiencing significant population rebounds as the drug vanishes from the compartment.

In accordance with this hypothesis, we introduce a fully stochastic, discretized model of viral
dynamics in the next section, which allows us to explicitly specify any choice of distribution for
the time between events. It also allows for the possibility that viral populations could get so low
in the presence of the drug that the infection could go extinct. We also consider direct competition
between viral strains with different maturation times that co-infect the same host, which side-steps
the need to determine which measure of viral fitness is optimal. Instead, we can determine which
strain eventually fixes in a population.
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4 Stochastic viral dynamics models of cryptic resistance

4.1 Model formulation

Because of the shortcomings of the ordinary differential equation (ODE) model discussed
above, we converted the model to an analogous discretized, probabilistic one in which the ex-
pected rate of each biological process was equal to its rate in the ODE model. The reactions that
can occur in this model are described in Table 2. For most transitions, we use the standard assump-
tion of a memoryless process, so that the probability density function for the time to the next event
is exponentially distributed. However, because of our interest the maturation time lag, we allow
this waiting time to be an arbitrary distribution, and use some examples with tunable variance in
subsequent sections.

Table 2: The events that can occur in the stochastic version of the two-stage viral dynamics model. X, Y,
W represent individual cells and arrows represent reactions that can occur and allow cells to change state.
The notation t ∼ P (a) means that t is drawn from an unspecified probability distribution with mean a,
and Exp(t) refers to the exponential distribution. The time-dependent infectivity b(t) can take a variety of
forms.

Event Description Waiting time Average rate

∅→ X A healthy cell enters in the system t ∼ Exp(λ) λ
X → ∅ A healthy cell dies t ∼ Exp(dx) dx

X + Y → W + Y A healthy cell is infected t ∼ Exp(b(t)), varied varies
W → ∅ An immature infected cell dies t ∼ Exp(dw) dw
W → Y An immature infected cell matures t ∼ P (m), varied m
Y → ∅ A mature infected cell dies t ∼ Exp(dy) dy

Simulations were run both for single viral strains alone (Section 4.2) and for multiple viral
strains infecting the same host (Section 4.2). In each case, we again varied the average maturation
time between simulations to look for synchronization. Parameter values were the same as reported
in Table 1, with the exceptions that λ was scaled by a factor of 10 to increase the size of the
compartment and thereby reduce the stochasticity and extinction probability in simulations, and dx
was scaled by a factor of 10 to keep R0 ≈ (1− f) λbm

dxdy(m+dw)
the same as for the ODE model. The

drug dynamics, which determine the time-dependent infectivity, b(t), were modeled using both
on-off switches and more realistic pharmacologic functions. The drug period was kept constant
between simulations.
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4.2 Single strain dynamics
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Figure 4: Average equilibrium infection level for the single-strain stochastic model. The color of each
point represents the equilibrium number of mature infected cells (y) averaged over 100 simulations, as a
function of the maturation time (1/m) and the fraction of the time that the drug was on (f ). There was no
variation in maturation time between cells.

We first investigated the fitness of individual viral strains in the presence of period drug levels,
as a function of the maturation time. We chose to model a precisely timed maturation phase, so
that each cell spent exactly 1

m
time in the immature state before maturing, if it did not die before

that. We set dw = 0, so that maturation was guaranteed. We used the same on-off drug switch as
in Eq. (3.2.1), so that b(t)→ C(t)b. We also varied the drug efficacy, measured by the fraction of
time the drug is active (f ).

The initial cell populations were those of the infected equilibrium of the drugless ODE model.
Fitness was measured as the mature infected cell level (y) at equilibrium, averaged over 100 runs
of the simulation. Equilibrium was said to be achieved when the average cell population levels
over the last 10 days equal to those over the previous 10 days, and this value was returned.

Results of these simulations are presented in Figure 4. We observed three regimes for the be-
havior of the average equilibrium infected cell level as a function of the drug efficacy f and the mat-
uration time m. In the “low drug effectiveness regime” where f was less than 0.5, the equilibrium
infection level was largely independent of the maturation time. In the “high-drug-effectiveness
regime” where f exceeded 0.95, the infection was eradicated at the end of every simulation run.
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At f values in a “Goldilocks regime” situated between these two extremes, equilibrium infection
levels exhibited a strong dependence on the maturation time, peaking at m such that the expected
maturation time was 0.25 d less than the time between an integer number of consecutive drug
doses, i.e. ( 1

m
mod T ≈ 1.75) for all f values. It is in this regime that synchronization, and hence

cryptic resistance, appears to emerge.

We hypothesized that the observed division of the results into three regimes stemmed from
the differential success of the synchronization strategy under different levels of effectiveness of
the drug. In the low-drug-effectiveness regime (low f ), the drug was is likely so inefficacious
in controlling the infection that it has negligible effect on population dynamics. As a result, the
system could settle into an equilibrium almost identical to the infected equilibrium of the drugless,
deterministic model, Eq. 3.1.3. Since the equilibrium level of mature infected cells (y∗) in this
model is independent of the maturation time when immature cell don’t die, this is what we observe
in this regime.

In the intermediate Goldilocks regime where f ∈ (0.5, 0.95), the drug is effective enough of
the time that the viral population’s chances of long-term survival are hampered by the drug’s, un-
less it has a particular lifecycle length. Each generation of immature infected cells must be able to
produce mature, virus-producing cells at a time when the drug is inactive. In this way the infection
can continue to grow, unhindered by the drug’s presence. Since these “windows of reproductive
opportunity” are periodic with period T , only maturation times that are equal to integer multiples
of T allow for successful replication. Consequently, the equilibrium infection levels of such pop-
ulations are considerably higher than those of populations that cannot synchronize in this manner.
This is the regime in which cryptic resistance is a successful strategy for the virus to pursue.

