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Abstract

This thesis addresses the intersection of two important areas in epidemiology and statistics:
genetic linkage analysis and missing data methods, respectively. Genetic linkage analysis is a
promising method in viral epidemiology which involves learning about transmission patterns
by studying clusters of similar gene sequences. For example, similar sequences found in a
pair of geographically distinct communities may imply disease transmission between the two
locations. However, this analysis is sensitive to missing data, which can introduce substantial
bias. This thesis presents a multiple-imputation approach which corrects for much, though
not all, of the bias in genetic linkage analysis. It also introduces a novel resampling-based
approach that generates a weighted distribution of complete datasets and is even more
effective than imputation for reducing bias. This work highlights the importance of missing
data in genetic linkage studies and presents ways to provide more accurate epidemiological
information by correcting for missing data. The new resampling-based approach presented
in this paper is also general enough to be applied to many types of missing-data problems
involving complex datasets; such broader applications are a promising avenue for future
research.1

1Code used in this thesis is available on Github at https://github.com/gabeerion/thesis_2015
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Chapter 1

Introduction

Inference in the presence of missing data is one of the most difficult problems in statistics,

and a substantial body of literature addresses methods for performing such inference. One

arena in which missing data becomes uniquely challenging is in the epidemiology of infec-

tious disease. A powerful new idea in this field is that genetic sequence data of infectious

microorganisms can be used to reconstruct information about the transmission networks

along which diseases spread. This Viral Genetic Linkage (VGL) analysis relies on the idea

that genetically similar microbes that infect different patients are likely to share a common

evolutionary ancestor, implying that the infected patients are part of the same transmis-

sion chain. Epidemiologists have documented the ability of VGL to infer properties such

as transmission rate, degree of disease exchange between communities, and even drug resis-

tance. However, the fact that VGL relies not only on the distribution of individual genotype

data but also on relationships between pairs of data points makes it particularly sensitive

to missing data.

13



14 CHAPTER 1. INTRODUCTION

In this thesis, I present several increasingly sophisticated methods to correct for miss-

ingness in genetic sequence data, and demonstrate the ability of these methods to improve

VGL analysis and epidemiological inference using a viral genetic dataset collected from HIV

patients in Mochudi, Botswana. The first approach, multiple imputation, involves building

a biological model to simulate missing gene sequence data. The second approach uses a re-

sampling procedure to search for datasets that “fill in” missing gene sequences and maximize

the likelihood of the incomplete dataset we did observe. Finally, I explore methods that

generate a distribution of complete datasets, with higher-likelihood datasets given greater

weight.

This thesis makes several contributions to the statistical and epidemiological literature.

First, it demonstrates the bias that missing data can introduce in epidemiological studies

of infectious disease, particularly VGL analysis. Second, it introduces a collection of novel,

well-founded methods for general statistical inference in the presence of missing data. Fi-

nally, it demonstrates the effectiveness of these methods in the context of genetic sequence

data and epidemiological inference by substantially reducing the bias in VGL analyses of

HIV. My hope is that the availability of such methods will improve the tools policymakers

and public health practitioners use in infectious disease policy and practice.1

1.1 HIV in Botswana

Botswana is one of the countries hardest-hit by the HIV epidemic and also one of the first

African countries to implement a strong national response through testing and treatment.

Historically, Botswana has had one of the highest HIV prevalences of any country; a 2011

study found prevalence to be 30.4% among women aged 15–49 [1]. Studies credit HIV/AIDS

1All code written for this thesis is publicly available on Github at https://github.com/gabeerion/

thesis_2015

https://github.com/gabeerion/thesis_2015
https://github.com/gabeerion/thesis_2015
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with a staggering 28-year decrease in life expectancy in Botswana between 1990 and 2006 [2].

One of the first major interventions undertaken by the government was a prevention of

mother-to-child transmission (PMTCT) program begun between 1999 and 2001. Provision

of free antiretroviral therapy (ART) began in 2002 and has been scaled nationwide [2]. The

government of Botswana estimates that 67% of the total HIV-infected population is receiving

antiretroviral therapy [1]. The government is continuing to work to increase access to ART,

particularly among pregnant women, difficult-to-reach or stigmatized populations such as

men who have sex with men (MSM), and individuals who have high risk for infection or for

transmitting the disease.

The data used in this study was collected from Mochudi, Botswana, a community of over

44,000 people in southeastern Botswana. Since 2011, a pilot study in Mochudi has performed

community-wide household surveys, provided HIV testing, and offered lab testing for viral

load and CD4 count to HIV positive participants. The pilot study was itself a precursor to

a larger planned study that would extend these services to 30 communities across Botswana

and provide treatment for all patients with viral loads above 10,000 copies/mL [3]. The

dataset analyzed in Chapter 2 represents 371 HIV subtype C gene sequences collected by

the end of the first phase of the study in spring 2012. The data used in Chapters 3 and 4

consists of 1248 sequences collected between the beginning of the study in 2011 and summer

2014. The sequences are all from the V1C5 region of the env gene, aggregated as a multiple

sequence alignment.

1.2 Viral Genetic Linkage Analysis

The core idea of Viral Genetic Linkage analysis is that genetic sequence similarity of infec-

tious agents implies a common microbial ancestor. This allows us to draw various useful
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epidemiological conclusions: for example, if many sequences in a community are genetically

similar, the disease in question may be spreading quickly without time to accumulate mu-

tations. If similar genetic sequences are found in geographically distinct communities, this

may imply transmission between the two, and so on.

1.2.1 VGL Method

More formally, we can represent sequence data as an n × m matrix, where there are n

patients in the population and a gene sequence of m sites is collected from each patient. We

consider only datasets consisting of aligned sequences, which is reasonable considering that

VGL is based on assessments of sequence similarity. Thus we might have an alignment A

like the following:

A =



A T G C C . . .

A T G T G . . .

...
...

...
...

...
. . .

A T G C G . . .



︸ ︷︷ ︸
m sites

n sequences

Each row of this alignment is a gene sequence. It’s worth noting that this paper considers

both nucleotide and amino acid sequences — any strings between which meaningful dis-

tance metrics can be constructed will suffice. In general, the strings have characters drawn

from an alphabet Σ. The number of possible characters, or |Σ|, is usually 5 for nucleotide

data (4 characters + 1 character to represent sequence gaps) and 21 for amino acid data

(20 characters + 1 gap character.) For convenience, this section will exclusively consider

nucleotide sequences. Given the alignment A, the row i represents the HIV gene sequence
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collected from one patient. It can be written as

si =

[
A T G C G . . .

]

The core step in VGL analysis is to form clusters of genetically similar sequences, which

will form the basis for epidemiological inference. There are many ways these clusters can

be defined. Phylogenetic methods that involve building a tree are a natural way to define

clusters; branch length and preservation of proximity across bootstraps can be used to assign

sequences to clusters [4–6]. Genetic distances between sequences can also be used to create

clusters. One method is simple hierarchical clustering; another approach involves building

a graph where nodes represent sequences and edges represent pairs of sequences that are

separated by a distance below a given threshold [6]. Clusters can then be constructed from

cliques or connected components in the graph. Previous work with VGL analysis in our

group has focused on this last approach: to construct clusters we build a distance matrix

and consider as clusters all connected components in the induced graph. It is worth noting

that clustering methods such as k-means are not considered in this paper. While k-means is

a simple and effective clustering method, it involves pre-specifying the number of clusters to

be found. Since this number is itself useful information, it seems preferable to use biological

knowledge about the genetic sequences in question to specify a reasonable genetic distance

cutoff and see how many clusters naturally emerge.

For the purposes of assessing sequence similarity in the population, we construct a pair-

wise distance matrix between all sequences. Let the distance matrix D be constructed such

that Dij = d(si, sj) according to some distance metric between sequences. For example,

if we use the Hamming distance (defined as d(a, b) =
∑k

i=1 I(ai 6= bi) where a and b are

strings of length k), then Dij simply represents the number of sites in the alignment where
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sequences si and sj feature different nucleotides. Hamming distance is a very simple met-

ric, and does not account for differential rates of mutation between different nucleotides or

different frequencies of mutation at different sites in a sequence. Evolutionary biologists

have developed many more complex metrics of genetic distance, which use known mutation

frequencies to estimate the evolutionary time required to mutate one sequence into another.

This study uses Hamming distance for simplicity; however, it’s important to note that one

advantage of VGL is that it can incorporate arbitrary distance metrics. A simple and ef-

ficient or complex and biologically realistic model can be used as desired, so long as it is

possible to construct a pairwise distance matrix.

For example, if we have the very small alignment

A =



A T G C C G G

A T G T C G G

A T G C C G G

A T G T G G G

A T G A A G G


Then the resulting distance matrix is

D =



0 1 0 2 2

1 0 1 1 2

0 1 0 2 2

2 1 2 0 2

2 2 2 2 0


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To form clusters, we need to choose a genetic threshold distance t below which we

consider sequences similar enough to share a cluster. In general, one would like this distance

to be chosen with some prior knowledge about expected genetic diversity of the infectious

agent. If the maximum possible genetic distance is dmax, sequences si and sj cluster if

d(si, sj) ≤ tdmax. In the case of Hamming distance, dmax = m because no sequence can

differ from another at more than m sites. For illustration, if we choose the arbitrary threshold

t = 0.25 so that the threshold distance is tm = (0.25)(7) = 1.75, then two sequences si and

sj are considered “linked” if d(si, sj) ≤ tm = 1.75. The adjacency matrix for the resulting

graph, which will also be called the “clustering matrix”, has entry i, j equal to 1 if si and

sj are linked and 0 otherwise. Formally, Mij = I(Dij ≤ tm)I(i 6= j) = I(Dij ≤ 1)I(i 6= j).

