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Abstract 

Personalization, the idea that teaching can be tailored to each students’ needs, has been a 

goal for the educational enterprise for at least 2,500 years (Regian, Shute, & Shute, 2013, 

p.2). Recently personalization has picked up speed with the advent of mobile computing, the 

Internet and increases in computer processing power. These changes have begun to generate 

more and more information about individual students that could theoretically be used to 

power personalized education. The following dissertation discusses a novel algorithm for 

processing this data to generate estimates of individual level attributes, the Inverse Bayes 

Filter (IBFi).  

  A brief introduction to the use of Bayes Theorem is followed by a theoretical chapter 

and then two empirical chapters that describe alternately how the model is constructed, and 

how it performs on real student data. The theoretical chapter presents both the theory 

behind Inverse Bayes, including subjective probability, and then relates this theory to student 

performance. The first empirical chapter describes the prediction accuracy of IBFi on two 

proxies for students’ subjective probability, partial credit and cumulative average. This 

prediction performance is compared to the prediction accuracy of a modified Bayesian 

Knowledge Tracing model (KTPC) with IBFi performing reasonably, out-predicting the 

KTPC model on a per-student basis but not across all predictions.  

In the second empirical chapter I validate the theory behind the Inverse Bayes Filter 

through testing whether student certainty (or confidence) improves prediction performance. 

The inclusion of student certainty is shown to improve the predictive performance of the 

model relative to models that do not use certainty. This evidence supports the IBFi model 

and its underlying theory, indicating that students’ judgments about their levels of certainty 
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in their answers contains information that can be successfully identified by the model. A 

final summary chapter describes the consequences of using this model for education broadly. 

 

Keywords: subjective probability, Bayes Theorem, Inverse Bayes Formula, Intelligent Tutors, 

assessment 
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Introduction 

Since the eighteenth century Bayes' Theorem has gone from parlor game to 

powering the technological world. Originally devised by Thomas Bayes to calculate the 

proportion of colored marbles in urns, it now enables predictive text in mobile devices 

(Maragoudakis, Tselios, Fakotakis, & Avouris, 2002), missile defense systems (Tan, Wang, 

Shen, & Xu, 2005), quality control in factories (Singpurwalla, 1992) and the GRE adaptive 

test (Swinton, 1987). The following articles investigate whether the application of a particular 

flavor of Bayesian Analysis can help us automate the personalization systems for students. 

As background, the following bookend outlines the basic premise of the research - that 

Bayes Theorem can model the way that students make decisions and that this can provide 

insight into a) their learning and b) the impact of the context that this learning takes place in.  

Bayes Theorem 

Bayes Theorem describes the relationship between the probabilities of A and B, P(A) 

and P(B), and the conditional probabilities of A given B and B given A, P(A|B) and P(B|A): 

 

𝑃 𝐴 𝐵 =    ! ! ! !(!)
!(!)

       (1) 

 

As a concrete example, you see a friend talking to someone across the street in 

Cambridge, MA. You think your friend may be speaking to a professor, but you are unsure. 

You observe that the person is wearing a tweed jacket though. In this instance you are 

attempting to calculate the conditional probability that your friend is speaking with a 

professor, given that the person in question is wearing a tweed jacket, P(Prof|Tweed Jacket). 

We can make this calculation provided we know: 
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• The probability that someone is a professor or our prior knowledge of seeing 

professors P(Professor) 

• The probability of wearing tweed, P(Tweed Jacket) and  

• The likelihood that someone wears tweed jackets given that they are professor, 

P(Tweed Jacket|Prof)  

According to the Cambridge Community Development Department, 5% of those that live 

and work in Cambridge are professors, so P(Prof) is 0.05 (Cambridge Community 

Development Department, 2010). Suppose we also know something about the fashion 

habits of Cambridge generally. Tweed is a robust market in Cambridge with 1 in 10 people 

wearing a jacket regularly, and professors in particular being fond of the style with 2 in 5 

wearing one regularly. We can then fill out the remaining probabilities in the calculation, 

P(Tweed Jacket) is equal to 0.10 and the probability of wearing a tweed jacket, given that you 

are a professor, P(Tweed Jacket|Professor), is 0.66. We can then estimate the posterior 

probability that the friend is having a discussion with a professor as: 

 

𝑝 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 𝑡𝑤𝑒𝑒𝑑  𝑗𝑎𝑐𝑘𝑒𝑡 =    !.!!  ×  !.!"
!.!"

= 0.33   (2) 

 

Not a very high probability at all, this is the posterior probability, as it conceptually occurs after 

the likelihood and prior have been multiplied together. It is also referred to variously as the 

logical probability or reasonable estimation. Neither of these terms should invoke the sense that it 

is the best value though, as it is entirely dependent on the values of the prior probability and 

likelihood – a poor choice of these values will produce a misleading result. Far from being a 

weakness of the Theorem though, this property of Bayes allows us to compare different 

estimates of these values. The comparison of values is the first idea that we will attempt to 
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employ to make inferences about students: strength of belief.  For example, aside from 

situations involving tweed coats and Cambridge professors, we can apply Bayes’ theorem to 

situations involving students’ problem solving.  In looking at a question on a test, for 

example, there is a probability that a student will get the item correct (if it is a difficult item, 

the probability may be relatively low).  Yet the student might show a high level of confidence 

in the answer, so this might change our thinking about the probability that the student gets 

the item correct. Using Bayesian reasoning can be a big help here, at least if we make 

reasonable assumptions about the prior probabilities and the likelihood  

 

Model Modification 

Flexible Estimates 

The dominant understanding of probability is as a proportion, otherwise known as 

the Frequentist interpretation of probability. Within this interpretation it is possible to make 

an estimation of a true value of a given proportion through statistics. Alternately, in Bayesian 

inference, probability is considered a "strength of belief" and although it can be a 

proportion, it can also be considered a tendency or propensity (Popper, 1959) not reliant on 

having a long range frequency to generate a proportion from. Doing away with the necessity 

of propensity opens the door to modeling a much wider array of phenomena for which 

proportions are unavailable (e.g., situations in which it is unethical to collect data) or do not 

make sense (e.g., the proportion of all possible events in the universes).  

The idea of strength of belief also allows estimates to be flexible and change over 

time as more evidence becomes available or context changes. Unlike frequency based 

statistical models of student behavior such as True Scores or IRT models that attempt to 

make estimates of the true value of students' knowledge or intelligence, a Bayesian estimate 
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of student knowledge can change over time (Borsboom, 2005, p. 79). Change over time 

allows us to take advantage of two characteristics in investigating student behavior – 

comparison of prior probabilities and updating of likelihoods. 

 
Figure 1. Changes in the popularity of tweed among the general 
population (P(Tweed)) are not reflected by the popularity of tweed among 
professors resulting in climbing predictions of whether or not someone is 
a professor if they are wearing tweed. 

 

Bayesian Recursion. The basic model of likelihood and prior updating is Bayesian 

Recursion. For example, to improve our prediction of the professor, we might also factor in 

other, time dependent information such as changes in fashion. If we closely follow fashion 

trends we may see a fall in the popularity of tweed and we can model this by sequentially 

changing the P(Tweed). We can also model whether professors are resistant or susceptible to 

changes in fashion by altering the likelihood, P(Tweed|Professor). For example, perhaps we 

observe that among members of the general public tweed becomes less popular but 
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professors continue to wear tweed despite this change in fashion. Given these factors we can 

see that over time our prediction of whether our friend is speaking to a professor increases 

(Figure 1). 

Updating is especially useful when we are dealing with noisy data over time because 

we can continually refine our search for a signal. Consider there are many traits that 

professors tend to have, but none of them definitively tells us that someone is a professor: 

wearing tweed, carrying books, speaking to students, living close to a university, etc. If we 

remain interested in positively identifying our friend's companion as a professor we could 

follow her over time, noting how many of these traits she exhibits and updating our 

prediction accordingly (Figure 2).  

 

 
Figure 2. Changes in the posterior probability (i.e., – prediction) of whether 
you have identified a professor as you gather more evidence. Even though the 
proportion of evidence changes erratically, the prediction steadily grows as 
more confirmatory evidence is collected. 
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One system for making these updates is Bayesian Recursion. In Bayesian Recursion 

the likelihood is sequentially updated as new data become available and then the previous 

prediction becomes the new prior probability allowing us to generate a new posterior. 

Therefore, applying this method to our prediction problem, we could track the individual in 

question, noting professorial evidence over time until we reached a stable estimate of the 

probability.  

Comparison of prior probabilities. To continue with our example of identifying a 

professor, let's say you see your friend and their companion walk onto a university campus 

where your prior probability of seeing a professor is much more likely, P(Professor) = 0.20. 

Such a change increases your prediction substantially: 

 

𝑝 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 𝑡𝑤𝑒𝑒𝑑  𝑗𝑎𝑐𝑘𝑒𝑡 = !.!"×!.!"
!.!"

= 0.80   (3) 

 

In the above example we altered the context and so changed the prior information that we 

were using to calculate the probability of a professor. The ability to alter the prior means that 

alternate viewpoints or models of phenomena can be compared. For example, if we treat 

prior information to be a sense of expertise, we can compare the predictions of different 

experts. Modeling of this type has found use in climate science (Choy, O’Leary, & 

Mengersen, 2009), geology (Baddeley, Curtis, & Wood, 2004) and economics (Lombardi & 

Nicoletti, 2012) and it represents a shift from using Bayes to make the best, objective 

prediction, to using Bayes to represent the thoughts of people.  
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Bayes as Model of the Mind 

Approaches 

The conceptual change from using Bayes to model uncertainty to modeling prior 

knowledge has lead to a raft of attempts to use Bayes as a model of the human mind. Three 

such modes are Decision Theory, Bayesian Knowledge Tracing and Cognitive Bayesian 

approaches.  

Decision theory. Decision Theory grew out of financial risk assessment and so is 

concerned with describing normative decision spaces in which there is a clear optimal 

outcome or expected utility (Ghirardato, 2002). Bayes has found a natural home in this field as 

a stand in for the optimal decision maker. Indeed, the Complete Class Theorems imply that 

all admissible decision rules are approximately Bayesian (Le Cam, 1955; Sacks, 1963; Stein, 

1955; Wald, 1950).  

Although successful theoretically, the optimum decision maker model does not fit 

actual human behavior well.  Allais (1953) and Ellsberg (1961) and then Kahneman and 

Tversky (1972) showed reliably that humans tend to diverge from optimum Bayesian 

decision-making in predictable ways. Although this was not the final word, and Bayes did 

make some inroads within psychology there was not much research utilizing Bayesian 

methods in psychology until the end of the 1990s. In the meantime, Bayesian decision-

making had been taken up with alacrity by both the machine learning community as a means 

of feature reduction and designers of Intelligent Tutors as a means for prediction. 

Bayesian Knowledge Tracing. Bayesian Knowledge Tracing (BKT) is the 

dominant form of prediction used in Intelligent Tutoring Systems. First proposed in the late 

1960s by Atkinson (1972) it was further developed by Corbett and Anderson (1994). BKT 

uses Bayes Theorem to derive estimates of the probability that a discrete skill has been 
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learned, P(Ln). It is used to trace skill development in students as they work through 

problems in Intelligent Tutors. BKT was the most direct use of Bayes in an educational 

context until recently with the development of large, complex online learning environments 

that adopted machine-learning techniques.   

Machine learning approaches: cognitive Bayes. Creating computers that could 

make the best decision within constrained hypothesis spaces was required to automate many 

industries. From car-building robots to Internet commerce, the demand for predictive 

technology and technology that could simplify complex phenomena made Bayes a useful 

tool. 

As a result, partnerships in the early 2000s between machine-learning researchers and 

psychologists saw a small revival in using Bayes to model human behavior. Spearheaded by 

Gopnik (Gopnik, 2008; Gopnik et al., 2004; Gopnik & Glymour, 2002; Gopnik & 

Tenenbaum, 2007), this work models the causal reasoning of children by using Bayes nets to 

describe how people link events together. She showed that children, although they may not 

make decisions in keeping with Bayes, do describe causal relationships in accordance with 

Bayesian Principles. Griffiths and Tenenbaum extended this approach beyond causal 

reasoning to include induction (Tenenbaum, 2000), vocabulary learning (Frank, Goodman, 

& Tenenbaum, 2009), judging similarity (Tenenbaum, 1996), and forming perceptual 

representations (Griffiths & Warren, 2004). These "probabilistic models of cognition" seek 

to describe the algorithmic characteristics of human behavior rather than implementational 

(biological) or computational (experimental psychological) characteristics (Marr & Poggio, 

1979). They are trying to infer that people can algorithmically rely on Bayes to generate 

inferences under certain conditions. The ability to invoke Bayes does not necessarily imply 

that people are rational or Bayesian by nature, but rather that Bayes is one tool that people 
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have access to from an early age, in the same vein that developmental psychologists discuss 

the intuitive number sense (Feigenson, Dehaene, & Spelke, 2004). 

 

Modifying Bayesian Models of the Mind 

Modeling Traits 

Although the idea that humans are fundamentally Bayesian has been continually 

questioned, Bayesian psychological models are still geared at uncovering general, human-

level traits. Often they take the form of testing whether people do, or do not, on average, 

behave in a Bayesian fashion under a certain set of circumstances. The applicability of this 

approach to education research may be limited though. Although generalizability is a 

laudable aim, there may not be anything to generalize as student heterogeneity, particularly 

with respect to the way people understand new information, may be too great. In Bayesian 

probabilistic models of cognition, the assumption is that this is not the case. Rather, it is 

assumed that everyone processes incoming information in the same way and it is their prior 

knowledge that differentiates their understanding. For example, referring back to the baby 

and the sunrise, the assumption is that if there were several babies, they would all see the 

sunrise in the same way and therefore adopt new data with the same efficiency. Such a 

strategy may be reasonable in some circumstances, but in a classroom it is highly likely that 

students will receive new data with varying degrees of efficiency as well as having different 

prior knowledge. A student may not be looking in the direction of the teacher, she may be 

distracted, or she may have poor hearing – all these possibilities are clearly non-random and 

impact her ability to alter her beliefs. 

As another example, a standard experiment might involve flipping a coin and asking 

people whether or not they think it is a fair coin that produces 50:50, heads:tails, or a trick 
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coin that produces more heads than tails. The people in the trial may or may not, on average, 

update their decision about the coin in accordance with Bayes Theorem as they are shown 

more flips of the coin. However, the assumption of the model is that with each flip, each 

person will incorporate the new information into her or his schema with equal, if not 

perfect, accuracy. This experiment does not account for lapsed concentration or the 

differential sight of participants, for example; all those differences are considered random 

noise. As such, people will either behave in a Bayesian or non-Bayesian fashion. This strategy 

does not allow for the situation that people may behave in a Bayesian fashion, contingent 

upon how they interpret new information. This assumption is problematic for behavioral 

research generally, but in particular it is problematic for educational research. It may be 

reasonable to treat these factors as random in a laboratory setting, but in a classroom it a 

stretch to assume that distraction, student mood, or the temperature are random events. 

The Bayesian Classroom. The bread and butter of the educator is not the human 

level trait - characteristics common to all humans. Of course, there are instances in which 

differences in fundamental memory or executive function are important, but the majority of 

lessons outside the special education classroom do not revolve around these fundamental 

differences. Rather, educators are trying to work with the differential mental representations, 

ideas, and understandings of their students (Siegler, 1996). Sometimes they are trying to 

homogenize ideas across students - everyone in the class should understand that 1 + 1 = 2, 

and sometimes they are trying to differentiate ideas – everybody should have their own 

understanding of the ethics of organ donation. Regardless, it is the differences between 

students that are being manipulated rather than fundamental human characteristics and a key 

source of this difference is how prior knowledge may impact the processing of new 

information.  
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The translation from machine learning to psychology, and any future adaption of 

Bayes for education, needs to take into account the heterogeneity of student data processing 

in a substantive way. When creating a robot that can kick a ball, it isn't necessary to 

understand why the machine does or does not perform the task, provided that the algorithm 

can be tweaked until a desirable result is achieved. The explanation for why it works in a 

psychological sense is unnecessary and the information about parameters is not likely to be 

human-readable anyway. Conversely, a teacher is required to understand why students 

behave the way they do. There are myriad reasons why teachers would want to describe what 

is going on with their students: to create student profiles, to justify interventions, or to 

promote self-efficacy among students. 

Bayesian models do go part way toward describing the inner workings of people; 

they allow for the differential modeling of prior knowledge. They do not allow for the 

differential modeling of how students grasp new information, though. To alter Bayesian 

models to allow this kind of flexibility requires an adaption of Bayesian methods named 

Inverse Bayes.  

Inverse Bayes 

As described above, the standard use of Bayes involves the prediction of the 

posterior probability using a reasonable prior and a likelihood generated from data: e.g., the 

prediction of whether or not someone is a professor given that they are wearing tweed. 

