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ABSTRACT

This thesis focuses on two main topics, the physics governing how faults rapidly weaken
during an earthquake and the thermal and mechanical structure of ice stream shear mar-
gins. The common theme linking these two projects is the desire to understand how the
complicated interactions between stress and temperature control deformation and failure.
All of the problems in this thesis are attacked using a combination of analytic and numer-
ical methods, and the interplay between these two approaches provides a powerful way to
understand the different physical balances that dominate in different regimes. We also use
aspects of materials science to understand how the often complicated rheologies are con-
trolled by underlying physical phenomena such as melting, phase transitions, diffusion, and
dislocation motion. With regards to fault mechanics, we begin by showing how co-seismic
weakening mechanisms driven by elevated pore fluid pressures lead to micron-scale strain
localization during an earthquake. We solve for the localized zone thickness for a range of
fault temperatures, test these predictions using numerical simulations, and show how the
onset of localization accelerates fault weakening. Next we present the first solutions to ac-
count for thermal decomposition reactions during a dynamic rupture, showing that the
activation of thermal decomposition may lead to a larger slip duration and total slip. Fi-
nally we present a new set of experiments studying flash heating of serpentinite, highlight-
ing the dependence of friction on normal stress and the presence of gouge, and producing
the first model to explain the hysteresis commonly observed in flash heating experiments.
With regards to ice stream shear margins, we begin by extending the work of Perol and Rice
[2011]™ to study the formation of temperate ice in shear margins, and quantify the total
melt that may be generated within the shear margins. We conclude by investigating how
the presence of such a channel alters the stress on and strength of the undeforming bed in
the shear margin, showing that the transition from a deforming to an undeforming bed
across a channel is stable when the water flux in the channel exceeds a critical value.
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2.1

2.2

2.3

Listing of figures

A fault zone idealized as a gouge layer of thickness h subjected to homogeneous shear
strain rate 7y,. The stresses in the layer are a constant normal stress 0, a shear stress

7 and whatever other normal stresses in the x and z directions needed to maintain zero
normal strain in these directions. . . . . . . . . ... ... ... .. ... 16
Rate-strengthening friction: A plot showing how the critical half-wavelength Ay, /2
varies with gouge layer thickness for parameters modeling a depth of 7 km and a slip

rate V' = 1 m/s. Since %, = V//h thicker gouge layers experience lower strain rates,
leading to a wider critical half-wavelength. Modeling damage as in Rice [2006]™¢ we

find that damaged material is less susceptible to localization due to larger hydraulic dif-
fusion and less efficient thermal pressurization. When we use the path-averaging method

from Rice [2006] 8¢

to account for parameter variations with pressure and tempera-

ture the predictions increase by abouta factoroftwo. . . . . .. ..o 33
Rate-strengthening friction: A pair of plots showing how the critical width W, ¢ can

be calculated graphically for depths of 1 km and 7 km. Both plots use the nominal pa-
rameter sets and a slip rate V' = 1 m/s. To find the self-consistent width for the shear
zone we look for points at which the critical half wavelength is equal to the gouge layer
thickness. This condition is indicated by the black line, and the intersection points in-
dicated give the localized zone thickness for the different parameter sets. Localization

is expected when the gouge layer thickness is greater than this critical width, and uni-
form shear is expected when the gouge layer thickness is thinner than this critical width.
Using the nominal parameter sets for a depth of 7 km we predict a width of 3 um for

the intact material, and a width of 23 um for the damaged material. Accounting for
changes in the parameters with pressure and temperature using the path-averaging tech-
nique of Rice [2006]™¢ increases both of these predictions by a factor of two. Ata depth
of 1 km we predict a width of 24 pum for the intact material and 197 um for the dam-
aged material. We do not have access to path-averaged parameter sets for a depth of 1 km
but we tentatively assume that the change in localized zone width due to changes in

parameters with pore pressure and temperature will be the same attkmand 7 km. . 35
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2.4

2.5

3.2

3.3

Gouge dilatancy: A plot showing the evolution of the strain rate perturbation 41, nor-
malized by the initial value 4 (0), for a slip rate of V' = 1 m/s accommodated across

a 1 mm wide gouge layer, a wavelength A\ = 100 pum, and the parameter sets mod-

eling a depth of 7 km (see Table 2.1). We see dramatic initial growth, followed by a de-

cay back to zero. In our model a damaged material has a higher storage capacity, lead-

ing to a smaller value of E' = £/ 0, and larger excursions away from homogeneous
shearing. . . . ... L 40
Gouge dilatancy: A plot of the total perturbation strain parameter I versus gouge layer
thickness for the parameters modeling a depth of 1 km (see Table 2.2). Damaged ma-

terial experiences more intense strain localization, in contrast with the results for sta-
bilization by frictional-strengthening alone. The dashed line shows the asymptotic ap-
proximation from equation (2.69), which agrees well with the values of I" found by
integrating equation (2.67) numerically. This linearized analysis is only valid while the
perturbations are small compared to the uniform shear solution. For the largest val-

ues of I this will only be true for unrealistically small values of 41 (0). However, we

still argue that localization stabilized by dilatancy alone is highly sensitive to changes

in F, and insensitive to changes in other parameters. . . . . . .. .. .. ... .. 45

A sketch showing the system we are modeling. A gouge layer with a finite thickness

h is sheared between two rigid poroelastic half-spaces that are moved relative to each
other at aslip rate V. This leads to a nominal strain rate within the gouge layer 4, =
V/h. The strain rate (y, t) will localize within the gouge layer, as shown by the Gaus-
sian strain rate profile sketched within the gouge layer. The width W of the zone of
localized straining is then estimated as twice the root mean square width of the Gaus-

SIANL . . e e e e e e e e e e e e e e e e e e e e e e e 59
Rate-strengthening friction: The blue curve shows the evolution of the maximum strain
rate Ypmqz Within the gouge layer for the path-averaged parameters modeling a dam-

aged material, V' = 1m/sand h = 1 mm. The maximum strain rate grows indi-
cating that straining is localizing within the gouge layer. After a finite amount of slip

the peak strain rate begins to decay indicating that the localized zone is thickening. This
thickening occurs whenever both oy, and v, are non-zero. We define the peak strain
rate Ypeqk to be the largest value of yrge. - . o o o o o oo 73
Rate-strengthening friction: A plot showing the strain rate profile at peak localization

for the path-averaged parameters modeling a damaged material, V' = 1 m/sand h =

1 mm. The numerical solution is shown in blue with the Gaussian fit defined by equa-
tion (3.27) shown by the red dashed line. The width W, ¢ of the localized zone is es-
timated as twice the root mean square width of the Gaussian, and we find W3y =

A3 UM o o e e e e e e e e e e e e 74
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3.4

3.5

3.6

3.7

Rate-strengthening friction: Figure showing how the localized zone thickness W, ¢

at peak localization depends on gouge layer thickness h. Numerical results for the path-
averaged and nominal parameters for a damaged material and a slip rate of V' = 1 m/s

are shown by solid colored lines, with the accompanying linear stability predictions

for these parameters shown by dashed colored line. For thin gouge layers we see that

the localized zone thickness is equal to the gouge layer thickness, with the line W =

h shown by dashed black line for guidance. When the gouge layer thickness is large the
straining localizes to a width that is only weakly dependent on the gouge layer thick-

ness. This width is in good agreement with the predictions for W,.s from the linear
stability analysisin Rice ez al. [2014]™%. . . . . . ... oL oL 75
Rate-strengthening friction: A plot showing how the localized zone thickness W5
changes with oy, for the path-averaged parameters modeling an intact material and

a damaged material given in Table 3.1, a slip rate V' = 1 m/s and gouge layer thick-

ness h = 1 mm. This parameter sweep allows us to vary the dimensionless param-

eter Dy, while the other two dimensionless parameters Dy, and z remain unchanged.
The black dashed lines show the fitting formula given in equation (3.31). Larger val-

ues of oy, lead to wider localized zones. . . . . . . ... ... ... ... 78
Rate-strengthening friction: A plot showing how the localized zone thickness W, ¢
changes with v, for the path-averaged parameters modeling an intact material and

a damaged material given in Table 3.1, aslip rate V' = 1 m/s and gouge layer thick-

ness h = 1 mm. This parameter sweep allows us to vary the dimensionless param-

eter Dj,, while the other two dimensionless parameters Dyj, and 2 remain unchanged.
The black dashed lines show the fitting formula given in equation (3.31). Larger val-

ues of apy lead to wider localized zones. The deviation at large values of o, for the
damaged parameter set is due to W,y becoming comparableto h. . . . . . . . .. 79
Rate-strengthening friction: A plot showing how the localized zone thickness W,
changes with (a — b) for the path-averaged parameters modeling an intact material

and a damaged material given in Table 3.1, a slip rate V' = 1 m/s and gouge layer thick-
ness h = 1 mm. This parameter sweep allows us to vary the dimensionless param-

eter z while the other two dimensionless parameters Dy, and Dy, remain unchanged.
The black dashed lines show the fitting formula given in equation (3.31). Larger val-

ues of (a — b) lead to wider localized zones. . . . . . ... ... ... ... ... 80
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3.8 Rate-strengthening friction: A plot showing how the strength of the gouge layer evolves,
normalized by the initial strength, for localizing shear and uniform shear. These sim-
ulations were produced using the path-averaged parameters modeling a damaged ma-
terial, V' = 1 m/sand h = 1 mm. We see that a sudden drop in strength coincides
with the onset of localization. The initial deformation, before diffusion and localiza-
tion have had time to act, is well described by the solution for uniform shear under undrained
and adiabatic conditions™” . At large slips the solution is no longer influenced by the
small yet finite width of the shearing zone and the strength is well approximated by
the solution for slip on a plane™*™¢. The two limits for undrained adiabatic deforma-
tion and slip on a plane are shown above by the dashed black lines. Note that the undrained
adiabatic solution from Lachenbruch [1980]"7 differs from our simulation of a uni-
formly sheared layer because our numerical simulations allow for diffusion of heat and
fluidinto the surroundings. . . . . . .. .. ... L Lo Lo 83

3.9 Rate-strengthening friction: A plot showing how the nominal strain at which peak lo-
calization occurs varies with avy,,. These simulations were produced using the path-
averaged parameters for an intact and a damaged material, V' = 1 m/sand A = 1 mm.
For low values of avp,,, corresponding to localized zone thicknesses that are much smaller
than the gouge layer thickness, the critical strain is a decreasing function of avy,,. For
both parameter sets Ypeqk reaches a minimum before increasing at large values of vy, 84

3.00  Rate-strengthening friction: A plot showing how the nominal strain at which peak lo-
calization occurs varies with (a—b). These simulations were produced using the path-
averaged parameters for an intact and a damaged material, V' = 1 m/sand h = 1 mm.
We see that small values of (a —b) lead to small values of Ypeqk, and so the more in-
tense localized zones also develop the fastest. . . . . . . ... ... ... ... .. 86

3.1 Rate-strengthening friction: A plot showing how the maximum temperature rise, AT,q, =
Tinaz—T4, in the gouge layer evolves for localized and uniform shear using the path-
averaged parameters for a damaged material, h = 1 mmand V' = 1 m/s. The ini-
tial behavior, before localization and diffusion become important, is well described by
the undrained adiabatic solution of Lachenbruch [1980]"7 (marked AT 4r. adia.)-

As straining localizes the frictional heating is focused into a zone much narrower than

the gouge layer thickness, leading to a sharp temperature rise. After localization the lo-
calized shear solution mirrors the Mase-Smith-Rice slip on a plane solution (marked
AT}1ane), but the slip on a plane solution never provides a good approximation for
maximum temperature rise. . . . . . . C e . 89

3.2 Gouge dilatancy: A plot showing how the maximum strain rate Jnqz evolves for the
path-averaged parameters modeling an intact and a damaged material, for V' = 1 m/s
and h = 0.5 mm. As predicted by the linear stability analysis there is an initial tran-
sient of intense strain rate localization followed by decay to homogeneous straining.

In contrast with the frictional strengthening case, the damaged material shows more
intense localization. . . . . . . . . . ... L 92
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Gouge dilatancy: A plot showing how the peak strain rate ,cqx depends on the di-
mensionless parameter E = ¢/([36,) for the dilatancy only system using the path-
averaged parameters modeling an intact and a damaged material, V' = 1 m/sand h =

0.5 mm. For both parameter sets we observe larger peak strain rates for smaller values

of I, corresponding to narrower localized shear zones. For all but the smallest values

of E our results are well described by equation (3.47), and for each parameter set this
formula is shown by the dashed black line. . . . . .. ... ... ... ... .. 95
Gouge dilatancy: A plot showing how the peak strain rate 7,,¢q1 depends on the ra-

tio of the thermal diffusion distance L;q = 2m+/ayp ., where t,, is the character-

istic weakening time for thermal pressurization, and the gouge layer thickness /. These
simulations were produced using the path-averaged parameters modeling an intact and
adamaged material, V' = 1m/sand h = 0.5 mm. Larger values of L;},q, corre-
sponding to more efficient thermal diffusion, lead to lower peak strain rates and thus
wider localized zones. The simulations are well fit by the formula given in equation
(3.47), and this curve is shown by the dashed black line. No line is shown for the dam-
aged parameters since the value of £ is sufficiently small that equation (3.47) is no longer
ACCUTALE.  + v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e 96
Gouge dilatancy: A plot showing how peqr, the strain at which peak localization oc-
curs, depends on . These simulations were done using the path-averaged parame-

ters for an intact and damaged material, V' = 1 m/sand & = 0.5 mm. Our results

show that when E'is small enough that transient strain rate localization occurs Ypeqk

is an increasing function of I, with small values of E leading to small values of ypeqk-
This means that the most intense localized zones develop very rapidly. Very little dif-
ference is observed between the two parameter sets, which can be explained by noting
that Ypeqr is relatively insensitive to changes in Lypq, as shown in Figure 3.16. . . . 99
Gouge dilatancy: A plot showing how peqr, the strain at which peak localization oc-
curs, depends on the ratio of the thermal diffusion distance Lyj,q = 27+/ap ty,, where
t. is the characteristic weakening time for thermal pressurization, and the gouge layer
thickness h. These simulations were done using the path-averaged parameters for an
intact and damaged material, V' = 1 m/sand h = 0.5 mm. Our results show that

Vpeak is an increasing function of Lypq, though when the localized zone width is much
smaller than the gouge layer thickness Ypeqr /7w does not depend strongly on Lypg. 100
Gouge dilatancy: A plot of the final strain normalized by the average strain in the layer
Yo, for slips of 1 cm, 10 cm and 100 cm. These results were generated using the path-
averaged parameters for a damaged material, V' = 1m/s,andh = 0.5 mm. We
observe a decrease in strain localization with increasing slip. This can be understood

by considering the transient nature of the localization; longer events will spend more

time straining uniformly, and thus the effects of the transient strain rate localization

will be less pronounced in the final strainprofile. . . . . . .. ... ... L. 101
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Rate-strengthening friction: A plot showing how maximum strain rate evolves in the
inertial model for I = 107,107 and 107!°. This plot was created using the nom-
inal parameters modeling a damaged material, A = 0.5 mmand V' = 1 m/s. For
comparison the solution when mechanical equilibrium is assumed is shown by the dashed
black line. For the lowest value of I the inertial and equilibrium solutions agree almost
exactly, while for the larger values we see deviation away from the equilibrium solu-

CON. . . . o e e e e e e e e 104
Rate-strengthening friction: A plot showing how the peak strain rate Ypeqr and time
tpeak at which this peak strain occurs vary with I for the nominal parameters model-

ing intact and damaged material, a gouge layer thickness A = 0.5 mm, and a slip rate

V' =1 m/s. To allow easy comparison between the two parameter sets all values of

Ypeak and tpeqk are normalized by the values found when mechanical equilibrium is
assumed. These mechanical equilibrium values are indicated by a superscript M E. Above
I = 107! inertial effects become important and the two models diverge. Inertial ef-

fects lead to two key differences. The value of ,¢qk is decreased, which corresponds

to a wider localized zone; the time ¢4 at which peak localization occurs is larger in-
dicating that the localized zone takes longer to develop. . . . .. .. .. ... .. 105

A sketch showing the geometry used in our numerical simulations. A gouge layer with

a finite thickness A is sheared between two undeforming thermo-poroelastic half-spaces
moving relative to each other at a slip rate V' leading to a nominal strain rate of g =

V/h within the gouge layer. In this one-dimensional model we only account for vari-
ations in the across-fault direction y. The straining is allowed to localize within the gouge
layer, as shown by the Gaussian strain rate profile sketched within the gouge layer. The
width W of the zone of localized straining is then estimated as twice the root mean square
widthof the Gaussian. . . . . . . .. .. . ... ... ... .. ... 127
A plot showing how the critical half-wavelength A7 /2 from the linear stability anal-

ysis varies as a function of fault temperature 7T’y for calcite and lizardite. This plot was
produced using the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5, and

the nominal strain rate 45 = 10,000 s~!. The horizontal dotted lines show )\57:5 and
ML for both materials. The vertical lines show the location of the temperature 7, pre-
dicted by equation (4.33). As expected we see that at low temperatures the critical half-
wavelength is equal to )\ﬁTT and for high temperatures the critical half-wavelength is

equal to /\ZIfTT, with a smooth transition between the two regimes occurring for inter-
mediate temperatures. Our prediction for the temperature at which thermal decom-
position operates at lies in this intermediate temperature regime, so it is unlikely that

the high temperature limit of the linear stability analysis will provide a good quanti-

tative prediction for the localized zone thickness. . . . . . . ... ... ... ... 143
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43
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45

A plot showing the evolution of the maximum strain rate ;44 for calcite and lizardite.
These simulations were performed using the parameters in Tables 4.1 and 4.2, a mass
fractionm = 0.5, asliprate V' = 1 m/s, and a gouge layer thickness » = 1 mm.

For comparison the solution from Platt et al. [2014]"¢
ening from thermal pressurization alone (i.e. F, = P, = 0) is shown by the dashed

that considers dynamic weak-
black line. Initially our simulations agree with the simulations from Platt et al. [2014]",
indicating that thermal decomposition can be neglected during the initial stages of de-
formation. Eventually thermal decomposition becomes important and 4z increases

to a new peak value 717;;2 .- Following the peak ¥p,q. decays, but the values are always
above those for thermal pressurization alone. The minimum and maximum strain rates
used to calculate At; are shown by the black plus and black cross. . . . . . . . .. I$1
A plot showing the strain rate profile at peak localization alongside the Gaussian fit used
to infer a localized zone thickness. This simulation was performed using the param-

eters in Table 4.1 and the calcite parameters in Table 4.2, a mass fractionm = 0.5,
asliprate V' = 1m/s, and a gouge layer thickness h = 1 mm. Straining localizes

to a zone a few tens of microns wide, and we see great agreement between the numer-

ical simulation and the Gaussian fit. The horizontal lines show the two ways to infer

a width from the Gaussian function. The solid black line shows where the width is cal-
culated when we use the standard assumption that the width is equal to twice the resid-
ual means square of the Gaussian, and the dashed black line shows where the width

is measured when we assume the localized zone thickness is equal to the full width at
tenthmaximum. . . .. . .. .. ... ... 152
A plot showing how the localized zone thickness W depends on the gouge layer thick-
ness h and ambient fault temperature T}, for calcite and lizardite. These simulations

were performed using the parameters in Tables 4.1 and 4.2, a mass fraction 7m = 0.5,
aslip rate V' = 1 m/s. In addition the simulations varying Ty, use a gouge layer thick-

ness b = 0.5 mm. We see that the localized zone thickness is almost independent of

the gouge layer thickness. From this we can conclude that the localized zone thickness

is controlled by the gouge properties and not the initial thickness of the deforming zone,
in agreement with the conclusions from Platt et al. [2014]° for strain localization driven
by thermal pressurization alone. We also see that W is almost independent of T,, which
is to be expected since the temperature at which thermal decomposition is triggered

does not depend on the ambient fault temperature. . . . . . .. ..o 155
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4.9

A plot showing a set of parameter sweeps tracking the localized zone thickness W as

a function of eight parameters. For each sweep all other parameters are set to the val-

ues in Tables 4.1 and 4.2, a mass fraction m = 0.5, aslip rate V' = 1 m/s, and a gouge
layer thickness A = 0.5 mm. For comparison we also show the linear stability pre-
diction from equation (4.50) with the dotted curves, the prediction from equation (4.61)
evaluated using the peak temperature from the numerical simulations with the dashed
curves, and the prediction from equation (4.61) evaluated using the temperature from
equation (4.33) assuming 7y = 252 MPa/ms with the dash-dot curves. The predic-

tions from equation (4.61) give the best agreement with the numerical simulations, es-
pecially when the peak temperature from the numerical simulations is used to evalu-

Ate (4.61). « v e e e e e e e 157
(continued) . . . . ... ... e e S (1
A plot showing the evolution of the maximum temperature 75,4, for calcite and lizardite.
These simulations were performed using the parameters in Tables 4.1 and 4.2, a mass
fractionm = 0.5, asliprate V' = 1 m/s, and a gouge layer thickness h = 1 mm.

For comparison the solution from Platt et al. [2014]°
ening from thermal pressurization alone (i.e. £, = P, = 0) is shown by the dashed
black line. Initially our simulations agree with the simulations from Platt et al. [2014]
indicating that thermal decomposition can be neglected during the initial stages of de-
formation. Eventually thermal decomposition becomes important and 75,44 rises to
anew peak before settling onto a very slowly decaying plateau. As in Sulem and Famin
[2009]*7 and Brantut et al. [2010]* thermal decomposition leads to a capping of the

that considers dynamic weak-

166
b

maximum temperature rise below a typical melting temperature. . . . . .. ... 161
A plot showing a set of parameter sweeps tracking the peak temperature T)eqp as a func-
tion of eight parameters. For each sweep all other parameters are set to the values in
Tables 4.1and 4.2, a mass fraction m = 0.5, a slip rate V' = 1 m/s, and a gouge layer
thickness i = 0.5 mm. For comparison we include the temperature predictions from

equation (4.33) assuming ¥ = 252 MPa/ms. We see good agreement between our
numerical simulations and the simple formula to estimate the temperature at which
thermal decomposition operates, with typical discrepancies of ~ 50°C. . . . . . . 164
(continued) . . . . . ... 165

A plot showing how the magnitude of frictional heating, thermal diffusion and the
endothermic reaction at peak temperature vary with E,. and oy, for calcite. These plots
were generated using the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5,

aslip rate V' = 1 m/s, and a gouge layer thickness » = 0.5 mm. In both parameter
sweeps the magnitude of the frictional heating and thermal diffusion terms increases

as the localized zone thins. For all simulations thermal diffusion plays a larger role than
the reaction in limiting the maximum temperature. The units in this plot also reinforce
the extreme heating rates associated with micron-scale strain rate localization. . . . 167
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4.10 A plot showing the shear strength evolution for calcite and lizardite. These simulations

4.12

4.12

were performed using the parameters in Tables 4.1 and 4.2, a mass fraction 7 = 0.5,
asliprate V' = 1 m/s, and a gouge layer thickness A = 1 mm. For comparison the

solution from Platt et al. [2014]® that considers dynamic weakening from thermal
pressurization alone (i.e. £, = P, = 0) is shown by the dashed black line. Initially

our simulations agree with the simulations from Platz et al. [2014]"¢

, indicating that
thermal decomposition can be neglected during the initial stages of deformation. Even-
tually thermal decomposition becomes important and the rate of dynamic weakening
increases dramatically, before returning to a much slower weakening rate. This plot
suggests that thermal decomposition can be roughly modeled as a discrete strength drop
coinciding with the temperature reaching 7;.. The location of the stresses used to cal-
culate the strength drop associated with thermal decomposition are indicated by the
black plussymbols. . . . .. . ... Lo o 168
A plot showing the weakening rate —7 for calcite and lizardite. These simulations were
performed using the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5, a slip

rate V' = 1 m/s, and a gouge layer thickness & = 1 mm. For comparison the weak-

ening rate for the Mase-Smith-Rice slip on a solution is shown by the dashed black line.
During the initial stages of deformation the two solutions agree, and we see a first spike

in weakening rate associated with the onset of localization driven by thermal pressur-
ization. Eventually thermal decomposition is triggered and we see a second spike in weak-
ening rate, before the two numerical solutions return to a weakening rate comparable

to the slip on a plane solution at large slips. The second spike is much larger for lizardite,
corresponding to the larger strength drop. This plot shows how weakening due to ther-
mal decomposition can be related to previous solutions for pore fluid weakening, and
emphasizes the extreme weakening rates associated with the onset of thermal decom-
POSItioOn. . . . . .. 169
A plot showing a set of parameter sweeps tracking the strength drop associated with
thermal decomposition A7 as a function of eight parameters. All other parameters are

set to the values in Tables 4.1 and 4.2, a mass fraction m = 0.5, aslip rate V' = 1 m/s,
and a gouge layer thickness & = 0.5 mm. We see that a typical strength drop at the

onset of thermal decomposition is 0.2 — 0.579. Comparing with Figure 4.6 we sce

that larger stress drops are associated with smaller valuesof W.. . . . . . . . . .. 170
(continued) . . . . . . . 171
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5:3

Plot showing the geometry used to solve for a slip pulse of length L propagating at a
constant rupture velocity of v,.. The coordinate x is oriented parallel to the fault and

is zero at the rupture tip; the coordinate y is oriented perpendicular to the fault and

is zero at the centre of the gouge layer. The stress rises from the background driving
stress Ty, far ahead of the pulse to the initial strength 79 at the rupture tip, is equal to
the shear strength of the gouge layer within the slipping portion of the fault, and then
rebounds back to the driving stress far behind the slip pulse. The shear strength at each
point on the fault is calculated using a model for the deformation of a fluid-saturated
gouge layer sheared between two undeforming thermo-poroelastic half-spaces account-
ing for thermal pressurization and thermal decomposition. This figure is based upon
Figure 1 from Garagash [2012]% and Figure 1 from Platt et al. [2014] "¢
A plot showing how the stress rate intensity factor £y, at the trailing edge of the slip

pulse varies with slip duration for three different driving stresses when thermal decom-
position is accounted for (solid lines), alongside the corresponding solutions for ther-

mal pressurization alone (dashed lines). For short slip durations the solutions with and
without thermal decomposition agree closely, but as the slip duration increases ther-

mal decomposition contributes more to the overall dynamic weakening and k7, rises
above the values found for thermal pressurization alone. For the three driving stresses
shown here we find self-healing slip pulses — where k, = 0 — trigger thermal decom-
position that have slip durations many times that expected for thermal pressurization
alone. Qualitatively extrapolating to higher driving stresses we predict there will be a
range of driving stress where multiple self-healing slip pulses exist, corresponding to
multiple intercepts with thelineky, =0.. . . ... ... ............. 201
A plot showing the slip rate, temperature, and shear stress and strength profiles for the
three self-healing slip pulse solutions found using the parameters in Table 5.1 and a driv-
ing stress of 7, = 0.687. In the temperature plot the dashed lines indicate the tem-
perature evolution of the fault after slip ceases. In the shear stress plot the dashed lines
show how the strength evolves after slip ceases. The blue curve shows the short dura-

tion slip pulse that does not trigger thermal decomposition where peak slip rates oc-

cur at the rupture tip and all weakening comes from thermal pressurization. The red
curves show the long duration slip pulse with significant weakening from thermal de-
composition, leading to peak slip rates at the onset of the reaction. The black curve shows
the intermediate duration solution, which is a balance between the other two solutions.
Thermal decomposition is triggered but peak slip rates still occur at the rupture tip,

with a small increase in slip rate when the reaction is triggered. The temperature pro-

file shows that peak temperatures are comparable to the reaction temperature estimated
in Platt et al. [submitted]™7. . . . . . ... 204
(continued) . . . . . . ... e 205
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A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for the parameters in Table 5.1 (solid lines), alongside the
corresponding curves for thermal pressurization alone (dashed lines). We see that at

high driving stresses the temperature rise in a steadily propagating self-healing slip pulse

is not large enough to trigger thermal decomposition. For intermediate driving stresses
multiple solutions exist, corresponding to different balances between thermal pressur-
ization and thermal decomposition. For all driving stresses the triggering of thermal
decomposition is associated with larger values of slip duration, slip pulse length and

total slip, and smaller rupture velocities when compared with slip pulses driven by ther-
mal pressurization alone. . . . . . . .. e e 210
A plot showing how the maximum temperature rise during a shp pulse AT}, varies
with background stress for slip pulses driven by thermal pressurization alone, shown

for four values of x. We see that as ) increases the peak value of AT}, increases and
moves to higher background stresses. This behavior may explain why the eftects of ther-
mal decomposition are most pronounced for intermediate valuesof 73,. . . . . . . 212
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for four different values of the deforming zone thickness

W and the parameters in Table 5.1, alongside the corresponding curves for thermal pres-
surization alone. The curves are terminated when the pore pressure exceeds the nor-
mal stress, and this point is noted by a circle. We see that increasing the localized zone
thickness leads to larger values for slip duration, slip pulse length and total slip, and
alower rupture velocity. This is in good agreement with the results in Garagash [2012]%
that studied slip pulses driven by thermal pressurization alone. . . . . . . . .. .. 216
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for four different values of the ratio between hydraulic and
thermal diffusivities x = avp,y /oy, and the parameters in Table 5.1, alongside the cor-
responding curves for thermal pressurization alone. We see that increasing x leads to

a more pronounced signature of thermal decomposition, with longer slip durations,
larger slip pulse lengths, and lower rupture velocities. In addition we see that for the
lowest values of x the range of 73, for which multiple solutions exist vanishes, and the
results look qualitatively similar to those for thermal pressurization alone. . . . . . 219
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for three different values of the activation energy for the re-
action () and the parameters in Table 5.1, alongside the corresponding curves for ther-

mal pressurization alone. The curves are terminated when the pore pressure exceeds

the normal stress, and this point is noted by a circle. Lowering the activation energy
makes it easier to activate thermal decomposition, leading to lower total slips and longer
slip durations at high values of 7,. A lower value of ) also leads to pore pressures that
exceed the normal stress over awiderangeof 7. . . . . . .. .. L. 222,
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A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for three different values of F. and the parameters in Ta-

ble 5.1, alongside the corresponding curves for thermal pressurization alone. The curves
are terminated when the pore pressure exceeds the normal stress, and this point is noted
by a circle. We see that increasing . makes the effects of thermal decomposition less
pronounced. Interestingly the range of 73, for which the pore pressure exceeds the nor-
mal stress occurs at intermediate valuesof 7. . . . . . . . ... 223
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for three different values of P, and the parameters in Ta-

ble 5.1, alongside the corresponding curves for thermal pressurization alone. The curves
are terminated when the pore pressure exceeds the normal stress, and this point is noted
by a circle. We see that increasing P, makes the effects of thermal decomposition more
pronounced. As in Figure 5.9 the range of 73, for which the pore pressure exceeds the
normal stress occurs at intermediate valuesof 7. . . . . . ... ..., 224
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for three different depths and the parameters in Table 5.1,
alongside the corresponding curve for thermal pressurization alone. Here we assume

the ambient fault conditions follow an effective stress gradient of 18 MPa/km and a
geotherm of 30 °C/km. The curves are terminated when the pore pressure exceeds the
normal stress, and this point is noted by a circle. We see that the range of 7, over which
thermal decomposition is triggered expands with depth, as does the range of 7, for which
the pore pressure exceeds the normal stress. This indicates that thermal decomposi-

tion is more vigorous deeper in the seismogeniczone. . . . . . . .. .. 226
A plot showing the along-fault slip rate, temperature, and shear stress and strength for
the train-like slip pulses with one, two, three and four peaks. These results we produced
using the parameters in Table 5.1, a deforming zone thickness W = 3 mm, and a driv-

ing stress of 73, = 0.479. In the temperature plot the dashed lines indicate the tem-
perature evolution of the fault after slip ceases. In the shear stress plot the dashed lines
show how the strength evolves after slip ceases. These solutions correspond to a sin-

gle reaction being triggered multiple times within a single slip pulse. Note the similar-

ity between the solutions, for example the two-peak solution looks similar to the first

two peaks in the three-peak solution. . . . . .. ... ... ... o 000 228
A plot showing how the slip duration, slip pulse length, total slip and rupture veloc-

ity vary with driving stress for the train-like slip pulses with one, two, three and four
peaks. These results we produced using the parameters in Table 5.1 and a deforming

zone thickness W' = 3 mm. The curves are terminated when the pore pressure ex-

ceeds the normal stress, which is denoted by a circle, and where the slip rate becomes
negative, which is denoted by a square. We see that the slip pulses with more peaks have
larger slip durations, slip pulse lengths and total slips, but the rupture velocity is rel-
atively consistent between all four solutions. . . . . . ... ... ... 0. 229
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A: The left panel shows a satellite image of the confluence between ice streams Br and

B2 in the upstream portion of Whillans Ice Stream, taken by the Radarsat Antarctic
Mapping Project. The right panel is a detailed view of Dragon margin, Unicorn ridge

and the profile S1 along which Echelmeyer and Harrison [1999] ®® measured surface
velocities and Harrison et al. [1998]°? reported temperature for the upper few hun-

dred meters. We have highlighted the positions of the two outermost boreholes, “Out

B” and “Up B”, used in Harrison et al. [1998]°°. B: Approximate locations of the seven
boreholes in the vicinity of the shear margin with respect to surface crevassing (after
Harrison et al. [1998]9°). The dark grey area represents the roughly 2 km-wide zone

of chaotic crevassing. The light grey zones exhibit less intense crevassing. . . . . . . 246
Surface velocities across Dragon margin as measured by Echelmeyer and Harrison [1999] %
and the transverse derivative of surface velocities, du/dy, computed from the measured
surface velocities. Highlighted in red are the approximate transverse velocity deriva-

tives for boreholes “Dragon Pad”, “Lost Love”, and “Chaos” quoted from Harrison

etal [1998]99. . . . e 247
Simplified geometry of our model setup. The ice thickness is H and the total width

of the stream is W. The 2D setup (bottom) is equivalent to assuming a 3D stream-ridge
geometry with no downstream variation (top). . . . . . . .. ... ... ... .. 250
Top: Temperature field (Ax) and surface velocities (B1) assuming a Newtonian rheol-

ogy of i = 10 Pas. Middle: Temperature field (A2) and surface velocities (B2) for

a power-law rheology that accounts for the strain rate dependence of the effective vis-
cosity, but neglects the temperature dependence. Bottom: Temperature field (A2) and
surface velocities (B2) for a realistic rheology that captures both strain rate and tem-
perature dependence. The best fitting basal stresses are Tpq5c = 2.56 kPa (A1, Bi),

Tpase = 1.12kPa(A2,B2)and 1yese = 4.07kPa (A3, B3), respectively. All com-
putations neglect advection and surface crevassing. Measured surface velocities are from
Echelmeyer and Harrison [1999]%°. . . . . . .. ... . o 260
Eighty contours of constant shear heating in units of [Pa/yr] in the vicinity of the sin-
gularity when neglecting (top) and including (bottom) the temperature-dependence
oftherheology. . . . . . .. ... ... 262
Temperature fields and surface velocities for Dragon margin when including only ver-
tical advection (Ar and Br) with @ = 0.1 m/yr and only horizontal advection (A2 and

Bz2) withv = —7.3km/yr, respectively. The best fitting basal stresses are Tyq5e =

5.31 kPa (Arand Br) and 745 = 0.94 kPa (A2 and B2), respectively. Both compu-
tations neglect surface crevassing. . . . . ... ... 263
Comparison of the temperate zone from Figures 6.6A1 and B, replotted on a :1 scale,
with the simplified 1D model by Perol and Rice [2011]™ using measured surface ve-
locities Echelmeyer and Harrison [1999] ® with a surface accumulation of @ = 0.1 m/yr
inbothcases. . . . . . . . . . ... 265
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6.9

6.10

7.1

Temperature field (A) and surface velocities (B) for Dragon margin when attempting

to match the observed borehole temperatures??, see Figures 6.1 and 6.2 for borehole
locations, and surface velocities * simultaneously. The computation is based on the
model parameters Tpa5e = 1.22kPa, accumulationa = 0.23 m/yr, geothermal

heat flux G = 85 mW/m? and horizontal advection atv = —0.35m/ yr. The ap-
proximate locations of the nine boreholes considered in Harrison et al. [1998]%° are
indicated as grey dots. We highlight the boreholes located far from margin as grey lines

in accordance with their depth. The left numbers represent the computed value and

the right number the measured value at maximum depth. The corresponding temper-
ature estimates for the boreholes in the vicinity of the margin are shown in the next

figure. . . . . .. 268
Extent of a potential temperate zone at Dragon margin plotted on a r:1 scale and melt-
water flux at the base of the ice, @pgse, in mm/yr (grey line) for the computation also
shown in Figure 6.8. The total meltwater produced in the temperate zone is 25 m2/ yr.
The approximate locations of the boreholes from Harrison et al. [1998] 9 are high-
lighted in grey with the left number representing the computed temperature and the
right value the measured temperature at a depth of approximately 700 m. Small hor-
izontal dashes along the boreholes in the vicinity of the shear margin indicate the ap-
proximate position of the =26 °Ccontour. . . . .. .. .. .. ... ...... 269
A. Average absolute error in reproducing observed temperatures and velocities for hor-
izontal advection speeds between vg = —0.1 and —0.4 m/yr. B. Maximum height

of the temperate zones and total meltwater production for horizontal advection speeds
between —0.1 and —0.4 m/yr. The total meltwater production is computed by in-
tegrating the basal meltwater flux, gpqse, over the width of the zone where ice is tem-
perate not only at the bed but at finite depth. C. Temperature fields and drainage curves
for the four horizontal advection speedsvg = —0.1, —0.2, —0.3 and —0.4 m/yr,
respectively. The best-fitting basal stresses for the four computations are 745 = 1.57,
1.44,1.31 and 1.13 kPa from the top to the bottom. Apart from the horizontal-advection
speed and basal stress, all computations are based on the same model parameters, most
importantly a = 0.23m/yrand G =85mW/m?. . . . . .. ... ... ... .. 271

A sketch of the geometry used in our calculations for the deformation around the chan-
nel. We assume a semi-circular channel with a radius R incised into the ice, which rests
upon a subglacial till layer. The anti-plane strain rates are calculated assuming that the
bed is deforming to the left of the channel, and undeforming to the right of the chan-

nel. We model the creep closure of the channel using the pressure difference between

the channel operating at a pressure p and the ice overburdeno,. . . . . . . . . .. 286
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77
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A plot showing the comparison between the analytic solution given in equation (E.28)
valid right at the locking point and numerical simulations for a whole ice stream. Both
solutions for the downstream velocity are shown as a function of @ forr = 10 m,

r = 2bm,r = 50m,andr = 75m. Thecurveatr = 10 misused to infer a
best-fitting value of Jy;), that is then used to fit all remaining curves. We see good agree-
ment between the analytic and numerical solutions for several tens of meters, allow-

ing us to make a small scale yielding approximation. . . . .. ... ... ... .. 289
A plot showing how x dependson R/D forn = 1,n = 3,andn = 4, alongside

the fitting function X = Xin (1 + R/D)~Y/™. This plot allows us to infer values

of Xin that are then used to determine the maximum stress resolved on the undeform-
ing bed. We find best fitting values of X, r tobe 2 forn = 1,1.15 forn = 3, and
1.09forn =4. . . . . . e e 293
A plot showing the maximum stress on the bed accounting for the channel in blue along-
side the prediction using the solution for a sharp margin given in equation (7.4) for

n = 1landn = 3. We see that the Newtonian rheology leads to significantly higher

shear stresses on the bed than the Glen’s law rheology, and that the solution for a sharp
margin provides a reasonable approximation to the stress field accounting for the chan-

nelforally. . . . . . . . e 294
A plot showing how the stress on the undeforming bed varies with the basal resistance
of the deforming bed 7 if we assume n = 1. We see that as 7 increases the maxi-

mum stress on the bed increases. However, reasonable values of 7y are much smaller

than the maximum stresses on the bed when n = 1 so the dependence of maximum
stress on 7 is not significant. This conclusion may not be true for higher values of n
where the maximum stress on the bed ismuch lower. . . . . . .. ... .. ... 296
A plot showing how the channel radius R and locking radius /2., vary for the pa-
rameters in Tables 1 and 2 assuming a Glen’s law rheology. We see that R < Rjock

— and thus a stable margin configuration exists — whenever the water flux exceeds a crit-
ical value of ~ 127 m3/s. This water flux corresponds to a channel with a radius of

Am. . .o e e e 304
A plot showing how the critical water flux Q¢ varies for a Glen’s law rheology across
the range of values for A at 0 °C outlined in Cuffey and Paterson [2010]* for differ-

ent values of f and 7j4¢. These plots were produced using the parameters in Tables 1

and 2. We see significant variability with A with higher values of A leading to larger
critical fluxes. This sensitive dependence on the poorly constrained A makes it hard

to predict values of Qock. - « -« o o o oo 305
A plot showing how the critical water flux Q¢ varies with the average stress at the

shear margin 734 forn = 1,n = 3,and n = 4. This plot was produced using the
parameters in Tables 1 and 2. We see that (., increases rapidly with 7;4¢. Note that

the n = 4 curve predicts much lower critical water fluxes thatn = landn =3. . 306
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Rate-strengthening friction: A plot showing the normalized perturbations 41 (t) /41 (0)
and p1 (t)/p1(0)for the nominal parameters for a damaged material, a uniform strain

rate ¥, = 1000 s, and a perturbation wavelength A = 310 pum. The linear sta-

bility predicts an exponential form for the two perturbations, as shown by the dashed
black lines. For the chosen parameters we see that the linear stability analysis predicts

that the strain rate perturbation will grow while the pore pressure and temperature per-
turbations decay. This is supported by the numerical simulations (solid lines) which

use the logarithmic friction law as in equation (2.6), rather than its linearization in equa-
tion (2.4). After the strain rate perturbation has grown sufficiently nonlinear effects
become important. We see that the exponential growth predicted by the linear stabil-

ity analysis does not continue indefinitely and nonlinear effects limit the strain rate per-
turbation to a finitevalue. . . . . ... ... ... e C . 324
Rate-strengthening friction: A plot showing (v, t) for a system with periodic bound-
ary conditions using the nominal parameters for a damaged material, a uniform strain
ratej, = 1000 s~ 1, a perturbation wavelength A = 360 um and an initial pore
pressure perturbation that is 1% of the ambient effective stress &,. The parameters and
uniform strain rate determine the critical wavelength Ay, and this determines if the
perturbation grows or decays. For this case, as predicted by the linear stability analy-

sis, the initial strain rate perturbation propagates as it grows. The black line in the bottom-
right corner indicates the predicted propagation speed, which is in excellent agreement
with initial speed observed in the numerical simulations. Once nonlinear effects be-

come important the strain rate perturbation ceases growing but continues to propa-

gate at a speed slightly faster than the predicted phase velocity. . . . . . .. .. .. 327

A plot showing a convergence test for the numerical scheme outlined in Appendix C.2.
This test was done using the parameters in Table 5.1 and three different values of the
driving stress 75,. We see that the method is second order — as found in Erdogan and
Gupta [1972]7 - and the percentage error in Tsj, and L is small once n > 1000. The
majority of the simulations in this paper are done using n = 1000, with a few higher
resolutions for the smallest values of 7, where slip is confined to a small zone imme-
diately adjacent to the rupturetip. . . . . ... ... oL L oL 346
A plot showing how the results from the Newton-Raphson method outlined in ap-
pendix C.2 compare with the finite difference simulations outlined in Appendix C.3.
These results were produced using the parameters in Table 5.1. The good agreement
between the two methods validates the assumptions we made about the reacting zone
shape. We see that for the dimensionless slip pulse length the best agreement occurs

for = 3, and for the slip duration the best agreement occurs for 3 = 2. Based

on these plots we choose an optimal value of 3 = 2 that is used in all other simula-
tdonsinthispaper. . . . .. ... ... L 347
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Validation of our computational approach. Panel A shows that the percentage error
between the numerical and analytical estimates for the nonsingular shear heating, 27pé g X
ryatf) = 0°, decreases as the ice-stream width increases. The grid resolution in the
vicinity of the singularity is 0.1 m for all computations. Panel B summarizes the results

of a convergence test performed for a wide ice stream with W/H ~ 80at§ =0°.. 351
Plot of the angular dependence of dissipation for nine different angles from 5°—175°
represented by a specific color as detailed in the inlet on the upper left. For each angle,

the dotted lines represent the analytic and the full lines the numeric result. Evidently,

the importance of the far-field contribution to shear heating depends primarily on the
distance from the singularity, butalsoon theangle. . . . . .. .. ... ... ... 352
Sketch showing the two paths I'y;, and I' 4, used to evaluate the path independent
integral defined in equation (D.13). I'y;, is taken sufficiently close to the transition point
so that the stress field is described by the solution in Appendix D.2, and I' ¢4, is eval-
uated along the border of thedomain. . . . . ... ... .. ........... 357

A sketch of the physical plane and hodograph plane used in Appendix E.1 showing the

equations solved, boundary conditions used, and coordinates in both planes. . . . 366

Sample assembly for bare-surface and gouge experiments. (a) Photograph of rotary side
of bare-surface sample holder with serpentinite sample prior to deformation. (b) Schematic
of bare surface experimental assembly. (c) Photograph of gouge holder (rotary side)
loaded with serpentinite powder. (d) Schematic of gouge holder (modified after Smith

et al. [2013]*"). (e) Enlargement of (d) showing gouge sample compartment (green)

and lubricated metal-metal rotary contacts (red). Dashed line indicates typical location

of strain localization within thegouge. . . . . .. .. .. .. .. ... ... ... 383
(a) Results from three multiple velocity-step experiments; 3 mm/s for ~6 cm of dis-
placement, acceleration to ~4.5 m/s and deceleration to rest. The approximate thermal-
weakening distance (Dy,) and slip-weakening distance (D,,) are indicated for Run 735
(see text for details). Stars indicate the displacement at which the friction rapidly de-
creases; the corresponding velocity (fall-off velocity) is shown in (b). (b) Frictional stick-
slip instabilities observed in Run 735 at 3 mm/s. (c) The imposed velocity profiles for
experiments shown in (a). Note that the acceleration is very similar in both gouge and
bare surface EXPEMMENTS. . . . . v vt 388
Results from single velocity-step experiments with peak velocities of 1 m/s on (a) antig-
orite bare-surfaces, (b) ATG gouge, and (c) LIZ gouge. A representative velocity pro-

file is shown for each suite of experiments (grey line). Large wavelength oscillations in
gouge friction are caused by inconsistencies in gouge thickness (see Methods section). 390
Normal stress dependence on (a) nominal steady-state and minimum friction values

(LIZ gouge), (b) thermal weakening distance, and (c) the fall-off velocity for multiple
velocity-step and single velocity-step experiments. . . . . .. ..o 391
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Velocity dependence of antigorite gouge; inset shows velocity profile for correspond-

ing experiments. Run numbers are indicated in parentheses. . . . . . . . ... .. 393
Hysteresis and velocity dependence of (a) ATG bare surfaces and (b) ATG gouge. Lines
trace the evolution of friction from the onset of acceleration to the completion of de-
celeration. Run numbers are indicated in parentheses. In Runs 734, 735, and 824b, the
velocity was accelerated from 3 mm/s from which they were sheared for 6 cm. Exper-
iment 834 was accelerated from rest with no prior deformation. Symbols indicate nom-
inal steady state values (fins); corresponding Run number is noted in black. . . . 396
Microstructures of antigorite bare-surfaces. (a) Photomicrograph showing dark stri-
ations on slip surface at low normal stress; Run 727, 0, = 8.8 MPa. (b) SEM mi-
crograph of dark band from sample from Run 727 showing melt-like tendrils and bul-
bous features on the slip surface. (c) Photomicrograph showing glass-like band on cut
section of the slip surface at higher normal stress; Run 733, 07, = 19.5 MPa. (d) Mag-
nified region from F.6c showing glassy luster and transparent nature of the material.

(e) SEM micrograph from polished glassy surface shown in (d). (f) Enlargement from
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Introduction

1.1 Structure of thesis

The work presented in this thesis focuses on two main projects, the physics governing how
faults rapidly weaken during an earthquake and the thermal and mechanical structure of
ice stream shear margins. The common theme linking these two projects is the desire to un-

derstand how the complicated interactions between stress and temperature and sometimes



chemistry control deformation and failure. The thesis is structured such that all fault me-
chanics chapters are grouped together, followed by the work on ice stream shear margins.
One additional paper is included as an appendix rather than a chapter because I played a

limited role in preparing the manuscript. Each chapter begins with a short note detailing

my role in the project and a citation is included at the start of all chapters that are already

published.

1.2 Rapid co-seismic fault weakening

Geophysical observations suggest that mature faults weaken significantly at seismic slip
rates. Several mechanisms have been proposed to explain this dynamic weakening, though
this thesis will largely focus on just two of these mechanisms: thermal pressurization and
thermal decomposition. Both mechanisms rely on elevated pore fluid pressures in a fluid-
saturated gouge layer, with thermal pressurization achieving this through thermal expan-
sion of native pore fluid and thermal decomposition by releasing additional pore fluid —
for example H>O or CO; — during devolatilization reactions that are ubiquitous among
common fault materials. In this thesis we will begin by studying how thermal pressuriza-
tion and thermal decomposition drive seismic strain localization, move on to study how
these two weakening mechanisms combine to propagate a rupture, and end by showing
how modeling and experiments can be combined to understand the underlying physics of
co-seismic weakening.

In chapters 2 and 3 we use a one-dimensional model for a fluid-saturated gouge layer
sheared between two undeforming half-spaces to show how thermal pressurization can

drive shear strain localization during an earthquake. To begin we use a linear stability anal-



ysis to predict the localized zone thickness as a function of the gouge properties and slip
rate. Inserting typical values for these material properties we predict that most of the de-
formation occurs in a zone just a few tens of microns wide, which is in good agreement
with field and laboratory observations of localized zone thicknesses. This prediction is then
tested using numerical simulations that account for nonlinear effects, and we find excellent
agreement between the analytic and numerical methods. The numerical simulations also
show that the onset of localization accelerates fault weakening, which demonstrates that co-
seismic strain localization is an important consideration neglected in all current models for
earthquake rupture. This work was done in collaboration with James R. Rice and John W.
Rudnicki and led to two papers published in the Journal of Geophysical Research™***°.

In chapter 4 we extend the analysis in chapters 2 and 3 to account for thermal decompo-
sition. As before we begin by using a linear stability analysis to predict the localized zone
thickness as a function of the gouge properties for a range of fault temperatures. We show
that thermal decomposition is the dominant weakening mechanism at high temperatures
and that the onset of thermal decomposition drives additional strain localization. Next we
use numerical simulations to test these predictions, investigate how thermal decomposi-
tion may control the peak temperature attained during an earthquake, and show how the
strength drop associated with the onset of thermal decomposition is controlled by the re-
action properties. This work was done in collaboration with Nicolas Brantut and James R.
Rice and a paper was submitted to the Journal of Geophysical Research™”.

In chapter 5 we present the first dynamic rupture simulations to account for thermal de-
composition. To do this we solve for steady slip pulses propagating at a constant rupture

velocity, building on the work of Garagash [2012]*° that solved for steady slip pulses driven



by thermal pressurization alone. We show that there is a distinct signature associated with
the triggering of thermal decomposition, with thermal decomposition leading to a longer
slip duration, a larger total slip, and a lower rupture velocity. Furthermore we show that
there can be multiple ways to balance thermal pressurization and thermal decomposition
during a rupture, leading to the existence of multiple steady slip pulses for a single set of
fault properties. Finally, we investigate how the bulk rupture properties such as slip dura-
tion and rupture velocity depend on the properties of the fault, focussing in particular on
the reaction parameters and the balance between hydraulic and thermal diffusion. This
work was performed in collaboration with Robert C. Viesca and Dmitry I. Garagash and
will be submitted to the Journal of Geophysical Research soon.

Flash heating is another commonly studied dynamic weakening mechanism that relies
on the breakdown of highly stressed frictional contacts at a critical weakening tempera-

% presented a model of flash heating for bare rock surfaces sliding against

ture. Rice [1999]
each other, showing that flash heating occurs when the slip rate exceeds a critical slip rate
Vi ~o0.1— 0.2 m/sand also predicting how the friction coefficient depends on slip rate
when V' > V,,. This prediction was later validated experimentally by Goldsby and Tullis
(2011]* and Kobli et al. [2011]" for normal stresses of ~ 5 MPa, slip rates of < 0.5 m/s,
and total slips of < 50 mm. Appendix F presents a new set of experiments that extends
this work to much higher normal stresses, slip rates and total slips, while also studying the
role a gouge layer may play in limiting the efficiency of flash heating. This experimental
work is complemented by simple thermal models for the evolution of sliding surface tem-

perature and frictional contact temperature. Combining the experiments and models we

study the dependence of key frictional properties such as weakening velocity and friction



coefhicient on normal stress, show that the presence of a gouge layer dramatically reduces
the efficiency of flash heating, and produce the first model that is able to explain some of
the hysteresis commonly observed in flash heating experiments. The lead researcher on this
project was Brooks P. Proctor — a PhD student at Brown University — and other collabora-
tors included Tom M. Mitchell, Greg Hirth, David L. Goldsby, Federico Zorzi, and Giulio
Di Toro. Based on this work we recently published a paper in the Journal of Geophysical

Research™".

1.3 The structure of ice stream shear margins

The mass loss from the West Antarctic ice sheet is dominated by numerous rapidly flowing
ice streams, which are separated from the stagnant ice in the adjacent ridge by zones of con-
centrated deformation known as shear margins. Since the discharge from a single ice stream
is thought to depend sensitively on the ice stream width, determining the physical processes
that control the shear margin location is crucial to understanding how ice streams may re-

1 and Perol et

spond to a changing climate. Building on the work of Perol and Rice [2011]
al. (in preparation)™®, I was involved in a project looking at the mechanical and thermal
structure of ice stream shear margins in collaboration with Thibaut Perol, Jenny Suckale,
and James R. Rice.

My involvement with this project began with the work presented in chapter 6. In this
chapter we investigate when the concentrated deformation present at the shear margin
leads to the formation of temperate ice, where the ice is at the melting temperature and

all additional heating is turned into melt. We showed that surface velocity observations of

a specific shear margin in West Antarctica can only be explained by the presence of a large



body of temperate ice within the shear margin. Following this we studied how the advec-
tion associated with the movement of cold ice could limit the formation of temperate ice
and showed that the shear margins could be a significant source of melt, as previously noted
in Schoof [2004]"* and Perol and Rice [2011]**. This project was performed in collabo-
ration with Jenny Suckale, Thibaut Perol and James R. Rice, and resulted in a paper pub-
lished in the Journal of Geophysical Research ™.

Perol and Rice [2011]"" argued that a subglacial drainage channel should form at the
base of the shear margin due to the melt produced in the temperate ice, and used the clas-
sic theories for subglacial drainage channels to quantify the size of such a channel >4,
Furthermore, Perol and Rice (in preparation)™ showed that such a drainage channel would
raise the basal strength within the shear margin, and possibly select the location of the shear
margin. In chapter 7 we focus on how the presence of a channel could alter the stress field if
the channel is located at the transition from a deforming to an undeforming bed. The pres-
ence of a channel limits the maximum stress on the bed to a finite value, which is solved for
as a function of all of the parameters in the model. In addition we show that the presence
of a channel alters the till strength in the immediate vicinity of the channel by changing the
normal stress applied on the ice-till interface. Comparing the maximum stress on the bed
with the yield strength of the bed we determine the conditions that must be satisfied for the
transition from a deforming to an undeforming bed at a channel to be stable. This is shown
to be controlled by a critical water flux within the channel, though the exact value of this

critical flux is uncertain due to uncertainties in the ice rheology.



This project was a collaboration with James R. Rice and Jobn W. Rudnicki,
who together performed the linear stability analysis before I arrived at
Harvard. My role in the project was to use numerical simulations to test
the linear stability predictions, further explore the dependence on different
key parameters, and assist in the preparation of the final manuscript. The
work in this chapter bas already been published and the relevant citation is:
Rice, J.R, ] W. Rudnicki, and J. D. Platt (2014), Stability and localization
of rapid shear in fluid-saturated gouge, 1. Linearized stability analysis,

Journal of Geophysical Research, 119, 4311-4333.



Stability and Localization of Rapid Shear in
Fluid-Saturated Fault Gouge, 1. Linearized

stability analysis

2.0 Abstract

Field observations of major earthquake fault zones show that shear deformation is often
confined to principal slipping zones that may be of order 1 — 100 pzm wide, located within
a broader gouge layer of order 10 — 100 mm wide. This paper examines the possibility
that the extreme strain localization observed may be due to the coupling of shear heating,
thermal pressurization and diffusion. In the absence of a stabilizing mechanism shear de-

formation in a continuum analysis will collapse to an infinitesimally thin zone'™®®

. Two pos-
sible stabilizing mechanisms, studied in this paper, are rate-strengthening friction and dila-
tancy. For rate-strengthening friction alone, a linear stability analysis shows that uniform
shear of a gouge layer is unstable for perturbations exceeding a critical wavelength. Using
this critical wavelength we predict a width for the localized zone as a function of the gouge
properties. Taking representative parameters for fault gouge at typical centroidal depths

of crustal seismogenic zones, we predict localized zones of order 5 — 40 pum wide, roughly

consistent with field and experimental observations. For dilatancy alone, linearized strain



rate perturbations with a sufficiently large wavelength will undergo transient exponential

growth before decaying back to uniform shear. The total perturbation strain accumulated
during this transient strain rate localization is shown to be largely controlled by a single di-
mensionless parameter F, which is a measure of the dilatancy of the gouge material due to

an increase in strain rate.

2.1 Introduction

Detailed examinations of fault zones have shown a hierarchical structure, with a fault core
composed of ultracataclasite and fault gouge sitting within a broader damage zone. Further
investigation reveals a zone of highly localized shear on the order of 10 — 300 um wide

101

nested within the fault core™>*»%. This localized shear zone is interpreted as the principal
slip surface of the fault. What determines the width of this zone? Extreme localization is
readily understandable in a fluid-saturated fault gouge undergoing thermal pressurization

during shear. In this paper and the companion paper Platt et al. [2014]"°

we study how
two localization limiting mechanisms could combine with thermal pressurization and hy-
drothermal diffusion to set the width of the localized shear zone during rapid shear. The
first limiting mechanism is frictional rate-strengthening. The friction coeflicient varies with
the rate of shearing in a manner suggested by laboratory experiments, with strengthening
observed at higher temperatures or higher clay fractions. Such rate-strengthening friction

is appropriate in stable regions of faults where rupture cannot nucleate but can propagate
through, or in initially unstable regions that have been driven to high temperatures by shear

heating. The second limiting mechanism is dilatancy. The gouge porosity, and hence pore

fluid volume, increases with shear strain rate, reducing the pore pressure. When this oc-



curs faster than fluid diffusion into the newly expanded pore space, dilatancy will have a
strengthening effect. In the absence of a limiting mechanism the shearing will collapse to

a zone of zero width in a continuum model, as noted in Rice [2006]™°. In this paper we
present a linear stability analysis of these two mechanisms separately. For frictional rate-
strengthening alone the solution for homogeneous deformation of the gouge presented in
Lachenbruch [1980] ™ is unstable for gouge layer thicknesses exceeding a critical value. This
critical thickness is interpreted as the localization thickness during rapid shear. For dilatancy
alone the linear stability analysis predicts intense transient strain rate localization, followed
by a return to uniform shear of the gouge layer at large slips. We show that, except for very
small wavelengths, the total accumulated strain during this transient localization is con-
trolled by a single dimensionless parameter representing the efficiency of dilatant strength-
ening.