M =



0 1 1 0 0

1 0 1 1 0

1 1 0 0 0

0 1 0 0 0

0 0 0 0 0


Note that we remove self-loops for clarity; a “cluster of one” is considered trivial. The graph

itself can be seen in Figure 1.1. If a cluster is defined as a clique, sequences (rows) 1, 2,

and 3 form a cluster. If a cluster is defined as a connected component, as in this paper,

sequences 1, 2, 3, and 4 form a cluster.

1.2.2 Application

If highly related clusters are interpreted as possible transmission partners, the properties

of the clusters formed in VGL analysis can provide valuable epidemiological information
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Figure 1.1: Graph corresponding to
adjacency matrix M . If a cluster is
defined as a clique, sequences 1, 2,
and 3 form a cluster (dark grey). If
a cluster is defined as a connected
component, as in this paper, se-
quences 1, 2, 3, and 4 form a cluster
(light grey).

[4, 7–9]. The literature surveyed here focuses primarily on HIV, both because it has been

the focus of many efforts to leverage genetic information in public health and because studies

focusing on HIV are most closely related to the work in this thesis.

Several studies use the size of sequence clusters to infer the number of neighbors of

each patient in the transmission network; this approach also allows for direct estimation

of the basic reproduction number R0 [10–12].2 Further, [12] shows that the distribution of

cluster sizes can be used to estimate prevalence of HIV as well as R0. When temporal data

is available, the time between infections in a cluster can be used to estimate transmission

rates (the number of transmissions per unit time) [13,14]. In addition, [14] incorporates data

on infection stages to determine that transmission rates vary over the course of infection.

Viral genetic linkage analysis becomes especially useful, however, when clustering be-

tween and within communities and populations is analyzed. For example, [13] compares

transmission rates estimated from epidemics occurring within heterosexual transmission

networks to those estimated from MSM (men who have sex with men) networks, and finds

that epidemics in heterosexual populations exhibit lower transmission rates. There is par-

2The basic reproduction number R0 is the expected total number of new infections that a single infected
individual will generate in an uninfected population.
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ticularly strong public health interest in understanding which clusters new infections tend

to fall into, with the hope that targeting these clusters for treatment can reduce the rate

of new infections. Several papers have noted that new infections tend to cluster with other

recent infections [4, 15]. Drug resistance is another characteristic of interest, and sequences

featuring resistance mutations also tend to cluster together [7]. Epidemics in heterosexual,

MSM, and IDU (intravenuous drug user) populations feature different avenues of transmis-

sion and different epidemiological characteristics; viral genetic linkage analysis has shown

that sequences from any one of these subpopulations tend to cluster together [16]. However,

clusters often contain both heterosexual and IDU patients, indicating that while the MSM

epidemic is relatively isolated, cross-transmission occurs between the heterosexual and IDU

epidemics. At a broader level, VGL has been used to assess transmission dynamics between

communities. One study replicated the finding that heterosexual and MSM epidemics do

not intermix, but did find clusters spanning multiple countries and noted evidence of trans-

mission between populations in Nairobi and coastal Kenya [17]. A similar study using all

publicly available HIV-1 polymerase sequences built a global map of viral genetic linkage

between all countries and found multiple transmission clusters that crossed borders [18].

Finally, several studies attempt to use transmission networks constructed from closely

related clusters to determine how to target interventions. One study noted that the distribu-

tion of cluster sizes in MSM epidemics is so skewed that randomly distributed interventions

are unlikely to reach the small number of “superspreaders” driving the epidemic [6]. A later

study attempted to address this problem by generating risk scores from a derived transmis-

sion network and demonstrated that this score was correlated with risky sexual behavior

and risk of future transmission [19]. Simulations of interventions that targeted treatment
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to individuals with high risk scores predicted significantly reduced HIV transmission across

the whole network.

1.3 Impact of Missing Data on Genetic Linkage

Analysis

The clusters studied in Viral Genetic Linkage Analysis become challenging to work with

when data is missing because they depends on interactions between data points. Because

of these dependencies, even data that is missing uniformly at random can induce bias in

estimates. In particular, suppose that the property of interest, which we will call c, is

defined as the proportion of sequences in the dataset that fall into any cluster. That is, how

many sequences out of the total are close enough to some other sequence to fall below the

genetic distance threshold? Because sequences and the distances between them are analyzed

in a very high-dimensional space (for example, 1,000 dimensions define a 1,000-nucleotide

sequence), it is hard to visualize how deletions affect the distances between sequences.

However, the same principles apply to points in smaller spaces, like 2-dimensional Euclidean

space, as well. Later chapters will demonstrate an empirically observed bias in c as sequences

are deleted from HIV datasets (See Figures 2.1 and 2.2, as well as Table 2.1); this section

will illustrate how missingness leads to biases in the distribution of distances by examining

more easily visualized data in 2-dimensional space.

Figure 1.2 shows 128 points drawn at random from the unit square, that is with x, y ∈

(0, 1). Half of the points are deleted uniformly at random in each subplot from left to right.

As the number of points decreases (128, 64, 32, 16, 8), the average distance from each

sequence to its nearest neighbor tends to increase (0.048, 0.044, 0.055, 0.082, 0.093) while
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the proportion of points falling into a cluster tends to decrease (0.95, 0.86, 0.69, 0.63, 0.75).

The threshold distance here is a Euclidean distance of 0.1. Note that though these are

clear trends they are not monotonic. Occasionally, by random chance, the deleted points

will be those which are far away from the rest; these deletions will decrease the average

distance between points. Figure 1.3 shows histograms of the distance of each point to its

nearest neighbor, which demonstrate that the distribution of minimum distances between

points spreads out to larger and larger values as more points are deleted. In particular, the

more points are deleted, the less probability mass remains on the left side of the threshold

distance.

The overall proportion of clustering for a gene sequence alignment is calculated in the

same way and can be interpreted as the probability mass of sequences that fall left of the

threshold genetic distance, so it is vulnerable to the same mechanism of bias. As more

sequences are deleted from the dataset, the distribution of distances between sequences

becomes skewed toward larger values and less clusters emerge. Previous work has found

that, in HIV testing studies, up to 40% of data is missing (minimum response rates are 60%

among men and 70% among women) [20]. This illustrates the need for methods which can

address the biases induced by missing sequence data.

1.4 Review of Missing Data Methods

This section will survey some traditionally used methods for addressing missing data and

note their strengths and weaknesses for the Viral Genetic Linkage problem. Stef van Buuren

notes in his text Flexible Imputation of Missing Data [21] that “[t]he standard approach to

missing data is to delete them.” However, he also notes that many more effective methods
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Figure 1.2: Plots of randomly generated points in 2-dimensional space, with x, y ∈ (0, 1).
This visualization shows that as points are deleted, the average distance between points
increases. When distance metrics are used to define clusters, fewer clusters will be observed
as points are deleted, even if deletions are uniformly random. The bias introduced in VGL
sequence analysis is exactly the same but in a much higher-dimensional space.

Figure 1.3: Histograms of the distribution of the distance from each random point in 2-
dimensional space to its nearest neighbor for 128, 64, 32, 16, and 8 points (left to right).
The distribution of these minimum distances starts out very skewed to the left, with most
distances very small. As more points are deleted, the distribution spreads toward greater
distances. The red line indicates the Euclidean distance below which points are defined
to cluster together, analogous to genetic distance in VGL; note that, as points are deleted
and the mass of the probability distribution spreads to the right, a smaller and smaller
proportion of sequences will cluster together.
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have developed for addressing missing data, from heuristics to rigorously justified alorithms.3

Mechanisms of missingness and common methods for addressing missing data are discussed

below.

1.4.1 Mechanisms of Missingness

It is possible to distinguish between three types of missing data, as discussed in [22]. Methods

for addressing missingness will vary based on the mechanism by which data went missing.

• Missing Completely at Random (MCAR): In these cases, the probability that

a particular data point from the full dataset goes missing is distributed uniformly, so

that all points are equally likely to be missing. This is the least challenging scenario

because ignoring the missing data still yields a dataset that is a representative, random

sample from the population. However, as noted in the previous section, MCAR still

results in bias when the statistic of interest is a function of the distances between data

points in some space. Thus many methods that are generally assumed to work under

MCAR will not always be suitable for VGL analysis.

• Missing at Random (MAR): When data are missing at random, the probability

that a data point is missing depends on observed characteristics of the data but not on

unobserved characteristics. For example, it is possible to categorize HIV patients into

multiple demographic groups. If sequences from patients in different demographic

groups have different probabilities of going missing, but all patients within a given

group are equally likely to be missing, the data are MAR. This setting is more chal-

lenging because ignoring missing data does not result in a representative random sam-

ple. However, knowledge of which data are most likely to be missing makes it possible

3The text by van Buuren was a valuable reference in writing this section and provides more detail on all
these methods.
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to adjust for the missing data by stratifying before performing inference, reweighting

existing data points or simulating new data. This is the case that applies when we

know how many sequences in each demographic group are missing, but not what the

sequences are.

• Not Missing at Random (NMAR): Data are NMAR if missingness depends on

unobserved characteristics of the missing data; for example, if whether a sequence

goes missing depends on properties of the actual sequence. Addressing missingness

in this framework is extremely challenging, and is impossible without specifying a

model for the process by which data goes missing. In the context of HIV, sequences

would be NMAR if missingness depended on the distance between a sequence and

its nearest neighbor, which is impossible to estimate without knowing the missing

sequence. Though the NMAR setting is not explicitly studied in this thesis, so long as a

mechanism for missingness can be specified, the subsampling-based methods presented

in Chapters 3 and 4 can incorporate this mechanism to address NMAR data.

1.4.2 Methods for Addressing Missing Data

• Complete case analysis simply refers to eliminating missing data from analysis

(only studying complete cases). It has the advantage of being very simple, but is

problematic because it fails in all but the MCAR scenario. Complete case analysis

can also reduce power because the size of the dataset is reduced.