Inverse Bayes is simply the inversion of this idea, the use of posterior probabilities to 

generate priors and likelihoods: e.g., ascertaining the proportion of people who are 

professors, based on predictions of whether a set of people are professors wearing, or not 

wearing, tweed. For example, I know the probability of being a professor, given you are 

wearing tweed, to be 0.70. If I also know the likelihood of wearing tweed, given you are a 
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professor is 0.5 and the probability of wearing tweed is 0.1, then I can calculate the prior 

probability of being a professor: 

 

𝑝 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 𝑡𝑤𝑒𝑒𝑑  𝑗𝑎𝑐𝑘𝑒𝑡 = 0.70 =
0.50  ×  𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟)

0.10  

 

Things become slightly trickier if I am missing the likelihood information, but I will 

at least know the range of the likelihood because the posterior limits these values. I can then 

use other heuristic methods (covered in subsequent articles) to calculate the range of the 

prior.  

Inversion of Bayes is not a common method, however, and general proofs for its use 

were only developed in the late 1990s (Tian & Tan, 2003). Its use is also 

geographically/culturally located mostly to Asia and Russia and is very rarely adopted in 

West. Tian and Tan attribute this low adoption to the philosophical defense of Bayesianism 

against Frequentist critique (p.306). In these discussions the prior probability came to be 

considered a sacred cow of sorts and the idea that it could be generated simply by running 

everything backwards seemed to undermine its status. Regardless, there is no mathematical 

or logical reason why Bayes Theorem cannot be inverted, although it has not been 

thoroughly empirically tested (Tian, Ng, & Tan, 2010).  

Utilizing Inverse Bayes for educational applications may be particularly useful as it 

allows the modeling of differential student data acquisition. By running Bayes backwards, the 

likelihood no longer describes a standard presentation of data (e.g., everyone is considered to 

be equally adept at internalizing that a coin has been flipped heads), rather the value 

represents how well data are internalized. This characterization of the likelihood allows the 
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characterization of the difference between students in terms of how they are responding to 

stimuli. Whereas the prior represents the knowledge acquired with previous experience, the 

likelihood represents the probability of the data given the context and way it is presented. 

Are the data in opposition or agreement with the student’s prior knowledge? In this way the 

pairing of priors and likelihoods might be a reasonable proxy for learning.  

The following three articles investigate whether it is fruitful for educational research 

to pursue this mix of Bayesian Recursion and Inverse Bayes as a means to automate 

personalization. The goals of these papers is to outline a) why and how this is theoretically 

possible, b) whether it generates accurate predictions of student behavior and c) how this 

relates to students’ sense of certainty or, as it is called with the Bayesian framework, 

subjective probability. 
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Theoretical Considerations for Automated Personalization through the Inverse Bayes 
Formula  



PERSONALIZATION THROUGH INVERSE BAYES 

	  

17 

	  

 
Abstract 

Individualization has been a goal for the educational enterprise for at least 2,500 years 

(Regian, Shute, & Shute, 2013, p.2). Renewed interest has been stoked by mobile computing, 

the Internet and recent increases in computer processing power. From Skinner’s “teaching 

machines” to Khan Academy, the idea that technology can emulate an individual teacher for 

each student has inspired generations of educationalists and inventors. The following paper 

discusses the theoretical approach underlying an algorithm for utilizing subjective probability 

as a form of within-student variation. It outlines a model based on the Inverse Bayes 

Formula that generates estimates of constructs proposed by Snow: the Aptitude Complex 

and Situational Factors. 

 The model is systematically built from a basis in the theory of subjective probability, 

to utilizing sources of variation, to Bayes Theorem, then relaxing the assumptions of 

Bayesian rationality and inversion of Bayes Theorem, and finally a heuristic solution to 

estimating the range of the prior probability. The final model presented is the Inverse Bayes 

Filter (IBFi) and its utility for efforts to automate personalization is discussed.  

 

Keywords: subjective probability, Bayes Theorem, Inverse Bayes Formula, Intelligent Tutors, 

assessment 
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Theoretical Considerations for Automated Personalization through the Inverse Bayes 

Formula 

 

Individualization 

Background. Individualized instruction has been a long-term goal of the 

educational enterprise. In 1899 Charles Eliot, President of Harvard University, bemoaned 

that, "Uniformity is the curse of American schools...Individual instruction is the new ideal" 

(Grittner, 1975, p. 325). Over a century later, the Secretary of Education Arne Duncan 

complained, "We need to take classroom learning beyond a one-size-fits-all model and bring 

it into the 21st century" (Department of Education, 2010b).    

The longevity of personalization might be partly attributed to the malleability of the term 

individualization and the related terms personalization and differentiation. To Eliot's mind 

individualization referred to what would today be called elective classes, a now common 

feature of high schools, but the meaning of individualize has grown and been re-imagined far 

beyond this application. So much so, that The Department of Education felt the need to 

officially clarify the definitions of individualization and its sister terms differentiation and 

personalization: 

• Individualization is pacing that caters to individual students 

• Differentiation is altering instructional methods to cater to individual students' needs 

• Personalization is the combination of individualization and differentiation but also 

including student choice in the mix     

(Department of Education, 2010a) 
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As the definitions of individualization/differentiation/personalization have shifted 

one aspect seems to have remained though: the notion that technology can serve as a 

mechanism to enable students to receive the most appropriate content to their needs. In the 

US the idea that a machine could become a high fidelity replacement for the private tutor 

has been a part of the individualization debate from the beginning. The first patents for 

"personal education devices" appear in 1809, and Sidney Pressey is credited with the first 

published research on the use of "teaching machines" to pace set and provide individual 

feedback with respect to answer accuracy in 1926 (Benjamin, 1988, p. 705). The promises 

made on behalf of these technologies were not insubstantial: B.F. Skinner predicted that 

teaching machines would double the amount of information students could absorb and 

retain (Seidensticker, 2006, p. 103). 

Over the 20th century three major strands of theory have contributed to the 

realization of technological individualization: Mastery Learning, Intelligent Tutoring Systems 

(ITS) and Aptitude-Treatment Interactions (ATIs) (Regian, Shute, & Shute, 2013, p.2). 

Mastery Learning is a systematic, teacher driven approach that groups students based on 

regular diagnostic assessments and adjusts instructional time so that every student in a class 

can meet tightly defined educational objectives (Bloom, 1968; Keller, 1974).  

Intelligent Tutors grew out of the field of Computer Aided Instruction and 

incorporated ideas from Mastery Learning, such as tightly defined skills and using a human 

tutor utilizing a Mastery Learning process as an essential point of comparison (Desmarais & 

Baker, 2012). The goal of the Intelligent Tutor is to automatically assign an appropriate 

intervention to a student given their performance, although the lion’s share of research 

involves how to assign the right intervention to struggling students there is also research into 

how students who have mastered a skill should be treated (Kelly & Tangney, 2002). 
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Individualization in this theoretical frame is achieved through complex models of learner 

behavior that can allow the differentiation of student states. For example, understanding the 

difference between a student who mistakes multiplication for addition and the student who 

does not know what the multiplication symbol means. 

The third strand, Aptitude Treatment Interactions grew out of psychometric research 

in the mid-1950s. It began when Cronbach set out to find “for each individual the treatment 

to which he can most easily adapt” (1957).  And from this sprang a research program that 

lasted 25 years. ATIs seek to characterize interactions between student traits, most 

commonly general ability, and classroom condition variables. They differ from both Mastery 

and Electronic Tutors in that time is held constant and variation in ability is measured. This 

research program has commanded considerable time and resources but this effort failed to 

translate into insight that can be used in classrooms.  

There is something intuitive behind all attempts at individualization, that if you can 

cater to the individual’s needs, teaching will be more effective. ATIs formalized this idea in 

terms of aptitude, defining the individual’s needs in terms of where they lie on a test 

distribution – low scoring students must have different needs to high scoring students. The 

extension of this argument is that, if low students and high students were no different in 

classroom relevant ways then there is no point to organized schooling. Yet a failure to 

consistently observe low-scoring students show improvement under conditions that 

correlated with their score indicates there is something wrong with this intuitive 

understanding. The likely flaw in the ATI strategy is defining difference in terms of relative 

student score. 

Measuring Individuals. Despite the shortcomings of ATIs from a measurement 

perspective, and although ATIs did not ultimately prove their usefulness within mainstream 
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educational practice (Speece, 1990), individualization has been dominated by the work of 

Cronbach and Snow (Cronbach & Snow, 1981). Cronbach and Snow laid out a framework 

that has impacted the broader enterprise of individualization in statistical terms and Snow in 

particular is credited with theoretical advances that help make sense of individualized 

classroom interventions (Shavelson et al., 2002). Specifically, Snow broadly expanded both 

the idea of aptitude (Snow, 1992) and the number of variables that ought to be considered 

when attempting to measure students for the purposes of individualization (Sinatra et al., 

2001).  

For Snow, aptitude was not a limited, general intelligence but rather a plethora of 

possible combinations of cognitive, conative and affective affordances, some innate and 

some learned, that could be applied to a given situation. These aptitudes form what Snow 

terms the aptitude complex and it is the fit between the aptitude complex and the environment 

that determine the success of a student at a given task (Snow & Lohman, 1984).  

For example, a simple shot in a game of pool may match the skill level of a player 

well; she understands the physics of the game, she feels calm and she possesses adequate 

coordination. In this scenario, when situation and aptitude meet, the result is the successful 

execution of the shot (Figure 1A). A more complex shot, however, may be a poor match her 

understanding, coordination and feelings and so when aptitude and situation meet she fails 

to make the shot (Figure 1B).   



PERSONALIZATION THROUGH INVERSE BAYES 

	  

22 

	  

A. Simple Task Aptitude-Situation Match 

 
 

 
B. Complex Task 

 
Aptitidude-Situation Mismatch 

 

 

Figure 1. The match between aptitude complex and situation as represented by a game of 
pool with less and more complex pool shots. 
  

Snow’s conception of aptitude is also dynamic, with both the aptitude complex and 

environment constantly in flux and a student’s performance unfolding “at the interface of 

person and situation” over time (Shavelson et al., 2002, p. 78). Teaching and learning 

therefore involved the reorganization of the aptitude complex to match particular 

environments and increase successful completion of tasks. In other words, according to 

Snow’s theory, building rich, individual profiles of students that describe both their aptitude 

and its interaction with situational factors could allow for effective individualized instruction. 

Snow saw the need for multivariate models that could achieve such a feat in an automated 

fashion though. He believed that the complexity of creating such individual profiles was 

beyond human capacity. For over a decade he worked on models derived from intelligence 
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tests to do this (Yeh, 2012). Although these models were ultimately unsuccessful, the 

theoretical framework of viewing student performance as a match between aptitude complex 

and situation survives and informs several strands of research into individualization, such as 

Performance Factor Analysis (Pavlik, Cen, & Koedinger, 2009) and the bulk of psychological 

research into individual differences (Jonassen & Grabowski, 2012). 

The aim of this paper is to use Snow’s theoretical system of balance between 

aptitude complex and situational factors to build a mathematical model of individual student 

learning. This model, if reliable, could advance the aim of automated individualization, to 

provide the most appropriate conditions to a each student. This will bring together three 

main pieces: 1) Utilization of subjective probability as a source of within-student variation to 

avoid reliance on between-student variation as ATIs do 2) the perspective of rational 

Bayesian models to provide a means of processing the subjective probability and 3) the 

inversion of these Bayes models to generate parameters for each student over time.  

 

Model Design 

Choosing a Source of Variation 

Aptitude Treatment Interactions were based on models of intelligence and therefore 

took as their essential measurement the variation between students on intelligence-type tests. 

The nature of the variation that they preference is important as using only between-student 

variation likely had a lot to do with the failure of the models to create reliable results (Speece, 

1990). The strategy ATIs use to make inferences is to look for a relationship between a 

student’s relative test score (aptitude complex) and some environmental variables (situational 

factors). If groups of students differs with respect to this relationship then this represents a 

point of individualization. Figure 1 demonstrates what this looks like when test scores and 
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number of homework hours show an interaction. The problem with this strategy, however, 

seems to be its reliance on between-student variation. The heterogeneity of both individuals 

and environments is far greater than the model can reasonably account for and interactions 

tended not to be replicable and interventions based on the ATIs ineffective (Speece, 1990). 

In contrast to ATIs, the two other domains that have contributed substantially to 

automated individualization, Mastery Teaching and Intelligent Tutors, look to preference a 

different form of variation: variation across time. This is not to say that ATIs did not 

incorporate time, but rather they start with variation between students and then scale across 

time – variation between students is the reference point from which other factors were 

measured. Conversely, mastery learning looks to group students according to their growth 

towards skill proficiency, based on skill based assessments and intelligent tutors tend to 

validate their measures through forecasting accuracy (Mäkitalo-Siegl & Fischer, 2011). 

Validating individualized measures. The varying approaches to time between 

ATIs and Intelligent Tutors have important consequences for how the two fields approach 

validation. ATIs require time to be constant for all students so that the variation between 

students over this window can be compared. The comparison and validation of ATIs was 

developed from IQ research and as such utilizes methods of validation common in the 

psychological sciences. They involve Frequentist significance testing to determine whether a 

relationship exists between variables. Validity of an interaction means that the relationship is 

likely to exist within an acceptable tolerance of possibility, as determined by comparison to 

an appropriate distribution (Messick, 1995). In contrast, Intelligent Tutoring Systems, such 

as those utilizing Bayesian Knowledge Tracing, use validation more in common with 

forecasting methodology. Since students move at their own pace, there is no standard time 
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variable, so validation is based not on the existence of a significant relationship, but rather 

on successful prediction of future student performance. 

 

 
Figure 1. An Aptitude Treatment Interaction. Gray and 
black points represent students whose test scores show 
the opposite interaction with number of homework hours 
performed. 

 

Parameterizing individualization. Despite having the express aim of 

individualization, Intelligent Tutor, Mastery and ATI models rarely use individual level 

parameters – parameters that exploit variation within individuals over time. ATIs utilize 

between-student variation almost exclusively to group students relative to their peers 

(Cronbach & Snow, 1981). The major Intelligent Tutor model, Bayesian Knowledge Tracing 

(BKT), mostly utilizes skill level parameters despite its original conception including 

individual level parameters (Corbett & Anderson, 1994; Yudelson, Koedinger, & Gordon, 

2013, p. 1). An alternative Intelligent Tutor model, Performance Factor Analysis, produces 
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skill and item level parameters utilizing between-student, between-skill and between-item 

variation (Pavlik et al., 2009). Mastery Learning methods also group students based on 

between-student scores on assessments that define skill-based variation (Black & Wiliam, 

2006).  

Practicality has likely had a substantial influence in the choice to model between-

student change instead of change in individuals over time. Collecting individual level data has 

historically been complex and expensive (Klein, Dansereau, & Hall, 1994). Collecting, 

scoring and storing the information on many students was relatively unrealistic prior to the 

introduction of cheap computer storage and processing capabilities. As such, sample-based 

statistics were designed to deal with this problem by allowing inference from a limited 

number of samples. Sampling methods remain the dominant way of dealing with educational 

data problems (Ary, Jacobs, Sorensen, & Walker, 2013, p. 169).   

The preference of other forms of variation has also meant that individual level 

parameters tend to be added to models that predict variation between students or skills, 

rather than the other way around. The tendency for individual level parameters to play 

second fiddle exists even within experimental psychological models of dynamic systems, in 

which individual level time parameters are mixed into models of mean differences between 

individuals (Borsboom, Kievit, Cervone, & Hood, 2009).  

The failure of ATIs to predict future performance and the limited success of BKT to 

improve predictions of future student performance with individual level parameters may 

reflect that these sources of variation do not reflect the same underlying processes 

(Borsboom, 2005). There is therefore some interest in building models that use as their base 

individual change over time. These models use an approach in which each student is given 
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an individual prediction of their performance, separate from every other student. The 

question remains however, how do we accomplish this? 

The key requirements of such a model would be: 

• Based on within-student variation 

• Forecasting accuracy used to validate the model for each student 

The aim of the following section will be to use Snow’s aptitude complex and situational 

factors to predict student performance using these model requirements.  

 

Operationalizing Theory 

Modeling Aptitude Complexes and Situational Factors  

The approach taken here to achieve the desired model is to formalize Snow’s 

construction of aptitude complexes and situational factors in terms of subjective probability. 

Subjective probability has been intermittently proposed as a way of measuring student 

performance but it has often been associated with the idea of the “rational actor”, a 

constraint that has made it impractical in the educational domain. New technologies and 

faster computer processing speeds may make it worth revisiting though.   

Subjective probability. “Statistics is the study of uncertainty” (Lindley, 2000, 

p.294), but for the most part it is the study of the uncertainty of an observer of an event. In 

the case of assessment it is the uncertainty of the psychometrician with respect to the 

measurement of an observed psychological construct in a test taker. In this case the 

uncertainty belongs to the psychometrician, but is there value in modeling the uncertainty of 

the student? 