The companion paper Platt et al. [2014]%°

presents full numerical simulations that com-
plement the linear stability predictions of this paper. These simulations show that for both
stabilizing mechanisms the final localized zone thickness is almost independent of the initial
thickness of the gouge layer, and is controlled by the physical properties of the gouge. The
influence of strain rate localization on shear strength evolution is also studied, and we ob-

serve dramatic weakening associated with the onset of localization caused by the focusing of

frictional heating into a narrower zone.

2.1.1 Field observations of strain localization

Chester and Chester [1998]** studied the structure of the Punchbowl Fault, an inactive

branch of the San Andreas fault system thought to have accommodated 44 km of slip#+, at

10



adepth of ~ 3 — 4km™*. They observed a continuous ultracataclasite layer 0.15 — 0.55
m wide, surrounded by a much broader damage zone ~15 m wide. Within this ultracat-
aclasite layer there runs a single continuous fracture surface, which Chester and Chester
[1998]#* called the principal fracture surface, parallel to the direction of shear. Other frac-
ture surfaces exist but are <1 m in length, and are truncated by the principal fracture sur-
face. These fracture surfaces are thought to represent strain localization within the ultracat-
aclasite layer, and the principal fracture surface is identified as the principal slip surface for
the Punchbowl Fault. Subsequent studies of a thin section sample under cross-polarized
light showed that the majority of the shearing had been accommodated within in a zone
just 100 — 300 pom wide* (see the thin section from their work reproduced as Figure 1b

101

in Rice [2006]™°). The concurrent work of Heermance et al. [2003]™" also showed 100
micron-scale strain localization, and will be discussed further below.

In another study De Paola et al. [2008]% analyzed a series of normal faults in the North-
ern Apennines, hosted in dolostone and anhydrite rocks. On small displacement faults,
with a slip of < 10 m, they observed a cataclasite fault core a few centimeters thick. Within
this gouge layer zones of intense shear strain localization are observed, ranging in width
from a few to tens of microns, running parallel to the fault core boundary. De Paola et
al. [2008]% also studied a larger displacement fault, with a slip of > 100 m. In this case
the fault core was much broader, 5 — 6 m wide, and contained multiple principal slip sur-
faces. Associated with each principal slip surface was a layer of very-fine grained cataclasites
2 — 3 mm wide, and within each of these layers they observed a zone of localized shear

~ 10 pm wide. These observations appear to show that, in the region studied in De Paola

et al. [2008]%, although the width of the fault core and surrounding damage zone increases
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with fault displacement, the localized shear zones observed are consistently ~ 1 — 10 um
wide.

Not all field observations showed micron-scale strain localization. Boxllier et al. [2009]*7
analyzed the microstructural distribution in two borehole samples taken from depths of
11 m and 1136 m on the Chelunqgpu fault after the Mw 7.6 Chi-Chi earthquake in 1999.

In both samples they interpreted the principal slip surface to be an isotropic gouge layer

3 — 20 mm wide with no evidence of sub-millimeter scale localized shear structures. Heer-
mance et al. [2003]*" also analyzed the principal slip surface of the Chelungpu fault us-
ing a combination of borehole drilling and outcrops. They found evidence of extreme
strain localization in the northern region of the fault, down to a width of approximately
50 — 300 pm, and much more diffuse deformation in the southern region. Noting that the
location of distributed shear in Boullier et al. [2009]? is near the location of micron-scale
localization in Heermance er al. [2003]' it appears that extreme strain localization does
not occur in every seismic event, and there may be significant spatial variation in the local-
ized zone thickness. For completeness we also mention one final observation of millimeter-
scale localization to supplement the centimeter-scale and micron-scale structures discussed
above. Wibberley and Shimamoto [2003]** identified a “central slip zone” on the Median
Tectonic Line fault with a nominal thickness of 3 mm (C. A. Wibberley, private commu-
nication, 2003), although no measurements were made to look for finer scale structures
within this zone.

It should be noted that there is no definitive proof that the shear zones described in this
subsection are formed coseismically, though highly localized shear is commonly used as an

indicator of seismic deformation.
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212 Localization in high-velocity friction experiments

Velocity stepping experiments first presented in Dieterich [1979] %7 have led to a much
clearer understanding of friction, and the frictional response to velocity changes, at slip
rates of ~ 1 — 10 pum/s. However, the picture at seismic slip rates is much less clear with
complicated thermal and hydraulic processes obscuring the purely frictional response. Ro-
tary shear devices have been used in recent years to investigate this high-velocity regime
for rock-rock friction and gouge materials**. In a typical experiment, for example Bran-
tut et al. [2008]%*, Kitajima et al. [2010]"*, Reches et al. [2012]"77, Smith et al. [2013]*" and
many additional studies, a gouge layer around 1 mm wide is confined between two cylindri-
cal blocks, one rotating and one stationary, leading to rapid shearing of the gouge.
Kitajima et al. [2010]"* performed rotary shear experiments on a fluid-saturated gouge
composed of disaggregated ultracataclasite from the Punchbowl fault. The resulting mi-
crostructures were analyzed under plane-polarized and cross-polarized light by cutting thin
sections through the axis of the cylinder, creating a radial cross-section of the gouge mate-
rial. Four distinct microstructural units were identified, and the formation of the different
units was correlated with different slip and slip rate conditions. At slip rates of ~ 1 m/s they
observed two distinct microstructural units, one a less compacted gouge with a random
fabric, the other a zone of extremely fine grained material with a very strong foliation that
is interpreted as a region of intense strain localization. The width of this localized zone is
typically ~100 pum. However, the distinct banded nature of the zone of highly localized
shear may indicate multiple slipping zones each much thinner than the total width of the
localized zone. Kitajima et al. [2010]*** linked the onset of strain localization with the ob-

served dynamic weakening, an observation in agreement with the results presented in the
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companion paper Platt et al. [2014]"°.

A similar set of rotary shear experiments was presented in Brantut et al. [2008]* using
gouge taken from the Median Tectonic Line, Southwest Japan. Optical microscopy showed
a thin, darker zone ~ 1 — 10 um wide, which due to a lack of other indications of defor-
mation in the gouge layer was identified as the main slipping zone of the experiment. Other

2559 have also shown evidence of micron-scale strain lo-

high-velocity friction experiments
calization.
It should be noted that micron-scale strain localization also occurs in rotary shear exper-

iments performed at slip rates of ~ 10 m/s***7, and the model presented here cannot

explain these observations.

2.1.3 Influence on rupture properties

Previous studies of thermally-driven weakening mechanisms have shown that the width of
the deforming zone is a key parameter. Narrow deforming zones concentrate the frictional
heating leading to large temperature rises, and thus more rapid weakening. This can be
seen in the solution of Lachenbruch [1980]™ for uniform shear of a gouge layer undergo-
ing thermal pressurization, where the slip-weakening distance scales linearly with the width
of the deforming zone. Very thin zones require only small slips to cause dynamic weaken-
ing. This may explain why the gouge layer width plays a significant role in determining the
rupture propagation mode in the calculations performed in Noda et al. [2009]™, which
showed a transition from crack-like ruptures through growing slip pulses to arresting slip
pulses as the gouge layer thickness was increased. Thinner layers will experience more weak-

ening and thus are more likely to propagate as an accelerating crack-like rupture. Extending
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the thermal pressurization model in a different direction, Rempel and Rice [2006]™° stud-
ied the temperature rise expected for a uniformly sheared, fluid-saturated gouge layer. They
found that, for a fixed amount of slip, thinner shear zones will experience larger tempera-
ture rises. Thus the deforming zone thickness may determine if melting occurs, or if other
temperature controlled dynamic weakening mechanisms such as thermal decomposition
are activated. A final example of the importance of the deforming zone thickness can be
seen in the solutions for a steadily propagating slip pulse presented in Garagash [2012]*°. In
these results the total slip in the event scales linearly with the deforming zone thickness, and

the slip duration scales as the square of the deforming zone thickness.

2.2 Model Derivation

Figure 2.1 shows an idealized one-dimensional model for deformation of a fluid-saturated
gouge material. The layer represents a gouge zone inherited from previous stable or seismic
slip. In this model the only non-zero velocity component, u(y, t), is parallel to the fault
zone and depends only on the time since the onset of shear, ¢, and the coordinate perpen-
dicular to the direction of slip, y. The stresses in the deforming zone are the shear stress

T, a constant compressive normal stress o, in the y direction, and whatever other normal
stresses are required to meet the constraints of zero straining in the other directions.

We do not intend to model a specific fault, and our results are valid for any fluid-saturated
gouge material with a rate-strengthening friction law. Seismic shear in rate-strengthening
materials is expected to occur when a rupture that nucleated elsewhere propagates into a
stably creeping region of a fault, or when a fault that can nucleate earthquakes is heated to

temperatures associated with rate-strengthening friction*+*.
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Figure 2.1: A fault zone idealized as a gouge layer of thickness h subjected to homogeneous shear
strain rate 7y,. The stresses in the layer are a constant normal stress 0, a shear stress 7 and what-
ever other normal stresses in the & and z directions needed to maintain zero normal strain in these
directions.

221 Mechanical equilibrium

Rice [2006]™ hypothesized that inertial effects within the gouge will be negligible since
even very large accelerations contribute a small amount to the change of stress over the
small distances, on the order of a few 10’s mm, over which thermal and fluid diffusion is
important. This means that the deformation process can be approximated as quasi-static,

and the stresses within the layer satisfy

@ 0 do,
oy T Oy

=0. (2.1)

The quasi-static approximation means that the shear and normal stress do not depend on
Yy, and are at most a function of t. In the companion paper to this study we further analyze

the small inertial effects and investigate under what conditions they may become impor-
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tant'®S.

2.2.2  Gouge friction

The shear stress is taken to be the product of a friction coefhicient f and the Terzaghi effec-

tive stress

T = f(o, —p), (2.2)

where p = p(y, t) is the pore pressure. Many studies of thermally driven weakening mecha-
nisms assume that the friction coefficient is constant. When constant friction and mechan-
ical equilibrium are assumed, and dilatancy is neglected, only two forms of deformation are
possible, homogeneous shear in the gouge material or slip on the plane of maximum pore
pressure™. However, when the friction coefficient is allowed to vary a finite thickness shear

zone can exist, with regions of large pore pressure balanced by larger friction coefficients. In

this paper we consider a friction coefficient that is a function of the strain rate alone,

f= 16 ,7223 (23)

The analysis in this paper requires only the linearization of the friction law around the uni-

form strain rate ,,

ﬂw=ﬂ+“;bW—%% (24

o

where we have defined,

fo = f(%) ) (a - b) = ;Yo_. . (2’5)
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We consider a rate-strengthening material so (¢ — b) > 0. The form of these coefficients
is chosen so that (@ — b) is equivalent to the typical rate-and-state friction parameter when

one writes

f - fo + (CL - b) log(;y/;yo) (2'-6)

for shearing at steady state. This standard logarithmic form is used in the companion paper
Platt et al. [2014]"°. However, the results in this paper are valid for any friction law that
depends on strain rate alone. We ignore the state evolution effects accompanying changes in
shear rate, not least because there is no presently accepted way of describing these effects of
distributed shear in gouge. For regions of rate-weakening friction a fuller description that
includes a dependence on state and a procedure to limit localization would be needed. The
inclusion of the direct effect, meaning that any increase in strain rate leads to a transient
increase in the friction coefficient, may prevent localization from evolving to an infinitesi-

mally narrow zone.

2.2.3 Conservation of energy

Conservation of energy can be expressed as

oT th

T = PCE 8_ya (2.7)

where 7' is the temperature, ¢ is the specific heat, p is the density in the reference state and
qn is the heat flux. This expression neglects generally small additional terms due to the work
of the normal stress and pore pressure, and internal energy transfer due to flow of the fluid,

a common assumption justified in Mase and Smith [1985,1987]'++'* for representative per-
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meabilities of fault gouges. The heat flux is related to the temperature gradient by Fourier’s

law

(2.8)

where K is the thermal conductivity. Substituting (2.8) into (2.7) and simplifying we arrive
at

3_T_ﬁ+ az_T ( )
at — pc (073, ay27 2.9

where oy, = K/pcis the thermal diffusivity. When combining equations (2.8) and (2.9)
we have assumed that the thermal conductivity is insensitive to temperature and porosity

changes.

2.2.4 Conservation of pore fluid mass

Conservation of pore fluid mass can be expressed as

om %_

W ay 0, (Z.IO)

where m is the fluid mass per unit volume of porous medium with that volume as mea-
sured in a reference state, and gy is the pore fluid mass flux. According to Darcy’s Law, this

mass flux is proportional to the negative of the pore pressure gradient

psk Op

=——— 2.11
ny Oy (.11

where k is the intrinsic permeability, and p and 1) are the density and viscosity of pore

fluid respectively. Writing m = pyn, where n is the porosity, and differentiating this prod-
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uct yields

ot "ot o ot

om ops iy (anel anm) |

(2.12)

Here the rate of change of the porosity has been written as the sum of elastic and inelastic
or plastic contributions from dilatancy, as in the Segall and Rice [1995]**' formulation. We
later explain a possible reinterpretation of the symbols n¢ and n?" in 2 manner consistent

with critical state soil mechanics*2%">

which may be more appropriate for sustained shearing
(rather than nucleation of instability as considered in Segall and Rice [1995]*°"). Variations

in the elastic porosity with pore pressure and temperature can be accounted for by setting

1 on® oT
n 61& ﬂn na7 (2"13)

where 3,, and A,, are the compressibility and the thermal expansivity of the pore volume
respectively. These can be expressed in terms of coefficients for poro-thermo-elasticity 7"
evaluated for constant normal stress perpendicular to the fault zone (0, = const) and zero
normal strains in the plane of the fault zone (see Rice [2006]™°). In a similar fashion the
rate of change of the fluid density p; can be expressed as

1 8,0f 8T

where 37 and Ay are the compressibility and thermal expansivity of the pore fluid respec-

tively. Combining equations (2.10)-(2.14) we arrive at

op A@T 1 OnP 0*p

o Vot Bot Mgy

(2.15)
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where
_ AN

(2.16)

Here f3 is an elastic storage coefficient and A is the ratio of pore pressure change to temper-

ature change during undrained, adiabatic elastic deformation. The hydraulic diffusivity is

defined as

any = k/[nn(Bs + Ba)] (2.17)

and is assumed to be constant. The first term on the right hand side of equation (2.15) mod-
els thermal pressurization, the second term models pore pressure drops due to inelastic
porosity increases, and the final term represents hydraulic diffusion.

Equations equivalent to (2.9) and (2.15) have been used by Garagash and Rudnicki [2003]*
and Segall and Rice [1995)* with 0*p/dy? and 0*T'/Dy? approximated by the difference
between local and remote values of p and 7" divided by a characteristic length squared. This
form is appropriate for the single degree-of-freedom (spring-slider) model considered in

those papers, but is too severe an idealization for continuum deformation.

2.2.5  Gouge dilatancy

In this paper we assume that all of the inelastic porosity change is due to dilatancy, although
other mechanisms also exist, with one possible example being thermal decomposition™”.
We assume that the gouge is sufficiently sheared that all porosity changes are due to changes

in strain rate, allowing us to write nPl = ppt (). As with the friction law, the analysis in this
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paper requires only the linearized form

;Y_;Yo

n?(4) = bl + e—=, (2.18)
Yo
where we define
dnP!
w=n) L e=deg| (219)

S
Here nﬁl is the plastic porosity at the uniform strain rate 7,, and € is a measure of the strength
of dilatancy in the gouge material, with a larger value of € leading to more dilation. The
forms of the coefficients are chosen to agree with the steady state form for shear dilatancy

at low strain rates introduced by Segall and Rice [1995]**', and based on experiments in

Marone et al. [1990]'*. Note that the dilatancy rate vanishes for constant strain rate.

2.2.6  Critical state reinterpretation

In the classical critical state formulation for sustained shear, rate effects are ignored and the
porosity is taken to be a function of effective normal stress (which we may generalize to be a

function of effective stress and, weakly, temperature). We reinterpret the symbol n as

n® =n(o, —p,T), (2.20)

where the superscript cs denotes critical state and, in our case, o, is constant. That is, we
represent the porosity as the sum of the rate-independent critical state form (2.20), and take
nP! as above in equations (2.18) and (2.19) to represent the actual rate effects neglected in the

standard critical state formulations. Thus /3,, and ), are redefined by equation (2.13) above,
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now with n¢ replaced by n, with o,, constant. They are now interpreted as coefficients
expressing rate-independent changes of porosity linearized about the critical state.

We expect the (small) thermal expansion effect to be little changed, although now /3,
is expected to be larger because the change of porosity n with effective stress at the critical
state (defining —/3,,) is comparable in magnitude to the change of n with effective stress
during one-dimensional consolidation. The latter compressibility is typically several times
larger than the compressibility for elastic response (say by unloading from one-dimensional
consolidation), which is the basis for estimates of 3,, in Segall and Rice [1995]*°" and Rice

[2006] ™.

2.3 Parameter Values

The hydraulic parameters of the problem are poorly constrained, and depend strongly on
the stress state, pore pressure, temperature, and amount of damage that develops during
initial shear of the fault gouge. To account approximately for these complications we use

180

the parameters in Table 1 of Rempel and Rice [2006]"*°, which are based on Tables 1-3 of

Rice [2006] ™ and the procedures in Rice [2006]™°

to take account for damage and varia-
tions of properties with pressure and temperature.

The large stresses near the tip of a dynamically propagating rupture may alter the gouge
through processes such as comminution and opening of cemented micro-cracks. To model

186

this damage Rice [2006]"*° made the somewhat arbitrary choices to increase the perme-
ability by a factor of ten and the drained compressibility by a factor of two relative to their

laboratory values at a given stress, pore pressure, and temperature. This leads to parameter

sets modeling an intact and damaged material.
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Parameter Intact material, Intact material, Damaged material, Damaged material,

nominal values  path-averaged values nominal values path-averaged values
ayp, mm>/s 0.7 0.66 0.7 0.54
pc, MPa/K 2.7 2.7 2.7 2.7
A, MPa/K 0.93 0.89 0.31 0.30
Oy, mm?2/s 0.86 2.05 3.52 6.71
B, x10710 pa—1 0.52 0.55 1.26 2.97
€ 1.7 x 1074 1.7 x 1074 1.7 x 1074 1.7x 1074
Opn — Pa> MPa 126 126 126 126
p, kg/m3 2800 2800 2800 2800

Table 2.1: Representative parameters modeling a centroidal depth of 7 km. Thermal and hydraulic
properties are taken from Table 1 of Rempel and Rice [2006] *2°, which are based on Tables 1-3 of
Rice [2006] % and the procedures in Rice [2006] **¢ to take account of (1) damage to the fault zone
material at the onset of shearing, due to concentrated stresses near the tip of a propagating rupture
front, and (2) variations of properties with pressure and temperature (for the path-averaged values).
To model the damaged gouge, permeability is increased by a factor of ten, and the drained com-
pressibility by a factor of two. The path-averaged values roughly account for parameter variations
with pore pressure p and temperature T'; a p-1' path is calculated based on the nominal parameters,
and new parameter values are chosen as averages of parameter values along that path. The ambient
effective stress is calculated using an effective stress gradient of 18 MPa/km. The value of ¢ is taken
from Segall and Rice [1995]%°%, and is found by fitting to the low strain rate experiments performed
by Marone et al. [1990] .

Pore fluid properties, and thus parameters such as av,,, and A that depend on the fluid
properties, will change with pore pressure and temperature. The simplest choice to account
for these changes is to evaluate all properties at the ambient pore pressure and temperature
conditions. We call parameter sets created using this choice the nominal parameters. An-
other approach suggested in Rice [2006]™ is to average the parameters over the p-1" path
anticipated from calculations based on the nominal parameter values. Parameter sets that
use this method are called path-averaged parameters.

These methods lead to the four parameter sets, nominal and path-averaged parameters

for an intact and damaged material, summarized in Table 2.1. All four parameter sets are in-

tended to model a depth of 7 km, a typical centroidal depth for a crustal seismogenic zone.
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The final parameter in the pore pressure equation is €, which models the inelastic poros-
ity change associated with a change in strain rate. We choosee = 1.7 x 1074, which is
the value Segall and Rice [1995]*°* found by fitting to the experimental data in Marone et
al. [1990]. As with the frictional parameters, € is inferred from experiments performed
at strain rates much lower than those considered here. The value of € appropriate for high
strain rates is uncertain.

Some observations of strain localization come from borehole drilling, which typically
intersects the fault at a depth much shallower than 7 km***?. To allow comparisons with
these observations we also select an additional set of parameters intended to model the up-
permost region of the crust, assuming ambient conditions appropriate for a depth of 1 km.
These are listed in Table 2.2, and a full discussion on how these parameters are chosen is in-

cluded in the companion paper Platt et al. [2014]"°

. As with the parameters modeling a
depth of 7 km, we account for damage to the material using the method in Rice [2006] .
However, we do not use the path-averaging technique to account for parameter variations
due to changes in temperature and pressure, and all parameters are evaluated at the ambient
conditions.

The thermal parameters of the problem are more tightly constrained than the hydraulic
parameters. We choose the specific heat pc = 2.7 MPa/K"™”'%S. Rice [2006] ™ notes a range
of 0.5-0.7 mm?/s for vy, and based on this we choose oy, = 0.7 mm?/s for the nominal
parameter sets, and take the values from Rempel and Rice [2006]™° for the path-averaged
parameter sets.

Current experiments are unable to provide a friction law of the form f () at the high

strain rates considered in this study due to the difficulty of isolating the pure frictional
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Parameter Intact material, Damaged material,

Quyp, mm2/s 0.7 0.7

pc, MPa/K 2.7 2.7
A, MPa/K 0.22 0.068
Uy, Mm?2/s 2.34 7.15
B, x10710Ppa~t 1.34 439

5 1.7 x 107 1.7 x 107

On — Pa> MPa 18 18

p, kg/m? 2800 2800

Table 2.2: Representative parameters modeling a depth of 1 km, taken from Platt et al. [2014] *°¢. A
fuller discussion on the origin of the parameters is included in Platt et al. [2014] *°.

response from other temperature and pore fluid related effects, and problems confining
gouge materials at high slip rates. Lacking data in the ideal strain rate range we instead use
steady state friction values from low slip rate friction experiments******75¢ We implicitly

ignore dynamic weakening mechanisms such as flash heating186

%3 or the as yet poorly un-
derstood weakening that seems to be associated with gouge particles in the nanometer size
range®. One ad hoc way to account for such a mechanism may be to choose a lower value
of f,. Even when we have accepted the compromise of using the low strain rate friction
law to describe seismic deformation there is still a wide range of possible values for f, and
(a — b). Data from low strain rate experiments on granite under hydrothermal condi-
tions show that both f, and (a — b) vary with temperature *>*»*#*; another study shows
how fault mineralogy can alter the steady state friction coefficient f,". For the sake of
simplicity we will neglect these complications and choose the fixed values f, = 0.6 and
(a — b) = 0.025. A strong argument could be made for different values. Predicted thick-

nesses of shear zones will be shown to be proportional to approximately (¢ — b)/ f,?, mak-

ing it straightforward to reinterpret numbers and plots for other choices of the frictional
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parameters. If a different friction law that depends on strain rate alone is assumed then ef-
fective values of f,, and (a — b) can be found by linearizing about the uniform strain rate ,,

as shown in equation (2.s).

2.4 Spatially uniform solution

In this section we model a homogeneous medium that is uniformly sheared at a constant
strain rate Y = 7y, under locally undrained and adiabatic conditions, writing the corre-
sponding solutions to equations (2.9) and (2.15). The assumption of undrained and adia-
batic conditions is valid when the boundaries of the gouge layer are impermeable and ther-
mally insulating. These conditions are also asymptotically valid for the earliest stage of de-
formation when diffusion has had very limited time to act. In this scenario the stress, pore

pressure and temperature are independent of y, meaning that

{T(yv t)v p(y7 t)? T(Z/v t)} = {7‘0<t),p0(t>, TO (t)} : (2'2'1)

For a gouge layer with a thickness i accommodating a slip rate V/, the geometry sketched
in Figure 2.1, Lachenbruch [1980]™ developed an exact solution for this system. The shear

stress and pore pressure are related by

To(t) = foo0(1), (2.22)

where

50(t> = 0p — pO(t) = (Un - pa) €xXp |:_f:00_éx;)/ot:| (2-2'3)
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and p, is the ambient pore pressure present before shear begins. This means that

Y = 2 (2.24)
w = 2.24
A

is the characteristic weakening shear strain for thermal pressurization under undrained and
adiabatic conditions. This can be converted to a slip weakening distance for a gouge layer
with a finite thickness /, leading to

pc
A (2.25)

Dud,ad =h

Note that the slip weakening distance scales with the width of the deforming gouge, mak-
ing strain localization crucial in the evolution of strength during shear. This will be inves-
tigated further in the companion paper Platt et al. [2014]"°. Lachenbruch [1980]*7 also

solved for the temperature evolution

T(t) = Tu(0) + % [1 — exp (—f;—f%t)} , (226)

where 6, = 0, — p, is the ambient effective stress. Note that our formulation of dilatancy,
which accounts only for porosity changes due to changes in strain rate, does not alter the
solution from Lachenbruch [1980]™. Lachenbruch [1980]™ also considered a constant
dilation rate, and in this case the shear strength (2.22) decays exponentially to a finite value
rather than zero. However, if dilation is confined to the early stages of deformation, as is

consistent with our formulation of dilatancy, then the effect is essentially to increase & (0)

(see Rice [2006]™°).
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For a constant friction coefficient this uniform shear solution is the only possible solu-
tion in which the deforming zone has a finite width. The alternative is slip on the plane
of maximum pore pressure, with no deformation in the rest of the system. If the rate-
dependence of the friction law is accounted for then the straining can localize to a thin zone
with a small, but finite, width. In the following section we show what selects this critical

width for the deforming zone.

2.5 Linear stability of uniform shear

In this section we study the stability of small spatial perturbations away from the uniform
shear solution. The velocity, pore pressure and temperature are written as the sum of the
spatially uniform solution from the previous section and a small spatially dependent per-

turbation,

(Y, 1) = fooo(t) + Tu(y, 1) (2.272)
Yy, t) =Y + 1y, 1) (2.27b)
Py, t) = po(t) + pi(y. 1) (2.27¢)
T(y,t) = To(t) + Ta(y, 1) (2.27d)

where the unperturbed strain rate 7y is chosen as the reference strain rate , in the previous

section. Substituting these forms for 7, <y, p and 7" into our model from Section 2.2 (Equa-
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tions (2.1)-(2.4), (2.9) and (2.15)) and linearizing we arrive at,

9] a—b),
a—ﬁ =0 , 7 =(0n—po) ( : )71 — fop1 (2.28a)
Y Yo
a,T’l ’707—1 + foa-O (t)/yl 82Tyl
at = oc + Qtp ayQ (2.28b)
‘ 2
% - AaTl e O T o (2.28¢)

ot Ot B, Ot o2

Next the spatial dependence of the perturbations is decomposed into Fourier modes with

wavelength A,

{p1, Th, 1} =R [ {p1, Tr, 11} (E) exp (QZW)} ; (2.29)

where the new functions p;, T1 and ; now denote complex functions of ¢ alone, and

R(F) indicates the real part of a complex function F'. Equations (2.28) then become

(a'—b).

ao(t) Y1 — fopr =10 (2.302)

ATy fooo(t)n  4mau
Dl — T .30b
i oc \2 1 (2.30b)
dpy d1y € d B 4o, ( )
dt dt B3, dt e 2 230¢

The above equations, a linear but non-autonomous system due to the exponentially
decaying 7 (t), describe the stability of an unbounded gouge material being sheared uni-
formly with a strain rate of ¥,. This can be specialized for a gouge layer of thickness & sheared

between rigid, impermeable and thermally insulating blocks moving relative to each other
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with a slip rate V" using the boundary conditions

or  Op
== = t =0, h. .
3y By 0 at y=0, (2.31)

These can be satisfied by perturbations that are proportional to the Fourier mode

coS (WTNy) , (2.32)

where N is any positive integer and the wavelength is defined by A = 2h/N. We see that N
corresponds to the number of half-wavelength oscillations in the gouge layer. Once we have
determined the allowed values of A corresponding to growth or decay of strain rate pertur-
bations, and calling A, the longest stable wavelength for which strain rate perturbations

do not grow, only shear zones with
h < Aghr/2 (2.33)

will support stable homogeneous shear.

2.6 Stabilization by Frictional Rate-Strengthening Only

First we consider only the effects of frictional rate-strengthening, neglecting dilatancy by
setting e = 0. Using equation (2.30a) we can relate the perturbations in pore pressure and
strain rate through

= Lpl (234)
(a—b)ao(t)"
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allowing us to eliminate 7, from equations (2.30). We arrive at the pair of equations for p;

and Tl)

dTy o fg'yo 4 ayy,

At (a— b)pcp1 A2
@ B AdT1 47T2ahy

Ty (2-3591)

dt —  dt A2

D1 (2.35b)

Remarkably, this sub-system does not explicitly depend on time. It can be solved by pertur-

bations of pressure and temperature of the form

pilt) = 2(0) exp(st) (2.36)
T (t) T1(0)

and equation (2.34) then provides the solution for the strain rate perturbation,

100 = 2Oy (54225, ). (37

This is a rare case where a system of linear differential equations with some time-dependent
coefhicients has exact solutions in exponential form, albeit with coefficients of ¢ in the ex-
ponentials that are different for 7, than for p; and T7. Substituting (2.36) into (2.35) yields
two linear equations for p1 (0) and 77 (0). Since the equations are homogeneous, a nonzero

solution is possible only if the determinant of the coefficients vanishes. This requires that s

fo2A . 47r2ath 47T2Oéh
m’yos =|s+ \2 s + \2 Y . (238)

We can use this equation to determine the stability of uniform shear of a fluid-saturated

satisfy
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Figure 2.2: Rate-strengthening friction: A plot showing how the critical half-wavelength )\ShT/Z
varies with gouge layer thickness for parameters modeling a depth of 7kmand asliprate V' =
1 m/s. Since 7y, = V/h thicker gouge layers experience lower strain rates, leading to a wider crit-
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ical half-wavelength. Modeling damage as in Rice [2006] *°° we find that damaged material is less

susceptible to localization due to larger hydraulic diffusion and less efficient thermal pressurization.
When we use the path-averaging method from Rice [2006] % to account for parameter variations
with pressure and temperature the predictions increase by about a factor of two.

gouge material. If the real part of the exponential coefficient s + f,A5,/pc s positive,
then the perturbation away from uniform straining grows exponentially in time. This ex-
ponential growth is interpreted as strain rate localization. Consequently, the condition that

uniform shear be linearly stable is

R <s + J °A70> < 0. (239)
pc
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As shown in Appendix A.1, this condition is equivalent to wavelengths satistying

B (a — b)pc Qep, + iy
A = 2”\/ Toh (o 2(a— )3, (240

Spatial perturbations with wavelengths shorter than the critical value will decay exponen-
tially, and those greater than the critical value will grow exponentially. We highlight (2.40)
as the key result of the linear stability analysis. Interested readers can find a much fuller dis-

cussion of the possible behaviors associated with different values of s in Appendix A.1.

2.6.1  Width of the localized zone

We now evaluate the critical wavelength using the nominal parameter set for intact mate-
rial at a depth of 7 km. For a representative seismic slip rate V' = 1 m/s accommodated
over a gouge thickness 4 = 10 mm, leading to a nominal strain rate 4, = 100 s71, the
critical wavelength is Agp,, = 0.34 mm. Recall that for a layer of thickness / the largest
possible half-wavelength satisfying insulating and impermeable boundary conditions at
the edge of the gouge layeris A /2 = h. If the strain rate is %, = 100 s™* then the critical
half-wavelength is much less than the layer thickness, and thus homogeneous shearing is
unstable. Straining will not be distributed over the gouge thickness but, as more fully stud-

1'%, will localize to a thinner zone within the

ied in the companion paper Platt et al. [2014
gouge comparable to the critical half-wavelength.
Figure 2.2 shows the critical half-wavelength as a function of the gouge layer width h

for each of the four parameter sets and a fixed slip rate of V' = 1 m/s, representative of

the time-averaged slip rate in tectonic earthquakes. This value of V' can be compared with
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Figure 2.3: Rate-strengthening friction: A pair of plots showing how the critical width Wrsf can be
calculated graphically for depths of 1 km and 7 km. Both plots use the nominal parameter sets and a
sliprate V' = 1 m/s. To find the self-consistent width for the shear zone we look for points at which
the critical half wavelength is equal to the gouge layer thickness. This condition is indicated by the
black line, and the intersection points indicated give the localized zone thickness for the different
parameter sets. Localization is expected when the gouge layer thickness is greater than this criti-
cal width, and uniform shear is expected when the gouge layer thickness is thinner than this critical
width. Using the nominal parameter sets for a depth of 7 km we predict a width of 3 yum for the in-
tact material, and a width of 23 ;um for the damaged material. Accounting for changes in the param-
eters with pressure and temperature using the path-averaging technique of Rice [2006] *%¢ increases
both of these predictions by a factor of two. At a depth of 1 km we predict a width of 24 zim for the
intact material and 197 pum for the damaged material. We do not have access to path-averaged pa-
rameter sets for a depth of 1 km but we tentatively assume that the change in localized zone width
due to changes in parameters with pore pressure and temperature will be the same at 1 km and

7 km.

the slip rate range 0.48 — 1.5 m/s found as the ratio of the slips to slip durations inferred
for seven earthquakes analyzed in Heaton [1990]'°°. The average slip rate for this range of
values is 0.95 m/s. As h increases the strain rate ¥, decreases leading to wider critical half-
wavelengths. We note that parameters modeling damaged material predict larger values of
Ashr/2 than the parameter sets modeling an intact material, due to larger values of v, and

lower values of A in the damaged parameter sets. The path-averaged parameters predict
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larger values of A, /2 than the nominal parameter sets, possibly suggesting that A, /2
will increase during shearing.

To turn the critical half-wavelength into a consistent estimate for the localized zone
thickness W5 ¢, based on rate-strengthening friction, we search for solutions where the

critical half-wavelength is equal to the gouge layer thickness by setting

/\sh'r < V ( )
9 - rsf 3 Yo Wrsf 5 2.41
leading to the formula
—b
Wisp = 2 (a Jpe Othy T Qth (2.42)

foh V(fo+2(a—1b))

Figure 2.3 shows a graphical solution for this problem. Typical friction data from low strain

rate experiments show f, > (a — b), which allows us to simplify the formula to

a—bp_cozhy—i-ozth

f2 A V

o

Wrsf = 7T2 (2"43)

We see that the critical thickness is a balance between competing processes. Fluid and ther-
mal diffusion and rate-dependent frictional strengthening tend to expand the zone, while
thermal pressurization tends to narrow it.

Our predictions for the localized zone thickness are equivalent to the widest gouge layer
that can be sheared uniformly. Localization is expected to occur when the initial width of
the deforming zone is thicker than this critical width, and numerical simulations in Plazt et

166

al. [2014]"° show that straining localizes until it reaches a width very similar to the thick-
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ness predicted by equation (2.43). This allows us to compare the predictions from equa-
tion (2.43) with field and laboratory observations of localized shear zones sitting within a
broader gouge layer without having to make any assumptions about the initial thickness of
the deforming zone.

We now evaluate equation (2.42) for the different parameter sets. For a depth of 7 km,
using the superscript int to represent intact material, dam to represent damaged material,
n for nominal parameter sets, and pa for path-averaged parameter sets,

Wi =3pm W =5 pm, (2.44)

T T

T T

W?f“’” =23 um Wi“;”’pa =41 pm.

Comparison of the nominal and path-averaged parameters demonstrates that variations
with pressure and temperature do not strongly influence the results, changing W, s by
about a factor of two. More important in controlling the width is the amount of damage.
Damaged material has a larger value of v, and a smaller value of A, leading to predictions
for W, that are an order of magnitude wider than those for intact material. Caution must

1€ is some-

be used in applying this result, since the model for damage used in Rice [2006
what arbitrary.

Next we compare the predictions for a depths of 7 km and 1 km. Using the parameters
from Platt et al. [2014]®° for an ambient effective stress (0, — p,) = 18 MPa, summarized
in Table 2.2, in (2.42) we find

W:Skfm,int =24 um | W:S’ffm:dam = 197 pm. (2.45)
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The localized zone is predicted to be wider at shallower depths. When considering the
parameters modeling a depth of 7 km, the path-averaged values approximately doubled
W, for both intact and damaged material. Although we do not have calculations of path-
averaged parameters for a depth of 1 km, we tentatively assume they will also increase W,
by 70 — 80%, suggesting widths of ~ 40 yim for intact material, and ~ 350 pum for dam-
aged material.

We note that Benallal and Comi [2003]™ have addressed the possible instability of spa-
tially homogeneous elastic-plastic deformation, and onset of localized straining, in fluid-
saturated porous media. That was studied initially without consideration of the effects of
frictional heating and thermal pressurization, with those effects being added to their analy-
sis subsequently by Benallal [2005]™. Their model did not include a non-zero viscoplastic,
or rate-dependence, of friction, which is represented here by the (@ — b) term and is seen
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in the expressions above, and in the accompanying paper Platt et al. [2014]°, to be critical

to our results for a non-zero thickness of the localized zone, which thickness vanishes when

(a—b) — 0.

2.7 Stabilization by Dilatancy Only

2.7.1  Transient growth of perturbations

Neglecting frictional rate-strengthening corresponds to taking (¢ — b) — 0in (2.30a),
which requires that the perturbation in pore fluid pressure vanish. Setting p; = 0 in equa-

tion (2.30c) we find,

—ATL(t) + (e/B0) 1 (t) = (¢/87,) C, (2.46)
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where C is the constant

C =9(0) — (ABYo/e) T2 (0). (2.47)

We can use (2.46) to eliminate 77 from (2.30b) leading to an equation for 7, alone. To have
a more compact notation in the formulae which follow we redefine the strain rate pertur-
bation 4, as a function of the nondimensional time { = ¢ [tw, wheret,, = pc/ fo\yo(=
Yw/ o) is the characteristic weakening time for the homogeneous solution from Lachen-

bruch [1980]" given in equation (2.23). We arrive at the following equation for 7, ()

dn (1 L 1Y, ¢
o (E exp(—t) — ;) N+ T (2.48)

where E is a dimensionless parameter measuring the strength of the gouge dilatancy

E= (2.49)

and )\ is the nondimensionalized wavelength,

A=MLna , La= 21Vt (2.50)

Here Lypq is the lengthscale over which thermal diffusion acts on a timescale comparable to
the weakening timescale ¢,,. The long time solution of equation (2.48) is ¥; (t — o0) = C,
where C'is the constant defined in equation (2.47), and is on the order of the initial pertur-
bations in strain rate and temperature. While strain rate perturbations will always decay,
for small values of E the solution can experience rapid initial growth.

If 7, is to experience large transient growth before decaying back to C' there must be a
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Figure 2.4: Gouge dilatancy: A plot showing the evolution of the strain rate perturbation 7, nor-
malized by the initial value %, (0), for asliprate of V' = 1 m/s accommodated across a 1 mm wide
gouge layer, awavelength A = 100 pm, and the parameter sets modeling a depth of 7 km (see
Table 2.1). We see dramatic initial growth, followed by a decay back to zero. In our model a dam-
aged material has a higher storage capacity, leading to a smaller value of /' = 5/&7@: and larger
excursions away from homogeneous shearing.

point satisfying
dn
di

=0 , %>C. (2.51)

Equation (2.48) allows us to calculate that such a turning point must occur at

5\2
tmaz = tw log <E) ) (2.52)

From this we conclude that transient growth of %; will only be possible when t,,,,, > 0,
and thus

A > Lthd\/ﬁ. (2-53)
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Recalling that L4 depends on the nominal strain rate 7, this inequality can be con-
verted into a critical gouge layer thickness W;; that must be exceeded for transient local-

ization to be possible. As with the frictional rate-strengthening only case, this is done by

setting
Wan = Lthe;\/ﬁ v Yo = M‘/;z’ (2.54)
leading to
Wan = Q;SX;L. ﬁ;a (2.55)

For gouge layers with thicknesses greater than W;; uniform shear will be initially unstable
and 7 will undergo transient growth.
We now calculate the values of Wy;; for the different parameter sets modeling a depth of

7 km. We find,

Wirt™ = 0.87 ym Wit = 0.81 pm, (2.56)

Woemt — 1.08 yum ,  Wiem™P* = (.35 pm.

Here we have used the previous superscript definitions to indicate intact or damaged mate-
rial, and nominal or path-averaged parameters. All four parameter sets predict widths that
are on the order of a micron or less. For a given parameter set the values of Wy;; are at least
a factor of two, and up to a factor of forty, less than the predictions for W,.s¢. This means
that dilatancy, as modeled by Segall and Rice [1995]>%", is less effective than frictional rate-
strengthening at limiting localization for the parameters chosen here. The values of Wy
cover a narrower range than the predictions for W,.s;.

Next we make a comparison with the parameters for a depth of 1 km. Using the parame-
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ters in Table 2.2 we find
Wit — 142 pm W™ = 1,41 pm, (2.57)

We see that the shallower parameters predict larger values of Wy;;, but the predictions for
Wi at 1km are still thinner than the smallest prediction for W,..f at 7 km.

While Wg;; tells us when transient strain rate localization is expected, it does not predict
how intense this localization will be when the gouge layer is wider than Wy;. To investigate

the intensity of localization we solve equation (2.48) to find the full solution for 74,

For the case C' = 0 this has the simple solution

~

4 1 N
%(10) = exp {E (1 — exp(—t)) — ;} . (2.59)

Figure 2.4 shows the normalized strain rate perturbation predicted by equation (2.59) as a
function of slip. We observe large initial growth of the perturbations, followed by a return
to uniform shearing as the perturbations decay. For a small enough initial perturbation
41(0), the remarkably large 1 (¢) /71 (0) need not be at conflict with a linearized perturba-
tion approach. However, unless the initial perturbation 4, (0) is taken to be unrealistically
small, the size of the perturbations far exceeds the region in which the linearized model can

be applied. The linearized behavior observed is in qualitative agreement with the numerical
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1%, so we use these

simulations for the fully nonlinear system presented in Plart et al. [2014
linearized results to predict which parameters are most important in controlling the severity
of localization.

Using the solution for C' = 0, given in equation (2.59), we can determine the maximum

('71({)> = eX i(1—5)—ih’l E
00 ) e PIEU TR TR T\E

which occurs at t,,,, = t,, log(;\2 /E). As shown in Figure 2.4 smaller values of E lead

value of

, (2.60)

to larger peak strain rates, which can be interpreted as more intense localization. Recalling
that for /' = 0 the solution collapses to slip on a plane, we see that as the strength of dila-
tancy increases the straining is distributed over a wider zone. This fits well with the idea of
stabilization by dilatancy.

When calculating this maximum value of 7; the assumption that C' = 0 is valid pro-

vided that
' O [les(V/E) 1 ¢
4(0) > T /0 exp [E<exp(—§) _ 1) + ;} de. (2.61)

For small values of £ the integrand decays rapidly and thus the largest contribution to the

integral comes from around { = 0. This leads us to approximate the integrand as

exp {%(exp(—f) — 1) + %} ~ exp {(% - %) f} ; (2.62)
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allowing the integral to be evaluated as

/Otmm exp {%(exp(—f) — 1) + %} d§ ~ )\2_E ) (2.63)

This approximation is valid to within a few percent when £/ < 0.05. Inequality (2.61) then

simplifies to

. CE

If this condition is not satisfied then the maximum value of 7, given in equation (2.60) will
have an additional contribution which can be calculated using the approximation for the
integral developed above. This does not change the conclusion that smaller values of £ will
lead to larger peak strain rates.

Since the maximum value of 7, depends most sensitively on £ we calculate values for the

different parameter sets. For a the parameter sets modeling a depth of 7 km we find

Eintn = 0.0259 |, Eippe = 0.0245, (2.65)

Edamn =0.0107 ,  Eggmpa = 0.0045.

Here we have used the previous superscript definitions to indicate intact or damaged mate-

rial, and nominal or path-averaged parameters. For a depth of 1 km we find

Elkm,int = 0.0705 ) Elkm,dam = 0.0215. (2'66)

We see that the shallower parameters have larger values of £, leading us to expect more sta-

bilization from dilatancy at shallower depths, and thus wider localized zones.
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Figure 2.5: Gouge dilatancy: A plot of the total perturbation strain parameter I versus gouge layer
thickness for the parameters modeling a depth of 1 km (see Table 2.2). Damaged material experi-
ences more intense strain localization, in contrast with the results for stabilization by frictional-
strengthening alone. The dashed line shows the asymptotic approximation from equation (2.69),
which agrees well with the values of I found by integrating equation (2.67) numerically. This lin-
earized analysis is only valid while the perturbations are small compared to the uniform shear solu-
tion. For the largest values of I this will only be true for unrealistically small values of 7, (0) How-
ever, we still argue that localization stabilized by dilatancy alone is highly sensitive to changes in F,
and insensitive to changes in other parameters.

2.7.2.  Total strain accumulated

Field observations are unable to observe in-situ strain rates, and can only, at best, observe
the final strain distribution. Motivated by this we integrate the strain rate perturbation 7,

to find the total perturbation strain
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Taking ¢ — oo we capture all of the transient localization, allowing us to define a measure

of the total perturbation strain

7w’71(0> (2’.68)

For ¥ < 1 the integral in equation (2.67) can be approximated using Laplace’s method® to

. 1 E 1 A2
I' ~ A\V2mexp [E (1 — §> — ﬁln (E)

which for large values of b\ simplifies to,

find

: (2.69)

'~ ;\\/%exp (%) . (2.70)

The exponential function means that I" depends sensitively on F, and is relatively insensi-
tive to changes in A. Setting A\/2 = h, corresponding to a single localized straining peak lo-
cated at the boundary of the gouge layer, we now plot I as a function of gouge layer thick-
ness for the different parameter sets. As predicted I" reaches a value relatively independent
of h, with this final value largely controlled by the value of . Larger values of I lead to
smaller values of I" showing that stronger dilatancy will lead to a wider localized zone. The
asymptotic approximation (2.69) is plotted in Figure 2.5 alongside the actual values of T',
showing that the asymptotic approximation provides a good prediction for I',

As before the assumption that C' = 0 is valid provided that inequality (2.64) is satisfied.
If this is not true then there will be an additional pre-factor in equation (2.69), but this does

not change the conclusion that I" depends most sensitively on F.
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2.8 Discussion

2.8.1  Frictional rate-strengthening only

Equation (2.43) predicts a localized zone thickness W, s as a function of the gouge proper-
ties and the slip rate V. The shear zone thickness is set by a balance between thermal pres-
surization, diffusion and frictional rate-strengthening. Using the parameters from Section
2.3, this formula was used to predict localized zone thicknesses in the range 3 — 41 pum for
adepth of 7 km and aslip rate V' = 1 m/s. We now discuss how various factors could alter
these predictions.

While the analysis above considered a fixed slip rate applied across the gouge layer, in
reality the slip rate will vary dramatically during seismic slip. Previous dynamic rupture
simulations accounting for thermal pressurization showed that slip rates within the slip-
ping patch of the fault vary by at least an order of magnitude, with the largest slip rates near
the rupture tip”**. The linear stability analysis predicts W5y o< 1/V/, suggesting that
the localized zone thickness will evolve with V' during seismic shear. For the slip rate pro-
files in Noda et al. [2009]™ and Garagash [2012]*° the zone of localized zone shear will be
thinnest at the rupture tip and will gradually widen as shear continues. Large changes in
localized zone thickness during rupture may make it hard to compare our prediction for
localized zone thickness with field observations of final strain profiles. We intend to address
the variable slip rate scenario in future work.

Next we discuss the influence of the frictional parameters on W5 . We recall that the

linear stability analysis is valid for any rate-strengthening friction law that depends on
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alone, and for a general friction law the parameter (@ — b) is defined as

0f(7)

(a—1b) = "Yo—a,.y L (2.71)

Equation (2.43) provides the framework to discuss how our predictions would change for
different friction laws. We see that W,.sf scales linearly with (¢ — b), meaning that a friction
law that exhibits stronger rate-strengthening will more effectively limit localization lead-
ing to wider localized shear zones. Also W,.sr o< f 2 the most sensitive dependence of
W,.s¢ on any parameter. If other dynamic weakening mechanisms such as flash heating or
nanoscale effects are active, and these mechanisms can be modeled in an ad hoc fashion by
reducing f,, without altering (a — b), then we expect dynamic weakening to lead to wider
localized zones. A drop from f, = 0.6 to f, = 0.2, a typical friction value from Goldsby
and Tullis [2011]® and Di Toro er al. [2011]*, would increase the localized zone width by
a factor of nine. Precise predictions are hard until laboratory experiments are able to sepa-
rate strain rate, temperature and pore fluid effects at high strain rates to provide a function
f()-

The parameter sets used in this paper use the model for damage proposed in Rice [2006]™.
In this model the permeability is increased by an order of magnitude and the drained com-
pressibility by a factor of two. The parameter sets modeling a damaged material predict
alocalized zone width approximately five times wider than those for an intact material.

This is because the increased permeability leads to more efficient hydraulic transport, while
the increased pore volume compressibility leads to less efficient thermal pressurization, as
shown by the values of A in Table 2.1. Other damage models will predict different param-

eter values, but the generality of the formula for W, ;s allows other damage models to be
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used to predict a localized zone thickness. Any damage that increases the permeability or
makes thermal pressurization less efficient will lead to a wider shear zone.

Since the linear stability analysis only has a simple exponential solution when the gouge
properties are constant, we accounted for parameter changes due to changes in pore fluid

state using the path-averaging approach suggested in Rice [2006]™°

. A better approach is
to solve numerically using the full equation of state for the pore fluid and allowing the hy-
draulic properties of the gouge to vary with effective stress, as done by Rempel and Rice

[2006]™°

for a uniformly sheared gouge layer. They found that the most significant param-
eter variation was the change in permeability due to changes in pore pressure. Using the
data from Wibberley and Shimamoro [2003]** we see that the gouge may experience an or-
der of magnitude increase in permeability, or possibly more, as the pore pressure goes from
the ambient conditions to a pore pressure that is a significant fraction of the compressive

stress. Assuming that, as observed by Rempel and Rice [2006]™°

, the dependence of perme-
ability on pore pressure is the most important change, this suggests that our estimates for
W5 may be an order of magnitude too low. Since the loading and unloading paths dif-

fer for the permeability data in Wibberley and Shimamoto [2003]*#, the exact value of the
permeability for a given effective stress will also depend on the maximum effective stress the

gouge has previously experienced, possibly making the exhumation history of the gouge an

important variable to consider when comparing with field observations.

2.8.2  Dilatancy only

Our analysis in Section 2.7 showed that for the dilatancy only system strain rate perturba-

tions always decay ast — oo. However, strain rate perturbations can experience initial

49



transient growth whenever the gouge layer thickness exceeds the critical value W;;. This
critical thickness is a balance between thermal pressurization, thermal diffusion and dila-
tancy. For the parameter sets modeling a depth of 7 km (see table 2.1) we predict values of
Wi between 0.35 pom and 1.08 pom. In contrast with the predictions for Wy, the predic-
tions for Wy;; do not change dramatically when we change from modeling an intact gouge
to a damaged gouge. This is because, for the parameterization for damage given in Rice
[2006]™°, the decrease in A is balanced by an increase in the storage capacity 3. For a given
parameter set these values of Wy;; are at least a factor of two thinner than the localized zone
thickness predictions for stabilization by frictional rate-strengthening alone, implying that
dilatancy is less efficient at limiting strain rate localization.

When the gouge layer thickness exceeds Wy;; the strain rate perturbation will experience
transient growth. The scaling developed for I, the total strain accumulated by the strain
rate perturbation, shows the strongest dependence on the parameter £ = ¢/£5,. This
means that the parameter € plays a crucial role in limiting localization. The value of ¢ used
in Section 2.7 is taken from Segall and Rice [1995]**', which fitted to the low strain rate
experiments in Marone et al. [1990]'*. However, for the high strain rates considered here
this value of € may not be appropriate. The sensitive dependence of I" on € means that even
a modest increases in € should lead to a significant increase in localization limiting due to
dilatancy.

If we neglect the significant grain size reduction or even amorphization that may be as-
sociated with seismic strain rates then the localized zone thicknesses predicted for the dila-
tancy only model — and the thinnest predictions for the frictional rate-strengthening only

model — are comparable to a typical grain size in the gouge. This means that our model may
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not be valid for the very thinnest localized shear zones when the size of individual grains
may be an important localization limiter.
One prediction for the localized zone thickness when the size of individual grains is

29 which studied localization in a fluid-

important can be found in Sulem et al. [2011]
saturated material accounting for the motion of individual grains using a Cosserat mi-
crostructure. Another prediction that comes from a wide body of research on localization
in granular systems suggests setting the localized zone thickness equal to 10 — 20d5(, where
ds is the grain size such that 50% by weight of the particles have larger size. A discussion of
the many experiments and numerical simulations that lead to this prediction can be found

186

in Rice [2006]"°. Using the grain size distribution for ultracataclasite from the Punchbowl

1" estimated d5 fault gouge to be

fault presented in Chester et al. [2005]*, Rice [2006
~ 1 pm, which leads to a localized zone thickness of 10 — 20 zm. We emphasize that care
must be taken when extrapolating the results of numerical simulations of granular flows to

natural fault gouges because of the narrow range of grain sizes, uniform grain shapes, and

two-dimensional geometry used in typical simulations.

2.8.3 Comparison with observations

Several field studies have shown evidence of 100 micron-scale strain localization, as dis-

cussed in the introduction +>**

. Our predictions for localized zone thickness are in good
agreement with the lower end of these observations. Elsewhere in this section we have high-
lighted mechanisms that could increase the localized zone thickness, for example a reduc-

tion in f, due to flash heating or nanoparticle effects or an increase in permeability due to

elevated pore pressures. If one or more of these mechanisms is activated then our predic-
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tions would be in the middle, or even above, the range of observed localized zone thick-
nesses.

Not all observations of faults show such extreme strain localization. For example Boullier
et al. [2009]* presented a study of two boreholes drilled in the Chelungpu Fault, which
hosted the Mw 7.6 Chi-Chi earthquake in 1999, at depths of 111im and 1136m. Since fault
drilling programs typically intersect the rupture surface near the top of the seismogenic
zone we compare these observations with our prediction for localized zone thickness at a
depth of 1 km, where we predict a range for W,.s¢ of 24 — 350 um. The gouge layer that
Boullier et al. [2009]* interpreted to be the principal slip zone was observed to be 0.3 cm
and 2 cm, considerably wider than our estimates. The discrepancy between our predictions
and the observations of centimeter wide shear zones could be due to poor constraints in our
parameters, or evidence of another localization limiting mechanism that is active at shallow
depths.

Interestingly the study by Heermance et al. [2003]** sampled the Chelungpu fault in
a region near to the observations of Boullier et al. [2009]*, though at a depth of approx-
imately 330m, which is 8oom shallower than the observation in Boullier et al. [2009] 7.
They observed a diffuse shear zone in some locations on the fault and evidence of 50 — 300
micron wide localization in others. This suggests that there may be significant along strike
variability in localized zone thickness. The widths observed by Heermance et al. [2003]*
for the highly localized shear zones are in excellent with our predictions for W,.; at a depth
of tkm.

Current laboratory experiments studying the frictional behavior of gouge materials at

high deformation rates use a rotary shear configuration. We compare our results with the
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microstructures in Kitajima er al. [2010]**, which are taken from high-velocity friction
experiments on fluid-saturated ultracataclasite from the Punchbowl fault. Figure 9 in Ki-
tajima et al. [2010]** shows typical microstructural arrangements in a cross-section taken
perpendicular to the direction of deformation. At the highest slip rates, present at the exte-
rior of the cylindrical sample, a region of highly localized slip forms. They show the highly
localized zone in red. We estimate this zone to have a width of approximately 100 pm.

However, the distinct banded structure of the localized zone noted in Kitajima et al.
[2010] ** may indicate that the width of the shear zone at any given moment may be much
less than 100 pm. This is in general agreement with other observations of strain localiza-
tion from laboratory, which were discussed in more detail in the introduction. Brantut et
al. [2008]* identified a primary slipping zone 1 — 10 pm wide, while other studies also
reported extreme localization at seismic slip rates°.

While these observations of localized zone thickness are in good agreement with our
predictions from the frictional rate-strengthening only system, care must be taken when
making this comparison. Due to difficulties confining gouge at high slip rates most current
experiments are performed at modest normal stress of 1 MPa. Since the critical point for
water is at p = 22.06 MPaand 7" = 374 °C, this modest normal stress means that the pore
water may boil at laboratory conditions even though this will not happen at typical seismo-
genic conditions. The onset of localization in high-velocity friction experiments has been
linked to this phase transition**"**. Choosing parameter values to model the experiment
is also difficult, and it is unlikely that any of our parameter sets modeling depths of 1 and
7 km will accurately represent the hydraulic properties of the gouge used in high-velocity

friction experiments. The phase transition and poorly constrained parameters make com-
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paring our predictions with such experimental observations of localization difficult. Recent
advances in gouge confinement””>*" now make it possible to do experiments at supercritical
pore pressure, eliminating the complications associated with the phase transition.

It should be noted that the geometry assumed in our model is different from the typi-
cal rotary shear experiment. Though we hope that far from the concentric cylinders that
form the lateral boundaries of the sample the deformation can be well approximated by
one-dimensional shearing, we cannot rule out the possibility that the localization is largely

controlled by the teflon sleeve used to confine the gouge.

2.9 Conclusions

In this paper we analyzed the stability of uniform shear in a fluid-saturated gouge material.
To prevent the collapsing of the straining region to a mathematical plane, we considered
two separate stabilizing mechanisms, frictional rate-strengthening and dilatancy. For both
mechanisms we used a linear stability analysis to determine if small perturbations away
from uniform shear will grow or decay. We interpret growing perturbations as a sign of
strain localization.

For frictional rate strengthening alone we solved for the critical wavelength A, sepa-
rating growing and decaying strain rate perturbations. Localization is expected for pertur-
bations with wavelengths exceeding the critical wavelength Ayp,,. The critical wavelength
depends on the uniform strain rate, but was converted into a prediction for the localized
zone thickness I, ¢ that depends only on the slip rate V. This localized zone thickness is
found to be a balance between frictional rate-strengthening, thermal pressurization and

diffusion. Constraining the parameters is difficult, but using the parameters from Rempel
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and Rice [2006]™° and Rice [2006]™° modeling a depth of 7 km and frictional data from
Blanpied et al. [1998]** we predict localized zone thicknesses between 3 jtm and 41 pim.