• Mean imputation involves replacing all missing values of a variable with the observed

mean of that variable and performing analysis on this “full data.” It is worth noting

that mean imputation biases the distribution of data by substantially increasing the

probability mass placed on the mean. In addition, if the observed mean is biased (as
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will occur in all but MCAR settings), mean imputation will reinforce the wrong mean.

Mean imputation is particularly problematic in the sequence analysis setting: the most

natural implementation would be to replace all missing sequences with the consensus

sequence.4 However, this causes particularly serious problems when properties of

interest depend on genetic distance, as introducing many copies of the same consensus

will result in a large number of zero genetic distances (in contrast, the datasets used

here involve the variable env gene and have no zero distances). Thus, in VGL studies,

mean imputation may be worse than complete case analysis.

• Regression imputation uses a regression model to predict values of the missing

data based on the observed data, then performs analysis on the “full” dataset. This

method works very well in the MCAR setting, and is also effective in MAR if the

variables that determine missingness are included in the regression. This method

does tend to unrealistically reduce variance of the data by imputing data along the

regression line; however, this problem can be overcome by adding noise to the imputed

values (stochastic regression imputation). More importantly, in the context of VGL

analysis, it is difficult to generate new sequences based on observed ones with a simple

regression; more sophisticated models are required. In addition, stochastic regression

imputation draws noise from the observed distribution of residuals, which may not

give an accurate assessment of the variance of estimates for arbitrary properties of

interest.

• Reweighting methods, in particular inverse probability weighting, weight data

points that were more likely to go missing under the missingness model more highly in

the analysis. Reweighting methods are a very popular way to handle missing data, but

4The consensus sequence for a gene sequence alignment is defined as a sequence for which, at each site
in the sequence, the nucleotide or amino acid present is the most common one in the alignment at that site.
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some types of data cannot be reweighted in a straightforward manner. In particular,

it is challenging to reweight genetic distance data between pairs of points. However,

recent work in our research group has made progress on applying concepts from inverse

probability weighting to sequence linkage analysis [23].

The techniques listed above do not constitute an exhaustive list; however, they do rep-

resent some of the most common approaches to handling missing data. Many of them are

difficult to apply to VGL analysis or will yield biased estimates of the properties we are

interested in studying. For this reason, the first method we present will be a very powerful

technique not yet mentioned: multiple imputation.

1.5 Overview of Following Sections

The chapters proceed in roughly the same order in which research was performed and present

increasingly sophisticated approaches to addressing the impact of missing data on VGL

analysis. Chapter 2 presents and evaluates a multiple imputation approach for simulating

missing data. Chapter 3 presents a subsampling-based method for scoring datasets that fill

in the missing data. Chapter 4 presents methods for using this scoring technique to generate

a distribution over possible full datasets. Finally, Chapter 5 discusses implications of the

results and directions for future study.



Chapter 2

Multiple Imputation

One of the most intuitive approaches to dealing with missing data is to build a random model

that can be used to simulate additional data until the dataset is “complete.” Iterating this

process multiple times to account for model variance and averaging across the results is

known as multiple imputation, and is widely regarded as a gold standard technique for

handling missing data. In this section, I demonstrate how a multiple imputation approach

can reduce bias and improve estimates of variance in VGL analyses. Most of this section is

based on work in my research group submitted for publication in [24].

2.1 Framework

Recall that we start with a matrix A representing a genetic sequence alignment of n se-

quences and m sites. The rows of this alignment are a proper subset of the rows of an

unobserved, “true” full dataset which we’ll call A∗. Let us rewrite n as no, for the number

of observed sequences, and denote the number of missing (unobserved) sequences as nm, so

that the total number of sequences in A∗ is nt = no + nm. The goal is to use the no ×m

29
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alignment A to estimate a set of new imputed alignments {A′1...A′k}, each an nt ×m align-

ment. For a given A′i, the first no rows should correspond exactly to A while the last nm

rows represent inferred sequences.

Suppose we are interested in estimating a property c of the true alignment A∗, and

let f denote the function that calculates this property, so that c = f(A∗).1 Estimating c

from the observed data, cobs = f(A) is the most obvious solution; we may even be able

to estimate the variance vobs = Var(c) of this estimate by bootstrapping [25].2 However,

this estimator is biased for most properties of interest (examples were shown in Section

1.3) and bootstraps may give incorrect variance estimates. In the multiple imputation

framework, we use the imputed alignments A′i to obtain a more accurate estimate of c and

its variance. In particular, we calculate Cimp = {c1
imp...c

k
imp} = {f(A′1)...f(A′k)} as well as

Vimp = {v1
imp...v

k
imp} = {Var(c1

imp)...Var(ckimp)}. Then the multiple imputation estimate for

c is just the mean of Cimp:

cimp =

∑k
i=1 c

i
imp

k

The variance estimate is calculated as in [26]:

vimp =

∑k
i=1 v

i
imp

k
+

k + 1

m
Var(Cimp)

In [26] the first term is referred to as the “within-imputation variance”, and represents the

average variance of any individual estimate. The second term is the “between-imputation

variance”, and represents the variance of the vector of all estimates taken together.

1In all work in this paper, alignments A,A′, A∗ are matrices of characters or discrete integers representing
those characters, and the properties c to be estimated are real numbers. While functions mapping, for
example, from matrices to vectors or other objects are not considered in this paper, it is usually possible to
incorporate them into this framework.

2Felsenstein first noted in his 1985 paper that it is possible to accurately assess the variance of statistics
estimated from a phylogeny by bootstrapping. Given an alignment A, a large number of new bootstrapped
alignments are generated by resampling m columns from A with replacement. The variance of the property
of interest is calculated across the bootstrapped datasets.
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The multiple imputation formulas given above allow for the estimation of arbitrary

statistics and the construction of confidence intervals even when data is known to be missing,

so long as it is possible to impute full datasets {A′1...A′k}.

The main remaining question is how to impute k datasets of nt ×m rows and columns

from the observed data. If all that is observed is the no×m matrix A, we may not even know

nt. Not only are we unaware of the content of the missing rows, we do not even know how

many rows there are! It is essential to have some information about how much data is missing

and what kind of data it is. The approach adopted here makes use of two additional kinds

of information to begin the imputation process, both acquired from census data. First,

HIV prevalence statistics can be used to calculate the expected number of HIV patients

in a population. This number is used as nt, the observed number of sequences is no and

nm = nt−no. Second, demographic information can be used to place patients into categories

that provide more information about patterns of missingness. For example, if there are d

different demographic categories in the population, then each sequence can be assigned a

number between 1 and d representing which category it falls into. Thus, demographic data

for the entire population can be represented as a vector T of length nt where each entry

is a patient’s demographic category. Given this information, we know both the number

and type of missing sequences. For example, if there are two demographic categories of

interest, prevalence data may tell us not only that there are nm missing sequences but that

twice as many of these sequences fall into category 1 as into category 2. This allows us

to construct a vector F of probabilities, with length d, where the ith entry represents the

proportion of the population falling into category i. Thus, the available information for

imputation consists of an alignment A, a number of missing sequences nm, and perhaps also

demographic information such as observed demographic categories Tobs and census-derived
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demographic proportions F . The next section will show how to use this information to

simulate the nm missing sequences.

2.2 Multiple Imputation Method

Given the information above, a model of evolutionary mutations can be used to impute the

nm missing genetic sequences. The key observation enabling imputation is that each se-

quence in the population has a nearest neighbor, as measured by genetic distance. In terms

of the pairwise genetic distance matrix D, the nearest neighbor for sequence i is given by

argminj(Dij).
3 To impute a new sequence, two key assumptions are made: first, that the

sequence’s nearest neighbor is one of the observed sequences, and second, that the distance

between the sequence and its nearest neighbor is represented in the observed distribution of

pairwise distances. Under these assumptions, a new sequence can be generated by drawing

a genetic distance from the observed distribution of pairwise distances, then copying an ex-

isting sequence and mutating that sequence until it is the desired distance from the original.

Throughout this process, it is assumed that the demographic information Tobs and F is

available; when no demographic information is available, the entire population is considered

as one demographic group. In these cases, Tobs is a vector assigning every sequence to the

category 1, and F = (1). That is, F denotes that the entire population falls into the single

available category.

Before imputing, we need to know how many sequences to impute. If no demographic

information is available, the number of sequences to impute is simply nm. If demographic

information is available, we can calculate how many sequences should be imputed in each

3In the distance matrix as given, each sequence is its own nearest neighbor. To exclude these trivial
nearest neighbors, for the rest of the analysis the diagonal elements of D are set to the maximum possible
genetic distance dmax.
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category in order to make the demographic proportions in the data equal to F ; denote these

numbers as Fimp.4

The first step in the imputation process is building the distribution of pairwise distances

to be drawn from. In particular, we want to sample a plausible distance between the imputed

sequence and its nearest neighbor, so the desired distribution is built from the distance

between each observed sequence and its nearest neighbor, N = {minj(Dij)|i ∈ no}. When

demographic traits are given, this additional information can be incorporated by building

nearest-neighbor distributions for each pair of demographic groups. Nab = {minj(Dij)|Ti =

a, Tj = b} is the distribution of nearest-neighbor distances from a sequence in group a to a

sequence in group b. Because Nab and Nba are different distributions (i being j’s nearest

neighbor does not mean j is i’s nearest neighbor), this results in a total of d2 distributions,

though the total number of nearest-neighbor distances is the same regardless of how many

distributions these distances are partitioned into.

Next, a specific sequence is imputed. Its demographic category a is drawn from Fimp.

Next, the demographic category b of its nearest neighbor needs to be chosen. We draw b ∈

{1...d} with probability proportional to |Nab|. This guarantees that demographic categories

which are most frequently seen as nearest neighbors of sequences in category a are most

likely to be chosen as nearest neighbors for the imputed sequence.5 A nearest-neighbor

distance l is then drawn from Nab.