By instead bringing a calculus of probability to bear, not on the psychomterician’s 

uncertainty, but on the uncertainty of the student, there is the possibility that a useful source 
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of within-person variability could be unlocked. We might then build a model based on 

within-student variation that may not suffer the same limitations that ATIs did with their 

focus on between-student variation.  In other words, we will derive probability-based 

measurements from the perspective of the student. Certainty in educational measurement is 

not a new idea and was advanced within the educational context by Coombs and then de 

Finetti in the 1950s and 60s: 

 

A different outlook appears, sometimes rather stealthily and marginally, 

sometimes clearly and firmly expressed, when the existence of partial 

information, or knowledge, is anyways considered. Indirect ways are 

those introducing notions like the confidence (of a subject in his 

choice), the “standard of assurance”, the “sensitivity” of a choice, and so 

on. The direct way is to put forward partial knowledge as the very 

essential basis for the whole theory: that has been done in the fullest 

manner (as far as I know) by Coombs (1964), but it seems possible and 

necessary, in my opinion, to take one more step forward. This step 

consists in the straightforward interpretation of any partial knowledge in 

terms of probabilities (of subjective probabilities, to be precise; such 

distinction is in the subjectivist theory of probability, to what I adhere, 

for any probability is there but a subjective belief). (de Finetti, 1965, p. 

87). 

 

In 1963-6 de Finetti set out to consolidate ideas in Subjective Probability with those 

in educational assessment. The growth of the multiple-choice examination seemed to him to 
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be the natural testing ground for his theories about probabilistic reasoning and mathematical 

psychology. However, the educational research community, including the then leaders of 

assessment Lord and Novick (1968), mostly rejected the resulting theories as being too easy 

for students to manipulate. Instead, de Finetti’s work found a home in the world of business, 

political science and economics where his ideas contributed to decision theory, game theory, 

and utility theory (Schlaifer & Raiffa, 1961). 

The failure of de Finetti’s work to gain traction within education, while it blossomed 

elsewhere, is telling of the differences between fields. The first two pages of his treatise on 

the application of subjective probability to education detail how students need to be trained 

in order for the assessment to work. Students must understand probability theory, 

understand the scoring method, and want to gain the highest score possible. In short, they 

must be informed and rational actors. The idea that students would act within this limited 

sense of rationality was a stretch that educationalists were not prepared to entertain (Sullivan, 

2006). In fact, the irrationality of student decision-making has been well documented, with 

everything from choices in the cafeteria (Gottfries & Hylton, 1987) to whether to cheat on 

an exam (Tibbetts, 1997) being used to demonstrate students’ failure to comply with 

definitions of rationality. Within education, rational models are most commonly used to 

explain how students choose which college to attend. Yet, even this substantial literature is 

critiqued for having unrealistic assumptions, such as the assumption that students are 

adequately informed about college (Des Jardins & Toutkoushian, 2005, p.194). This 

assumption seems to be the point of distinction between education and other fields such as 

economics. Whereas it is reasonable to assume that a consumer or politician is adequately 

informed, education, by definition, implies that information is lacking that needs to be 

learned. It is not possible to have a fully informed student to model, as this would defeat the 
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purpose of the educational process.  However, the idea that businesses, consumers, 

managers and politicians can be fully informed is, at least, definitionally possible (Gupta, 

1994). In the following section I will outline why this difference between education and 

other fields is important, and why the idea of subjective probabilities in educational 

assessment should be revisited. 

Connecting subjective probability and Bayes Theorem. Subjective probability is 

an extension of probability theory that accounts for the individual’s sense of certainty, often 

characterized as a partial belief. It is sometimes used to refer to personal opinion or expertise, 

but is strictly considered a probability only in cases where it adheres to a set of logical 

statements, the two most common of which are Kolmogorov’s Axioms or Cox’s Theorem. 

As such it is referred to as a logical, as opposed to classical or empirical, probability. These 

more familiar forms of probability are defined in terms of proportion (the probability of 

rolling a 6 on a die is 1/6). However, subjective probability has some useful properties that 

distinguish it from these objective probabilities. Chiefly, subjective probabilities can be true 

for singular events such as “the probability it will rain tomorrow is 70%” (tomorrow will 

only happen once), as well as repeated events, “The probability that the coin is heads is 0.5” 

(the coin can be flipped many times). 

 Subjective probability might simply be a curiosity without Bayes Theorem, the 

relationship between conditional probabilities devised by the 18th century minister Thomas 

Bayes. Originally it was intended to solve the trivial problem of guessing the proportion of 

black and white marbles in an urn, but it has come to be the functional workhorse of 

subjective probability. When formulated with respect to a hypothesis and available data 

Bayes Theorem allows reasoning about uncertainties based on prior knowledge and 

incoming data in accordance with: 
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𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑑𝑎𝑡𝑎 ∝ 𝑃 𝑑𝑎𝑡𝑎 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠   ×  𝑃(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)  (1) 

 

An example from Pierce (1877): 

A newborn baby sees the sun rise and then set but is unsure whether the sun will rise 

tomorrow. What is a reasonable probability estimate for the baby to have of the sun rising in 

the morning? At that point her experience with sunrises, the prior P(sun rising), is very 

limited, the probability of the sun rising is equal to it not rising, but the data she has 

available, the likelihood P(sun rose today|sun rising), is overwhelmingly in favor of the sun 

rising. Bayes theorem provides a best estimate of the posterior probability, P(sun rising|sun 

rose today), or the probability of the event, given the available data. 

 In sum, Bayes Theorem gets it strength from the ability to systematically incorporate 

new data as it becomes available, a process known as Bayesian updating. In the above 

example, as the baby witnesses more sunrises, the value for the posterior probability can be 

exchanged for the prior, the new data are incorporated into the likelihood, and a new 

estimate of the probability of the sun rising given her experience with sunrises can be 

calculated. 

Subjective probabilities in education. To de Finetti, educational assessment 

seemed to lend itself to subjective probabilities rather than classical probabilities. To his 

mind, it is unclear what the proportion applies to in the case of a single student, answering a 

single question (Borsboom, 2005, p. 74). It may variously mean the proportion of students 

who answer a question correctly and/or the proportion of times a student gives the same 

answer to that question. The former sense is problematic insofar as the proportion of 

students must have a substantive meaning that is dependent on all the students. For 
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example, a correct answer to a question could mean that a student either understands a 

concept and an incorrect answer means that a student does not understand that concept. If a 

correct answer means something different for a subset of students though, such as that they 

can infer the correct answer from their understanding of a different concept, the meaning of 

the proportion becomes unclear. Likewise, the proportion-over-time interpretation is 

problematic to operationalize. Besides the drudgery of requiring the same question to be 

asked multiple times, the nature of learning is such that it will, by definition, change the 

proportion over time. As students learn, they will change from having a proportion of zero 

correct to 100 percent correct and the meaning of the proportion will change as they do. For 

example, a student may be incorrect on the first three trials of a question but they will learn 

the answer by the fourth, their proportion will be 0.25 over these trials but from this point 

forward they will generate the correct answer so their proportion should be close to 1.  

However, subjective probabilities, with their interpretation as “strengths of belief”, 

avoid the constraints of classical probabilities described above. They can be true for a single 

event and change as conditions change. To de Finetti, such properties seemed to fit the 

longitudinal nature of education and by using them he could avoid referring to proportions 

at all, instead using students’ own subjective probabilities – their confidence in their answers 

– to feed the model.      

Confidence Measurement. Interest in using student confidence as an assessment 

measure arose out of the mathematical formalization of subjective probability at the end of 

the 19th century (Estes, 1976, p.37). Since 1913 researchers have sought to apply this body 

of theory to educational assessments (Woodworth, 1915, p. 10). The initial motivation from 

the educationalists' perspective was to determine if querying student confidence could 

provide useful additional information about student performance (Echternacht, 1972). Over 
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the last century the utility of confidence testing has been demonstrated in terms of test 

reliability (Ebel, 1965; Rippey, 1968), identifying guessing (Taylor & Gardner, 1999), 

separating students based on their level of understanding (Gardner-‐‑Medwin, 1995), 

increasing student understanding (Echternacht, 1972; Gardner-Medwin & Gahan, 2003; 

Ramsey, Ramsey, & Barnes, 1987) and explaining answer changing (Skinner, 1983). Yet, 

despite continued interest and positive reviews of the method, empirical research concerning 

confidence and educational assessment seems to be perpetually idling as an interesting idea, 

without widespread implementation or research interest.  

This reluctance may in part be due to the criteria, set down by de Finetti, for 

confidence to be considered a legitimate psychological measurement technique: that a 

scoring system could be devised that the student could not game to her advantage, and that 

the measurement unambiguously improved reliability and validity. With respect to the first 

challenge, although many systems were developed, none have become preeminent, and with 

respect to the second, Lord and Novick (1968, Chapter 16) dismissed any improvement as 

unlikely, dealing a death-blow to the method in the eyes of many psychometricians 

(Echternacht, 1972). 

Despite these dismissals, approximately every ten years researchers suggest using 

some measure of student confidence as a viable option to mitigate problems such as 

guessing, yet little expansion beyond a handful of scoring techniques has been achieved 

(Frary, 1989, p.88; Gardner-Medwin & Gahan, 2003, p.152). The paucity of study of 

confidence in education is in contrast to its extensive investigation in psychology, 

mathematics, statistics and business (Eser, Holbrook, & Colbert, 2012, p.28).  

Bayesian rationality. There could be any number of reasons why education has not 

yielded more research into subjective probability and student confidence, or wider 
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implementation within national or state assessment systems. For a long time the extra 

logistical burden of collecting and analyzing the data was not feasible (Taylor & Gardner, 

1999, p. 355). But technological advances in computing and data storage have reduced those 

burdens considerably over the last 30 years. Beyond logistical obstacles there is a lack of 

theory about confidence that is endogenous to education unlike economics (decision theory), 

management (recursive Bayesian updating), engineering (High Confidence Theory and 

artificial intelligence models), mathematics and statistics (confidence intervals, subjective 

probability, Bayes) in which substantial theories have been developed around confidence.  

 What these theories have in common is that they utilize Bayesian methods and 

accept the constraints that these methods put on inference. With respect to modeling how 

students perform these constraints are presented as the assumption of Bayesian rationality. 

de Finetti outlined the key pieces of this rationality in three points:  

 

1. The student must divulge all her possible hypotheses about a topic. For example, a 

multiple-choice question must have options that reflect all possible contingencies 

that a student may think of by including an “other” option.  

2. The student must understand probability theory and the scoring method used so that 

she is able to optimize her score 

3. The student must want to optimize her score 

 

These assumptions are difficult to maintain – the need to test both the understanding of the 

test and the motivations of the students is a substantial barrier. Further, and the value of the 

information gained for that effort is unclear, although the idea of an ideal Bayesian learner as 

a point of comparison has not found utility for students outside of career decision-making 
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(Gordon, 2003; Harren, 1979) and risk taking behavior (Tibbetts, 1997). The models 

demonstrate an ideal version of decision-making, yet there are few instances when such a 

reference point is sought in educational assessment. Students are considered to be imperfect 

decision makers for many reasons and it is unclear what benefit is gained by comparing them 

to an ideal (Leclercq, 1993). Subjective probability though does seem to have some value in 

an education system in which personalization is a goal – all students possess their own 

personal record of belief. If this belief network could be accessed then it could be a useful, 

dynamic source of information about learning that could be used to tailor instruction. 

Bayesian rationality is not product of subjective probability or even Bayes Theorem 

itself, but rather the way these ideas are operationalized. The prototypical Bayesian learning 

experiment compares a population of decision makers with the ideal Bayesian. A recent 

example is the work of Gopnik et al. in which children are tasked with learning species of 

imaginary animals (2004). The children are given example pictures of the animals and then 

told to name unidentified examples. On average, as the number of example animals 

increases, so does the child’s ability to recognize them, and the shape of the curve on average 

across many children is in accordance with the curve generated by Bayes Theorem. Results 

such as this are taken as evidence that people use Bayesian reasoning to learn, but there are 

of course many studies that show how on average people do not comply with Bayes 

Theorem. Yet both these arguments miss the point. 

The idea that there is an average subjective probability takes the wind out of the sails 

of the subjectivist, who claims that subjective probability can differ for everyone. The 

presumption of the average subjective probability is not built into the model, but into the 

way the model is set up. Rationality is not only dependent on the relationship, but on how 

the data and hypotheses are established. This establishment is done in two ways: 
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1. The presumption that you can characterize the likelihood as the available data 

defined by the researcher. EG – if I tell you some key information you will rationally 

incorporate that into your view of the problem. 

2. The presumption that you will update your beliefs in an efficient way. That the 

posterior will be transferred to the prior completely and without delay.  

 

These strategies have shown great utility in calculating the certainty in non-

psychological events, but are restrictive in the case of educational assessment. However, the 

assumptions can be relaxed and so the model can adapt to fit the nature of assessment. It is 

this adjustment that educational scholars have not previously looked into and that may 

provide a unique pathway to leverage Bayes Theorem for assessment purposes. 

Relaxing the Assumption of Rationality (Inverse Bayes). As it stands, Bayes 

Theorem does not dictate how the data are incorporated into the likelihood, nor does it 

endorse Bayesian updating. In fact, Bayesian updating has been discredited as a formal proof 

of the Subjective view of probability (Douven, 1999). Bayes Theorem only states that there 

is a relationship between the posterior, likelihood and prior and a Bayesian reasoner will 

calculate their posterior in proportion to the likelihood of the data available, multiplied by 

their prior knowledge. There is no stipulation that all people in a population hold the same 

prior information, nor that they refer to the same data. Overall, it does not stipulate in which 

direction the equation should be calculated.  

It is therefore possible to use Bayes Theorem without the updating feature and 

without incorporating data into the likelihood, but it requires reversing the configuration it is 

usually presented in. Instead of calculating a posterior, we would begin with posterior results 
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and ask what sort of prior and likelihood would have led to those results. This form, called 

Inverse Bayes Formula, is a surprisingly recent re-interpretation of Bayes Theorem and it has 

yet to be applied within the social sciences (Tian & Tan, 2003). It has however been well 

established within distributional science, and utilized with missing data problems (Tian, Tan, 

& Ng, 2007), optimal control theory (Friston, 2011), and medicine (Matthews, 2001). 

If we use the Inverse Bayes Formula to dissect subjective probability we are no 

longer describing rationality, but rather whatever flawed way someone reached his or her 

decision. We are relating how they weighted their prior knowledge against whatever data 

they thought relevant. This weighting is particularly useful to educational assessment as it 

provides a description of what a student knows and how their situation is influencing their 

decisions.  

Model Building 

 We now need to bring ideas from Inverse Bayes and subjective probability together 

within Snow’s relationship between the aptitude complex and the situational factors. Once 

we have characterized behavior in terms of probability we can start to model how conditions 

and student characteristics come together to produce student performance.  

Operationalizing Probability 

Lock & key analogy. Consider a collection of six locks and three keys. Key ‘A’ 

opens one lock, key ‘B’ opens two locks and key ‘C’ opens three locks (Figure 2). 

 



PERSONALIZATION THROUGH INVERSE BAYES 

	  

38 

	  

 
Figure 2. – Lock and key analogy of tasks and strategies. 

 

The locks represent tasks and the keys represent successful strategies to complete 

those tasks – a successful strategy opens the lock of a task. We might then consider that a 

curriculum is made up of successful strategies, and that the reason that a strategy is included 

in a curriculum is that it opens many locks (it is more like key ‘C’ than key ‘A’). In other 

words, there is a generality to the strategy. For example, factorization is not taught so that 

students can solve a single equation; likewise, vocabulary is not used in a single sentence. 

Even facts, such as the capital of China is Beijing, hold generality and stability. Beijing may 

be relevant to a task in economics or in history, but regardless it remains the capital of 

China. 

Extending this analogy further, we might consider that learning in a formalized 

environment is a process whereby students construct copies of the curriculum keys. 

Assessment is then a record of the application of those keys across different locks. 

Summative assessment is a record of which keys a student has, while formative assessment is 

a record of the process by which the keys were constructed. In either case the central 
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question is how to determine that a student has a fidelious copy of a key, or in other words, how similar 

is a student’s copy to the key defined by the curriculum?  

The basic answer to this question is that if a student successfully completes a task 

then she has an accurate copy of a key. This is an unsatisfactory characterization though 

because it gives no indication of generality or stability. For a test item, a lack of generality of 

stability may mean any number of possible alternate explanations such as the student 

guessed the correct answer (neither general nor stable), or has memorized the answer to that 

particular question only (stable but not general).  