In the system stabilized by dilatancy alone strain rate perturbations will always decay,
making uniform straining stable as¢ — 0o. However, perturbations may experience dra-
matic transient growth, and this transient growth is interpreted as strain localization. The
system has a critical gouge layer thickness above which straining will localize. For the pa-
rameters modeling a depth of 7 km we predict critical thicknesses between 0.35 1m and
1.08 pm. When transient strain rate localization does occur the peak strain rate perturba-
tion is largely controlled by a single dimensionless parameter modeling the efhciency of
dilatancy, making € a crucial parameter in our model.

This analysis only determines the initial stability of infinitesimally small perturbations
away from uniform shear, but neglects nonlinear effects that become important as the per-

turbations grow. The companion paper Platt et al. [2014]'%°

extends this work using nu-
merical solutions for the full set of equations to determine the width of the localized zone
at peak localization, and the impact that strain rate localization has on the shear strength

evolution and maximum temperature rise.
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Stability and Localization of Rapid Shear in
Fluid-Saturated Fault Gouge, 2. Localized

zone width and strength evolution

3.0 Abstract

Field and laboratory observations indicate that at seismic slip rates most shearing is con-
fined to a very narrow zone, just a few tens to hundreds of microns wide, and sometimes
as small as a few microns. Rice et al. [2014]™ analyzed the stability of uniform shear in a
fluid-saturated gouge material. They considered two distinct mechanisms to limit local-
ization to a finite thickness zone, rate-strengthening friction and dilatancy. In this paper
we use numerical simulations to extend beyond the linearized perturbation context in Rice

et al. [2014]™°

, and study the behavior after the loss of stability. Neglecting dilatancy we
find that straining localizes to a width that is almost independent of the gouge layer width,
suggesting that the localized zone width is set by the physical properties of the gouge ma-
terial. Choosing parameters thought to be representative of a crustal depth of 7 km, this
predicts that deformation should be confined to a zone between 4 and 44 ;im wide. Next,

considering dilatancy alone we again find a localized zone thickness that is independent of

gouge layer thickness. For dilatancy alone we predict localized zone thicknesses between 1
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and 2 yym wide for a depth of 7 km. Finally we study the impact of localization on the shear
strength and temperature evolution of the gouge material. Strain rate localization focuses
frictional heating into a narrower zone, leading to a much faster temperature rise than that
predicted when localization is not accounted for. Since the dynamic weakening mechanism

considered here is thermally driven, this leads to accelerated dynamic weakening.

3.1 Introduction

Field and laboratory observations show evidence for micron-scale strain rate localization
in fluid-saturated gouge materials sheared at seismic slip rates, as discussed in the introduc-
tion to the companion paper Rice et al. [2014]™°. Such extreme localization focuses the
frictional heating into a narrow zone, making thermally driven dynamic weakening mech-
anisms such as thermal pressurization and thermal decomposition very efficient. This sen-
sitive dependence of shear strength evolution on the width of the deforming zone can be
seen in the calculations of Rempel and Rice [2006]™°, Noda et al. [2009]™, Sulem and
Famin [2009]*7, and Garagash [2012]*°.

The companion paper Rice et al. [2014]™ used a thermo-poro-mechanical model for
deformation of a fluid-saturated gouge material to investigate the width of the deforming
zone during rapid shear. In the absence of a stabilizing mechanism the deformation will col-
lapse into a zone with zero width, as noted in Rice [2006]™°. Two stabilizing mechanisms
were considered in Rice et al. [2014]™, frictional rate-strengthening and dilatancy. For each
mechanism a linear stability analysis was used to determine when small deviations away
from uniform straining of the gouge material will grow, and thus uniform straining will

be unstable. For frictional rate-strengthening alone this led to a prediction for the localized
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Thermo-
poroelastic
half-spaces

Figure 3.1: A sketch showing the system we are modeling. A gouge layer with a finite thickness i

is sheared between two rigid poroelastic half-spaces that are moved relative to each other at a slip
rate V. This leads to a nominal strain rate within the gouge layer 7, = V//h. The strainrate §(y, t)
will localize within the gouge layer, as shown by the Gaussian strain rate profile sketched within the
gouge layer. The width W/ of the zone of localized straining is then estimated as twice the root mean
square width of the Gaussian.

zone thickness as a function of the gouge properties. When localization is stabilized by di-
latancy alone Rice et al. [2014]™ found a critical gouge layer thickness above which intense
transient localization occurs at the onset of shear, although the strain rate perturbations
eventually decay and shear is uniform at large slip.

In this paper we use numerical simulations to test the predictions of Rice et al. [2014]™.
We study how the properties of the gouge combine to set the localized zone thickness when
nonlinear effects are accounted for, and compare this with the formula predicted in Rice et
al. [2014]™. We also study how the development of a localized shear zone influences the

maximum temperature rise and shear strength evolution, showing that the development of

alocalized zone corresponds to a sudden strength drop.
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3.2 Model formulation

In this section we outline the model for deformation of a fluid-saturated gouge material.

A more detailed development of the model can be found in the companion paper, Rice

et al. [2014]™. We consider a gouge layer with a finite thickness h confined between two
poroelastic half-spaces being moved relative to each other at a slip rate V. The model is
one-dimensional and we only account for spatial variations that depend on the coordinate
perpendicular to the slip direction, y. All values of y are measured relative to the line y = 0

at the center of the gouge layer. A sketch of this system is shown in Figure 3.1.

3.2.1  Mechanical equilibrium

Rice [2006]™° hypothesized that, due to the small lengths that diffusion of heat and pore
fluid act over, unrealistically high accelerations are required to make inertial effects impor-
tant within the gouge layer. Motivated by this we neglect inertia within the gouge layer,

leaving us with the conditions for mechanical equilibrium

& _0 do,
oy T Oy

=0, (3.1)

where 7 is the shear stress in the layer, 0, is the compressive stress normal to the fault. This
means that the stresses in the layer are at most a function of time, ¢. We assume that the
normal stress does not evolve with time, and thus o, is constant. Later in this paper we

determine when inertial effects will significantly alter our results. The shear stress is taken to

6o



be the product of the effective stress and a friction coefficient f

7= f(on —p), (32)

where p is the local pore pressure.

3.2.2 Gouge friction

Constructing friction laws appropriate for the high deformation rates considered here is
difficult due to the complex interplay between purely frictional, temperature and pore fluid

effects. In the absence of such a friction law we use

Yo a—>b

1) = (o= pysinn | e (2] 69

which for (a — b) < f, is asymptotically the same as the friction law for steady state shear-

ing inferred from low strain rate velocity-stepping experiments such as those in Dieterich

(1979]7,

¥
F=fotla-tiog (1), 64
Here f, is the friction coefficient at the reference strain rate ,, and (¢ — b) quantifies the
change in friction with strain rate. We will assume that the gouge is rate-strengthening,

and thus (a — b) > 0. We use the regularized friction law in equation (3.3) instead of the
logarithmic friction law in equation (3.4) to avoid difficulties when 7 — 0.

Since the shear stress is at most a function of ¢, combining equations (3.2) and (3.3) we

can see high pore pressures will correspond to high values of . Equation (3.3) is a simpli-
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fication of reality, and neglects temperature, state evolution and mineralogical effects. An
expanded discussion of the assumptions implicit in using steady state friction laws that de-

pend on strain rate alone can be found in Rice er al. [2014]™.

3.2.3 Conservation of energy

Following™ the conservation of energy is written as

ot — oc th ay2> 3.5

where 7" is temperature, oy, is the thermal diffusivity, and pc is the effective heat capacity
per unit volume in the reference state. Both pc and av, are taken to be constant. Since the
shear stress 7 is constant throughout the gouge layer, frictional heating will be focused in

regions of high strain rate. Diffusion will then transport this heat into the adjacent material.

3.2.4 Conservation of pore fluid

As shown in Rice et al. [2014]™, conservation of pore fluid mass leads to,

2 2
p_ 0T oy P

-~ — —a + Oéhya—y2.

ot ot B (:6)

The first term on the right hand side of equation (3.6) represents thermal pressurization. As
the pore fluid is heated it will expand, and if the gouge is undrained or partially drained this
thermal expansion will lead to a pore pressure increase. The parameter A is defined as

Af—

A=—"—— .
BT B’ (3.7)
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where 3,, and A,, are the compressibility and the thermal expansivity of the pore volume,

B and Ay are the compressibility and the thermal expansivity of the pore fluid, and the in-
stantaneous pore pressure change accompanying a temperature change AT is Ap = AAT.
The second term in equation (3.6) models pore pressure decreases due to gouge dilatancy.

201 which assumes

Our model for dilatancy is based on the work of Segall and Rice [1995]
that changes of inelastic porosity are a result of changes in strain rate. € quantifies the mag-
nitude of dilatancy and f3 is the storage capacity of the gouge. The final term in equation

(3.6) represents hydraulic diffusion and, for simplicity, we have assumed that the hydraulic

diffusivity av,, is constant.

3.2.5 Nondimensional parameters

Now we determine the dimensionless parameters for this system of equations. The scal-
ings used are based upon the geometry of the gouge layer and the solution for a uniformly
sheared gouge layer developed by Lachenbruch [1980]"™7, discussed in more detail in Section
3.4 and in Rice et al. [2014]™.

First, the gouge layer width £ is used to scale y. The gouge layer of thickness A can then
be combined with slip rate V' to find the nominal strain rate 4, = V//h for the gouge layer.
This nominal strain rate is used to scale 4. The nominal strain rate is combined with the
critical weakening strain for thermal pressurization v, = pc/ f,A to get the characteris-
tic weakening timescale t,, = 7/, for thermal pressurization, which is used to scale ¢.

Finally, we use the ambient effective stress &, to scale the pore pressure variations, and the

total temperature rise from the uniform solution &, /A to scale the temperature variations.
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To summarize

pch L
= hy/ t = t = ! )
y=nhy AV Y= Yoy (3.8)

On — Pa
p:pa+(0n_pa)p/ ) T:Ta+ pT/

Y

where p, and T, are the ambient pore pressure and temperature of the material, and the

primed variables are dimensionless.

The above scalings leads to the set of dimensionless equations,

%7; =7y + Dth%a (3.92)

/ , . 2
% = (Z, —g% + hy%v (3.9b)
g—; =0, (3.9¢)
= f(¥)1-p), (3.9d)
f(¥) = 2""sinh™ (%/e) : (3.9€)

Despite the large number of parameters in our model, there are only four dimensionless

parameters,

QipPC Qpy pC
Dy, =

T fAVRE T fAVE 10
b €
=i 0 FTas

All of the parameters in our problem affect the response only in so far they affect these four
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dimensionless parameters. Dy, and Dy, measure the strength of thermal and hydraulic
diffusion respectively, z measures the rate-strengthening component of friction, and £
quantifies the strength of dilatancy.

The parameters Dy, and Dj,, can be better understood by rewriting them as

Lina ? Lhyd ’
Dy, = Dy, = .
th <47T2h> Y hy 47T2h )l (3 II)

where Lyjq and Ly,q are the distances over which diffusion acts for a timescale comparable

to the characteristic weakening timescale for thermal pressurization

Lthd = 271'\/ Oéthtw s Lhyd = 271'\ / Oéhytw. (3.12)

This means that small values of Dy, and Dp,, correspond to diffusion distances much
smaller than the gouge layer thickness, allowing for the possibility of steep gradients in p

and T across the gouge layer.

3.3 Parameter values

The hydraulic parameters ay,,, A and 3 are the least constrained in the model, and are ex-
pected to vary with temperature, pore pressure and damage to the gouge and surrounding
material. In this paper we will consider one class of hydraulic parameters modeling a depth
of 7 km, a typical centroidal depth for crustal earthquakes, and another class of hydraulic
parameters modeling a depth of 1 km, a typical depth for boreholes drilled through active
186

fault zones. Within each class of parameters we use the methods outlined in Rice [2006

to account for parameters variations due to damage, as well as pore pressure and tempera-
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Parameter Intact material, Intact material, Damaged material, Damaged material,

nominal values  path-averaged values nominal values path-averaged values
ayp, mm>/s 0.7 0.66 0.7 0.54
pc, MPa/K 2.7 2.7 2.7 2.7
A, MPa/K 0.93 0.89 0.31 0.30
Oy, mm?2/s 0.86 2.05 3.52 6.71
B, x10710 pa—1 0.52 0.55 1.26 2.97
€ 1.7 x 1074 1.7 x 1074 1.7 x 1074 1.7x 1074
Opn — Pa> MPa 126 126 126 126
p, kg/m3 2800 2800 2800 2800

Table 3.1: Representative parameters modeling a depth of 7 km. A fuller discussion on the origin of

the parameters is included in Rice et al. [2014] 7.

ture changes.

180

To model a depth of 7 km we use the four parameter sets from Rempel and Rice [2006]*°,

186 186

which are based on Tables 1-3 in Rice [2006]"*° and the procedures in Rice [2006]™*°. Dam-
age of the gouge by inelastic shear and fresh micro-cracking may occur in the concentrated
stress field at the tip of a propagating rupture. This damage is modeled, somewhat arbi-
trarily, by increasing the permeability by an order of magnitude and the drained compress-
ibility by a factor of two, as suggested in Rice [2006]™°. Parameter variations due to tem-
perature and pore pressure changes are either neglected by evaluating the parameters at the
ambient conditions, leading to the nominal parameter sets, or accounted for by averaging
along an expected p — 1" path, leading to the path-averaged parameter sets. The four param-
eter sets are summarized in Table 3.1 and are discussed in more detail in Rice et al. [2014]™.
Next we develop parameters modeling a depth of 1 km. No attempt is made to account
for the effects of pore pressure and temperature changes and all parameters are evaluated
at the ambient conditions p, = 10 MPa,0,, = 28 MPaand T, = 30 °C. As before

] 186

damage is accounted for using the procedure from Rice [2006]°. The gouge properties are

determined using the data from Wibberley and Shimamoto [2003]*#. We infer a porosity
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of n = 0.068, and a pore volume thermal expansion coefficient A,, = —1.36 X 10~%°C L.
For an intact material the pore volume compressibility is 3, = 1.53 x 1072 Pa~*, and for
a damaged material 5, = 6.01 x 10~ Pa~!. To estimate the permeability we assume a
maximum burial depth of 4 — 5 km, we find a permeability of ~ 2.5 X 10~ m? for intact

material. As suggested in Rice [2006]"*

this value is increased by a factor of ten to model a
damaged material. Next we consider the pore fluid properties. Fine and Millero [1973]7*
used sound speed data to calculate the compressibility and thermal expansion coefficient of
pure water as a function of pressure and temperature, leading to 3 = 0.44 X 1079 Pat
and \; = 3.11 x 107*°C~*. Finally Likhachev [2003]™* provides a formula for the viscos-
ity of water for a temperature range of 273 — 463 K and a pressure range of 1 — 250 bar.
Using this we calculate 7y = 7.97 x 107* Pas. These parameter sets are summarized in
Table 3.2.

The parameter sets in Tables 3.1 and 3.2 show that damaged material, when modeled as in

Rice [2006]™¢

, is characterized by higher values of a3, and 3, and lower values of A. This
means that thermal pressurization and dilatancy will be less efficient in a damaged mate-
rial, while hydraulic diffusion will be more efficient. Comparing the nominal parameter
sets modeling a depth of 1 km and 7 km we see the same pattern, with more efficient ther-
mal pressurization and dilatancy expected at 7 km than at 1 km and less efficient hydraulic
diffusion.

Compared with the hydraulic parameters, the thermal parameters are well constrained.
The effective heat capacity per unit volume is pc = 2.7 MPa °C™1*7'4, and Rice [2006]™¢

quotes a range for ai, of 0.5 to 0.7 mm?*/s. We choose a value of 0.7 mm?/s for the nominal

parameter sets, and use the values for oy, given in Rempel and Rice [2006]™° for the path-
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Parameter Intact material Damaged material

n 0.068 0.068
B, x107? Pa~? 0.44 0.44
B, 1072 Pa! L53 6.01
Ap, x1074K ! 3.11 3.11
A, X1074K 1 -1.36 -1.36
N, X 10~ Pas 7.97 7.97
k, x107 m? 2.5 25
Qg mm?2/s 0.7 0.7
pc, MPa/K 2.7 2.7
A, MPa/K 0.22. 0.068
Qlhy, mm?/s 2.34 7.15
B, x10710 pa—t 134 439
€ 1.7 x 107* 1.7 x 107*
Op — pa; MPa 18 18
p, kg/m? 2800 2800

Table 3.2: Two parameters sets intended to model a depth of 1 km, a typical intersection depth for
boreholes drilled through active faults. Parameter variations due to pore pressure and temperature
changes are neglected, so all parameters are evaluated at the ambient conditions p, = 10 MPa,
0, = 28 MPaandT,, = 30 °C. Damage is modeled by increasing the permeability by a factor of
ten and the drained compressibility by a factor of two, as suggested in Rice [2006] 1%¢. Sources for
the parameter values are outlined in the text and include Fine and Millero [1973]#, Wibberley and
Shimamoto [2003]?*%, and Likhachev [2003] **2,

averaged parameter sets. The thermal parameters are assumed to not change with depth. In
reality there will be some variation with depth, but we implicitly assume that changes in the
thermal parameters are negligible when compared with the depth variation of the hydraulic
parameters.

The logarithmic friction law used in this paper is taken from experiments performed
atslip rates on the order of 1 — 10 pum/s, and thus equation (3.3) may not accurately de-
scribe gouge friction at the seismic slip rates considered in this paper. However, current

high-velocity friction experiments are unable to separate the frictional response from tem-
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perature and pore fluid effects to provide a formula for the friction coefficient valid at the
deformation rates considered here. Asin Rice et al. [2014]"° we choose f, = 0.6 and

(a — b) = 0.025 motivated by the measurements for granite under hydrothermal con-
ditions in Blanpied et al. [1998]**, though the results are presented in a form that allows
predictions for a range of f, and (@ — b). A larger discussion of the simplifications associ-

ated with equation (3.3) can be found in the companion paper Rice er al. [2014]™.

3.4 End-member solutions

In this section we discuss two end-member solutions for dynamic weakening driven by
thermal pressurization. To do this we compare the hydrothermal diffusion distance v/ 4ot

with the gouge layer width h, where we define the lump hydrothermal diftusivity as

a = (vVam + /an)®. (3:13)

During the initial stages of deformation the hydrothermal diffusion distance will be
much smaller than the width of the gouge layer, V4at < h. This means that deforma-
tion is effectively undrained and adiabatic, the limit studied in Lachenbruch [1980]"” when
the constant dilatational strain rate assumed in Lachenbruch [1980]" is zero. Lachenbruch

[1980]"7 solved for the strength evolution

T = fo0a €Xp (— fOA%t> : (3.14)

pc

Thermal pressurization leads to an exponentially decaying shear stress, and the weakening
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shear strain associated with thermal pressurization is

Y = fpj\ (3-15)

o

The weakening timescale, which was used earlier to nondimensionalize ¢, is then the ratio
of the weakening strain and strain rate, t,, = 7,,/7,. Since the system is controlled by a crit-
ical strain, the slip-weakening distance h-y,, scales linearly with the width of the deforming

zone. Lachenbruch [1980]™ also solved for 1" in the undrained and adiabatic limit, finding

T-T, = % [1 — exp (_’Y_ot)} , (3.16)

w

where T, is the ambient temperature. The dynamic weakening associated with thermal
pressurization leads to a finite temperature rise of 7, /A and the critical weakening strain 7,
also controls the approach of T to the maximum temperature.

At very large displacements the diffusion distance will be much larger than the gouge
layer width, VA4at >> h. In this limit the finite thickness of the gouge layer will be negligi-
ble, and deformation can be approximated by slip on a mathematical plane. This problem
was solved for a uniform slip rate V' by Mase and Smith [1985,1987]#+'+ for the special case
of an immobile pore fluid (i.e aup, = 0). The more general solution was found by Rice
[2006]™, for the case of non-zero av,,;, which in the end involved no more than replacing
vy, in their result for 7(¢) with the lump hydrothermal diffusivity v defined above in equa-

tion (3.13), leading to the shear strength evolution

T = f,04€Xp (g) erfc < g) , (3.17)
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where

. 4o [ pc 2
L =7 (foA) : (3.18)

This solution had been recognized by Mase and Smith [1987]'#, in the case of thermal dif-
fusion only, as a limiting result for a narrow shear zone. The weakening slip distance L* is
set by the weakening strain 7,, and the lengthscale defined by the hydrothermal diftusivity

o and the slip rate V. The corresponding solution for slip surface temperature is

Oq4 Qpy Vit Vt
T-T,=—11 — 1-— — f —
a A( + Oéth)[ eXp(L*>erc< i

Again we see that thermal pressurization leads to a finite temperature rise, and the length-

(3.19)

scale that controls the temperature evolution is the same length that controls the shear

strength evolution. We shall refer to the Rice [2006]™°

solution in equations (3.17)-(3.19)
as the Mase-Smith-Rice slip on a plane solution.

Rempel and Rice [2006]™° showed that the two limits considered above are the end-
member solutions for a gouge layer sheared uniformly between two conducting half-spaces.

We will investigate how strain rate localization alters the results of Rempel and Rice [2006]™°,

and how the solutions with localization relate to these two end-member solutions.

3.5 Frictional rate-strengthening only

3.5.1  Linear stability results

Initially we consider a system in which dilatancy is neglected, and thuse = 0. Rice et al.

[2014]™ determined the stability of the uniform shearing solution presented in Lachen-
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bruch [1980]"7. Linearizing about this solution led to a relationship between the wave-

length A of a perturbation in p and 7" and the growth rate s, in an exp(st) form, given by

Yo 42 42
ZJ s = <s+ W)\?th) (s + W)\(;hy) . (3.20)

Separating the growth rate into real and imaginary components, s = sg(\) + s7(\), we

determine the critical wavelength A7 that separates growing and decaying perturbations in

Qp + Qpy
Apr = 2y | b T Ay, (3.21)
- 2(50/ )

For A > Apr perturbations in p and 7" will grow unstably, while for A < A,z they will

pand T is

decay. Perturbations in strain rate are proportional to exp((s + 7,/7w)t) so we can define

a similar critical wavelength

o+ Qg
Ashy = 270 — 22
= 022

which separates growing and decaying perturbations in strain rate. For A > A, strain rate
perturbations will grow, leading to strain localization.

The critical wavelengths outlined above depend on the nominal strain rate +,, which
depends on the width of the deforming zone. Rice et al. [2014]™ turned the critical wave-
length (3.22) into an approximate prediction for the localized zone thickness W, as con-

trolled by rate-strengthening friction, by setting

/\shr . . V
th 4, = )
wi o] Wres

Wrsf = (3-2'3)
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Figure 3.2: Rate-strengthening friction: The blue curve shows the evolution of the maximum strain
rate Y,nqz Within the gouge layer for the path-averaged parameters modeling a damaged material,
V' = 1m/sand h = 1 mm. The maximum strain rate grows indicating that straining is localizing
within the gouge layer. After a finite amount of slip the peak strain rate begins to decay indicating
that the localized zone is thickening. This thickening occurs whenever both o, and oy, are non-
zero. We define the peak strain rate "ypeak to be the largest value of ;4

This leads to a prediction for the localized zone thickness that depends only on the gouge

properties and the slip rate V/,

Tpe  Qpy + g,

Wer=3G+2) v

(324)

The localized thickness is set by a balance between frictional rate-strengthening, thermal

pressurization and hydrothermal diffusion.
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Figure 3.3: Rate-strengthening friction: A plot showing the strain rate profile at peak localization
for the path-averaged parameters modeling a damaged material, V' = 1 m/sand h = 1 mm. The
numerical solution is shown in blue with the Gaussian fit defined by equation (3.27) shown by the
red dashed line. The width Wmf of the localized zone is estimated as twice the root mean square
width of the Gaussian, and we find W,y = 43 pum.

3.5.2  Localized zone thickness

Now we solve numerically for a finite thickness gouge layer sheared between two poroe-
lastic half-spaces, the geometry shown in Figure 3.1, to see how the linear stability predic-
tion matches the behavior of the full nonlinear system. The poroelastic half-spaces do not
deform and conduct heat and pore fluid away from the gouge layer. We assume that the
transport properties of the half-spaces are the same as those of the gouge material. For ini-
tial conditions we set pressure and temperature to the ambient values p, = 70 MPa and
T, = 210 °C, and assume that the gouge begins shearing uniformly with 4 = +,. Inter-
estingly the three dimensionless parameters that control this system are independent of the

ambient pore pressure and temperature. The additional constraint imposed to solve for 7 is
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Figure 3.4: Rate-strengthening friction: Figure showing how the localized zone thickness Wrsf

at peak localization depends on gouge layer thickness i. Numerical results for the path-averaged
and nominal parameters for a damaged material and asliprate of V' = 1 m/s are shown by solid
colored lines, with the accompanying linear stability predictions for these parameters shown by
dashed colored line. For thin gouge layers we see that the localized zone thickness is equal to the
gouge layer thickness, with the line W/ = h shown by dashed black line for guidance. When the
gouge layer thickness is large the straining localizes to a width that is only weakly dependent on
the gouge layer thickness. This width is in good agreement with the predictions for Wrsf from the
linear stability analysis in Rice et al. [2014]°.

h/2
/ Y(y, t)dy =V, (3.25)

—h/2
and assures that the total straining within the gouge layer is equal to the slip rate V imposed
across the gouge layer, as shown in Figure 3.1. This means that the average strain rate within
the layer is equal to the nominal strain rate §, = V/h.

Using the path-averaged parameters for a damaged material (see Table 3.1) we now solve

for a gouge layer thickness & = 1 mmand aslip rate V' = 1 m/s, justified as an average
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earthquake slip rate in Rice et al. [2014]™°. For this parameter set the linear stability predic-
tion for the localized zone thickness is W' = 41 pum, over an order of magnitude smaller
than the gouge layer thickness. This leads us to expect significant strain rate localization to
occur.

To visualize the evolution of strain rate localization we plot the maximum strain rate in
the gouge layer

(1) = maxl3 (5. 1) (526

as a function of time. Since the total straining accommodated across the gouge layer is fixed
at 7, alarger value of 7,4, corresponds to a narrower deforming zone. Figure 3.2 shows
how the maximum strain rate within the gouge layer evolves with time. Initially the maxi-
mum strain rate grows to values over an order of magnitude greater than the nominal strain
rate 7, showing that, as expected, straining is localizing within the gouge layer. Eventually
Ymaz reaches a peak value and begins to decay. This means that the thickness of the de-
forming zone, which initially will be the width of the gouge layer, gradually decreases to a
narrowest value before widening again. Two additional instabilities exist that lead to move-
ment of the localized straining zone across the gouge layer and these prevent the maximum
strain rate decaying all the way back to uniform straining. These instabilities are not dis-
cussed here but will be the focus of future work.

Having described the temporal evolution of the maximum strain rate within the layer
we next look at the spatial distribution of straining. The blue curve in Figure 3.3 shows the
strain rate profile at peak localization, where peak localization is the point at which ¥4

reaches its maximum value. The shape of the strain rate curve leads us to try to fit 7y using
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the Gaussian function

: 29/
Vet = A+ Bexp | — Wz, | (327)

This provides an excellent fit to the numerical solution as shown by the dashed red curve in
Figure 3.3. To determine the three constants A, B and W,.;; we impose three conditions;
7 i+ matches the numerical solution for 7 at the centre of the gouge layer, the edge of the

gouge layer, and accommodates the right amount of straining,

h/2
/ ;Yfit(ya t)dy =V (3.28)
—h/2

This fitting formula gives us an objective way to measure the width of the zone of local-
ized straining, allowing a comparison with the linear stability predictions. The constant A
is included to allow us to fit straining profiles that have a width comparable to the gouge
layer thickness. When straining is localized A becomes negligible and our fitting function
becomes equivalent to the Gaussian straining profile previously used in models of ther-
mal pressurization, for example Andrews [2002]*, Rempel and Rice [2006]™°, Noda et al.

[2009]™, and Garagash [2012]*°. For this limit where A is negligible we can calculate W, ¢

2V
Wrsf - \/j . 9 (3'2’9)
T VYpeak

where we have defined the peak strain rate

using the formula

Vpeak = H%%X Y(y, )] (3.30)

For the rate-strengthening friction simulation shown in Figure 3.3 we find W,y = 43 pm,
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Figure 3.5: Rate-strengthening friction: A plot showing how the localized zone thickness Wmf
changes with ayy, for the path-averaged parameters modeling an intact material and a damaged
material given in Table 3.1, asliprate V' = 1 m/s and gouge layer thickness h = 1 mm. This param-
eter sweep allows us to vary the dimensionless parameter D;;, while the other two dimensionless
parameters Dhy and 2z remain unchanged. The black dashed lines show the fitting formula given in
equation (3.31). Larger values of 4y, lead to wider localized zones.

in good agreement with the linear stability prediction of 41 ysm. While Figure 3.3 only
shows a snapshot of the strain rate profile, the Gaussian function above provides an ex-
cellent fit to the numerical solutions throughout the evolution of the localized zone.

Next we see how the width of the gouge layer influences the width of the localized zone.
Figure 3.4 shows the localized zone thickness at peak localization found using the Gaussian
fit versus gouge layer thickness for the nominal and path-averaged parameters modeling
adamaged material, h = 1 mmand V' = 1 m/s. We see two distinct regimes. For thin
gouge layers W, ~ h, corresponding to a gouge layer that is too narrow to allow strain-

ing to localize. However, once the gouge layer width exceeds a critical value the straining
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Figure 3.6: Rate-strengthening friction: A plot showing how the localized zone thickness Wrsf
changes with vy, for the path-averaged parameters modeling an intact material and a damaged
material given in Table 3.1, asliprate V' = 1 m/s and gouge layer thickness h = 1 mm. This param-
eter sweep allows us to vary the dimensionless parameter Dhy while the other two dimensionless
parameters Dy, and 2z remain unchanged. The black dashed lines show the fitting formula given in
equation (3.31). Larger values of Qpy lead to wider localized zones. The deviation at large values of
Qrpy for the damaged parameter set is due to Wrsf becoming comparable to h.

begins to localize, shown by the two curves falling beneath the line W = h. Once h exceeds
this critical width the localized zone thickness is almost independent of h, changing by just
twenty percent while & changes by three orders of magnitude. The linear stability predic-
tions, shown by the colored dashed lines in Figure 3.4, provide reasonable agreement with
the widths observed in the numerical simulations. It is encouraging that the linear stability
prediction, which is taken infinitesimally close to uniform shearing, agrees so well with the
localized zone thickness inferred at peak localization.

Next we perform a parameter sweep to determine how Wy depends on the gouge

properties, implicitly assuming that the weak dependence of h is unimportant and the lo-
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Figure 3.7: Rate-strengthening friction: A plot showing how the localized zone thickness Wrsf
changes with (a — b) for the path-averaged parameters modeling an intact material and a damaged
material given in Table 3.1, asliprate V' = 1 m/s and gouge layer thickness h = 1 mm. This pa-
rameter sweep allows us to vary the dimensionless parameter 2z while the other two dimensionless
parameters Dhy and Dy, remain unchanged. The black dashed lines show the fitting formula given
in equation (3.31). Larger values of (a — b) lead to wider localized zones.

calized zone thickness is set by the gouge properties. As shown in Subsection 3.2.5, when
dilatancy is neglected, there are just three dimensionless parameters that can be varied inde-
pendently. This means it is sufficient to vary just au, sy and (a — b), which corresponds
to varying Dy, Dy, and 2 respectively. The parameters not being varied are fixed to the
base parameters shown in Table 1. The results of this are shown in Figures 3.5, 3.6 and 3.7.

The numerical results agree well with the formula

Cla—b)pe (yny + v/aun)?
foh V(fo+2(a—10))

Wrsf ~ (331)

This equation is shown by the dashed black lines in Figures 3.5, 3.6 and 3.7 for C' = 6.9.
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While we have only shown a narrow range of values for ay, slightly larger than the range
quoted in Rice [2006]™, further simulations show that equation (3.31) provides a good fit
across nearly three orders of magnitude. In the limit f, > (a —b), which is valid for almost
all values of f, and (a — b) found in laboratory experiments, we can neglect (a — b) in the
denominator of equation (3.31) and W, becomes linear in (a — b). The localized zone
thickness is a balance between thermal pressurization, frictional rate-strengthening and
hydrothermal diffusion, with hydrothermal diffusion entering through the lump diffusivity
« of Rice [2006]™.

Using equation (3.31) we now make predictions for the localized zone thickness using
the four parameter sets modeling a depth of 7 km. Using the superscript int to represent
intact material, dam to represent damaged material, 7 for nominal parameter sets, and pa
for path-averaged parameter sets, we find

Wi =dpm Wi =17 pm, (3:324)

T T

Wt =28 pm W = 44 . (332)

T

These predictions are close to the predicted values in Rice er al. [2014]™, and in good
agreement with some field and laboratory observations, for example De Paola et al. [2008]%,
Brantut er al. [2008]*°, and Kitajima et al. [2010]**. These observations are discussed in
detail in the introduction to Rice et al. [2014]™. Due to more efficient hydraulic diffu-

sion and less efficient thermal pressurization, we predict a wider localized zone for the dam-
aged parameter sets. Parameter variations due to changes in pore pressure and temperature,

186

which are accounted for using the path-averaging method from Rice [2006] ™, increase the
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localized zone thickness by 60 — 75%.
Next we evaluate (3.31) for the parameter sets modeling a depth of 1 km from Table 3.2,
finding,

Wit = 30 pm W™ ™ = 216 pum. (3.33)

T T

Wider localized zones are predicted at shallower depths, as predicted in Rice er al. [2014]™.

Changes in gouge properties due to changes in pore fluid pressure and temperature were
not accounted for when making these predictions. Tentatively assuming that the percent-
age increase in thickness is the same as the values for a depth of 7 km we predict a width of

~ 55 pum for an intact material and ~ 340 pm for a damaged material.

3.5.3 Impact of localization on shear strength evolution

During our calculations we also track the shear strength. Figure 3.8 shows the shear strength
evolution when we use the path-averaged parameters for a damaged material, h = 1 mm
and V' = 1 m/s, the same calculation used to produce the localized straining profile in
Figure 3.3. For comparison we also show the shear strength evolution when the gouge layer
is forced to deform uniformly, with the uniform solution calculated by setting ¥ = 4,
throughout the gouge layer and approximating the shear stress using the pore pressure in

the center of the gouge layer

7(t) = folow — p(0,1)]. (3:34)

180

This calculation is very similar to those performed in Rempel and Rice [2006]"*°. Hence-

forth, the solution where the gouge layer is forced to deform uniformly is referred to as the
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Figure 3.8: Rate-strengthening friction: A plot showing how the strength of the gouge layer evolves,
normalized by the initial strength, for localizing shear and uniform shear. These simulations were
produced using the path-averaged parameters modeling adamaged material, V' = 1m/sand

h = 1 mm. We see that a sudden drop in strength coincides with the onset of localization. The
initial deformation, before diffusion and localization have had time to act, is well described by the
solution for uniform shear under undrained and adiabatic conditions **” . At large slips the solution
is no longer influenced by the small yet finite width of the shearing zone and the strength is well
approximated by the solution for slip on a plane **>*#. The two limits for undrained adiabatic de-
formation and slip on a plane are shown above by the dashed black lines. Note that the undrained
adiabatic solution from Lachenbruch [1980] *?’ differs from our simulation of a uniformly sheared
layer because our numerical simulations allow for diffusion of heat and fluid into the surroundings.

uniform shear solution, and the solution where the straining is allowed to localize within
the gouge layer is referred to as the localized shear solution.

Initially the shear strength evolution is the same for the uniform shear solution and the
localized shear solution. This corresponds to the early stages of deformation when strain-
ing has not had time to localize. As expected both the uniform shear and localized shear
solutions also agree with the solution for uniform shear under undrained and adiabatic

127

conditions from Lachenbruch [1980]". At the onset of localization we see a dramatic drop
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Figure 3.9: Rate-strengthening friction: A plot showing how the nominal strain at which peak local-
ization occurs varies with av,,. These simulations were produced using the path-averaged param-
eters for an intact and a damaged material, V' = 1m/sand h = 1 mm. For low values of Qhy,
corresponding to localized zone thicknesses that are much smaller than the gouge layer thickness,
the critical strain is a decreasing function of «vy,,,. For both parameter sets 7pcqx reaches a minimum
before increasing at large values of ap,,.

in strength, typically 20 — 40% of the initial strength 79 = f,(05, — pa). The exact strength
drop at the onset of localization depends on the gouge layer width A, with more dramatic
strength drops for larger values of h. These observation can be explained by recalling that
thinner deforming zones lead to more rapid dynamic weakening. As the straining local-

izes the deforming zone thins leading to accelerated weakening. Larger values of h lead

to larger strength drops at the onset of localization due to the larger contrast between the
initial gouge layer width and final localized zone thickness. After straining has strongly lo-
calized the shear strength evolution is in excellent agreement with the Mase-Smith-Rice
solution for slip on a plane.

Since the most rapid dynamic weakening is linked to strain rate localization, our results
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predict that the slip at which the most rapid dynamic weakening occurs is controlled by the
gouge parameters. Motivated by this we now track ¥peqx as a function of the gouge prop-
erties. Figures 3.9 and 3.10 shows the strain at which 4,4, reaches its peak value divided by
the weakening strain -, for thermal pressurization as a function of a,,, and (a — b). We see
that smaller values of (@ — b), and thus larger values of 2, lead to smaller value of Ypeqk /Voo-
This means that not only does frictional rate-strengthening limit localization, it also slows
the rate at which a localized zone develops. The dependence of Ypear 0n iy, is the reverse
of that observed for (@ — b). Whenever the localized zone thickness is over an order of mag-
nitude thinner than the gouge layer thickness, smaller values of a,, lead to larger values

of Ypeak /Y- The increase in Ypeqr for larger values of ay,, occurs when the localized zone
thickness becomes comparable to the gouge layer thickness. Since the thermal diffusivity is
relatively well constrained we do not show the dependence of Ypeqr 0n iy, but the results
are qualitatively very similar to those observed for avp,,.

It should be emphasized that this dependence of Ypeqr, 0N (4, may not transfer to other
geometries. In our system the localization is initiated by hydrothermal diffusion from the
gouge layer into the half-spaces, leading to larger pore pressures and strain rates in the cen-
ter of the gouge layer, and thus the formation of a localized zone. Lower values of the bulk
hydrothermal diffusivity o defined in equation (3.13) limit diffusion into the half-spaces
leading to larger values of Ypeqr. If localization is instead initiated by heterogeneities within
the gouge layer then the dependence of peqr 0n vy could be very different. This link
between localization and heterogeneities within the gouge layer is the subject of ongoing
work.

If the gouge layer is sufficiently thick, or the slip is sufficiently small it may be possible
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Figure 3.10: Rate-strengthening friction: A plot showing how the nominal strain at which peak lo-
calization occurs varies with (@ — b). These simulations were produced using the path-averaged
parameters for an intact and a damaged material, V' = 1 m/sand h = 1 mm. We see that small
values of (a — b) lead to small values of 7peqk, and so the more intense localized zones also develop
the fastest.

that a fully developed localized zone will not occur during a seismic event. To estimate
when this will happen we assume that for a wide gouge layer Ypeqr /v = 1, which leads

to a critical slip that must be reached for localization to fully develop

peh

Dy = )
loc. foA

(3.35)

Using a typical slip of 1 meter and the range of 7, implied by the parameters in Table 3.1 we
predict the critical gouge layer thickness above which localization does not have sufficient
time to fully develop to be 6.6 — 20 cm. If the gouge layer thickness is only slightly less than
the critical thickness then the majority of shear will have occurred with an underdeveloped

localized zone, with full localization occurring just before deformation ceases.
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An underdeveloped localized zone will have three important consequences. First, even
though strain rate localization is occurring, there may be little evidence of highly localized
shear in the final strain profile. Second, since the most rapid dynamic weakening occurs
during the most rapid localization, we would expect a much smoother strength evolution
profile than the one shown in Figure 3.8. Finally, since the straining is never focused into a

narrow zone we would expect a significantly lower temperature rise.

3.5.4 Influence on maximum temperature rise

Rempel and Rice [2006]™° showed that the undrained and adiabatic solution of Lachen-
bruch [1980]"7 and the Mase-Smith-Rice slip on a plane solution, equations (3.16) and
(3.19) respectively, are the end-member solutions for the maximum temperature rise in the
uniform shear solution. However, the maximum temperature rise for the uniform shear
solution will approach the Mase-Smith-Rice slip on a plane solution only at very large slips
that may be larger than typical seismic slips.

We now compare the maximum temperature rise

AT (t) = max [T'(y, )] — T, (3.36)

Y

predicted by our new localized shear solution with these two end-members, as well as the
uniform shear solution. This is done using the path-averaged parameters for a damaged
material, gouge layer width i = 1mm, and slip rate of V' = 1 m/s, the same parameter
set used to generate Figures 3.2, 3.3 and 3.8. The blue curve in Figure 3.11 shows the maxi-
mum temperature for the localized shear solution as a function of time. The symmetry of

the system means that this maximum temperature occurs in the middle of the gouge layer,
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which in our coordinate system is y = 0. Alongside this is plotted the maximum temper-
ature rise for the uniform shear solution in red, as well as the two end-member solutions
for undrained and adiabatic conditions, and the Mase-Smith-Rice slip on a plane solution.
The onset of localization is accompanied by a large increase in the maximum temperature
as frictional heating is focused into a narrow zone in the center of the gouge layer. After a
slip of 10 mm the temperature rise for the localized shear solution is over three times larger
than the temperature rise for the uniform shear solution. For the parameters used in this
simulation this corresponds to a difference of ~ 580 °C.

Initially the uniform shear solution and localized shear solution are in excellent agree-
ment with equation (3.16), which describes the temperature evolution under undrained
and adiabatic conditions. After localization the solution mirrors the solution for slip on a
plane, as would be expected when all of the deformation is accommodated in a very nar-
row zone, though the slip on a plane solution still does not give an accurate prediction of
the maximum temperature since it neglects the initial stages of shear when deformation is
distributed throughout the gouge layer. The maximum temperature rise for the localized
shear solution will never approach the slip on a plane solution due to a pair of instabilities
that cause the zone of localized straining to move across the gouge layer, thus distributing
the frictional heating across a wider zone.

Finally we investigate how the magnitude of the temperature rise associated with local-

ization depends on the gouge parameters. To quantify this we study the maximum heating

ory oT
N peak—nggx a0 ) (337)

This is found to be a decreasing function of vy, oy, and (a — b). This is easily understood

rate
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Figure 3.11: Rate-strengthening friction: A plot showing how the maximum temperature rise,
AT e = Trae — Tu,inthe gouge layer evolves for localized and uniform shear using the path-
averaged parameters for adamaged material, k. = I mmandV = 1m/s. Theinitial behavior,
before localization and diffusion become important, is well described by the undrained adiabatic so-
lution of Lachenbruch [1980] *” (marked AT 4y adia.)- As straining localizes the frictional heating
is focused into a zone much narrower than the gouge layer thickness, leading to a sharp temperature
rise. After localization the localized shear solution mirrors the Mase-Smith-Rice slip on a plane so-
lution (marked ATplane), but the slip on a plane solution never provides a good approximation for
maximum temperature rise.

by noticing that the localized zone thickness W, is an increasing function of oy, o, and
(a — b). Parameters that predict a narrower localized zone will lead to a larger maximum

heating rate as straining is focused more intensely.

3.6 Stabilization by Dilatancy Only

Having considered the case where the localized zone is stabilized by frictional strengthen-

ing alone, we now consider a system with constant (i.e. rate-independent) friction where
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stabilization is provided by dilatancy only. For this case the model simplifies to

ot pc " oy2
o OT < 05

_\E 9 .
ot = Vot By ot (3:38b)

(3-38a)

Mechanical equilibrium combined with constant friction requires that p be a function of ¢
alone, and the shear strength is given by 7 = f, [0, — p(t)].
3.6.1 Linear stability predictions

As with the frictional strengthening only case, Rice er al. [2014]™ analyzed small pertur-
bations away from this uniform shear solution, finding the linearized equation for a strain

rate perturbation 4 with a wavelength A

dn (1 , 1Y . C
o (E exp (—t') — ;) Y1+ ; (3-39)

Here we have defined the dimensionless time t' = (%,/7,)t, E is defined as in equation

(3.10), ) is a dimensionless wavelength defined by

“ A
A=—— | Lag =2mvVamty (3.40)

Lina

and C is a constant set by the initial perturbations in strain rate and temperature

C = 91(0) — (AB70¢)T1(0). (3.41)
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Rice et al. [2014]™°

showed that the large slip solution to (3.39)isy1 — Cast — ooc.
However, for gouge layer thicknesses exceeding a critical width Wy;; the strain rate pertur-
bation will undergo transient growth. This transient growth is interpreted as strain rate
localization. By determining the maximum values of ¥, it was shown that small values of
E correspond to more extreme growth. This can be understood in the stabilization frame-

work since small values of I correspond to small dilatant suctions, less stabilization, and

thus more intense localization.

3.6.2 Localized zone thickness

The solution to the linearized equation (3.39) predicts very large strain rate perturbations,
far beyond the magnitudes at which the linearization is valid, unless the initial strain rate
perturbations are unrealistically small, on the order of 1071% to 1072 of 4, or less (see Rice
et al. [2014]™). To account for nonlinear effects we now solve the full system numerically
foraslip rate V' = 1 m/s, and a gouge layer thickness 4 = 0.5 mm. In all that follows the

strain localization develops from an initial perturbation away from uniform straining

=4, [1 + 6 cos (27%)} , (3.42)

where d = 107, Sincey = 0 is located at the center of the gouge layer this initial per-
turbation is symmetric about the center of the gouge layer. The initial pore pressure and
temperature are assumed to be the ambient values p = p, and T' = T,. Other values of ¢
were tested, as were initial conditions with a temperature perturbation, but the results are
qualitatively the same. Slightly larger peak strain rates are observed for larger initial pertur-

bations.
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Figure 3.12: Gouge dilatancy: A plot showing how the maximum strain rate ¥, evolves for the
path-averaged parameters modeling an intact and a damaged material, for V' = 1m/sand

h = 0.5 mm. As predicted by the linear stability analysis there is an initial transient of intense
strain rate localization followed by decay to homogeneous straining. In contrast with the frictional
strengthening case, the damaged material shows more intense localization.

For strain rate localization stabilized by dilatancy alone we assume that the half-spaces
adjacent to the gouge layer are thermally and hydraulically insulating. This is in contrast to
the results for stabilization by frictional rate-strengthening alone presented in the previous
section that accounted for transport of heat and pore fluid into the half-spaces. We assume
the half-spaces are thermally and hydraulically insulating to match the requirement that p
is independent of y within the gouge layer. The symmetry of the no-flux boundary condi-
tions at the edge of the gouge layer means that our simulations for a finite thickness gouge
layer are equivalent to the periodic domain considered in the companion paper Rice et al.
[2014]™.

As before the maximum strain rate ¥, in the gouge layer is used as a proxy for localiza-

tion, recalling that a higher maximum strain rate indicates more intense localization. The
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maximum strain rate is defined in equation (3.26). Figure 3.12 shows how 7,4, evolves for
the path-averaged parameters modeling intact and damaged material. As predicted by the
linear stability analysis straining localizes within the gouge layer. Even when nonlinear ef-
fects are accounted for the strain rate localization is transient. As in the system where strain
rate localization is stabilized by frictional rate-strengthening alone the maximum tempera-
ture within the gouge layer increases rapidly as straining localizes, and this is accompanied
by a sudden reduction in the shear strength. The spatial distribution of straining is well
described by a Gaussian function throughout the simulations.

We can understand the transient nature of localization by rewriting (3.38a) and (3.38b) as

e 0¥ _A<7'"}/ 02T> op

5—75 = E + Oétha—yz T (3.43)

The high strain rates associated with localization lead to increased thermal pressurization
and a sudden drop in strength, leading us to look at the large slip limit in which the pore

pressure approaches the normal stress

-0, , — —0. .
p—0 ot (3-44)

This leads to
10% aABO*T
55 = - a_y2 (3-45)

The zero flux boundary conditions at the end of the gouge layer and the symmetry about
the center of the gouge layer allow us to deduce that 7" has its maximum valueaty = 0

and minimum valuesaty = =h/2 for the initial perturbation given in equation (3.42).
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Integrating equation (3.38b) we can also show that the maximum and minimum values of
T coincide with the maximum and minimum values of . Thus, using equation (3.45) we
conclude that at large slips the maximum strain rate will decay and the minimum strain rate
will grow. As the maximum and minimum values of 7y approach each other the straining
profile in the layer must return to uniform shear, meaning that strain rate localization will
always be transient. If we had attempted to model transport of pore fluid and heat into
the adjoining half-spaces it may have taken much longer for the limit described in equation
(3.44) to be reached, possibly allowing straining to remain at peak localization for longer
than is observed in Figure 3.12.

Next we quantify the intensity of localization by tracking the peak strain rate as a func-

tion of the two controlling dimensionless parameters

B=p o Lou=2m/auks (3.46)
a

By considering the dimensionless parameters we can reduce the number of parameters we
must vary dramatically. Note that when setting A = 5 the parameter A=A /(27 anty)
from Rice et al. [2014]™ becomes the ratio of the gouge layer thickness and the diffusional
lengthscale Ly;4. Having discussed how we can use the maximum strain rate as a proxy for
intensity of localization, we next use the peak strain rate ,.cq; defined in equation (3.30) to
quantify the width of localized zone at peak localization. Since for stabilization by dilatancy
alone our initial perturbation has a maximum value on y = 0 the peak strain rate Ypeqx
will always occur at y = 0. Ypeqr can be thought of as the maximum value ever achieved by
Ymax (t). Figures 3.13 and 3.14 show how 7,¢q varies with the two dimensionless parame-

ters /' and Lypq4. In agreement with the linear stability predictions, we observe that smaller
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Figure 3.13: Gouge dilatancy: A plot showing how the peak strain rate "ypeak depends on the di-
mensionless parameter £ = 8/(65a) for the dilatancy only system using the path-averaged
parameters modeling an intact and a damaged material, V = 1 m/sand A = 0.5 mm. For both pa-
rameter sets we observe larger peak strain rates for smaller values of F, corresponding to narrower
localized shear zones. For all but the smallest values of I our results are well described by equation
(3.47), and for each parameter set this formula is shown by the dashed black line.

values of I lead to larger values of ,cqx and thus more intense localization.
Except for the very lowest values of F, the simulations can be well fit using the equation
- 2
k h=
Vgea — 3072 50E

5 _L?hde ; (3.47)

as shown by the black dashed lines in Figures 3.13 and 3.14. As F gets very small the peak
strain rate starts to increase more rapidly than predicted by equation (3.47), and as £ — 0
the peak strain rate must go to infinity. A fitting curve is not shown for the damaged pa-
rameters in Figure 3.14 since the value of E for this parameter set is in the range of values

where (3.47) does not accurately describe our results. For this parameter set the peak strain
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Figure 3.14: Gouge dilatancy: A plot showing how the peak strain rate "ypeak depends on the ratio of
the thermal diffusion distance L, = 27T\/m, where t,, is the characteristic weakening time
for thermal pressurization, and the gouge layer thickness h. These simulations were produced using
the path-averaged parameters modeling an intact and a damaged material, V' = 1m/sandh =
0.5 mm. Larger values of L}, corresponding to more efficient thermal diffusion, lead to lower
peak strain rates and thus wider localized zones. The simulations are well fit by the formula given in
equation (3.47), and this curve is shown by the dashed black line. No line is shown for the damaged
parameters since the value of E is sufficiently small that equation (3.47) is no longer accurate.

rate is still proportional to A2, In theory the exponential in equation (3.47) could be re-
placed by a more complicated function of F' that diverges as /' — 0, though we did not
attempt to do this due to the computational expense of simulations for very low values of
E, and the fact that the localized zone thicknesses in this limit will approach the size of in-
dividual grains within the gouge. We emphasize that the exact numerical values in (3.47)
depend on the size of the initial perturbations, though the qualitative picture is the same

for a wide range of initial perturbations.
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Equation (3.47) can be rearranged to give the peak strain rate in dimensional variables

) 152 ( 50¢e ) (3.48)
eak — X T : 3-4
Tpeak 2ath'7w P 50—(1

As in the frictional strengthening only scenario, this formula is independent of the gouge
layer width h, and the peak strain rate is controlled solely by the internal properties of the

gouge material. We can relate this to a localized zone width Wg;; using the relation

2V
Wai = \/j ) (3-49)
T Ypeak

2 2auppc 50e
Wair = 1/ — ) .
dil \/;15VfoA exp (ﬁ%) (3.50)

The localized zone thickness is set by a balance between thermal pressurization, thermal

which implies that

diffusion, and dilatant strengthening.
The formula in equation (3.50) is now used to predict the localized zone width for the

different parameter sets. First for the four parameter sets modeling a depth of 7 km we find

Wintn = 1.32pm , Wiptpe = 1.21 pm, (3.512)

Wiaammn = 1.85 pm, Wagm pa = 1.08 pm. (3.51b)

All four parameter sets predict a localized zone between 1 jum and 2 pum wide. The range
of values is much more compact than for the frictional rate-strengthening only analysis.
Damaged and intact parameters predict comparable thicknesses.

Next we look at the parameters modeling a depth of 1 km, predicting the localized zone
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thicknesses

Wikmint = 92 pm ,  Wigm dem = 14 pm. (3.52)

The predicted localized zone thicknesses are an order of magnitude larger than our predic-
tions for a depth of 7 km, but still on the micron-scale. This is largely due to the sensitive
dependence of W;; on the ambient effective stress o,,.

The damaged parameters predict a thinner zone than the intact material, the exact op-
posite of the dependence predicted in the strengthening-only system. These predictions for
Wi must be used with caution due to the sensitive dependence on €. We have used a pa-
rameter extracted from a single set of low strain rate experiments, but € may be different at
higher strain rates. An order of magnitude increase in € leads to localized zone predictions
on the tens of centimeters wide.

The formula for Wg;; given in equation (3.50) is very different than the linear stability
prediction from Rice et al. [2014]™ for the critical gouge layer thickness above which tran-
sient strain rate localization is expected. This means that the linear stability analysis cannot
be used to make quantitative predictions for the localized zone thickness when localization
is stabilized by dilatancy alone.

Since the shear strength evolution is linked to the onset of localization we also track the
strain Ypeqr at which the peak strain rate is achieved, where the peak strain rate is defined in
equation (3.30). Figures 3.15 and 3.16 show Ypeqr /Y4 as a function of E and Lypq. The criti-
cal strain Ypeqr increases with € but is relatively insensitive to changes in Ly provided that
straining localizes to a zone much thinner than the gouge layer thickness. Comparing this
dependence on ¢ with the results from the previous section we see that, for both frictional

rate-strengthening and dilatancy, a thicker localized zone corresponds to a larger value of
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Figure 3.15: Gouge dilatancy: A plot showing how 7peqk, the strain at which peak localization oc-
curs, depends on E. These simulations were done using the path-averaged parameters for an intact
and damaged material, V' = 1 m/sand i = 0.5 mm. Our results show that when E is small enough
that transient strain rate localization occurs Ypeqk is an increasing function of FE, with small values
of E leading to small values of Ypeak- This means that the most intense localized zones develop very
rapidly. Very little difference is observed between the two parameter sets, which can be explained
by noting that .. is relatively insensitive to changes in Lp4, as shown in Figure 3.16.

Vpeak; @ weaker localization limiting mechanism not only allows a narrower localized zone

to form, it also allows this zone to develop faster.

3.6.3 Strain vs. strain rate localization

It is virtually impossible to observe in-situ strain rate profiles from seismic events or high-
velocity friction experiments, with at best only the final strain pattern being observable.
We now study the final strain profiles by integrating %(y, t) to find the total strain y(y).
Due to the transient nature of the localization for the dilatancy only system the final strain

profile will be controlled by the amount of time spent straining in a localized fashion versus
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Figure 3.16: Gouge dilatancy: A plot showing how 7,,cq, the strain at which peak localization oc-
curs, depends on the ratio of the thermal diffusion distance Ly = QW\/m, where t,, is the
characteristic weakening time for thermal pressurization, and the gouge layer thickness h. These
simulations were done using the path-averaged parameters for an intact and damaged material,

V = 1m/sand h = 0.5 mm. Our results show that 7y, is an increasing function of Ly, though
when the localized zone width is much smaller than the gouge layer thickness ”ypeak/’yw does not
depend strongly on L.

the amount of time spent straining in a more uniform state.

Figure 3.17 shows the final strain profile for three total slips of 1 cm, 10 cm, and 100 cm.
These results were produced using the path-averaged parameters for a damaged material,
V = 1m/sand h = 0.5 mm. We observe a reduction in strain localization with increasing
slip. This is because, for V't >> h, the transient strain rate localization lasts for a small frac-
tion of the event and the gouge spends the majority of the simulation shearing uniformly.
This leads to final strain profiles with very little strain localization. Thus, even when uni-
form straining is initially unstable, localization may not be observed in final strain profiles if

a large quantity of deformation occurring at the end of the event is approximately uniform.
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Figure 3.17: Gouge dilatancy: A plot of the final strain normalized by the average strain in the layer
Yo, for slips of 1 cm, 10 cm and 100 cm. These results were generated using the path-averaged pa-
rameters for adamaged material, V' = 1 m/s,and h = 0.5 mm. We observe a decrease in strain
localization with increasing slip. This can be understood by considering the transient nature of the
localization; longer events will spend more time straining uniformly, and thus the effects of the tran-
sient strain rate localization will be less pronounced in the final strain profile.

3.7 Inertial effects in the gouge layer

3.7.1  Model including inertia

] argued that

In this section we study inertial effects within the gouge layer. Rice [2006
inertial effects across the gouge layer are negligible due to the short distances over which
hydraulic and thermal diffusion act. Following this we assumed that deformation within
the gouge layer could be regarded as quasi-static, an assumption we now test in this section.
The inertial effects considered here are different from the inertial effects in the bulk ma-

terial on either side of a fault associated with dynamic rupture. Since we consider kinemat-

ically applied slip, in which the motion of the two half-spaces is fixed to a uniform slip rate
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at £V//2, we have implicitly neglected unloading waves that would propagate into an elas-
tic solid adjacent to the gouge layer.
Accounting for inertial effects within the gouge layer the equation for conservation of

linear momentum becomes

du_ o (559

where p is the density of the gouge material, and w is the local slip rate. This replaces equa-
tion (3.1), which modeled quasi-static deformation within the gouge layer. Differentiating
equation (3.53) with respect to y we can express this in terms of the strain rate 7y

oy 0%r
’OE = 8_y2’ (3.54)

recalling that the strain rate is defined as,

. ou
¥ = oy (3.55)

Using the same scalings as before, given in equation (3.8), the nondimensional form of

equation (3.54) is
207 O eV
ot ayIQ ’ (Gn - pa) ’

(3.56)

where primes indicate dimensionless variables. The dimensionless parameter I quantifies
the effect of inertia in the gouge material. Interestingly the definition of I does not depend
on the thickness of the gouge layer or the two diftusivities, and is a balance between an in-

ertial stress and the ambient compressive effective stress. For the parameters in Table 3.1 and

the slip rate V' = 1 m/s we find I = 0.0047.
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This inertial formulation of the problem is compatible with the kinematically applied
slip condition (3.25), and thus the gouge material accommodates the correct amount of

straining. To show this we integrate equation (3.54) with respect to ¥ to find

9 /h/ : [af} "2
= Ydy | = |5 : (3:57)
at < —h/2 ay —h/2
If the half-spaces adjacent to the gouge layer are in uniform motion, and thus have no
change in strain, then the right hand side of this equation will vanish and the total strain

rate accommodated by the gouge layer will not change with time. Assuming that the initial

state of shearing is uniform, ¥ = 4, for |y| < h/2, we recover condition (3.25)

h/2
/ Sdy =V, (3:58)
—h/2

This means that the results from the model accounting for inertial effects can be directly
compared with the results that assumed mechanical equilibrium, allowing us to quantify
the effects of inertia. For small values of I we expect inertial effects to be negligible and the
two models to agree very well.