Interestingly, the maximal infection level in this regime is observed in the case of “imperfect
synchronization” where 1

m
is slightly less than, rather than equal to, an integer multiple of T . The

difference between 1
m

and the next-largest multiple of T is greater than the average contribution to
lifecycle length of the other stages in the viral lifecycle (the 1/bx contribution discussed §3.2). This
in turn suggests that the optimal synchronization between viral lifecycle length and drug dosage
interval is indeed imperfect, with the viral lifecycle being slightly shorter than the drug dosage
interval.

We hypothesize that this difference reflects the concept of “off-window utilization”. The off-
window refers to the time when the drug is inactive, and infection is possible. An immature cell that
is newly infected in the middle of the off-window will mature in time to output free virus during
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the entire subsequent window period if 1
m

is slightly less than T , but will not be able to make full
use of the off-window if 1

m
is greater than or equal to T . However, the less 1

m
is, the greater the

likelihood that the infected cell matures before the off-window opens, increasing the time in which
it is exposed to possible death and no reproductive gain. These two forces combined cause the
optimal lifecycle length to be less than, but only slightly less than, that needed to allow perfect
synchronization. Note that even though the maturation time is a fixed value in this simulation,
the time for a mature infected cell to produce virus and infect another cell is still exponentially
distributed at a rate that depends on b and x(t).

The results also exhibit an intriguing periodicity: At equilibrium, ∀m, y(m, f) ≈ y( 1
m

+

T, f) ≈ y( 1
m

+ 2T, f). This suggests that the factor determining the degree of synchronization
is 1

m
mod T , as opposed to 1

m
itself, i.e., there is no benefit to rapid reproduction in the interme-

diate regime. This likely occurs because we have assumed that immature infected cells do not die
(dw = 0), so there is not fitness loss to waiting longer to mature. In later sections we relax this
assumption.

In the high-drug-effectiveness regime (f > 0.95), the off-window is very small. The proba-
bility that a cell which was infected during one off-window matures at the exact time to coincide
with the next off-window is low enough that even cryptic resistance cannot insulate the viral pop-
ulation from the effects of the drug. Thus, the infected cell populations go to zero in this regime,
and the healthy cell populations go to their pre-infection level, regardless of the lifecycle length.

Overall, these results suggest that viral strains with maturation times that were slightly “under-
synchronized” to the drug period ( 1

m
mod T ≈ 1.75) reached higher than expected equilibrium

populations despite the presence of the drug. Because in the absence of the drug R0 = 10, if
the drug is turned on more than 90% of the time(f < 0.9), complete eradication of the infection
is expected for cells that are unsynchronized and equally likely to mature at any time. However,
synchronization allowed some strains to persist even at these high drug efficacies. Synchronized
strains can match their phase to the drug dosing schedule such that they are much more likely to
mature during the off-window than at other times.

These results give strong support to the idea that cryptic resistance could compromise antivi-
ral treatment. However, while synchronized strains enjoyed greater long-term success than other
strains when each strain was examined individually, these simulations shed no light on whether
these strains were advantageous enough that they could invade and eventually dominate a popu-
lation originally containing mostly non-synchronized strains. In particular, these results strongly
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suggest that synchronized strains could outcompete others in the longer term, but perhaps this may
not allow them to grow up from small numbers. When drug treatment first starts, many faster-
reproducing, non-synchronized strains will still exist in high numbers. They could pose enough
competition that synchronized strains would have a high probability of extinction due to stochastic
events before they could get established. Additionally, it is not clear from the single-strain results
which of the many possible synchronized strains would be favored. These strains may be able to
invade each other, and given synchronization, it may be best to also reproduce as fast as possi-
ble. To answer these questions, a multi-strain model of direct competition between strains with
different maturation rates in the presence of period drug levels is needed.

4.3 Multi-strain competition dynamics

To better determine whether cryptic resistance could emerge from a heterogeneous viral pop-
ulation and lead to treatment failure, we built a many-strain analogue of the stochastic model
described in §4.3. For each strain, the reactions that could occur were those described in Table
2. Immature and mature infected cells were tracked for each strain, and each strain infected the
same pool of uninfected cells. Since the purpose of the model was to explore the differences in
fitness caused by differences in maturation time, all parameters except maturation time were held
constant. Maturations times were varied linearly between 1 and 7 days to create 121 unique viral
strains.

At the start of simulation, healthy cell populations were set to the infected equilibrium of the
ODE model without drug (100 cells under the given parameter values), and the sum of immature
and mature infected cells of all strains were also set to the respective equilibrium value (yi = 3 and
wi = 1 for each strain). The simulation was run until a single strain remained (“fixed”), and then
continued until each cell populations for this strain reached equilibrium. Equilibrium was said to
be achieved when the average cell population levels over the last 10 days equal to those over the
previous 10 days, and this value was returned. The simulation was run 500 times at each of 101
f -values ranging from 0 to 1.

We simulated this model for a variety of different parameters, drug-patterns, and maturation-
time distributions. The results are presented in the subsequent sections.

21



4.3.1 Baseline Case

We first simulated the multi-strain model using all the same parameters and distributions as for
the single strain model in Figure 4. These results are presented in Figure 5. As for the single-
strain model, the fitness benefit of synchronized strains was observed clearly, manifesting itself as
a high probability that these strains would outcompete others strains, fix in the population (Fig.5a)
and reach levels approximating that when the drug was absent (Fig. 5b). We again observed
that the fixation probability landscape could be divided into three regions corresponding to low,
intermediate, or high drug efficacy. It was only in the intermediate “Goldilocks” regime when
cryptic resistance was observed.