The new sequence sj is initialized as a copy of its nearest neighbor sequence si, chosen

uniformly at random from the demographic category b. Mutations are then applied to sj

until d(sj , si) = l. In general, these mutations can be applied in very simple ways (such as

4If no demographic information is available, sequences will be imputed uniformly at random until there
are nt sequences

5If demographic information is not available, only one (trivial) demographic group is considered: the
entire population. All imputed sequences are assigned to this demographic category, and their nearest
neighbors are drawn uniformly at random from this category, which consists of the entire pool of observed
sequences.
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making mutations to the sequence uniformly at random), or very sophisticated ones ( [27]

presents software for simulating sequence evolution along a phylogeny). The method used

here strikes a balance between simplicity and sophistication, and has the added benefit

that it makes no prior assumptions about mutation frequencies, instead estimating these

frequencies from the data. In particular, a nt × |Σ| matrix W is constructed where each

row We is a multinomial probability distribution over the characters found at site e in the

observed alignment A. Sites are chosen one at a time for mutation; the probability of

mutating site e is proportional to 1 − max(We). Thus sites that are highly conserved are

only rarely mutated while sites that are highly variable are mutated frequently. When a

character at a specific site is mutated, the replacement character for that site is drawn as a

weighted sample from We. This process is repeated until d(sj , si) = l.

The new sequence sj is added to the alignment, and the above steps are repeated to

impute new sequences until the alignment has nt total rows, resulting in an alignment A′1.

Note that as the alignment grows in size, previously imputed sequences may be chosen as

nearest-neighbor sequences to be copied and mutated. The process is repeated k times

to yield k alignments of size nt × m. Estimation of alignment properties and variance is

performed as described above.

2.3 Evaluation

By definition, it’s impossible to test how well a missing-data recovery method performs

on a real world dataset because the full data is unavailable. However, given a dataset, the

accuracy of a method can be assessed by treating the dataset as complete, deleting a portion

of the data, and then attempting to recover the original properties of the dataset. As part
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of my research group’s work in [24], we evaluated the above method on HIV genetic data

collected from Mochudi, Botswana.

The evaluation dataset consists of nt = 371 HIV subtype C sequences collected from the

community survey in Mochudi, Botswana mentioned in Section 1.1. The overall percentage

of the population which fell into a cluster was used as the estimated property of interest

c. Sets of 50, 100, and 200 sequences were repeatedly deleted from the full dataset: for

each nm ∈ {50, 100, 200}, 100 different subsampled datasets of no = nt − nm sequences

were generated. In this study, the population was divided into demographic categories –

young males, young females, old males, and old females. Females were deleted at a rate

10 times higher than that of males to demonstrate the effectiveness of the method when

different population subgroups are missing at different rates. For each subsample, multiple

imputation of k = 10 datasets was performed 100 times to yield 100 estimates of c as cimp

and variances of these estimates, vimp. Thus, for each number of deletions, it is possible

to compare 10,000 multiple imputation estimates to estimates resulting from the observed

data over a random sample of possible deletions.

For each multiple imputation, we compared the clustering values c calculated from the

full dataset to values calculated from only the observed (subsampled) data and to values

calculated from a multiple imputation estimate. We also estimated coverage of 95% confi-

dence intervals around the estimates from observed data and from multiple imputation – the

proportion of times that a 95% confidence interval around an estimate cobs or cimp contained

the true value c. in both cases, the variance of the estimate used to build these intervals

was calculated by bootstrapping, and in multiple imputation, the variance was adjusted

using the formula from [26] described above. Coverage was calculated as For an unbiased

estimator that provided accurate assessments of variance, this proportion would be exactly
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95%. In general, the closer the coverage is to 95% the more reliable the estimator. In gen-

eral, the clustering statistic estimated only from observed data, cobs, is biased downwards.

Multiple imputation (cimp) substantially reduces bias (though does not eliminate it), and

improves coverage proportions. As more sequences are deleted, estimates from the observed

data suffer from an increasing degree of bias. The multiple imputation estimate suffers from

less bias, though as missingness becomes severe it does display downward bias as well. The

full results, calculated for [24], are presented in Table 2.1 below.

Table 2.1: Mean clustering statistics c and coverage proportions for full data
(ctrue), observed data (cobs), and multiple imputation estimate (cimp), over 1,000
simulations

Thresh ctrue # Del cobs cimp Coverage, Observed Coverage, Imputed

50 0.039 0.043 83% 94%
0.1 0.043

100 0.036 0.043 66% 89%
200 0.024 0.037 30% 61%

50 0.11 0.13 48% 91%
0.15 0.13

100 0.099 0.13 16% 85%
200 0.059 0.10 1.4% 54%

Thresh indicates the minimum genetic distance (in proportion of total sequence length)
below which two sequences were considered part of a cluster. The average clustering value
estimated by multiple imputation is closer to the true value than that estimated with the
observed data alone, and coverage proportions are also higher.

It is also useful to see the impact of missingness and multiple imputation on estimated

statistics through a representative example. Figure 2.1 demonstrates the proportion c of

the 371 sequences which are part of any cluster at various genetic distance thresholds. The

blue line indicates clustering in the full set of 371 sequences, while the red line indicates

clustering for a dataset with 100 sequences deleted. Green points at 0.1 and 0.15 on the

horizontal axis represent estimates of c calculated with multiple imputation. Bars indicate

95% confidence intervals. This subset of 271 sequences is representative in the sense that,
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Figure 2.1: A representative dele-
tion of 100 sequences substantially
reduces clustering, and imputation
recovers much of this bias. Also note
that only confidence intervals around
the imputed estimates include the
true clustering value.

at the 0.1 and 0.15 genetic distance thresholds, the difference between c in the full dataset

and the subset is equal to the median difference across 100 different subsamples.

First, calculations using only the dataset that underwent deletions are biased; clustering

is substantially lower in the dataset that experienced deletions than in the original data.

Second, calculations based on the dataset that experienced deletions underestimate the

variance of c; note that the red bars indicating 95% confidence intervals for the value of

c using the dataset that experienced deletions do not include the true value. Estimates

from multiple imputations are less biased and considerably closer to the true value of c. In

addition, these estimates exhibit larger variance and confidence intervals that include the

true value of c.

2.4 Discussion

In conclusion, this section has demonstrated that multiple imputation is a useful method

for producing estimates of genetic clustering that are less biased and exhibit more accurate

assessments of variance. However, it’s worth noting that there are limitations to the multiple

imputation method. First, while multiple imputation reduces bias, it cannot eliminate it.
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One important reason is that the imputation method presented here imputes new sequences

in a way that maintains the observed distribution of minimum genetic distances between

sequences; however, this observed distribution itself is likely biased by deletions. Because

the clusterng proportion is based on the distribution of minimum distances, preserving bias

in this distribution will ensure some bias always remains in estimates of c.

The bias in minimum distance distribution can be seen through simulation; in the figure

below, subsets of 100 and 200 sequences were repeatedly deleted uniformly at random from

the full dataset of 371 sequences. Minimum distances from 100 independent repetitions were

pooled and the distributions compared at each number of deletions. Small but statistically

significant increases in genetic distance are seen with each increase in the number of deleted

sequences. Median genetic distances are 97.0 for the original data (n=371), 98.0 for datasets

with 100 deletions (n=2710), and 101.0 for datasets with 200 deletions (n=1710). Differences

between distributions were significant as follows:

• Original Data and 100 Deletions: p < 0.05 (Mann-Whitney U -test, U = 472856)

• Original Data and 200 Deletions: p < 0.00001 (Mann-Whitney U -test, U = 267360)

• Original 100 Deletions and 200 Deletions: p < 0.000001 (Mann-Whitney U -test, U =

2086828.5)

(Note that power differs between tests because of different sample sizes).

In addition, while coverage of 95% confidence intervals for imputed estimates of c is a

substantial improvement over estimates using only the observed data, imputed coverage still

does not reach the ideal of 95 percent. Because coverage of confidence intervals depends

both on the estimated value and its variance, this could be representative of bias in imputed
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Figure 2.2: Distri-
butions of minimum
distances from original
dataset of 371 se-
quences, datasets with
100 sequences deleted,
and datasets with
200 sequences deleted.
Visual inspection and
Mann-Whitney U test
confirm that the dis-
tribution of genetic
distances tends to
increase a small but
significant amount as
more sequences are
deleted.

estimates, underestimation of variance, or a combination of the two. Later chapters will

focus on estimators with improved bias and variance.
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Chapter 3

Subsampling-Based Likelihood

Optimization

3.1 Background

This chapter will attempt to address some of the main shortcomings of the multiple impu-

tation framework. One concern about this framework is that it makes multiple assumptions

that are difficult to justify. In particular, the random model used to impute new sequences

by applying mutations is a drastic oversimplification of real biological evolution. Applying

mutations independently at each site with probability proportional to their frequency in the

observed data ignores correlations between mutations at different sites and assumes the ob-

served data is a representative sample of mutation frequencies. Another example of a flawed

assumption in multiple imputation is the method’s reliance on preserving the observed dis-

tribution of minimum distances between sequences, though this distribution is biased as

discussed at the end of the last chapter. It is of course possible to use many different models

41
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to impute missing sequences, and more realistic models than the one presented in Chapter

2 certainly exist. However, it is unlikely that any model will perfectly replicate sequence

evolution, so some biases will persist. Multiple imputation has no way to account for flaws

in the imputation model; rather, it blindly averages results over multiple runs of the model.

This accounts for the variance of estimates but ignores biases in the model. A second, re-

lated concern is that multiple imputation treats all imputed datasets equally by taking an

unweighted average over results from each imputation. Some imputed datasets will more

accurately fill in missing sequences than others, but the multiple imputation framework has

no way to prefer such “higher-quality” datasets.