We now solve the frictional rate-strengthening only system for a range of values of / and
compare with the results generated by the model that assumed mechanical equilibrium.
As in previous sections we use the maximum strain rate ¥, in the layer as a function of
time as a proxy for localization, with larger values of 4,4, indicating a thinner deforming
zone. Figure 3.18 shows 7,4, as a function of time for the nominal parameters describing
a damaged material, a gouge layer width h = 0.5 mm,V = 1m/s,and] = 10715,

I = 107Yand I = 107%%. For I = 10! the inertial and mechanical equilibrium
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Figure 3.18: Rate-strengthening friction: A plot showing how maximum strain rate evolves in the in-
ertialmodel for I = 107%5, 10~ and 10~°. This plot was created using the nominal parameters
modeling adamaged material, h = 0.5mmand V' = 1 m/s. For comparison the solution when
mechanical equilibrium is assumed is shown by the dashed black line. For the lowest value of [ the
inertial and equilibrium solutions agree almost exactly, while for the larger values we see deviation
away from the equilibrium solution.

models agree very well, but for I = 10~Yand I = 1079 the inertial results begin to differ
from the mechanical equilibrium solutions. More noticeable differences are observed for
the largest value of 1.

To quantify these inertial effects we now track the peak strain rate 7,¢qr and the time
tpeak at which this peak strain rate occurs as a function of I. This is shown in Figure 3.19
for the nominal parameters modeling intact and damaged material, A = 0.5 mm, and
V' = 1 m/s. To allow easy comparison between the two parameter sets the results are nor-
malized by the value from the mechanical equilibrium model; a value of unity means that
the results from the mechanical equilibrium and inertial models agree exactly. As seen in

the simulations shown in Figure 3.18, for very small values of I the two models agree almost
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Figure 3.19: Rate-strengthening friction: A plot showing how the peak strain rate ﬁpeak and time

L peak at which this peak strain occurs vary with I for the nominal parameters modeling intact and
damaged material, a gouge layer thicknessh = 0.5mm, andasliprate V' = 1 m/s. Toallow
easy comparison between the two parameter sets all values of "ypeak and t¢q are normalized by
the values found when mechanical equilibrium is assumed. These mechanical equilibrium values are
indicated by a superscript M E. Above I = 10~ L inertial effects become important and the two
models diverge. Inertial effects lead to two key differences. The value of "ypmk is decreased, which
corresponds to a wider localized zone; the time ¢ 1, at which peak localization occurs is larger
indicating that the localized zone takes longer to develop.

exactly, but as I increases inertia becomes important and the two models diverge. Inertial
effects within the gouge layer lead to lower values of *,cqi and larger values of ¢ ¢4, indi-
cating that inertial effects lead to wider localized zones that take longer to develop.

Using the results shown in Figures 3.18 and 3.19 we choose a value of I = 0.1 as a cutoff
above which inertial effects become important. An argument could be made for a slightly
larger or smaller critical value of I but this appears to be the correct order of magnitude.

This critical value allows us to define a critical slip rate

Og
V.=/ . .
100, (3.59)
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Inertial effects will become important when slip rates exceed this critical value, and will act
to limit localization.

Here we chose I = 0.1 as an estimate of the critical value based on simulations per-
formed using two different parameter sets. A fuller analysis would find the critical value of
I for a much wider range of parameters, showing how it varies as the intensity of strain rate

localization varies.

3.7.2  Implications for high-velocity friction experiments

We now use the critical slip rate V, to comment on the role of inertia during high-velocity
friction experiments. These experiments are typically performed using a rotary shear con-
figuration and allow experiments to be performed at seismic slip rates, albeit at compressive
stresses much lower than those present during seismic events*»*+77*"", Highly localized
shear zones are commonly observed in high-velocity friction experiments. A fuller discus-
sion of these observations can be found in the introduction to Rice et al. [2014]™°.

To estimate V,, for conditions typical in high-velocity friction experiments we use o, =
0.6 MPa and assume that the initial pore pressure is negligible compared with this nor-
mal stress. The gouge density appropriate for laboratory conditions is assumed to be the
same as that given in Tables 3.1 and 3.2. Combining these values leads to a critical slip rate
of V., = 1.46 m/s. This value of V is higher than the ~ 1 m/s slip rates normally used in
high-velocity shear experiments, and thus we conclude that inertial effects within the gouge
layer are not playing a significant role in limiting localization in high-velocity friction exper-

iments.

Additional simulations in which the half-spaces are undrained and adiabatic show that
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when pore pressures have risen to a significant fraction of the normal stress the appropriate
definition of / may be based on the current effective stress not the ambient effective stress.
Motivated by this we make an estimate for V. based on a much lower effective stress o, =
0.15 MPa, which is intended to model a gouge with a compressive stress o;,, = 0.6 MPa
and a pore pressure that has risen to seventy-five percent of the normal stress. In this case
we find V. = 0.73 m/s. Thus, for this scenario we would predict that inertial effects within
the gouge are not negligible when the applied slip rate is 1 m/s. However, since the critical
slip rate V. is only exceeded by a small amount the actual limiting of localization by inertia
would probably not be dramatic. Figure 3.19 shows that significant localization limiting

only occurs once I > 0.3.

3.7.3 Implications for natural faults

Next we discuss the importance of inertial effects during earthquakes. Consider a fault at
adepth D where the depth is measured in kilometers. The effective overburden stress is
(p — pw)gD, assuming hydrostatic fluid pressure. Typically p = 2.8p,, so the gradient in
overburden effective stress is 18 MPa/km and @ = 18D MPa. This is consistent with the
values of &, we chose in the parameter sets given in Tables 3.1 and 3.2. For a depth of 1 km
we set 0, = 18 MPa, and for a depth of 7 km we set 7, = 126 MPa.

Taking the values in Table 1 we can calculate a critical slip rate V, = 21.2m/sfora
depth of 7 km. Since the hydraulic parameters do not enter the formula for V this value
is the same for all four parameter sets. This is compared with a typical coseismic slip rates of
1 m/s, justified as an average earthquake slip rate in Rice er al. [2014]™. Since V, is much

186

larger than typical coseismic slip rates we conclude that, as predicted in Rice [2006]*, iner-
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tial effects within the gouge layer are negligible at seismic depths. Using our formula for V.
we can calculate what depth D must be exceeded for inertial effects to be negligible. Setting
Ve = 1 m/s we find that this critical depth is just 15 meters, and thus inertial effects will be
negligible throughout the seismogenic zone.

So far the analysis in this section has compared V. to a typical coseismic slip rate of 1 m/s.
However, near the tip of a dynamically propagating fracture the slip rates will be signifi-
cantly larger. The peak slip velocity V' = 300 m/s from Noda et al. [2009]**, which is
taken as a typical peak slip rate during dynamic rupture, is far in excess of our prediction for
Ve. This may mean that shear localization is initially limited by inertial effects even though
they are unimportant throughout the vast majority of the rupture. Using our formula for
0, as a function of depth we find that this picture, in which inertial effects are important
near the crack tip yet unimportant for the majority of a rupture, is valid for all depths span-
ning the seismogenic zone.

Interestingly Noda et al. [2009]" noted that the slip rates above ~ 100 m/s persist for
only 1 ps, which corresponds to a slip of just 100 szm. Comparing this small slip with the
results in Section 3.5, which showed that a finite strain is required for the localized zone to
develop, we conclude that near the tip localization may not have time to fully develop.

A better description of localization near the tip of a dynamically propagating fracture
that balances the high slip rates, small slips and inertial effects is still required. It may be
possible to use an analysis near the crack tip to predict a thickness of the deforming zone
when inertial effects become unimportant and shear of the gouge material is well described
by the model in Section 3.2. This could then be used as an input for the model in Section

3.2, and the gouge layer thickness i would be reinterpreted as the thickness of the deform-
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ing zone when inertial effects become unimportant. Of course there may be some scenarios
in which negligible localization occurs near the tip and the initial width of the deforming
zone will be equal to the gouge layer thickness.

As mentioned in the previous subsection, when pore pressures have risen to a significant
fraction of the normal stress the appropriate definition of / may be based on the current
effective stress not the ambient effective stress. We highlight two scenarios when this dis-
tinction may be important.

Simulations that account for thermal decomposition show that the onset of the reaction
is accompanied by a large pore pressure increase that can drive the gouge layer into a regime
where the pore pressure exceeds the normal stress®7. As the pore pressure approaches the
normal stress inertial effects will become important within the gouge layer and will act to
widen the deforming zone. Since this widening will spread frictional heating over a wider
zone, which will lead to slower pore pressure rises at the location of peak pore pressure,
delocalization driven by inertial effects may be one mechanism to stop the maximum pore
pressure exceeding the normal stress.

The other scenario in which inertial effects may become important as pore pressures ap-
proach the normal stress is near the trailing edge of a dynamically propagating rupture. We
can estimate the minimum effective stress 7,,i, (t) in the late stages of rupture using the
Mase-Smith-Rice slip on a plane solution. Using the asymptotic expansion for the comple-
mentary error function valid at large slips this leads to

5_a - %7 (360)

where 0 = V't is the total slip accommodated across the gouge layer. Defining I, ina
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similar fashion to the definition of I but using the current minimum effective stress 0,

5\ /4
qu(}z—) I. (3.61)

we find,

The four parameter sets in Table 3.1 predict values of L* between 1.69 mm and 57.7 mm.
Using a typical seismic slip of one meter this predicts values of /., between a factor of
2.71 and a factor of 6.57 larger than /. For a larger slip of ten meters this range of values
increases to 4.83 and 11.68. These values of 1., /I mean that inertial effects may become
important near the trailing edge of a rupture for small values of 7,, which correspond to
shallow events, and small values of L*. However, the range of values for L* means that this
behavior should not be expected for all earthquakes. Since inertial effects act to limit local-
ization, and having shown the link between localization and dynamic weakening, we hy-
pothesize that the gradual onset of inertial effects at the trailing edge of a rupture may lead
to a slowdown in dynamic weakening. Without further work it is hard to quantify how
much strengthening this mechanism could lead to at the trailing edge, and if this would be
a viable mechanism to promote ruptures that propagate as self-healing pulses (as opposed

to crack-like ruptures).

3.7.4 Links with granular flow

Discrete simulations of granular flows commonly quantify the effects of particle inertia

using a dimensionless parameter known as the inertia number**77, which is defined as
. Pg
Igran. = ’Yd\ / F (362)
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Here p, is the density of the grains, P is the applied pressure, ¥ is the applied shear rate,
and d is the grain size. Assuming that the density of the grains is equal to the density of

the porous material per unit reference volume, an assumption that is justified for a gouge
material with a low porosity, and that the pressure is equivalent to the ambient compressive

stress 0, we can write our dimensionless parameter / as

d
I = %lgmn.. (3.63)

Our parameter / is equal to the inertia number multiplied by the ratio of the grain diame-
ter and the gouge layer thickness. When shear is highly localized it may be more appropriate
to use the current width of the deforming zone, W,y when localization is stabilized by
frictional rate-strengthening alone, instead of the initial gouge layer thickness . This corre-
sponds to setting ¥ = V/W, ;s instead of ¥ = V//h in the definition of 1,4, . For either
choice we expect g4, to be at least an order of magnitude greater than /.

We now compare the point at which inertial effects across the gouge layer, as described
by equation (3.54), become important with the point at which the inertia of individual
grains becomes important. Da Cruz et al. [2005]°* cites the critical value /4,4, = 0.1 as
the point at which the inertia of individual grains becomes important. Our simulations
show that inertial effects across the gouge layer become important when / > 0.1. Since
I4ran. is at least an order of magnitude larger than I we deduce that the inertia of individual
particles should become important before the inertial effects across the gouge layer become
important. However, without determining how the critical value of I inferred from Figure

(3.19) varies with the gouge properties we cannot be sure that this conclusion is valid for all

parameter choices.
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There are some drawbacks with the granular simulations used to find the critical value
of Igyqp.. First the granular simulations typically use particles that are roughly equal in size.
This in stark contrast with the particle size distribution for the Punchbowl fault found in
Chester et al. [2005]*, which showed that in a thin section the particle density was pro-
portional to d—2, where d is the grain size, for a d between 30 nm and 70 pum. This may
mean that in a three-dimensional packing the particle density is proportional to d . An-
other problem is the shape of the particles. Granular simulations frequently use discs in
two-dimensional simulations, and sometimes spherical particles, while real fault gouge can
have a much more diverse set of particle shapes. It is unclear if these considerations will dra-
matically alter the critical value of /4, = 0.1 at which the inertia of individual particles
becomes important.

Our predictions for the localized zone thickness are not valid when the inertia of individ-
ual grains becomes important, though several options exist to create a new prediction. The
first option is to linearize the friction laws in Da Cruz et al. [2005]°* that account for the
inertia of individual grains to find effective values of f, and (a — b), as suggested in equa-
tion (5) of Rice et al. [2014]™. These effective values can then be used in the formulae for
the localized zone thickness provided in this paper. Another option is to use a higher order
continua or gradient theory that models the inertia of individual grains, and examples of
how these models interact with thermal and pore fluid effects can be found in Vardoulakis

[2002]*° and Sulem er al. [2011] .
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3.8 Discussion

3.8.1  Frictional rate-strengthening only

Our simulations predict micron-scale strain rate localization in a fluid-saturated gouge ma-
terial. The strain rate profile has a Gaussian shape throughout the simulation, the same
form assumed in previous models for thermal pressurization +*>*>*. The excellent fit be-
tween the Gaussian function and our numerical simulations allows us to infer a width for
the localized straining zone, which is taken to be twice the root mean square width of the
Gaussian. Tracking this width as a function of the gouge layer thickness & we find that
straining localizes to a zone that has a very weak dependence on the gouge layer thickness
h. This means that the thickness of the localized zone is controlled by the gouge properties
not the initial width of the gouge layer.

The nondimensionalization in subsection 3.2.5 shows that for localization stabilized by
frictional rate-strengthening alone there are only three dimensionless parameters. One pa-
rameter quantifies the rate-strengthening component of the friction law and the other two
compare the diffusion distances for thermal and hydraulic diffusion on timescales compara-
ble to the characteristic weakening timescale for thermal pressurization with the gouge layer
thickness. A parameter sweep over these three parameters allows us to determine the local-
ized zone thickness at peak localization as a function of the gouge properties. The results

are shown in Figures 3.5, 3.6 and 3.7, and our simulations are well fit by

b 69— b (A + vam)?

Y fo+2(a—0) v Do

The localized zone thickness is set by a balance between frictional rate-strengthening, ther-
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mal pressurization and hydrothermal diffusion. Comparing this formula with the linear
stability prediction from Rice et al. [2014]™ we see one crucial difference. In the linear
stability prediction hydrothermal diffusion enters through the sum of the diffusivities

Qpy + oy, while the results of our simulations are better fit by the Rice [2006]™° lump
hydrothermal diffusivity o = (\/oz_hy + \/@) ? from the Mase-Smith-Rice slip on a plane
solution. Since nonlinear terms are properly accounted for and the localized zone thick-
ness is tracked from the initial instability all the way to peak localization, we consider the
formula in this paper to be a better predictor for localized zone thickness than the formula
given in Rice et al. [2014]™, which was based on a linear stability analysis. However, the
two formulae produce very similar predictions, and in the limit where one diffusivity is
much greater than the other the two formulae differ only in the constant fore-factor (72 in
the linear stability analysis and 6.9 in the nonlinear simulations).

Using the parameters from Rempel and Rice [2006]™°

modeling a depth of 7 km and
frictional data from Blanpied et al. [1998]** our formula for W, predicts localized zone
thicknesses between 4 f1m and 44 pxm. We also developed a set of hydraulic parameters
intended to model a depth of 1 km, a typical intersection depth for boreholes drilled into
active faults. At shallower depths thermal pressurization is less efficient and hydraulic diffu-
sion is more efficient, leading us to predict wider localized zones. For an intact material we
predict a localized zone thickness of 31 y4m, and for a damaged material, where damage is

modeled as in Rice [2006]"°

, we predict a thickness of 217 um. These values are very sim-
ilar to those predicted in Rice er al. [2014]™. A comparison between our predictions and
observations from laboratory and field studies, and a discussion of other factors that that

could alter our predictions, can be found in Rice et al. [2014]™.
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The discussion above assumes that peak localization is achieved during a seismic event.
However, this may not always be the case. Figures 3.9 and 3.10 show 7,cq, the nominal
strain at which peak localization occurs, as a function of the gouge properties. A typical
value for Ypeak /Yuw is 0.5. If the nominal strain is less than Ypeqr, as will be the case for small
slips or wide gouge layers, then the localized zone will not have time to fully develop. This
will mean that final strain profiles will be thicker than the predictions from our formula for

W)

3.8.2 Dilatancy only

For localization limited by dilatancy alone we see rapid strain rate localization, followed by
a decay back to uniform shear. As for strain rate localization stabilized by frictional rate-
strengthening alone, the localized zone has a Gaussian shape throughout the simulation.
The system is controlled by just two dimensionless parameters, one modeling the strength
of dilatancy and the other modeling the strength of thermal diffusion. Varying these pa-

rameters independently we find a formula for the localized zone thickness Wy, at peak lo-

2 2auppc 50e
Wair = 4/ — ) .6
dil \/;15VfoA exp (ﬁ%) (3.65)

As before the width of the localized zone is independent of the gouge layer thickness, and

calization

Wi is set by the gouge properties. Using this formula and the parameters modeling a
depth of 7 km (see Table 3.1) we predict localized zone thicknesses between 1 and 2 im.
This range of values is lower than those predicted for frictional rate-strengthening alone,
suggesting that dilatancy is less effective at limiting strain rate localization (if a wider local-

ized zone is equivalent to more effective localization limiting). Our predictions fall into
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a more compact interval than our predictions for W, ¢. This is because the localized zone
thickness is less sensitive to changes in hydraulic parameters than the frictional rate-strengthening
system, and the hydraulic parameters are among the least constrained parameters in the
system. We also predicted localized zone thicknesses at a depth of 1 km, with this depth in-
tended to model a typical intersection depth for boreholes drilled in active faults. We pre-
dict Wgi; = 54 pm for an intact material, and Wy;; = 15 pum for a damaged material.
Damaged parameters lead to thinner localized zones due to the increase in the storage ca-
pacity /3. A larger storage capacity leads to less efficient limiting of localization by dilatant
suctions. This is in contrast to the frictional rate-strengthening results that predicted wider
localized zones for the damaged parameters.

The linear stability analysis in Rice er al. [2014]™ predicts transient growth followed by
decay back to uniform shearing. However, the transient growth quickly leads to strain rate
perturbations that violate the linearization assumptions. Our simulations properly account
for nonlinear terms and qualitatively reproduce the transient growth predicted by the linear
stability analysis. However, the quantitative predictions from the linear stability analysis do
not agree with the widths inferred from our numerical simulations, and the formulae for
Wi predicted by the two methods have a very different structure. The linear stability pre-

dictions from Rice et al. [2014]™°

provide a poor prediction of the localized zone thickness
because the linearized model is applied beyond the point at which the linearization becomes
invalid.

Finally we studied how the transient strain rate localization is expressed in final strain

profiles. Figure 3.17 shows the final strain profile for three different slips for the path-averaged

parameters modeling a damaged material, V' = 1 m/sand h = 0.5 mm. For slips that are
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large compared to the gouge layer thickness the majority of time will be spent shearing the
gouge uniformly, leading to final strain profiles with little noticeable strain localization. As
with the previous discussion of a localized shear zone that does not fully develop, this is an-
other example of how final strain profiles can look like shearing was uniform even when
uniform shearing is unstable. This difference between strain localization and strain rate

localization must be considered when interpreting final strain profiles.

3.8.3 Localization and dynamic weakening

Rempel and Rice [2006]™° studied the shear strength evolution for a uniformly sheared
gouge layer undergoing thermal pressurization. They verified that the initial stages of defor-
mation are well described by the solution of Lachenbruch [1980]" for uniform shear under
undrained and adiabatic conditions, and the later stages of deformation are described by
the Mase-Smith-Rice slip on a plane solution. Using this framework we studied the impact
of strain rate localization on shear strength evolution.

Figure 3.8 shows that, for localization stabilized by frictional rate-strengthening alone,
the onset of strain rate localization is accompanied by an acceleration in dynamic weaken-
ing, with the most rapid dynamic weakening coinciding with the most rapid thinning of
the localized zone. As straining localizes the frictional heating is focused into a narrow zone
leading to more efficient thermal pressurization. The early stages of deformation are still in
good agreement with the uniform shear solution from Lachenbruch [1980]*7. During this
period straining is localizing but is far from peak localization. After peak localization the
shear strength is well described by the Mase-Smith-Rice slip on a plane solution. Our solu-

tions are all for a fixed slip rate V. The results for strain rate localization stabilized by dila-
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tancy alone also show this link between the onset of localization and accelerated dynamic
weakening.

We found that the most rapid weakening corresponds to the time when the localized
zone is thinning most rapidly. This means that the strain until peak localization, Ypeqk,
controls the slip at which the most rapid weakening occurs. For strain rate localization sta-
bilized by frictional rate-strengthening alone 7,cq is an increasing function of (@ — b) and
a decreasing function of av,y, and av,. Values of Ypeqr / Vi are typically around o.s.

For strain rate localization stabilized by dilatancy alone 7peqy, is relatively insensitive to
changes in the thermal diffusion lengthscale L4, provided that the gouge layer thickness
is not comparable to the localized zone thickness. The critical strain peqy is an increasing
function of € so, as for the frictional rate-strengthening only system, a more effective local-
ization limiting mechanism not only leads to wider localized shear zones, but also slows the
rate at which strain localization occurs.

Since the most rapid dynamic weakening occurs at strains comparable to Ypeqr, if the
gouge layer is sufficiently thick or the slip in an event is sufficiently small then the localized
zone may not fully develop. If this occurs then we expect the strength evolution to be far
smoother than the example shown in Figure 3.8. One caveat is that it may not be possible
for slip to cease during the accelerating dynamic weakening that occurs just before a fully

developed localized zone is generated.

3.8.4 Maximum temperature rise

Strain rate localization also has a pronounced effect on the maximum temperature. Figure

3.11 shows the maximum temperature rise for the localized shear solution and uniform shear
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solution when localization is stabilized by frictional rate-strengthening alone. For the initial
stages of deformation the maximum temperature rise is well described the undrained and
adiabatic solution from Lachenbruch [1980]"7. However, as the strain rate localizes the
frictional heating is focused into a narrow zone, leading to a large increase in the maximum
temperature rise. After straining has localized the maximum temperature rise mirrors the
solution for slip on a plane, but will never converge to this solution. For the simulation
shown in Figure 3.11 the maximum temperature rise for the localized shear solution is about
three times larger than that of the uniform shear solution after a slip of 10 mm, a difference
of ~ 580 °C. Such a dramatic increase temperature rise has obvious implications for the
onset of melting and the triggering of other temperature controlled dynamic weakening
mechanisms such as thermal decomposition. Varying the gouge properties we find that the
most rapid rises in the maximum temperature correspond to the lowest values of W4, as
would be expected since lower values of W, means straining is confined to a narrower
zone.

While the maximum temperature rise for the localized shear solution is much larger than
that of the uniform shear solution, the temperature anomaly that might be observed in
fault drilling studies would be smaller. This is because the temperature rise observed during

drilling is controlled by the total dissipation

D
/O (5)d5, (3.66)

where 0 is slip and D is the total slip in an event. The rapid weakening that accompanies
localization means that the total dissipation for the localized shear solution will be less

than the total dissipation for the uniform shear solution, leading to a lower temperature
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anomaly.

We can understand the apparent contradiction between a higher maximum temperature
rise and a lower temperature anomaly by realizing that the extremely small width of the lo-
calized zone means that the maximum temperature rise will rapidly decay after the cessation
of slip. The timescale for decay of the localized peak in temperature can be estimated by
W7, ;/oun. Using our predictions of localized zone thickness we predict decay timescales
between 0.022 and 3.6 milliseconds. The very short decay time may be important when
estimating the maximum temperature rise on a fault using the thermal maturity methods
described inPolissar et al. [2011]"°, with narrower localized zones corresponding to a larger

estimate for the temperature rise.

3.9 Conclusions

In this paper we have used numerical simulations to study strain rate localization in a fluid-
saturated gouge material undergoing thermal pressurization. Two stabilizing mechanisms
were considered to prevent the deformation collapsing onto a mathematical plane, fric-
tional rate-strengthening and dilatancy. We predict a localized zone thickness, which is
compared with the predictions for localized zone thickness from the companion paper Rice
et al. [2014]™, and show the impact localization has on the maximum temperature rise and
shear strength evolution.

For frictional rate-strengthening alone the strain rate profile has a Gaussian shape through-
out the deformation allowing us to infer the width of the localized zone W, ¢. The peak
localized zone thickness is found to be almost independent of the gouge layer thickness.

A parameter sweep leads to a formula for the localized zone thickness as a function of the
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gouge properties, and the thickness is set by a balance between thermal pressurization, hy-
drothermal diffusion and rate-strengthening friction. For parameters modeling a depth of
7 km we predict localized zone thicknesses between 4 pim and 44 pm.

For dilatancy alone we also predict a localized zone thickness that is independent of the
gouge layer thickness. A parameter sweep leads to a formula for the localized zone thickness
Wi as a function of the gouge parameters, with the formula given in equation (3.50). Us-
ing this formula we predict localized zone thicknesses between 1 um and 2 pum at a depth
of 7 km. The most sensitive dependence of Wy is on &, which models the magnitude of
dilatancy.

Strain rate localization has a dramatic effect on the strength and temperature evolution
of the gouge layer. As straining localizes the frictional heating is focused into a narrower
zone, leading to a much larger temperature rise than that predicted if localization is ne-
glected. This focusing of frictional heating also leads to rapid thermal pressurization and
the development of a localized shear zone coincides with a significant strength drop.
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Finally, we tested the hypothesis in Rice [2006] ™ that inertial effects across the gouge
layer will be unimportant during shear. We found that in general inertial effects across the
gouge layer will be unimportant in both real earthquakes and high-velocity friction exper-

iments, but may play a role very close to the tip of a dynamically propagating rupture or

when the pore pressure approaches the normal stress on the fault.
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Strain localization driven by thermal

decomposition during seismic shear

4.0 Abstract

Field and laboratory observations show that at seismic slip rates shear deformation is of-

ten extremely localized, with a typical deforming zone width on the order of a few tens of

22



microns. This extreme localization can be easily understood in terms of thermally driven
weakening mechanisms such as thermal pressurization and thermal decomposition. A zone
of initially high strain rate will experience more shear heating and thus weaken faster, mak-
ing it more likely to accommodate future deformation. Rice et al. [2014]™ and Platt et al.

1%°¢ showed how a combination of analytic and numerical methods could be used to

[2014
predict the localized zone thickness when dynamic weakening is controlled by thermal pres-
surization, finding localized zone thicknesses between 4 and 44 fum for representative fault
gouge parameters. In this paper we extend that work to account for thermal decomposi-
tion. A linear stability analysis predicts a localized zone thickness that is tested using numer-
ical simulations. We investigate how the onset of thermal decomposition drives additional
strain localization, how the endothermic thermal decomposition reaction and thermal dif-

fusion combine to limit the maximum temperature, and how the pore fluid released by the

reaction accelerates dynamic weakening.

4.1 Introduction

Field studies of fault zones show a hierarchical structure, with a fault core composed of ul-
tracataclasite and fault gouge sitting within a broader damage zone. Further investigation
reveals a zone of highly localized shear on the order of 10 — 300 y#m wide nested within the

fault core™

5% These field observations are consistent with laboratory observations from
high-velocity rotary shear experiments, which reveal micron-scale strain localization at seis-
mic slip rates of order 1 m/s. In experimental deformation tests performed at a slip rate of

1m/s on a dry, natural clay-bearing fault gouge, Brantut et al. [2008]* identified a zone of

darker material ~ 1 — 10 pum wide that, due to the lack of other indicators of deformation
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elsewhere in the sample, was interpreted as the main slipping zone in the experiment. In
similar deformation experiments performed under wet conditions on similar natural fault
zone materials, Kitajima et al. [2010]** showed that a 100 pum thick zone of extremely fine
grained material with a strong foliation forms at seismic slip rates. This zone is thought

to have accommodated the majority of deformation in the experiment, and the foliation
may indicate that the width of a single localized shear zone is much smaller than 100 ym. A
more detailed discussion of these observations and further examples of micron-scale strain
localization can be found in the introduction to Rice et al. [2014]™.

In general, strain localization should be expected in gouge undergoing thermally driven
dynamic weakening. If a region is straining faster then it will experience more shear heating;
more shear heating leads to faster weakening; weaker regions of the gouge layer will be more
likely accommodate future deformation. In fluid-saturated fault rocks, two distinct ther-
mally driven dynamic weakening mechanisms can be considered: thermal pressurization
of native pore fluid and thermal decomposition. Thermal pressurization is due to ther-
mal expansion of the pore fluid and pore volume as the fluid-saturated gouge material is
heated. If the heating occurs faster than the pore fluid can drain from the gouge then the
pore pressure will increase leading to dynamic weakening 7'+, Thermal decomposition
corresponds to the chemical breakdown and devolatilisation of hydrated or carbonated
minerals, such as clays or calcite, which are often present in faults. Laboratory experiments
have revealed that several devolatilisation reactions can occur within timescales of a few sec-
onds during friction experiments performed at seismic slip rates (~ 1 m/s); this was shown
for the decomposition reaction of calcite?”, siderite*®, antigorite™’, kaolinite*?, dolomite*®

and gypsum®. In the crustal seismogenic zone these decomposition reactions are typically
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endothermic and at a fixed pressure the reaction products occupy a larger volume than the
reactants. The combination of these two effects implies that the onset of rapid thermal
decomposition leads to an increase in the pore pressure and a plateau in the maximum tem-
perature, as shown theoretically in Sulem and Famin [2009]*7, Sulem et al. [2009]** and
Brantut et al. [2010]%, and experimentally in Brantut et al. [2011]*.

For thermal pressurization alone, Rice et al. [2014]™ used a linear stability analysis to
predict how the localized zone thickness depends on the gouge properties. This analy-
sis was complemented by the numerical simulations, which went well beyond the linear
regime, presented in Platt et al. [2014]™°. For strain rate localization stabilized by frictional
rate-strengthening alone the localized zone thickness is set by a balance between thermal
pressurization, hydrothermal diffusion and frictional strengthening. Using hydraulic and
thermal parameters from Rempel and Rice [2006]™°, which model a depth of 7 km as a
typical centroidal depth for a crustal seismogenic zone, and friction data from Blanpied et
al. [1998]?#, they predicted that the localized zone is between 4 and 44 j1m wide, with the
smaller number assuming parameters based on experiments on undamaged gouge and the
larger number representing an estimate of the effect of damage at the onset of rapid shear

1%%¢ also showed that strain localization has a dra-

(e.g. microcracking). Platt et al. [2014
matic effect on the temperature and strength evolution of the gouge. As straining localizes
the frictional heating is focused into a very narrow zone leading to an acceleration in dy-
namic weakening and a temperature rise much larger than that predicted when strain rate
localization is not accounted for. In this paper we extend the work in Rice er al. [2014]™

and Platt et al. [2014]™° to account for thermal decomposition. A linear stability analysis

leads to a prediction for the localized zone thickness as a function of fault temperature, and
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these predictions are tested using numerical simulations. We also study how thermal de-
composition combines with thermal diffusion to limit the maximum temperature rise, and
show that the onset of thermal decomposition leads to an acceleration in dynamic weaken-
ing.

The width of the deforming zone during seismic shear, which this paper attempts to
constrain, is of crucial importance in theoretical models of thermally driven dynamic weak-
ening. Lachenbruch [1980]"7 showed that for undrained and adiabatic conditions dynamic
weakening by thermal pressurization is controlled by a critical weakening strain, so the slip
weakening distance for thermal pressurization is proportional to the deforming zone thick-
ness. This may explain why the gouge layer thickness plays a role in determining if a rup-
ture propagates as a crack-like rupture or slip pulse in the results of Noda et al. [2009] ™.
Another example can be found in Garagash [2012]*°, which showed that for steadily propa-

gating slip pulses thinner deforming zones lead to smaller slips and faster rupture velocities.

4.2 Model derivation

Here we derive a model for a fluid-saturated gouge material sheared between two unde-
forming thermo-poroelastic half-spaces that allow diffusion of heat and pore fluid, the
same boundary conditions used in Plasr er al. [2014]™°. In this one-dimensional model
the only non-zero velocity component, u(y, t), is parallel to the fault zone and depends
only on the coordinate perpendicular to the direction of slip ¥, and the time since shear
commenced ¢. A sketch of this geometry is shown in Figure 4.1. Our derivation extends
the model of Rice et al. [2014]™ to account for thermal decomposition, which is modeled

using the ideas in Sulem and Famin [2009]?7, Sulem et al. [2009]** and Brantut et al.
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Thermo-
poroelastic
half-spaces

Figure 4.1: A sketch showing the geometry used in our numerical simulations. A gouge layer with

a finite thickness h is sheared between two undeforming thermo-poroelastic half-spaces moving
relative to each other at aslip rate |/’ leading to a nominal strainrate of 4y = V//h within the
gouge layer. In this one-dimensional model we only account for variations in the across-fault direc-
tion y. The straining is allowed to localize within the gouge layer, as shown by the Gaussian strain
rate profile sketched within the gouge layer. The width W of the zone of localized straining is then
estimated as twice the root mean square width of the Gaussian.

[2010]%.
For clarity while deriving the model we specify a single reaction to be modeled, the break-

down of calcite into calcium oxide and carbon dioxide,

CaCO3 — CaO + CO,. (4.1)

However, the framework used here is general and some results are given for other devolatiliza-

tion reactions.

4.2.1  Mechanical equilibrium

Rice [2006] " hypothesized that the short distances associated with hydrothermal diffusion

make inertial effects within the gouge layer unimportant. This hypothesis was then tested
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in Plart et al. [2014]*° and found to be true for typical seismogenic conditions. Based on

this we use the equations for mechanical equilibrium to model the stresses within the gouge

layer
& —0 do,,
dy Jdy

=0, (42)

where 7 is the shear stress in the gouge material, and o, is the normal stress on the gouge

166 we assume that the normal stress

layer. Asin Rice et al. [2014]™ and Platt et al. [2014]
on the gouge layer is constant throughout shear. The assumed quasi-static behavior forces

the shear stress to be constant throughout the layer, and thus 7 is at most a function of ¢.

4.2.2 Gouge friction

The shear stress is linked to the normal stress using a friction coefficient f and the Terzaghi

effective stress through

T:fX(Jn—p)7 (4-3)

where p = p(y, t) is the local pore pressure. For a constant friction coefficient, and ne-
glecting dilatancy, uniform shear of the gouge layer or shear on the plane of maximum
pore pressure are the only two forms of deformation that satisfy mechanical equilibrium™°.
Small perturbations away from uniform shearing will be unstable and the deformation will
collapse to a plane. However, when the friction coeflicient varies across the gouge layer a
finite thickness shear zone can exist.

Current high-velocity friction experiments are unable to separate out the complicated
temperature and pore fluid effects to provide a friction law as a function of strain rate alone

at seismic strain rates. Lacking such a friction law we assume that the friction law is the
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steady state friction law

f(%) = (a — b)sinh™* {l exp (af_o b)} : (4.4)

which for (a — b) < fj is asymptotically the same as the well-known logarithmic friction
law for steady state shearing inferred from low strain rate velocity-stepping experiments
such as those in Dieterich [1979]%7. Here 7 is the strain rate, fj is the friction coefficient at
a nominal strain rate 7o, and (a — b) is the rate-dependent component of the friction law.
We will only consider rate-strengthening materials where (a — b) > 0.

It is important to note that equations (4.2)-(4.4) link the pore pressure and strain rate
profiles within the gouge layer. Locations with high pore pressures will have smaller effec-
tive stresses, corresponding to a higher strain rate for a rate-strengthening material.

As discussed in Rice et al. [2014]™, the friction law in equation (4.4) neglects important
effects of temperature, mineralogy and state evolution, and is unlikely to accurately describe
the frictional response of gouge at the seismic slip rates considered here. However, Rice et
al. [2014]™ shows how effective values of f and (@ — b) could be interpreted from other

friction laws of the form f(*), and the results in this paper can easily be recalculated for

different values of fy and (a — b).

4.2.3 Conservation of pore fluid mass

Defining m to be the mass of pore fluid per unit reference volume of porous material we

can write the conservation of pore fluid mass as

om  Oqy  Omyg
o oy T o (#5)
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where gy is pore fluid flux, and m, is the mass of pore fluid released by the thermal decom-
position reaction per unit reference volume. For a saturated gouge m = npy where py is

the pore fluid density and 7 is the pore volume fraction. It follows that

om dps one  on™"
ot o M ( at ot ) (+.6)

where we have split the porosity change into an elastic component n® and an inelastic com-
ponent n'™. The new derivatives for p and the elastic porosity n® can be linked to changes

in pore pressure and temperature using

dpy op or

5 Jaer T PrAf TR (4.7)
on® op oT

% = nﬂng + n/\na, (4.8)

where T' = T'(y, t) is the temperature, f3,, and 3 are the pore volume and pore fluid com-
pressibility’s, and A, and A are the thermal expansion coefficients for pore volume and
pore fluid

Platt et al. [2014]"° showed that dilatant effects that depend on strain rate alone are ex-
pected to have a minimal effect on strain localization at seismic depths, although they may
play an important role at the lower effective stresses used in high-velocity friction experi-
ments. Motivated by this we neglect dilatancy and assume that all inelastic porosity change
is due to the thermal decomposition of the gouge material.

Denoting the mass of a chemical species & per unit reference volume of fluid saturated
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gouge by m,, and the density of that chemical species by p,, we can express the rate of in-
elastic porosity change for the decarbonation reaction in equation (4.1) using the rate of
volume change for each of the solid phases as

8ni” 1 amcacog 1 8m0a0

_ _ . 4.9
ot pPcaco, Ot pcao Ot (+:9)

Next, using the molar masses M, for a chemical species « and equation (4.1), we can tie the

volume changes to the mass of pore fluid released

Omcaco;  Mcoacos Oma
- ’ (4'10)
ot Moo, 0

Omcao  Meoao Omy

ot Moo, O (411
Combining equations (4.9)-(4.11) we find
on™ _ ( Mcaco,  Mcao ) Omyq (412)
ot pcacosMco, — pco,Mco,) Ot '

The final term to be dealt with in equation (4.5) is the pore fluid flux ¢¢. To model this

we use Darcy’s law, which says that

_pikop

—_ I
0y Oy (4.13)

qr =

where k is the intrinsic permeability and 7)¢ is the pore fluid viscosity.

Combining equations (4.5)-(4.8), (4.12) and (4.13) and neglecting the dependence of the
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hydraulic properties on pore pressure, temperature and porosity we arrive at

dp oT Pp 1 omyg
_— = A— _— _— ]_ — _— .
875 at +ahyay2 + Pfﬁ ( pfgb) Bt ) (4 14)

where
CAr =

B=nBr+8) , A (4.15)

Here f3 is the storage coefficient and A is the ratio of pore pressure change to temperature

change for undrained, adiabatic deformation™. The hydraulic diffusivity is given as

k

= W_ﬁ (4.16)

Oéhy

The final parameter defined is the inelastic porosity created per unit mass of fluid released

1 Mcacos 1 Mcao
¢ = - : (4.17)
pcacos Mco, pcao Mco,

The three terms on the right hand side of equation (4.14) each have a physical interpreta-
tion. The first represents thermal pressurization of the pore fluid, the second term models
hydraulic diffusion, and the final term models the pore pressures generated by thermal de-
composition.

Reactant depletion may become important at large slips. To model this we must con-

tot

sider the total pore fluid mass than can be released per unit volume, m;*. Using this we

define the reaction progress § as the mass of pore fluid released divided by the total mass of
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pore fluid that could be released in a fully completed reaction

mq

it (4.18)

&=

For this definition § = 0 represents virgin material, while § = 1 indicates full reactant

depletion. Using this definition we can write the final term in equation (4.14) as

tot g
,Of/B (1= pro)my ot (4.19)

The total pore fluid mass mtOt

that can be released during decomposition will depend on
the specific reactant as well as the mass fraction of this reactant within the gouge. To sepa-

rate these two effects we write

1 ¢ 3
= 1 _ tot — 7 Pr_a )
where we have defined
1 mtot
Po=— (1= pppymi® | =D (321)
oiB m100%
Here m1°% is the pore fluid mass per reference volume released by a completed reaction

in a pure material, and thus P, is the pore pressure generated by a completed reaction of a
pure reactant under undrained and adiabatic conditions.

The final equation modeling the conservation of pore fluid mass is

op 0T 9*p o
E—Aa +a hy(92+mpat (4.22)
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4.2.4 Conservation of energy

Assuming that energy is generated by frictional heating in the gouge layer, and absorbed by
the endothermic reaction we can write the conservation of energy as

3T+%_Tﬁ AH 0Omy

where pc is the effective heat capacity per unit reference volume, and A H is the enthalpy
change associated with the generation of a unit mass of pore fluid through thermal decom-
position. We will study endothermic reactions so AH > 0. To model the heat flux we use

Fourier’s law,

or

an = —K ' (4.24)

where K is the thermal conductivity, which is assumed to be constant. Equations (4.23)
and (4.24) neglect small additional terms due to the work of the normal stress and pore
pressure, and heat transfer due to flow of the fluid. This is a common assumption justified
in Mase and Smith [1985,1987] "+ for representative permeabilities of fault gouges. Com-

bining equations (4.23) and (4.24) we find

or vy T  AHOmy

- = + o J— ,
at  pc th oy? pc Ot

(4.25)

where the thermal diffusivity is given as,

Qyp =

NE
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As in the previous subsection we will recast the pore fluid mass released per unit refer-
ence volume my in terms of the reaction progress £ by normalizing the total mass of pore
fluid released by the total amount that would be released in a completed reaction. Equation

(4.25) becomes

or 1% 0*T 0&
-, — — — M Er_7 .
TR + oun T (4.27)
where
E. = A—HméOO%. (4.28)
pc

The parameter E, is the total temperature rise buffered by a completed reaction in a pure

material.

4.2.5 Reaction kinetics

Finally we model the reaction kinetics, which control how fast thermal decomposition pro-

gresses. We assume a first order reaction with an Arrhenius thermal dependence

om
8—td = (mg" —ma) Aexp (—%) , (4.29)

where A is the rate constant for the reaction, () is the activation energy for the reaction, and
R is the gas constant. To recast this in terms of the reaction progress § we divide through by
mi" to find,

%3

i (1—-¢) Aexp (—%) ) (4.30)

The Arrhenius factor means that the reaction kinetic has a very sensitive dependence on

temperature, with higher temperatures leading to a more vigorous reaction. For a fixed
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temperature a lower value of  will lead to a faster reaction since there is a larger amount of
material left to decompose, and when § reaches one the reaction will cease.

The strong temperature dependence of the reaction kinetic allows us to predict when
each of the dynamic weakening mechanisms will dominate. At low temperatures the reac-
tion rate for thermal decomposition will be slow and we expect thermal pressurization to
dominate. As the temperature rises the reaction rate will increase and eventually we will
reach a temperature where thermal decomposition dominates. We do not expect to ex-
ceed this temperature because any increase in temperature will be absorbed by the enthalpy
change of the endothermic reaction. This can be seen clearly in the numerical simulations
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of Sulem and Famin [2009]*7, Sulem et al. [2009]*°, and Brantut et al. [2010]*.

4.3 Parameter values

The model presented above is rich in parameters. In this section we will choose typical val-
ues for these parameters and discuss how well constrained each parameter is. Not all param-
eters can be varied independently. In Appendix B.1 we nondimensionalize the model from
the previous section, showing that there are eight dimensionless parameters, each with a
clear physical meaning.

The hydraulic parameters are highly variable, and depend on pore pressure, tempera-
ture and the amount of damage the surrounding material has sustained. We will use the

path-averaged parameters modeling a damaged material from Rempel and Rice [2006]™°,

which are based on Tables 1-3 in Rice [2006]™¢

and the procedures in Rice [2006]™. This
parameter set models a depth of 7 km, which is a typical centroidal depth for rupture zones

of crustal earthquakes. The hydraulic diffusivity is chosen to be 6.71 mm?/s, the storage
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Parameter Value
Quyp, mm2/s 0.54
pc, MPa/K 2.7
A, MPa/K 0.3
Qhy» mm?/s 6.71
B, x1071%Pa"t  2.97
On — Pa> MPa 6

fo 0.6
(a —b) 0.025

Table 4.1: Representative parameters modeling a gouge material at a depth of 7 km, a typical cen-
troidal depth for a crustal seismogenic zone. Thermal and hydraulic parameters are taken from *&°
Table 1, and based on ¢ Tables 1-3 and the procedures in Rice [2006] % to account for damage to

the gouge material at the onset of shearing and parameter changes due to changes in pore pressure

]24

and temperature. Frictional parameters are based on Blanpied et al. [1998]“". A fuller discussion on

the origin of the parameters can be found in Rice et al. [2014] 189,

capacity to be 8 = 2.97 x 107! /Pa,and A = 0.3 MPa/K. These parameters use the ideas

from Rice [2006]™¢

to account for variations in the hydraulic properties of the gouge due
to damage as well as pore pressure and temperature changes. A detailed discussion of the
assumptions and laboratory measurements used to develop these parameters can be found
in Rice [2006]™° and Rempel and Rice [2006]™°.

Compared to the hydraulic parameters, the thermal parameters o, and pc are rela-
tively well constrained. Following our choice of the path-averaged parameter set modeling
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a damaged material taken from Rempel and Rice [2006]"°, we choose the effective heat
capacity per unit reference volume to be pc = 2.7 MPa/K, and the thermal diffusivity
to be ay, = 0.54 mm?/s. Both of these fall in the typical range of values quoted in Rice
[2006]"°.

The frictional parameters are as variable as the hydraulic parameters. The friction law as-

sumed here — given in equation (4.4) — is motivated by steady state friction values from low
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strain rate experiments”, and the applicability to the rapid shear considered here is unclear.
However, the analysis provided below is qualitatively similar for any rate-strengthening
friction law. Rice et al. [2014]™° shows how effective values of fy and (@ — b) could be in-
ferred from a general friction law f = f(), and the generality of our results allows them
to be reinterpreted for other values of (a — b) and fj. Understanding these limitations we
choose fo = 0.6 and (a — b) = 0.025, both in the observed range for low strain rate exper-
iments on granite under hydrothermal conditions**, though a wide range of other choices
for fo and (a — b) could be justified.

The numerical calculations in this paper are performed for calcite decarbonation and
lizardite dehydration reactions, and will be discussed in the context of other possible reac-
tants in section 4.6. We will first discuss the parameters associated with the decarbonation

of calcite

CaCO3 — Ca0 + CO,. (4.31)

The parameter choices closely follow those in Sulem and Famin [2009]*7. For calcite
mixed with silica Dollimore et al. [1996]® report values of ) = 319 kJ/mol,and A =
2.95 x 10" s~*. These kinetic parameters neglect any dependence of reaction rate on the
partial pressure of carbon dioxide, but more accurate models could be constructed to ac-
count for this. The sign of this effect can be understood using Le Chatelier’s principle and,
for a fixed temperature and reactant mass, as the partial pressure of carbon dioxide increases
the reaction rate will decrease. For the isobaric mode the enthalpy change of the reaction is
equal to the activation energy L vov [2002]. Thus, using the molar mass of carbon diox-
ide, Mco, = 44 g/mol, we find AH = 7.25 M]/kg. The value of ¢ can be calculated using

the parameter values from Swulem et al. [2009]**, leading to ¢ = 0.46 x 10~ m*/kg. The

138



final reaction parameter is 0", which can be calculated via

. Mco,
mig” = peaco,(1 = )5 (4.32)
CaCO;3
Using the molecular weights and density from Sulem er al. [2009]** and the path-averaged

porosity n = 0.043 from Rempel and Rice [2006]™° we find m 9% = 1140 kg/m?>.
Choosing the fluid density is hard for decarbonation reactions in a water-saturated gouge
since the in-situ pore fluid is different from the fluid released by the decomposition reac-
tion. We assume that the appropriate density is that of supercritical carbon dioxide and
calculate this using the equation of state in Saxena and Fei [1987]*. To determine the con-
ditions at which to evaluate this equation of state at we need to estimate the conditions at
which thermal decomposition operates. We assume that a typical pore pressure at which
thermal decomposition becomes importantisp = p, + 0.5(0, — p,) where p,, is the
ambient pore pressure. This is intended to model a gouge that has already experienced dy-
namic weakening due to thermal pressurization before the reaction becomes important. To
estimate the temperature 7. at which thermal decomposition operates we assume that all
of the frictional heating is absorbed by the reaction and that reactant depletion is negligi-
ble. These assumptions are consistent with the results in Sulem and Famin [2009]*7. This

leads to

T _ Q
" Rlog(mpcE,A/T%)

(4.33)

To evaluate this we use m = 0.5, the shear stress consistent with our assumed pore pressure
T = fo(0n, — Pa)/2, and the strain rate compatible with a slip rate of 1 m/s accommodated

across a deforming zone 100 microns wide. These choices lead to T, = 960 °C, and a fluid
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density of 418 kg/m?®. Combining all of the above we find £, = 3.06 x 10°°Cand P, =
7.42 GPa for calcite decarbonation.

Next we discuss the dehydration of lizardite into talc, olivine and water

5Mg381205(OH)4 — Mg38i4010(OH)2 -+ 6Mg28104 + 9H20 (4.34)

Llana-Fiinez et al. [2007]™ provide a range of kinetic parameters associated with the dehy-
dration of intact blocks or powders of lizardite. Here we use a rate constant A = 6.40 X
10'7 s7! and an activation energy Q = 328 kJ/mol, which correspond to the dehydra-
tion kinetics of a mixture of lizardite and brucite (originally reported in Wegner and Ernst
[1983]*4°). The reaction enthalpy is calculated using the thermodynamic software Geotab
from Berman [1991]™, which yields AH = 2.56 M]/kg. From the stoichiometry of the
reaction and the densities of the reactants and products, we calculate the solid volume
change » = 0.88 x 107 m*/kg and the total mass of water released by the reaction
mi9% = 240 kg/m?. Finally, we use a procedure similar to that outlined above in order
to determine the density of water of 267 kg/m?® at the reaction temperature. This set of
parameters allows to determine F, = 275 °Cand P, = 2.80 GPa for lizardite dehydration.

Aside from the decarbonation of calcite and the dehydration of lizardite, which we choose
as the two main examples in our simulations, a wide variety of other devolatilisation reac-
tions can be triggered during earthquake slip. Potential candidates for devolatilisation reac-
tions include carbonates such as dolomite, magnesite and siderite, as well as hydrous min-
erals such as gypsum and phyllosilicates (e.g., clays, serpentines, talc). As described above,
our model requires a number of reaction parameters that are rarely available in a consis-

tent set in the published literature. The full set of reaction parameters could be obtained
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Decarbonation reaction Dehydration reactions

Parameter Calcite® Lizardite’ Illite/muscovite®  Talc?
log,y(A) (Ain1/s) 15.47 17.80 6.92 14.30
Q@ (kJ/mol) 319 328 152 372
mi9% (kg/m?) 1140 240 150 131
AH (M]/kg) 7.25 2.56 5.49 5.17
¢ (x107% m?®/kg) 0.46 0.88 0.35 0.78
pr (m3/kg) 418 267 135 159
T, 960 °C 885 °C 1733 °C 1454 °C
E,. (°C) 3.06 x 103 275 305 251
P, (GPa) 7.42 2.80 3.56 2.43
WHT 5.1 j4m L2 fim LI tm L3 pum
44 12.7 f4m 6.8 um 1.9 j4m 8.6 um

a From®, as reported by*®. & Kinetics from™, reaction enthalpy from Geotab™. ¢ From™”.
d Kinetics from*°, reaction enthalpy from Geotab™.

Table 4.2: List of reaction parameters along with predictions for 1., WHT and W for four different
thermal decomposition reactions.

for the dehydration reactions of illite—muscovite mixtures and talc. The dehydration of il-

lite—muscovite was studied experimentally by Hirose and Tanikawa [2011]**

, who provide
all the relevant parameters needed for our model. In the case of talc dehydration, we used
the kinetics reported by Bose and Ganguly [1994]*°, and determined the enthalpy change

using Geotab'. The list of parameter values for all four minerals are reported in Table 4.2.

4.4 Linear stability analysis

We now attempt to predict the localized zone width using a linear stability analysis. To
make progress analytically we linearize the reaction kinetic about § = 0 and a current fault

temperature 7' = T'. This leads to the linearized reaction kinetic

9¢

ot ~ B[l + Bo(T — T)], (4.35)
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where

pr = Aexp <_Rin> , Ba= % (4.36)
f

Given that the Arrhenius factor has a strong dependence on temperature, such a lineariza-
tion will have a very limited range of validity. However, performing the linear stability anal-
ysis with the linearized reaction kinetic above is equivalent to performing the linear stability
analysis with the Arrhenius reaction kinetic and then freezing the coefficients in the result-
ing time-dependent linear system. This means that the linearized reaction kinetic is valid
provided that perturbations in temperature are small, which is expected to be true at the
onset localization. Thus, despite the problems with linearizing a highly nonlinear function,
we find that the linearized analysis does convey some key qualitative features of more pre-
cise nonlinear solutions presented later in this paper.

Inserting the linearized reaction kinetic into equations (4.22) and (4.27) we arrive at

or Ty 0T

W e + gy mE, By [1+ B2(T —TY)], (4.37)
Op or ?*p
o = A5t Chyg +mP.fy [1+ Bo(T —T¥)] . (4.38)

Asin Rice et al. [2014]™ we now perturb about the solution for uniform shearing,
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Figure 4.2: A plot showing how the critical half-wavelength )\pT/Q from the linear stability analysis
varies as a function of fault temperature Tf for calcite and lizardite. This plot was produced using
the parameters in Tables 4.1 and 4.2, a mass fraction m = (.5, and the nominal strain rate vy =
10, 000 s~ 1. The horizontal dotted lines show )\51? and )\fTT for both materials. The vertical lines
show the location of the temperature 1. predicted by equation (4.33). As expected we see that at
low temperatures the critical half-wavelength is equal to /\% and for high temperatures the critical
half-wavelength is equal to )\fT, with a smooth transition between the two regimes occurring for
intermediate temperatures. Our prediction for the temperature at which thermal decomposition
operates at lies in this intermediate temperature regime, so it is unlikely that the high temperature
limit of the linear stability analysis will provide a good quantitative prediction for the localized zone
thickness.

where the uniform shear solution is denoted by a subscript 0. This is done by setting

T(y,t) = fooo(t) + T (y,1) (4.392)
Yy, 1) =0+ n(y.1) (4.39b)
p(y;t) = po(t) + pa(y, 1) (4:39¢)
T(y,t) = To(t) + Ta(y, t) (4.39d)
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where 64(t) = 0, — po(t) is the effective stress for uniform shear. Somewhat surprisingly
we do not actually have to solve for the uniform solution since it does not enter into the
final form of the linearized system for perturbations in p and 7.

Substituting (4.39) into the model and linearizing we find that

or a—Db) .

8_y1 =0 , m= (Un —Po)( )71 — fop1 (4.40a)

oT ao(t)y + YT 0*T;

(9751 = Jodo(t) + 3o + ayp 21 — mkE, 51511, (4.40b)
pc dy

apl 8T1 82101 _

E = AE + Oéhya—yQ + mPrﬁlﬁng. (4.40C)

Next we assume that the perturbation is proportional to a Fourier mode with a wavelength

A

(o Tin) = R [T} e (257, (440

This simplifies equations (4.40) to

a—b).
50(75)( - )71 — fop1 =0, (4.42a)
dT aolt) . Aoy
- = fodol )’Yl iy LTy — mE, BB Th, (4.42b)
dt pc A

dpl . dT1 47T2ahy

We eliminate the only time dependent term in the system, & (%), to arrive at a linear system
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with constant coeflicients,

an, - i’ i

dtl @ _Ozgpcpl -T2 LT — mE, BT, (4.432)
d dTy 4%«
e e hyp1 +mP, 1 52T1. (4.43b)

dt T dt A2

If we did not linearize the reaction kinetic, and instead tried to tackle the problem with the
tull Arrhenius reaction kinetic, then we would arrive at a linear system with time-dependent
coefficients. This would make any further analytic progress almost impossible.

Equations (4.43) can be solved by assuming pore pressure and temperature perturbations

of the form,

Tl 1
) ) ) exp(st). (4.44)
pi(t) p1(0)

A non-trivial solution to the linear system exists only when

Iy, 4oy, il _
(o4 g emms,) (34 5 ) = R e mB A (aa)

Equation (4.45) allows us to solve for the growth rate s for a perturbation with a given
wavelength A, allowing us to determine the stability of the uniform shear. Whenever the
real part of s is positive the perturbations will grow unstably, and whenever the real part of
5 is negative the perturbation will decay. The critical half-wavelength that separates grow-
ing and decaying perturbations in p and 7', which we call A1 following the notation in
Rice et al. [2014]™, occurs when the real part of s is zero. This critical wavelength will be

used to predict a localized zone thickness.
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We can identify two physically instructive limits from equation (4.4s), one for low tem-
peratures where thermal decomposition is negligible, and the other for high temperatures
where the thermal decomposition dominates thermal pressurization.

To study the low temperature (LT limit we set 3; = 0, corresponding to a reaction rate
so slow that thermal decomposition can be neglected. We recover the system of equations
analyzed in Rice et al. [2014]™ and the critical wavelength for perturbations in p and 7" is

given by

i = om0t lo = D (446
The critical wavelength is set by a balance between frictional rate-strengthening, thermal
pressurization, and hydrothermal diffusion.

Next we study the high temperature (HT) limit where thermal decomposition domi-
nates thermal pressurization. Numerical solutions of (4.45) show that when the real part of
s is zero the imaginary component of s is also zero. This allows us to find a closed form so-
lution for A\pr by setting s = 0 and neglecting the thermal diffusion term, which is equiv-

alent to assuming that at high temperatures the endothermic reaction eliminates tempera-

ture gradients much faster than thermal diffusion. Equation (4.45) then becomes

ATl 24
ME fufp -y — 00 _pp g, (4.47)
A (a —b)pc
which can be solved to find
E,. (a—0b)pc
MNAT — or Qhy Zr - 8
pT \/ PT fg’}/o (4 4 )



Interestingly the critical wavelength is independent of any reaction kinetic parameters (i.c.
Aand ), and the reactant mass fraction. The reaction controls the localized zone width
through the parameters F, and P,. We see that the endothermic absorption of heat acts to
widen the localized zone, while the pore pressure generated by the reaction acts to thin the
localized zone.