Figure 5: Results of the baseline multi-strain model. For each drug level f , strains with maturation
times between 1 and 7 days were started at equal levels in the population and simulated until only a single
strain remained. f is the fraction of time the drug is on in the on-off switch model of drug dynamics. a)
The fixation probability (red gives highest probability) as a function of the maturation rate (m) for a given
drug efficacy. b) The average equilibrium level of mature infected cells (red gives highest probability) as a
function of the maturation rate (m) for a given drug efficacy. c) The mean time to fixation of a single strain
as a function of the drug efficacy.

Motivated by the striking patterns observed in the fixation probability landscape, and their
recurrence in varieties of the model presented later, we decided to define some terminology to
describe and compare them. A schematic of the results is shown in Figure 6.

When visualized on a heatmap of maturation rate (m) vs drug on-time f , the advantage of syn-
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chronized strains manifested itself in the Goldilocks regime in the form of critical strips. These
are regions of relatively constant m-value which spanned the f -values of the Goldilocks regime
between f ≈ 0.06 and 0.97. These strips contained the vast majority of the fixation probability
density in this regime. The critical strips are clustered aroundm-values whose reciprocals approxi-
mate integer multiples of the drug period T . The strips located nearmT = 1, 2, 3 were respectively
numbered I, II, and III.

Figure 6: Terminology relevant to interpreting the results of the multi-strain stochastic model.A styl-
ized fixation probability landscape in space outlining the definitions of various features of these graphs
relevant to analysis of the system dynamics.

A “critical strip 0” was also defined as a similarly-shaped region spanning the low-drug-
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effectiveness regime near the minimum maturation time. Although this regime was not observed
for the baseline model, its importance will become apparent in later sections. We also defined a
somewhat broader and fainter region spanning the high-drug-effectiveness regime near the maxi-
mum maturation times, which we termed the high-f critical region. Its utility will also become
apparent later. The width of a critical strip was defined as the difference between the largest
and smallest 1

m
-values contained within its cross-section at the average f -value of the regime it

spanned, and the strip was said to be ”centered on” the maturation time at which the fixation prob-
ability density was maximized. We now can use this terminology to further discuss the results.

The low-drug-effectiveness regime with f / 0.06 featured a relatively uniform distribution of
fixation probability density. In this regime, the drug is present so little of the time that a cell with
any lifecycle length will have a good chance of maturing and producing virus at a time when the
drug is absent. Thus, there is little selective pressure for synchronization, and fixation is governed
almost purely by random chance. In this regime, fixation took approximately 2500 days to occur,
which was far longer than in any other regime, suggesting intense competition between strains. The
the equilibrium infection level of the strain that eventually fixed was independent of the maturation
time, as expected, and approximately equal that which it would be in the drug-free scenario.

The high-drug-effectiveness regime existed for f ' 0.97 and was characterized by a broad
high-f critical region. In this inhospitable regime, the drug prevented infection of healthy cells
almost 100% of the time. The average time to fixation was under three weeks in all cases, and even
the strain that fixed went extinct shortly thereafter. This suggests that in the high-f regime, the
increased fixation probability density in the high-f critical region did not reflect higher fitness of
the strains therein. No strain was able to reproduce at these high drug doses, but the strains with the
highest longest maturation times were simply able to wait longest in the immature state, without
any risk of dying, before transitioning to the mature infected state and meeting their inevitable fate
there.

The vast majority of f -values, however, fell within the Goldilocks regime, where cryptic resis-
tance was observed to emerge. In this regime, the vast majority of the strains that fixed lay within
critical strip I, II, or III, and for f > 0.15, every fixing strain in every simulation without exception
lay in critical strip I, II, or III. Note that in reality there are an infinite number of these parallel
critical strips, repeating whenever the maturation time is an integer multiple of the drug period.
The finite number observed is simply because of the maximum m value we chose to simulation.

As in the single-strain model, we observed “under-synchronization”. The reproductive success
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seemed to be highest for strains whose lifecycle lengths are slightly less than integer multiples
of the length of the interval between drug doses, with the optimal offset a decreasing function of
f . As explained in §4.2, we hypothesize that this offset is due to the benefit of maturing near
the start of an window in time where the drug is off. Since these windows open earlier for lower
f -values, the expected optimal offset is larger there. However, if that were the sole constraint on
optimal lifecycle length, then the relationship between optimal offset and f would be expected to
be linear, which it is not. One possible explanation is that at sufficiently low f , the off-window is
wide enough compared to the expected lifetime of a mature infected cell that the cell has a good
chance of spending all of this phase of its lifecycle in an off-window even if it had matured in
the middle rather than at the beginning of one, and this reduces the selective pressure to mature
near the beginning of the window. The observed sublinear relationship between optimal amount
of “under-synchronization” and f may thus reflect the combined effects of these two selective
pressures.

Interestingly, although strains in critical strip I fix far more often than those in strip II or III
strains over much of the Goldilocks regime, they do not have higher equilibrium infection levels
when they fix. The fixation probability difference is thus hypothesized to reflect the difference
in the speed of growth of different strains. Since critical strip I strains have the shortest lifecycle
time, they can build up their populations most quickly, and are therefore expected to be the least
vulnerable to stochastic extinction early on in treatment. This increased reproductive speed comes
at the price of having more viral generations in a given length of time that must be precisely
timed to mature near off-windows. Consequently, when the off-window narrows for higher drug
efficacies,the advantage of rapid generation time becomes an Achilles heel, and it becomes less
easy to build up the large population numbers. This is consistent with the observation that as f
increases in the Goldilocks regime, first strip II and then strip III strains overtake strip I in strains
in cumulative fixation probability.