Probabilistic interpretation. Instead of considering a correct answer as evidence 

for an accurate key we might instead consider that both locks (tasks) and keys (strategies) are 

probabilistic. We can do this at the level of an individual student answering an individual 

question. Tasks are probabilistic in the sense that they are more or less common in the 

experience of the student. We might extend this perception of experience not only to tasks that 

have unambiguously happened in the student’s life, but also tasks that they imagine can 

happen. 

In contrast, strategies are probabilistic in the subjective sense of Cox (1946); a given 

strategy has a level of certainty associated with it. As such, a student can be more or less 

certain of a strategy. With these two probabilities defined it is possible to construct a joint 

probability distribution, where TA is the task being undertaken in the present, and for 

simplicity’s sake we will consider that all other tasks can be grouped into TB and TC. Again 

for simplicity let us also consider that the strategy either be true or false. 
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Table 1. Joint probability distribution of strategy and task 
 Strategy  

True False 

TaskA 0.3 0.1 0.4 

TaskB 0.2 0.2 0.4 

TaskC 0.1 0.1 0.2 

 0.6 0.4 1.0 

 

It is worth noting that the values in the dark gray cells represent the student’s mental 

state and are untestable to us. The marginal probabilities, conditioned on strategy (black 

cells) however are measurable and of interest. Of particular interest from an assessment 

perspective is the marginal probability of True, p(strategyTRUE), 0.6. The marginal probability 

represents the certainty of the strategy being ‘true’ considering all the experience of the 

student. Intuitively this seems like a valuable piece of information, as it incorporates not only 

the task being undertaken but all the tasks, real or imagined, that a student is bringing to bear 

on a strategy in that moment. In terms of the lock and key analogy, it is a measure of how 

general the student considers their key to be. 

Problematically, there is no brief way of determining all the joint probabilities 

between a strategy and experience. Asking students about all their experiences would be time 

consuming and likely change the marginal probabilities around those experiences, although 

Winkler (1967) had some success with this strategy. We can however easily calculate the 

marginal probability from a conditional probability in accordance with Bayes Theorem, 

provided we can define a posterior, p(strategyTRUE|taskA), and likelihood, p(taskA|strategyTRUE): 

𝑃 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦!"#$ 𝑡𝑎𝑠𝑘! ∝ 𝑃 𝑡𝑎𝑠𝑘! 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦!"#$   ×  𝑃(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦!"#$) (2) 
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The posterior is the probability of the strategy being true, given the task. With respect to 

how we have defined the probabilities in question, it is the level of uncertainty given the 

commonality of the task in question, from the perspective of the student. Or in other words, 

the level of certainty the student has in her answer on a scale between 0-1 based on how 

often she has encountered these circumstances. For instance, a student can be 100% 

confident in her answer to an item, not confident at all, or any level in between. This is a 

similar approach to the Decision Theory of Schlaifer and Raiffa (1961) and the Cognitive 

Bayesian approach to reasoning of Griffiths (Perfors, Tenenbaum, Griffiths, & Xu, 2011). 

The likelihood is the probability of the present task given the student’s belief in the 

strategy being true. For example, if the student believes strongly that the answer is true, does 

the task and its circumstances support this belief. In other words, it is the degree to which 

the present task pushes the student away or towards the strategy being true. In this way the 

likelihood provides a mechanism through which the influence of the student’s circumstances 

can be inferred. Do they help or hinder the student reaching the correct answer.  

An Example. The fundamental idea behind applications of Bayes Theorem to 

people's thinking such as Decision Theory (Schlaifer & Raiffa, 1961) and Cognitive Bayes 

(Griffiths, Kemp, & Tenenbaum, 2008) is to change the vantage at which it is applied. For 

example, instead of conditioning on the situation from the perspective of a researcher or an 

assessor (e.g. – the probability of the student being correct given the item) we condition on 

the situation from the perspective of the person being assessed (e.g. – what is her hypothesis, 

and on what data is she conditioning). For example, if we were studying a student as she 

answers the following item: 
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Koalas are: 

 

A. Carnivores 

B. Omnivores 

C. Herbivores 

D. Calmivores 

 

 

 

We could devise a model for the way she approaches each answer A, B, C & D: 

 

𝑃 𝑘𝑜𝑎𝑙𝑎𝑠  𝑎𝑟𝑒  ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒𝑠 𝑑𝑎𝑡𝑎 =
𝑃(𝑘𝑜𝑎𝑙𝑎𝑠  𝑎𝑟𝑒  ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒𝑠)𝑃 𝑑𝑎𝑡𝑎 𝑘𝑜𝑎𝑙𝑎𝑠  𝑎𝑟𝑒  ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒𝑠

𝑃(𝑑𝑎𝑡𝑎)
 

 

In this model students weigh the likelihood of the data they have on hand against 

their prior beliefs, and as more data are presented, they are able to update those beliefs. For 

example, we might show a student pictures of koalas and every time we revealed a new 

picture, we asked the student whether they thought the koala was a herbivore. In Bayesian 

Updating we model the process of their opinion as a Bayesian process where each new 

picture was a datum that changed the likelihood, generated a posterior and then that 

posterior became the new prior. This application of Bayesian Updating underlies features of 

Decision Theory and Cognitive Bayes. Where it departs from Decision Theory and 

Cognitive Bayes, is over the efficiency of that updating mechanism.  
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The Decision Theorist will assume that updating is efficient or rational (Oaksford & 

Chater, 2007) and that there is error in the individual's reporting of their posterior. Decision 

Theoretic questions tend to be along the lines of “Do financial analysts make rational 

decisions about market conditions?” However, if we apply IBF the individual can state her 

own posterior probability accurately, but the incorporation of this new information is not 

necessarily performed efficiently. Data may not be attended to, or it may not be incorporated 

into a person’s beliefs. We can then ask the question, “How do the following conditions 

impact this individual’s prior probability in a specific task?” 

Generalizing the Model. It is possible to expand the joint probability distribution 

above (Table 1) to reflect a continuous probability distribution so that True/False becomes a 

level of certainty between zero and one. This array can be represented as a 3-dimensional 

surface plot (Figure 3A), and the conditional probability of a strategy given a task is taking a 

single-point, horizontal slice across the plot (Figure 3B). 

  

Figure 3. A contour map representing the probability density across many contexts (A) and a 
slice through the continuous distribution representing the prior or marginal probability 
according to the student. Here it has a peak at 0.25 and 0.60. (B). 
 

A.	   B.	  
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For any given task/context we are unsure where the cut has been placed on this plot, 

but this is enough information to characterize the marginal probability, provided we can 

parameterize the posterior and likelihood. Effectively, this means that if we can measure the 

posterior and we can reasonably estimate the likelihood, we can generate a prior distribution. 

As if we had taken a one-context slice through the 3D surface plot to yield the prior 

distribution for a particular context (Figure 3B). 

The remainder of this paper deals with how to convert a point estimate of the 

posterior probability into an estimate of the prior distribution and likelihood. The aim of this 

explanation is the construction of the Inverse Bayes Filter. 

 

Parameterizing the Likelihood & Prior 

Inverse Bayes Filter 

In Snow’s terms, the Inverse Bayes filter seeks to determine the relative 

contributions of context and the aptitude complex to student performance in accordance 

with the Inverse Bayes Formula (IBF). The aptitude complex is whatever cognitive, 

emotional and conative resources a student brings to a task. Contexts are the conditions of 

the task that impact a student’s performance. For example, a student may be certain about 

her name, but within a high stress context she may not be able to report it. Likewise, she 

may be very uncertain about the laws of thermodynamics, but if we provide enough context 

cues she may be able to choose the correct answer from a selection.  

Inverse Bayes determines how knowledge and context should be weighted for a 

student, given their answer according to logical probability. Bayes Theorem posits that the 

conditional probability of a hypothesis (posterior) is proportional to the product of the 
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probability of that hypothesis (prior) and the likelihood of the available data conditioned on 

the hypothesis (likelihood): 

 

𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑑𝑎𝑡𝑎 ∝ 𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠   ×  𝑃(𝑑𝑎𝑡𝑎|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)  (3) 

 

Bayes Theorem then gives the relationship between the aptitude complex and 

behavior according to context. The following graph demonstrates this by showing how, 

according to Bayes theorem, as the aptitude complex decreases (large dashed line), context 

(solid black line) must increase quickly (become very friendly) to increase performance (small 

dashed line). In other words, context can compensate for not knowing something to some 

extent, but there are limits to this relationship.   
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Figure 4. Theoretical values for performance, aptitude complex and context 
demonstrating the balance between knowledge and context. Performance can be high 
even if knowledge is low, provided there are enough context clues, likewise, partial 
credit can be low even if knowledge is high if the context is very unfavorable. 

 
An inverse Bayesian approach to this problem differs from these previous examples 

though in that it does not treat the posterior as a stand in for a stimulus. For example, if an 

experimenter randomly assigned one group of students tablet computers, a Bayesian 

approach would treat tablet computers as a stimulus that had been equally applied to each 

student and differences in their performance would on average reflect the impact of the 

device. Differences between students in this model are treated as random error. Conversely, 
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in an Inverse Bayes model we try to characterize these differences within the posterior, and 

they are interpreted as how each individual student is interpreting their context. In other 

words, in a Bayesian model all students have the same posterior and in an Inverse Bayesian 

model the posterior is free to change for each student independently. 

Estimating the prior and likelihood. There are an infinite number of possible 

prior and likelihood combinations for each posterior. However, the range of the likelihood 

will differ dependent on the posterior, but the range of the prior will always be between 0 

and 1 (Figure 3). That the posterior gives no information about the range of the prior is an 

issue if we are using the posterior to estimate the prior. To deal with this issue we can 

implement a heuristic that assumes some properties of student certainty.  
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Figure 5. The range of likelihoods (contextual impact) vs. priors (internal) for 
different levels of posterior. The range of the likelihood changes dependent on 
posterior but the range of the prior is always 0 – 1. 

 

Heuristic for estimating the prior probability. To differentiate the range of the 

prior for each possible posterior it is necessary to adjust the formula to account for how the 

range of the prior might change dependent on the posterior value. One way of doing this is 

to assume that certainty has lower variance at extreme values.  When students are very 

uncertain, then they at least know they are uncertain. However, if they are somewhat 

uncertain they could be certain or uncertain. We can do this by describing the variation in 
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certainty as a Gaussian distribution where the variance of the distribution is a quadratic 

based on the value of the mean of the Gaussian (Fig.4): 

 

 𝑓 𝑥, 𝜇,𝜎 = !
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Figure 6. Gaussian curves describing the variance of 
p(h) or certainty in certainty at certainty levels of 0.1, 0.5 
and 0.9. 

 
By using this heuristic we can produce a limited range for the prior based on 

individual student posteriors. For example, students with high certainty will have smaller 

variance in their prior than students who have middling certainty.  

Putting the pieces together. We now have each of the pieces that can be put 

together to generate an estimate of the distribution of both the likelihood and prior from a 

sequence of point estimates of the posterior. Diagrammatically, the process takes the 
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posterior measure, applies inverse Bayes to generate a possible range of likelihoods, then 

uses the heuristic algorithm to narrow down the possible range of priors.  

 If this is done over a sequence of tasks, we can begin to build up a distribution that 

represents the student’s prior distribution. It is then possible to generate an estimate of the 

posterior using this prior and likelihoods under different contexts: 

 

 

 

 

 

Figure 6. IBFi algorithm process. 

 

Predictions can then be compared to future measures of the posterior to determine 

how accurate the model is as a forecasting method.  

 

Appropriate Measures 

The functionality of the process is dependent on finding meaningful measures for 

the posterior. The appropriate candidate would be something that is continuous and gives 

insight into the level of certainty a student has in their performance. Correct/Incorrect will 

therefore not suffice, but perhaps the cumulative correct/incorrect will. Alternatively there 

are several partial credit measures that exist and have found utility, such as Rasch models 

(Masters, 1982), EM Algorithm estimates (Muraki, 1992; Penfield, Myers, & Wolfe, 2008) 

and more recently the Electronic Tutor algorithm used by Wang and Heffernan (2010). The 
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third possibility is the use of student certainty itself, such as used by Gardner-Medwin to 

judge proficiency on medical examinations (2013). This strategy essentially asks the equates 

the posterior with how confident a student is in her own answers. 

 
Theoretical Consequences of Subjective Probability & Inverse Bayes 

 

There are several theoretical consequences to both conceptualizing student 

knowledge as strength of belief and analyzing it using IBFi. In the first instance, it is unclear 

what constitutes guessing. The model must account for anything in the environment that 

might impact the student through the likelihood and their prior belief. For a student to guess 

in the sense that she is using no information there must be no environmental impact and 

their prior knowledge must be irrelevant. If this were a realistic proposition the student 

would then need to operationalize it through some form of random allocation of confidence 

to hypotheses. Given that people are notoriously bad at picking random numbers, such 

behavior is unlikely (Neuringer, 1986).  

Alternatively the idea of uncertain belief intimates that all student performance is 

really guessing. Students are using their best estimate to make a decision without certainty. 

The consequence is then that guessing is likely not a useful construct to interpret student 

performance. 

Knowledge as belief. The nature of the analysis is to measure strength of belief 

rather than correctness. A desirable result may well be a strong belief in a correct answer, but 

to limit analysis to this frame would restrict the range of inferences that could be made. 

Rather, it is whether the pattern of belief matches that of whoever designed the assessment. 

This is a fairly radical departure from assessment systems in which correctness is presented 

as objective truth, rather than a social construction. Imagining that students not only 
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entertain misunderstandings, but also may need to be convinced to let go of those 

misunderstandings, is a substantial change to the way assessment is usually constructed 

(Moss, Girard, & Haniford, 2006). It is important however to view this not so much as 

stubbornness, although that is a possibility, but rather as a function of goal-directed utility. 

Students may not hold the same goals as the assessor, nor do they necessarily believe that the 

best hypothesis to apply to a task is the one that the teacher would choose. For example, you 

may get the correct answer by applying the knowledge that the most common answer is ‘C’. 

There is utility in applying this hypothesis, especially if the aim of the student is to finish the 

task as soon as possible. It is not demonstrating the knowledge that the teacher or assessor is 

looking for though. 

Ergodicity. The practical benefits of utilizing this method might well outweigh 

changes in the way that inferences are made from assessments. The prospect of using 

subjective probabilities for developing personalized inferences makes this method an 

attractive prospect in a world racing toward personalized learning through technology. In 

particular, it represents a source of variation that is not dependent on referencing a 

population of test takers; it is a non-ergodic measurement. The measurement issues 

mentioned earlier around personalization do not apply – subjective probability can make 

sense without reference to a student population. It holds value even without comparison to 

any other student. 

Individualization. Because of its non-ergodic nature, inference made using the IBFi 

algorithm belongs entirely to the student who was measured, as estimates do not reference 

any other student. Such a property is of substantial use within personalization software as it 

allows much more fine-grained analysis of individuals. 
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Conclusion 

In the middle of the last century several statisticians, philosophers and 

educationalists including de Finetti became interested in relating ideas about subjective 

probability to educational assessment. The effort never gained traction within education but 

did flourish in other fields such as economics and political science. It has been argued in this 

paper that subjective probability may yet find utility within education as means to automate 

individualization. Subjective probability may be useful for individualization efforts as an 

alternate source of within-student variation. This variation might then be leveraged to 

successfully differentiate student behaviors so that the most appropriate conditions are 

provided to each student based on a profile of how situational and aptitude complex factors 

interact for that individual. 

Following this description the paper then outlines a methodological approach that 

utilizes subjective probability to estimate student aptitude and the contextual impact on the 

student. The key alterations to current methodology are described as relaxing the 

assumptions of Bayesian rationality and the adoption of a model based on the Inverse Bayes 

Formula. Details are provided concerning a) why relaxing these assumptions is practical and 

viable, b) how this process might be operationalized and c) and the kinds of utility it may 

have within the current assessment environment. 
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Personalization through the Application of Inverse Bayes to Student Modeling: 
Predicting Partial Credit with the Inverse Bayes Filter 
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Abstract 

In this paper, I present a novel algorithm for predicting student performance within an 

Intelligent Tutor. The method is based on the Inverse Bayes Filter (IBFi), which predicts 

student performance utilizing within-student variation processed by the Inverse Bayes 

Formula. The goal of this paper is to determine the prediction accuracy of IBFi on real-

world student data from an Intelligent Tutor. Two approaches are presented, 1) to look at 

patterns of prediction error when the algorithm predicts student cumulative average scores 

and 2) to compare the performance of the algorithm against the modified Bayesian 

Knowledge Tracing model (KTPC) of Wang and Heffernan (2011) when predicting partial 

credit scores. IBFi and its performance are demonstrated in the case of middle school 

students using an online math tutor, ASSISTments (n = 3684). Partial credit is calculated 

from student behavioral data within the tutor according to the method described in Wang 

and Heffernan (2013) and prediction accuracy is measured by root mean square error. The 

IBFi algorithm performs reasonably, out-predicting the KTPC model on a per-student basis 

but not across all predictions. The IBFi tends to over-predict high values of student 

performance and under-predict low values, and error is not distributed over skills equally. 