Next we test the above predictions by finding the critical wavelength A,z numerically for
a wide range of values of T7,. Figure 4.2 shows how the critical wavelength varies for calcite
and lizardite using the parameters in Tables 4.1 and 4.2, a mass fractionm = 0.5,and a
strain rate 59 = 10,000 s™!, which is equivalent to a slip rate of 1 m/s accommodated
across a zone 100 m wide. For comparison we show the low and high temperature limits
AL and AT for both materials using horizontal dotted lines. We see that the numerically
calculated critical wavelength agrees with the appropriate limit for extreme values of 77,
and in the intermediate region we see a smooth transition between one critical wavelength
and the other.

Finally, to determine where we expect typical temperatures during thermal decomposi-
tion to lie with respect to the high and low temperature limits we plot the reaction temper-
ature 7, estimated in equation (4.33) for both materials using vertical dashed lines. We see
that 7. lies in the intermediate temperature regime, and thus the simple formula in equa-
tion (4.48) may not give a good prediction for the localized zone thickness when thermal

decomposition is active because the high temperature limit is never reached.
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4.4.1  Predicting a localized zone thickness

It is important to note that the critical wavelengths )\IEYT and )\ZIEFT depend on the strain
rate Yo. Following the procedure in Rice et al. [2014]™ we now eliminate 7, from the two
critical wavelengths to find a prediction of the localized zone thickness as a function of the

gouge properties and the slip rate V' by setting

A

W= %T , Jo= % (4.49)
For the high-temperature limit this leads to the formula
WHT — zai;%Er (a —g‘b/)PC’ (4.50)
and in the low temperature limit we find
WLT — o Qe + Qpy (@ — D) pc (4.51)

A %

As shown in Rice et al. [2014]™, the linear stability analysis presented in this section can be
specialized for a gouge layer of thickness h sheared between rigid, impermeable and ther-
mally insulating blocks moving relative to each other with a slip rate V. In this case the
width W is the widest possible gouge layer that can be sheared uniformly. These boundary
conditions are different from the geometry used in the numerical simulations, but we will
show that the linear stability analysis is still able to predict important features seen in the
numerical simulations. It should also be noted that to predict the localized zone thickness

we have used the critical half-wavelength separating growing and decaying perturbations
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in pore pressure and temperature, not the critical half-wavelength that controls perturba-
tions in strain rate. However, Rice et al. [2014]™ showed that for (a — b) < fj the two
wavelengths are almost equivalent, so the use of A1 to predict the localized zone thickness
is justified.

As shown in Figure 4.2, the reaction temperature 7;. predicted in equation (4.33) does
not fall in the high temperature regime. Motivated by this we now develop a more compli-
cated prediction for the localized zone thickness I that is valid in the intermediate tem-
perature range. The numerical solution of equation (4.4s5) that led to the results shown in
Figure 4.2 show that throughout the intermediate regime the imaginary part of the growth
rate s vanishes as the real part of s vanishes. This lets us find the critical wavelength by set-

ting s = 0 in equation (4.45), leading to a quadratic equation for A\?

B drian, Er(a — b)pc B 167 cup oy (a — b)pe

A\ - —
Prfg’Yo f()270mpr61B2

= 0. (4-52)

As before we want to turn the critical half-wavelength into a prediction for the localized
zone thickness IV using the procedure outlined in Rice er al. [2014]™. Inserting the defini-

tions in equation (4.49) into equation (4.52) we arrive at

2ap,Er(a—b 4 -b
_ mapE(a )pCW2 _ magpany(a — b)pe _o (4.53)

W3
SV P, foVimP, BB

As expected, in the high temperature limit (i.e. 182 — 00) the final term in equation

(4.53) vanishes and we recover W = Wy. In the intermediate temperature regime no such
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neat solution exists, though the cubic can be solved using Cardano’s formula. This leads to

1/2 1/3 1/2 1/3
W:p+[q+(q2—p6)/] +[q—(q2—p6)/} : (4.54)
where
W. Wy 3 4 —b
—oar 2 8 a“;ahf’(a )pc. (4.55)
3 27 2f5VmP, B2

This formula is more cumbersome than that given in equation (4.50) but in the next sec-
tion we will show that it provides predictions that agree more closely with the results of

numerical simulations.

4.5 Shear of a finite width layer

In this section we solve numerically for a gouge layer with a finite width / sheared between
two undeforming thermo-poroelastic half-spaces that conduct heat and pore fluid moving
relative to each other with a slip rate V, the same geometry assumed in Platt et al. [2014]™°.
A sketch of this geometry is shown in Figure 4.1. At each time step the pore pressure and
temperature are updated using equations (4.22), (4.27) and (4.30). To update the shear

] 166

stress we require one additional condition. Asin Plart et al. [2014]™° we use

h/2
/ Yy, t)dy =V, (4.56)
—h)2

which ensures that the total straining within the gouge layer must equal the total slip rate V/
accommodated across the gouge layer.

The initial conditions are set to the ambient conditionsp = p,andT = T,,anda
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Figure 4.3: A plot showing the evolution of the maximum strain rate *,,,, for calcite and lizardite.
These simulations were performed using the parameters in Tables 4.1 and 4.2, a mass fraction

m = 0.5,asliprate V' = 1m/s, and agouge layer thickness h = 1 mm. For comparison the
solution from Platt et al. [2014]%° that considers dynamic weakening from thermal pressurization
alone (i.e. B, = P, = 0)isshown by the dashed black line. Initially our simulations agree with
the simulations from Platt et al. [2014] ¢, indicating that thermal decomposition can be neglected
during the initial stages of deformation. Eventually thermal decomposition becomes important and
Ymaz INCreases to a new peak value 'jlg;lgk. Following the peak ;.. decays, but the values are al-
ways above those for thermal pressurization alone. The minimum and maximum strain rates used to

calculate At;y are shown by the black plus and black cross.

uniform strain rate y = *, throughout the gouge layer. To be consistent with the parame-
ters in Rempel and Rice [2006]™°, which are intended to model a depth of 7 km, we choose
Po = 70 MPaand T, = 210 °C. This is equivalent to an assumed geotherm of 30 °C/km
and an effective stress gradient of 18 MPa/km.

During the initial stages of deformation the reaction rate will be very slow, making ther-
mal decomposition negligible. For certain gouge properties the maximum temperature

within the gouge layer may eventually become large enough to trigger thermal decomposi-
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Figure 4.4: A plot showing the strain rate profile at peak localization alongside the Gaussian fit used
to infer a localized zone thickness. This simulation was performed using the parameters in Table 4.1
and the calcite parameters in Table 4.2, a mass fraction = (.5,asliprateV = 1m/s,anda
gouge layer thickness A = 1 mm. Straining localizes to a zone a few tens of microns wide, and we
see great agreement between the numerical simulation and the Gaussian fit. The horizontal lines
show the two ways to infer a width from the Gaussian function. The solid black line shows where the
width is calculated when we use the standard assumption that the width is equal to twice the resid-
ual means square of the Gaussian, and the dashed black line shows where the width is measured
when we assume the localized zone thickness is equal to the full width at tenth maximum.

tion. Throughout this section we will focus on this transition from thermal pressurization
to thermal decomposition, and the behavior of the system after thermal decomposition is
triggered. The behavior before thermal decomposition is triggered, where dynamic weaken-
166.

ing occurs due to thermal pressurization alone, is analyzed in Platt et al. [2014]

A simple test to determine if thermal decomposition will be triggered is to compare the
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maximum temperature rise for a gouge layer undergoing thermal pressurization alone

On — pa 67
T =T, + 7 (1 + —ahz> (4.57)
t

with the temperature predicted by equation (4.33). If the two temperatures are comparable
or the prediction from equation (4.57) is larger than the value from equation (4.33), then it
is likely that thermal decomposition will be triggered. All simulations reported here were
designed to trigger thermal decomposition.

We will begin by discussing how thermal decomposition controls the localized zone
thickness during seismic shear, before moving on to investigate how thermal decomposi-
tion caps the peak temperature attained during seismic shear, and the stress drop that coin-

cides with the onset of thermal decomposition.

4.5.1 Localized zone thickness

In this subsection we will study how the localized zone thickness evolves when thermal

:| 166

decomposition is triggered. Following Plarr et al. [2014]*° we define the maximum strain

rate within the gouge layer to be

ﬁmax(t) - Iﬂan [7(% t)] . (458)

Because the total straining in the layer is fixed by the slip rate V, the maximum strain rate
can be used as a proxy for the localized zone thickness, with a larger value of 4,4, indicat-
ing a thinner localized zone.

Figure 4.3 shows ¥4 as a function of time for calcite and lizardite. This plot was gen-
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erated using the parameters in Tables 4.1 and 4.2, a gouge layer thickness » = 1 mm, a slip
rate V' = 1 m/s, and a reactant mass fraction m = 0.5. For comparison the solution from
Platt et al. [2014]"°° that neglects thermal decomposition and models thermal pressuriza-
tion alone (i.e. £, = P, = 0)is shown by the black dashed curve. As expected our results
initially match the calculation that neglects thermal decomposition, corresponding to the
initial stages of deformation when the reaction progresses so slowly it can be neglected.
When thermal decomposition is triggered we see that 4, rises to a new peak before de-
caying. We find that throughout the simulation ¥ the shape of the strain rate profile is well
described by a Gaussian function, in agreement with the results of Platt et al. [2014]*° for
thermal pressurization alone.

We use the Gaussian shape of ¥ and the peak strain rate after thermal decomposition is
triggered %z;gk to estimate the localized zone thickness W in the numerical simulations.

Integrating condition (4.56) assuming the Gaussian shaped strain rate profile

. . 2y?
Ygau. = peak eXP | =775 (4.59)
we find that the localized zone thickness is given by,
2
W =4/ —= 4 . (4.60)
T Vpeak

Following previous models for thermal pressurization (for example Andrews [2002]*, Rice
[2006]™°, and Noda et al. [2009]™) we assume that the width of the deforming zone is
equal to twice the root mean square width of the Gaussian. In addition we assume that

the localized zone thickness is much less than the gouge layer width A. If the localized zone
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Figure 4.5: A plot showing how the localized zone thickness IV depends on the gouge layer thick-
ness /L and ambient fault temperature T}, for calcite and lizardite. These simulations were per-
formed using the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5,asliprate V' = 1 m/s.
In addition the simulations varying T}, use a gouge layer thickness h = 0.5 mm. We see that the
localized zone thickness is almost independent of the gouge layer thickness. From this we can con-
clude that the localized zone thickness is controlled by the gouge properties and not the initial thick-
ness of the deforming zone, in agreement with the conclusions from Platt et al. [2014] **¢ for strain
localization driven by thermal pressurization alone. We also see that W is almost independent of
T, which is to be expected since the temperature at which thermal decomposition is triggered does
not depend on the ambient fault temperature.

thickness is comparable to the gouge layer thickness then equation (4.60) is not valid, though
a more complicated formula can be found that depends on 2, V and ,cqi.-

Figure 4.4 shows a plot of the strain rate profile at peak localization from the numer-
ical simulations alongside the Gaussian function from equation (4.59). The solid black
line indicates where the localized zone thickness is measured when we assume that W' is
equal to twice the root mean square width of the Gaussian. We see that the root mean
square width may not be the best measure of the half-width, and a better option may be the
full width at tenth of maximum, which is shown by the dashed black line. Following the

usual convention the results in this paper are presented in terms of the root mean square
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thickness, but it is easy to convert our results to the full width at tenth of maximum using
Wewra = /21log(10) W.

Next we investigate how the localized zone thickness depends on the gouge layer thick-
ness and ambient fault temperature. Figure 4.5 shows W as a function of the gouge layer
thickness h for the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5, and a slip rate
V' = 1 m/s. We see that the localized zone thickness does not change much as h changes
from 100 pem to 1750 pem. This replicates the behavior observed in Platt et al. [2014]°
for pressurization alone. The weak dependence of TV on the gouge layer thickness suggests
that the localized zone thickness is controlled by the gouge properties and not the initial
width of the deforming zone. Figure 4.5 also shows W as a function of the ambient tem-
perature 7, for the parameters in Tables 4.1 and 4.2, a mass fraction m = 0.5, a slip rate
V' = 1 m/s, and a gouge layer thickness & = 0.5 mm. We see that the localized zone thick-
ness does not vary dramatically as the ambient temperature varies from 150 °C to 420 °C,
which makes sense since this range of ambient temperatures is much lower than the tem-
perature at which thermal decomposition is triggered.

Having shown that the localized zone thickness depends weakly on the initial tempera-
ture and width of the deforming zone, we now study how W varies with the material prop-
erties of the gouge. This parameter sweep, shown by the solid curves in Figure 4.6, covers
all the dimensionless parameters in the model except for 77 (see Appendix B.1). In each
plot one parameter is varied while the remaining parameters are fixed to the values in Tables
4.1and 4.2, a mass fraction m = 0.5, asliprate V' = 1 m/s, and a gouge layer thickness

h =0.5mm.



Figure 4.6: A plot showing a set of parameter sweeps tracking the localized zone thickness W as a
function of eight parameters. For each sweep all other parameters are set to the values in Tables 4.1
and 4.2, amass fraction m = 0.5, asliprate V' = 1 m/s, and a gouge layer thickness h = 0.5 mm.
For comparison we also show the linear stability prediction from equation (4.50) with the dotted
curves, the prediction from equation (4.61) evaluated using the peak temperature from the numeri-
cal simulations with the dashed curves, and the prediction from equation (4.61) evaluated using the
temperature from equation (4.33) assuming 7y = 252 MPa/ms with the dash-dot curves. The
predictions from equation (4.61) give the best agreement with the numerical simulations, especially
when the peak temperature from the numerical simulations is used to evaluate (4.61).
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Figure 4.6: (continued)
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We compare the localized zone thicknesses observed in numerical simulations with the
linear stability predictions from Section 4.4. First we use the high temperature limit from
the linear stability analysis, given in equation (4.50) and shown by the finely dashed curves
in Figure 4.6. We see that the predictions from the high-temperature limit of the linear sta-
bility analysis are in qualitative agreement with the localized zone thickness predicted by
the numerical simulations, with curves indicating the analytic prediction and numerical
simulations have roughly similar shapes. However, the quantitative agreement between the
two is often quite poor, with equation (4.50) consistently predicting localized zone thick-
nesses that are a factor of ~ 2 — 3 smaller than those observed in the numerical simulations.
This can be understood by looking at Figure 4.2, which shows that the endothermic re-
action caps the maximum temperature at a value that is less than the lower bound of the
high-temperature regime.

Next we fit our simulations using the formula

C 1/3 1/3

W=— (p+ [q +(¢° —p6)1/2] + [q — (¢ —p6)1/2] ) . (460

where
m2ap, E.(a — b)pc 3 mhagan,(a — b)pe
= = .6
b ?’fgv (Pr - AET) 7 4 b * 2fgvm (PT - AET) ﬁlﬁQ (4 2)
and
_ Q _Q

This is based on linear stability prediction valid for the intermediate temperature regime
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given in equation (4.54), with the pore pressure generated m P, replaced by m(P, — AE,.).
This change is needed because thermal pressurization is not accounted for when using the
linear stability analysis to predict the localized zone thickness when thermal decomposi-
tion is active. Here we have assumed that thermal decomposition leads to pore pressure
increases, and thus P, > AFE,.

To evaluate the formula in equation (4.61) we must assume a current fault temperature
T. In Figure 4.6 this is done in two ways. First we use the peak temperature from the nu-
merical simulations, shown by the coarsely dashed curves. In addition we use the prediction
T, from equation (4.33), shown by the lines with alternating short and long dashes, assum-
ing 7y = 252 MPa/ms, which is equivalent to an effective stress equal to half of the am-
bient effective stress and a slip rate of 1 m/s accommodated across a deforming zone 150 tm
wide

We see that the more general formula given in equation (4.61) gives a much better quan-
titative fit to the numerical simulations than the simpler high-temperature asymptote. Us-
ing a single fitting parameter C' = 5.5 we get good agreement with a parameter sweep over
seven dimensionless parameters for both calcite and lizardite. The best fit is obtained when
we set T's to be the peak temperature from the simulations, though using the temperature
predicted by equation (4.33) still gives reasonable agreement.

As shown in Figure 4.3, 4.7, is not achieved instantly when thermal decomposition is
triggered. Instead 4, increases smoothly from the value predicted by thermal pressur-
ization alone at the moment the reaction becomes important to the new peak value over
a finite time. To quantify the time taken for localization to occur after decomposition is

triggered we define At to be the time between the local minimum in 4,4, and the second
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Figure 4.7: A plot showing the evolution of the maximum temperature 1, for calcite and
lizardite. These simulations were performed using the parameters in Tables 4.1 and 4.2, a mass frac-
tionm = 0.5,asliprate V' = 1 m/s, and a gouge layer thickness A = 1 mm. For comparison the
solution from Platt et al. [2014]%¢ that considers dynamic weakening from thermal pressurization
alone (i.e. B, = P, = 0)isshown by the dashed black line. Initially our simulations agree with
the simulations from Platt et al. [2014] *¢°, indicating that thermal decomposition can be neglected
during the initial stages of deformation. Eventually thermal decomposition becomes important and
Tnaq rises to a new peak before settling onto a very slowly decaying plateau. As in Sulem and Famin
[2009]%" and Brantut et al. [2010]*° thermal decomposition leads to a capping of the maximum
temperature rise below a typical melting temperature.

maximum. Studying how At varies in the parameter sweep that led to Figure 4.6 we find
that for any given parameter sweep At increases as the localized zone thickness decreases.
This means that more intense localization develops faster than less intense localization.
Finally we study the decay from the peak strain rate shown in Figure 4.3. The simula-
tions leading to Figure 4.6 show that larger values of 4.7, , and thus smaller values of W,
correspond to more rapid decay after the peak strain rate, where we have used the peak
value of —% to measure the speed of decay. This can be seen in Figure 4.3 by noting that

Ymaz decays more rapidly for lizardite than calcite. Decay from the peak strain rate indicates
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that the localized zone thickens with increasing shear. Thickening of the localized zone
makes it hard to describe the localized zone using a single width, and also means that mate-
rials that have very different localized zone thicknesses immediately after decomposition is
triggered could have very similar thicknesses for the later stages of shear. This can be seen
near the end of the simulations in Figure 4.3 where calcite and lizardite have similar values
of Yimaz. We observe that the strain rate after decay is almost independent of some parame-

ters, with this being particularly common for lizardite.

4.5.2  Limiting of peak temperature

Next we look at the temperature evolution in the gouge layer. To do this we define the

maximum temperature to be

Tinaa(t) = max [Ty, 1)) (4.64)

Figure 4.7 shows the evolution of T},,,, for the same simulations shown in Figure 4.3. For

comparison we also include the solution from Platt et al. [2014]™°

that neglects thermal
decomposition, shown by the dashed black line in Figure 4.7.

We see that the onset of thermal decomposition initially causes the maximum temper-
ature rise to increase faster than for thermal pressurization alone, a surprising result for an
endothermic reaction. This is due to the additional strain rate localization that accompanies
the onset of decomposition. Frictional heating is being focused into a narrower zone and
thermal diffusion and the endothermic reaction do not act fast enough to offset the addi-

tional frictional heating. However, the reaction kinetic and thermal diffusion quickly catch

up, leading to a peak in 75,4, followed by a gradual decay. This limiting of the temperature
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is qualitatively similar to the results from Sulem and Famin [2009]*7 and Brantur et al.
[2010]*° for a uniformly sheared layer with a thickness between 1 mm and 10 mm, though
our peak temperature is higher because straining is more localized in our model.

To study the maximum temperature rise when thermal decomposition is triggered we

define the peak temperature as

Tpear, = max [T'(y, )] . (4.65)

ty

Using the parameter sweeps that led to Figure 4.6 we now study how 7),c., varies with the
parameters in the model. Figure 4.8 shows how T),qj varies with eight parameters in the
numerical simulations plotted alongside the predictions from equation (4.33) evaluated
with 7y = 252 MPa/ms. We see good agreement between the numerical simulations
and equation (4.33). The maximum difference between the two temperatures is typically
around 50 °C, though larger discrepancies are seen for the smallest values of E, and A.
To understand the differences between the numerical results and equation (4.33) we
study the magnitude of the three terms on the right hand side of equation (4.27)
Ty o*T _ 0&

o Qh —mEra-

. 3y (4.66)

The first term models frictional heating, the second term models thermal diffusion, and the
final term models the endothermic reaction. At the peak temperature the time derivative of
T is zero so these three terms must sum to zero. Physically this means that at the peak tem-

perature the frictional heating is exactly balanced by thermal diffusion and the endothermic

reaction.



Figure 4.8: A plot showing a set of parameter sweeps tracking the peak temperature Tpeak asa
function of eight parameters. For each sweep all other parameters are set to the values in Tables
4.1and 4.2,amass fractionm = 0.5,asliprateVV = 1 m/s, and a gouge layer thickness

h = 0.5 mm. For comparison we include the temperature predictions from equation (4.33) as-
sumingy = 252 MPa/ms. We see good agreement between our numerical simulations and the
simple formula to estimate the temperature at which thermal decomposition operates, with typical
discrepancies of ~ 50 °C.
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Figure 4.9 shows how these three terms vary with £, and oy, for the calcite simulations
shown in Figure 4.8. We see that for all the simulations shown here thermal diffusion is
more important than the endothermic reaction. As expected, for all parameters we see that
the magnitude of the frictional heating and thermal diffusion terms increase as the localized
zone thickness decreases. The dependence of the reaction term on W is not as clean, but in
general a smaller value of W leads to a slightly larger magnitude for the reaction term. In
almost all cases shown here thermal diffusion is a factor of 2 — 3 larger than the reaction,
and thus thermal diffusion is more important than thermal decomposition in limiting the
maximum temperature.

Following the peak temperature we see a gradual decrease in the maximum temperature,
coinciding with the thickening of the localized zone described in the previous subsection.
During this gradual cooling the magnitude of all three terms in equation (4.27) fall. This
is to be expected since frictional heating and thermal diffusion are largely controlled by the
width of the deforming zone, and the reaction rate is controlled by the maximum tempera-
ture. The ratio of the reaction term to thermal diffusion and the ratio of the reaction term
to frictional heating both decay along the plateau, so as expected thermal decomposition
becomes less important as the maximum temperature decays. For some special cases we see

an increasing temperature along the plateau, and this is particularly common for lizardite.

4.5.3 Strength drop due to thermal decomposition

In this subsection we study how the onset of thermal decomposition alters the shear strength
evolution of the gouge layer. Figure 4.10 shows the shear strength evolution for calcite and

lizardite for the same parameters as those used in Figures 4.3 and 4.7. We see that the onset
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Figure 4.9: A plot showing how the magnitude of frictional heating, thermal diffusion and the en-
dothermic reaction at peak temperature vary with E,. and o, for calcite. These plots were gener-
ated using the parameters in Tables 4.1 and 4.2, a mass fraction = 0.5, asliprate V. = 1 m/s,
and a gouge layer thickness & = 0.5 mm. In both parameter sweeps the magnitude of the frictional
heating and thermal diffusion terms increases as the localized zone thins. For all simulations thermal
diffusion plays a larger role than the reaction in limiting the maximum temperature. The units in this
plot also reinforce the extreme heating rates associated with micron-scale strain rate localization.

of thermal decomposition leads to a rapid acceleration in dynamic weakening, followed by
a return to more gradual weakening.

Platt et al. [2014]"° showed that for thermal pressurization alone the strength evolu-
tion after localization is in good agreement with the Mase-Smith-Rice slip on a plane solu-
tion™#*+"+%%_ The shear strength evolution after thermal decomposition is triggered obvi-
ously does not agree with the slip on a plane solution, but the rate of dynamic weakening is
found to be in reasonable agreement with the slip on a plane solution. Figure 4.11 shows the
weakening rate —d7/dt for calcite and lizardite alongside the weakening rate for the slip on
a plane solution. We clearly see a large increase in the weakening rate at the onset of thermal
decomposition, but at later times the weakening rate is comparable to that predicted by the

slip on a plane solution. This observation that the weakening rate returns to a value compa-
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Figure 4.10: A plot showing the shear strength evolution for calcite and lizardite. These simulations
were performed using the parameters in Tables 4.1 and 4.2, a mass fractionm = 0.5, asliprate

V' = 1m/s, and agouge layer thickness h = 1 mm. For comparison the solution from Platt et al.
[2014] " that considers dynamic weakening from thermal pressurization alone (i.e. £, = P, = ()
is shown by the dashed black line. Initially our simulations agree with the simulations from Platt et al.
[2014]%¢, indicating that thermal decomposition can be neglected during the initial stages of defor-
mation. Eventually thermal decomposition becomes important and the rate of dynamic weakening
increases dramatically, before returning to a much slower weakening rate. This plot suggests that
thermal decomposition can be roughly modeled as a discrete strength drop coinciding with the tem-
perature reaching T’.. The location of the stresses used to calculate the strength drop associated
with thermal decomposition are indicated by the black plus symbols.

rable to the value for the slip on a plane solution, which would be the long term weakening
rate for a system that neglected thermal decomposition, means that the dynamic weakening
due to thermal decomposition can be roughly described as a discrete strength drop coincid-

ing with the onset of decomposition.
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Figure 4.11: A plot showing the weakening rate —7 for calcite and lizardite. These simulations
were performed using the parameters in Tables 4.1 and 4.2, a mass fractionm = 0.5, asliprate
V' = 1m/s,and a gouge layer thickness & = 1 mm. For comparison the weakening rate for the
Mase-Smith-Rice slip on a solution is shown by the dashed black line. During the initial stages of
deformation the two solutions agree, and we see a first spike in weakening rate associated with the
onset of localization driven by thermal pressurization. Eventually thermal decomposition is trig-
gered and we see a second spike in weakening rate, before the two numerical solutions returnto a
weakening rate comparable to the slip on a plane solution at large slips. The second spike is much
larger for lizardite, corresponding to the larger strength drop. This plot shows how weakening due
to thermal decomposition can be related to previous solutions for pore fluid weakening, and empha-
sizes the extreme weakening rates associated with the onset of thermal decomposition.



Figure 4.12: A plot showing a set of parameter sweeps tracking the strength drop associated with
thermal decomposition AT as a function of eight parameters. All other parameters are set to the
values in Tables 4.1 and 4.2, a mass fractionm = 0.5,asliprate V' = 1 m/s,and agouge layer
thickness h = 0.5 mm. We see that a typical strength drop at the onset of thermal decomposition
is 0.2 — 0.57. Comparing with Figure 4.6 we see that larger stress drops are associated with
smaller values of V.
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Next we quantify how this strength drop depends on the gouge properties. To do this
we define the strength before thermal decomposition to be the stress at the local minima
in the weakening rate associated with the onset of decomposition, and the strength after
decomposition to be that at which the weakening rate returns to the distance away from
the slip on a plane solution it was before thermal decomposition was triggered. These two
values are then used to define the strength drop coinciding with thermal decomposition.
Figure 4.12 show how the stress drop varies with the parameters in the model. We see that
typical strength drops are between 0.2 and 0.5 of the initial strength 7y, meaning that in
these simulations thermal decomposition is as important as thermal pressurization in con-
trolling the total co-seismic strength drop of the gouge layer. We also see that in general a
larger strength drop is associated with a smaller value of W, and that larger strength drops

occur over a shorter time.

4.6 Predictions for other common fault materials

In this section we use the results from the previous section to make predictions for the peak
temperature and localized zone thickness for the four materials listed in Table 4.2.

First we predict the maximum temperature during an earthquake, assuming that this
temperature is controlled by the endothermic thermal decomposition reaction, using equa-
tion (4.33). We use the parameters from Tables 4.1 and 4.2, a reactant mass fraction m =
0.5, an effective stress equal to half the ambient value, a slip rate V' = 1 m/s, and a deform-

ing zone thickness of 100 zm. This leads to the predictions

Tl = 960°C , T = 885°C, (4.67)
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T:ll./musc. =1733°C Tﬁ“lc = 1454 °C. (4.68)

We see that the dehydration of talc and the illite/muscovite mixture limits the peak temper-
ature at much higher values than those predicted for the decarbonation of calcite and the
dehydration of lizardite.

Next we predict the localized zone thickness using the high-temperature limit given in
equation (4.50). Using the parameters in Tables 4.1 and 4.2, and assuming an initial reactant

mass fraction m = 0.5 and a slip rate V' = 1 m/s we predict

WAL =51 pm , Wi =12 um, (4.69)
mllvjlr.j/ﬂmusc. =11 pr WtIZIZ =13 fernL. (4-70)

The localized zone thicknesses predicted for the other dehydration reactions are similar to
the predictions for lizardite, with values of about a micron.

Finally we use the formula given in equation (4.61) that is motivated by the linear stabil-
ity analysis in the intermediate regime and gives the best fit to the numerical simulations.
To evaluate this formula we use the results in equations (4.69) and (4.70) to estimate the
current temperature of the deforming gouge. Using the parameters in Tables 4.1 and 4.2,
and assuming an initial reactant mass fraction m = 0.5and asliprate V' = 1 m/swe
predict

Weate. = 127y, Wy, = 6.8 um, (4.71)
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Will./musc, =119 pme Wtalc = 8.6 1. (472)

These predictions are larger than the predictions from the high-temperature limit WHT a5
was observed in the numerical simulations shown in Section 4.5. For all four materials we

predict that the localized zone thickness is approximately ten microns wide.

4.7 Discussion

4.7.1  Localized zone thickness during seismic shear

In this paper we showed how the localized zone thickness is expected to change during seis-
mic shear. Thermal decomposition can be neglected during the initial stages of deforma-
tion and localization is driven by thermal pressurization. In this limit the localized zone
thickness is set by a balance between thermal pressurization, hydrothermal diffusion and
frictional rate-strengthening, and for a fixed slip rate the localized zone thickness can be pre-

dicted using the analysis in Rice et al. [2014]™° and Platt et al. [2014]™°

. At high tempera-
tures thermal decomposition dominates thermal pressurization. The maximum strain rate
in the gouge layer increases to a new peak value before decaying, indicating that the onset of
thermal decomposition drives additional strain rate localization.

We used a linear stability analysis to quantitatively predict the localized zone thickness
as a function of the fault temperature. As expected, at low temperatures we recover the
predictions from Rice et al. [2014] ™, which studied strain localization driven by thermal

pressurization alone. At high temperatures the localized zone thickness is independent of

the fault temperature, and the formula for localized zone thickness has a simple form that is
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independent of the reactant mass fraction and the reaction kinetics. The reaction controls
the localized zone thickness only through the parameters /2, and P,. For fault temperatures
between the high and low temperature limits we solved for the localized zone thickness
using Cardano’s formula for roots of a cubic equation, leading to a more complicated for-
mula than the simple solution in the high temperature limit. This formula shows a weak
dependence on the reactant mass fraction and reaction kinetics, and requires a current fault
temperature to be specified.

We tested our analytic predictions using numerical simulations. Performing a parameter
sweep over all relevant dimensionless parameters we found that the more general cubic for-
mula makes more accurate predictions than the simpler formula valid in the high tempera-
ture limit. This is because the endothermic nature of the reaction limits the peak fault tem-
perature to a value below the region where the high temperature limit is valid. Based on this
we conclude that the best predictions for localized zone thickness when thermal decomposi-
tion is active are given by equation (4.61). However, this means we must know the reaction
kinetics and hope that the peak fault temperature is well approximated by equation (4.33).
When the reaction kinetics are unknown a prediction for the localized zone thickness can
still be made using the simpler formula in equation (4.50), and this is expected to be correct
to within a factor of ~ 2 — 3.

The ubiquity of carbonates and hydrated clays in mature faults and the large tempera-
ture rises expected during an earthquake suggest that thermal decomposition is triggered
during the majority of earthquakes. This suggests that it may be more appropriate to com-
pare the predictions from equation (4.61) with field and laboratory observations of micron-

scale strain localization than the low temperature limit studied in Rice er al. [2014]™ and
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Platt et al. [2014]"°. The localized zone thicknesses predicted in this paper are in good
agreement with the majority of observations of strain localization, and a detailed discus-
sion of these observations can be found in the introduction of Rice et al. [2014]™°. When
comparing with field and laboratory observations it may be more appropriate to use the
full width at tenth maximum Wy 7as, which is equal to /2 log(10) V.

If we neglect grain size reduction or amorphization due to comminution and thermal
decomposition, then the thinnest localized zone thicknesses predicted in this paper are
comparable to a typical grain size in the gouge layer. This means that for the very thinnest
localized shear zones the size of individual grains may be an important localization lim-
iter. There are several ways to predict a localized zone thickness in this limit, as discussed in
Rice et al. [2014]™ and Platt et al. [2014]*°. One option, which is based on a wide body
of research on localization in granular systems, is to set the localized zone thickness equal
to ~ 10 — 20ds0, where ds is the grain size such that 0% by weight of the particles have
larger size. Another option is to extend the model presented in this paper to account for the
motion of individual grains. This might be done using a higher order continua or gradient
theory that models the inertia of individual grains, and examples of how these models inter-
act with thermal and pore fluid effects can be found in Vardoulakis [2002]*° and Sulem et
al. [20m]*.

Our model makes many simplifications that may alter our quantitative predictions sig-
nificantly, though we expect the results to be qualitatively unchanged with the localized
zone thickness set by a balance between thermal decomposition, frictional rate-strengthening
and diffusion. First we assume that the gouge properties are constant, and approximate the

expected changes with pore pressure and temperature using the path-averaging approach
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from Rice [2006]™°. Rempel and Rice [2006]™° suggested that this is a fair approximation
for most parameters, but that the changes in hydraulic diffusivity accompanying pore pres-
sure changes may be important. Since thermal decomposition leads to pore pressures much
closer to the normal stress, it is possible that the hydraulic diffusivity at peak localization is
much larger than the value we assumed, leading to a localized zone thickness that is much
wider than our predictions. As noted in Sulem et al. [2009]**, the solid volume change
accompanying thermal decomposition will also impact the hydraulic parameters, and we
expect this porosity change to increase v, and lower F,.. Both of these changes will act to
widen the localized zone. Since limited depletion has occurred at the moment when peak
localization is achieved we do not expect this to alter the peak localized zone thickness, but
it may lead to significant widening of the localized zone as the reactant is depleted.

Equation (4.61) shows that the localized zone thickness depends more sensitively on fj
than any other parameter in the model. This means that other dynamic weakening mech-
anisms that alter the friction coefficient — such as flash heating and the low friction coefh-
cients associated with nanoparticles — may lead to localized zones that are wider than our
predictions. If we crudely approximate these dynamic weakening effects by assuming a
lower friction value of fy = 0.2 then we predict that the localized zone thickness will in-
crease by almost an order of magnitude.

Finally, all of the results presented in this paper assume a fixed kinematically applied slip
rate. However, in a dynamically propagating rupture we expect the slip rate to vary by at
least an order of magnitude along the fault, with the largest slip rates at the rupture tip.
Our formulae for the localized zone thickness suggest that these variations in slip rate will

lead to significant changes in the localized zone thickness during an earthquake. However,
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Figure 4.3 shows that localization develops over a finite slip of a few millimeters, and thus
it is not appropriate to just evaluate equation (4.61) as a function of V' in a dynamic rup-
ture simulation. Properly testing the effects of a variable slip rate requires a new study that

imposes V().

4.7.2  Limiting of peak temperature

In addition to studying how thermal decomposition drives strain localization, we also stud-
ied the evolution of the maximum temperature within the gouge layer. This builds on pre-
vious work by Sulem et al. [2009]**, Brantur et al. [2010]* and Brantut et al. [2011]* that
showed how the endothermic decomposition reaction can limit the maximum temperature
rise, possibly explaining the frequent lack of pseudotachylytes on mature faults.

Figure 4.7 shows that thermal decomposition is initially unimportant and the maxi-
mum temperature rise follows the solution for thermal pressurization alone from Plart et
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al. [2014]"°. When thermal decomposition becomes important the maximum tempera-
ture within the gouge layer begins to rise faster than for thermal pressurization alone. This
is a surprising result for an endothermic reaction but can be understood by realizing that
the pore pressure generated by the reaction is driving additional strain rate localization, fo-
cusing frictional heating into a narrower zone. Eventually the reaction kinetic becomes fast
enough to offset the additional heating and we see a peak temperature followed by a grad-
ual decay. We believe that this gradual decay is due to the strength drop that accompanies
the onset of decomposition gradually lowering the amount of frictional heating that the

reaction has to offset.

While Sulem et al. [2009]”® and Brantut et al. [2010]*° showed that the endothermic
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reaction caps the maximum temperature rise, they did not provide a way to predict how
this temperature will change with the gouge properties or reaction triggered. In this pa-
per we estimated the peak temperature rise by assuming it occurs when the reaction pro-
gresses fast enough to offset all frictional heating. This highlights that the peak temperature
is controlled by the kinetics, and is not well estimated by the temperatures from equilib-
rium phase diagrams. Our estimates for the peak temperature were tested using numeri-
cal simulations. Performing a parameter sweep over all relevant dimensionless parameters
we showed that our estimate is generally accurate to within ~ 50 °C when we assume a
fixed frictional heating equal to a 50% strength drop and a localized zone that is 150 um
wide. From this we conclude that equation (4.33) can be used to estimate peak tempera-
tures when thermal decomposition is active.

These simulations also allowed us to study the role of thermal diffusion in limiting the
maximum temperature. We find that in general thermal diffusion is more important than
thermal decomposition in limiting the maximum temperature. This is because diffusion
occurs rapidly for micron-scale deforming zones, though it is possible that for much higher
values for the hydraulic diffusivity, which leads to wider shear zones, thermal diffusion
would be unimportant in limiting the peak temperature. This contradicts the assumptions
that went into equation (4.33) but we still obtain a reasonable estimate for the peak tem-
perature due to the weak dependence of the peak temperature on the assumed frictional
heating.

It is important to note that our results are based on a large extrapolation in the reaction
kinetics, and any change in A or () will alter our results. One important physical process

that is neglected here is the interaction between the pore fluid pressure and the reaction ki-
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netics. We expect the reaction to proceed slower at higher pore pressures, which may replace
the gradual decay after the peak temperature with a gradual increase.

Our predictions for talc and the illite/muscovite mixture show that thermal decompo-
sition may not always preclude melting. However, it is likely that, on the timescales associ-
ated with seismic slip, melting is partially controlled by the kinetics, as was shown to be the
case with thermal decomposition. This means that it may not be sufficient to just compare
the predictions from equation (4.33) with a typical equilibrium melting temperature, and
instead a melting temperature should be estimated by comparing the melting kinetics with
a typical seismic slip duration. Quantitative predictions for a wider range of materials are

made difficult due to the lack of data to constrain the reaction kinetics.

4.7.3 Impact on dynamic weakening

Previous work by Sulem et al. [2009]*® and Brantut et al. [2010]* showed that the on-
set of thermal decomposition leads to a rapid pore pressure increase, and thus accelerated
dynamic weakening. Our final focus in this paper was to study how the magnitude of this
strength drop is controlled by the gouge properties.

As with the localized zone thickness and maximum temperature, the shear strength
evolution initially follows the solution for thermal pressurization alone from Platt et al.

1%°. This means that the initial weakening follows the solution for uniform shear

(2014
under undrained and adiabatic conditions from Lachenbruch [1980]"7, and after the first
strain rate localization driven by thermal pressurization the shear strength follows the Mase-

Smith-Rice slip on a plane solution+*#5*°_ The onset of thermal decomposition is accom-

panied by an acceleration in dynamic weakening, leading to a lower shear strength than the
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Mase-Smith-Rice slip on a plane solution. While the shear strength evolution no longer fol-
lows the slip on a plane solution, the weakening rate —7 does approach that predicted by
the slip on a plane solution at large slips.

Comparing the weakening rate from our numerical simulations and the slip on a plane
solution we were able to quantify the strength drop associated with the onset of thermal
decomposition. Typical strength drops are ~ 20 — 40% of the initial fault strength, though
we see significant variations in the parameter sweep shown in Figure 4.12. In general larger
strength drops are associated with more intense localization, and the larger stress drops also
occur over shorter slips. From this we conclude that the strength drop due to thermal de-
composition is comparable to the strength drop from thermal pressurization. Assuming
that flash heating can be modeled by instantaneously reducing the friction coefficient from
~ 0.6 to ~ 0.2 at the rupture tip, we expect flash heating to account for ~ 70% of the
co-seismic strength drop with thermal pressurization and decomposition each accounting
for ~ 15% of the strength drop. However, this conclusion relies on a crude model for flash
heating, and it is unclear how efficient flash heating is when deformation is distributed in a
gouge material.

As discussed in section 4.7.1, it is important to remember that our model assumes a fixed
kinematically applied slip rate. To truly determine how much of the co-seismic strength
drop is due to thermal decomposition requires a dynamic rupture code that couples the
strength evolution on the fault surface to an elastodynamic model for the material adjacent

to the fault.
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4.8 Conclusions

We used a model for deformation in a fluid-saturated gouge layer to study seismic strain
localization driven by thermal decomposition. Combining a linear stability analysis with
numerical simulations, we predicted the localized zone thicknesses as a function of the fault
properties, showing that when thermal decomposition dominates thermal pressurization
this thickness is set by a balance between thermal decomposition, hydraulic diffusion, and
frictional rate-strengthening.

In addition we studied how the endothermic reaction combines with thermal diffusion
to limit the temperature rise during an earthquake, producing the first estimate for how
the peak temperature depends on reaction properties. For the materials studied here this
peak temperature is controlled by the reaction kinetics, and is typically much larger than the
equilibrium phase transition temperature.

Next we studied how the onset of thermal decomposition accelerates dynamic weaken-
ing, showing that the onset of decomposition leads to a rapid strength drop of ~20-40% of
the initial fault strength. The weakening rate after the onset of decomposition is shown to
be roughly approximated by the slip on a plane solution for weakening driven by thermal
pressurization, though thermal decomposition —7 always leads to shear strengths that are
lower than those predicted by thermal pressurization alone. A parameter sweep shows that
larger strength drops at the onset of decomposition are associated with more intense strain
localization.

Our results were used to predict the peak temperature and localized zone thickness for

four different reactions. We predict localized zone thicknesses between 6 and 12 y1m, and
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peak temperatures between 885 and 1733 °C. Based on these predictions we conclude that
thermal decomposition drives micron scale strain localization, but not all thermal decom-

position reactions will limit the peak temperature below a typical melting temperature.



This project was a collaboration with Robert C. Viesca and Dmitry I.
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Steadily propagating slip pulses driven by

thermal decomposition

5.0 Abstract

Geophysical observations suggest that mature faults weaken significantly at seismic slip

rates. Thermal pressurization and thermal decomposition are two mechanisms commonly
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used to explain this dynamic weakening. Both rely on pore fluid pressurization with ther-
mal pressurization achieving this through thermal expansion of native solids and pore fluid
and thermal decomposition by releasing additional pore fluid during a reaction. Several re-
cent papers have looked at the role thermal pressurization plays during a dynamically prop-
agating earthquake, but no current models have studied the role of thermal decomposition.
In this paper we present the first solutions accounting for thermal decomposition during
dynamic rupture, solving for self-healing slip pulses propagating at a constant rupture ve-
locity. First, we show that thermal decomposition has a distinctive signature with longer
slip durations, larger total slips, and peak slip rates near the trailing edge of the slip pulse.
Next, we show that accounting for more than one weakening mechanisms allows for mul-
tiple steady slip pulses at a given background stress, with some slip solutions corresponding
to different balances between thermal pressurization and thermal decomposition, and oth-
ers corresponding to activating a single reaction multiple times. Finally, we study how the
rupture properties — such as slip duration, rupture velocity and total slip — depend on the
fault properties, and show that the impact of thermal decomposition is largely controlled
by the ratio the hydraulic and thermal diffusivities x = /s, and the ratio of pore

pressure generated to energy absorbed by the reaction P,/ E,..

5.1 Introduction

Several lines of evidence suggest that mature faults weaken significantly at seismic slip
rates. First, the driving stress resolved on mature faults is often low**, suggesting that,
to allow an earthquake to propagate, the fault must experience a significant co-seismic

strength drop from a peak strength consistent with quasi-static measurements (e.g. Byer-
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lee [1978]%). Second, the lack of an observable heat anomaly on major faults™® - and the
scarcity of frictional melt products — suggests that the fault strength during seismic slip is
much less than the strength predicted by Byerlee’s law. Finally, high-velocity friction exper-
iments performed on natural samples show a sharp drop in friction coefficient for slip rates
above ~ 0.1 m/s, which is an order of magnitude lower than a typical seismic slip rate of
~ 1m/s%.

Several mechanisms have been proposed to explain this dynamic weakening. In this pa-
per we will focus on just two of these mechanisms, thermal pressurization and thermal de-
composition. Both mechanisms rely on elevated pore fluid pressures in a fluid-saturated
gouge layer, with thermal pressurization achieving this through thermal expansion of na-
tive pore fluid and thermal decomposition by releasing additional pore fluid —for example
H,0O or CO, - during a devolatilization reaction. These reactions are ubiquitous among
common fault materials, with experimental evidence for the decarbonation of calcite>*",
siderite®® and dolomite*® as well as dehydration of antigorite™’, kaolinite* and gypsum™.
The activation of thermal decomposition has also been inferred in field observations of
natural carbonate faults*>¥. Other proposed weakening mechanisms such as flash heat-

ingl85’

189 may also cause dynamic weakening by lowering the friction coefficient within the
gouge, but these mechanisms are neglected in this paper.

Many theoretical studies have looked at the role of thermal pressurization during seismic
slip. Lachenbruch [1980]*7 solved for the slip weakening distance and maximum tempera-
ture rise for a finite thickness gouge layer deformed under undrained and adiabatic condi-

tions, showing that thermal pressurization leads to total co-seismic weakening and a finite

temperature rise. Mase and Smith [1985]'*+, Mase and Smith [1987]'+, and Rice [2006]™
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extended the analysis in Lachenbruch [1980]"7 to account for hydraulic and thermal dif-
fusion into the adjacent material, solving for the shear strength and temperature evolution

for slip on a mathematical plane. Finally, Rempel and Rice [2006]™°

combined the two ap-
proaches, solving for a finite thickness shear zone during kinematically imposed slip while
accounting for hydrothermal diffusion.

Recent work has also gone beyond the kinematically imposed slip rates used in the pre-
vious references and coupled thermal pressurization on a fault surface to an elastodynamic
model for a propagating rupture. Andrews [2002]* presented the first model to couple
thermal pressurization with a dynamic rupture, showing that thermal pressurization may
lead to an almost total co-seismic strength drop during large earthquakes. This was ex-

20,155

tended to account for additional frictional effects*>*, and incorporated into earthquake
cycle simulations in Noda and Lapusta [2010]°. Garagash [2012]*° showed that thermal
pressurization and the associated hydro-thermal diffusion in the gouge and surround-
ing rock supports self-healing pulse-like ruptures. Thermal pressurization is also impor-
tant when determining how a rupture evolves in a heterogeneous fault system. Urata et

al. [2012]%%

showed that accounting for thermal pressurization allows a rupture to jump
a wider stepover; Noda and Lapusta [2013]"7 showed that thermal pressurization can
weaken rate-strengthening sections of faults that would not normally slip seismically, lead-
ing to large earthquakes; Urata et al. [2014]7* showed that the ability of a fault to weaken
through thermal pressurization is a first-order effect when determining if a rupture can
branch.

Theoretical studies of thermal decomposition have been far fewer than theoretical stud-

ies of thermal pressurization. Sulem and Famin [2009]*7 and Sulem et al. [2009]** (here-
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after cited together as Sulem et al. [2009]**), and Brantut et al. [2010]*° studied thermal
decomposition in a gouge layer deforming in response to a constant kinematically imposed
slip rate. They showed that the endothermic nature of the reaction limits the maximum
temperature rise below a typical melting temperature, and the onset of the reaction accel-
erates dynamic weakening. Brantut and Sulem [2012]> relaxed the constant slip rate con-
straint by coupling the gouge layer to a spring-slider model. Platt et al. [submitted]™ stud-
ied how thermal decomposition could drive co-seismic strain localization. Finally, Poulet et
al. [2014]7° studied how the thermal decomposition of serpentinite could lead to episodic
tremor and slow slip. However, no previous studies have accounted for thermal decompo-
sition in a dynamically propagating rupture.

In this paper we present the first dynamic rupture solutions to account for thermal de-
composition. Building on the solutions for thermal pressurization alone from Garagash
[2012]*, we solve for a self-healing slip pulse propagating at a constant rupture velocity.
We aim to study the interplay between thermal pressurization and thermal decomposition,
and look for a distinctive signature of thermal decomposition that might be looked for in
seismic observations. In addition we want to determine what important fault properties
control the amount of weakening driven by thermal decomposition.

Our decision to look for self-healing slip pulses is based on the seismological observations
from Heaton [1990]*°°, which showed that in large earthquakes the slip duration at a point
on a fault can be much shorter than the event duration. Theoretical work has also shown
that slip pulse propagation is favored over expanding crack-like ruptures at the low driving
stresses thought to be resolved on mature faults***. Many previous studies have solved

for steady slip pulses using a range of models for fault strength evolution. These include
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Figure 5.1: Plot showing the geometry used to solve for a slip pulse of length L propagating at a
constant rupture velocity of v,.. The coordinate « is oriented parallel to the fault and is zero at the
rupture tip; the coordinate ¥ is oriented perpendicular to the fault and is zero at the centre of the
gouge layer. The stress rises from the background driving stress 73, far ahead of the pulse to the
initial strength 7 at the rupture tip, is equal to the shear strength of the gouge layer within the slip-
ping portion of the fault, and then rebounds back to the driving stress far behind the slip pulse. The
shear strength at each point on the fault is calculated using a model for the deformation of a fluid-
saturated gouge layer sheared between two undeforming thermo-poroelastic half-spaces account-
ing for thermal pressurization and thermal decomposition. This figure is based upon Figure 1 from
Garagash [2012]%¢ and Figure 1 from Platt et al. [2014] **¢
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Broberg [1978)%, Freund [1979]7°, Perrin et al. [1995]'%, Rice et al. [2005]"*, and Garagash

165,86

[2012]*°. However, only a subset of these address the self-healing nature of a slip pulse,

where the stress on the fault is required to be below the strength whenever the fault is not

slipping.
5.2 Model for steadily propagating slip pulses

In this section we develop our model for a self-healing slip pulse traveling from right to left

at a constant rupture velocity v, with dynamic weakening driven by a combination of ther-
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mal pressurization and thermal decomposition. We consider a two-dimensional fault with
the z-coordinate running parallel to the fault and the y-coordinate running perpendicular
to the fault, as shown in Figure s.1. The elastodynamic portion of our model is based on
Weertman [1980]*° and Garagash [2012]*. Our model for thermal decomposition is based
heavily on the models derived in Sulem et al. [2009]** and Brantut et al. [2010]*, but uses
the notation from Platt et al. [submitted]' to quantify the temperature rise buffered and
pore pressure generated by thermal decomposition. We use the standard model for thermal

pressurization.

s.2.1 Conservation of energy

Using the notation for thermal decomposition from Platt et al. [submitted]™ we write the
conservation of energy at any point on the fault as

T 1 02T ¢

ot~ pe Tt T Mgy

(s-1)
where T is fault temperature, pc is the effective heat capacity per unit reference volume,
ayyp, is the thermal diffusivity, 7 is the shear strength of the gouge layer, + is the strain rate
within the gouge layer, £ is the reaction extent, 77 is the initial reactant mass fraction within
the gouge layer, and E, is the total temperature rise buffered by a completed reactionin a
pure material. The definition of E), can be found in Platt et al. [submitted]™.

Each term in equation 5.1 has a nice physical meaning. The first term on the right hand
side models frictional heating in the gouge layer, the second term models thermal diffusion,
and the final term models the latent heat associated with the endothermic reaction. Here

we have neglected the work done by the normal stresses and the small heat flux associated
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with pore fluid flow, a common assumption that is justified for typical fault gouge perme-
abilities™*+'#5. We have also assumed that pc, ayp, and E,. do not change with temperature
and pore pressure.

The importance of thermal decomposition at a given location within the slip pulse is
determined by the reaction kinetic, which controls how fast the reaction progresses. We
model the reaction rate using a first-order reaction kinetic with an Arrhenius temperature

dependence

0
8_§ =A(1—¢)exp (—%) ) (5.2)

For simplicity we neglect reactant depletion — a good assumption for high initial reactant
mass fractions or reactions with a large value of £, — which is equivalent to setting { <
1 in equation (5.2). Next we assume that the reaction kinetic can be approximated as the

product of the reaction rate in the middle of the gouge layer and a Gaussian function in y

2,2
5 = Ao (g o (T ) 69

where T, (t) = T'|,=0 is the temperature at the mid-plane of the deforming zone. This

assumption about the shape of the reacting zone is motivated by the common approxima-
tion used to model frictional heating within the gouge layer, where the shear strength of the
gouge layer is evaluated using the pore pressure at the center of the deforming zone and the
strain rate is assumed to have a fixed shape. Without this assumption it would be impos-
sible to leverage the Green’s function approach used in Garagash [2012]*. The additional
factor 3 is included in equation (5.3) to allow the reacting zone to have a different thickness

than the deforming zone, and [3 is equal to the ratio between the deforming zone thickness
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W and the reacting zone thickness. We later validate our approximation of the reacting
zone shape, and use these tests to select an optimal value of 3.
Finally we convert equation (s.1) to a frame moving with the slip pulse — which propa-

gates from right to left and has a rupture tip at = 0 - using the transformation

(5-4)

Combining this transformation with the simplified reaction kinetic from equation (5.3) we

arrive at the final equation modeling the conservation of energy

or T4 0T Q 3y’
iy = rangs i Aew (~gi-Jew (IEE) . 69

Different terms in this equation will be important at different portions of the rupture.
During the initial stages of deformation the temperature will be low enough that thermal
decomposition can be neglected. In this regime the temperature will rise as frictional heat-
ing occurs, with the most rapid rises happening at the beginning when the shear strength
is high and thermal diffusion has limited time to act. If thermal decomposition is triggered
then the endothermic reaction will offset some of the frictional heating and we expect the

temperature to increase more slowly.
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s.2.2 Conservation of pore fluid mass

Using the notation from Platt et al. [submitted]'”” we write the conservation of pore fluid

mass at any point on the fault as

dp oT Pp O
N L Y .
o~ Vor T Omge TG (56)

where p is the pore pressure, A is the thermal pressurization coeflicient, av,, is the hydraulic
diffusivity, and P, is the total pore pressure rise generated by a completed reaction in a pure
material at constant temperature and undrained conditions. The first term on the right
hand side models thermal pressurization, the second term models hydraulic diffusion, and
the final term models the pore pressure generated by thermal decomposition. We have as-
sumed that the hydraulic properties are constant, and thus do not change with tempera-
ture, pore pressure or reaction extent. As with the equation modeling the conservation of
energy we transform equation (5.6) to a frame moving with the slip pulse and approximate
the reaction kinetic as the product of the reaction kinetic evaluated using the temperature
at the center of the deforming zone and a Gaussian function in y with a prescribed width.

This leads to the final equation for the conservation of pore fluid mass

op oT p Q m[5%y°
DA 0 Sl mp _ - : .
Uror T oy T 0y? i exp ( RT,,, P W2 (57)

As with the conservation of energy, different terms in equation (s.7) will be important at
different locations within the slip pulse. Initially thermal decomposition can be neglected

and all weakening will come from thermal pressurization. If the reaction is triggered the
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results in Sulem et al. [2009]*® and Brantut er al. [2010]*° suggest that the onset of thermal
decomposition will lead to an acceleration in dynamic weakening. Near the trailing edge
of the slip pulse hydro-thermal diffusion will lower the pore pressure, providing the re-

strengthening mechanism that allows self-healing slip pulses to occur.

5.2.3 Deformation within the gouge layer

Rice [2006]™° concluded that inertial effects within the gouge layer will be negligible dur-
ing seismic shear due to the small distances over which hydraulic and thermal diffusion act.

This conclusion was tested in Platt et al. [2014]"°

and found to be true for typical seismo-
genic conditions, with the possible exception of the rupture tip where slip rates can become

very large. Neglecting inertia within the gouge layer allows us to write the conservation of

momentum using the conditions for mechanical equilibrium

or do,,

where 7 is the shear stress on the fault and o,, is the normal stress on the fault, which is as-
sumed to be constant. This quasi-static approximation forces the shear stress within the
gouge layer to be at most a function of x.

The shear strength within the gouge layer is controlled by a friction coefficient f and the

Terzaghi effective stress,

7r=f X (0 — D). (5.9)

It is important to note that when the gouge is deforming — and thus the stress on the fault

is equal to the gouge layer strength — equation (5.9) is incompatible with equation (s.8)
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if the friction coeficient is assumed to be constant. Only two forms of deformation are
possible, uniform shear of the gouge under undrained and adiabatic conditions or slip on
the plane of maximum pore pressure™°. If the friction coefficient varies across the gouge
layer then a localized zone with a finite thickness can develop, but this thickness may vary
dramatically during seismic slip and should be solved for as part of the solution®******7.
However, such a calculation is far beyond the scope of this paper, and we ignore the com-

plications associated with strain rate localization by assuming that the deforming zone has a

Gaussian shape with constant width W

5= Y@ (—H) , (5:10)

where V' is the slip rate accommodated across the gouge layer. Fixing the deforming zone

17%¢ — forces us to choose

thickness — as opposed to solving for it as in Platt et al. [2014
where in the deforming zone we want to evaluate the fault strength. We choose to use the

pore pressure at the centre of the deforming zone, which is almost always equal to the peak

pore pressure within the deforming zone, leading to

75 = f (00 = ply=0) - (5-11)

Although the assumptions in this paragraph are severe, they are currently the only way to
avoid the complicated process of modeling the evolution of strain rate localization within
the gouge for every point on the fault during rupture propagation.

When thermal decomposition is accounted for it is possible that the pore pressure will

become equal to — or even exceed — the normal stress. This is in contrast with thermal pres-
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surization alone where the pore pressure is always less than the normal stress. Currently it is
not clear what will happen when the pore pressure reaches the normal stress, though it may
be possible for the fault to slide at zero shear strength for some period of time. Another
possibility studied in Brantut and Rice [2011]* is that the excess pore fluid pressure leads to
fault opening, and this dilatancy returns the pore pressure to a value lower than the normal
stress. Due to the uncertainty in mechanical response we will assume throughout this paper
that any simulation that leads to p > o, is unphysical. Any simulations with backslip (i.e.
V' < 0) are also unphysical, because frictional resistance must act in a direction opposite to

the direction of the slip rate.

s.2.4 Elastodynamics for a steady slip pulse

In the previous subsections we developed a model for how the fault weakens in response to
an imposed slip rate. In this subsection we show how the along-fault shear strength profile
combines with the background stress driving the rupture to control the along-fault slip rate
profile. We model a slip pulse with length L traveling at a constant rupture velocity v, on

a two-dimensional fault driven by a background stress 7,. The half-spaces on either side

of the fault have a shear modulus 1 and shear wave speed c,. For this geometry and a sub-
sonic rupture velocity the stress on the fault is related to the slip rate profile through the

integral equation®”’

TR 06
T(x) =1 — 27’:%/0 x(_g)gdg L V(@) = v (5.12)

Here i = pF(v,/c,) is the apparent shear modulus, and F' decreases as the rupture veloc-

ity increases. We will model a mode-III rupture, for which F' = /1 — (v,./¢;)?, though
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our work could be re-cast in the form of a mode-II rupture using the expression for I’ given
in Rice et al. [2005] ™.