We also observed distinct differences in the average fixation times between the different regimes.
In the low-f regime, time to fixation averaged approximately 2500 days, in the Goldilocks regime
a typical value was 1500 days, while no strain survived even three weeks in the high-f regime.
These patterns, and the abrupt transitions in average fixation time between them, support the use
of a tripartite classification of simulation outcomes.
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4.3.2 Model variations

The results of the baseline model demonstrate that synchronization of the viral lifecycle with
the drug dosing schedule was an extremely powerful competitive advantage when multiple strains
are struggling to fix in a host. This synchronization lead the emergence of cryptic resistance,
whereby infection levels could grow to near pre-treatment values even in the presence of ordinarily
suppressive drug treatments. To further probe the biological realism of these results, we decided
to relax some of the assumptions that we hypothesized to have contributed to the emergence of
cryptic resistance, but were known to be less exact in a real human patient than allowed for in the
model. We investigated five alternate formulation of the model parameters, both individually and
combined. These variations are summarized in Table 3.

Table 3: Variations of the model used to examine the emergence of cryptic resistance under more
biologically-relevant scenarios

Case Description Details

1 Pharmacologically-realistic drug dynamics b(t)→ b/(1 + (D(t)/IC50)
M),

D(t) = Deqe
kt

2 Immature infected cells may die dw = 0.2
3 Time to cell maturation can vary t ∼ Gamma( 1

mi
, σ), σ = 0.30d, ∀

strains i
4 Time between drug doses can vary t ∼ Gamma(T, σ), σ = 0.30d
5 Patient imperfectly adherent to treatment P (non-adherance) = 0.3

Firstly, the assumption that a drug is only “on” or “off”, and that suppression is completely
when it’s on and absent when it’s off, is obviously not realistic. In reality, the combination of
pharmacokinetics (changes in drug levels in the body over time after a dose is taken) and phar-
macodynamics (the concentration-dependent effect that drug has on viral replication) lead more
continuous changes in drug levels. We investigate these dynamics in Case 1. Secondly, the drug
dynamics may not be perfectly periodic, because drug doses may not be taken at the exact same
time each day. In Case 4, we allow the time between doses to vary. Thirdly, for many drugs it
is well-established that patients are not perfectly adherent to treatment. In Case 5 we allow for
patients to skip doses. Fourthly, the assumption of immortality for immature infected cells is not
realistic. At minimum, even if early stage infection was completely benign, the death rate should
be at least equal to that of uninfected cells. In Case 2 we allowed for dw > 0. Finally, it is unrea-
sonable to believe that immature cells mature after an exactly fixed time interval. In Case 3, we
allow for variance in the time to maturation for a given strain.
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In the subsequent sections, we determine if cryptic resistance can still emerge in the presence
of these more realistic dynamics.

4.3.3 Case 1: Drug dynamics follow realistic pharmacologic functions

Figure 7: Case 1: Results of the multi-strain model with realistic drug dynamics. Drug dynamics were
modeled with peak-and-exponential-decline pharmacokinetics and Hill-curve pharmacodynamics. For each
drug level f , strains with maturation times between 1 and 7 days were started at equal levels in the population
and simulated until only a single strain remained. f is the fraction of time the drug is on in the on-off switch
model of drug dynamics. a) The fixation probability (red gives highest probability) as a function of the
maturation rate (m) for a given drug efficacy. b) The average equilibrium level of mature infected cells (red
gives highest probability) as a function of the maturation rate (m) for a given drug efficacy. c) The mean
time to fixation of a single strain as a function of the drug efficacy.

We sought to construct a more realistic description of how drug levels change over time, and
how this affects viral fitness. Because of the importance of ”on” and ”off” windows of drug in
the simpler switch model, we hypothesized that the drug dynamics may play an important role in
promoting or inhibiting the emergence of cryptic resistance.

To model drug dynamics, we chose a simple and commonly used description. We assumed that
drug concentrations increased to their maximum value immediately after a dose was taken, and
then decayed exponentially until the next dose. If each dose increases the drug concentration by an
amount C0, then eventually the dynamics reach a periodic steady state in which the amount of drug
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eliminated from the body between doses exactly equals the amount added with each subsequent
dose. In this steady state, D(t) = Deqe

−k(t−t∗), where Deq = D0

1−e−kT and t∗ is the time of the
most recent drug dose. The decay parameter k is related to the drug’s half-life by the expression
k = ln(2)/t1/2.

We also need a function to describe how the infection rate depends on the drug levels. For most
drugs, the action can be described by a sigmoidal “Hill-curve” equation, b(t) = b0

1+(
D(t)
IC50

)M
. Here b0

is the infection rate in the absence of the drug, D(t) is the concentration of the drug at a particular
time, IC50 is the drug concentration at which the infection rate is halved, and m is a parameter
describing the steepness of the curve.

The model was identical to the baseline model except for the drug dynamics which gave b(t).
For parameter values, we chose D0 = 50, 000IC50 and m = 1. For each f -value tested in the
baseline model, a corresponding k-value to be tested was defined by solving for k in the equation

T∫
0

1

1 +
(
Ceqe−kt

IC50

)M dt =

T∫
fT

(1− f)Tdt

so that the average rate of infection in corresponding simulations would be equal and thus
results would be comparable.

The results of Case 1 were largely identical to those of the baseline model. We also exhibited
a three regions of dynamics as a function of k, directly analogous to that exhibited in the baseline
model a function of f : A high effective drug concentration regime prevailed for k corresponding
to f ≥ 0.94, a Goldilocks regime extended over the range of k-values corresponding to f ∈
[0.08, 0.93], and a low effective drug concentration regime at k-values corresponding to the lowest
f -values of the baseline model.