But the results demonstrate the feasibility of the idea of using Inverse Bayes to partition 

partial credit as an accurate way of predicting student performance.  

  

Keywords: partial credit, Intelligent Tutor, Bayes, Inverse Bayes, prediction 
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Predicting Partial Credit with the Inverse Bayes Filter 

 

Automated personalization of student interventions has been a long-standing goal of 

the educational enterprise. From Skinner’s “teaching machines” to Khan Academy, the idea 

that technology can use individual student characteristics to ensure the most appropriate 

pedagogical approach is applied has inspired generations of educationalists and inventors. 

Computer mediated individualization, such as that found in Intelligent Tutoring Systems, 

requires that the process of measuring, validating and inferring student characteristics be 

automated to generate programmatic interventions. This paper investigates a novel 

algorithm, the Inverse Bayes Filter (IBFi), which utilizes individualized parameters to 

generate individual predictions of student performance. The ultimate  purpose of this 

algorithm is that with reliable predictions of individual students come reliable parameters 

that can be used to inform automated judgments about personalization.   

Introduction 

Individualization 

The process of automated personalization in Intelligent Tutors has largely relied on 

models that describe between-student item and skill level parameters rather than within-

student parameters. The dominant Intelligent Tutoring model, Bayesian Knowledge Tracing 

(BKT) was originally conceived with an individual-level parameter but the implementation of 

this version has not been widely utilized (Yudelson, Koedinger, & Gordon, 2013, p.2). 

Individual-level parameters require the exploitation of within-student variance, which can be 

a difficult measure to acquire and interpret. In this paper I look at two sources of within-

student variance: cumulative average and partial credit. The cumulative average is self-

explanatory but partial credit is a more elaborate construction in need of some elaboration. 
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Partial Knowledge. The growing variety of task formats afforded by computer-

based assessments is raising the possibility of utilizing a greater range of student behavioral 

data to draw more sophisticated inferences (Vonderwell & Boboc, 2013, p.24). Currently, 

successful student modeling approaches such as Bayesian Knowledge Tracing (Anderson, 

Corbett, Koedinger, & Pelletier, 1995) and Performance Factor Analysis (Pavlik et al., 2009) 

utilize student behavior in terms of a binary, correct/incorrect, input. But measuring student 

performance using a range of behavioral inputs may lead to useful inferences about learning 

and more effective interventions. 

To expand the available behavioral inputs it is common practice to consolidate 

several measures into a partial knowledge scheme rather than grading based on 

correct/incorrect (Plano & Toby, 2004, p.180). In a partial knowledge scheme students are 

considered to possess incomplete information or understanding of a concept (Coombs, 

Milholland, & Womer, 1956). It stands in opposition to the dominant way that knowledge is 

modeled in educational assessment; as a binary “you either know something or you don’t”, 

referred to in the testing literature as complete, full or exhaustive knowledge (Falmagne, 

Cosyn, Doignon, & Thiéry, 2006, p.76). Whereas complete knowledge has an obvious 

scoring method to support it, Number Correct (NC) scoring, there is no definitive scoring 

method for partial knowledge, though there have been many suggested methods. Systems 

for scoring and making inferences from measures of partial knowledge have been 

investigated for over 50 years (Ben-Simon, Budescu, & Nevo, 1997, p. 65). Vygotskyian 

ideas of Proximal Development can be considered the grandfather of partial knowledge 

scoring methods, but there are many operationalizations in use today. Some use elimination 

of incorrect answers, "How many incorrect answers can the student identify" (Coombs et al., 

1956), others use time, "How long did it take a student to perform a task?" (Bouffard-
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Bouchard, 1990), or the level of assistance, "How many hints did the student need?" (Razzaq 

& Heffernan, 2006).   

The chief benefit of pursuing partial knowledge through these scoring methods is the 

increased measurement variance that they provide, in particular within-student variance. 

Theoretically at least, more information should lead to a more detailed and precise 

characterization of the student (discrimination) and therefore more appropriate 

personalization (de Finetti, 1965). For example, non-desired behaviors such as guessing or 

gaming can be more readily identified or eliminated (Lau, Lau, Hong, & Usop, 2011). Less 

clear are the benefits that partial knowledge has in the prediction of future behavior. 

Recently, Bradbard et al. (2004) have reported gains in the ability to predict a student's future 

performance using Coomb's partial knowledge scoring method (1956), though they caution a 

need for more and better implemented research. Prediction of future student behavior is 

especially important in adaptive systems such as Intelligent Tutors. Improvements in the 

ability to predict student behavior can improve the automated system responses required to 

personalize student instruction through these platforms. 

 

Models 

Model Tests 

 The aim of this paper is to test the accuracy of IBFi at predicting student future 

performance.  As a comparison model I have chosen the Partial Credit Knowledge Tracing 

model (KTPC) of Wang and Heffernan (2010). The two models have important differences 

but are similar in that they can utilize a continuous measure (partial knowledge) to predict 

student future performance. 
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  Bayesian Knowledge Tracing. Although there are no widely used models that 

currently generate only individualized parameters, KTPC generates skill level parameters 

utilizing student partial credit. KTPC is a variant of Bayesian Knowledge Tracing (BKT) a 

forty year old model that was substantially developed by Corbett and Anderson (Corbett & 

Anderson, 1994). BKT is a form of recursive Bayesian estimation where the prediction is 

being made of whether or not a student possesses and can activate a given skill based on 

incoming correct or incorrect answers to items. It relies on two essential assumptions: 1) that 

items can reasonably be considered correct or incorrect, and 2) that collections of items can 

be attributed to a single skill. The model has four parameters that must be solved for or 

supplied: 

• P(L0), the initial probability that the student knows a particular skill 

• P(G), the probability of guessing correctly, if the student doesn’t know the skill 

• P(S), the probability of making a slip, if student does know the skill 

• P(T), the probability of learning the skill if the student does not know the skill 

 
BKT & Partial Knowledge. Bayesian Knowledge Tracing has had mixed results 

when utilized to predict partial knowledge. Yet, although it has not conclusively shown 

improved performance relative to prediction of binary correct/incorrect performance Wang 

and Heffernan have devised a modified BKT algorithm and scoring technique that reliably 

outperforms prediction of partial knowledge over the binary alternative: KTPC (Wang & 

Heffernan, 2010). This model is the same as the classic Knowledge Tracing model, but 

where the student performance node is a continuous partial knowledge score rather than a 

binary correct/incorrect score. All other parameters (guess, slip, initial state) are modeled as 

would be done in a conventional BKT analysis. 
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Inverse Bayesian Filter. A model type that is routinely used with partial knowledge 

to both define constructs and measure their change is the family of Rational Models. 

Rational Models describe and explain human learning, judgment, and inference, often 

through the use of Bayes Theorem. They are used to determine whether people’s behavior is 

rational (whether it conforms to some optimality constraint) but if their implementation is 

inverted (i.e. – run backwards), instead of describing how a task should be completed, they 

generate the parameters that describe the way that people did complete a task (whether 

rationally or not). This inversion is the basic idea behind the process of the Inverse Bayes 

Filter. 

IBFi seeks to determine the relative contributions of context and aptitude to student 

performance. Aptitude in this framework is whatever cognitive, emotional and conative 

resources a student brings to a task. Contexts are the conditions of the task that impact a 

student’s performance. For example, a student may be certain about her name, but within a 

high stress context she may not be able to report it. Likewise, she may be very uncertain 

about the laws of thermodynamics, but if we provide enough context cues she may be able 

to choose the correct answer from a selection.  

IBFi determines how knowledge and context should be weighted for a student, given 

their answer and according to logical probability. Bayes Theorem posits that the conditional 

probability of a hypothesis (posterior) is proportional to the product of the probability of 

that hypothesis (prior) and the likelihood of the available data conditioned on the hypothesis 

(likelihood): 

 
𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑑𝑎𝑡𝑎 ∝ 𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠   ×  𝑃(𝑑𝑎𝑡𝑎|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)  (1) 
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Rational Bayes models such as Decision Theory (Schlaifer & Raiffa, 1961) and those 

of Griffiths, Kemp, & Tenenbaum (2008) treat the posterior as observed human behavior, 

the prior as stored knowledge and the likelihood as how the environment impacts the 

application of that knowledge (EG – the impact of the context). Bayes Theorem then gives 

the relationship between knowledge and behavior according to context. The following graph 

(Figure 1) demonstrates this by showing how, according to Bayes theorem, as aptitude 

increases (dot-dashed line), context (solid line) must drop quickly (become very hostile) to 

reduce performance (dotted line). 
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Figure 1. Theoretical values for posterior (dotted), prior (dot-dashed) and likelihood 
(solid) parameters demonstrating the balance between aptitude and context. For 
example, a student’s partial credit can be high even if their knowledge is low, provided 
there are enough context clues. Likewise, partial credit can be low even if knowledge is 
high if the context is very unfavorable. 

 

Rather than using this relationship to determine how a student should behave, IBFi 

use is to determine, based on a given posterior what the relative values of the prior and 

likelihood are. In other words, IBFi estimates the relative contribution to a student’s 

performance of aptitude and context according to Bayesian rationality.  
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Methods 

Comparing IBFi and KTPC 

 Both IBFi and KTPC are forecasting models that utilize Bayesian recursion to 

estimate parameters based on forecasting of a continuous input. For this reason it is fair to 

compare the accuracy of the two models, although they differ in important ways. KTPC 

utilizes between-student and between-skill variation to generate its parameters, while IBFi 

only uses variation within each individual over time. This difference has consequences for 

how we define the sample used to test the models. KTPC is trained on a subset of the data, 

during this training period the model sets its parameters based on the skill and student 

characteristics of students. It is then tested on a different, randomly selected subset of the 

data to measure its accuracy. This strategy cannot be employed to test IBFi, though, since it 

breaks the connection between students and their previous answers, the key source of 

variation used by the model to make predictions. Therefore a completely identical 

comparison strategy is not possible. Furthermore, since there are no models other than IBFi 

that exclusively use variation for individuals over time, it would not be possible to find a 

comparison model that did not have a similar problem. The strategy employed here to get 

as-fair-a-comparison-as-possible was to compare the two models on the same subset of 

students and to consider the IBFi training period as the number of sequential questions 

before the RMSE stopped changing in the third decimal place. In this way it is possible not 

to only compare the accuracy of the models but also how much training the algorithms 

require. 

 These models are also compared to a parameter-less model, simply using a student’s 

previous score to predict their next score. Although there is no information gained from this 
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strategy in terms of parameter estimates, and so it is of no use in the pursuit of 

individualization, this strategy provides a baseline level of accuracy that can informative.  

 

Measures 

 Measures to feed into IBFi are a proxy for the combination of contextual and 

aptitude factors as construed as a probability value. They therefore need to be continuous, 

between 0 – 1 and reflect in some way a student’s decision making at a given point in time. 

Two measures are tested in this paper: cumulative average score and partial credit. 

Cumulative average is the running average of correct and incorrect answers for a given 

student. The same partial-credit scoring regime that Wang & Heffernan demonstrated to test 

the reliability of KTPC is used here. This partial-credit scoring regime combines hints, 

scaffolding and correct answers to produce a partial credit score. 

Data 

The same data set with which Wang & Heffernan demonstrated the reliability of 

KTPC is used here. These data set consists of 3684, 12-14 year olds in the eighth grade of a 

school district in the North East of the United States. Student data was collected through 

ASSISTments, a web-based math tutoring system designed to prepare students for state 

standardized tests (Figure 2). Data consist of 211,342 item records including information 

about the number of hints and how much scaffolding (breaking a question into sub-

questions) a student required to solve a given problem. No students can be identified and 

the research has been approved by CUHS. 
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Figure 2. Example task from the ASSISTments online tutoring system. 

 

 
Results 

The following results are presented in two sections that address the overall question, 

“Does the IBFi algorithm predict student performance?” The first section answers this 

question through analysis of the entire data set, examining patterns in error when forecasting 

student cumulative scores. Section two uses a subset of the data to investigate how the IBFi 

algorithm compares to another algorithm, KTPC, when forecasting partial credit scores.  
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1. Forecasting Cumulative Average Scores 

 Overall accuracy. Prediction of student cumulative average scores was analyzed 

through root mean squared error, and trends were identified across time and with respect to 

skill to determine whether prediction performance was associated with either variable. The 

overall accuracy for the 211,342 predictions as measured by RMSE was 0.1151 with a range 

of error in these predictions from -0.5-0.5 and the distribution centered close to zero (M = -

0.023). A hex plot of error vs. predicted scores shows an unsurprising, slight linear 

relationship between high predicted values and over-prediction, and low predicted values 

and under-prediction, r(211340) = .037, p < .0001 (Figure 3). A tail can be observed at either 

end of the distribution in this plot. These tails represent the algorithm making large 

corrections in predictions over the first six questions from the seed prediction of 0.5. 

 Previous value prediction. One point of comparison is to see how the model 

compares to a prediction simply based on student’s previous cumulative average. By using 

this method, a more accurate overall RMSE of 0.087 is achieved.   

 Time and skill. The dramatic improvement in prediction accuracy as the algorithm 

learns can be observed in a line plot of error vs. questions answered, identifying each student 

(Figure 4). Early predictions were generally poor, but improved as the algorithm processes 

more data. RMSE decreases from a high of 0.50 to a low 0.007, dropping from 0.50 to 0.12 

within 10 questions. Error is not evenly distributed by the skill type required to answer the 

question though; some skills are associated with more error than others. The difference 

between the skill with the largest RMSE and the smallest is 0.212. 
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Figure 3. Hex Plots of prediction error vs. predicted scores. A. IBFi predicting cumulative 
average scores. B. IBFi predicting cumulative average scores after the first 6 predictions are 
removed to show that these questions represent the tails. C. KTPC predicting partial 
credit. D. IBFi predicting partial credit. Shading represents the number of predictions 
within hexagonal space. 
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Figure 4. Line plot depicting prediction error vs. number of questions answered for the IBFi forecasting student cumulative 
average. Each line represents the error in prediction for one student. 
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2. Comparison between KTPC and IBFi 

 To further investigate the accuracy of the IBFi algorithm, it was compared to 

another continuous input, forecasting model, the KTPC algorithm of Wang and Heffernan 

(2010). The comparison was in terms of RMSE of predictions on a subset of the data for 

which Wang & Heffernan’s partial credit measure had been calculated. Partial credit is more 

challenging to predict than cumulative average, as student scores can range from 0 – 1 from 

one question to the next. Accordingly, the variance of the partial credit scores is 0.04 

compared to 0.03 for the cumulative average. The greater variance of partial credit makes it 

more difficult to predict simply by using the previous student score. The previous-value 

strategy generates an overall RMSE of 0.3598, compared to the overall RMSE of the IBFi 

algorithm of 0.3095 when tested on the entire data set? 

 Training Set. To determine the accuracy of the KTPC prediction model Wang and 

Heffernan trained their model on a random selection of 71% of the student data and then 

used it to predict the remaining 29%. This strategy is not possible with the IBFi algorithm as 

it is temporally dependent on each individual student – randomization at the level of the 

prediction will jeopardize this dependence and will change what the algorithm predicts. For 

the sake of comparison, though, the IBFi algorithm was applied to the same 2,313 students 

whose scores were predicted by the KTPC algorithm, and the time point at which the RMSE 

stabilized in the third decimal place was considered the training period for the IBFi algorithm, 

a period that consisted of the first 20 questions for each student. 

 Overall accuracy. The overall prediction characteristics of the two algorithms are 

similar, as can be seen in a hex plot of prediction accuracy vs. predicted values (Figure 3). 

Both models tend to have a similar error distribution, with over-prediction of high scores 

and under-prediction low scores and both have a preponderance of values for predictions 

69 
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that fall in the region around a partial credit score of 0.9, and a prediction error of negative 

0.1. However, KTPC has a far larger number of predictions in that right hand region giving 

it a correlation of r(61786) = -0.043, p < .001, while IBFi has a correlation of r(61786) = 

0.064, p <.001. The IBFi model also has a larger number of predictions in this region, 

pushing its average error values lower compared to the KTPC model (IBFi = -0.04, KTPC 

= -0.01). 