To determine where on the fault slip occurs we compare the fault strength 74 from equa-
tion (s.11) with the stress on the fault 7 given by equation (s.12). Slip occurs when the stress
is equal to the strength, and the fault locks when the stress is lower than the strength. Fora
slip pulse with length L and a rupture tip at z = 0 these conditions can be written in the
slipping region as

T=71 , V>0, z € (0,L) (5.13)

and in the locked region as
<1 , V=0, 2¢(0L). (s5.14)

As shown by Garagash [2012]* these conditions are met when the stress rate intensity fac-

tor at the trailing edge of the slip pulse

4 - L d_de (s.15)
7L Jo L —xdx 15

kr =

is equal to zero. If k7, > 0 then the rate of stress rebound immediately behind the slip pulse
is infinite, leading to a stress that exceeds the strength in the locked portion of the fault.
This violates condition (5.14) and is obviously unphysical. We also consider £, < 0 to be

unphysical since this leads to backslip immediately ahead of the trailing edge of the pulse.
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Quyp, mm2/s 0.54

pc, MPa/K 2.7
A, MPa/K 0.3
Qhy» mm?/s 6.71
FE,,°C 3060
P.,GPa 7.42
m 0.5
A /s 2.95x 101
@, kJ/mol 319
R,J/(Kmol) 8.31
W, pim 250
15} 2
f 0.6
Op — Pa, MPa 180
T, °C 300
v*, m/s 737

Table 5.1: Table outlining the base parameter choices used in our simulations. The thermal and hy-

] 180

draulic parameters are taken from Rempel and Rice [2006 and are based on the data in Tables

1-3 from Rice [2006] *%¢ and the procedures in Rice [2006] *%¢ used to account for variations dam-
age, pore pressure, and temperature changes. The reaction parameters are taken from Sulem et al.
[2009]%*8, but use the notation for I, and PP, from Platt et al. [submitted] **”. The mechanical param-
eters follow the choices made in Garagash [2012]%. Finally the ambient conditions model a depth of
10 km assuming a effectives stress gradient of 18 MPa/km and a goetherm of 30 °C/km.

5.3 Parameter values

In this section we discuss the parameter choices used for the majority of this paper. The
model presented in the previous section has many parameters but the slip rate profile for a
slip pulse is controlled by seven dimensionless parameters, as shown in Appendix C.1.

The most poorly constrained parameters in this problem are the hydraulic parameters
oy and A, which will vary with pore pressure, temperature, and amount of damage to

the gouge material. For the Green’s function solution used in this paper we must assume



constant hydraulic properties, but we account for changes in the hydraulic properties with
pressure and temperature using the path-averaged parameters modeling a damaged material
from Rempel and Rice [2006]™°. This parameter set is based on the data in Tables 1-3 from

186

Rice [2006]™° and uses the procedures in Rice [2006]™° to account for variations in the

hydraulic properties due to damage as well as pore pressure and temperature changes. We
choose vy = 6.71 mm?/sand A = 0.3 MPa/K.

The thermal parameters oy, and pc are much more tightly constrained than the hy-
draulic parameters. Again we follow the path-averaged parameter set modeling a dam-

180

aged material taken from Rempel and Rice [2006]"° and choose the specific heat capacity

pc = 2.7 MPa/K and thermal diffusivity ay, = 0.54 mm?/s. Both of these fall in the
186

typical range of values quoted in Rice [2006]

Next we discuss the reaction parameters, focusing on the decarbonation of calcite

CaCO;3 — CaO + CO,. (5.16)

To model this reaction we use the kinetic parameters from Dollimore et al. [1996] %, and
the values of E, and P, given in Platt et al. [submitred]™. Our choicesare A = 2.95 X
10 1/5,Q = 319kJ/mol, E, = 3060°Cand P, = 7.42 GPa, and a more detailed
discussion of these parameter choices can be found in Sulem et al. [2009]** and Platt et

al. [submirred]™. All simulations in this paper are performed for an initial reactant mass
fraction m = 0.5, which is large enough to make reactant depletion negligible. For other
reactions with lower values of F, — such as the dehydration of lizardite — reactant depletion
may become important even at such high reactant mass fraction.

Next we model the ambient state of the gouge before slip begins by assuming an effec-
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tive stress gradient of 18 MPa/km, a hydrostatic pore pressure gradient of 10 MPa/km,
and a geotherm of 30 °C/km. The majority of calculations are done for a depth of 10 km,
which corresponds to an ambient effective stress 7, = 180 MPa, and an ambient tempera-
ture of 300 °C. This is slightly deeper than the depth of 7 km modeled by the parameter set
from Rempel and Rice [2006]™° that we use for the hydraulic and thermal properties, but
was chosen to ensure that thermal decomposition is triggered over a broad range of driving
stresses.

All solutions in this paper are performed with a friction coefficient of f = 0.6, a value
chosen to agree with low strain rate deformation governed by Byerlee’s law. This means we
implicitly ignore other dynamic weakening mechanisms such as flash heating that typically
lower the friction coefficient to values close to f = 0.1 — 0.2. However, our results are pre-
sented with sufficient generality that they can be reinterpreted in terms of a lower friction
coeflicient that may be more appropriate for seismic slip. The other mechanical parameters
that enter the model are the shear modulus j¢ and shear wave speed c;. Following Garagash
[2012]* we choose ;t = 30 GPaand ¢, = 3 km/s. Combining these with the parameter
choices above we arrive at v* = 737 m/s, which is used to solve for the rupture velocity and
defined in equation (C.10).

Finally we choose the parameters describing the thickness of the deforming and react-
ing zones. We choose the deforming zone thickness W' = 250 psm, which is in reasonable
agreement with laboratory and field observations showing micron-scale localization as well
as theoretical predictions for localized zone thicknesses for strain localization driven by ther-

189,166,167

mal pressurization and thermal decomposition . The localized zone thickness is cho-

sen to be slightly larger than those predicted in Rice et al. [2014]™, Platt et al. [2014]™°
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Figure 5.2: A plot showing how the stress rate intensity factor &, at the trailing edge of the slip
pulse varies with slip duration for three different driving stresses when thermal decomposition is
accounted for (solid lines), alongside the corresponding solutions for thermal pressurization alone
(dashed lines). For short slip durations the solutions with and without thermal decomposition agree
closely, but as the slip duration increases thermal decomposition contributes more to the overall
dynamic weakening and k7, rises above the values found for thermal pressurization alone. For the
three driving stresses shown here we find self-healing slip pulses - where k;, = 0 - trigger thermal
decomposition that have slip durations many times that expected for thermal pressurization alone.
Qualitatively extrapolating to higher driving stresses we predict there will be a range of driving
stress where multiple self-healing slip pulses exist, corresponding to multiple intercepts with the
line k;, = 0.

and Platt et al. (submitted)™” because our slip rates when thermal decomposition is active
are often slightly smaller than the 1 m/s assumed in these studies, and the Gaussian shape
used in our model has a slightly different parameterization than the one used in Platt et al.
(2014]"°® and Platt et al. [submitted]’. Appendix C.3 uses finite difference simulations
that make no assumptions about the reacting zone shape to validate our approximation of

the reacting zone, and based on these results we choose 3 = 2. This means that the reacting

zone is half the width of the deforming zone.
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The parameters listed above are not definitive values, and strong arguments could be
made for quite different values for some of the parameters. However, we will perform ad-
ditional simulations that study the dependence on different key parameters, allowing our
results to be reinterpreted for a much wider range of parameters choices than specified in

this section.

5.4 The signature of thermal decomposition

In this section we solve for self-healing slip pulses using the parameters in Table s.1. To find
self-healing slip pulses we use the numerical methods outlined in Appendix C.2 to solve
for a slip pulse with an imposed slip duration 7},;s., leading to curves for the stress rate
intensity factor at the trailing edge of the pulse k7, as a function of the ratio of the slip du-
ration and the timescale for hydrothermal diffusion to drain the gouge layer Tpy5c /T
Figure 5.2 shows the results of these simulations, alongside the solutions for thermal pres-
surization alone from Garagash [2012]*, for three different ratios of the background stress
T, and the initial shear strength of the gouge layer 7y = f(0,, — p,). Initially the curves
with and without thermal decomposition agree, as the total slip accommodated across the
slip pulses is not high enough to trigger thermal decomposition for the lowest values of
Tpuise/T*. However, thermal decomposition is eventually triggered as the total slip in the
pulse rises with 7,5 /7™ and kj, rises above the values obtained for thermal pressurization
alone. Eventually hydraulic diffusion causes k, to decrease to zero and we find self-healing
slip pulses driven by thermal decomposition at longer slip durations than for thermal pres-
surization alone. Figure 5.2 is the only plot in this paper that shows slip pulses that do not

satisfy the self-healing condition k;, = 0. Henceforth all results contain only self-healing
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slip pulses and the slip duration of a self-healing slip pulse is T,

All three curves in Figure 5.2 have a triple-valued shape reminiscent of a cubic curve.
Extrapolating the curves in Figure 5.2 to higher driving stress we expect three distinct self-
healing slip pulses to exist for a finite range of 7;,. Numerical solutions that include the
self-healing condition k;, = 0 in the Newton-Raphson iteration show that this expecta-
tion is met and the along-fault slip rate profiles for all three solutions are shown in Figure
5.3. All three solutions show peak slip rates on the order of a few m/s, and the peak slip rate
increases as the slip duration of the solution decreases. The three solutions show quite dif-
ferent slip rate profiles. The short duration solution has peak slip rates near the tip followed
by a gradual decay as the trailing edge of the rupture approaches. The intermediate dura-
tion solution has a similar shape to the short duration solution with an additional second
peak near the trailing edge of the pulse corresponding to the onset of thermal decompo-
sition. The long duration solution looks very different from the other two solutions with
peak slip rates occurring near the trailing edge of the slip pulses at the onset of thermal de-
composition. A rise in the slip rate above that expected for thermal pressurization alone
corresponding to the onset of the reaction is observed for all solutions that trigger thermal

decomposition.
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Figure 5.3: A plot showing the slip rate, temperature, and shear stress and strength profiles for the
three self-healing slip pulse solutions found using the parameters in Table 5.1 and a driving stress of
T, = 0.687p. Inthe temperature plot the dashed lines indicate the temperature evolution of the
fault after slip ceases. In the shear stress plot the dashed lines show how the strength evolves after
slip ceases. The blue curve shows the short duration slip pulse that does not trigger thermal decom-
position where peak slip rates occur at the rupture tip and all weakening comes from thermal pres-
surization. The red curves show the long duration slip pulse with significant weakening from ther-
mal decomposition, leading to peak slip rates at the onset of the reaction. The black curve shows
the intermediate duration solution, which is a balance between the other two solutions. Thermal
decomposition is triggered but peak slip rates still occur at the rupture tip, with a small increase in
slip rate when the reaction is triggered. The temperature profile shows that peak temperatures are

comparable to the reaction temperature estimated in Platt et al. [submitted] 167,
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Next we look at the temperature evolution for each slip pulse, shown in Figure 5.3. The
short duration solution has a significantly lower maximum temperature than the other two
solutions and does not trigger the reaction. This solution is exactly the same as the solu-
tions from Garagash [2012]* for thermal pressurization alone. Despite the different slip
rate profiles — leading to distinctly different frictional heating — the intermediate and long
duration solutions have comparable maximum temperatures of 847 °C and 871 °C.

We compare these values with the estimate for the peak reaction temperature from Plart
et al. [submitted]'”, which assumed that the peak temperature occurs when the endother-

mic reaction balances all of the frictional heating. This estimate is

T Q
" Rlog(mpcE, A/T7)

(5.17)

and is shown in Figure 5.3 for a heating rate of 7y = 216 MPa/ms. This value of the heat-
ing rate was found by assuming that the pore pressure has risen halfway from the ambient
value to the normal stress and a typical seismic slip rate of 1 m/s. 7T is larger than the peak
temperature in our solutions — possibly indicating that for a deforming zone thickness of
250 pm thermal diffusion plays an important role in offsetting the frictional heating — but
equation (5.17) still gives a rough estimate of the peak temperature. One interesting obser-
vation from Figure 5.3 is the short period of time spent at the peak temperature, a very dif-
ferent picture from that painted in Sulem et al. [2009]**, Brantut et al. [2010]*° and Plart
et al. [submitted]"” where the constant slip rate led to a plateau at the peak temperature.
The smooth dependence of reaction rate on temperature implied by the reaction kinetic
in equation (5.2) makes it difficult to define a single temperature that controls if thermal de-

composition is activated or not. This is in contrast with the equilibrium approach to mod-
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eling a reaction where the reaction is activated if and only if the peak temperature reaches
the equilibrium reaction temperature. However, we can make a few comments about the
temperature at which thermal decomposition operates. First, the sensitive dependence

of the reaction rate on temperature — which increases by roughly an order of magnitude
every 75 °C for temperatures between 700 °C and 1000 °C - allows thermal decomposi-
tion to be effectively turned on or off by small variations in temperature. Second, the sim-
ulations which activate thermal decomposition typically have peak temperatures within

~ 100 — 150 °C of the prediction given in (5.17), and thus we can use (5.17) to estimate if
thermal decomposition is triggered or not. However, the peak temperature achieved during
a slip pulse does not exceed the prediction from equation (5.17), and thus it may be more
appropriate to think of (5.17) as an upper bound on the peak temperature. Finally, equa-
tion (5.17) allows us to see how the temperature at which thermal decomposition operates
changes with the fault properties. For example increasing the reaction rate by increasing A
or lowering () allows thermal decomposition to be triggered at lower temperatures.

The temperature curves can be combined with equation (5.2) to test our assumption that
reactant depletion is unimportant. We find that the final reaction extent A£ at the cessation
of slip is negligible (< 0.01%) for the low duration solution, 1.2% for the intermediate
duration solution and 4.5% for the longest slip duration solution, which confirms that re-
actant depletion is negligible for the decarbonation reaction studied here. Multiplying the
final reaction extent by m £, we can also find the total temperature rise offset by the reac-
tion for each solution, finding 45 °C for the intermediate duration solution and 168 °C for
the long duration solution. This suggests that reactant depletion may be important for the

dehydration reactions from Platt et al. [submitted]™”, which typically have lower values of
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E, comparable to the values for total temperature rise offset listed above.

We also solve for the along-fault stress and strength profiles, shown by the solid and
dashed lines respectively in Figure 5.3. The behavior for both stress and strength can be eas-
ily understood in physical terms. Ahead of the slip pulse the strength is equal to the initial
value 7y = f0,, during slip the strength is equal to the stress and we see dramatic weak-
ening due to thermal pressurization and decomposition, and far behind the slip pulse the
strength returns to the initial strength due to hydrothermal diffusion. Far ahead of the slip
pulse the stress is equal to the background stress 7, but rises to the initial strength 7 as
the stress concentration at the rupture tip approaches. During slip the stress is equal to the
strength, and behind the slip pulse the stress rebounds to the background stress. We can see
acceleration in the weakening rate corresponding to the onset of thermal decomposition in
the intermediate and long duration solutions, with a much larger strength drop seen for the
long slip duration solution.

To quantify the dynamic weakening due to thermal pressurization and thermal decom-
position we integrate the first and third terms on the right hand side of equation (5.7) across
the slip pulse, finding the total pore pressure rise due to thermal pressurization to be AAT),
where AT is the difference between the ambient and final temperature in the slip pulse,
and the total pore pressure rise due to thermal decomposition to be 7 P, A§. The total
weakening due to thermal pressurization is 123 MPa, 156 MPa, 153 MPa for the short, inter-
mediate and long slip duration solution respectively. The total weakening due to thermal
decomposition is 45 MPa, 168 MPa for the intermediate and long slip duration solution
respectively. From this we conclude that the three different solutions correspond to differ-

ent balances between thermal pressurization, with the highest solution being most affected
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by thermal decomposition and the lowest solution being unaffected by thermal decom-
position. Note that thermal pressurization provides a significant amount of weakening in
all three solutions. Finally we use the total strength drop in the pulse to calculate the to-
tal restrengthening due to hydrothermal diffusion, finding pore pressure rises of 5o MPa,
127 MPa, and 236 MPa for the low, intermediate and high slip duration solutions respec-
tively. As expected hydrothermal diffusion becomes more effective as the slip duration in-
creases.

Having shown that we can solve numerically for self-healing slip pulses, and the differ-
ent balances between thermal pressurization and thermal decomposition in the different
types of solutions, we next track these solution as a function of the background stress. Fig-
ure 5.4 shows how the slip duration, slip pulse length, total slip and rupture velocity vary
as a function of 7, /7, which quantifies the proximity of the driving stress to the initial
yield strength. For the highest values of 7, we see that the solutions accounting for the re-
action (solid lines) are the same as the solutions that consider thermal pressurization alone
(dashed lines). This is because the total slip at these driving stresses is insufficient to raise
the fault temperature to a point where the reaction is activated. As the driving stress de-
creases we eventually see thermal decomposition become important. For a finite range of
7, three solutions exist — with the distinctive characteristics of each solution described in
the previous paragraphs — and beneath a critical driving stress a unique solution exists that
always triggers thermal decomposition. We see that thermal decomposition leads to longer
slip durations — as was shown in Figure 5.2 — and a slip pulse length that is larger than the
slip pulse length in solutions that consider thermal pressurization alone. The dependence

of slip pulse length on driving stress when thermal decomposition first becomes impor-
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Figure 5.4: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for the parameters in Table 5.1 (solid lines), alongside the corresponding
curves for thermal pressurization alone (dashed lines). We see that at high driving stresses the tem-
perature rise in a steadily propagating self-healing slip pulse is not large enough to trigger thermal
decomposition. For intermediate driving stresses multiple solutions exist, corresponding to differ-
ent balances between thermal pressurization and thermal decomposition. For all driving stresses
the triggering of thermal decomposition is associated with larger values of slip duration, slip pulse
length and total slip, and smaller rupture velocities when compared with slip pulses driven by ther-

mal pressurization alone.
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tant is complicated, with a loop formed in the region where multiple solutions exist. When
multiple solutions exist we see that the longer slip duration solutions also accommodate a
larger slip, though the difference in slips between the three solutions is at most a factor of
two. Solving for the rupture velocity using the definition of v* from Garagash [2012]* we
see that the rupture velocity decreases as the total contribution of thermal decomposition
increases, and almost all rupture velocities are a significant fraction of the shear wave speed
One striking feature in Figure 5.4 is the close agreement of the solutions that account for
thermal decomposition and the solutions for thermal pressurization alone as 7, — 0, with
this being especially notable for the plot showing total slip. Calculating the total pore pres-
sure rise due to thermal pressurization and thermal decomposition as a function of driving
stress shows that thermal pressurization dominates as the driving stress approaches zero,
with thermal decomposition providing only a small amount of extra weakening far back
from the rupture tip. This small additional slip leads to a slightly longer rupture duration
and a larger slip pulse length due to the additional time taken for hydrothermal diffusion
to overcome the additional weakening from thermal decomposition and heal the fault.
Interestingly the maximum temperature achieved during a slip pulse is almost constant
when thermal decomposition is active, varying by at most 15 °C as the driving stresses in
therange 0.02 < 7, < 0.6. This supports the idea that the endothermic nature of the
reaction sets a cap on the maximum temperature rise on a fault regardless of the amount
of slip experienced. We believe that the agreement between the two solutions is partly a co-
incidence due to our parameter choices, which led to a maximum temperature rise when
thermal decomposition is active that is very similar to the maximum temperature rise for

the thermal pressurization alone solutions as 7, — 0. We tried to test the behavior as
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Figure 5.5: A plot showing how the maximum temperature rise during a slip pulse AT}, 4. varies
with background stress for slip pulses driven by thermal pressurization alone, shown for four values
of Y. We see that as  increases the peak value of AT}, increases and moves to higher back-
ground stresses. This behavior may explain why the effects of thermal decomposition are most pro-
nounced for intermediate values of 7.

7, — 0 for different parameter sets that trigger thermal decomposition more vigorously
— for example lowering the activation energy of the reaction () — but found that this always
led to pore pressures that exceed the normal stress, which is a situation we consider unphys-
ical. We found that for 0 < 7, < 0.4 the peak slip rate always occurs near the tip, and the
slip rate profiles of all slip pulses look most like the black curve in Figure 5.3 with peak slip
rates at the tip and a small secondary slip rate increase far back from the tip corresponding
to thermal decomposition. This observation agrees well with our conclusion that thermal
pressurization provides the majority of weakening at low values of 7.

One possible explanation for the lessening effects of thermal decomposition as 7, — 0
can be found by studying the maximum temperature rise AT,,,, as a function of back-
ground stress for slip pulses driven by thermal pressurization alone, shown in Figure s.5 for

four values of x. As expected we see that for all driving stresses the maximum temperature
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rise increases with y. We also see that increasing x increases the peak value of AT}, and
increases the background stress this peak value is attained at. For x = 9 the largest temper-
ature rises are expected for 0.15 < 7, < 0.3. Since the activation of thermal decomposi-
tion relies on reaching a typical reaction temperature, and the amount of weakening driven
by thermal decomposition is controlled by the latent heat absorbed by the reaction, the
movement of the peak value of AT},,, may explain why thermal decomposition is most

pronounced for intermediate values of 7.

5.5 Dependence on fault properties

In this section we study the dependence on different parameters in the problem, with the
intention of allowing our results to be reinterpreted for different reactions or parameter
choices other than those made in Section 5.4. To do this we vary different dimensional pa-
rameters in turn while all other parameters are fixed to the values given in Table s.1. Gara-
gash [2012]* showed that self-healing slip pulses driven by thermal pressurization alone are
controlled by just three dimensionless parameters. These are the ratio of the hydraulic and
thermal diffusivities x = /s, the ratio of the background stress to the initial strength
T,/ To, and ratio of a typical rupture velocity and the shear wave speed v*/¢,. Accounting
for thermal decomposition adds four additional dimensionless parameters. The first two
new dimensionless parameters Ry, and IRy, control how much heat is absorbed and pore
pressure is generated by the reaction, and the other two new dimensionless parameters &
and T quantify how much the reaction rate varies with temperature and where the ambi-
ent temperature lies on a dimensionless kinetic curve. All of the dimensionless parameters

for the model can be found in Appendix C.1.
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s.s.1 Influence of diffusion timescale

First we look at the dependence on the deforming zone thickness W, which alters the hydro-
thermal diffusion timescale T* = W2/« as well as the values of v* and d,., which control
the rupture velocity and total slip respectively. Figure 5.6 shows how the slip duration, slip
pulse length, total slip and rupture velocity vary with the driving stress 7, for four differ-
ent deforming zone thicknesses varying by a factor of eight, alongside the corresponding
solutions for thermal pressurization alone. As the deforming zone thickness is increased
there is a tendency for the pore pressure to exceed the normal stress over a wide range of
driving stresses. For all plots the curves are terminated when the pore pressure reaches the
normal stress, and this termination is indicated by a circle. We see that the slip duration and
slip pulse length increase with the deforming zone thickness but retain the same qualitative
shape. The increase in slip duration is particularly large due to the quadratic dependence of
T™ on W that accounts for the majority the change in slip duration between the different
curves. Looking at the solutions in terms of the dimensionless variables we see that the ra-
tio Ty, /T increases by less than a factor of two as I increases from 100 yim to 2 mm. A
similar picture is seen for total slip, with wider deforming zones leading to a larger total slip.
This variation is almost entirely due to the scaling of total slip with .. Finally we see that
the rupture velocity drops as the deforming zone thickness increases, and this is explained
by noting that v* decreases as I increases, forcing the rupture velocity away from the shear
wave speed.

This behavior is qualitatively the same as the results for thermal pressurization alone
from Garagash [2012]*, which showed that micron-scale shear zones are associated with

rupture durations on the order of a milliseconds and seismic rupture velocities while millimeter-
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scale shear zones are associated with rupture durations on the order of a second and rupture
velocities that are far below the shear wave speed. This is to be expected because we use the
same scalings in this paper as were used in Garagash [2012]*°. Appendix C.2 shows the di-
mensionless rupture properties for the parameters listed in Table 5.1, and the numbers in
this figure do not changed dramatically as W' changes from 100 pzm to 2 mm.

The parameter sweep over I also allows us to see how the system will change with o
and the kinetic parameter A. This is done by noting that the dimensionless parameters Ry,
and Ry, in Appendix C.r depend only on the product 7% A. However, when A is changed
the scalings 0, and v* will remain unchanged, and when « is changed the value of ¢, re-
mains unchanged. The dependence on the product 7 A explains why the range of driving
stresses with multiple solutions gradually moves to higher driving stresses as 11 increases.
In the dimensionless variables increasing W is equivalent to having a higher reaction rate
constant A, which allows the reaction to be triggered at smaller slips. This equivalence with
a more vigorous reaction also explains why the range of driving stresses for which the pore
pressure exceeds the normal stress expands as W increases.

For larger values of A the range of driving stress with multiple solutions moves to higher
values of 7. Increasing A decreases the slip duration and total slip for a fixed driving stress
— which can be understood by noting that a larger value of A allows the reaction to be trig-
gered at a smaller slip — but leaves the rupture velocity almost unchanged. The dependence
of slip pulse length on A is complicated by the presence of multiple solutions, but in gen-
eral increasing A leads to a smaller value of L. However, the variations with A described
above are much smaller than those seen in Figure 5.6 and for the parameters in Table 5.1 we

still see slip durations of a few tens of milliseconds, slip pulse lengths of few meters, total
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Figure 5.6: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for four different values of the deforming zone thickness W and the param-
etersin Table 5.1, alongside the corresponding curves for thermal pressurization alone. The curves
are terminated when the pore pressure exceeds the normal stress, and this point is noted by a cir-
cle. We see that increasing the localized zone thickness leads to larger values for slip duration, slip
pulse length and total slip, and a lower rupture velocity. This is in good agreement with the results in
Garagash [2012]%¢ that studied slip pulses driven by thermal pressurization alone.
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slips of a few millimeters and rupture velocities that are a significant fraction of the shear
wave speed. This is to be expected because changing A does not alter 7, d,. or v*.

As «v increases the slip duration and slip pulse length drops while the rupture velocity
and total slip rise. The change in total slip is the smallest of these changes since the scaling
for total slip is independent of c. The range of driving stresses over which thermal decom-
position is triggered also shrinks as v increases. This is to be expected in our system since
increasing cv decreases T, and this is equivalent to lowering the rate constant of the reac-

tion A.

s.5.2 Balance between hydraulic and thermal diffusion

One of the striking aspects of the slip pulses driven by thermal pressurization alone pre-
sented in Garagash [2012]* is the insensitive dependence on the ratio of diffusivities y =
Qpy [, with the rupture properties varying by only a small amount as  varies from 0

to co. However, the highly nonlinear coupling between temperature and reaction rate
means that this conclusion does not transfer to our model. For a fixed value of «, the lower
thermal diffusivity associated with large values of x will lead to higher temperature rises,
making thermal decomposition more likely to occur. Figure 5.7 shows how the rupture
properties vary with driving stress for four different values of x. As expected the signs of
thermal decomposition — such as longer rupture duration — become more pronounced as
X increases. Interestingly, as x decreases the range of driving stress over which multiple so-
lutions exist shrinks, and for the lowest value of x has no values of 7, where multiple solu-
tions exist, and the rupture properties look qualitatively similar to the solution for thermal

pressurization alone. Initially we thought this could occur because lowering x was lower-
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ing the maximum temperature rise during thermal pressurization and shrinking the range
of driving stresses over which thermal decomposition is triggered. However, other simu-
lations not shown here using a rate constant A two orders of magnitude greater than the
value given in Table 5.1 show that this appears to be a feature of all simulations with values
of x comparable to or less than one, even when thermal decomposition occurs and is im-
portant over a wide range of driving stresses. This means that for low values of x thermal
pressurization is the dominant dynamic weakening mechanism. We believe this occurs be-
cause the efficient thermal diffusion associated with low values of x makes it hard to sustain
peak temperatures long enough for thermal decomposition to be the dominant weakening

mechanism.

5.5.3 Influence of reaction parameters

Next we look at the role played by the reaction parameters, beginning with the activation
energy (. Figure 5.8 shows how the rupture properties vary with driving stress for three
different values of (). We sce that for a fixed driving stress lowering () does not dramati-
cally change the rupture properties — with only a small reduction in total slip and slip pulse
length— but does control the range of 73, over which thermal decomposition is triggered.
This is consistent with a reaction that adjusts so that the energy absorbed by the reaction
balances the frictional heating. Lowering () allows this balance to occur at a lower tempera-
ture, effectively moving the ambient fault conditions closer to the reaction temperature and
extending thermal decomposition to higher values of 7,. We also find that lowering () in-
creases the range of driving stress for which the pore pressure exceeds the normal stress and

increases the total pore pressure rise due to thermal decomposition during the slip pulse.
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Figure 5.7: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for four different values of the ratio between hydraulic and thermal diffusiv-
ities y = ozhy/ozth and the parameters in Table 5.1, alongside the corresponding curves for thermal
pressurization alone. We see that increasing x leads to a more pronounced signature of thermal
decomposition, with longer slip durations, larger slip pulse lengths, and lower rupture velocities.

In addition we see that for the lowest values of x the range of 7, for which multiple solutions exist
vanishes, and the results look qualitatively similar to those for thermal pressurization alone.
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These observations are both consistent with the reaction becoming more vigorous as ()
decreases.

Next we look at the dependence on the temperature rise buffered by the reaction E, and
pore pressure generated by the reaction F,, shown in Figures 5.9 and 5.10. Our results show
that lowering £, is qualitatively similar to raising P,, and that higher values of P, lead to
more distinctive features of thermal decomposition with longer slip durations, lower rup-
ture velocities. Interestingly the regions where the pore pressure exceeds the normal stress
occur at intermediate values of 7, for these parameter sweeps. We find that the total pore
pressure generated by thermal decomposition increases as P, increases, and drops as E,.
increases.

The link between E, and P, can be motivated by looking at the high-temperature limit
examined in Platt et al. [submitted]™” where the temperature is constant, thermal diffusion

is neglected and the reaction exactly balances the frictional heating,

Ty _ ., 0¢
— =mE,—. 18
e - By (5.18)
This allows us to rewrite the pore pressure equation as
dp ?p P. 1y
(5-19)

= Qs
ot hy8y2 E,. pc

Note that this is similar to the equation for pore pressure evolution during thermal pressur-
ization and the ratio P, / E, acts as an effective value of A. For the parameters modeling the
decarbonation of calcite in Table s.1 P,/ E,. = 2.43 MPa/K. This value is much larger than

the value of A given in Table s.1, possibly explaining why the onset of thermal decomposi-
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tion accelerates dynamic weakening. As shown in Plart et al. [submitted]*”, the limit de-
scribed in equation (5.18) is likely never reached but we still advocate using the ratio P, / E,
— which is equal to the pore pressure generated per degree of temperature rise buffered — to
estimate if one thermal decomposition reaction will drive more or less weakening than an-
other reaction. A similar substitution of P,/ E,. for A is found in Platt et al. [submitted]™”
where the role P,/ E, plays in controlling the localized zone thickness when thermal de-
composition is active is the same as the role A plays in setting the localized zone thickness
when thermal pressurization dominates.

Equation (5.18) also shows us how E, acts independently of P, to control the reaction
depletion, with a larger value of E, requiring a larger amount of frictional heating to make
reactant depletion important. In the simulations shown in Figure 5.9 we observe that as
E, drops the total reactant depletion during the slip pulses rises. These conclusions will be
very important when extrapolating the results presented here to the dehydration reactions

considered in Platt et al. [submitted]'’, which typically have a much lower value of E; and

a higher value of P,/ E,..

s.5.4 Influence of depth

Finally we look at how the slip pulses driven by thermal decomposition depend on depth.
To do this we follow the choices made in Section 5.4 and assume a geotherm of 30 °C/km
and an effective stress gradient of 18 MPa/km. Figure .11 shows how the rupture proper-
ties depend on driving stress for 1o km, 12 km, and 14 km. These three depths were selected
for two reasons. First, we need to be deep enough that thermal decomposition is triggered

over a wide range of driving stresses, which does not occur for the decarbonation reaction
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Figure 5.8: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for three different values of the activation energy for the reaction () and
the parameters in Table 5.1, alongside the corresponding curves for thermal pressurization alone.
The curves are terminated when the pore pressure exceeds the normal stress, and this point is
noted by a circle. Lowering the activation energy makes it easier to activate thermal decomposi-
tion, leading to lower total slips and longer slip durations at high values of 7;. A lower value of ()
also leads to pore pressures that exceed the normal stress over a wide range of 7.
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Temperature rise buffered by reaction, E,
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Figure 5.9: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for three different values of I, and the parameters in Table 5.1, alongside
the corresponding curves for thermal pressurization alone. The curves are terminated when the
pore pressure exceeds the normal stress, and this point is noted by a circle. We see that increasing
E,. makes the effects of thermal decomposition less pronounced. Interestingly the range of 7, for
which the pore pressure exceeds the normal stress occurs at intermediate values of 73,
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Pore pressure generated by reaction, P,
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Figure 5.10: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for three different values of P, and the parameters in Table 5.1, alongside
the corresponding curves for thermal pressurization alone. The curves are terminated when the
pore pressure exceeds the normal stress, and this point is noted by a circle. We see that increasing
P, makes the effects of thermal decomposition more pronounced. As in Figure 5.9 the range of 7;,
for which the pore pressure exceeds the normal stress occurs at intermediate values of 7.
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considered for depths shallower than ~8 km if we assume the path-averaged parameters
modeling a damaged material from Rempel and Rice [2006]™°. Second, we want to limit
the range of driving stresses for which the pore pressure exceeds the normal stress, and we
found that as the depth increases the pore pressure exceeds the normal stress for a wider
range of driving stresses. Figure s.11 shows that increasing the depth extends the range of
driving stress for which thermal decomposition is triggered, which is expected since the am-
bient temperature moves closer to the reaction temperature as the depth increases and the
temperature rise increases as the ambient effective stress increases. The maximum temper-
ature achieved during the simulations shown in Figure s.11 shows only a modest increase
with depth — varying from ~ 900 °Cat1o km to ~ 975 °Cat 14 km — that can be ex-
plained by the increase in the heating rate 7 with ambient effective stress. The increase

in heating rate also makes reactant depletion more important as the depth increases, though
not enough to be important for the decarbonation reaction considered here.

Next we look at the balance between thermal pressurization and thermal decomposi-
tion, and find that the total pore pressure rise generated by thermal decomposition nor-
malized by the ambient effective stress increases with depth, while the pore pressure rise
generated by thermal pressurization normalized by the ambient effective stress decreases
with depth. From this we conclude that the importance of thermal decomposition as a
dynamic weakening mechanism increases with depth. This may seem surprising since the
dimensionless parameters Ry, and Ry, decrease as &, increases. However, this can be un-
derstood by noticing that as the depth increases the reaction is triggered after a smaller slip,
forcing the amount of weakening due to thermal pressurization to decrease. We believe

that the increase in the contribution to total weakening from thermal decomposition is the
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Figure 5.11: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for three different depths and the parameters in Table 5.1, alongside the
corresponding curve for thermal pressurization alone. Here we assume the ambient fault conditions
follow an effective stress gradient of 18 MPa/km and a geotherm of 30 °C/km. The curves are ter-
minated when the pore pressure exceeds the normal stress, and this point is noted by a circle. We
see that the range of 73 over which thermal decomposition is triggered expands with depth, as does
the range of 7, for which the pore pressure exceeds the normal stress. This indicates that thermal
decomposition is more vigorous deeper in the seismogenic zone.
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reason that Figure s.11 shows more distinctive signs of thermal decomposition as the depth

increases.

5.6 Train-like solutions

When the self-healing condition k;, = 0 is included in the Newton-Raphson iteration we
found that some initial guesses converge to solutions with greater complexity than those
shown above that have a single local maximum in the slip rate profile. Figure 5.12 shows
four such solutions with between one and four local maxima in the slip rate profile found
using the parameters in Table 5.1 with the deforming zone thickness set to W' = 3 mm
and a driving stress 7, = 0.4. When plotted against distance from the rupture tip the four
solutions show strong overlap, suggesting that the two-peak solution is nearly equivalent
to the one-peak solution with additional structure added at the trailing edge of the pulse.
The length of each peak in the x direction is approximately constant, meaning that the slip
pulse length in the four-peak solution is about four times greater than the slip pulse length
in the one-peak solution. The solutions with two and four peaks naturally emerged from
initial guesses designed to find solutions with one peak, while the three-peak solution was
deliberately searched for using an initial guess consisting of the first three peaks of the four-
peak solution. The solutions with multiple peaks arise due to the reaction effectively being
triggered multiple times in the same slip pulse as the temperature rises and falls. The en-
dothermic nature of the reaction and thermal diffusion combine to lower the temperature
from the peak values, and frictional heating raises the temperature to the new peak. The
frictional heating is aided by hydraulic diffusion raising the shear strength while the tem-

perature falls.
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Figure 5.12: A plot showing the along-fault slip rate, temperature, and shear stress and strength

for the train-like slip pulses with one, two, three and four peaks. These results we produced using
the parameters in Table 5.1, a deforming zone thickness W' = 3 mm, and adriving stress of 75, =
0.479. In the temperature plot the dashed lines indicate the temperature evolution of the fault after
slip ceases. In the shear stress plot the dashed lines show how the strength evolves after slip ceases.
These solutions correspond to a single reaction being triggered multiple times within a single slip
pulse. Note the similarity between the solutions, for example the two-peak solution looks similar to
the first two peaks in the three-peak solution.
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Figure 5.13: A plot showing how the slip duration, slip pulse length, total slip and rupture velocity
vary with driving stress for the train-like slip pulses with one, two, three and four peaks. These re-
sults we produced using the parameters in Table 5.1 and a deforming zone thickness W = 3 mm.
The curves are terminated when the pore pressure exceeds the normal stress, which is denoted by a
circle, and where the slip rate becomes negative, which is denoted by a square. We see that the slip
pulses with more peaks have larger slip durations, slip pulse lengths and total slips, but the rupture
velocity is relatively consistent between all four solutions.
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Next we see how the rupture properties vary with driving stress for the four solutions,
shown in Figure 5.13. We see that adding more peaks to the solution increases the slip du-
ration, slip pulse length, and total slip, and slightly reduces the rupture velocity. The more
complex solutions appear to exist only for a narrow range of driving stresses, with the max-
imum pore pressure exceeding the normal stress for lower driving stresses and the slip rate
becoming negative for higher driving stresses. We found that the range of driving stresses
for which the solutions with multiple slip rate peaks exist increases as the deforming zone
thickness W increases, leading to the choice of W = 3 mm used to find the solutions
shown in Figure s.12. As before we have discounted solutions with V' < 0 - suggesting
that a portion of the fault is slipping in the opposite direction to the applied shear stress —
as they are unphysical. The physical significance of these solutions is still unclear, and we do
not know if it would be possible to arrive at a propagating rupture that triggers the reaction
multiple times in a time-dependent dynamic rupture model that allows for solutions that

are not steady slip pulses.

5.7  Discussion

s.7.1  Thermal decomposition during dynamic rupture

In this paper we presented the first dynamic rupture models to account for thermal de-
composition. We found that the activation of thermal decomposition leads to distinctive
features in the rupture properties, with longer rupture durations and larger total slips. In
addition, our calculations showed that thermal decomposition should lead to lower rup-
ture velocities and larger slip pulse lengths, though we think this may be an artifact of our

decision to solve for steadily propagating self-healing slip pulses. Along with studying the
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rupture properties, we also showed that thermal decomposition can lead to a distinctive
along-fault slip rate profile. For intermediate values of 73, — where the influence of thermal
decomposition is most pronounced for steady slip pulses — the peak slip rate occurs towards
the trailing edge of the pulse, coinciding with the onset of the reaction. Since all other dy-
namic weakening mechanisms lead to peak slip rates at the rupture tip, this along-fault slip
rate profile makes thermal decomposition unique.

The distinctive nature of thermal decomposition may allow it to be identified in seis-
mic observations. While it may never be possible to image details such as along-fault slip
rate profile, it may be possible to see variations in slip duration, which our results suggest
will change dramatically if thermal decomposition is triggered. It may also be possible to
observe a seismic signature for thermal decomposition by studying the propagation of an
earthquake across the equilibrium phase boundary for a reaction. For depths above the
equilibrium phase boundary thermal decomposition may be an important dynamic weak-
ening mechanism, while below the phase boundary it will produce no weakening.

Our results show that the balance between thermal pressurization and thermal decom-
position can change significantly with the background stress on the fault. We found that
thermal decomposition is most active at intermediate background stress, though this may
be an artifact of the decision to look only for self-healing steady slip pulses. Regardless of
this, our results definitively demonstrate that thermal decomposition can be an important
dynamic weakening mechanism in a dynamically propagating rupture.

One problem we encountered frequently was the tendency for thermal decomposition
to drive the pore pressure above the normal stress. Due to the uncertainty over what the

mechanical response of the fault will be when the pore pressure exceeds the normal stress
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we decided to consider all slip pulses with p > o, unphysical. We expect this problem

to occur frequently when thermal decomposition is accounted for in other more complex
dynamic rupture models, and not just in our model for steady slip pulses. While prepar-
ing this paper we produced some additional solutions that accounted for the dependence
of permeability on effective stress. Assuming a semi-log dependence of permeability on
effective stress commonly seen in laboratory measurements — for example Wibberley and
Shimamoto [2003]** — we found this feedback was almost always able to limit the pore
pressure to values lower than the normal stress. Since the Green’s function approach used
to produce the majority of the results in this paper is not valid when the hydraulic diffusiv-
ity depends on pore pressure, these simulations were performed using the finite difference
procedure outlined in Appendix C.3. We advocate including this dependence of permeabil-
ity on effective stress in future rupture models accounting for thermal decomposition.

The coupling between pore pressure and permeability also produced interesting results
for thermal pressurization alone, and appeared to show that the initial weakening that be-
gins at the ambient pore pressure and the re-strengthening due to hydraulic diffusion that
happens at higher pore pressures are governed by different values of the hydraulic diffusiv-
ity. This effect is particularly pronounced for slip pulses at low driving stresses, since these
slip pulses experience the largest pore pressure changes.

All of the parameters choices in this paper were designed to trigger thermal decomposi-
tion over some range of 7,. However, many simulations failed to activate thermal decom-
position, allowing us to determine when and where thermal decomposition is likely to be
activated. We found that the activation of thermal decomposition is controlled by the am-

bient temperature 77, the temperature rise during thermal pressurization alone which is
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approximately &, /A, and the kinetic parameters A and (). The kinetic parameters deter-
mine at what temperature the reaction is activated, the ambient temperature controls how
far the initial state is from this reaction temperature, and the temperature rise 7, /A deter-
mines if the slip pulse can bridge this temperature gap and trigger the reaction. Our simu-
lations showed that if we assume the parameters in Table 5.1 then decarbonation of calcite
is common when the depth is 10 km or greater. However, if we choose A = 0.9 MPa/K
— a value Rice [2006]™° showed is in good agreement with lab measurements — then our
slip pulse solutions will not trigger thermal decomposition at any points in the seismogenic
zone. Similarly we found thatif 5, = 126 MPa - corresponding to a pore fluid pressure
that tracks the lithostatic gradient below a depth of 7 km - then decarbonation is not ac-
tivated for any background stresses at a depth of 10 km. It is important to note that these
conclusions about the depth at which thermal decomposition is triggered may change dra-
matically in a more realistic time-dependent rupture that may have a larger total slip, and

thus a higher temperature rise.

s.7.2  The possibility of multiple rupture modes

Our results show that when thermal decomposition is accounted for there can be several
different ways to propagate a steady slip pulse. To begin we showed that often for inter-
mediate values of 7, there are three ways to balance thermal pressurization and thermal
decomposition when propagating a steady slip pulse. Following this we showed that it is
possible for a single reaction to be activated multiple times, leading to a rupture mode that
looks like a train of slip pulses. We note that train-like rupture modes have been observed

before*>+*°?, though all of these solutions assumed a rate-and-state friction law at the slid-
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ing surface, and our train-like solutions are the first to be driven by dynamic weakening
mechanisms thought to be active during seismic slip.

Given this complexity, it is not clear how a fault would select from this range of possi-
ble rupture modes. There is also the possibility that a rupture switches between different
modes, possibly by only activating thermal decomposition on discrete parts of a fault. An-
other possibility is that a fault selects different rupture modes in different events, explaining
how a single fault could host large and small earthquakes. If the rupture mode is selected by
the manner of nucleation then it is important to properly couple models for dynamic weak-
ening to realistic models for nucleation. Such complexity may exist when other dynamic
weakening mechanisms are coupled, and our results highlights the need for thorough pa-

rameter sweeps when modeling earthquake ruptures.

5.7.3 Dependence on important parameters

In this subsection we highlight the four parameters that exert the greatest control over

our system, beginning with the deforming zone thickness W. By studying self-healing slip
pulses driven by thermal pressurization alone Garagash [2012]*® was able to define a param-
eter Ngynq and show that when the deforming zone thickness is less than or comparable to
Rynq the slip pulse propagates seismically, and when the deforming zone thickness is much
greater than Ay, the slip pulse propagates aseismically. Garagash [2012]* also showed
that the slip duration and total slip increase with the deforming zone thickness. Our simu-
lations show that the conclusions in Garagash [2012]* are still valid when thermal decom-
position is accounted for. The majority of the change in rupture properties with IV is the

result of how W changes 7™ and .., which scale the slip duration and total slip respectively,
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allowing our results to be extrapolated to deforming zone thickness not shown here. These
dimensionless plots shows that increasing 1# makes the reaction slightly more vigorous, in
agreement with our observation that as the deforming zone thickness increases the range of
background stress for which the maximum pore pressure exceeds the normal stress grow.
We believe this increased tendency for pore pressures to exceed the normal stress occurs be-
cause it is harder for hydraulic and thermal diffusion to relieve elevated pore pressures and
temperatures in a wider deforming zone.

The sensitive dependence of the rupture properties on I highlights the importance
of modeling strain localization during an earthquake. Rice et al. [2014]™ and Platr et al.

1%°¢ showed that thermal pressurization leads to significant strain localization at the

[2014
onset of deformation, and Platt et al. [submitted]™” showed that the onset of thermal de-
composition drives additional localization. Physical intuition suggests that if the deforming
zone thins at the onset of thermal decomposition then hydro-thermal diffusion will be-
come more efficient when the reaction is triggered, possibly offsetting a large amount of the
increase in slip duration predicted by this paper.

Rice et al. [2014]™, Platt et al. [2014]"°°, Platt et al. [submitted]™ also showed that the
localized zone thickness should evolve as the slip rate changes during a rupture. This could
have interesting feedbacks with the large variations in slip rate in our slip pulse solutions,
possibly slowing re-strengthening due to hydraulic diffusion as the slip rate approaches
zero near the trailing edge of a slip pulse. These hypotheses could be tested by coupling the
model for a self-healing slip pulse presented in this paper with the type of calculations used

to model strain localization in Rice et al. [2014]™°, Platt et al. [2014]"°, Platt et al. [sub-

mitted]™’, but this is complicated by the specific rate-strengthening friction law assumed
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1'% shows that the friction

by these localization models. Equation (3) from Plart et al. [2014
coefficient vanishes ahead of the slip pulse and thus the fault has zero strength. It may be
possible to get around this by accounting for state evolution in the localization calculations.
Another option may be to alter the slip pulse model to allow a small but finite slip rate to
occur everywhere on the fault, instead of setting V' = 0 for z ¢ [0, L].

Our simulations show that the amount of weakening generated by a specific reaction is
controlled by the ratio P,/ E,. We found that increasing P, by a factor of two produces
results that are similar to the results found when £, is decreased by a factor of two. Fur-
thermore we presented a physical motivation for the importance of this ratio based upon
the assumption that the temperature changes slowly when thermal decomposition is active.
We showed that P,/ E, plays a role similar to that played by A in classic models of thermal
pressurization. It is no coincidence that the units of the ratio P, / E;, - MPa/K - are the
same as the units of A. Also note that the same ratio appears in Platt et al. [submitted]™’
in the formula for the localized zone thickness when thermal decomposition is active, and
plays the same role that A does in the low-temperature limit dominated by thermal pressur-
ization.

Having demonstrated the importance of the ratio P,/ £, we can now predict which de-
composition reactions will drive the most weakening. We find that all of the dehydration
reactions listed in Plart er al. [submitted]™ lead to values of P,/ E, of approximately ten.
This agrees with preliminary self-healing slip pulse solutions found using the parameters
from Platt et al. [submitred]™” modeling the dehydration of lizardite that showed a pro-
nounced signature of thermal decomposition, pore pressures exceeding the normal stress

over a wide range of background stresses, and slip durations longer than those found using
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the parameters modeling the decarbonation of calcite.

It is important to note that the use of P,/ E, to estimate the potency of a thermal de-
composition is only valid when reactant depletion is negligible, and that reactant deple-
tion is controlled by the total temperature that can be buffered by the reaction mE,. We
showed that the large value of E, makes reactant depletion negligible for the decarbonation
of calcite, but depletion is expected to be important for the dehydration reactions listed
in Platt et al. [submitted]™. Our model could easily be extended to account for reactant
depletion, and this may provide another mechanism to limit the pore pressure to values
lower than the normal stress. The sudden loss of weakening associated with reactant de-
pletion may also provide another way to get rapid re-strengthening at the trailing edge of
a slip pulse. The solid volume change associated with reactant depletion may also lead to
additional strengthening by increasing the hydraulic diffusivity.

Another important parameter that dictates the impact of thermal decomposition is the
ratio of the hydraulic and thermal diffusivities, X = o, /aup. Figure s.7 shows that the
signature of thermal decomposition becomes much more pronounced as x increases. We
see that for x = 0.5, 3 the range of background stresses with multiple solutions vanishes,
and for y = 0.5 the results look qualitatively the same as for thermal pressurization alone.
This is in stark contrast with the results for thermal pressurization alone, which showed a
very modest dependence on x. We believe x plays such an important role by controlling the
amount of time spent at the peak temperature. The efficient thermal diffusion associated
with low values of x will shorten the amount of time spent at the peak temperature, and
decrease the total weakening thermal decomposition can deliver.

This dependence on x will be important when trying to predict how thermal decom-
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position will operate at different depths in the seismogenic zone. We expect vy, to fall sig-
nificantly as the depth increases while vy, remains roughly constant. This means x will
decrease with depth and for a given reaction the signature of thermal decomposition would
be most distinctive in shallow ruptures.

The final parameter that plays the largest role in controlling the balance between thermal
pressurization and thermal decomposition is the background stress on the fault 7,. Our re-
sults show that the balance between thermal pressurization and thermal decomposition can
change dramatically as 7, changes. However, this observation may not be physically realis-
tic, and may be an artifact of our decision to only search for self-healing steady slip pulses.
Thermal decomposition cannot be triggered in the slip pulses found at the highest values
of 7, because the weakening provided by the reaction would be so large that healing would
be impossible. In contrast, the non-steady rupture simulations in Noda et al. [2009]™
showed that the peak temperature rise increases with driving stress, suggesting that we
should expect thermal decomposition to be most prevalent at the highest background
stresses. Even if the steady self-healing pulse constraint is not realistic, we still believe that
the balance between thermal pressurization and thermal decomposition will change with

background stress in more realistic rupture models.

5.7.4 Relationship between steady slip pulses and time-dependent ruptures

One of the major limitations of our model is that we only solve for steadily propagating
slip pulses, and it is not clear how these steady solutions relate to a time-dependent rup-
ture that nucleates at a point on the fault and then propagates along the fault. The dynamic

rupture simulations presented in Noda et al. [2009]™ did not produce steadily propagat-
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ing slip pulses, instead finding only growing slip pulses, decaying slip pulses and crack-like
ruptures. Noda et al. [2009]™ also found that the transition from decaying pulse to grow-
ing pulse occurred over a very narrow range of background stress (see Figure 4 in Noda

et al. [2009]™), possibly indicating that steadily propagating slip pulses could only exist

for a very narrow range of background stress. Gabriel et al. [2012]** studied the boundary
between growing and decaying pulses in more detail, and managed to find pulses that prop-
agated steadily for the entire length of the rupture simulation. Gabriel et al. [2012]** also
showed that the steady pulses form the boundary between growing and decaying slip pulses
in parameter space. Both Noda et al. [2009]™ and Gabriel er al. [2012]** suggest that the
steady pulses are not stable, and thus a time-dependent rupture model will not select one
of the steady pulse solutions presented here. However, it is important to note that neither
Noda et al. [2009]™ nor Gabriel et al. [2012]** accounted for thermal decomposition. It is
possible that the complicated phase diagram shown in Figure 5.4 may lead to steady pulses
that are stable, though this can only be tested using a non-steady rupture accounting for
thermal decomposition.

Even if the steady slip pulse solutions never occur in more realistic rupture models we
expect many of our conclusions to hold. We still expect the activation of thermal decompo-
sition to lead to a longer slip duration and a larger total slip. Furthermore we expect P,/ E,
to control the additional weakening triggered by the onset of thermal decomposition, and

X to control the amount of time spent at the peak temperature.
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5.8 Conclusions

In this paper we produced the first dynamic rupture simulations to account for thermal
decomposition. We studied the balance between thermal pressurization and thermal de-
composition, showing that this balance can change significantly with driving stress. In addi-
tion, we demonstrated that thermal decomposition can provide as much total weakening as
thermal pressurization during a dynamic rupture.

Our results show that the activation of thermal decomposition significantly alters the
rupture properties, and leads to longer slip durations and larger total slips. Furthermore we
showed that for some background stress thermal decomposition leads to distinctive along-
fault slip rate profiles with peak slip rates near the trailing edge of the slip pulse, coinciding
with the onset of the reaction.

We showed that accounting for thermal decomposition allows multiple self-healing slip
pulses. Some of these solutions correspond to different balances between thermal pressur-
ization and thermal decomposition, while other solutions correspond to triggering a single
reaction multiple times. The wide range of possible rupture modes highlights the impor-
tance of coupling models for dynamic rupture with realistic models for nucleation, which
may allow us to determine which of the many rupture modes is selected by a fault.

Based on our results we highlighted two key parameters that are expected to control the
impact of thermal decomposition. First, we showed that the additional weakening associ-
ated with thermal decomposition is largely controlled by the ratio P, / E,., which balances
the amount of pore pressure generated with the amount of energy absorbed by the reac-

tion. We presented a physical motivation for this ratio and used this ratio to evaluate the
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potency of different decomposition reactions. Second, we showed that the ratio of hy-
draulic and thermal diffusivities x plays an important role in controlling the amount of
weakening produced by thermal decomposition. This is in stark contrast with the results

for thermal pressurization alone, which are insensitive to changes in .
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This project was a collaboration with Jenny Suckale, Thibaut Perol, and
James R. Rice. The numerical simulations presented in this paper were per-
formed by Jenny Suckale, who was also the primary author of the resulting
manuscript. My role involved developing the model, belping to use the an-
alytic solution to benchmark the numerical simulations, and analyzing the
results of the numerical simulations, all of which were done in collaboration
with Jenny, Thibaut and Jim. The work in this chapter bas already been
published and the relevant citation is: Suckale, J., J. D. Platt, T. Perol, and
J. R. Rice (2014), Deformation-induced melting in the margins of the West

Antarctic ice streams, Journal of Geophysical Research, 119, 1004-1025.

Deformation-induced melting in the

margins of the West-Antarctic ice streams

6.0 Abstract

Flow of glacial ice in the West Antarctic Sheet localizes in narrow bands of fast flowing ice

streams bordered by ridges of nearly stagnant ice, but our understanding of the physical
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processes that generate this morphology is incomplete. Here, we study the thermal and
mechanical properties of ice-stream margins, where flow transitions from rapid to stag-
nant over a few kilometers. Our goal is to explore under which conditions the intense shear
deformation in the margin may lead to deformation-induced melting. We propose a 2D
model that represents a cross-section through the ice-stream margin perpendicular to the
downstream flow direction. We limit temperature to the melting point to estimate melt
rates based on latent heat. Using rheology parameters as constrained by laboratory data
and observations, we conclude that a zone of temperate ice is likely to form in active shear

margins.

6.1 Introduction

The West-Antarctic Ice Sheet is thought to lose over 80% of its mass’ through outlet glaciers
and arterial drainage routes called ice streams, which are typically about a kilometer thick,
tens of kilometers wide and hundreds of kilometers long. Contrary to outlet glaciers, to-
pography cannot fully explain the location of the fast-flowing ice streams in the Ross Ice
Shelf, Antarctica®*>*®. Further evidence that ice-stream width is not controlled by topog-
raphy alone comes from evidence that some margins have shifted in the past™+#77>" or are
migrating currently?>%. These observations suggest that a physical mechanism must exist
that selects the location of the margin and the flow speed of the stream self-consistently.

The Ross Ice Streams rest on weak and unconsolidated sediment, commonly referred to
as till, which overlays former seafloor *+**#. Drilling into several active ice streams has con-

120,121

firmed near-lithostatic fluid pressure in the till below the ice streams , and inverse meth-

ods have shown that the till layer is nearly everywhere weak™. These findings imply that
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only a very modest shear stress can be supported by the bed and highlight that till defor-
mation is probably the primary mechanism that allows ice streams to move rapidly despite
relatively small gravitational stresses®. Measurements of shear stresses in the margins of the
Ross Ice Streams™ and a laboratory study of ice cores retrieved from depth™ confirmed
that a significant portion of the driving stress is balanced by stresses on an approximately
vertical interface parallel to the edge of the ice stream. We refer to these lateral boundaries
of ice streams, where the surface velocity drops by two to three orders of magnitude over as
little as a few kilometers, as the shear margins.

While force-balance considerations clarify that shear margins play an important role in
ice-stream dynamics*#>">9%*#>1 if probably to a different degree for different streams 74,
they do not offer any direct insights into the mechanism through which the margin affects
the ice-stream flow. One possibility is that shear margins represent not only the transition
from fast to slow flow, but may also coincide with the boundary between temperate and
frozen conditions at the bed"*'°. One problem with this idea is that even a small pertur-
bation in ice-stream width would lead to either run-away growth or to stoppage of an ice
stream ™. Schoof [2004]"* questioned the assumption that the transition between a tem-
perate and a frozen bed determines, or even coincides with, the position of the shear mar-
gin. As previously suggested by Raymond [1996]"7, Schoof [2004]™® invokes a spatially
variable yield stress in the till layer, analogous to Barenblatt-Dugdale concepts in fracture

mechanics™

%4, but does not offer an explanation for the assumed functional forms of the
yield stress along the glacial bed.
The goal of this study is to investigate the possibility of deformation-induced melting

in active shear margins. There are two reasons why melting and the associated presence
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of meltwater in ice-stream margins might have important consequences for the dynamics
of ice streams. First, glacial till can be approximated as a Coulomb plastic material with a

yield strength that is strongly dependent on porosity, which is controlled by the water con-

112,225,172 120,112,226

tent for full saturation and diminishes with effective pressure in agreement

with critical-state soil mechanics™®

. The sensitive dependence of shear strength on water
content suggests that the spatial variability of basal stress and the positions of the shear mar-
gins could be intricately linked to meltwater generation. Second, if significant quantities of
meltwater are produced in the margin, the water may accumulate in a channelized drainage
system as pointed out by Perol and Rice [2011]*”. The presence of a channel alters both the
basal stresses outside of it and the pore-pressure distribution in its vicinity, which could
contribute to locking of the bed of a widening stream.