The one noticeable effect of the Hill curve drug dynamics on the simulation results seems to be
an increased width of critical strips I-III relative to that seen in the baseline model. Critical strips
average 0.20 days in width, which is significantly wider than the 0.14 d seen before. This extra
thickness is consistent with the belief that the realistic drug dynamics decrease the sharpness of
fitness fluctuations in between doses, thereby lessening the precision of timing required to make
cryptic resistance work and consequently expanding the range of m-values that are able to sustain
it. Re-running this case with D0

IC50
taking on different values between 103 and 107 appeared con-
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firmed this hypothesis. The width of the critical strips was a decreasing function of D0

IC50
, and the

larger D0

IC50
, the more “step-function-like” C(t) became. As in the baseline model, however, there

was no difference in any of these case 1 simulations between strains’ equilibrium mature infected
cell populations at fixation. Thus, the only notable effect of adding realistic drug dynamics to the
model seems to have been an increase in the range of maturation times that could lead to cryptic
resistance. However, this affected solely the fixation probability and not the equilibrium infec-
tion level. Overall, cryptic resistance could still emerge despite the introduction of realistic drug
dynamics.

4.3.4 Case 2: Immature infected cells can die before maturing

Figure 8: Case 2: Results of multi-strain model with death of immature cells. In this figure,dw = 0.2d−1

and immature infected cells died with time to next immature infected cell death of strain i exponentially
distributed with mean 1

dww
. For each drug level f , strains with maturation times between 1 and 7 days

were started at equal levels in the population and simulated until only a single strain remained. f is the
fraction of time the drug is on in the on-off switch model of drug dynamics. a) The fixation probability (red
gives highest probability) as a function of the maturation rate (m) for a given drug efficacy. b) The average
equilibrium level of mature infected cells (red gives highest probability) as a function of the maturation
rate (m) for a given drug efficacy. c) The mean time to fixation of a single strain as a function of the drug
efficacy.

The only difference between Case 2 and the baseline model is that in Case 2, immature infected
cells can die, and the time to the next death of an immature infected cell of strain i is exponentially
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distributed with mean 1
dwwi

= 1
0.2wi

. However, the fixation probability landscape, mean time to
fixation, and equilibrium infected cell population landscapes of Case 2 are vastly different from
those of the baseline model. While the behavior of Case 2l can still be broadly classified into a
low-drug-effectiveness regime (f < 0.27), a Goldilocks regime (f ∈ (0.265, 0.9)), and a high-
drug-effectiveness regime (f > 0.9), the Goldilocks regime in Case 2 covers a far smaller range
of f -values in Case 2 than in the baseline model (Figure 8a). This suggests that the possibility of
infected cell death in the early-infected stage has a significant adverse impact on the competitive-
ness of strains that synchronize lifecycle length with the dosage cycle strains because they have
to spend more time in the immature stage of the viral lifecycle than faster-reproducing strains do.
This fitness difference is also reflected in the fact that in the absence of a drug, R0 =

λkbm
dxdy(m+dw)c

is
a decreasing function of lifecycle length when all other parameter values are held constant. Conse-
quently, the fitness reduction imposed by the drug needs to be higher in Case 2 than in the baseline
model for the benefits of drug-virus synchronization to outweigh the fitness cost of increased attri-
tion of early-stage infected cells imposed by the longer lifecycle.

This analysis of the dynamics of Case 2 accords well with the observed differences in the shapes
and sizes of the critical strips in Case 2 and the baseline model. In stark contrast to the baseline
model, strip I strains are the only ones to fix in any of the simulations conducted over the majority
of the Goldilocks regime f ∈ (0.30, 0.70). Strip II and III strains are entirely absent over most
of this range, fixing with (small) nonzero probability only above f = 0.70, and even there, strip I
strains fix the vast majority of the time. This dominance of strip I is almost certainly a testament
to the major fitness impact of early-stage infected cell death on cryptic resistance-capable viral
strains. Strip II and III strains, which have to spend over 2 and 3 times as long, respectively, as
strip I strains in the early-infected stage of the viral lifecycle, experience so much more attrition
in these lifecycle phases than do strip I strains that they are outcompeted almost all of the time in
the Goldilocks zone. Even when they do fix, their equilibrium population levels are far lower than
those of strip I strains (Figure 8a).

Another noteworthy difference between the baseline model and Case 2 lies in the behavior of
the model in the low-drug-effectiveness regime. In the baseline model, this regime is characterized
by a more-or-less uniform distribution of fixation probabilities across the various strains (Figure
5a), reflecting the fact that all have identical R0-values in the absence of drug (which is indeed the
state of affairs more than 90% of the time in this regime), and thus probably approximately equal
fitness as well. In Case 2, however, the low-drug-effectiveness regime is dominated by strains in
critical strip 0, which contains the only strains able to fix in any simulations conducted in this
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regime. This seems to be yet another reflection of the powerful pressure exerted by dw in favor of
rapid progression of infected cells to maturation.

The addition of a nonzero dw to the bas appears to have some subtler effects on the shape
of critical strip I as well. The strip is centered near f = 1.6 in this model, lower than in the
baseline model, and at 0.40 d in width is far broader than the critical strips of the baseline model.
Like the rest of the differences between this model and the baseline model, these features are
believed to be a reflection of the trade-off between fast reproduction and cryptic resistance, which
favors fixation of strains which compromise slightly imperfect drug-virus synchronization with
faster reproduction times and thereby allows a greater number of more poorly-synchronizing viral
strains to have comparable viral fitness to more precisely synchronizing strains, smoothening the
fixation probability landscape.