 
Table 1 
 
Root Mean Squared Error for Prediction of Student Partial Credit Scores on Training Subset 

Model 
Overall  
RMSE 

Per Student 
RMSE 

Per Skill  
RMSE n predictions 

KTPCł 0.2824 0.3984*** 0.2826* 61,789 

IBFi 0.2922 0.2512 0.3100 150,186 

*** Denotes significant difference between model RMSE where p < .0001 
* Denotes a difference between model RMSE where p < .10, this is not considered statistically significant 
given the sample size of the data 
ł Results and data generously provided by Yutao Wang, Worchester Polytechnic Institute 
 

 Model Comparison. The overall prediction accuracy using the training sample was 

slightly greater for the KTPC algorithm, and also slightly greater on a per-skill basis, t(150.8) 

= -1.835, p = 0.068 (Table 1), although IBFi was substantially more accurate on a per-

student basis. A Welch two-sample t-test confirms that the difference between the student 

level RMSE distributions for the two models is significant, t(2227.933) = -35.152, p < .0001, 

with an effect size of 1.101. The IBFi algorithm also achieved this difference utilizing only 

41% of the training data that the KTPC algorithm required.  

 Overall conclusions. The IBFi model performs reasonably well, though there is 

clear room for improvement with respect to overall error scores. (A tendency for the model 

to under-predict students with overall low scores and over-predict students with high 



PERSONALIZATION THROUGH INVERSE BAYES 

	  

71 

	  

scores.) Also some skills appear to be more accurately predicted than others. Despite these 

issues, IBFi outperforms a simple previous-score prediction when forecasting partial credit 

scores and it out performs the KTPC model on a per-student basis.  

Discussion 

In this paper, I present a novel algorithm for predicting student performance within 

an electronic tutor, IBFi, and quantify how successful it is at forecasting student scores from 

an Intelligent Tutoring system. Forecasting success is important if the parameters from the 

model are ever to be used to inform automated personalization strategies.  

IBFi is based on Rational Models and utilizes the Inverse Bayes Formula to estimate 

the relative impact of student aptitude and contextual factors on student performance. 

Aptitude is comprised of the skills and information that a student enters a task with, while 

contextual factors are those things that influence her ability to demonstrate that knowledge. 

The calculations are made using partial credit scores and cumulative average scores, 

measures that do not assume binary correctness, but rather that a student can possess a 

spectrum of knowledge. IBFi treats the student as a Bayesian learner; her partial credit score 

is proportional to her prior knowledge and how she interprets her context. The Bayesian 

algorithm splits student performance into these two factors and then uses that information 

to make a prediction about the student’s next score. This process generates estimates of a 

student’s knowledge, the impact of context, and prediction accuracy.  

The method and its performance are demonstrated in the case of middle school 

students using an online math tutor, ASSISTments. Partial credit is calculated from student 

behavioral data within the tutor according to the partial credit algorithm of Wang and 

Heffernan (2010) and then IBFi algorithm was used to sequentially predict those scores.  
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Key Results   

In summary, there are two key results of interest and they seem somewhat 

contradictory: 

1. Overall IBFi prediction accuracy is lower than for both the previous-score 

model predicting cumulative average, and KTPC predicting partial credit 

2. Prediction accuracy was substantially higher on a per student basis for IBFi 

than for KTPC when predicting partial credit 

IBFi and Previous-Score. With respect to the RMSE for overall predictions, there 

are several reasons why IBFi may be inferior to the previous-score method. IBFi effectively 

weights its predictions with past scores, so it is slower to adapt to changes in scores, and the 

starting point has a large influence on subsequent predictions. In contrast, using the previous 

score is a very fast adaption as the previous score becomes the next score. Such a fast 

strategy works well with cumulative scores, as they change quickly to begin with and then 

change becomes slower as each question has less impact on the overall score. However, with 

partial credit, this strategy is no longer as effective as the next score can vary substantially 

from the previous. Each subsequent partial credit score is based on more than simply the 

previous score. 

KTPC and Skill. As with the previous-score method, KTPC has greater overall 

accuracy than IBFi, albeit with a much smaller margin (0.0098). There are many possible 

reasons for this but the two that were analyzed here (overall trend and trend by skill) suggest 

that it is a matter of accounting for skill rather than a better overall trend. The prediction 

trend for both algorithms is similar, with a tendency to over-predict high scores and under-

predict low scores and a propensity of error at the lower end of high prediction values. With 

respect to skill, though, IBFi tends to have an uneven distribution of error across skill levels. 
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This distribution could be due to several confounding factors that are associated with the 

assignment of the ASSISTments program (sessions are assigned by teachers). However, it 

may also be related to IBFi having no explicit way of accounting for skills whereas KTPC 

does. KTPC weights predictions based on the skill that a question requires, IBFi only does 

this indirectly by picking up a signal that implies how proficient a student is at changing 

between skills in general, not any particular skill. It may be worth considering accounting for 

skill changes explicitly within IBFi as this may increase overall prediction accuracy. 

The value of student-level parameters. Despite a lower overall RMSE, IBFi has 

substantially better accuracy on a per-student basis than KTPC. There may be several 

mechanisms within the two models that generate this difference, but one interpretation 

appeals to the variation utilized by each algorithm. KTPC uses between-student and 

between-skill variation across time to generate skill and student level parameters. IBFi only 

utilizes within-student variation across time. Predictions based on between-student (and 

subsequently between-skill) variation only include information about students relative to 

each other; they can lose information about patterns peculiar to individuals. However, IBFi 

may catch these differences with its within-student (or individualized) parameters and so 

generate more accurate predictions for individual students. 

Greater accuracy of IBFi for per student but not aggregate scores begs the question, 

which is a better prediction, the prediction that does better at overall predictions, or the 

prediction that does better for each individual student. To some extent this depends on the 

aim of the prediction. If we are trying to predict the score of students in general or for a 

student for whom we know little of their history and we can reasonably assume they are 

similar to students in general, then KTPC will likely be more accurate. The ability to make a 

prediction of a student’s behavior relative to other students is useful in this scenario. 
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However, if we have historical behavioral information for a particular student, and we wish 

to make a prediction for a single student (perhaps we only have data on one student), then 

IBFi is a better choice.  

This second scenario seems to be the situation that arises in the case of 

personalization. For the purpose of personalization, having predictions that are tied as tightly 

as possible to the individual student is likely a useful property. IBFi is a first step toward 

developing models that may bring the benefit of individualized parameters to the 

personalization effort. The results presented here demonstrate the feasibility of the idea of 

using Inverse Bayes to partition partial credit as an accurate prediction algorithm that may 

further efforts to automate personalized education. 
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Personalization through the Application of Inverse Bayes to Student Modeling: 
Incorporating Student Certainty into IBFi Predictions of Student Performance  

in an Intelligent Tutor 
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Abstract 
 
  
 In this paper I validate the theory behind the Inverse Bayes Filter (IBFi) through 

testing whether student certainty (or confidence) improves prediction performance. The 

Inverse Bayes Filter utilizes the Inverse Bayes Formula to estimate the relative impact of 

student knowledge factors and contextual factors on student performance. This strategy is 

based on the assumption that the way students represent the world can be modeled as a 

probability distribution, and that as students answer questions they draw from this 

distribution. Several proxies for this probability distribution have previously been trialed, 

cumulative average score and partial credit. In this article a third approximation of the 

probability distribution is tested, student’s level of certainty or confidence. The model’s 

failure to process certainty successfully would undermine the assumption that student 

decision-making can be modeled in this fashion. 

The inclusion of student certainty is shown to improve the predictive performance 

of the model relative to models that do not use certainty. By weighting partial credit scores 

with student certainty the per student root mean square error of prediction is reduced by 

30%. This evidence supports the IBFi model and its underlying theory, indicating that 

students’ judgments about their levels of certainty in their answers contains information that 

can be successfully identified by the model. The results further demonstrate the feasibility of 

the idea of using the Inverse Bayes Filter to process partial credit and predict student 

performance. 

 

Keywords: Inverse Bayes Formula, student confidence, certainty, cognitive tutor, prediction 
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Incorporating Student Certainty into IBFi Predictions of Student Performance  
in an Intelligent Tutor 

 
Introduction 

 
Approximately every ten years for the last century researchers have advocated the 

use of probabilistic or certainty based educational assessment.1 Such assessment strategies 

require students to provide not only the answer to a question, but also an account of how 

confident they are in their answer. Yet, despite periodic enthusiasm, this method only gained 

widespread adoption recently when the cost of implementation dropped due to 

improvements in software and mobile computing (Eser et al., 2012, p. 37).  

Initial interest in certainty-based questions arose out of an interest in the 

mathematical formalization of subjective probability at the end of the 19th century (Estes, 

1976, p. 37). Since 1913 researchers sought to apply these theories of judgment to 

educational assessments (Woodworth, 1915, p. 10). The motivation from the educationalists' 

perspective was to determine if querying student confidence could provide useful additional 

information about student performance (Echternacht, 1972). Over the last century the utility 

of confidence testing has been demonstrated in terms of test reliability (Ebel, 1965; Michael, 

1968; Rippey, 1968), identifying guessing (Taylor & Gardner, 1999), separating students 

based on their level of understanding (Gardner-Medwin, 1995), increasing student 

understanding (Echternacht, 1972; A Gardner-Medwin & Gahan, 2003; Ramsey et al., 1987) 

and explaining answer changing (Skinner, 1983).  

Despite continued interest, confidence based testing has not made the leap into 

mainstream pedagogy or measurement practices. This reluctance may in part be due to the 

criteria set down by de Finetti (1965) for confidence to be considered a legitimate 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  For example, Coombs, Milholland, & Womer, 1956; Jr, Albert, & Massengill, 1966; Lichtenstein & Fischhoff, 
1977, 1977; Ramsey, Ramsey, & Barnes, 1987; Rippey, 1968; Sia, Treagust, & Chandrasegaran, 2012; Skinner, 
1983.	  
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psychological measurement technique: that a scoring system could be devised that the 

student could not game to her or his advantage, and that the measurement unambiguously 

improved reliability and validity. With respect to the first challenge, although many systems 

were developed, none have become preeminent, and with respect to the second, the 

founders of modern psychometrics, Lord and Novick, dismissed any improvement as 

unlikely (Echternacht, 1972; Lord & Novick, 1968, Chapter 16).  

 However, interest in the theoretical nature of student confidence has still been 

pursued in psychological research in the form of self-efficacy. Self-efficacy is the “perceived 

capability to perform a target behavior” and makes up the key feature of Bandura’s social-

cognitive theory (1977). Self-efficacy has gained strength from its robust ability to predict 

many behaviors, including student enthusiasm and learning (Pajares & David, 1994) and is 

also compatible with Dweckian theories of student motivation (Dweck, 1986). Recently this 

combination of motivation and self-efficacy within schools has been pursued in electronic-

tutor research to improve prediction algorithms (Mcquiggan, Mott, & Lester, 2008), indicate 

critical thinking (Bruning, Zygielbaum, & Grandgenett, 2001), and self-regulated learning 

(Azevedo, Johnson, Chauncey, & Burkett, 2010). Overall, the consensus of this research 

appears to be that understanding how students think about their own performance is 

beneficial to understanding and predicting their behavior more generally.  

It is important to note the difference between certainty and confidence here; 

confidence is strength of belief that can be general, “She is a confident person”, or specific, 

“She has confidence in her ability”. Certainty, on the other hand, is the attribution of 

numbers to this strength of belief, “She is 50% certain that she will receive a letter”. Since 

this experiment involves numerical attribution it will use the term certainty rather than 

confidence to describe students’ strength of belief.   
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Research Goals 

In the following article I seek to build on work both from the measurement literature 

concerning confidence and research into self-efficacy. It looks at the reliability of using 

student certainty as a measure in combination with a novel algorithm, Inverse Bayes Filter 

(IBFi). IBFi separates the factors that contribute to student performance into two categories, 

student aptitude and situational factors, and generates a parameter for each. It then uses 

those parameters to predict future student performance. The overall aim of this article is to 

test IBFi using student certainty data to determine if this improves IBFi prediction accuracy. 

 The importance of certainty. Whether or not certainty improves IBFi accuracy is 

important since IBFi is based on a theory that models student actions as generated from 

their own subjective probability. This subjective probability motivates their understanding of the 

world and therefore what they do. For example, when answering questions about math, 

students hold a subjective probability about their answer that will inform whether they 

attempt to answer or not. If their subjective probability is too low they may give up, or if it is 

too high they may not think through the problem properly. In short, subjective probability 

represents the summary of the processes that drives decision-making. 

The Inverse Bayes Filter uses this basic idea to process student actions, if all actions 

are the result of an underlying probabilistic process we should be able to infer that process 

from those actions. What’s more we should then be able to use this probabilistic description 

to predict future actions. IBFi does this by using sequential actions to estimate a student’s 

subjective probability distribution with respect to a particular task. It does this by 

differentiating between that part of the sequential variation that belongs to the context from 

that which belongs to the student (their subjective probability). 
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The model process depends on having a proxy measurement for the student’s 

subjective probability. This proxy might be any continuous, sequentially collected measure 

that is connected to the decision-making process. Although cumulative average score and 

partial credit measures have been successfully examined previously, another obvious choice 

would seem to be student certainty. Student certainty or confidence is a direct estimate of a 

student’s subjective probability – it is her understanding of why she is making a particular 

decision. It is therefore important that IBFi is not only able to predict student certainty, but 

that the student certainty improves prediction accuracy relative to measures that do not use 

student certainty. If certainty does not improve a prediction then it is an indicator that the 

model does not operate as theorized, it may work for another reason, but it isn’t the reason 

that informed its construction. 

Analytic Strategy 

Overall Strategy 

 To determine the impact of certainty on the accuracy of the IBFi model the overall 

strategy of this paper is to compare IBFi predictions with and without including student 

certainty. Certainty represents the closest available approximation to a student’s strength of 

belief or subjective probability. The theory informing the model proposes that it is this 

subjective probability that the model will be most accurate at predicting. If model 

performance is worse or the same, with and without certainty, then this constitutes evidence 

that the theory informing the model is incorrect.  Conversely, if the model is more accurate 

when certainty is included then it may provide evidence that the theory underlying the model 

is viable. 
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Student Certainty 

 It is worth examining the nature of student certainty to provide context to the IBFi 

model tests. Beyond descriptive statistics, this examination of certainty is done in two ways. 

The first is to determine what relationships exist between certainty and other variables of 

interest, such as hints and attempts, and the second is to treat certainty as the student’s own 

estimate of their likely performance. For example, if a student has a certainty of 0.5, she 

estimates that she will be correct on half the questions she answers. Using this measure we 

can then compare the student’s accuracy at knowing their future performance with that of 

the IBFi algorithm.   

Weighting 

 Simply comparing predictions of certainty with those of partial credit or cumulative 

average is not a reasonable strategy for this data set as students were asked fewer certainty 

questions than regular questions. This was done so that students were not over-burdened by 

extra questions and to maintain the familiarity they have with the online system. As such, 

confidence has far fewer data points per student, which may mean that it also has less 

variation and is likely easier to predict. This ease of prediction would undermine any findings 

since increased prediction accuracy would be due to the sparsity of the certainty data rather 

than any property of certainty itself (e.g. That certainty represents the subjective probability 

of the student). To solve this problem, cumulative average and partial credit scores were 

weighted with student certainty to see if this impacted how well the algorithm could predict 

their values. In this way a comparison could be made between certainty and non-certainty 

conditions while maintaining the same number of data points in each group.  

However, there is the possibility that weighting simply smoothes the data out, making 

it less variable and therefore easier to predict. To ensure that this was not the case, measures 
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of variance within the weighted and un-weighted data were compared. Data were also 

weighted with random student certainty. In this way it is possible to determine if it is simply 

the weighting process that is responsible for any improvement in predictive accuracy. This 

weighting-dependent improvement might happen if having a limited number of weights 

(0.00, 0.25, 0.50, 0.75, 1.00) could reduce the amount of variability in the data making it 

easier to predict. For example, if a student oscillated between certainty of 0.75 and 0.25, and 

partial credit of 0.25 and 0.75 her weighted score would always 0.1875. This would be a 

much easier run of scores to predict than 0.25, 0.75, 0.25.  

Comparison. The comparison between weighted and unweighted student 

performance data is measured in terms of Root Mean Square Error (RMSE) and Students t-

test is used to compare the differences between RMSE distributions. Effect sizes, measuring 

the impact of weighting on prediction accuracy, are measured as the standardized mean 

difference in RMSE between the weighted and unweighted prediction samples.  