The possibility that the shear margins of active ice streams may be temperate has been

pointed out before™®

?, but it remains unclear how pervasive melting is. Perol and Rice
[2011]™ suggested that the shear-strain rates measured by Joughin et al. [2002]™ for the
five Ross Ice Streams are consistent with internal melting for all stream margins except

the currently inactive Kamb Ice Stream. However, their model based on a 1D heat-transfer
model was not versatile enough to include ice advection perpendicular to the margin. While
observational evidence constraining the thermal properties of shear margins at depth is
scarce, Clarke et al. [2000]*7 identified a prominent bottom diffractor extending to about
230 m above the bed in the ice sheet close to Unicorn ridge (Figure 6.1), which they inter-
preted as a delineation of a zone of wet and reflective ice. Further, drilling into the currently

inactive Kamb Ice Stream margin revealed flowing water in a 1.6 m cavity between the bot-

tom of the ice sheet and its bed .
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A. Satellite image of Dragon Margin
Unicorn Ridge

Dragon Margin
B. Surface crevassing and borehole locations
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Figure 6.1: A: The left panel shows a satellite image of the confluence between ice streams B1

and B2 in the upstream portion of Whillans Ice Stream, taken by the Radarsat Antarctic Mapping
Project. The right panel is a detailed view of Dragon margin, Unicorn ridge and the profile S1 along
which Echelmeyer and Harrison [1999]¢° measured surface velocities and Harrison et al. [1998]°° re-
ported temperature for the upper few hundred meters. We have highlighted the positions of the
two outermost boreholes, “Out B” and “Up B, used in Harrison et al. [1998]°°. B: Approximate loca-
tions of the seven boreholes in the vicinity of the shear margin with respect to surface crevassing
(after Harrison et al. [1998]°°). The dark grey area represents the roughly 2 km-wide zone of chaotic
crevassing. The light grey zones exhibit less intense crevassing.

Here, we devise a 2D thermomechanical model of an ice stream moving over a plastic
bed in steady state. We consider a cross-section through the ice-stream margin perpendic-
ular to the downstream flow direction and analyze the effect of the anti-plane shear stress

components on the mechanical equilibrium and energy dissipation. Our ice rheology takes
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multiple creep mechanisms into account, which dominate at different stress levels. In ad-
dition to diffusion and advection of heat, we include the temperature dependence of mate-
rial properties and a simplified representation of surface crevassing assuming a temporally
steady state of stress and flow velocity. To estimate melt rates based on latent heat, we limit
temperature to the melting point and estimate melt rates based on latent heat. As detailed
in Appendix D.1, we solve the governing equations numerically using finite differences for a
Cartesian grid with three refinement levels after carefully benchmarking our computational

technique against approximate analytical results.

s

T 500+ =
= o
£, 400+ E
2 S
g 300+ ‘=
° —— Transverse derivative of surface velocity -10.08 .“U’
> 200} | —@— Surface velocity )
[0} 7]
o | —
& 100+ 0.04 ©
7]

3 c
(] ol J0 ©
><€ >€ -

Stream B2 Dragon  Unicorn

Figure 6.2: Surface velocities across Dragon margin as measured by Echelmeyer and Harrison
[1999]°? and the transverse derivative of surface velocities, du/dy, computed from the measured

surface velocities. Highlighted in red are the approximate transverse velocity derivatives for bore-
]99'

» o«
’

holes “Dragon Pad”, “Lost Love”, and “Chaos” quoted from Harrison et al. [1998

Our model is intended as a representation of the Ross Ice Streams. Despite the general
scope of the model, we chose the southern margin of Whillans Ice Stream B2, commonly
referred to as Dragon margin (Figure 6.1), as a specific test case for our study. Dragon mar-

gin is located near research camps and skiways and has been studied extensively. The two
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most important data sets for our purposes are detailed observations of surface velocities **

and temperature measurements from nine boreholes distributed across Dragon margin*’
(Figure. 6.2). In addition, Jackson and Kamb [1997]™ measured the enhancement factor at
Dragon margin to fit the observed rheology with the standard parameterization of Glen’s
Law, and Clarke et al. [2000]*” provided valuable insights into the complex deformational

history of the area over the last few hundred years.

6.2 Model setup

We consider a slab of ice flowing in the downstream direction x (Figure 6.3). The height
coordinate, z, is taken positive upward from the base of the ice. In the transverse direction,
the ice stream extends from the left boundary of the domain to its center (—W/2 <y < 0)
and the ridge from the center to the right boundary of the domain (0 < y < W/2). The
left boundary of our modeling domain thus coincides with the middle of the stream, and
the origin of our coordinate system (y = 0,2 = 0) represents the transition point from
slipping to locking at the bed, indicated as a black dot in Figure 6.3. We do not explicitly
model the process that would lead to such a transition. We distinguish the locked-to-sliding
transition point from the shear margin itself, which constitutes the ice column at the lateral
boundary of the stream where the surface velocity of ice increases rapidly over a few kilome-
ters. We assume negligible variation of ice-sheet thickness in the transverse direction (along
the y axis) and neglect topography at the bed such that the ice surface is parallel to the bed.
We also neglect downstream variation of ice properties and flow speed u, which reduces our

model to two dimensions, and assume a lithostatic pressure field.

248



6.21 Mechanical model

The only free variable of our mechanical model is the downstream velocity u(y, z), which

reduces the conservation of momentum (or static equilibrium in this case) to

9 (,0u +2 Ou + pgsina =0 (6.1)
oy M@y 9. \M'oz P - !

where p is the ice density, g is the acceleration due to gravity, «v is the inclination angle of
the ice, and p is the temperature- and strain rate-dependent effective dynamic viscosity. Ac-
cordingly, we assume that the strain rate tensor € and the deviatoric stress tensor T have
only two non-negligible components, the shear strain rates and shear stresses in horizontal
(€zy and 7,,) and vertical (¢, and 7,) directions on a face where x is constant. Note that
by reducing our analysis to anti-plane deformation as in equation (6.1), we inevitably ne-
glect small components of in-plane deformation that must accompany the marginal melt-
ing and drainage that we later infer.

The stream-ridge system in Figure 6.3 is underlain everywhere by a thick layer of glacial
till. Underneath the ice stream, the till is failing in shear, which justifies equating the basal
shear stress, Tpqse, underneath the ice stream with the yield stress. In the interest of simplic-
ity, we assume that the basal stress is constant. Underneath the ridge, we assume that the
shear stress at the ice-till interface does not exceed the yield stress, implying that failure and

sliding do not occur. The full details that explain locking are yet to be fully understood.
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stream z ridge

o

Figure 6.3: Simplified geometry of our model setup. The ice thickness is H and the total width of the
stream is W. The 2D setup (bottom) is equivalent to assuming a 3D stream-ridge geometry with no

downstream variation (top).

The appropriate boundary conditions at the bed are then

Tez = Tbase AL 2 = 07 ) <0 (62‘)

u=0 at z=0,y>0. (6.3)

The ice surface is assumed to be stress free. On the sides of the modeling domain, we use

symmetric boundary conditions, implying an infinite juxtaposition of ice streams and
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ridges. Later, we estimate Tpqse to best match measured surface flow rates and borehole tem-
perature profiles.

The boundary conditions defined in equations (6.2) and (6.3) imply a stress singularity
atthebed (z = 0, y = 0). This singularity is caused by the assumed till rheology, which
posits that till transitions from locking to yielding almost discontinuously. The extreme
stress concentration at the locked-to-sliding transition in the shear margin has important
ramifications for understanding ice-stream dynamics because it implies an inherent instabil-
ity in which ice streams that experience slight perturbations might be prone to instability ™.

That being said, it is possible that the singularity would be smoothed out by melting, as

discussed later in detail, or a Dugdale-Barenblatt cohesive zone.

6.2.2  Icerheology

There is no single mechanism that captures how ice deforms over a wide range of stresses®.
For our modeling domain, which encompasses both high and low stress conditions, we
approximate the rheology of ice as a combination of diffusional creep € p and Glen’s Law
€c

é=éptéc. (6.4)

Diftusional creep

dominates the deformational behavior of ice at low stresses, and Glen’s Law

(€g)ij = AE exp {—% (Tih - %)] TETij (6.6)
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dominates at intermediate to high stresses, where 7 is the effective shear stress defined by
the second invariant of the deviatoric stress tensor, in our case 73 = 75, + 72,, and ép is the
effective tensorial deviatoric strain rate, in our case €7, = €2, + €7,

The parameters specifying diffusional creep in equation (6.5) are the molecular volume
Q = 3.2710% m?, the Boltzmann constant kg = 1.38 10723 m? kg s2 K1, the grain
size d =1-10 mm, the exponential prefactor B = 9.1 10 m? s, the activation energy
@ = 59.4kJ mol™ and the gas constant R = 8.314 JK 'mol™*. For Glen’s Law, we follow
Cuffey and Paterson [2010]* in using the pre-exponential constant A = 3.5 107 s'Pa™®,
the temperature adjusted for the pressure effect on the melting point depression T}, = 1" +
poP withpy = 7 x 10® K Pa™ and T in K and the activation energy @ = 60 kJ mol™ for
T, < T*and Q = 115k] mol™ for T}, > T* where T* = 263.15 K= —10 °C. The sum
of the coefficients of 7;; in equations (6.5) and (6.6) defines 1/(2p1).

The rheological parameter that is most difficult to constrain is the enhancement factor.
Enhancement is not a physical variable by itself but rather represents effects of grain size,
impurities, fabrics and possibly other variables®. As a consequence, estimates for enhance-
ment vary widely. For the specific case of Dragon margin, Jackson and Kamb [1997]™ de-
termined enhancement factors between £/ ~ 1.12and E ~ 2.55 for different ice speci-
mens retrieved from Dragon margin. Because of the significant ambiguity introduced into
our model results even by this moderate variation, we set /' = 1 for most of our computa-
tions to allow for easier comparisons. We discuss the ramifications of varying enhancement

in Section 6.4.
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6.2.3 Thermal model

Our thermal model captures the effect of both diffusion and advection of heat. In addi-
tion, we cap temperature at the melting point to estimate melt production based on latent
heat and include the effect of cold surface air pooling in crevasses®. For a spatially-variable
thermal conductivity k, the steady-state temperature field is thus given by

0 ar 0 aor aor aoT
=) s 2 () = w4 27pép — Lin = ,
By (kﬁy)+8z (k82> pc(vay+wﬁz>+ TEER m=0, (6.7)

where v and w are the lateral and vertical advection speeds, respectively, c is the specific heat
of ice, 7 is the effective shear stress, € is the effective tensorial shear strain rate, L is the
latent heat of ice per unit mass and 72 is the mass melting per unit time and unit volume.
The thermal conductivity £ and specific heat ¢ vary with temperature as summarized in

Cuffey and Paterson [2010]%:

k(T) = ky exp(—ky x 1073 7)) (6.8)

c(T)=c1+eT, (6.9)

where T is in Kelvin and the forefactorsare k; = 9.828 Wm ' KL ky = 5.7K L ¢y =
152.5]kgt Kt and ¢y = 7.122J kg™ K2, respectively.

To compute the melt rate per unit volume 772 in equation (6.7), we assume that shear
heating in the temperate zone is absorbed as latent heat. This assumption implies that the

temperature in the temperate zone is capped at the melting point, which allows us to re-
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duce equation (6.7) to the following non-linear Poisson problem:

g (. 0T\ o0 ( 0T oT oT _
a9 <k8—y) —l—& <k£) —pc (va—y + wg) +[1-H(T-T,,)] 21gég = 0, (6.10)

where H (T — T,,,) denotes the Heaviside function. H (T — T,,,) is one in the temperate
zone and zero outside such that L1 is non-zero only in the temperate zone where it equals
the shear heating 27xép.

The mechanical model set up in Section 6.2.1 solves only for the downstream velocity
u. To include the horizontal and vertical velocities into our thermal model, we constrain
the functional forms for both v and w a priori, assuming that the associated strain rates,
stresses and work rates are negligible. Considering horizontal and vertical velocities in the
thermal but not the mechanical model is, of course, strictly inconsistent. This inaccuracy is
warranted by the potentially important effect that the advection of cold ice into the shear
margin is likely to have on deformation-induced melting™. In the mechanical model, how-
ever, the strain rates associated with the horizontal and vertical velocities are two orders of
magnitude smaller than the anti-plane rates, implying that the strain rate components in
these directions can be neglected in € of the creep law and the equilibrium equation.

For the vertical advection component we assume that w varies linearly with depth *#

z
w(yv 2) = _a'ﬁ ) (G'H)
where a is the surface accumulation rate of ice in m/yr, and a uniform contribution to w

equal to the melt rate at the bed of the ice sheet is neglected. Equation (6.11) implies that

accumulation of ice at the surface is compensated by downslope stretching of ice and that
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basal melting or freeze-on are negligible**°

, which is probably not strictly true in the shear
margin.

Several studies have suggested that the position of Dragon margin has shifted in the past
and may even be shifting currently with speeds on the order of 1 — 10 m/yr?>*® to poten-
tially &= 100 m/yr***’. The simplest way to include ongoing margin migration at a constant
rate into our ice-stream model is through the influx of cold ice from the ridge based on the
rationale that in a coordinate system moving with the margin, outward expansion of the

stream is equivalent to influx of cold ice from the ridge (as also argued in Schoof [2012]™?).

To be consistent with the zero-slip boundary condition at the bed underneath the ridge, we

Wy, 2) = vy [1 - (H}; 2)4] (6.12)

instead of a depth-independent horizontal velocity as suggested by MacAyeal [1989]°. We

impose

performed computations with both expressions for the horizontal velocity component and
found only slight differences.

Similar to the mechanical model, we use a symmetric boundary condition on the sides
of the domain. On the top, we specify the surface temperature of ice (see Section 6.2.5).
Underneath the stream, we assume that the bed is at the melting point as supported by
observations’®. Underneath the ridge, we do not specify a priori whether the bed is tem-
perate or not. Instead, we adjust the geothermal heat flux G directly beneath the ice sheet
such that the bed reaches a temperature of —5 °C at large distances from the margin in

agreement with observations'®

. Depending on the computation, this condition typically
requires geothermal heat fluxes on the order of G = 48 — 85 mW/ m?2. We assume the same

geothermal heat flux underneath the stream. The assumption of a finite geothermal heat
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flux underneath the ice stream has no effect on the solution for the downstream velocity
and temperature because the additional heating does not raise the base temperature above
the melting point. It does, however, affect the total meltwater generation associated with
both the geothermal heat flux and the frictional heating at the base of the ice stream (see

Section 6.2.4).

6.2.4 Meltwater production

Despite the fact that our mechanical model (Section 6.2.1) entails a stress singularity, it is
an integrable singularity from the standpoint of both force equilibrium and heat balance,
which allows us to use the dissipation in the temperate zone to obtain an estimate for the
melt rate per unit volume (see Section 6.2.3). In 2D, the mass balance for the meltwater

produced in the temperate zone is

dqy n 0q: _  2Tpép

Gy 82’ - pr ) (613)

where ¢, and ¢, represent the meltwater flux in horizontal and vertical directions, respec-
tively, and p,, is the density of water.

For simplicity, we neglect meltwater flux in the horizontal direction, g, = 0, noting that
we have previously assumed a hydrostatic pressure in our mechanical model (Section 6.2.1).
We then integrate equation (6.13) numerically to obtain the basal meltwater flux due to

shear heating in the temperate zone very simply as

H . H, .

m m 2

Qtemp = —/ Edz = —/ ﬂdz, (6.14)
0 Puw 0 Lpw
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where H,, indicates the height of the temperate zone measured from the bed upwards. The
possibility of a finite meltwater flux in vertical direction raises the question whether the
permeability entailed by the flux we compute is consistent with measurements. Assuming
that meltwater percolation occurs through Darcy’s law™” and that the water pressure in
veins equals the ice overburden pressure, dp/dz = —pg, we estimate the permeability of

the temperate ice as™

o — dtemp flw_ (6.15)
(P — pw)g

The meltwater fluxes we later infer imply temperate-ice permeabilities on the order of
1071 m?, which agrees with experimental results™.

Permeabilities in the estimated range are sufficiently high to allow for meltwater per-
colation to the base over the time scales considered here, and we will thus assume for the
remainder of the paper that all of the water created in the temperate zone rains down to the
bed. In addition to melt production from shear heating, frictional heat dissipation at the
bed and the difference between heat in- and out-flux may contribute to the meltwater flux,
yielding

or

1
Qbase = Qtemp + L_pw u(y, O>Tbase + G — k% . (616)

6.2.5  Surface crevassing

The crevassed zone at Dragon margin consists of an approximately 2 km-wide zone of in-
tense, chaotic crevassing . On the ridge side of the margin, the chaotic crevasses tran-
sition to large arcuate crevasses and on the stream-side to somewhat organized and widely
spaced crevasses that tend upstream?»*. The crevasses are thought to extend about 30 m

into the ice®”. The location of the crevassed zone and the positions of the nine boreholes
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for which Harrison et al. [1998]°° reported temperature measurements are reproduced in
Figures 6.1A and B. Harrison et al. [1998]°° also indicate the transverse derivatives of the
surface velocities at the three boreholes, “Dragon Pad”, “Lost Love” and “Chaos” (Fig-
ure 6.2), which indicates that borehole “Dragon Pad” is located closest to the locked-to-
sliding transition but on the ridge side at approximately y = 200 m in our modeling do-
main (Figure 6.3).

We represent the zone of chaotic crevassing as a 2 km-wide rectangular area in our y, z-
plane that extends from the surface 30 m into the ice. We assume that the dense spacing of
open crevasses lowers the effective viscosity in this area by an order of magnitude as com-
pared to uncrevassed ice (i.e., from p to 1/10). We refer to the drop in effective viscosity
as the mechanical-weakening factor. While this choice is somewhat arbitrary, we verified
that the results are not sensitive to the assumed value, mostly because the crevassed zone
is relatively shallow. To capture the zones of arcuate and upstream crevassing on the ridge
and stream sides of the chaotic zone, we gradually lower the effective viscosity unaffected by
crevassing to the mechanically weakened effective viscosity representative of chaotic crevass-
ing over 400 m on both the stream and the ridge sides. We include the effect of cool winter
air pooling in the crevasses by enforcing a surface temperature of —34 °C in the crevassed
zone, which gradually increases to —26 °C in the uncrevassed ice.

There is no doubt that the representation of surface crevassing considered here is ex-
tremely simplified. A more complete model would allow the crevassed zone to evolve self-
consistently instead of specifying its extent a priori. Nonetheless, we argue that the ap-
proach we have chosen here provides a reasonable first step for considering crevassing in

the context of a steady-state model and is preferable to not including crevassing at all be-
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cause it allows us to compare computed temperature fields to the borehole measurements

from Harrison et al. [1998]%°.

6.3 Results

To gain a better understanding of the different effects that contribute to the thermome-
chanics of ice streams, we start by reducing our model to its bare minimum. In its most
simplistic form, the model is reminiscent of models that are amenable to analytical solu-
tion like Schoof [2004]™*. Then, we add in one term after another, gradually obtaining a
more realistic representation of the behavior of a stream-ridge system. The sequence of ef-
fects that we consider is as follows: First, we investigate the ramifications of a temperature-
dependent creep rheology. Second, we consider the ramifications of vertical and horizontal
advection of cold ice into the margin. Third, we take into account crevasses along the sur-
face expression of the margin. To quantify the explanatory potential of this sequence of
approximations, we attempt to reproduce the surface velocities measured for Dragon mar-
gin® at each step and compare the respective fits. We limit the ambiguity introduced into
our model by a large number of parameters by varying only the basal stress to fit observed
surface velocities in Sections 6.3.1 and 6.3.2 while all other model parameters are fixed. We
find that the best-fitting basal stresses depend sensitively on the model assumptions, which
highlights the strongly nonlinear nature of the thermomechanical behavior of ice streams.
When comparing our computations to the temperature data by Harrison et al. [1998]° in
Section 6.3.3, we additionally adjust the accumulation rate and the speed of margin migra-

tion because we are unable to obtain a satisfactory fit by focusing exclusively on basal stress.
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A1. Temperature (linear rheology) B1. Surface velocities (linear rheology)
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Figure 6.4: Top: Temperature field (A1) and surface velocities (B1) assuming a Newtonian rheol-
ogyof it = 10 Pas. Middle: Temperature field (A2) and surface velocities (B2) for a power-law
rheology that accounts for the strain rate dependence of the effective viscosity, but neglects the
temperature dependence. Bottom: Temperature field (A2) and surface velocities (B2) for a realistic
rheology that captures both strain rate and temperature dependence. The best fitting basal stresses
are Tpgse = 2.56 kPa (A1, B1), Tpese = 1.12kPa(A2,B2) and Tpase = 4.07 kPa (A3, B3), respec-
tively. All computations neglect advection and surface crevassing. Measured surface velocities are
from Echelmeyer and Harrison [1999]¢”.

6.3.1  The importance of a temperature-dependent rheology

The most significant assumption in analytical models of ice-stream dynamics is proba-

bly the usage of a simplified rheology, such as a constant Newtonian viscosity > or a
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temperature-independent power-law rheology. In this section, we quantify the ramifica-
tions of using a simplified rheology by comparing our model predictions to the surface
velocities at Dragon margin observed by Echelmeyer and Harrison [1999]°°. All compu-
tations in this section are based on the reduced thermal model

g (, 0T g (,0r _

which neglects the advective terms and the effect of surface crevassing as compared to the
full thermal model defined in Section 6.2.3. The latter two effects are discussed in detail in
the subsequent sections.

In Figure 6.4, we compare the temperate zones and predicted surface velocities for three
different rheologies. We adjust the basal stress to reproduce the surface velocity in the cen-
ter of the stream exactly, and then we align the computed velocity profile to minimize the
mean square error in the shear margin. The computation on top (Figures 6.4A1 and Br) is
based on a constant Newtonian rheology of ;1 = 10 Pass, which clearly gives the worst
fit to observational data. The computation in the middle (Figures 6.4A2 and B2) takes the
strain rate dependence of the rheology into account but neglects the temperature depen-
dence. While this scenario is clearly more realistic than the Newtonian case, the width of
the shear margin is overestimated by approximately a factor of two. Considering a realis-
tic rheology that takes both the strain rate and the temperature dependence into account
improves the fit to observations dramatically (Figures 6.4A3 and B3). The extent of the
temperate zone in the last computation (Figures 6.4A3 and B3) is roughly comparable to
the observations by Clarke et al. [2000]%7.

Figure 6.5 demonstrates why the temperature dependence of the ice rheology is such an
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Figure 6.5: Eighty contours of constant shear heating in units of [Pa/yr] in the vicinity of the singu-
larity when neglecting (top) and including (bottom) the temperature-dependence of the rheology.

important effect. It shows the spatial variation in shear heating in the vicinity of the singu-
larity for the strain rate dependent rheologies (Figures 6.4A2, B2 and A3, B3). Both cases
show a pronounced peak in shear heating at the slip singularity. When taking tempera-
ture into account, we find a second local maximum in shear heating at the ice surface above
the singularity. The reason is that the ice is coldest on the surface, which translates into
higher effective viscosity and higher shear heating than in the ice below. We conclude that
the width of the high-strain region at the margin is controlled primarily by differences in
the temperature of ice and thereby in its effective viscosity. To reproduce the rapid increase
in surface speeds observed at Dragon margin ®, the ice in the margin has to be significantly

warmer and thus weaker than the ice outside.
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A1. Temperature field (vertical advection only) A2. Temperature field (horizontal advection only)

Depth [m]

0 -5 0
Distance [km] Distance [km]

B1. Surface velocities (vertical advection only) B2. Surface velocities (horizontal advection only)
500 T T T 500

--------- Computation [ srees Computation
—@— Measurement —— Measurement;

Surface Velocity [m/yr]
Surface Velocity [m/yr]

0 5 -15 -10

-15 -10

-5 -5
Distance [km] Distance [km]

Figure 6.6: Temperature fields and surface velocities for Dragon margin when including only vertical
advection (Al and B1) witha = 0.1 m/yr and only horizontal advection (A2 and B2) withv =
—7.3 km/yr, respectively. The best fitting basal stresses are Tuse = 9.31 kPa(AlandB1)and
Thase = 0.94 kPa (A2 and B2), respectively. Both computations neglect surface crevassing.

6.3.2 The effect of advection

The computations in Figure 6.4 indicate that a significant portion of the ice in Dragon
margin is temperate. However, both models may overestimate the volume of temperate
ice because they do not consider the effect of cold ice being advected into the margin both
from the surface and from the ridge. To better isolate the effect of horizontal as opposed
to vertical advection, we study them through separate simulations. The thermal model we
consider is thus equation (6.10) with v = 0 and w = 0, respectively.

To test the effect of vertical advection only, we first assume the same basal stress (Tyqse =
4.07 kPa) as in Figures 6.4A3 and B3. We add vertical advection assuming an accumulation

of a = 0.1 m/yr, which is on the low end of the estimated accumulation of 0.1 — 0.2 m/yr
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for Antarctica®””***. We find that the temperate zone vanishes almost entirely. The asso-
ciated surface velocities in the ice stream, however, are now much lower than observations
suggest®. The reason is that by cooling the margin, vertical advection makes the margin
stronger, and a strong margin provides more resistance against gravity than a weak one.

To reproduce the observed surface velocities, we have to lower the assumed basal stress
underneath the ice stream to Tyqse ~ 3.17 kPa. Figures 6.6A1 and Br show the resulting
temperature field and surface velocities. Interestingly, the extent of the temperate zone is
now comparable to that in Figure 6.4A3. We thus conclude that the main effect of vertical
advection, if we insist that the surface deformation data be matched, is to slightly shift the
force balance between the resistance to flow provided by the shear margin as compared to
basal friction. The extent of the temperate zone in the margin changes only slightly after ac-
counting for the different basal stress required to balance gravity. We have verified that this
conclusion remains valid for accumulation rates of @ = 0.2 m/yr.

Observations suggest that Dragon margin is currently moving outwards at a constant
speed of 7.3 m/yr?®, which is equivalent to including horizontal advection at —7.3 m/yr,
and possibly more rapidly . The effect of including horizontal advection at —7.3 m/yr
is shown in Figures 6.6A2 and B2. As a consequence of the lateral influx of cold ice from
the ridge, the temperate zone vanishes entirely, and it becomes impossible to reproduce the
rapid increase in the observed surface speed of ice in our computations. The finding that
horizontal advection on the order of m/yr precludes the formation of a temperate zone is
consistent with the previous study by Jacobson and Raymond [1998]"°. Our simulations
indicate that horizontal advection with speeds on the order of 0.1 m/yr are associated with

finite temperate zones, albeit smaller ones than in the absence of a horizontal influx of cold
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Figure 6.7: Comparison of the temperate zone from Figures 6.6A1 and B1, replottedona 1:1
scale, with the simplified 1D model by Perol and Rice [2011] 161 using measured surface velocities
Echelmeyer and Harrison [1999] %7 with a surface accumulationof a = 0.1 m/yr in both cases.

Our inability to reproduce observed surface velocities for the estimated migration speeds
is clearly an important caveat. We argue that the main problem is that our simplified repre-
sentation of horizontal advection does not adequately represent the physics of margin mi-
gration. The two most important concerns are: First, it is highly questionable that margin
migration as rapid as several m/yr can be treated through a steady-state model. Indeed, the
evidence in favor of migration of Dragon margin comes primarily from surface lineations
and subsurface diffractors that indicate a complex deformational history ****7 and both
inward and outward migration of the margin*’. The observational evidence thus suggest
that the system has not reached a steady state. Second, Dragon margin is located close to
the confluence between Ice Streams Br and B2. The interaction between the two streams
and the interjacent Unicorn ridge may be an important factor to consider in modeling the
evolution of the system. An example of observational evidence that supports a non-trivial
geometric connection between the two branches of Whillans Ice Stream is a hook-shaped
surface lineation called “Fishhook”, which connects the two streams and correlates with
several near-surface strain features*7.

Nonetheless, the simulations including horizontal advection lend additional support
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to our previous conclusion that Dragon margin is at least partially temperate. Our com-
putations show that only temperate ice is weak enough to concentrate strain to the degree
necessary for the surface speed to increase from approximately zero to its maximum value
over as little as 8 km. Cold ice as predicted in Figures 6.6A2 and B2 is more rigid than tem-
perate ice and is consequently associated with a much wider margin than observed. The
finding that Dragon margin is likely temperate over a significant portion of its thickness is

191 Albeit not including horizontal advection, they

consistent with Perol and Rice [2011]
predicted temperate zones in the shear margins of the active Siple-Coast Ice Streams using a
1D heat-transfer model in conjunction with the shear-strain rates measured by Joughin et al.

18

[2002] " to constrain shear heating. In fact, the size of the temperate zone estimate here for

Dragon margin and the results by Perol and Rice match moderately well (Figure 6.7).

6.3.3 The ramifications of surface crevassing

The ice streams of West Antarctica were first identified by radar detection of their crevassed

margins™®

, which highlights that intense surface crevassing is a characteristic feature of

the Ross Ice Streams. This observation raises the question of how surface crevasses affect
the thermomechanics of ice-stream margins. Within the framework of our model, surface
crevassing has two competing effects: On the one hand, crevasses lower the creep resistance
of the ice because of the void space they introduce into the ice. We refer to this effect as me-
chanical weakening. On the other hand, crevasses lower the temperature in the ice through
cool winter air pooling in the crevasses® thus increasing the creep resistance. We call this

effect thermal strengthening.

While we are able to reproduce the velocity data for Dragon margin %9 with a wide range
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of modeling parameters, compatibility with temperature measurements® poses more con-
straints. Figures 6.8 and 6.9 illustrate a computation that attempts to match both data sets
simultaneously. To facilitate the comparison with our simulations, we briefly summarize
four key observations by Harrison et al. [1998]?°. In the interest of consistency with the
rest of this manuscript, we continue to use “depth” to describe distance from the bed de-
spite the fact that “depth” in boreholes is typically measured from the surface. First, the
temperature for the two boreholes in the ridge, named “OutB” and “Stage” (see Figure 6.1
for approximate borehole locations), is approximately constant at —26 °C over the depth
range measured (Figure 6.8). Second, out of the nine boreholes, the boreholes “Remote”,
“Intermediate” and “Pad” exhibit the warmest temperature at depth (—22 °C at a depth of
approximately 700 m) with “Intermediate” being slightly cooler than the other two. Third,
borehole “UpB,” located well into the stream, is slightly cooler yet (—25 °C at a depth of
approximately 700 m, see Figure 6.8). Fourth, the —26 °C contour extends from borehole
“Dragon Pad” to borehole “Intermediate” and attains the largest depths (= 830 m) at bore-
holes “Lost Love” and “Chaos” (Figure 6.9).

Supposing that the temperatures measured by Harrison et al. [1998]° resemble a steady
state, these four observations translate into the following constraints for our modeling.
First, the finding that the boreholes in the ridge maintain a typical surface temperature of
—26 °C over a 300 m depth interval suggests high rates of vertical advection. High verti-
cal advection in turn implies high accumulations on the order of @ = 0.20 — 0.24 m/yr,
which is reasonable for Antarctica®*®. Second, the relatively warm temperatures measured
for “Remote”, “Intermediate” and “Pad” points to internal heating at these locations. The

offset between the locations of highest strain rate and highest internal heating may indicate
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Figure 6.8: Temperature field (A) and surface velocities (B) for Dragon margin when attempting
to match the observed borehole temperatures % see Figures 6.1 and 6.2 for borehole locations,
and surface velocities ¢’ simultaneously. The computation is based on the model parameters
Thase = 1.22kPa,accumulationa = 0.23 m/yr, geothermal heat flux G = 85 mW/m? and
horizontal advectionatv = —0.35 m/yr. The approximate locations of the nine boreholes con-
sidered in Harrison et al. [1998]°7 are indicated as grey dots. We highlight the boreholes located far
from margin as grey lines in accordance with their depth. The left numbers represent the computed
value and the right number the measured value at maximum depth. The corresponding temperature
estimates for the boreholes in the vicinity of the margin are shown in the next figure.

horizontal advection probably relating to margin migration®>*. Third, the comparatively
cooler temperatures at “UpB” are consistent with a localized heat source close to “Remote”,
“Intermediate” and “Pad” that does not extend far into the stream. Fourth, we take the

—26 °C contour as a proxy for the extent and location of the crevassed zone at Dragon mar-

gin, which stretches from “Dragon Pad” to “Intermediate”.
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Figure 6.9: Extent of a potential temperate zone at Dragon margin plotted on a 1:1 scale and melt-
water flux at the base of the ice, ¢pqse, in mm/yr (grey line) for the computation also shown in Fig-

ure 6.8. The total meltwater produced in the temperate zone is 25 m2/yr. The approximate loca-

]99

tions of the boreholes from Harrison et al. [1998] " are highlighted in grey with the left number rep-

resenting the computed temperature and the right value the measured temperature at a depth of
approximately 700 m. Small horizontal dashes along the boreholes in the vicinity of the shear mar-
gin indicate the approximate position of the —26 °C contour.

Figure 6.8A shows the computed temperature in our modeling domain. The cooling
effect of crevassing depresses the temperature notably in the vicinity of the shear margin.
We also compare computed and measured temperatures at a depth of 700 m for the three
boreholes that are located far from the margin. The temperatures we estimate are 1 — 2 °C
higher than the measured values. The agreement with surface velocities (Figure 6.8B) is
slightly less satisfactory than in previous simulations (e.g., Figures 6.4B3 and 6.6B1). While
it is certainly possible to improve the agreement with surface velocities, doing so comes at
the cost of deteriorating the consistency with available temperature data. Figure 6.9 com-
pares the computed and measured temperatures for the boreholes in the vicinity of the
shear margin at a depth of 700 m for the computation shown in Figure 6.8. We success-
tully reproduce the extent and approximate depths of the —26 °C contour from Harrison
et al. [1998]°, highlighted on the boreholes “Dragon Pad” to “Intermediate” as short hor-
izontal dashes. Our computations are also consistent with the observation that the three

leftmost boreholes are warmest and that the borehole “Intermediate” is colder than its two

269



neighboring boreholes. We suggest that the relatively warmer temperatures at these three
boreholes could result from their proximity to a temperate zone instead of non-steady state
effects as argued in Harrison et al. [1998]°. Despite being able to reproduce these key fea-
tures, the temperatures we compute are systematically too high by 1 — 6 °C with the highest
errors occurring at the boreholes closest to the margin (i.e., “Dragon Pad”, “Lost Love” and
“Chaos”).

Figure 6.10 summarizes the relationship between the average absolute errors in reproduc-
ing the observational data and the properties of the temperate zones for various speeds of
horizontal advection vy. The speed of horizontal advection is the most consequential pa-
rameter when reproducing both data sets simultaneously because it has a strong effect on
the position and extent of the temperate zone and thereby on the surface velocities. The
speed of vertical advection, in comparison, is reasonably well constrained by fitting the
temperature measurements in boreholes “OutB” and “Stage” (Figure 6.8A) and does not
affect the shear margin as sensitively (see also the discussion in Section 6.3.2). Figure 6.10
highlights that the maximum height and the shape of the temperate zones are highly depen-
dent on the assumed speed of horizontal advection. It is also evident from Figure 6.10 that
large temperate zones entail more realistic surface velocities, while small temperate zones
produce more realistic temperatures. We argue that horizontal advection on the order of
vg = —0.3 to —0.35 m/yr probably provide a reasonable compromise (Figures 6.8 and
6.9 show the case where vy = —0.35 m/yr). Increasing the speed of horizontal advection
beyond vy ~ —0.35 m/yr deteriorates the fit to observed surface velocities notably (similar
to Figure 6.6B2) while improving the match to measured temperatures only minimally.

The temperate zones for horizontal-advection speeds between vy = —0.3 and —0.35 m/yr
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Figure 6.10: A. Average absolute error in reproducing observed temperatures and velocities for
horizontal advection speeds betweenvy = —0.1 and —0.4 m/yr. B. Maximum height of the
temperate zones and total meltwater production for horizontal advection speeds between —0.1
and —0.4 m/yr. The total meltwater production is computed by integrating the basal meltwa-

ter flux, Qpqse, Over the width of the zone where ice is temperate not only at the bed but at fi-

nite depth. C. Temperature fields and drainage curves for the four horizontal advection speeds

vg = —0.1,—0.2, —0.3 and —0.4 m/yr, respectively. The best-fitting basal stresses for the

four computations are Tp,se = 1.57,1.44,1.31 and 1.13 kPa from the top to the bottom. Apart
from the horizontal-advection speed and basal stress, all computations are based on the same model
parameters, most importantly @ = 0.23 m/yrand G = 85 mW/m>.

reach a maximum height of 120 — 160 m. In the vicinity of the locked-to-sliding transition
point, the height of the temperate zone has a second maximum of approximately 80 m.
The widths of the temperate zones, which we define as the maximum width range over
which ice is temperate not only at the bed but at a finite depth, are approximately 2.2 and
2.3 km. We obrtain the total meltwater production by integrating the basal meltwater flux

over the temperate zone, which extends from abouty = —16.94kmtoy = 512m for
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vo = —0.30m/yrand fromy = —19.30km toy = 413 m forvy = —0.35 m/yr, is 26.5
and 25 m3 per year and per meter in downstream direction, respectively. Increasing the rate
of outward margin migration shifts the temperate zone further into the stream, depresses
the maximum depth to which temperate ice extends and decreases the total meltwater pro-
duction (Figure 6.10).

When weighing how to prioritize the two data sets, it is important to keep in mind that
a steady-state approach to modeling the temperatures throughout Dragon margin is in it-
self highly questionable (see also Section 6.3.2). A simple scaling analysis shows that the
time it takes for the full ice thickness to reach steady state, t = H 2/, is approximately
10* years. In contrast, Harrison et al. [1998]°° estimated that the residence time of ice in
Dragon margin is approximately a half century. It is thus clear that the stream-ridge system
can not possibly be in steady state. This insight is supported by field observations that in-
dicate a complex deformational history dating back over the last few hundred years?»%»+7.
Non-steady state effects should be most significant for the boreholes closest to the margin
because of the rapid margin migration in recent years?»**. The observation that the devia-
tions between computed and observed temperatures are indeed highest in the shear margin
lends support to the interpretation that non-steady effects are probably the main reason for

the temperature mismatch between model and data.

6.4 Discussion

While several previous models of ice streams™®9%%*%

have raised the possibility of melting
in active ice-stream margins, only Perol and Rice [2011]** discuss the extent of a potential

temperate zone in detail (see Figure 6.7 for a comparison with their results). In this study,
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we provide additional constraints on how different factors such as the assumed ice rheology
(Section 6.3.1), horizontal and vertical advection (Section 6.3.2) and surface crevassing (Sec-
tion 6.3.3) affect deformation-induced melting and the size of a potential temperate zone.

While the simulations presented in Sections 6.3.1 and 6.3.2 raise the possibility that a tem-
perate zone may extend several hundred meters above the bed at Dragon margin, the bore-
hole measurements by Harrison et al. [1998]° indicate variable but cold temperatures in
the upper 300 — 400 m of the ice. In Section 6.3.3 we thus attempt to fit velocity * and
temperature data® simultaneously. We find that the two data sets provide somewhat con-
flicting constraints on the size of a potential temperate zone: While the agreement with
surface velocities improves for a large temperate zone, the agreement with temperature mea-
surements improves for a small temperate zone. We suggest that the computation shown in
Figures 6.8 and 6.9 represents a reasonable compromise between the two constraints. This
particular computation entails a temperate zone with a maximum height of & 120 m and
entails a meltwater production of 25 m®/yr per meter in the downstream direction (Fig-
ure 6.9).

As discussed in more detail in Section 6.3.3, it is unreasonable to expect that tempera-
ture data can be reproduced exactly within the confines of a steady-state model (see Sec-
tion 6.3.3), particularly for a location with a complex deformational history like Dragon
margin*’. To remedy the difficulties associated with replicating measured surface veloci-
ties without allowing for melting, Echelmeyer et al. [1994]° and Scambos et al. [1994]™
have chosen to adjust the enhancement factor and its spatial variability in the model. It is
certainly possible to match the surface velocity Echelmeyer and Harrison [1999] % and tem-

perature?®® data for Dragon margin only by varying enhancement in different parts of the
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stream-ridge system. However, we require very high enhancement values on the order of
15 — 20 in the shear margin to obrtain a satisfactory fit to observational data, which conflicts

3

with the results of Jackson and Kamb [1997]™, who determined enhancement factors be-
tween 2 ~ 1.12 and E/ =~ 2.55 for different ice specimens retrieved from Dragon margin.
Our simulations show that it is not necessary to resort to very high enhancement factors
to reproduce rapid velocity increases in shear margins. We obtain excellent agreement with
surface velocities even when neglecting enhancement entirely. This insight is not meant to
imply that varied effects such as fabric, impurities or grain-size variations, which are usually
integrated into a single enhancement factor, are not important. Instead, we argue that the
relatively small enhancement factors measured at Dragon margin'™, in combination with
our simulations, suggest that enhancement effects are probably not the whole story and
that deformation-induced melting may play an important role in the thermomechanics of

ice-stream margins, as is also supported by some observations*7*°.

6.5 Conclusion

In this study, we investigate the possibility of deformation-induced melting in active shear
margins. Melting and the associated presence of meltwater in ice-stream margins might
have important consequences for the dynamics of ice streams, primarily because the yield
strength of glacial till depends sensitively on porosity, which is controlled by the water
content if saturated. The position of the shear margins could thus be intricately linked to
meltwater production”»7#, which remains poorly constrained. We devise a 2D thermo-
mechanical model of an ice stream moving over a plastic bed in steady state. We solve our

model numerically after carefully benchmarking our computational approach against an
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16,198,161 our simulations

asymptotic analytic solution. In combination with previous studies
lend theoretical support to the hypothesis that active shear margins are partially temper-
ate. For Dragon margin, we estimate a temperate zone with a maximum height of ~ 120
to 150 m that produces approximately 25 to 26.5 m? meltwater per year and per meter in
the downstream direction. This estimate for the extent of a temperate zone is roughly com-
parable to the height of the bottom diffractor identified by Clarke er al. [2000]*” under

Unicorn ridge. Despite focusing primarily on Dragon margin, we argue that our insights

may generalize to the other active Ross Ice Streams.
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Basal stress and strength immediately
adjacent to a channel in an ice stream shear

margin

7.0 Abstract

The mass loss from the West Antarctic ice sheet is dominated by numerous rapidly flow-
ing ice streams, which are separated from the stagnant ice in the adjacent ridge by a zone
of concentrated deformation known as a shear margin. Since the discharge from a single
ice stream is thought to depend sensitively on the ice stream width, determining the phys-
ical processes that control the shear margin location is crucial to understanding how ice
streams may respond to a changing climate. The transition from a deforming to an unde-
forming bed at a shear margin concentrates large stresses on the undeforming bed beneath
the ridge, and thus for a stable margin configuration to exist there must also be a mech-
anism that raises the till strength in the shear margin. Two main mechanisms have been
hypothesized. Jacobson and Raymond [1998]™° and Schoof [2012]™ investigated how the
strengthening associated with the transition from a temperate to a frozen bed could con-
163

trol the shear margin location; Perol and Rice [2011]" and Perol et al. [in preparation]

showed that the presence of a drainage channel raises the basal strength in a several kilome-

277



ter wide zone in the shear margin and may allow a stable margin configuration to occur. In
this paper we determine what conditions must be met for the transition from a deforming
to an undeforming bed to be collocated with a drainage channel. We show that the channel
limits the maximum shear stress resolved on the undeforming bed, building on Perol et al.

[2012]"

, and alters the yield strength of the till by changing the normal stress applied to
the ice-till interface. We also compare the maximum stress on the bed with the till strength
at the channel wall and show that a transition from a deforming to an undeforming bed at

a channel is a stable margin configuration if the water flux in the channel exceeds a critical

value.

7.1 Introduction

Surface velocity observations of the West Antarctic Ice Sheet show that ice flow is highly
non-uniform, with narrow regions known as ice streams flowing much faster than the sur-

rounding ice sheet™

. Although ice streams account for a small fraction of the surface area
of the ice sheet, the large velocities present in ice streams allow them to dominate the dis-
charge of ice from the continent, with Bamber et al. [2000]° estimating that ice streams
provide 80% of the total discharge. Thus, determining the physical processes that govern ice
stream dynamics is of the utmost importance if we want to understand how Antarctica will
respond to a changing climate.

A typical ice stream has an ice thickness of one kilometer, a width of a few tens of kilo-
meters, and a length of a few hundred kilometers. The surface velocity in the centre of an

ice stream is typically a few hundreds of meters per year, significantly larger than a typical

surface velocity of a few meters per year in the surrounding ice sheet. These large veloci-
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ties are made possible despite the low gravitational stress driving deformation — typically
~ 10 kPa - due to the presence of a subglacial till layer beneath the ice stream*>**. This
saturated till layer has a pore pressure that is close to the ice overburden, leading to a low
failure strength for the Coulomb plastic rheology typically observed in laboratory exper-
iments on subglacial till*>">**°. Thus, the ice stream bed fails even at low driving stresses
and a significant fraction of the ice stream surface velocity is due to till deformation’.

The boundary between the rapidly flowing ice stream and the stagnant ice in the adja-
cent ridge forms a zone of concentrated deformation known as the shear margin. These
shear margins are typically a few kilometers wide and marked be extensive surface crevass-
ing"™°®%*. Since the weak subglacial till provides limited resistance to motion, the margins
are expected to balance a significant fraction of the gravitational driving stress ***>**"*. The
location of the shear margins also sets the width of the ice stream, and thus plays an impor-
tant role in determining the ice stream discharge if we assume that a wider ice stream leads
to a higher discharge as suggested in van der Veen and Whillans [1996]**. Furthermore,
observations have shown that ice stream margins migrate™>*, with observations of mi-
gration both towards and away from the adjacent ridge. Despite the obvious importance
of the shear margins, there is still some question about what physical processes select their
location. In contrast with mountain glaciers, topography alone does not appear to explain
current shear margin locations*****. We hope that understanding the different physical
mechanisms that control shear margin migration may lead to further insight into the physi-
cal processes governing the margin.

The transition from a deforming bed beneath the ice stream to an undeforming bed be-

neath the ridge concentrates stress on the undeforming bed. This means that for a stable
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margin configuration to exist there must also be a mechanism that raises the yield strength
of the undeforming bed. One mechanism that is commonly appealed to is freezing of the
subglacial till, and Jacobson and Raymond [1998]"° and Schoof [2012]™ studied how the
strengthening associated with the transition from a temperate to a frozen bed could se-
lect the shear margin location and allow margin migration to occur. Another mechanism
suggested in Perol and Rice [2011]™ is that melt generated in the shear margins drives the
formation of a subglacial drainage channel at the base of the shear margin. Perol et al. [in
preparation]'® then showed that the presence of a subglacial drainage channel will allow
much more efhicient drainage than the distributed hydrologic system that operates under
the remainder of the ice stream, and thus decreases the pore pressure in the immediate
vicinity of the channel. Since subglacial till has a Coulomb plastic rheology this will raise
the yield strength of the till, possibly allowing a stable margin configuration to form.
Previous work has examined how a stable margin configuration can be created by in-
creasing the basal strength in the shear margin through the two proposed strengthening
mechanisms, one thermal and one hydrologic. In this paper we will take a different ap-
proach and look at how the presence of a drainage channel alters the stress field around a
transition from a deforming to an undeforming bed. To begin we study a sharp transition,
showing that this transition concentrates large stresses on the undeforming bed and that all
of the information about the far field loading is transmitted to the transition point through
a single parameter. Next we investigate how the presence of a channel limits the maximum

]** —and

shear stress on the undeforming bed — extending the analysis of Perol et al [2012
alters the yield strength of the till by changing the normal stress on the ice-till interface. Fi-

nally, we compare the maximum stress on the bed with the till strength to determine when
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the transition from a deforming to an undeforming bed at a channel leads to a stable mar-
gin configuration, showing that a stable margin configuration can occur when the water

flux in the channel exceeds a critical value.

7.2 Model derivation

In this section we develop a model for ice deformation near the transition from a deforming
to an undeforming bed. We define the coordinate vector x = (,y, 2) so that x is paral-
lel to the direction of ice stream flow, y is parallel to the bed and perpendicular to the ice
stream margin, and z is the vertical height above the bed. The transition from a deforming
to an undeforming bed occurs at y = 0 with the ice stream located in y < 0, and the ridge
located in y > 0. This coordinate vector is used to define the velocity vector u = (u, v, w)
with u the velocity in the z-direction, v the velocity in the y-direction, and w the velocity in
the z-direction.

In this model we will assume that all flow is in the downstream direction, making u the
only non-zero component in the velocity vector. We also assume that the ice flow field
varies slowly in the downstream direction, and thus u is independent of z. These assump-

tions are commonly made when modeling flow in ice stream margins”®*#**

, and are jus-
tified when the anti-plane strain rates are much larger than the in-plane strain rates. The

single velocity u(y, ) leads to two non-zero shear strain rates

_18u . _lau

5xy - Ea_y 3 €z = 5% (7'1)

The two non-zero strain rates lead to two non-zero shear stresses 7., and 7., and the equa-
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tions for mechanical equilibrium simplify to

OTyy  OTy

oy 0z

= 0. (7.2)

Here we have assumed that the gravitational driving stress can be neglected when compared
with the stress concentration near the transition from a deforming to an undeforming bed,
though the gravitational driving stress still enters into our model by providing the far field
loading on the transition point. It should be noted that later in the paper we will model the
creep closure of a drainage channel and for this case the in-plane strain rates may become
important as first noted in Rothlisberger [1972]"" and Weertman [1972] .

To close the model we need a rheological law linking strain rate and shear stress. Though
ice can deform through a variety of mechanisms linked to physical phenomena such as

dislocation motion and diffusion, we will assume a single deformation mechanism with a

power law dependence. This leads to

€ij = ATgfsz‘j, (7.3)

where T = [Tgy + 72,]%/2 is the effective shear stressand e = [Ezy + €2 ]2 is the

effective strain rate. Equation (7.3) can be used to model different deformation mechanisms
by assuming different values of A and n.
The concentrated deformation present in ice stream shear margins is thought to lead

to the formation of temperate ice™*9%%>¢

, which suggests that the transition from a de-
forming to an undeforming bed may occur within temperate ice. Motivated by this insight

we have neglected any dependence of the rheology on temperature and used values of A
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W, km 34

H,km I
S 0.0012
Ty, kPa 3.5
g, m 572 9.81

pikgm™ o7
puw, kgm™ 1000
L,k]/kg 335
f 0.6
Nn 0.01

Table 7.1: A table showing the parameters used in this paper. The values of slope, ice thickness, ice
stream width, and slope are not intended to model a specific ice stream but are in general agreement
with typical values for major West Antarctic ice streams . As shown in the text, when we study
the transition from a deforming to an undeforming bed these parameters cannot be varied indepen-
dently, and variations in these parameters only alter the stress around the transition point through

Jtip-
inferred from experiments performed at 0 °C. This assumption is justified as long as the
size of the zone of concentrated stress is smaller than the smallest dimension of the zone
of temperate ice. Using the models of Jacobson and Raymond [1998]™, Schoof [2004]™*,
and Suckale et al. [2014]° we can crudely estimate the size of this smallest dimension to
be ~ 100 m, though this value could be much smaller if there is significant horizontal ad-
vection of cold ice into the shear margin. We have also neglected any dependence of A and
n on the melt fraction in the temperate ice, which may be important if the melt fraction of
the ice immediately adjacent to the channel is > 1%.

The majority of calculations in this paper assume a Glen’s law rheology, which is mod-
eledusingn = 3and A = 2.4 x 1072* Pa~® s~ !. This value of A is the value recom-
mended in Cuffey and Paterson [2010]% for T' = 0 °C. We will also produce some analytic

results using a Newtonian rheology withn = land A = 5 X 10~ Pa~! s~ where this
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Pre-factor, A Stress exponent,

5x 10714, Pa—ts! I
2.4 x 10724, Pa3s7! 3
2.2 x 10730 Pa—t 5! 4

Table 7.2: A table showing the parameters for the three different rheological models used in this pa-
per. The value of A used for n = 1 is based upon the ice viscosity assumed in Hewitt [2011] *°%. The
rheology withn = 3'is Glen’s law and we use the recommended value of A at (0 °C from Cuffey and
Paterson [2010]°%. Then = 4 rheology is based upon the dislocation creep experiments rheology
proposed in Durham et al. [1997]%° and is expected to dominate at the highest stresses.

value of A assumes the ice viscosity of 10 Pa s used in Hewitt [2011]"°*. Finally, we rein-
terpret our results for the dislocation creep rheology of Durbam et al. [1997]°, which is
modeled usingn = 4and A = 2.2 x 10739 Pa* s~ andis thought to dominate at the
largest shear stresses. However, we present our results in a general fashion that allows other

values of A and n to be inserted.

7.3 Deformation around a sharp transition

As noted in Suckale et al. [2014]*°

, an analogy can be drawn between the transition from a
deforming to an undeforming bed and a mode-III fracture. Downstream velocity is analo-
gous to the anti-plane displacement, the transition point to the crack tip, the deforming till
beneath the ice stream to the crack face, and the undeforming bed beneath the ridge to the
unfractured material ahead of the crack.

Recognizing this, we use classic methods from fracture mechanics to solve for the stress
field around the transition from a deforming to an undeforming bed. Following Rice [1967]™,

Rice [1968]"™ and Suckale er al. [2014]™°, Appendix E.1 develops a solution for the stress

field and velocity field around a sharp transition from a deforming to an undeforming bed.
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The stress on the undeforming bed is given by

B thip 1/(n+1)
Tsharp = <(n + 1)A7Ty) ) (74)

where the far-field loading is linked to the stress at the transition point using the path-

184

independent J-integral *#, generalized from the nonlinear elastic case to the nonlinear creep

rheology given in equation (7.3), to find

AH AT Thase N W
Jrip = Tli“t , Tiat = (pgS — ;[ ) 5 (7.5)

Here H is the ice thickness, W is the width of the ice stream, p is the ice density, g is gravity,
S is the slope of the bed in the downstream direction, and 7y is the basal resistance pro-
vided by the deforming bed, which is assumed to be constant. Using a simple force balance
for the ice stream it can be shown that 734, is equal to the average lateral drag supported by
the shear margin. Equation (7.4) has three distinctive features. First, the shear stress on the
locked portion of the bed is singular. Second, the power of the singularity depends on the
stress exponent 7, with larger values of n leading to less severe singularities. Finally, larger
values of Jy;;, concentrate larger stresses on the undeforming bed. Inserting equation (7.5)

into equation (77.4) we find that

4Hn L/(n+1)
) ) (7.6)

Tsharp = Tlat (m

Thus, the lateral stress supported by the shear margin is transmitted to the undeforming

bed beneath the ridge, and the stress on the bed is directly proportional to the lateral drag

285



Oo

l 4
Oo Oo

O, Oo

Ice
Water

Deforming Undeforming
Tez = Tf u=0

Figure 7.1: A sketch of the geometry used in our calculations for the deformation around the chan-
nel. We assume a semi-circular channel with a radius 1 incised into the ice, which rests upon a sub-
glacial till layer. The anti-plane strain rates are calculated assuming that the bed is deforming to the
left of the channel, and undeforming to the right of the channel. We model the creep closure of the
channel using the pressure difference between the channel operating at a pressure p and the ice
overburden o,

supported by the shear margin. It is important to note that equations (7.5) and (7.6) are
only valid when the J-integral is evaluated using the constant basal resistance beneath the

ice stream assumed in Suckale et al. [2014]*°

, though a more complete analysis that allows
for large variations in basal resistance can be found in Perol et al. [in preparation]'®. Note
that the solution for the stress around a sharp transition was developed in Suckale et al.
[2014]*, but the physical significance of the singular stress field and the implications for
the mechanical structure of the shear margins was not explicitly emphasized.

A singular stress field on the bed cannot exist in reality due to the finite yield strength

of the bed. Schoof [2004]"* avoided this problem by assuming a spatially variable shear

strength profile at the bed and finding solutions where the stress concentration vanished,
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which is equivalent to solving for the transition point from a deforming to an undeforming
bed that satisfies J;;;, = 0. This leads to a non-singular stress profile that is continuous at
the transition from a deforming to an undeforming bed, and corresponds to the cohesive
zone models commonly used in fracture mechanics to eliminate crack tip singularities>%.
In this paper we take a different approach in which a finite value of Jy;;, is allowed but the
maximum stress on the bed is limited by the presence of a channel, allowing a configuration
where the stress on the bed is always less than some finite yield strength. The limiting of the
maximum stress by a channel is analogous to the dependence of maximum stress concen-
tration on radius of curvature of the crack tip commonly seen in fracture mechanics, with a
large radius of curvature leading to a lower stress concentration. Note that our mechanism
for a finite value of Jy;;, only works if the transition from a deforming to an undeforming
bed occurs at a channel, while the cohesive zone models of Schoof [2004]™* and Perol et

al. [in preparation]*®” would work even when the channel is not located at the transition
point.

Before studying the stress on the undeforming bed immediately adjacent to the channel,
we first show that for typical channel sizes all the information about the far-field loading is
transmitted to the transition point through J4;,. To do this we compare the analytic predic-
tion for the velocity field near the transition point given in equation (E.28) with the results
from a numerical simulation for the whole ice stream. Figure 7.2 shows this comparison for
a numerical simulation for a whole ice stream performed using the methods from Suckale

et al. [2014]%°

as a function of 0 at four different values of 7. We find a single value of Jy;,,
by fitting the analytic result to the numerical simulation for » = 10 m, and this value of

Jtip is then used to compare with the numerical simulation for 7 = 25 m,r = 50 m, and
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r = 75 m. We see that the agreement is very good for r = 10 m, and reasonable for r = 25
m, 7 = 50 m, and 7 = 75 m. From this we estimate that the asymptotic solution presented
in Appendix E.1 provides a good approximation to the full numerical solution that assumes
a realistic ice stream geometry for at least a few tens of meters around the transition point.
Note that the lengthscale over which the two solutions agree well is over an order of mag-
nitude greater than a typical channel radius estimated by Perol and Rice [2011]** and Perol
et al. [in preparation]®, allowing us to make the small scale yielding approximation com-
monly used in fracture mechanics when the process zone is much smaller than the region
of validity of the asymptotic solution near the crack tip. This small scale yielding approx-
imation allows us to draw two important conclusions. First it tells us that all information
about the far field loading is carried to the transition point through the single parameter
Jip corresponding to evaluating the J-integral along paths through temperate ice where the
ice viscosity depends on strain rate alone. This greatly reduces the number of parameters
we must consider and says that ice stream scale parameters such as W and 7345, influence
the stress at the transition point only in so much as they influence Jy;,,. Second, it allows us
to study deformation around a channel at the transition point by imposing the asymptotic

solution from Appendix E.1 as a boundary condition far from the channel.