Overall, Case 2, unlike Case 1, had a profound effect on the dynamics of the model. When the
fact that (real life) nonzero dw favors faster viral reproduction is accounted for, the fitness landscape
of the Goldilocks zone undergoes what can only be described as a sea change. Its lower reaches
in the baseline model become part of the low-concentration zone, and the remainder shifts from
slightly favoring strip II and III strains to seeing strip I strains enjoy an overwhelming competitive
advantage over all others, and equilibrium population of the fixing strain becomes a decreasing
function of 1

m
and thus of lifecycle length. These changes appear to confirm our intuition that the

principal effect of newly-infected cell attrition is to introduce selection pressure in favor of faster
viral reproduction. Indeed, when the Case 2 simulations were re-run several times with different
values of dw between 0.05 and 0.40 d−1, the Case 2-specific dynamics of the model were more
pronounced for larger dw.

However, it is a testament to the powerful advantage afforded by cryptic resistance that the
selective pressures brought about by changes of model Case 2 are still sufficiently weak even at
dw = 0.4d−1 that CRC strains can outcompete faster-reproducing strains that have greater R0-
values in the absence of the drug.The vast majority of f -values remain part of the Goldilocks zone,
and cryptic resistance easily and consistently outcompetes rapid reproduction as a viral reproduc-
tive strategy in that zone.

4.3.5 Case 3: The time to maturation is variable

For model Case 3, the distribution chosen to model time to maturation for each strain was a
Gamma distribution whose mean was the reciprocal of its mi-value and whose standard deviation
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Figure 9: Case 3: Results of multi-strain model with variable time to maturation. Time to maturation
of immature infected cells of strain i was assumed to be Gamma-distributed with mean 1

mi
and standard

deviation 0.30 d. For each drug level f , strains with maturation times between 1 and 7 days were started
at equal levels in the population and simulated until only a single strain remained. f is the fraction of time
the drug is on in the on-off switch model of drug dynamics. a) The fixation probability (red gives highest
probability) as a function of the maturation rate (m) for a given drug efficacy. b) The average equilibrium
level of mature infected cells (red gives highest probability) as a function of the maturation rate (m) for a
given drug efficacy. c) The mean time to fixation of a single strain as a function of the drug efficacy.

was 0.30 d. The Gamma distribution was chosen because it allowed mean to be controlled inde-
pendently of variance, and the variance of the distribution was held constant at 0.30 d for each
strain to ensure that the mean absolute deviation of each strain from perfect synchronization would
be the same.

The results of this model were almost identical to those of Case 1 – similar in all main points
to the baseline model, but with broader (0.30 d) critical strips believed to stem from the fact that
Gamma-distributing the time to maturation, like Hill curve drug dynamics, diminished the effec-
tiveness of cryptic resistance capabilities in ensuring reproductive success and thereby levelled the
fitness differential between strains with CR-optimal lifecycle lengths and those with slightly less
optimal lifecycle lengths for CR purposes.

The one key difference between the baseline model and Case 3 was that strip I strains were
not as heavily favored for fixation in the Goldilocks regime of Case 3 as they were in the baseline
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model. This is believed to reflect the fact that the variance of the distribution of time to maturation
was held constant between the different simulations. This caused the variance in the sums of the
maturation times of three successive generations of a strip I strain to be nine times that of the
variance of the maturation time of the single generation of a contemporaneous strip III strain. As a
result, the expected “synchronization drift” was much more severe in the faster-reproducing strains
than in the slower-reproducing ones, making the strip III strains better able to consistently reap the
benefits of cryptic resistance than could those in strips I and II. Furthermore, when this case’s
simulations were re-run with different σ between 0.10 and 0.50 d, the degree to which strip III
strains were favored in the Goldilocks regime was an increasing function of σ.

Overall, therefore, like Case 1 and Case 2, the changes brought about in Case 3 mitigate the ad-
vantages of cryptic resistance but not nearly enough to prevent strains capable of cryptic resistance
from dominating a wide Goldilocks regime.

4.3.6 Case 4: The time between drug doses is variable

As in Case 3, a Gamma distribution was chosen to model a probabilistic phenomenon – this
time, the time until the next drug dose, which was assumed to be Gamma-distributed with mean
T and variance 0.30 d in order to make this simulation’s changes analogous to those of Case 3. It
was suspected that this model, like Case 3, would be dominated by the effects of the modification
on maturation timing, and thus show similar trends to Case 3. However, while Case 3 strongly
resembles the baseline model and Case 1 in its outcomes, Case 4 looks strikingly different. Strip I
is far more strongly favored in Case 4 than in Case 3, to the point where strip III is so faint as to be
entirely absent throughout all but the very edges of the Goldilocks regime in parameter space, and
the mean time to fixation for simulations conducted under the Goldilocks regime of Case 4 are far
lower than those of the analogous simulations in Case 3 and the baseline model (Figure 10).

A careful consideration of these discrepancies reveals that they support, rather than contradict,
the hypothesis that the same dynamics of variance dominating Case 3 drive Case 4 as well. By
the same reasoning as in Case 3, the variance in the timing between a drug dose and the one after
the one after the one after it is nine times as great as that between a drug dose and the succeeding
one. However, in Case 3, each infected cell’s maturation time is independent of the others’, so
given a sufficiently large population of infected cells of a given strain, in every generation there
will be a non-negligible probability that at least one will mature at an opportune time near the
beginning of a window and stave off extinction for the strain. However, in the case of Case 4, the

33



Figure 10: Case 4: Results of multi-strain model with variable times between drug doses. Time to the
next drug dose was assumed to be Gamma-distributed, with mean T = 2 d and standard deviation 0.30 d.
For each drug level f , strains with maturation times between 1 and 7 days were started at equal levels in the
population and simulated until only a single strain remained. f is the fraction of time the drug is on in the on-
off switch model of drug dynamics. a) The fixation probability (red gives highest probability) as a function
of the maturation rate (m) for a given drug efficacy. b) The average equilibrium level of mature infected
cells (red gives highest probability) as a function of the maturation rate (m) for a given drug efficacy. c) The
mean time to fixation of a single strain as a function of the drug efficacy.