Both of these concerns could be addressed in a straightforward way if the full dataset A∗

were known. Given a statistic of interest c calculated using the function f and an imputed

dataset A′, we can compare the values of c calculated from the full dataset and imputed

dataset, c∗ = f(A∗) and cimp = f(A′) respectively. Datasets A′ for which |cimp−c∗| is small

are less biased and should be preferred in the estimation process. Though this weighting

process is simple, it is also impossible to use in practice because A∗ and c∗ are unknown. If

we knew c∗, we would not have to estimate it at all!

In practice, estimation procedures have access only to the observed, incomplete dataset

A and the statistic estimated from this dataset cobs = f(A). The only information available

about the full dataset A∗ is that, after undergoing deletion of nm sequences, it gives rise to

the observed alignment A and observed statistic cobs. Intuitively, we should prefer imputed

datasets which, when they undergo deletion of nm sequences, yield observed statistics close

to cobs.
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3.2 Subsampling Method

Given an imputed dataset A′ and full, unobserved dataset A∗, both consisteng of nt se-

quences, one way to assess how close A′ is to A∗ is to subsample no sequences from A′ a

total of k different times, resulting in k incomplete datasets A1
sub...A

k
sub. Calculating the

statistic of interest on each of these incomplete datasets yields k estimates of c, c1
sub...c

k
sub.

The average of these estimates, or

csub =

∑k
i=1 c

i
sub

k

approximates the expected value of c when estimated from any subsample of no sequences

from A′. Datasets A′ for which |csub − cobs| is small are favorable because they are similar

to A∗ in the one way we can observe: when they undergo deletions, they result in similar

estimates of the statistic c. See Figure 3.1 for an illustration of this comparison process.

While it can be shown that imputed datasets that minimize |csub−cobs| produce more ac-

curate estimates of c, the resampling procedure used to calculate csub poses several problems.

First, repeated subsampling and calculation of c for each subsample can be computationally

expensive. Second, it is unclear a priori how many subsamples are required to produce a

stable estimate of the expected subsampled value of c, or csub. Fortunately, for the statistic

we are interested in calculating (the proportion of sequences which are part of a cluster

when clusters are defined using pairwise genetic distance between sequences), it is possible

to exactly calculate csub in closed form without subsampling.
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Figure 3.1: Diagram of a process for assessing quality of an imputed dataset. Both the
imputed dataset and the complete data have the same number of sequences, but the complete
dataset is unavailable for comparison. The imputed dataset is subsampled multiple times,
resulting in many datasets of the same size as the observed data. The average estimate of
c, or csub across these datasets is compared to the observed value of c, or cobs. The more
similar these values are, the more similarly the imputed dataset behaves to the full dataset
when subjected to deletions and the more likely it is to produce a correct estimate of c.
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3.3 Closed-Form Calculation

Consider an imputed nt ×m alignment A′. Recall that the pairwise distance matrix, here

denoted D′, is constructed by measuring the genetic distance between all pairs of sequences;

for distance metric d, D′ij = d(si, sj). Let dmax be the maximum possible genetic distance;

because we generally want to ignore sequences whose only neighbor is themselves, it is

generally convenient to set d(si, si) = dmax. For some threshold t ∈ (0, 1), any two sequences

si and sj for which D′ij ≤ tdmax are considered “linked” and will be part of the same cluster.

The statistic of interest c is the proportion of sequences which are part of any cluster; that

is, which are close enough to any other sequence to share a cluster with it. The clustering

matrix M ′ is a binary matrix with entries defined as 1 if the distance between two sequences

falls below the threshold and 0 otherwise: M ′ij = I(Dij ≤ tdmax)I(i 6= j). The statistic c is

then simply the proportion of rows that contain a 1 at any point, or

c =

∑nt

i=1 I(
∑nt

j=1 Mij ≥ 1)

nt

This is simple to calculate with a single pass over the matrix M ′. However, we want to

calculate not just c but csub, which is the expected value of c calculated on a subsample of

no sequences from A′. In other words, if c were calculated using each of the
(
nt

no

)
possible

subsampled alignments, its mean value would be csub. It is possible to approximate csub

by randomly generating subsamples of A′, but exactly calculating csub this way is wildly

impractical. For the 371-sequence sample considered here, a typical subsample where 100

sequences are missing yields
(

371
271

)
possible subsamples, or roughly 3.73× 1092.

Because the process of calculating c involves considering interactions between all pairs of

sequences, it’s not immediately clear how to calculate csub without individually examining
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each subsample. However, by using linearity of expectation csub can indeed be calculated

in closed form. Let A be a matrix-valued random variable which is a no ×m matrix drawn

uniformly at random from all subsamples of no sequences from A′. Denote the corresponding

pairwise distance matrix as D and the clustering matrix as M . Then:

csub = E

(∑no

i=1 I(
∑no

j=1 Mij ≥ 1)

no

)

By linearity, we can move the expectation inside the sum:

csub =

∑no

i=1 E
(
I(
∑no

j=1 Mij ≥ 1)
)

no
=

∑no

i=1 P (
∑no

j=1 Mij ≥ 1)

no
(3.1)

This expression still depends on the specific form of the clustering matrix M corresponding

to the subsample A, however. We would like it to depend only on M ′, the full clustering

matrix. We focus on the term P
(∑no

j=1 Mij ≥ 1
)

:

P

 no∑
j=1

Mij ≥ 1

 =

nt∑
i′=1

P

 no∑
j=1

Mij ≥ 1|Ai = A′i′

P (Ai = A′i′)

It is hard to calculate the probability that an arbitrary row of a subsampled clustering

matrix will sum to more than one, but it is relatively easy to calculate this probability when

we know which sequence the row corresponds to; that is, when we condition on a given

sequence from the original alignment. Given a specific sequence, this probability is equal

to the probability that at least one neighbor of that sequence is also sampled; that is, the
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complement of the probability that no neighbors are sampled:

P

 no∑
j=1

Mij ≥ 1|Ai = A′i′

 = 1− P

 no∑
j=1

Mij = 0|Ai = A′i′

 = 1−
(
nm

nt

)∑nt
j=1 M ′

i′j

(3.2)

Because sampling happens uniformly at random, each sequence is chosen to be part of the

subsample independently of the other sequences. Thus the probability that no neighbors

of sequence i′ are sampled is the probability of any individual sequence not being sampled(
nm

nt

)
raised to the power of the number of neighbors sequence i′ has. The numerator on

the RHS of (3.1) can now be written as

no∑
i=1

P

 no∑
j=1

Mij ≥ 1

 =

no∑
i=1

nt∑
i′=1

(
1−

(
nm

nt

)∑nt
j=1 M ′

i′j
)
P (Ai = Ai′)

All sequences in the alignment A′ are equally likely to end up as a given sequence Ai in A,

so P (Ai = Ai′) = 1
nt

. Upon making this substitution, the expression no longer depends on

i, so we can simplify:

no∑
i=1

nt∑
i′=1

(
1−

(
nm

nt

)∑nt
j=1 M ′

i′j
)
P (Ai = Ai′) =

nt∑
i′=1

no

nt

(
1−

(
nm

nt

)∑nt
j=1 M ′

i′j
)

The full equation for csub from the RHS of (3.1) can now be written as:

csub =

∑nt

i=1
no

nt

(
1−

(
nm

nt

)∑nt
j=1 M ′

ij

)
no

=

nt∑
i=1

1

nt

(
1−

(
nm

nt

)∑nt
j=1 M ′

ij

)
(3.3)

This expression involves just two sums, which can be calculated by passing over the clus-

tering matrix M ′ for the full alignment A′ a single time. This is in stark contrast to the
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Figure 3.2: Convergence of sub-
sampled csub estimates to ex-
actly calculated value. X-axis
represents number of subsam-
ples used to estimate csub (es-
timated subsampled clustering
value using Hamming distance,
as used throughout this pa-
per). Y-axis represents absolute
difference between subsampling
estimate and exactly calculated
value for csub. As the number
of subsamples used increases,
the estimate of csub converges
to the exactly calculated value.
Dataset is 200 HIV-C env
gp120 V1C5 sequences collected
from Mochudi, Botswana.

combinatorial explosion of terms involved in calculating csub by subsampling. Figure 3.2

below demonstrates that values of csub calculated using subsampling converge to the value

calculated with the exact formula. The key property that allows for closed-form calcula-

tion of csub is that d(si, sj) is independent of other sequences, that is, of all sk for which

k 6= i, k 6= j. This property is what lets us relate Mij and Mi′j in equation (3.2); the

probability that sequence i in A has at least one neighbor depends entirely on whether one

of its neighbors in the original alignment A′ was sampled. It’s worth noting that not all

distance metrics have the property that d(si, sj) depends only on si and sj ; in particular, for

distances calculated using a phylogeny, d(si, sj) depends on all other sequences in the align-

ment as well. However, many distance metrics, including those based on Hamming distance

as well as popular nucleotide and amino acid substitution models, respect this independence

assumption and allow closed-form calculation of csub.
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3.4 Evaluation

3.4.1 Data

Because the work in this chapter and those succeeding it occurred at a later date than the

work presented in Chapter 2, a new dataset was available for analysis. All subsequent re-

sults are based on a dataset consisting of a 1248-sequence, 1797-nucleotide alignment of the

V1C5 region of HIV-C env gp120 sequences collected from patients in Mochudi, Botswana.

Because the methods presented later in this thesis are, in general, more computationally

intensive, subsets of the full dataset are often chosen. As there are many possible sub-

sets, many (generally 100) subsamples are considered and the subsample with the median

clustering proportion c is chosen.