 
Notes on the Inverse Bayesian Filter 
 

The chief aim of this paper is to test the utility of an Inverse Bayesian processing 

algorithm to deal with student confidence data.  The inverse Bayes algorithm seeks to 

determine the relative contributions of context and aptitude to student performance in 

accordance with Bayes Theorem. Knowledge in this framework is whatever cognitive, 

emotional and conative resources a student brings to a task. Contexts are the conditions of 

the task that impact a student’s performance. For example, a student may be certain about 

their name, but within a high stress context she may not be able to report it. Likewise, she 

may be very uncertain about the laws of thermodynamics, but if we provide enough context 

cues she may be able to choose the correct answer from a selection.  
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Inverse Bayes determines how knowledge and context should be weighted for a student, 

given their answer according to logical probability. Bayes Theorem posits that the 

conditional probability of a hypothesis (posterior) is proportional to the product of the 

probability of that hypothesis (prior) and the likelihood of the available data conditioned on 

the hypothesis (likelihood): 

 

𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑑𝑎𝑡𝑎 ∝ 𝑃 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑃  ×  (𝑑𝑎𝑡𝑎|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)  (1) 

 

Cognitive Bayes models such as Decision Theory (Schlaifer & Raiffa, 1961) and 

those of Griffiths, Kemp, & Tenenbaum (2008) treat the posterior as observed human 

behavior, the prior as stored knowledge and the likelihood as how the environment impacts 

the application of that knowledge (EG – the impact of the context). Bayes Theorem then 

gives the relationship between knowledge and behavior according to context. The following 

graph demonstrates this by showing how, according to Bayes theorem, as knowledge 

increases (green), context (red) must drop quickly (become very hostile) to reduce 

performance (blue). 
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Figure 1. Theoretical probability values for performance (p(h|d)), 
internal aptitude complex (p(h)) and context (p(d|h)). Both x- and y-axes 
represent probability. We can interpret these values in terms of partial 
credit and knowledge. Partial credit can be high even if knowledge is low 
provided there are enough context clues, likewise, partial credit can be 
low even if knowledge is high if the context is very unfavorable. 

 

An inverse Bayesian approach to this problem differs from these previous examples 

in that it does not treat the posterior as a stand in for a stimulus. For example, if an 

experimenter randomly assigned one group of students to tablet computers a Bayesian 

approach would treat tablet computers as a stimulus that had been equally applied to each 

student and differences in their performance would on average reflect the impact of the 

device. Differences between students in this model are treated as error. Conversely, in an 

Inverse Bayes model, we try to characterize these differences within the posterior, and they 
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are interpreted as how each individual student is experiencing their context. In other words, 

in a Bayesian model all students have the same posterior and in an Inverse Bayesian model 

the posterior is free to range for each student individually. 

It is important to note that there is an infinite number of possible prior and 

likelihood combinations for each posterior. However, the range of the likelihood will differ 

dependent on the posterior but the range of the prior will always be between 0 and 1. 

To differentiate the range of the prior for each possible posterior, it is necessary to 

adjust the formula to account for how the variance of the prior might change dependent on 

its value. One way of achieving this change in variance is to assume that certainty has lower 

variance at extreme values. When students are very uncertain then they know they are 

uncertain; however if they are somewhat uncertain they could be certain or uncertain. We 

can do this by describing the variation in certainty as a Gaussian where the variance of the 

distribution is a quadratic based on the value of the mean of the Gaussian (Fig.4): 

 

 𝑓 𝑥, 𝜇,𝜎 = !

!(!!!(!! !
!
!
) !!

𝑒
! (!!!)!

!(!(!!!(!! !
!
!
)!    (2) 

 
 

The mechanics of the Inverse Bayes calculation are comprised of three steps. The 

first is to generate a seed prediction using mid-range values for the prior (range of 0-1) and 

likelihood (range of 0.33-1). This process generates the first layer in the weighted distribution 

that grows as we add more data. The second step is to add the difference between the 

prediction and the next observed student certainty measure to the prior. This new prior 

becomes the mean of a new range that will dictate the range of the likelihood, the two ranges 

will be added to their respective distributions. The third step is that the mean of these 

distributions is used to calculate a new prediction and the process starts again.  
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Example 

 The following is an illustrative example that brings together the ideas of certainty and 

IBFi within the experimental design. Consider a student who has the following partial credit 

scores after answering six questions: 

0.1, 0.25, 0.4, 0.5, 0.8, 1.0 

 She has also given information about her certainty with respect to this type of question 

before her first and fourth question: 

0.25, 0.50 

We can therefore generate weighted and unweighted scores for this student: 

 Q1 Q2 Q3 Q4 Q5 Q6 

Unweighted 0.1 0.25 0.4 0.5 0.8 1.0 

Weighted 0.1 x 0.25 0.25 x 0.25 0.4 x 0.25 0.5 x 0.50 0.8 x 0.50 1.0 x 0.5 

 
The IBFi model can then be used to sequentially predict both the weighted and unweighted 

scores by using the previous score, processed through inverse Bayes. This processing would 

generate the following predictions and error values: 

 Q1 Q2 Q3 Q4 Q5 Q6 

Unweighted 0.1 0.25 0.4 0.5 0.8 1.0 

IBFi 
Prediction 

0.5 0.23 0.35 0.40 0.56 0.75 

Error 0.4 -0.02 -0.05 -0.10 -0.24 -0.25 

Weighted 0.025 0.0625 0.1 0.25 0.4 0.5 

IBFi 
Prediction 

0.5 0.04 0.044 0.09 0.10 0.34 

Error 0.475 -0.0225 -0.056 -0.16 -0.30 -0.16 
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In this example, the overall error of prediction across the six questions for this student, as 

measured by RMSE, is greater for the weighted (0.25) than the unweighted (0.22) scores. In 

other words, IBFi has been less accurate at predicting the weighted than the unweighted 

scores. Such a result would imply that certainty weighting is more difficult for the algorithm 

to predict and that it is therefore unlikely that the theory underlying the model is correct, 

since that theory suggests that a closer approximation to a student’s subjective probability 

will yield a more accurate result.  

 The remainder of the paper describes the results of repeating this example with 847 

students across many questions. 

Data & Measures 
 

Data 

The data set used for analysis consists of 847, 12-14 year olds in the eighth grade of a 

school district in the North East of the United States. Student data were collected through 

ASSISTments, a web-based math tutoring system designed to prepare students for state 

standardized tests (Figure 2). Data consist of 9,785 log records. Each record is comprised of 

an item ID, student ID, the number of attempts that the student took to complete the item, 

the number of hints they used in answering the item, whether or not the item was a certainty 

question, the student’s answer and the average percentage correct that the student has 

attained on any items they have ever answered. This prior percentage correct includes all problem 

sets the students answered in the past, not just the present problem set, and this can include 

several years worth of questions. No students can be identified and the research has been 

approved by CUHS. 
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Figure 2. Example task from the ASSISTments online 
tutoring system. 

  

Experience from the Student’s Perspective 

Two problem sets were designed around the multiplication and division of fractions 

and mixed numbers, using a Mastery Learning based structure called a Skill Builder.  Skill 

Builder problem sets are unique in that students are randomly dealt questions from a skill 

bank until they are able to answer three consecutive questions accurately, thus ‘mastering’ 

the assignment.  

Both problem sets were designed with two conditions: an experimental condition in 

which students were asked to self-assess their confidence in solving similar problems, and a 

control condition in which students were asked filler questions to control for the effect of 

spaced assessment. Random assignment was performed by the ASSISTments tutor at the 

student level.  Throughout the course of each assignment, students were asked up to three 

self-assessment or survey questions.  At the start of each assignment, students who were 
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randomly assigned to the experimental condition were introduced to the skill of self-

assessment, shown a set of problems isomorphic to those in the problem set, and asked to 

gauge their confidence in solving the problems using a Likert scale ranging from ‘I cannot 

solve these problems (0%)’ to ‘I can definitely solve these problems (100%)’.  Students who 

were randomly assigned to the control condition were polled on their current browser in an 

attempt to ‘improve the ASSISTments tutor.’ Only students who were in the experimental 

group were used in the current study.  

 Following these initial questions, students were given three mathematics 

questions.  If students solved each of these three questions accurately, the assignment was 

considered complete. However, if students answered at least one of the problems incorrectly 

or they wished to continue answering questions, they would reach another self-assessment or 

survey question before being given another set of three math questions to try to master the 

problem set.  This pattern happened a third time for students who were struggling with the 

content, until finally removing the self-assessment or survey element and simply providing 

back to back math questions until the student could solve three consecutive problems. Based 

on this design, high performing students may be asked to gauge their confidence only a 

single time, while students struggling with the topic were asked to reassess their confidence 

up to two more times throughout the problem set.  The confidence question was always 

formatted using the same Likert scale, while the ‘ASSISTments’ improvement surveys 

changed slightly, polling students on various elements of accessibility.   

 

Measures 

Student Certainty. Within the online tutoring system students were randomly 

assigned to an experimental condition in which they were asked about their confidence in 
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the skill being tested every first, fifth and ninth item.  Alternatively, in the control condition 

students were asked unrelated questions about the hardware they were using. Students were 

required to answer at least four questions to complete the problem set, though there is no 

limit to the number of questions that they can answer. However, after their ninth question 

there were no more subsequent certainty questions. A short instructional paragraph 

preceded the questions explaining how to answer the certainty type questions appropriately 

and the purpose of collecting this information. An example question is below: 

Partial Credit. Several measures for student credit were utilized within this data set. 

Beyond whether a student got an item correct, information about the number of hints and 

how much scaffolding and how many times the student attempted a question was used.  In 

addition to the inverse Bayes processing explained in detail above, this information was 

processed into a partial credit score using the same partial-credit scoring regime with which 

Wang & Heffernan (2011) demonstrated the reliability of KTPC. 

Random weighting. It may be possible that weighting scores by a limited number 

of certainty values could reduce the variance of the data, making it easier to predict. To 

determine if this was the case, scores were also weighted with random student certainty 

values. Ten separate sets of certainty were generated by randomly drawing values from the 

original certainty data and then the mean results of these random draws are presented here.  

 

 

 

 

 



PERSONALIZATION THROUGH INVERSE BAYES 

	  

91 

	  

Table 1 – Examples of treatment (confidence) style and control style questions. 
Experimental Condition Control Condition 

 
Estimating your skill before you solve a problem is 
a good habit. How confident are you that you 
could solve problems such as the ones below 
without an error? Please be honest, as all answers 
are equally correct: 
  

 
 
 

 
  

 

 
On this problem set you will be asked 
a few survey questions to help us 
make ASSISTments better.  Once you 
answer the survey question you can 
move forward with your math 
learning.  
 
Which browser are you using? There 
is no correct or incorrect answer. 
 

 

 

 

Results 

The following results are presented to address the overall question, “Is the IBFi 

performance improved by the inclusion of a student confidence/certainty measure?” 

Confirmation of the hypothesis that certainty data improves model performance provides 

evidence for the larger conclusion that the theoretical framework supporting the model is 

sound.  The results are split into two sections, the first describes the certainty measure in 

detail, and the second compares model performance when the input is cumulative average 

score, partial credit, and certainty.  
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Student Certainty 

The distribution of average student certainty is skewed to the left with a majority of 

students between 0.75 and 1.00 (M = 0.685, SD =0.251; Figure 3A). Average student 

confidence tends to drop between item 1 and item 9, though this is likely due to more 

proficient (and confident) students completing the three correct questions required to 

complete the problem set (M1 = 0.7123, SD = 0.2640, M5 = 0.6519, SD5 = 0.2691, M9 = 

0.6264, SD9 = 0.2818). The mean, per-student change in certainty decelerated slightly across 

items. Between item 1 and item 5 there was a mean, per-student change in certainty of 

0.2376, while between item 5 and item 9 the mean, per-student change was 0.2163.  

Other variables of interest. There are several variables of interest that are related to 

student certainty: hints, attempts, cumulative average score and the number of questions 

answered. The average number of hints a student used was 0.8155 (SD = 1.7333), the 

average number of attempts was 1.6333 (SD = 1.9649), the average maximum cumulative 

average score was 0.4836 (SD = 0.2816) and the average number of questions answered was 

14.7533 (SD = 15.0734). These variables all had relationships with average student certainty, 

hints, r(846) = -0.321, p < .0001,  attempts, r(846) = -0.185, p < .0001, maximum cumulative 

average score, r(846) = 0.3053, p < .0001 and the maximum number of questions answered 

r(846) = -0.100, p < .05. Though a plot of the relationship between average certainty and 

maximum number of questions answered suggests that highly certain students and very 

uncertain students answer fewer questions than mid- to high- certainty students (Figure 3B). 

For some of the students the system has recorded the percentage of correct answers 

they have given over many problem sets in the past, sometimes stretching back several years. 

There is a relationship between a student’s certainty at the beginning of the problem set and 

her prior percentage correct, r(398) = 0.290, p < .0001  (Figure 3C). There is a slightly less 
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strong relationship between a student’s certainty at the beginning of the problem set and 

their subsequent percentage correct, r(846) = 0.245, p < .0001 (Figure 3D).  

Using student certainty to predict performance. As a comparison to the IBFi 

model, it is informative to compare its performance to student certainty. As a prediction of 

past performance, low certainty tends to under-predict performance and high certainty tends 

to over predict performance (i.e. prediction error is negative for low certainty values and 

positive for high certainty values: Figure 4A). The relationship between prediction error and 

certainty is described by a very strong correlation, r(398) = 0.821, p < .0001. A certainty of 

0.75 appears to be the most accurate (RMSE0.75 = 0.360) and a certainty of 0.00 to be the 

most inaccurate (RMSE0.00 = 0.487) (Figure 4B).  

As a prediction of future performance, the same pattern emerges. Low certainty 

tends to under-predict performance and high certainty tends to over predict performance 

(Figure 4B). The relationship is described by a weaker correlation than past performance, 

r(846) = 0.453, p < .0001. Though with future performance, students who were of mid-

certainty (RMSE0.5 = 0.356) were more accurate on average than those who were very 

uncertain (RMSE0.0 = 0.487) or very certain (RMSE1.0 = 0.485). 
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Figure 3. Characteristics of student certainty. A. The distribution of average student 
certainty. B. The relationship between average student certainty and the number of questions 
answered. C. The relationship between prior accuracy and student certainty at the beginning 
of the problem set. D. The relationship between accuracy during the problem set and 
student certainty at the beginning of the problem set.  
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Figure 4. Student certainty as a predictor of past and future performance compared to IBFi predictions of 
student final scores. A. Past performance: prediction error of past performance plotted against 
student certainty at the beginning of the problem set. The line represents RMSE. B. Future 
performance: future accuracy plotted against student certainty at the beginning of the 
problem set. The line represents RMSE. C. IBFi prediction of final partial credit score and 
C. IBFi prediction of final cumulative average score. 
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Table 2. IBFi predictions of cumulative average and partial credit incorporating student 
certainty and random certainty. 

 Overall RMSE Per Student RMSE Variance 

Certainty Only 0.2992 0.2675 0.0737 
Cumulative Average 0.1814 0.1869 0.0415 

X Certainty 0.1779 0.1911 0.0677 

X Random Certainty 0.2019 0.1892 0.0618 
Partial Credit 0.3860 0.3974 0.1364 

X Certainty 0.2832 0.2782*** 0.1153 
X Random Certainty 0.3755 0.3835 0.1218 

*** Denotes significant difference between RMSE for certainty and non-certainty models where p < .0001 
 

 The multiplication of certainty by both cumulative average and partial credit 

measures improved performance of the IBFi model with respect to student Root Mean 

Square Error (Table 2).  The incorporation of random certainty did not improve the error 

rate to the same extent as the student certainty, though it did improve it on a per student 

basis for cumulative average. Weighting the partial credit scores with certainty does improve 

prediction error substantially, while weighting cumulative average has little impact at all. 

There was a marginal improvement in overall RMSE for cumulative average scores when 

weighted with certainty, and small decline in accuracy on a per student basis. For partial 

credit there was a substantial decrease in RMSE (29 times the improvement in accuracy 

compared to the improvement for cumulative average). There is also a statistically significant 

difference between per student RMSE for partial credit when weighted by certainty than 

without the weighting. We can think of this in terms of effect size, in that the strength of the 

effect of weighting partial credit scores on the accuracy of predictions using IBFi is 0.9231.  

 IBFi was also a far better predictor of final student cumulative average than the 

students were of themselves based on their initial certainty level. The RMSE for student 

predictions of their own cumulative average over the problem set was 0.4186, while the 
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RMSE for the predictions of IBFi for students’ final cumulative average was 0.1937 (partial 

credit was 0.2530). Although students who had low confidence tended to under-predict their 

performance and students who had high confidence tended to over-predict their 

performance, IBFi, when using student certainty, had the reverse trend: low scores were 

over-predicted and high scores were under-predicted. This trend can be seen in Figure 4C 

and 4D. Figure 4C shows the prediction error when IBFi predicts the cumulative average of 

each student’s final answer, and 4D shows the prediction error when IBFi predicts the final 

partial credit score of each student. 

Discussion 

The aim of this study is to determine whether student certainty (or confidence) can 

improve the prediction accuracy of the Inverse Bayes Filter (IBFi). This improvement is of 

interest since IBFi is based on the idea that students can be modeled as probabilistic 

reasoners – answering questions in the way that they believe is most likely to be correct. If 

inclusion of student certainty improves IBFi performance this goes some way to validating 

the underlying theory of the model; that certainty can be a direct window into the 

probabilistic reasoning of students. Characterizing student certainty gives some idea of how 

realistic this hypothesis is, pointing to certainty as a multi-dimensional summary of students’ 

interaction with the online tasks.  