same variation in drug timing affects all cells alive in a given generation simultaneously; a single
unusually early drug dose will have a high probability of killing off large numbers of cells in a
“mass extinction event” against which the best protection is the large population size enjoyed by
the strain that ultimately fixes. As a result, the number of strains alive is quickly reduced, sharply
cutting mean fixation time relative to Case 3 and the baseline model, but the equilibrium infected
cell populations of the surviving strain are approximately equal to what they were in Case 3 and
the baseline model. Since strip I strains can increase in population far more rapidly than strip II
or III strains, they are far less vulnerable to these mass extinction events, and thus fix far more
frequently over the main part of the Goldilocks regime. (The boundary between the Goldilocks
regime and the high-drug-effectiveness regime, the only part of the Goldilocks regime where strip
III strains fix more frequently than strip I strains, is dominated by a different dynamic mentioned
above in the discussion of the baseline model that favors strip III strains over strip I strains in that
same region in model the baseline model.) Thus, the net effect of Case 4, like that of Case 2 is to
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preclude the development of viable strip II and III CRC strains by exerting selective pressure in
favor of rapid reproduction. Unsurprisingly, the severity of this pressure proved to be an increasing
function of σ when this case’s simulations were re-run with different σ between 0.10 and 0.50 d.

4.3.7 Case 5: Patient adherence to treatment is imperfect

 

 

f

1/m (d)
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

f

1/m (d)
2 4 6

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

M
ea

n 
T

im
e 

to
 F

ix
at

io
n 

(d
)

f

0

0.05

0.1

0.15

0.2

0.25

0.3

0

20

40

60

80

100

(a) (b)

(c)

Figure 11: Case 5: Results of model with imperfect patient adherence to treatment. Imperfect adher-
ence was modeled by mandating that each scheduled drug dose was taken as planned with probability 0.7,
and skipped with probability 0.3. The adherence or lack thereof to each scheduled drug dose was assumed to
be independent of all other events in the simulation, including the adherence or lack thereof to other sched-
uled drug doses. For each drug level f , strains with maturation times between 1 and 7 days were started
at equal levels in the population and simulated until only a single strain remained. f is the fraction of time
the drug is on in the on-off switch model of drug dynamics. a) The fixation probability (red gives highest
probability) as a function of the maturation rate (m) for a given drug efficacy. b) The average equilibrium
level of mature infected cells (red gives highest probability) as a function of the maturation rate (m) for a
given drug efficacy. c) The mean time to fixation of a single strain as a function of the drug efficacy.

To simulate imperfect patient compliance with the drug treatment, the baseline model was
altered by making the time to the next drug dose equal to the product of T with a geometric-
distributed random variable of mean 10

7
. With selective pressure for CR temporarily vanishing

from time to time, it is easier to build up a significant population of infected cells and thus the
slower reproduction of strip III strains is less salient to their fixation probability and they fix more
frequently than in the baseline model. However, this is the only difference of any significance
between the baseline model and Case 5, and incorporating the 30% noncompliance rate of Case 5
does little to prevent cryptic resistance from remaining a viable reproductive strategy (Figure 11).
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Even when the simulation was re-run with non-compliance rate as high as 50%, cryptic resistance
was still a dominant strategy over a broad Goldilocks zone.

4.3.8 Combination of Cases 1 – 5

Figure 12: Results of incorporating all the changes of Cases 1-5. For the final simulations combining
all cases, parameter values were set to D0

IC50
= 50000, dw = 0.2d−1, σdrug dose = 0.30d, padherence = 0.7,

and = σmaturation time = 0.30d given adherence to the next drug dose. For each drug level f , strains with
maturation times between 1 and 7 days were started at equal levels in the population and simulated until
only a single strain remained. f is the fraction of time the drug is on in the on-off switch model of drug
dynamics. a) The fixation probability (red gives highest probability) as a function of the maturation rate
(m) for a given drug efficacy. b) The average equilibrium level of mature infected cells (red gives highest
probability) as a function of the maturation rate (m) for a given drug efficacy. c) The mean time to fixation
of a single strain as a function of the drug efficacy.

In a final confirmation of the viability of cryptic resistance as a viral reproductive strategy,
all the cases were incorporated into one set of simulations, with D0

IC50
= 50000, dw = 0.2d−1,

σdrug dose = 0.30d, padherence = 0.7, and = σmaturation time = 0.30d given adherence to the next
drug dose. Combining cases did not lead to any new effects; at the parameter values tested, each
combination essentially resembled one of the models whose changes it incorporated, while show-
ing subtle signs of influence from the other changes. Moreover, there was a clear hierarchy of
importance of the different modifications made to the baseline model on the dynamics of the sys-
tem. Case 2, which selected against long maturation times, was dominant. Any model containing
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its modification featured a sharp critical strip 0 in the low-drug-effectiveness regime and a critical
strip I but no II or III in the Goldilocks regime. The second most important modification was that
of Case 4, whose influence was also characterized by a critical strip I but little or no II or III in
the Goldilocks regime and no critical strip 0 in the low-drug-effectiveness regime. Next was the
modification of Case 5, which allowed for the presence of all three critical strips in the heart of the
Goldilocks regime but somewhat strongly heavily favored III over II over I near the border of the
high-drug-effectiveness regime. Case 3, which favored III and II in the Goldilocks regime slightly
more than the baseline model and slightly broadened all three critical strips, was only dominant
over Case 1, which was not dominant over anything. The only exceptions to this otherwise strict
hierarchy were the simulations combining cases (3, 4, 5) and (1, 3, 4, 5), which resembled Case 3
and Case 5 even though Case 4 is dominant over both Case 3 and Case 5. This is believed to be
because Case 3 and Case 5 both favor critical strip II and III strains, which Case 4 disfavors, and
Case 4 is not sufficiently more powerful than either that it can dominate the dynamics of a model
which also incorporates both Case 3 and Case 5.