3.4.2 Results

As can be seen in Figure 3.3, minimizing |csub − cobs| does indeed reduce absolute error

in estimating c over 100 different 30-sequence subsamples of a 50-sequence dataset (all se-

quences from the dataset discussed immediately above). The median correlation between

|csub − cobs| and absolute error in estimating c is r = 0.38. The heterogeneity of behavior

under subsampling is surprising, however. A substantial number of subsampled datasets ex-

hibit behavior we would expect of rare, pathological cases: for these subsamples, |csub−cobs|

actually demonstrates a strong negative correlation with error, implying that datasets which

tend to subsample in the same way we observed in the original dataset actually do worse

at estimating c. Interestingly, subsamples that have correlation coefficients close to zero

can be easily separated into subsets of points within which strong correlations exist. Some

subsamples exhibit a line of positively correlated points and a line of negatively correlated
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points; others have two offset positively correlated lines and a single set of negatively corre-

lated points. This implies that, while the behavior of sequence datasets when subsampled

is complex, this behavior can be decomposed into combinations of a few simple behaviors.

Future studies into the structure of these correlations could yield valuable information. In

addition, that the correlation is somewhat weaker than expected supports the expansion

of this method by comparing not just one subsampled statistic but many. If weak positive

correlations hold for all of these statistics, favoring datasets that minimize |csub − cobs| for

many statistics c should minimize error even further in estimating all properties of interest.

These results also have implications for how we should use information about csub to

inform missing data analysis. Given that there is a correlation between |csub − cobs| and

estimation error, one approach to dealing with missing data would be to impute a dataset

and iteratively optimize it to minimize |csub − cobs|. This is the best dataset to analyze

in the sense that it behaves most similarly to the original data in the ways that we can

observe (that is, its behavior under subsampling). Though the results in this section imply

that datasets generated using such a method would be more likely to be accurate than an

arbitrarily chosen imputed dataset, the wide range of correlations observed in Figure 3.3

imply that it will still often yield inaccurate estimates, because in a substantial minority

of subsamples |csub − cobs| exhibits a negative correlation with error. In these cases, the

optimized dataset is being optimized in the wrong direction! While a single dataset which

minimizes |csub − cobs| is an improvement over a random imputed dataset, we can still do

better. Generating a distribution of datasets, each optimized to different values of |csub−cobs|

and weighted accordingly, will give a more accurate assessment of the possible variation in

our estimates.
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Figure 3.3: Minimizing |csub − cobs| favors datasets that minimize error in estimating c.
This set of simulations started with a dataset of 50 sequences × 1797 nucleotides; out of
100 such subsamples of the full dataset, the one with median clustering value c was chosen
for representativeness. One hundred different subsamples of 30 sequences were taken, and
100 imputations of 20 new sequences performed on each. For each subsampled dataset, a
scatter plot is shown of the absolute difference between the subsampled clustering value
csub for the imputed dataset and the clustering value observed in the subsampled dataset
of 30 sequences cobs (x-axis) and the absolute error in the imputed dataset’s estimate of c
(plots sorted by decreasing correlation coefficient). Most datasets demonstrate a positive
correlation between |csub − cobs| and error in the estimate of c; for some datasets this
correlation is smaller and in some cases it is negative. These exceptions are expected in
our model; some subsets of the data are outliers in terms of their values of cobs and are not
representative of the typical behavior of the orignal dataset under subsampling. Overall,
the relationship between |csub − cobs| and estimation error is usually positive, with mean
r = 0.17 and median r = 0.38. Finally, in two cases, subsampling reduces clustering to zero
and imputation is incapable of recovering any clustering at all. In these cases (the last two
in the figure), correlation is undefined. These cases are excluded from analysis in calculating
the overall value of r.
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Chapter 4

Distribution-Based Approaches

The resampling-based approach presented in the last section demonstrates reduced bias

and error in recovering clustering estimates, in that imputed alignments A′ that minimize

|csub−cobs| are more likely to produce accurate estimates of c. However, it is not immediately

clear how to incorporate this knowledge into a method that not only provides estimates of

c but also allows for construction of accurate confidence intervals around the estimate. The

approaches presented below seek to recover a distribution over the true value of c that

incorporates as much information as possible from the observed data.

4.1 A Full Distribution over Missing Data

It is relatively clear that, because datasets with lower values of |csub− cobs| tend to produce

more accurate estimates, they should be weighted more highly. However, it is difficult to

justify any particular weighting scheme over any other. For example, w = 1
|csub−cobs| (used

above) and w = 1 − |csub − cobs| both prefer datasets with smaller differences between the

subsampled and observed statistics of interest, but it is unclear which should be preferred.

53
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The arbitrary nature of the weighting function underlies a fundamental question: can we

generate a distribution over all possible datasets that fill in missing data representing our

belief that a given dataset represents the “truth”?

The problem is not at all trivial; first, it requires exploring a massive space. In the

examples in Chapter 2, the full dataset consists of 371 sequences and a deletion of 100 is

considered, so the goal is to use 271 observed sequences to impute 100 more. Considered

as nucleotides, these 100 sequences consist of 1647 bases; each can be one of five characters

(A,C,T,G, or gap). The total number of possible ways to fill in these sequences is the number

of ways to generate one hundred 1647-character strings from an alphabet of 5 characters, or

5100×1647 ≈ 10427096 (for comparison, there are only 1081 atoms in the observable universe).

Second, the problem requires constructing a reasonable way to weight each of these possible

datasets so that it is possible to make quantitative measurements of how much more likely

one dataset is than another. Finally, a method for drawing datasets according to this metric

from a huge sample space is required to obtain actual numerical results.

The overall process can be split into two steps: formulating a desired distribution over

all possible datasets, and approximating this distribution by sampling. As in Chapter 3, our

only source of information about the full distribution is the subsample we observe and the

statistic estimated from it, cobs. Thus, rather than specifying the relative frequencies with

which each dataset should be drawn, we can specify the relative frequencies with which

datasets with given values of csub should be drawn. The idea that datasets minimizing

|csub − cobs| result in the most accurate estimates implies our distribution should place the

most weight on these datasets. In addition, by bootstrapping the columns of the observed

alignment A, we can estimate the variance of the statistic cobs and require that the target

distribution share this variance. This information is enough to specify a Normal distribu-
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tion over csub that determines what proportion of the desired sample has various expected

clustering values after subsampling. We will call this proxy distribution P ; the goal is to

draw datasets so that the values of csub corresponding to each dataset fit the distribution P .

This collection of datasets represents our belief about the likely ways to fill in the missing

sequence data. Given such a collection of datasets, it is possible to calculate an estimate of

c, by averaging over ci = f(A′i) for each dataset A′i in the distribution. Similarly, the vari-

ance of the estimate is the variance of the ci. Higher order moments can also be estimated

because the datasets A′i are samples from the distribution over all possible datasets.

The challenge that remains is to draw samples from this distribution. The following

sections present two sampling methods for this task. The first, a Markov Chain Monte

Carlo based approach presented in Section 4.2, was ultimately unsuccessful. The second,

based on optimizing a distribution of datasets for similarity to the distribution P , was

successfully implemented and is presented in Section 4.3.

4.2 MCMC Sampling

4.2.1 Overview of MCMC

Our goal is to draw representative samples from a massive, high-dimensional space. A

natural method for this purpose is Markov Chain Monte Carlo (MCMC): given a way to

step from state to state in the space and a way to evaluate the relative probabilities of

any two states up to a proportionality constant, MCMC can draw samples approximately

from and asymptotically converging to an arbitrary probability distribution. The specific

algorithm considered in this section is Metropolis-Hastings, which represents one way to

construct a Markov chain with the desired stationary distribution [28].
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The first step in implementing Metropolis-Hastings is to initialize the first state of the

Markov chain. In this case, the states being considered are datasets, so the first state will

ideally be a candidate full dataset of relatively high probability. The multiple imputation

method discussed in Chapter 2 provides a convenient method for generating a plausible

initial state; simply impute a single nt ×m dataset A′1 as the first step of the chain.

To generate the rest of the chain, we require a rule for stepping from state to state which

will cause the chain to converge to the target distribution T . Given a state A′i, the key idea

of Metropolis-Hastings is to propose a new state A′prop. The next state in the chain state

A′i+1 will be chosen with some probability from A′i and A′prop, and the process will begin

again. The acceptance probability a is the probability that A′prop will become the next state

A′i+1; if not, we set A′i+1 = A′i and continue. The value of a is defined as

a = min

(
T (A′prop)

T (A′i)

Q(A′prop → A′i)

Q(A′i → A′prop)
, 1

)
(4.1)

where T (A′i) and T (A′prop) represent the likelihoods of the current state and proposed new

state in the target distribution and only need be determined up to a constant of proportion-

ality. That is, T (A′i) and T (A′prop) do not need to be exactly determined so long as the ratio

T (A′
prop)

T (A′
i)

is correct. Q(A′i → A′prop) represents the probability of proposing state Aprop from

state T (A′i) and vice versa. Taking the minimum with 1 guarantees that a does not exceed

1 and remains a valid probability. Hastings showed that for an arbitrary target probability

distribution and proposal method, chains whose steps satisfy this acceptance probability for

stepping to a new state will converge to the target distribution so long as they are ergodic

(aperiodic and with finite expected return time for each state) [28]. The next two sections

will discuss methods for proposing new states and determining what target distribution the

chain should converge to.
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4.2.2 Proposal Methods

Given some state A′i which is a full dataset of nt sequences that fills in the missing data,

there are many ways to propose a new state A′prop. The only absolute requirements are that

the proposal method alters only the nm missing sequences, not the no observed sequences

(as these are known to represent sequences actually present in the population), and that

the likelihood of steps between states can be calculated up to a proportionality constant (so

that it is possible to calculate the term
Q(A′

prop→A′
i)

Q(A′
i→A′

prop) ). Three proposal methods are easily

available based on previous work and the techniques presented in this thesis:

• Uniform Proposal: Simply make a certain number of random mutations for each

proposal. Pick k sites to mutate, uniformly distributed across the nm unobserved

sequences and m sites in each sequence, and mutate the character currently present

at each site to another character uniformly at random.