Student Certainty 

 Certainty and decision-making. Strong negative relationships were seen between 

student certainty and other variables of interest such as hints and attempts; students who are 

more certain in their answers tend to require fewer attempts and hints to reach a problem 

conclusion. This intuitive finding suggests that certainty is related to the way that students 

navigate the online system in a fairly straight forward way; students who successfully 
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complete problems are more certain, students who require more assistance are less certain. It 

is also possible that students of lower certainty are also more persistent than students with 

higher certainty though; high certainty students give up instead of seeking assistance. This 

alternate possibility is bolstered somewhat by the relationship between certainty and the 

maximum-number-of-questions answered by a student. Students who are very certain and 

very uncertain answer fewer questions than those with mid-high certainty. This trend also 

makes some sense, students with high certainty are also students who are goal oriented, and 

once they reach the goal they move on while students who are very uncertain are students 

who find the work difficult and give up quickly. Middle-high certainty students meanwhile 

are those that persist beyond the minimum goal requirement, perhaps to satisfy their own 

sense of understanding.  

 The finding that middle-high certainty students tend to persist while high-certainty 

students do not resonates with the work of Dweck (1986, 2012) on performance orientation. 

According to Dweck, students with a fixed mindset tend to be essentialists – they believe 

that their abilities are fixed traits that dictate performance. In contrast, students with a 

growth or incremental mindset believe that ability can be developed through learning and 

practice. Students who have a fixed mindset tend to work in a performance-oriented 

manner, where performance is a direct indicator of their general ability (“I was wrong, I am 

stupid”) while students with an incremental mindset see performance as a reflection of an 

ongoing process (“I was wrong, I need to learn more”). The difference between the very 

high/very low and medium-high certainty students with respect to persistence may describe 

these different mindsets. Very high and very low certainty may be a proxy for a fixed 

mindset – a student who has a fixed mindset believes that she either has the ability required 

to perform or not, her certainty choices are limited to either zero or one. Within such a 
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schema incorrect answers are a reaffirmation of a lack of ability, making persistence illogical. 

However, students with a growth mindset will rarely rate their certainty as 100% as they 

believe that there is always room to improve. Instead, they may rate their certainty as mid-

high, but persist when they are wrong as they see it as a learning opportunity. The tendency 

of growth mindset students to persist while fixed mindset students do not is confirmed by 

Bandura, who suggests that growth mindset students are better able to deal with stressors 

than fixed mindset students (Bandura, 1993).  

Relationships between student certainty and hints, attempts and persistence suggest 

that student certainty is related to the way that a student navigates the online system. 

Students are choosing certainty values in a consistent way that is connected to the tasks they 

are doing, not in a random way or in a way that is unrelated to the choices that are available 

to them such as would be expected if they were not taking the confidence questions 

seriously. This association supports the use of certainty as an appropriate measure for IBFi; 

there is information that can be extracted from certainty that pertains to the way students 

work through the computer based tasks.  

Certainty and accuracy. There is a positive relationship between student certainty 

and both past and future performance. The relationship between certainty and accuracy 

suggests a stronger relationship with prior experience than with future performance. 

Students who are more certain at the beginning of the problem set are those who have been 

more accurate in the past, while those who were less accurate are less certain.  There is a 

similar, but smaller relationship, with future performance; students who are more certain are 

more accurate during that problem set and students who are less certain are less accurate. 

However, this relationship is tempered by a substantial number of students across all 

certainty ranges who score as low as possible during the problem set. These students are 
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over-predicting their future performance and they are not students who are simply exciting 

the program after starting the first question. It is worth looking at the error patterns of 

prediction then to see where these prediction errors are accumulating. 

If we treat certainty as a prediction of past and future performance there is a clear 

trend toward low certainty students under-predicting their accuracy and high certainty 

students over-predicting their accuracy. This trend is somewhat explained simply by the 

possible amount of error a prediction can have – there is a greater possible distance between 

a high prediction and a low result than between a middle prediction and low result for 

example. If a student consistently predicts middling values then she will have, on average, 

less error if her observed scores are extremely high or extremely low. The tendency to 

reduce error when this strategy is employed may well explain the preponderance of students 

who sit at either end of the spectrum. It does not necessarily explain the spread of students 

across the entire range of error though, nor does it explain that mid-high students (certainty 

of approximately 0.75) being the best predictors of both past and future accuracy. If it were 

simply a matter of making the safest bet possible, students with predictions of 0.5 would be 

the most common and most accurate. 

When we compare the correlation of past and future predictions with their error 

rates students have more conservative predictions of past performance and more optimistic 

predictions of immediate future performance. That is to say, the slope of the relationship is 

steeper and over a smaller range for past predictions (-0.98 – 0.54) than for predictions of 

future performance (-1.0 – 1.0). It appears that students rely on past accuracy to inform their 

certainty, which tends to be more optimistic about their future performance than is 

warranted in this case.  
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Trends in accuracy and error also seem to support the model. Students who are 

uncertain perform worse than those that perform well, and student performance is informed 

by past experience. IBFi works under the assumption that students model the world 

according to their certainty, and certainty should be weighted by past experience and current 

conditions. It also weights prior experience more strongly than current conditions. 

According to these results the stronger relative impact of prior knowledge seems to be the 

general strategy of the students. Prior experience informs certainty to a greater degree than 

current conditions, if it were reversed then we would expect to see equal error or greater 

accuracy for predictions on the current task than with past performance. 

IBFi Accuracy 
The more substantial test of the hypothesis that IBFi describes student behavior in 

terms of certainty is to utilize certainty as substrate for the algorithm. To test whether 

certainty made a difference to IBFi prediction accuracy, a comparison was made between 

predictions of student performance measures with and without inclusion of student 

certainty. Performance scores (cumulative average and partial credit) where first predicted 

unaltered and then predicted after they had been weighted by student certainty. The results 

were further compared to random weightings of scores to determine whether simply 

weighting the scores made a difference.  

Improved predication accuracy (with caveats). The overall result from testing 

IBFi using certainty is that certainty does improve prediction accuracy with two important 

caveats: a) that improvement is substantial for partial credit and minimal or non-existent for 

cumulative average and b) consideration that the improvement is simply an artifact of the 

weighting process and has little to do with the certainty values themselves.  

  Cumulative average vs. partial Credit. With respect to the first issue, we need to 

explain why there is such a marked improvement in partial credit prediction with the use of 
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certainty, and so little in the case of cumulative average. To some extent this is likely the 

result of information loss. Cumulative average is a very sparse measure with little variance. 

This sparsity makes it easier to predict (RMSE is far lower than for partial credit) but also 

that there is little variance with which to distinguish one prediction from the next. Although 

weighting cumulative average with certainty increases the variance somewhat, it isn’t a large 

enough signal for the model to pick up a substantial gain in performance. Indeed, random 

weighting of cumulative average appears to have an equivalent effect.  
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Figure 5. Histograms of weighted and unweighted partial credit and cumulative average 
scores demonstrating that that the weighting process should not make the scores easier to 
predict. 
 

Conversely, partial credit is a richer measure, it is a multidimensional-summary of 

several aspects of the online task (accuracy, hints, attempts), and has double the variance of 

the cumulative average. The larger amount of variation distinguishes student behavior from 

one question to the next in more detail, producing a stronger signal for the algorithm to pick 

up. That certainty improves prediction also implies that it is offering information that is not 
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already summarized by the partial credit measure. This extra information reflects support for 

the theory that informs the model, though we must account for the possibility that it is the 

result of a statistical artifact. 

Accounting for certainty weighting. It is possible that prediction accuracy 

increases because the weighting procedure simply makes the values easier to predict (EG - it 

smoothes the values out). This smoothing is a legitimate concern, as we are looking for 

evidence that supports the underlying model, not only for a boost in performance.  

The first piece of evidence that this is not simply an artifact is that the differences in 

variance between unweighted and weighted values do not differ greatly, and in the case of 

cumulative average, the variance on the weighted scores is greater than on the unweighted 

scores (Table 2). Indeed histograms comparing the distributions of weighted and unweighted 

scores confirm that the weighted scores, if anything should be more difficult to predict since, 

in the case of partial credit, the possible answers to predict shift from predominantly 1.0 to a 

range across 0.0 – 1.0 (Figure 4). It seems that a smoothing effect of weighting the scores is 

unlikely to have made prediction easier. 

Comparing Prediction Error of IBFi to Students 

 Compared to students’ predictions of their own success (as determined by their 

initial certainty), the Inverse Bayes Filter compares very favorably. IBFi has an RMSE of less 

than half that of the students. We might conclude that what the algorithm can learn about 

students over a few questions is far greater than what the students themselves have learned 

about their own behavior over all their experience, though this would be an over statement.  

If student certainty is not meaningful, then it would not aid the model in making predictions. 

Far more likely is that the meaning of the raw certainty value is contextually specific to the 

student and requires interpretation. IBFi provides such an interpretation, parsing it into 
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situational and aptitude components. Taking student raw certainty as a prediction of future 

performance neglects the different meanings that the measure can take on – whether it is a 

prediction of the current context, or a prediction of past performance.     

Conclusion 

In conclusion, this paper sought to address the overall question, “Is Inverse Bayes 

Filter performance improved by the inclusion of a student confidence/certainty measure?” 

Confirmation of the hypothesis that certainty data improves model performance provides 

evidence for the larger conclusion that the theoretical framework supporting the model is 

sound. Since certainty is theorized to be a proxy for a student’s subjective probability, if the 

model did not improve with the addition of certainty data then this would raise questions 

about the underlying theory – IBFi is not a working based on modeling subjective 

probability. However, since IBFi performance was improved by weighting scores with 

student certainty this suggests that the underlying theory is sound. 

The results described here provide evidence that indeed student certainty data do 

improve the model prediction values substantially (more than 30% for partial credit). This 

improvement confirms the theory that the model describes individual students’ subjective 

probability and that modeling students in this fashion can be effective.  The results in this 

paper go a short distance down the road of validating this model. Models that are based on 

individual difference over time may prove useful in producing accurate personalization 

software that can adapt probabilistically to student behavior.    
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Personalization through the Application of Inverse Bayes to Student Modeling: 
Concluding Bookend 
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Concluding Bookend 

This set of articles has described the theory and implementation of the Inverse Bayes 

Filter, a rational model that predicts student behavior based only on individual level variation 

over time. This novel approach to predicting performance is the only algorithmic approach 

with this strategy applied to educational data and this set of papers represents the first tests 

of its accuracy. 

Findings 

 The substantial findings from the two empirical studies presented here are that the 

Inverse Bayes Filter: 

• Can predict student behavior with increasing accuracy as more data are supplied by 

each student 

• Can outperform the KTPC model on a per student basis, but not overall 

• The model is more accurate at predicting partial credit than cumulative average score 

• The model tends to under-predict low values and over-predict high values 

• Weighting partial credit with student certainty (e.g. confidence) increases accuracy of 

predictions for partial credit but not cumulative average 

 

With respect to the use of rational models, such as those based on Bayes Theorem, 

this is not an unequivocal endorsement, but neither is it a defeat. It represents some promise 

for the method and methods like it. The algorithm is close to the overall accuracy of a 

validated model, and is more accurate in a way that is predicted by theory – it is better at 

predicting the behavior of individuals. It also behaves as expected in that it is more effective 

using something that more closely resembles subjective probability, student certainty.  
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That is not to say that there are not serious questions that need to be pursued with 

respect to further validating this model, even beyond the obvious need for many more 

similar studies to demonstrate repeatability. The model does not perform as well as it might 

when predicting cumulative average score. This failure needs to be investigated thoroughly 

to determine whether it is an issue with the algorithm or whether the measure is unsuitable 

and why.  

Further investigations are also needed to elaborate on the meaning of the 

parameters. Do these parameters actually represent internal (aptitude) and external 

(situational) factors that impact students? Do they help explain student behavior?  

Beyond these basic questions about the parameters, there are ways that the model 

could be extended. It may be possible to further subdivide the parameters to hierarchically 

account for the structure of student behavior. For example, can we hierarchically organize 

the internal parameter with content parameters so that we can identify that topics such as 

fractions and decimals fit within rational numbers that fits with mathematics?  

Further improvements may be possible with respect to performance of the algorithm 

through utilizing Markov Chains to make estimates and relying on distributions rather than 

point estimates of probability.  

What does this mean for educators? 

The ability to better predict individual level behavior is of consequence for educators 

in several different ways. Most obviously it is of consequence for efforts to automate 

individualization, the ability to better characterize individuals so that they can receive 

targeted interventions is at the heart of the personalization enterprise. IBFi type models 

could improve educational practice, from making better technological products that can 
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scale more easily, to making more accurate inferences about students’ needs. Yet this is only 

part of the personalization impact.  

Rational approaches do not only open the possibility of better predictions but the 

possibility of different kinds of predictions. In the case of the Inverse Bayes Filter the use of 

a rational model allows the characterization of students based on their own past 

performance over and above their performance relative to their peers. This novel use of 

variation may well produce different kinds of categories to those that we currently use. 

These new categories may contradict current categories and understandings of the way 

students learn.  It may allow different understandings of how interventions variably impact 

students that can then inform practice. With respect to IBFi in particular, the ability to parse 

student performance accurately into internal and external components may allow more 

informed decision-making around how classrooms are structured and how progress is 

defined.  

Rational Models 

Rational models like IBFi may well be the future of educational assessment, simply 

because of the explosion in the amount of educational data that is now available. As has 

happened in astronomy and the biological sciences, education and the social sciences more 

broadly need to revise the way that data are processed to deal with the variety, speed and 

amount of data that are now available. This increase in data means that sample based 

statistics, although they are still useful, need to be augmented by processing algorithms such 

as Inverse Bayes. As an example, Bob Williams at the Hubble Telescope moved from using 

sampling statistics to characterize the night sky, as had been done by astronomers for 

generations, to processing as much information as was possible with algorithms before 

statistical astronomers even saw the data. To achieve this processing strategy astronomers 
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moved away from algebraic statistics towards algorithmic processes and swiftly changed the 

way that the field of astronomy did analysis. This change in process did not remove 

traditional statistics from astronomy, but it did create a whole new area of astronomy that is 

now part of core undergraduate astronomy courses. This change in the nature of analysis 

may well be the future of educational assessment, where vast quantities of data are produced 

every day. A future where algorithmic inference has a more substantial role in analysis.  

The current study provides a glimpse into that possible future.  The evidence 

produced here provides some evidence that algorithmic, rather than algebraic, models of 

assessment may be a viable alternative to current methods such as IRT and True Scores. It 

opens the possibility of utilizing large amounts of student temporal data to make inferences, 

rather than between-student data, which may alter the kinds of conclusions and categories 

that are developed.  In some ways it shows an alternative starting place for the utilization of 

big data in education. There are many advocates for building models based on those 

currently common in education. For example developing standardized test technology 

further, building more complex IRT models, taking big data and reducing it to be interpreted 

in the ways that we are already familiar such as regression analysis. We are at a turning point 

in terms of methodology, we can build a new methodology on what made sense 100 years 

ago or can we start somewhere else. That is, we can use as a base samples and between-

student differences or we can we start somewhere completely different, possibly where the 

individual over time plays a bigger role in our inferences. 

Personalization 

We can think of individualization as putting the most appropriate intervention in 

front of a particular student – and to some extent this is what it amounts to. In combination 

with big data it can take on a broader meaning: individualization is really an 
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acknowledgement that the differences between people are far greater than we have been able 

to accommodate logistically, but now we may be able to. 

In a world of experts and a strictly defined corpus of knowledge that can be held by 

a single person, it makes sense to standardize knowledge. It makes sense to ensure that 

everyone is held to that standard and that we measure people’s ability to meet the standard. 

But individualization is suited to a different world, a world where the amount of knowledge, 

even with a well-defined field such as particle physics, is too expansive for a single person to 

retain. Instead of putting our energy into forcing everyone into the same standard of 

knowledge, we can accept that to a great degree people’s knowledge will differ. It makes 

more sense, then, to spend energy trying to characterize that knowledge and its 

consequences, and training students to be able to do this for themselves. 

To return to the snooker analogy, we have been training students to start the game, 

to break the triangle. Some students are very, very good at breaking and we can identify those 

students for the purpose of assessment. A broad interpretation of individualization in 

concert with big data is less concerned with this limited scope and more concerned with 

characterizing in detail student behavior. Feedback of this information to the student 

represents the possibility of education being less focused on the break and more focused on 

all the other plays during the game. Education might become about learning what the 

consequences of different actions might be two, three plays ahead rather than just 

performance on a single, well performed opening shot. For this possible future to occur we 

would require an ability to characterize how our understanding impacts our individual 

behavior and this hinges on being able to make sense of large data sets in real time and for 

this we likely require algorithmic processes such as the Inverse Bayes Filter. 
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