In accordance with this hierarchy, the most realistic model incorporating all five changes of
models Case 1-Case 5 behaved like Case 2 (Figure 12). While critical strip I was extremely wide
(0.80 d) and the Goldilocks regime much smaller (k corresponding to f ∈ (0.4, 0.7)) in the former
than the latter, this is consistent with the lesser but still non-negligible combined influence of the
other modifications, of which (1, 4) tended to broaden critical strips and all of which reduced
the effectiveness of CR as an evolutionary strategy. Nevertheless, despite the presence of all 5
modifications, critical strip I strains have a clear evolutionary advantage over all others at drug
effectivenesses in the Goldilocks regime, a significant swathe of parameter space, and CR-capable
strains are able to maintain an equilibrium population of 60-70 infected cells (cf 100 in model the
baseline model in the low-drug-effectiveness regime) of the drugless infected equilibrium value,
far too high to consider the virus eradicated.

5 Discussion

The results of the probabilistic simulations strongly suggest that cryptic resistance is a powerful
strategy for increasing the fitness of viral strains in the face of a (somewhat) regularly-administered
antiviral drug dose. Strains synchronizing their lifecycle lengths with the antiviral drug dosage
schedule achieve higher equilibrium populations and fix with far higher probability than all other
strains under a wide range of drug effectivenesses in the final, most realistic model. These abilities
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proved robust to fluctuations in timing of drug doses and timing of viral maturation, and are there-
fore likely to be present in actual biological systems. The main constraints on cryptic resistance in
biologically realistic regimes appear the limitation on lifecycle length imposed by immature cell
mortality and irregularity of drug dose timing, both of which preclude any but strip I strains from
viably employing cryptic resistance as a reproductive strategy. Furthermore, because cryptic does
not rely on aspects of the viral lifecycle or antiviral drug dosage patterns that are specific to one
particular drug or virus, nor is it particularly sensitive to the value of f , it is plausible that cryptic
resistance could play a significant role in the emergence of resistance to a wide variety of drug
treatments in a wide variety of viral populations.

Any mathematical system used to understand a biological phenomenon such as cryptic resis-
tance must in accurately represent the important features of the underlying biology if it is to be
meaningful. The most obvious biological concern about the proposed “cryptic resistance” sce-
narios is, “How could a virus control the length of its own lifecycle?’ Viral genomes are often
so simple that it is hard to imagine them being capable of possessing the complexity needed to
evolve a biological timekeeping mechanism. Moreover, as no virus has been observed to possess
such a mechanism (to our knowledge), the number of mutations likely needed for a viral popula-
tion to evolve such a mechanism de novo over the course of a single infection makes it a highly
improbable development.

While the obstacles a viral population would need to overcome to develop a true timekeeping
mechanism may be insurmountable, there is a far simpler way a viral mutation could crudely affect
the rate at which it completes its lifecycle: by altering the ease with which certain tasks along the
lifecycle can be completed. For example, a key step in the viral lifecycle is the hijacking of cellular
machinery to translate viral proteins and assemble them into new virus particles. Mutations to pro-
moter regions of viral genes, such as transcriptases, could affect the affinity of cellular translation
machinery for them and thereby increase or decrease the length of the time between when viral
gene expression starts and when new virions are released from the host cell. We have called this
time the “maturation time”. Alternatively, mutations to the viral proteins that recognize and bind
receptors on target cell membranes may alter the rate of virus entry, thereby altering the expected
duration of the “release and re-infect time” comprising the duration of the “free virus” stage of
the viral lifecycle. Mechanisms like these could allow simple, feasible point mutations in the viral
genome to lead to significant changes in viral lifecycle length, allowing this length to synchronize
with the time interval between doses of the antiviral drug.
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Throughout this paper, we have assumed that the drug targets either the production and release
of viral particles or the infection of new host cells by free virus. Consequently, we have assumed
that it was the maturation time of the virus that could be varied and could evolve in the presence
of drug treatment. However, the alternative scenario could have been examined, in which the drug
acts to prevent maturation of infected cells, and the virus may instead vary the release and re-infect
time. Which scenario is more likely may depend on a few factors. One is how and where the
drug acts: if it works extracellularly by binding free virus particles, or if it acts intracellularly and
binds viral proteins or genes. The second is what type of mutations can alter the lifecycle time
without having detrimental fitness costs for the virus. While changes to viral proteins would likely
be needed to alter the “release and re-infect time”, either viral proteins or viral genetic regulatory
elements could be altered to vary the “maturation time”. We expect that similar results to hold
independent of the choice between these two scenarios, and hope to investigate this question in
future work.

Needless to say, further work is needed to confirm the existence of cryptic resistance through in

vivo or in vitro studies. If it exists in nature, its power to disrupt antiviral treatments would be sig-
nificant, and it may help explain why the rate of failure of antiviral drug treatment is not any lower
than it is. Fortunately, even if cryptic resistance is indeed widespread, it should be relatively easy
to prevent. Since it thrives on regular fluctuations in drug concentration, administering antiviral
drugs continuously via IV instead of periodically in pill form would preclude it from developing
entirely, boosting the probability of success of antiviral drug drug treatments significantly without
the monetary and temporal cost of developing novel antiviral drugs.
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