• Transition Matrix: Pick k sites to mutate as in the uniform proposal. However,

instead of mutating the characters at these sites uniformly at random, use a transition

matrix H that allows for differential rates of mutation between different characters, so

that Hij represents the probability of mutation from character i to character j. Many

such transition matrices have been constructed from empirical data for phylogenetic

analysis, and can readily be applied in this proposal method. This approach has the

advantage of making mutations that are more frequently observed in real sequences.

One important advantage of these first two methods is that they can be used to generate

symmetric proposals; that is, proposals in which Q(A′prop → A′i) = Q(A′i → A′prop). Such

methods are advantageous because there is no need to explicitly calculate
Q(A′

prop→A′
i)

Q(A′
i→A′

prop) ; it

will always be equal to one. Because both of the above methods involve making independent
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mutations, the likelihood of a given proposal is simply the product of the probabilities of

all mutations that are made. In the uniform proposal, all mutations are equally likely, so

the likelihood of mutating A′i into A′prop is exactly the same as the likelihood of mutating

A′prop back into A′i. The transition matrix proposal method is also symmetric if a symmetric

transition matrix is used, as the probability of each individual mutation Hij made in the

proposal Q(A′i → A′prop) is equal to the probability of a mutation Hji made in the reverse

step Q(A′prop → A′i). It happens that most transition matrix models used in phylogeny are

symmetric, which is convenient for this application as well.

Of course, the symmetry assumption may not be very biologically realistic. One way to

relax this assumption is to use a non-symmetric transition matrix. While we can no longer

avoid calculating
Q(A′

prop→A′
i)

Q(A′
i→A′

prop) in this case, the procedure is relatively simple: to calculate

Q(A′i → A′prop), simply multiply the probabilities Hij for each mutation made, and do the

same with the probabilities of reverse mutations Hji to calculate Q(A′prop → A′i). One more

proposal method is easily available:

• Position-Specific Mutations: In fact, we already developed a system for mutating

sequences in Chapter 2. Recall that we generated a nt × |Σ| matrix W whose rows

are empirically derived probability distributions over the characters at each site in

the observed alignment A. We can choose sequences uniformly to mutate; then, as

in the multiple imputation method, we can choose to mutate site e with probability

proportional to 1−max(We) and replace the character at site e by drawing from We.

This method is not a symmetric proposal; however, because mutations are independent,

the likelihood Q(A′i → A′prop) of any given set of mutations is simply the product of the

individual mutation likelihoods
∏

e(1−max(We))Wed′ where d′ is the index of the character

chosen to replace e. The reverse likelihood Q(A′i → A′prop) is the product of the likelihoods
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of mutating all sites back to their original characters:
∏

e(1−max(We))Wed where d is the

original character found at site e.

4.2.3 Target Distribution

The biggest challenge in using MCMC for sampling in this situation is specifying the distri-

bution over datasets to be targeted, or T in equation (4.1). It is important to distinguish

that the proxy distribution P presented in Section 4.2.1 is a distribution over subsampled

clustering values csub, not over datasets. It is not trivial to turn a distribution over the

desired subsampled statistics csub into a distribution over datasets A′. In order to generate

datasets whose csub statistics match the distribution P , we do not need to place any rela-

tive preference on different proposed datasets that have the same value of csub. However,

determining the relative weights to place on proposed datasets that have different values

of csub requires knowing how many possible full datasets A′ have each value of csub. Sam-

pling according to a distribution such as P , which considers only the desired values of csub

and not the number of datasets corresponding to each such value, will overrepresent values

of csub that correspond to many possible datasets, and underrepresent values of csub that

correspond to relatively few datasets.

A simple example can help to illustrate this problem. Consider two csub values c1
sub and

c2
sub from the desired distribution P over csub values, and suppose P assigns the respective

likelihoods P (c1
sub) = p and P (c2

sub) = 2p. Using P alone to assign weights will result

in datasets with subsampled c-value c2
sub being selected at twice the rate of datasets with

value c1
sub. However, suppose that there are four times as many datasets with value c1

sub as

with value c2
sub. Even though these datasets are half as likely to be selected in any given

comparison as datasets with value c2
sub, because they are four times as common they will
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actually be represented twice as often in the final sample! Thus, a correction is needed to

preserve the desired frequencies of given csub values.

An effective correction is to define the value of the target distribution at a given value

of csub as T (csub) = P (csub)
|csub| , where |csub| denotes the number of datasets with subsampled

statistics csub. Unfortunately, |csub| is nearly impossible to calculate. Several methods have

thus far been ineffective:

• Random sampling of possible datasets to estimate the |csub| sizes is impractical. The

space of all possible datasets, or of all nt ×m matrices with |Σ| possible characters

in each entry, is nearly infinite. In this study the statistic of interest c is based on

genetic distance. However, the Hamming distance between long sequences of charac-

ters in datasets generated uniformly at random will converge rapidly to 1
|Σ| . Thus, if

sequences are sufficiently long, almost all sampled csub values will be very close to 0 or

1, depending on whether the threshold genetic distance is greater or less than 1− 1
|Σ| .

Usually, these random datasets will have pairwise distances far above the threshold

and no sequences will be part of any cluster; this will make it nearly impossible to

sample datasets with other subsampled statistics.

• Given that the vast majority of possible datasets are likely to have 0 clustering, it seems

possible to assume |csub| exponentially decays from some starting value at csub = 0

and, through heuristics and approximations, attempt to guess the exact form of this

decay. So far, no such guess has been effective in practice.

• It is relatively simple to calculate how many datasets of size n×m have a given cluster-

ing value c under the Hamming distance metric: the number of possible sequence pairs

is nc =
(
n
2

)
, while the probability of any individual pair clustering can be calculated



4.2. MCMC SAMPLING 61

using the Binomial distribution: pc = (1 − B((1 − t)m)) where B = Binom(m, 1
|Σ| ).

A distribution over the number of sequences that cluster can then be written exactly

as Binom(nc, pc) or approximately as Poisson(ncpc). However, while it is easy to cal-

culate the distribution of values of c in this way, csub is more challenging to calculate

because it involves subsampling of the dataset. Many different types of datasets can

have the same clustering value c, datasets with different values of c can subsample

down to the same value of csub, and datasets with the same value of c can subsample

down to different values of csub. For these reasons, we have been unable thus far to

analytically express or even approximate a distribution over csub.

Because we have been unable to find a way to calculate |csub|, it is impossible to construct

a target distribution that will sample datasets in a way which yields the desired distribution

P of csub values. The next section will present an approach which more successfully draws

samples from this distribution. It is worth noting that it certainly seems possible to calculate

the distribution of |csub| over all datasets, though we have been unsuccessful thus far. In

particular, moving from the known distribution over the number of datasets with a given

value of c to a distribution over the number of datasets with a given value of csub still seems

promising. However, it is also worth noting that even if this distribution can be analytically

determined, the generality of the MCMC approach is limited. Even for the simple statistics c

and csub defined by Hamming distance between sequences, it is hard to calculate the relative

sizes of |csub|; for arbitrary properties c there is no guarantee that finding a distribution over

csub will be possible. Thus, while the MCMC approach has promising statistical foundations

and useful properties, its reliance on knowing the sizes of |csub| makes it less valuable than a

more broadly applicable method. An approach that does not rely on calculating |csub| will

be presented in the next section.
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4.3 Sampling by Distribution Optimization

Our new goal is to obtain a collection of datasets with some desired distribution over the

subsampled statistics csub which does not require knowledge of how many datasets corre-

spond to each value of csub. A more tractable way to frame this problem is to note that,

instead of considering our states as individual datasets and altering them in a way which

prefers more likely datasets as in MCMC, we can consider our states to be distributions of

datasets and iteratively improve a distribution to match the one we desire.

Formally, we initialize a collection of k datasets A′1 = {A′1...A′k}, each an nt ×m ma-

trix. By calculating csub for each matrix we obtain a distribution of subsampled statistics

C1
sub = {c1

sub...c
k
sub}. The goal is to iteratively optimize the distribution of datasets so that

at step i and dataset distribution A′i, the corresponding distribution of subsampled statistics

Ci
sub closely matches the desired distribution of subsampled statistics P (see Section 4.2).

In particular, because we seek to maximize the similarity between the distributions Ci
sub

and P , we can frame the problem as minimizing the Kolmogorov-Smirnov (KS) distance be-

tween the two distributions. The KS-statistic is defined as the maximum difference between

CDFs of two distributions and is frequently used as a non-parametric test for similarity of

distributions [29]. A KS distance of zero corresponds to identical distributions; if the CDFs

never differ by more than zero, the distributions must be the same.

For initial evaluation of this proposed method, we present a simple hill-climbing algo-

rithm for optimizing the two distributions. The initial collection of datasets A′1 can be

created using the multiple imputation procedure from Chapter 2. At step i, we have a

collection of datasets A′i. A new collection of datasets A′prop is created by using one of the

three proposal methods from Section 4.3.2 (uniform, transition matrix, or position-specific

proposals). The KS distances KS(Ci
sub, P ) and KS(Cprop

sub , P ) are compared; if the KS
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distance for the proposed dataset is smaller, we set A′i+1 = A′prop. Otherwise, we stay in

the same state and A′i+1 = A′i. The process repeats until either KS(Ci
sub, P ) = 0, until

convergence (no further improvements in KS-value are made), or until an upper limit in the

number of steps has been reached. Our implementation used a transition-matrix based pro-

posal method and optimized a distribution of 100 total imputed datasets. The optimization

procedure ran for 1000 steps or until convergence.

Table 4.1: Mean Squared Error and Coverage of Optimization and Imputation
Methods

MSE (Observed) MSE (Imp) MSE(Opt) Coverage (Imp) Coverage (Opt)

0.0116 0.00805 0.00679 99.9% 88.2%

Mean squared errors and coverage percentages are presented for imputation and
optimization methods. Datasets of 30× 100 sequences & nucleotides were drawn uniformly
at random 100 times and 10 different subsamples of 20 sequences were taken from each
dataset, so that the procedure tested variation over initial datasets as well as over
subsamples. Clustering values c of the datasets (t = 0.12) ranged from 0.1 to 1.0, while
clustering values cobs in the subsamples ranged from 0.0 to 1.0. Mean and 95% confidence
intervals were constructed for imputation as in Chapter 2, and for optimization from the
mean and percentiles of the simulated distribution. Optimization of a distribution of 100
imputed datasets ran for 1,000 time steps. The ability of imputation and optimization
methods to recover c was compared to estimates from the obsered data alone. Imputation
improved mean squared error over estimates from the observed data, and optimization
improved mean squared error over imputation by roughly the same amount. Also of note
is that imputation overestimated the width of confidence intervals while optimization
underestimated them.

Results of evaluation of the optimization method over 100 random datasets and 10

subsamples per dataset demonstrates reduced mean-squared error. As expected, imputation

reduces mean squared error over using the observed data alone, and optimization reduces

mean squared error relative to imputation. Variances to construct confidence intervals were

built by bootstrap for imputation, as in Chapter 2. For the optimization method, confidence

intervals were built empirically from the 5th and 95th percentile clustering values of the

generated distribution.
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Optimization tended to underestimate the size of confidence intervals (mean size ±0.20);

this is not unexpected, as the hill-climbing scheme likely converged to a local minimum too

soon to account for full variance of the target distribution. Until convergence to the target

is reached, the optimized distribution is still close to an imputed distribution, for which

confidence intervals constructed solely from the variance in estimated values of c will not

include within-imputation variance and will be too small (see Section 2.1, [26]).

More surprisingly, confidence intervals constructed around imputed estimates appear to

be too large (mean size ±0.25), despite the fact that in Chapter 2 multiple imputation un-

derestimated confidence intervals when substantial missingness occurred. This phenomenon,

combined with the fact that mean squared errors are low across estimates from observed

data, imputation, and optimization, may suggest that the datasets are too small to draw

strong conclusions about the effectiveness of these methods. The bias induced by deletion

may be more visible in larger datasets, and the variance induced by sequence deletion may

be less severe (both of these trends are illustrated in Section 1.3).

While this method demonstrates reduced mean-squared error, improving over the mul-

tiple imputation approach presented in Chapter 2, it is worth noting that this optimization

method is very simple and serves mainly to illustrate the promise of this method. In long

runs of the optimization function, values tended to stabilize after roughly 1,000 steps; how-

ever, hill-climbing in this high-dimensional space is almost certain to be confounded by

local minima. Future work should explore more sophisticated global optimization methods

that can avoid local minima. The multiple-sequence-alignment framework is particularly

well-suited to approaches like genetic algorithms that mutate and recombine solutions.
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Discussion and Conclusions

This thesis has presented several methods for imputing missing data in genetic sequence

datasets and assessing the quality of the resulting estimates. This section will briefly discuss

the strengths and weaknesses of the methods in the previous chapters and suggest directions

for future research.

5.1 Broader applications

Though these methods were developed for dealing with HIV sequence data and have shown

success in this application area, they are generally applicable to any datasets with missing

values. Multiple imputation has been a standard approach to missing data for a long time;

however, the subsampling- and optimization-based procedure presented here is novel and

presents a general framework into which many different models for data and missingness

can be incorporated. In general, applying the optimization method to an arbitrary dataset

involves three steps:
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• Initialize a distribution of full datasets from the observed data. The model used

to generate these datasets can be as sophisticated as desired, and in general using

domain knowledge to generate a more plausible distribution will make the process

more effective. However, even a simple mechanism like adding noise to existing data

(which is essentially the implementation used in Chapter 2) should be effective as the

iteration will ideally lead to a similar optimum.

• Implement a model of missingness to be used in the subsampling procedure. This step

is essential because if missingness is known to be nonrandom but no information about

the mechanism is available, subsampling will favor datasets that behave similarly to the

true dataset under a different subsampling process. This will not result in improved

estimation accuracy. However, if information about the missingness mechanism is

available, this method can address MAR and NMAR missingness. Even missingness

that depends on unobserved characteristics of the data can be educatedly corrected

for, as the score of a dataset is based on how the full dataset, including the imputed

missing data, subsamples.

• Iteratively modify the distribution of full datasets, seeking an optimum in terms of

the distance between the current distribution of subsampled statistics of interest and

the target distribution (obtained by bootstrapping the original data). Many different

proposal methods are possible, but so long as there is some probability of reaching any

state from any other the quality of the proposal should not be essential. What is more

important is the choice of the optimization algorithm and that it have the ability to

move out of local minima.
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One advantage of the method as presented is that it can be applied to any problem where

these steps can be implemented. Perhaps more excitingly, it provides a unified way to

integrate new domain knowledge about the data by explicitly incorporating a generative

model for the data and a model of missingness.

5.2 When to Use These Methods

Some problems are particularly amenable to missing data approaches which, like the one

presented here, model a distribution over possible datasets that have filled in the missing

data. Some problems will not benefit from this method; in particular, many of the scenarios

that Section 1.4.2 addresses involve estimating properties of the data which are averages

or variances of properties of each individual data point. That is, if our dataset consists of

many xi and the property of interest is simply an average over values f(xi) that depend

only on xi, there is likely not a need to model the behaior of the dataset under subsampling

so explicitly. If we know that f(xi) is independent of the values of the other variables in

the dataset (f(xi|xj 6=i) = f(xi)), then the behavior of the mean of the f(xi) will behave

predictably under subsampling and simpler methods will sufffice.

Conversely, for problems in which a property of the xi (such as the distance from xi

to its nearest neighbor) depends not just on xi but on the other xj 6=i, the properties of

interest will not behave predictably under subsampling, and many existing methods which

are designed to estimate simple means and variances will not be effective. In these situations,

the subsampling approach presented in this thesis is likely to be valuable.
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5.3 Caveats

One key assumption of the subsampling model is that the statistic of interest can be calcu-

lated on a subset of the data. However, it is certainly possible to imagine datasets in which

this is impossible. A simple example is genetic sequence alignments that are not missing

whole sequences but rather individual nucleotides or sections of sequence. It is unclear how

statistics like the proportion of sequences that fall into a cluster by genetic distance could

be calculated without first imputing the missing nucleotides.

Another difficulty with the subsampling model is that it suffers from increased computa-

tional costs. While multiple imputation initializes a distribution of datasets, the distribution

initialized by the subsampling method is roughly an order of magnitude larger. In addition,

this distribution is then iteratively modified for thousands of steps; millions or more may

be required for large datasets. Thus the subsampling method can take orders of magnitude

longer to run than the imputation procedure. It is worth considering, in practice, whether

the increased accuracy offered by the subsampling model is worth the added computational

cost. When working with very large datasets, multiple imputation may be preferable.

5.4 Directions for Future Work

The effectiveness of the methods presented in this paper when applied to HIV raises the

possibility that they could be useful in analyzing other datasets as well. Other infectious

diseases such as Ebola have been studied with similar genetic methods in recent years [30].

The possibility that these methods could be more broadly useful in genomic surveillance

is exciting; in addition, many fields other than infectious disease face challenges analyzing

complex properties of incomplete datasets. In medicine, electronic medical records are
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a promising but often incomplete source of data for which extracting useful information

depends on the relationships between many different variables in the dataset. An even more

natural application of this method is in social network analysis, where nearly all properties

of interest involve interactions between nodes in the network and modeling the behavior of

the network under subsampling could be incredibly valuable.

Another interesting area for future study involves the behavior of genetic distances and

genetic clustering under subsampling, as seen in Section 3.4.2 and Figure 3.3. The results

shown indicate that a single dataset can demonstrate substantial differences in the way its

properties change from one subsample to the next; however, this variation can usually be

decomposed into very distinct clusters, each exhibiting its own clear correlation between

|csub − cobs| and error in the estimate of c. The mechanisms by which this behavior arises

would be fascinating to understand and could substantially improve how methods like this

one model missingness in genetic data.

Finally, while the Markov Chain Monte Carlo approach presented in this paper was

ultimately impossible to implement because of an inability to calculate |csub|, overcoming

this barrier would ultimately be quite valuable. Perhaps it is in fact possible through clever

combinatorics to calculate or approximate |csub|. However, a more impressive result would

be the ability to implement an MCMC that converged to the target distribution without

explicitly calculating |csub|. In some ways, the most interesting aspect of the MCMC we

attempted to implement is the more general problem it raises. Given a universe U of elements

ui, each of which is present at some unknown frequency (that is, perhaps there are twice as

many elements u1 as u2), is it possible to draw elements from U according to some target

distribution T over elements ui? The ability to do so without exhaustive random sampling

of the entire space (which may be prohibitively large) would be very valuable.
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In conclusion, this thesis has presented new methods for analyzing datasets with missing

data; these methods are widely applicable but are applied to and validated on genetic data

from the HIV epidemic in this paper. The process of developing these approaches has

illustrated the need for caution in genetic linkage analyses, demonstrated the shortcomings

of several standard missing-data methods in analyzing complicated datasets, and raised

more questions to address in both genetics and statistics. The results hopefully emphasize

that missing data can increase the difficulties in dealing with complex datasets with many

dependencies. Luckily, statistical modeling and a willingness to utilize the information that

is available can help us learn a lot from even an incomplete glimpse of complicated data.
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