7.4 Stress field around a channel

In this section we investigate how the presence of a semi-circular channel with a radius R at
the transition from a deforming to an undeforming bed alters the stress resolved on the un-
deforming bed. To begin we use a complex variable method to solve analytically for a New-

tonian rheology. This analysis is then extended to a power law rheology using numerical
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Figure 7.2: A plot showing the comparison between the analytic solution given in equation (E.28)
valid right at the locking point and numerical simulations for a whole ice stream. Both solutions for
the downstream velocity are shown as a functionof @ forr = 10m,r = 25m,7 = 50m, and
r = T75m.Thecurveatr = 10 misused toinfer a best-fitting value of .J;;,, that is then used to
fit all remaining curves. We see good agreement between the analytic and numerical solutions for
several tens of meters, allowing us to make a small scale yielding approximation.

simulations. A sketch of the geometry assumed in our calculation can be found in Figure
7.1.

The small scale yielding approximation justified in the previous section allows us to use
dimensional analysis to simplify the functional form of the stress on the undeforming bed.
We find that the stress on the bed is a function of J;;,/A, R, n, and y alone. There is a sin-
gle way to combine these parameters to find a stress, and thus we can write the stress on the

undeforming bed as

n) : (7.7)
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where 7,47 is the singular solution for a sharp transition given in equation (7.4) and f is
the function we must solve for. The maximum stress on the bed occurs at the channel wall

and is equal to

Tmax — XTsharp(R)7 (78)

where x = f(1,n) is a function of the stress exponent n alone.

7.4.1  Newtonian rheology

For a Newtonian rheology we can make significant progress analytically. Whenn = 1 we

must solve Laplace’s equation,

82_u+18_u+l@_0 ( )
orz2  ror  r20602 .

in the domain R < r < oo. The no slip boundary condition on the undeforming bed is
u=0 on =0, R<r<oo (7.10)

and the traction free boundary condition on the deforming bed is

%:0 on f=m R<r<oo. (7.11)

There is an additional traction free boundary condition on the channel wall

ou

— =0 on r=R,0<0<m, (7.12)
or
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which is justified if the shear stress exerted on the channel wall by the turbulent flow in the
channel is much smaller than the large stresses associated with the transition from a deform-
ing to an undeforming bed. Finally we assume that as» — 00 the solution approaches the
solution for a sharp transition, in agreement with the small scale yielding approximation
made in the previous section.

Equations (7.9)-(7.12) can be solved using complex variables, and the details of the solu-

tion are outlined in Appendix E.2. We find that the shear stress on the undeforming bed is

o Jw \Y? R

We notice two distinctive features about this solutions. First, the solution for a sharp tran-

given by

sition is the asymptotic limit of equation (7.4) when y >> R, which is to be expected after
making a small scale yielding approximation. Thus, the presence of a channel only alters the
stress field on the bed in the immediate vicinity of the channel, and far from the channel the
stress field is the same as that predicted for a sharp transition. Second, the presence of the
channel caps the maximum shear stress on the bed at a finite value. This maximum value

occurs at the edge of the channel and is equal to

(2dp\
Tmax = <m) . (714)

Note that a larger channel radius R leads to a lower maximum shear stress on the bed. Asin
equation (7.8) we can relate equation (77.14) to the solution for a sharp transition by noting

that

Tmax = QTsharp(R)7 (7-15)
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and thus x = 2forn = 1. The maximum stress applied to the bed is equal to twice the
stress predicted by evaluating the singular solution for a sharp transition at the channel
radius 12. As highlighted before, the finite size of the maximum stress allows for the possi-
bility of a stable margin configuration where the stress on the undeforming bed is always

less than the yield strength of the bed even when Jy;;, # 0.

7.4.2 Nonlinear rheology

The complex variable solution presented in the previous subsection cannot be generalized
to a non-linear rheology so we study other values of the stress exponent 7 through numer-
ical solutions using a finite difference method. We cannot work with an infinite domain in
our numerical simulations so we enforce the far-field velocity field given by equation (E.28)
on a semi-circular boundary with radius D and study the behavior when D > R. The
traction free boundary condition on the channel wall remains the same as in the previous
subsection and the boundary conditions on the bed are now applied for R < r < D.
The finite size of the domain introduces an additional dimensionless parameter R/ D into
equation (7.7), and we expect thatas R/D — 0 we will recover the solution where the
boundary conditions are applied at infinity.

The homogeneous boundary conditions at the bed and channel wall allow us to calculate
the dependence of x on R/ D analytically for n = 1. We find

X:2<1+%)_ : (7.16)

Asexpected, x = 2as R/D — 0, which is the value found when the boundary condi-

tions are applied at infinity. Next we use a parameter sweep to determine how x depends
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Figure 7.3: A plot showing how x dependson R/D forn = 1,n = 3,andn = 4, alongside the
fitting function X = Xins(1 + R/D)~'/" This plot allows us to infer values of Xing that are then
used to determine the maximum stress resolved on the undeforming bed. We find best fitting values
of Xinstobe2forn = 1,1.15forn = 3,and 1.09 forn = 4.

on R/ D for several values of n. Figure 7.3 shows how y varies with R/D forn = 1,n = 3,
andn = 4 when the channel radius is fixed at R = 1 m and the outer radius D is var-
ied. To perform these simulations we calculated .J;;;, using equation (7.5) assuming an ice
thickness of 1 km, an ice stream width of 34 km, a slope S = 0.0012, and a basal stress of
Tpase = 3.5 kPa. These parameters are equivalent to an average lateral stress at the margins
of 124 kPa. Figure 7.3 shows us that for all values of 7 there is a weak dependence of x on
R/ D, with larger values of R/ D leading to smaller values of x. This is identical to the be-

havior found analytically for n = 1. Our analytic solution for n = 1 allows us to guess a
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Figure 7.4: A plot showing the maximum stress on the bed accounting for the channel in blue along-
side the prediction using the solution for a sharp margin given in equation (7.4) forn = 1and

n = 3. We see that the Newtonian rheology leads to significantly higher shear stresses on the
bed than the Glen’s law rheology, and that the solution for a sharp margin provides a reasonable
approximation to the stress field accounting for the channel for all 3.

functional form for this dependence,

—1/n
=) (14 5) (747

The dashed curves in Figure 7.3 shows this fit and allows us to determine best fitting values
of Xing of 1.15forn = 3and 1.09 forn = 4. This leads to our final form for the maxi-

mum stress on the bed

Ji 1/(n+1)
iy ) | (718)

Tmaz = X (1) (m

where the value of x for each value of n is equal to the best fitting value of ;¢ inferred
from the results shown in Figure 7.3.

The simulations performed to produce Figure 7.3 also allow us to study the shape of the
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stress on the bed away from the channel wall. The stress on the undeforming bed is shown
in Figure 7.4 forn = landn = 3. We see that as the stress exponent increases the max-
imum stress on the undeforming bed drops significantly, in excellent agreement with the
behavior predicted for a sharp transition in equation (7.4) that showed a strong depen-
dence of the singularity on the stress exponent. We also see that for n = 3 the solution for a
sharp transition gives a good approximation to the stress field near a channel for several tens
of meters adjacent to the channel. This observation is in good agreement with the results

in Figure 7.3 that show x = 1.15forn = 3. Other simulations forn = 4 not shown
also show that the stresses calculated numerically accounting for the channel are compara-
ble to the predictions for a sharp transition given in equation (7.4) for several tens of meters

adjacent to the channel.

7.4.3 The importance of the basal stress

Up until now we have neglected the basal resistance beneath the ice stream, arguing that it
will be much smaller than the concentrated stress near the transition from a deforming to
and undeforming bed. While this may be true for values of the basal resistance inferred be-
neath the majority of an ice stream — typically ~ 1 — 5 kPa — it may not be true when we ac-
count for the large effective stresses thought to occur near a channel. It is difficult to extend
our analysis of the maximum stress on the undeforming bed to account for basal resistance
but we can make some progress analytically if we assume that n = 1 and the basal resistance
immediately adjacent to the channel takes a constant value 7¢. Appendix E.2 shows how the

complex variable method can be extended to account for a uniform basal strength allowing
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Figure 7.5: A plot showing how the stress on the undeforming bed varies with the basal resistance of
the deforming bed 7y if we assume n. = 1. We see that as Ty increases the maximum stress on the
bed increases. However, reasonable values of Ty are much smaller than the maximum stresses on
the bed whenn = 1 so the dependence of maximum stress on Ty is not significant. This conclusion
may not be true for higher values of n where the maximum stress on the bed is much lower.

us to solve for the stress on the undeforming bed

Jrip = R\"
Tz — 1 Cn — y .
T, Tr+ oAy + 521 ( y ) (7.19)

where the values of C,, are given in equations (E.48) and (E.49). As expected when 7 is
much smaller than the stresses adjacent to the channel we recover equation (7.13). Assum-
ing different values of 75 we can plot the basal stress for the parameters in Tables 7.1 and 7.2,
as shown in Figure 7.5. We sce that increasing 7 leads to larger shear stresses on the unde-
forming bed at all locations along the bed, though for reasonable values of 74 these changes

are smaller than the large stresses concentrated at the transition from a deforming to an un-
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deforming bed. Equation (7.19) also allows to calculate the maximum stress on the bed

4 2J4;
=(14+= P .
Tmaz ( + 7_(_) Tf + TAR (7 2'0)

Note that for a fixed value of J;;;, increasing the basal resistance 7 increases the maximum
stress resolved on the bed, and this increase can be significant if 7y is comparable to Typqrp (R).
It is important to note that J;;;, also depends on the basal resistance beneath the entire ice
stream Tpqse — Which presumably increases with 74 — and a more detailed discussion of how
Jiip depends on a spatially variable basal resistance can be found in Perol et al. [in prepara-

tion] ™.

7.5 Basal yield strength adjacent to channel

In this section we determine the yield strength of the undeforming bed adjacent to the
channel, which for a temperate bed is governed by a Coulomb plastic rheology controlled

by the effective stress in the till and a friction coefhicient,

Tyield = f(o-n - p) (7'2'1)

Here 0, is the normal stress acting on the bed, p is the pore pressure, and f is the friction
coeflicient of the till.

To determine the normal stress acting on the bed and the pore pressure in the channel we
must model the physical processes that allow a channel to form. This is done by following
the approach from Rothlisberger [1972]™" using the notation in Perol et al. [in prepara-

tion]*®. First we use the Gauckler-Manning law for turbulent flow in a conduit to relate
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the channel geometry and water flux through

Quw Ri/351/2
Ach - N ’

(7.22)

where (), is the flux through the channel, A, is the area of the channel, R}, is the hydraulic
radius of the channel, and n,, is the Gauckler-Manning coefficient. For the semi-circular

channel shown in Figure 7.1 we find

2
Ach:ﬂ ) Rh:2 A

50+ 2/7) (7.23)

Combining equations (7.22) and (7.23) we can solve for the channel radius

3/8 1/4
. 5/8 anw g
R=2 (—7'('51/2> (1 + 7T) . (7.24)

Note that for fixed values of n,,, and S the channel radius is a function of the water flux
alone. We see that a large water flux or a larger value of n,,, — corresponding to a rougher
channel wall that provides more resistance to flow — leads to a larger channel radius.

The heat generated by turbulent flow in the channel leads to melting at the channel
wall>*°4, By calculating the rate at which the flowing water converts gravitational potential

energy into heat we can calculate the rate at which melting expands the channel radius to be

~ PwgSQu

Rme - 9 .
It TLpiR (7.25)

where p,, and p; are the densities of water and ice respectively, and L is the latent heat of fu-

sion for ice. Melting at the channel interface is balanced by creep closure of the channel due
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to the ice overburden. For the power law rheology given in equation (7.3) we can estimate
the closure rate using the solution from Nye [1953]* for the channel to be

AR (0-0 - p)n

~ ; (7.26)
n

Rcreep =

where 0, is the pressure due to the ice overburden. The steady state channel size occurs
when melting at the channel wall exactly balances creep closure. Setting (7.25) equal to

(7.26) we find that the pore pressure in the channel is equal to

B pgSQ, \"
DP=0o—"n m . (7.27)

Note that the pore pressure decreases as the flux within the channel increases.

When calculating the strength of the undeforming bed we assume that the pore pressure
in the till is the same as the pore pressure in the channel for the few tens of meters imme-
diately adjacent to the channel. This is a good approximation for our steady state model
with a constant water flux since the hydraulic gradients predicted in Perol et al. [in prepara-
tion]™® show that pore pressure changes over this lengthscale are negligible. However, this
assumption may not be a good approximation if the water flux in the channel varies faster
than hydraulic diffusion can equilibrate the pore pressures in the channel and the adjacent
till.

In the previous section we showed how the presence of a channel alters the shear stress
resolved on the bed. Using the creep closure solution from Nye [1953]* we can show that

the channel alters the normal stress on the ice-till interface in a similar fashion and calculate
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the effective stress profile on the undeforming bed

N 2/n
Un_p:(ao_p) <1+2nn(5) >7 (72‘8)
Y

where 0, — p is given by equation (7.27). Combining this with the Coulomb plastic rheol-

ogy from equation (7.21) we predict that the strength of undeforming bed is

g y 1/n R 2/n
ry:f<7ﬁ’L—fR2> <n+(2—n) (5) ) (7.29)

Note that equation (7.29) indicates that there may be large changes in the yield strength of
the undeforming bed in the immediate vicinity of the channel due to changes in the normal
stress resolved on the till. One surprising conclusion that follows from equation (7.29) is
that the strength will increase near the channel if n < 2, and will decrease near the channel
if n > 2. This dependence on n highlights the importance of accurately determining the
dominant deformation mechanisms at the high shear stresses associated with the transition
from a deforming to an undeforming bed.

Equation (7.29) can be used to calculate the yield strength at the channel wall, which is

where the highest shear stress is resolved on the bed, leading to

/n
_ P0gSQu \'
ry = 2f (—7r T RQ) . (730)

We see that the difference between the effective stress at the channel wall and the far field
effective stress calculated using the ice overburden can be large. Forn = 1 the effective

stress at the channel wall will be twice the far field value, while for n = 4 the strength of the
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till adjacent to the channel will be half the far field value.

The changes in normal stress associated with the channel suggest that the assumption
of a constant bed strength used to estimate the effects of a finite basal resistance on the
maximum stress resolved on the undeforming bed is a poor one. Our solution could be
extended to account for the additional strengthening that equation (7.29) predicts near
the channel using an eigenfunction expansion, though this fine detail may not be worth
calculating given the large approximations already present due to the assumption of a New-
tonian rheology. It should be noted that while equation (7.29) predicts an increase in the
basal resistance for n = 1, it also predicts a decrease in basal resistance for n > 2.

There is one major caveat that must be applied to equation (7.29) first highlighted in
Rothlisberger [1972]"" regarding the boundary conditions at the bed. We have used the Nye
solution to calculate the closure rate for the semi-circular channel at the bed even though
this solution is developed for the closure of a circular channel enclosed entirely in ice. The
only non-zero velocity in the Nye solution is the radial velocity, and this is found to be ax-
isymmetric around the channel. This symmetry implies that the Nye solution can only be
used to calculate the closure of a subglacial channel if we assume free slip boundary condi-
tions at the bed, while our geometry shown in Figure 7.1 assumes no slip on one side of the
channel and a deforming bed providing a significant shear resistance on the other. Physical
intuition suggests that the switch from the free slip used in the Nye solution to the bound-
ary conditions appropriate for the geometry shown in Figure 7.1 will lower the closure rate
from that predicted in equation (7.26). This implies a lower pore pressure in the channel
than that predicted by equation (7.27), and thus larger basal strengthening in the imme-

diate vicinity of the channel. As well as altering the pore pressure in the channel, changing
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the boundary conditions will alter the normal stress acting on the bed, and thus the yield
strength of the undeforming till. Weertman [1972]** argued that far from a channel in a
Newtonian material —which was justified by noting that far from the channel any out of
plane strain rate is likely much larger than the in-plane strain rate — the change from free to

no slip boundary conditions at the bed leads to the effective stress profile

On _p% (UO _p) (1 _'_% (?) ) . (731)

Thus, Weertman [1972]** concluded that far from the channel the no slip boundary condi-
tions lowers the additional hoop stress resolved on the bed, leading to a weaker undeform-
ing bed. However, Weertman [1972]** was unable to produce a formula for the hoop stress
immediately adjacent to the channel or for a nonlinear rheology, though he did note the cu-
rious switch behavior seen in equation (7.28) where the normal stress at the channel wall is
greater than the ice overburden when n < 2 and less than the ice overburden when n > 2.
The asymmetry in boundary conditions across the channel may also lead to asymmetry in
the channel shape — possibly invalidating our assumption of a semi-circular channel - and
if melting is equally distributed around the channel wall then the asymmetric closure rate
may force the channel to migrate towards the undeforming bed. Finally, if the asymmetry
in boundary conditions leads to changes in hoop stress across the channel then the strength
of the deforming and undeforming bed may be very different even though they have the
same pore pressure. Dealing with these many issues is beyond the scope of this paper but

we hope to address them in future work.
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7.6 Stable margin configurations

In this section we determine when the transition from a deforming to an undeforming bed
at a channel leads to a stable margin configuration. To do this we compare the maximum
stress on the undeforming bed with the yield strength of the bed at the channel wall. We
focus on a Glen’s law rheology but generalize our approach to other stress exponents in Ap-
pendix E.3. A stable margin configuration exists when the stress on the bed is less than the
yield strength of the till across all of the undeforming bed. If we assume that the most likely
location for the bed to yield is right at the channel wall where the maximum shear stress on
the bed is greatest then we can use equations (7.18) and (7.30) to write the condition for a

stable margin configuration as

3Jtip 1/4 pwgSQw 1/
X<47TAR) <\ carpe) - (7:32)

Note that both the stress on and strength of the bed depend on the channel radius R. This

allows us to rearrange the inequality to find

R < Ripek- (7.33)

A stable margin configuration only occurs when the channel radius is less than the critical

locking radius Rjocx, which is defined as

SQL\Y? [ arAN?®
— (9 )12/ PwdP &y . .
Rlock ( f) ﬂ_ALpZ 3Jtip (7 34)
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Figure 7.6: A plot showing how the channel radius R and locking radius [?;, vary for the parame-
tersin Tables 1 and 2 assuming a Glen’s law rheology. We see that R < R, - and thus a stable
margin configuration exists - whenever the water flux exceeds a critical value of ~ 127 m?>/s. This
water flux corresponds to a channel with a radius of 4 m.

The form of this result — with a stable margin configuration only occurring below a criti-
cal channel radius — surprised us because we expected larger channel sizes to lead to lower
maximum stresses on the bed, and thus a higher chance of a stable configuration occurring.
However, we had not considered the dependence of till strength on channel size, which
turns out to be more sensitive than the dependence of the maximum stress on channel size
given in equation (7.18). This conclusion may not be true in a non-steady state model for a
channel.

Equations (7.24) and (7.34) show that for fixed material properties and far field loading
(parameterized through J;;;,) the channel radius R and the locking radius R, are a func-

tion of the water flux in the channel ), alone. Motivated by this we plot R and Ry, asa
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Figure 7.7: A plot showing how the critical water flux (. varies for a Glen’s law rheology across
the range of values for A at 0 °C outlined in Cuffey and Paterson [2010] %3 for different values of

f and 4. These plots were produced using the parameters in Tables 1 and 2. We see significant
variability with A with higher values of A leading to larger critical fluxes. This sensitive dependence
on the poorly constrained A makes it hard to predict values of (Qjyck.

function of ()., as shown in Figure 7.6. We see that at low water fluxes the channel radius is
larger than the locking radius sk, and thus the margin configuration is not stable. How-
ever, [0, increases faster with @), than R, leading to a stable margin configuration above
a critical flux water flux of ~ 127 m3/s. This critical flux is much larger than the fluxes typ-
ically thought to exist under ice streams in West Antarctica, and thus we conclude that for
this far field loading the transition from a deforming to an undeforming bed across a chan-
nel will never lead to a stable margin configuration.

Using this dependence of R and Ry, on )y, we can solve for the critical water flux that

must be exceeded for a stable margin to occur, leading to

Qlock = 225/17 ( "m )15/17 (1 + z) 10/17

mS1/2 T
L 96/17 WALPZ 32/17 3Jtip /17 (735)
2f PwgSQu 4m A '
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Figure 7.8: A plot showing how the critical water flux (., varies with the average stress at the
shear margin 7y, forn = 1,n = 3,andn = 4. This plot was produced using the parameters in
Tables 1 and 2. We see that (0}, increases rapidly with 7;,;. Note that the n = 4 curve predicts
much lower critical water fluxes thatn = 1landn = 3.

This is plotted in Figure 7.7 as a function of the most poorly constrained parameter A for
different values of f and 73,;. We chose this range of A based on the scatter in the experi-
mentally measured values of A at 0 °C reported in Cuffey and Paterson [2010]%. We plot
the variation with f and 73, because the critical water flux defined in equation (77.35) de-
pends most sensitively on these parameters. Figure 7.7 shows a strong dependence of the
critical water flux on A, with the smallest values of A leading to the smallest values of Qjoc-
If we assume that a typical water flux in a channel is approximately 1 m®/s then Figure 7.7
suggests that the transition from a deforming to an undeforming bed across a channel will
not be stable if the ice deforms with a Glen’s law rheology. To further investigate the de-
pendence on 7i,; we plot Qjocr as a function of 74, for all three stress exponents, as shown

in Figure 7.8. As in Figure 7.7 we see a strong dependence on 7;,;. We see that a stable mar-
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gin configuration may occur for values of 754 less than ~ 50 kPaif n = 3, and for values
of Tyqt less than ~ 125 kPaif n = 4. As before this result highlights the importance of

determining the appropriate value of n for the shear margin.

7.7 Discussion

7.7.1  Uncertainties in model

58 used to

A major limitation of our model is the creep closure solution from Nye [1953]
predict the effective stress in the channel, which assumes free slip boundary conditions at
the bed. This assumption does not agree with the boundary conditions shown in Figure

7.1 with no slip on one side of the channel and a deforming bed with a finite resistance on
the other. Weertman [1972]* suggests that the change to more realistic boundary condi-
tions will alter our model for the strength of the undeforming bed in two ways. First, it will
lower the creep closure rate, leading to a larger pore pressure decrease in the channel for

a given flux, and thus a stronger bed. This behavior is particularly pronounced for larger
values of n, and if the realistic boundary conditions lead to a creep closure rate that is half
the value predicted by equation (7.26) then the effective stress in the channel increases by
afactor of 2". Second, Weertman [1972]** showed that the no slip boundary condition
may reduce the normal stress applied to the bed, though this conclusion needs to be further
tested. If the normal stress is reduced then the yield strength of the till will fall. Our creep
closure model also neglects to couple the in-plane strain rates from channel closure with the
large anti-plane strain rates expected at the transition from a deforming to an undeform-
ing bed. This important coupling was first noted in Réthlisberger [1972]"" and Weertman

238

[1972]*, and is expected to lead to easier channel closure. Easier channel closure will lead

307



to a lower effective stress in the channel, and thus a lower yield strength of the till adjacent
to the channel. It is unclear how the three uncertainties associated with the closure model —
one of which leads to a stronger bed and two of which lead to a weaker bed — balance each
other, though we hope to determine this in future work.

One final comment must be made about the channel geometry assumed in our model.
The asymmetry of the boundary conditions across the channel will likely lead to asym-
metric closure of the channel, suggesting that our assumption of a semi-circular may not
be valid. If melting remains evenly distributed around the channel wall the asymmetry in
closure rate also implies that the channel should migrate towards the undeforming bed. If
migration occurs — and closure is less rapid near the undeforming bed — then the radius of
curvature of the channel wall at the undeforming bed may be larger than the channel ra-
dius. This will make the stress limiting effects of the channel more effective, leading to a
lower maximum stress on the bed for a given value of Jy;,,. Furthermore, the asymmetry of
the boundary conditions will likely lead to different normal stresses on the bed in the de-
forming and undeforming bed, leading to a discontinuous change in the yield strength of
the bed across the channel.

Another limitation of the model regards the structure of the subglacial till. We have as-
sumed a deforming bed on one side of the channel and an undeforming bed on other, but
have not explicitly modeled how this transition occurs in the till. We have also assumed that
the entirety of the channel is incised in the ice, ignoring the possibility that a channel may
develop in the till. More work is needed to determine how the presence of a channel in the
till will alter our predictions, though the results in Perol and Rice [2011]** and Perol er al.

(in preparation]*® indicate that any channelized drainage system that operates at a high
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effective stress could select the shear margin location regardless of whether the channel is
incised into the ice or into the till. Other possible extensions to the model could look at the
effects of a non-steady water flux, the time-dependent transport of water to the channel,
and other physical effects that be important at high effective stresses such as the penetration

of ice into the till studied in Rempel [2009]™.

7.7.2  Relation between three critical points on bed

] 216

As highlighted in this paper — and noted in Schoof [2004] ™" and Suckale et al. (2014
— the transition from a deforming bed to an undeforming bed concentrates large stresses
on the undeforming portion of the bed. Thus, for a stable margin configuration to occur
where the stress on the undeforming bed is always lower than the yield strength of the bed
there must be a mechanism to greatly increase the basal strength within a shear margin.
Two main possibilities have been proposed. First, the required increase in basal strength

“* and Perol et al. [in

has been linked to freezing of the till. Second, Perol and Rice [2011]
preparation]'® argued that a subglacial drainage channel within a shear margin could raise
the yield strength. We advocate thinking of the structure of an ice stream shear margin in
terms of three critical points. The first of these is the locking point where the transition
from a deforming to an undeforming bed occurs. The second critical point is the freezing
point where the bed transitions from temperate to frozen. The final critical point is the
channel location.

Having defined these three critical points we can describe three possible shear margins

configurations. In the first configuration the locking point and the freezing point are col-

located, and the channel location — or even the presence of a channel within the shear mar-
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gin — is unimportant. For this configuration, which was studied in Jacobson and Raymond
[1998] " and Schoof [2012]™?, the increased basal resistance required for a stable margin
configuration comes from the presumably large yield strength of the frozen till.

The second possible margin configuration is the one studied in this paper where the
locking point is collocated with the channel location. As discussed in Section 7.6, our anal-
ysis indicates that this configuration will only be stable if the flux in the channel exceeds a
critical value. As shown in this paper, when the channel is collocated with the locking point
it is important to properly understanding how a channel alters the basal stress and strength
at the locking point.

The third possible margin configuration none of the three critical points are collocated,
and the freezing point is closer to the ridge than the other two critical points. In this case
the presence of a channel increases the basal strength in a broad zone within the shear mar-
gin, allowing a non-singular stress profile at the transition point through the kind of cohe-
sive zone model proposed by Barenblatt [1959]° and Dugdale [1960]%. This is analogous

to the solutions in Schoof [2004]"*

but with a physical model for spatial (and potentially
temporal if the margin migrates) variations in the basal strength. Note that for the third
type of configuration the locking point occurs on a temperate bed, and thus parts of the
locked bed are temperate. For a temperate yet locked bed to occur the basal strength of

the till between the locking point and the freezing point must be greater than the gravita-

tional stress driving the ice stream. For this to be consistent with the experiments of Kamb
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(1991]*°, Tverson et al. [1998]"* and Tulaczyk et al. [2000]**° the pore pressure in the sub-
glacial till must be lower than the pore pressures inferred beneath major ice streams or the

bed will fail. These lower pore pressures may be possible due to the lack of melt generated
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by basal deformation in the undeforming bed — and the proximity of the undeforming bed
to the channel — and we highlight the importance of modeling the pore pressure evolution
in the entire temperate bed, and not just in the deforming portion of the bed as was done in
Perol et al. [in preparation]®.

There is no reason that the type of margin configuration must be the same throughout
an ice stream, and we will briefly hypothesize how the type of margin configuration could
vary with distance from the grounding line. The calculations in Perol and Rice [2011] ™ and

Perol et al. [in preparation]'®

predict the total melt generated per unit downstream length
and then calculate a total water flux in the channel by assuming a upstream length that the
channel drains, suggesting that the flux in the channel will be larger near the grounding
line than near to where the ice stream initiates. It can be shown that both of the hydrologic
mechanisms for a stable margin configuration outlined above — one with the locking point
collocated with the channel and the other with the locking point occurring on the tem-
perate bed — become more effective as the flux in the channel increases. From this we con-
clude that the ability of a channel to select the location of a shear margin may be greater in
the downstream end of an ice stream rather than in the upstream region, suggesting that if
there is limited subglacial water near where an ice stream initiates the locking point is likely
collocated with the freezing point of the subglacial ill.

The three margin configurations outlined above are not the only possibilities. For exam-
ple there may be some locations where topography does select the shear margin location,
either alone or in combination with one of the mechanisms described above. In addition

the three possible configurations outlined above assumed a single locking point, freezing

point and channel location. This is a strict assumption that possibly should be relaxed.

311



7.7.3  Links with margin migration

The analysis presented in this paper focuses on the stress on and strength of the subglacial
till in the few tens of meters immediately adjacent to a channel. However, using the dif-
ferent types of margin configurations defined in subsection 7.7.2 we can discuss the role

a channel may play in shear margin migration. Previous work by Jacobson and Raymond
[1998] ™ and Schoof [2012]™ studied how margin migration could occur when the locking
point is collocated with the freezing point, and thus the strengthening required for a stable
margin configuration to occur comes from freezing of the subglacial till. In this description
the frictional heating associated with the stress concentration at the locking point raises the
bed underneath the ridge to the melting point allowing migration to occur.

Observations show that ice stream shear margins can migrate at a range of speeds. Us-
ing repeated measurements of the surface velocity Echelmeyer and Harrison [1999]* esti-
mated that Dragon margin of Ice Stream B was migrating towards the ridge at a velocity of
9.7 &+ 1.1 ma™%; Bindschadler and Vornberger [1998]" used satellite images taken several
decades apart to show that further downstream the margin of Ice Stream B had migrated
3973 £ 986 m towards the ridge in 29 years, corresponding to an average migration rate of
137 £+ 34 ma~'. The two different migration velocities over an order of magnitude apart
may indicate that multiple mechanisms can lead to margin migration, with one mechanism
leading to slow migration on the order of 10 m a~! and another allowing faster migration.
As noted in Perol et al. [in preparation]'®, if the locking point is not collocated with the
channel location then the channel selects the margin location by raising the basal strength
in a zone several kilometers wide within the shear margin, which acts like a cohesive zone

commonly used in fracture mechanics >*. However, sustained basal sliding within the
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strengthened region will generate melt, which will weaken the bed if this melt generation
occurs faster than hydraulic diffusion. The analogy with the cohesive zone models and the
form of the J-integral given in Suckale et al. [2014]*° and Perol et al. [in preparation]™®
suggest that this weakening of the bed in the shear margin will allowing the locking point
to migrate towards the ridge, and thus we expect gradual margin migration to occur as the
subglacial pore pressure profile changes.

The observations of Bindschadler and Vornberger [1998]" are only able to measure the
total distance that the shear margin migrated during the 29 year period that elapsed be-
tween the satellite images. This means that a discrete event where the margin migrated sev-
eral kilometers in a short period of time is as consistent with the observations as the uni-
form migration at a rate of 137 + 34 m a™! calculated in Bindschadler and Vornberger
[1998]™. The second and third stable margin configurations described in subsection nat-
urally allow for such a rapid migration event. When the locking point is collocated with
the channel location then the limiting of the maximum stress by the channel allows a stable
margin configuration to exist for a finite value of .J;;;, provided that the water flux in the
channel exceeds a critical value. However, if the water flux falls beneath this critical value
then the locking point will migrate away from the channel location to the point where the
additional basal resistance leads to a situation with Jy;;, = 0. The channel may thus pin and
then release the locking point as the flux in the channel varies.

The discussion in this subsection neglected transient effects such as the time taken for
hydraulic diffusion to occur or the rate at which advection of cold ice from the adjacent
ridge cools the ice within the shear margin. We hope to extend the models used in Perol

and Rice [2011])™”, Suckale et al. [2014]*°, and Perol et al. [in preparation]™ to account
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for non-steady state effects, and see how these could control margin migration. We also
neglected to discuss how changes in ice stream geometry with distance from the ground-
ing line could alter shear margin migration. Itis possible that the large differences between
the observations of Bindschadler and Vornberger [1998]™ and Echelmeyer and Harrison
[1999] % could be explained by a single mechanism controlling margin migration operating

differently in the upstream and downstream portions of the ice stream.

7.7.4 Importance of ice rheology

While a simple Glen’s law rheology may be a good approximation for ice stream scale sim-
ulations, the work presented in this paper shows the importance of properly determining
the dominant physical processes that allow ice to deform over a range of stresses. Figures 7.7
and 7.8 show that the critical water flux that controls if the transition from a deforming to
an undeforming bed across a channel is stable depends sensitively on the assumed values of
n and A. The closure rate of and pore pressure in a channel — an important consideration
in all models of subglacial drainage channels — also depend strongly on A and n.

The high shear stresses associated with the transition from a deforming to an unde-
forming bed mean that the ice may deform solely through dislocation creep, which is the
dominant deformation mechanism at the highest stress possible in ice streams®. Thus, the
proper rheology in the immediate vicinity of the channel is likely to be the n = 4 rheology
from Durbam et al. [1997]°°. One potential caveat to this conclusion relates to the grain
size. If we assume a grain size of 4 mm — a typical grain size observed in the shear margin
cores from Jackson and Kamb [1997]™ — we can use Figure 60.3 from Goldsby [2006]°° to

predict thatn = 4 is the appropriate stress exponent for stresses exceeding ~ 200 kPa.
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Figure 7.4 tells us that this critical value is lower than the shear stress expected on the unde-
forming bed for a channel with radius 1 m. However, the stress concentration at the tran-
sition point could drive significant grain size reduction. Again using Goldsby [2006]°° we
see that if the grain size is reduced to 1 mm then we must exceed a stress of ~ 1 MPa before
dislocation creep dominates, and if the grain size reaches 100 yzm then we must exceed a
stress of ~ 2 MPa. These stresses may be higher than the concentrated stresses at the lock-
ing point. If n = 4 is not the dominant deformation mechanism then we expect to fall into
the grain-boundary sliding regime described in Goldsby and Koblstedr [2001]*, which is
governed by n = 1.8. The concentrated stresses present at the locking point may also allow
a fabric to develop in the ice, and if this occurs then the value of A governing the creep clo-
sure of the channel will not be the same as the value of A governing the shear stress resolved
on the bed.

Finally, in Section 7.2 we assumed that the melt content of the ice immediately adjacent
to the channel could be neglected when determining values of A and n. However, this as-
sumption may not be valid for all shear margins, especially if a large amount of temperate
ice is present. Accurately determining the effect of melt fraction on rheology is beyond the
capability of current experiments, though the experiments in Duval [1977]% and Lliboutry
and Duval [1985]%° showed that a melt fraction of just 1.1% increases A by about a factor of
three. Other experiments performed on partially molten olivine — which deforms through
the same physical mechanisms as ice — showed increasing the melt fraction promotes grain
boundary diffusion creep, which is governed by a stress exponent of one*. Thus, it may
not be sufficient to just make A a function of the melt fraction, and there may also be a

change in n at a given shear stress.
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When predicting the melt content in the ice adjacent it may be helpful to think of two
end-member behaviors. First, for the case where the subglacial transport of melt — either
through the till or the ice-till interface — is more efficient than englacial transport then we
expect melt to first be routed to the bed and then flow along the bed to the channel. This
may imply a low water content in the ice immediately adjacent to the channel. Second, if
the subglacial hydrology is inefficient then melt may be routed to the channel through the
ice, implying a large water content in the ice next to the channel. A significant melt content
will lead to large increases in A, and possible cause the dominant deformation mechanism
to switch to diffusion creep. The implications of these changes for the locking mechanism
analyzed in this paper are evident in Figure 7.7, which shows that as A increases the critical
water flux required for the locking point to occur at a channel increases dramatically and

that unrealistically large fluxes are required to cause locking if n = 1.

7.8 Conclusions

Building on Rice [1967]™* we began by analyzing a sharp transition from a deforming to an
undeforming bed at a shear margin, showing that this leads to a singular stress on the un-
deforming bed. The power of the singularity depends on the stress exponent n, with larger
values of 1 leading to a less severe singularity. If we assume a uniform basal resistance be-
neath the ice stream then the stress on the bed is directly proportional to the average lateral
stress supported by the margins.
Next we showed how the presence of a channel limits the maximum stress on the unde-

forming bed, extending the analysis in Perol et al. [2012]"*. Using a combination of ana-

lytic and numerical methods we solved for this maximum stress as a function of all of the
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parameters in the problem. We found that the maximum stress is sensitive to the choice
of stress exponent, with a Newtonian rheology leading to unrealistically large stress on the
undeforming bed.

In addition we looked at how a subglacial drainage channel alters the strength of the

161 and

bed and possibly selects the margin location, as suggested in Perol and Rice [2011]
Perol et al. [in preparation]®. As shown in Rothlisberger [1972]"" and Shreve [1972]°4,
the presence of a channel decreases the pore pressure of the subglacial till and thus leads
to strengthening. We also discussed how the presence of a channel alters the normal stress
applied to the ice-till interface, though this behavior is still poorly understood due to the
issues with boundary conditions and the coupling of in-plane and anti-plane strain rates
highlighted in Weertman [1972]**.

Finally we compared the maximum stress on the undeforming bed with the yield strength
of the till to determine when the transition from a deforming to an undeforming bed at a
channel is a stable margin configuration. We found that a stable configuration occurs when
the water flux in the channel exceeds a critical value. Determining this value is hard due to
uncertainties in our model and the appropriate ice rheology, but it seems likely that a stable

configuration never occurs forn = 3, but can exist forn = 4 and typical values of the

lateral drag at the margin.
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Conclusion

The aim of this thesis has been to study the rapid weakening accompanying seismic slip and
the thermal and mechanical structure of ice stream shear margins. Both of these problems
were tackled using a combination of analytic and numerical methods, and highlighted how
the different feedbacks between temperature, stress, and chemistry can dominate compli-

cated geophysical systems. Detailed conclusions can be found at the end of each chapter but
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we will highlight a few key results and possible extensions below.

Chapters 2-5 studied the role thermal pressurization and thermal decomposition play
during an earthquake. We showed how the positive feedback between heating and weak-
ening drives micron-scale strain localization, and that the onset of localization concentrates
frictional heating into a narrow zone and accelerates co-seismic weakening. Following this
we showed how thermal pressurization and thermal decomposition can combine to prop-
agate a slip pulse, showing that different balance between the two weakening mechanisms
exist and correspond to different rupture modes, and determining the key physical balances
that control the severity of weakening that accompanies the onset of the reaction. There
are several extensions to these projects of which we will discuss one. All of the work in this
thesis used parameters determined for a single depth - either 1 km or 7 km - and did not ac-
count for the depth dependence of the different co-seismic weakening mechanisms. As our
understanding of the physics underlying dynamic weakening increases it will become im-
portant to determine how dynamic weakening deteriorates with depth, possibly due to the
closure of pores or the crossing of an equilibrium phase boundary. The current paradigm
for the base of the seismogenic zone relies on failure conditions derived from experiments
performed at low slip rates, which appears to contradict geophysical observations show-
ing that mature faults operate at driving stresses far below those predicted by Byerlee’s law.
Based on these observations we suggest that it could be possible that the base of the seismo-
genic zone is set by the inability to propagate a rupture — rather than the inability to nucle-
ate a rupture — and thus seismicity should rarely occur at depths where dynamic weakening
is inefficient.

Chapter 6 looked at how the concentrated deformation present at ice stream shear mar-
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gins could lead to the formation of temperate ice. We showed that properly accounting for
the temperature dependence of the rheology is crucial, and that surface velocity observa-
tions of an ice stream shear margin can only be explained by the presence of a large body of
temperate ice within the shear margin. In addition we highlighted the importance of prop-
erly constraining the advection of cold ice from the adjacent ridge into the shear margin.
Finally we showed that the shear margin can be a significant source of melt, as previously
shown in Schoof [2004]™* and Perol and Rice [2011]™. Chapter 7 presented one mecha-
nism for how the presence of a drainage channel could select the location of an ice stream
shear margin. By studying how the drainage channel alters the stress field, we showed that
the transition from a deforming to an undeforming bed could be collocated with the chan-
nel if the water flux in the channel exceeds a critical value. However, determining the value
of this critical water flux is complicated by current uncertainties in the appropriate rheology
for the ice near a channel, and we briefly discussed how different balances between englacial
and subglacial hydrology could control the melt content of the ice immediately adjacent

to the channel. Future work in this area should determine how this mechanism balances
the cohesive zone mechanism proposed in Perol and Rice [2011]™ that could also allow a
channel to select the shear margin location. For fixed material properties, both hydrologic
mechanisms are determined by a critical water flux in the channel, highlighting the impor-
tance of developing physically realistic models for melt generation and transport within an

ice stream.
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Additional Materials for Chapter Two

A Possible responses for frictional rate-strengthening only

Here we present a more detailed discussion of the possible responses for the frictional
strengthening only system. Equation (2.38) relates the growth exponent s for the perturba-

tions to the wavelength A of the perturbations. This equation can be solved using standard
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techniques for quadratic equations to find

1 472 VD
S = 5 (ZH’}/O )\2 (Ozth + O./hy)> + T, (AI)
where D is the discriminant of the equation,
1674 872 .
D = T(ath - Oéhy)2 — v(ath + aupy)2H A, (A2)
+ 22 H*42.
For simplicity we have used the definitions
OA (o)
pc a—>b

Noting that D itself is a quadratic in A 72, we can solve to find the range for which D <
0. When D < 0 the exponential coefficient s will have a non-zero imaginary component,
signaling an oscillatory response to perturbation with exponentially growing or decaying

amplitude. We find that D < 0 for the finite range of wavelengths A\; < A < Ao, where

Oy, — A/ A/ Oy + A/
)\1 = 27T| hy - th‘ )\2 = QWM

A.
~HA, ’ Vz2HA, (A-4)

Assuming that D < 0 when Re(s) = 0 we can find the critical wavelength separating

growing and decaying perturbations in p and 7" to be

Q¢ + Qlpy
ApT = 2T | — . A.
T T ZH;Y(] ( S)
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For A > A, perturbations in p and T" will grow. Recalling equation (2.37), which shows
that the time dependence for the strain perturbation 7, is s + H+,, we can determine a

similar critical wavelength for the strain rate perturbation 4,

Q¢ + Qpy
Ashr = 2 —_— A6
h T/ (z + 2)HA, (A.6)

For A > Mg, the perturbation 4; will grow and homogeneous shear is unstable. For all
physical parameter choices

Ashr < )\pT < . (A7)

A final ordering Ay < Agp, can also be proven provided that z > 2, where the critical

value of z is
(v/@hy — v/un)* (AS)
NG '

If 2 > %z then the assumption D < 0 used to calculate the formulas for A,z and A,

Ze =

is true, and the formulae in equations (A.s) and (A.6) are exactly the critical wavelengths
separating growing and decaying perturbations in {p, 7'} and ¥ respectively. The four pa-
rameters sets considered in this paper lead to the range 2z, = 0.01 — 1.81, meaning that
z > z, for any realistic values of f, and (@ — b), which have f, > (a — b). When z < z,
the formulae for A7 and A, are no longer valid. Noting that the value of vy, is relatively
well constrained™’, a parameter set with z < 2, would require a value of o, at least an
order of magnitude greater than the largest values assumed here.

Having solved for the critical wavelengths controlling the system we next discuss how
perturbations of different wavelengths will evolve. As mentioned before, for A > Ajp

perturbations in p and T" will grow exponentially; similarly for A > A, perturbations
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Figure A.1: Rate-strengthening friction: A plot showing the normalized perturbations 7; (t) /’yl (O)
and 1 (t)/p1(0)for the nominal parameters for adamaged material, a uniform strain rate §, =
1000s~!, and a perturbation wavelength A = 310 pm. The linear stability predicts an exponential
form for the two perturbations, as shown by the dashed black lines. For the chosen parameters we
see that the linear stability analysis predicts that the strain rate perturbation will grow while the
pore pressure and temperature perturbations decay. This is supported by the numerical simulations
(solid lines) which use the logarithmic friction law as in equation (2.6), rather than its linearization

in equation (2.4). After the strain rate perturbation has grown sufficiently nonlinear effects become
important. We see that the exponential growth predicted by the linear stability analysis does not

continue indefinitely and nonlinear effects limit the strain rate perturbation to a finite value.
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in 4 will grow, making uniform shear of the gouge material unstable. The small difference
between A, and Ay, means that for a narrow range of wavelengths +; will grow while p,
and T decay. Figure A.1 shows 7 and p;, normalized by the initial perturbation size, for a
system with periodic boundary conditions. This calculation uses the nominal parameters
for a damaged material, a uniform strain rate y, = 1000 s a perturbation wavelength
A = 310 pm, and the logarithmic friction law in equation (2.6).

For Ay < A < Ay there will be an imaginary component to s. This is associated with
propagation of the perturbations, with the two complex conjugate roots corresponding
to propagation in the positive and negative y-direction. This propagation is compatible
with a formulation that uses periodic boundary conditions to model an infinite domain,
but not with zero flux boundary conditions at the edge of a finite thickness gouge layer.
Any propagation of the Fourier mode in the y-direction will lead to a perturbation that no
longer satisfies the zero flux boundary conditions at the edge of the gouge layer. In the sys-
tem with zero flux boundary conditions at the boundary of the gouge layer a complex value
of s leads to oscillatory growth or decay, provided that the initial conditions are symmetric
about the center of the layer this can be thought of as a standing wave. Figure A.2 shows
4(y, t) for a system with periodic boundary conditions using the nominal parameters for
a damaged material, a uniform strain rate §, = 1000 s !, anda perturbation wavelength
A = 360 pm. This is based on numerical simulations, again like in Figure A.1, but using the
logarithmic friction law from equation (2.6) rather than the linearization given in equation
(2.4). As predicted by the linear stability analysis, we see growth and propagation of the
perturbation. The perturbation does not grow indefinitely but is instead capped by nonlin-

ear effects at a finite value. The black line indicates the phase velocity predicted by the linear
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stability analysis, and we see excellent agreement between the predicted propagation speed
and that initially observed in the numerical simulations. Once nonlinear effects become im-
portant the perturbations continue to propagate, but now do so with a velocity faster than

the phase velocity predicted by the linearized analysis.

A2 Numerical methods

In this section we briefly describe the numerical methods used to solve for the strain rate
evolution in chapters 2,3, and 4. For simplicity this method is outlined using the dimen-
sionless equations for strain localization driven by thermal pressurization alone and sta-
bilized by rate-strengthening friction alone, but can be easily extended to account for di-
latancy or thermal decomposition. In what follows we drop the primes on dimensionless
variables to reduce notation.

To begin we use the assumed friction law to write 7y as a function of 7 and p,

T

4 = 2sinh (Tp) exp(—z). (A.9)

This leads to three equations

oT , 2 o0’T

e 27 sinh (1%) exp(—z) + Dtha—yz, (A.10)
op OT 0%p
L _= 1 p = A.
ot~ o Ty (A
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Figure A.2: Rate-strengthening friction: A plot showing f'y(y, t) for a system with periodic boundary
conditions using the nominal parameters for a damaged material, a uniform strain rate 7, = 1000
s~ ! a perturbation wavelength A = 360 1zm and an initial pore pressure perturbation that is 1%
of the ambient effective stress 7. The parameters and uniform strain rate determine the critical
wavelength A4, and this determines if the perturbation grows or decays. For this case, as pre-
dicted by the linear stability analysis, the initial strain rate perturbation propagates as it grows. The
black line in the bottom-right corner indicates the predicted propagation speed, which is in excellent
agreement with initial speed observed in the numerical simulations. Once nonlinear effects become
important the strain rate perturbation ceases growing but continues to propagate at a speed slightly
faster than the predicted phase velocity.
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+1/2 o
/ 2 sinh <1 > exp(—z)dy = 1, (A12)

1/2 - P
where the final equation ensures that the total straining accommodated across the gouge
layer equals the slip rate applied across the gouge layer. These three equations are used to

solve numerically for 7', p, and 7 on a uniform grid defined by
yi = ZAy s Z = _Ntot/27"'7NtOt/2a (Als)

where N is the number of nodes within the gouge layer, €2 is the ratio of the width of the
domain adjacent to the gouge layer and the gouge layer thickness (making Ny, = 2QN),

and the grid size is

Ay = —. (A.14)

For the simulations with periodic boundary conditions shown in this Appendix we set {2 =
Oandset T_n/o = T n/2 and p_nj2 = p4ny2. For the simulations with a gouge layer con-
fined between two hydraulically and thermally conducting half spaces presented in chapters
3 and 4, {2 is chosen to be sufficiently large that the gouge layer does not feel the boundaries
during the simulation. This makes the solution independent of {2 and we use the Dirichlet
boundary conditions T'(yY-n;,./2) = T (Y+Nior/2) = P(Y-Nuor/2) = P(YNyors2) = 0.
We define the values of 7" and p on the uniform grid by T;(t) = T'(y;,t) and p;(t) =

p(¥i,t). Next we approximate the second derivatives in 7" and p on all internal grid-points

using centered finite differences, which turns the partial differential equations for tempera-
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ture and pore pressure into a system of ordinary differential equations

dT; Tigh — 213+ 15
7 27 sinh (1 Z_Tpi) exp(—2)1(y;) + Dy, = Ay2+ 1, (A.xs)
dp, 0T, Pit1 — 2pi + pi1
=—+D A6
a  or P Ay? ’ (#.16)

where I(y;) = H(y; + 1/2) — H(y; — 1/2) and H () is the Heaviside function. The
final variable 7 is updated by discretizing equation (A.12) using a standard quadrature such

as the trapezoidal rule or Simpson’s rule. This leads to the algebraic equation

+N/2 B
-
Z w;2 sinh <1 ) exp(—z) = 1, (A.17)
i=—N/2 b

where w; are the weights for the chosen quadrature. In this numerical solution we solve for
p and 7" using standard techniques for ordinary differential equations and find 7 at each
time-step by applying standard root-finding techniques to equation (A.r7).

An alternative method involves differentiating equation (A.17) to find

+N/2
2T dr 1 T dp;
i cosh e — ] =0. A8

Rearranging equation (A.18) and noticing that 7 is the same at all points within the gouge

layer we find an ordinary differential equation for 7

+N/2 w;T  dp; 2T
dr Zi:—N/Q —p:)? 4 cosh (1_ )

P
dt Z+N/2 Wi cosh(lf;.)

Z:_N/Q (17p7,) 7

(A.19)
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In the alternative method we can use standard solvers for ordinary differential equation
to update p, 7" and 7 simultaneously, and thus no longer need to solve the root-finding
problem.

The majority of the simulations presented in this thesis were performed using the root-
finding method, though both methods were tested and found to be consistent with each
other. The simulations in which localization is stabilized by dilatancy alone were performed
using a similar root-finding method to update the pore pressure, which is spatially uniform
across the gouge layer. Finally, when inertial effects within the gouge layer are accounted
for we are not required to solve an algebraic equation and can update the strain rate directly

using the dimensionless partial differential equation,

(A.20)
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Additional Materials for Chapter Four

B.r Dimensionless parameters

The model presented in Section 4.2 is rich in parameters. In this appendix we nondimen-
sionalize the model to determine the number of parameters that can be varied indepen-
dently, and discuss the physical significance of each dimensionless parameter.

First we scale the spatial coordinate y using the gouge layer thickness ~. Combining
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this thickness with the slip rate we get the nominal strain rate 9 = V//h, which is used
to nondimensionalize the strain rate. Combining the nominal strain rate with the criti-

cal weakening strain for thermal pressurization leads to the weakening timescale t,, =
pch/ foAV for thermal pressurization, which is used to scale ¢. Finally, we use the ambi-
ent effective stress to scale the pore pressure rise, and the total temperature rise from the
uniform solution &, /A for thermal pressurization alone to scale the temperature. To sum-

marize, the scalings used are

where primes indicate dimensionless variables. The only difference between these scalings
and those used in Plart et al. [2014]™° is that here we scale the temperature 7" and not the
temperature rise above an ambient temperature 7" — 7;,. We do not need to scale £ because
it is already dimensionless.

Using these scalings we find the dimensionless set of equations,

o1’ . o*T’ o€
at/ = ’)/ + Dthw — Rth%a (BZ)
op  oT' 0% o€

= 1D, £ - B.
or — ar T Pmays T g (B3)
or’'
2 = — (=1 B.
o 0, 7=f#)1-p), (B.4)
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f) =1+2""log, (B.s)

% =F(1—¢)exp (—%) . (B.6)

The initial conditions for pore pressure and temperature are
p/ =0 P T, - TI: (B7)

and the initial uniform strain rate profile within the gouge layer is 4" = 1.

The system is controlled by eight dimensionless parameters,

_ ampc o ampe o fo 7 _Tah
T fAVRE T T R AVRE a—b T o, —pa
mE,.\ mP, Apc QA
R, — R, = F = [ —
h On — Pa 7 h On — Pa ’ ;YOfOA 7 R(Jn - pa)

Each of these dimensionless parameters has a clear physical meaning. First, Dy, Dy, and

166 and con-

2 are identical to the dimensionless parameters found in Platt et al. [2014]
trol the behavior of the system before thermal decomposition is triggered. Dy, and Dy,

measure the efficiency of thermal and hydraulic diffusion respectively, and z measures the
rate-strengthening component of the friction law. As shown in Plart et al. [2014]™°, Dy,

and Dy, can be linked to the ratio of the gouge layer thickness and the diffusion distances

for thermal and hydraulic diffusion on timescales comparable to the weakening timescale
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for thermal pressurization. Next, the parameters Ry, and 2y, quantify the magnitude of
the temperature rise buffered and pore pressure generated by the thermal decomposition
reaction. Ry, is the temperature rise buffered by a completed reaction normalized by the
temperature rise for a gouge layer sheared uniformly under undrained and adiabatic condi-
tions, and Ry, is the total pore pressure rise generated by a completed reaction normalized
by the ambient effective stress. Finally, the parameters F, () and 77 control the kinetics of
the reaction. If A is thought of as a reaction attempt frequency then F'is the attempts that
occur during the weakening timescale for thermal pressurization, G is a dimensionless ac-
tivation energy for the reaction, and 7 determines where the initial conditions lie on the

dimensionless reaction kinetic.
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Additional Materials for Chapter Five

C.a Nondimensionalization

To nondimensionalize our model we use the scalings from Garagash [2012]%. First we nor-
malize the along-fault distance x using the slip pulse length L, and normalize the across
fault coordinated y using the deforming zone thickness I¥. Next we normalize the slip o

using the characteristic slip weakening distance for thermal pressurization under undrained
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and adiabatic conditions 0, = pcW/ fA. Finally we use the ambient effective stress to
normalize the pore pressure rise, and the maximum temperature rise (0, — p,)/A fora
uniformly sheared gouge undergoing thermal pressurization under undrained and adiabatic

conditions to normalize the temperature. This leads to

L, . . pch ~

~ O-n_pa"
p=pa+(on—p)p , T= A T, (C.2)

where we have used tildes to indicate dimensionless variables. Inserting the scalings for

and x into the formula for the slip rate

V(z) = U

we can find the scaling for the slip rate

V(E) f/(:’&):%.

(C.4)

Inserting this scaling into the integral equation linking the stress on the fault to the slip rate
— equation (5.12) — we find a dimensionless integral equation for the stress along the fault as
well as a scaling for the slip pulse length L,

1 1 V/

M) =m-— [ g, ()
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L o To
,a(sc/f(o-n - pa) 7 - f(O'n - pa) .

The first dimensionless parameter in the model is 74, which measures the proximity of the

L=

(C.6)

background driving stress 7, to the initial strength of the gouge layer 7. Using the slip rate
scaling in the equations for conservation of energy and pore fluid mass we find the two

dimensionless equations,

oT - T 1 8T
el /e 2 pulse
BE: Tf exp( Y ) + ST (11 VX O
T % (C7)
"R pulse _ . 2 ~92
", exp< Tmp> exp (—76%5%) |
aﬁ aT Tpulse X a2ﬁ Tpulse K 2~9
9~ 9% | 8T" (1t ynrogE e SP\TE exp (~m575%)  (C8)
and four more dimensionless parameters
Qhy QA mE,ANT*A mP,T*A
—_ —Z K - = —-————— = —. C.
Y N TR T e, ) T T 2,y Y

Another dimensionless parameter is needed to extract the rupture velocity — and thus the
slip pulse length — from the dimensionless solutions. As shown in Garagash [2012]* this

arameter is v* /¢, where ¢, is the shear wave speed and v* is a characteristic rupture veloc-
P s s P p

ity defined by

V= —r = ————. .
To T+ T0 fAW o
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As will be shown in the next section, the slip duration of a self-healing slip pulse 7%, is
solved for using the self-healing condition k;, = 0, so our dimensionless problem is con-
trolled by seven dimensionless parameters. These are 74, X, K, R, Rpy, v*/ ¢, and the

scaled initial temperature,
T,

= o = p/h

(Cxx)

Motivated by the definitions of a and y, which measure the total impact of hydro-
thermal diffusion and the balance between hydraulic and thermal diffusion respectively
rather than quantifying the impact of hydraulic and thermal diffusion separately, we can

recast the two dimensionless parameters Ry, and Ry, in the following form,

Ricact = <\/R_th+ Rhy>2 __mITA (\/A_E‘+ \/F”)2’ (Cr2)

2(0p — Pa)

(Cn)

Here R, cqct measures the total impact of the decomposition reaction and X measures the
balance between the energy absorbed and the pore pressure generated by the reaction. Us-

ing these new definitions we find,

1 X

—Rreac ) Ry, = —Rreac . Cua
1+ VX)) " ' (C14)

fn = (1+VX)2

Note that when X' = 1 the shear strength evolution for uniform shear under undrained
and adiabatic conditions is identical to the solution for thermal pressurization alone from

Lachenbruch [1980]". The natural appearance of the parameter X further justifies our

338



interpretation of P,/ E, as an effective value of A that can used to crudely estimate how
much dynamic weakening a specific reaction will provide. The two parameter sweeps over
E, and P, shown in Figures 5.9 and s.10 vary one of I, and R}, while keeping the other
one constant. We also performed parameter sweeps that fix 12, and vary X finding very
similar results to those shown in Figures 5.9 and s.10. As X increases — corresponding to a

larger value of P,/ E, — the effects of thermal decomposition become more pronounced.

C.2 Numerical methods

Here we outline the numerical method used to solve for steady slip pulses propagating at a
constant rupture velocity, closely following the numerical method used in Viesca and Gara-
gash [2012] >4, For simplicity this is done for the dimensionless model from Appendix

C.1, and to reduce notation we drop the tildes used to denote dimensionless variables.

C2.a  Green’s function formulation for integral equations

To begin we define the dimensionless diffusivities in equations (C.7) and (C.8),

Dy — 12
TR (14 X2

ulse 1 D, — Tpulse X
WS (14 )2

(Cuxs)

allowing us to write the equations for temperature and pore pressure in matrix form as,

T wT Dth 0 T
= + , (C.16)

P wr + wp Dy, Dy P
x vy
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where wy are the source terms from frictional heating and thermal decomposition in the
energy equation and w), is the source term from thermal decomposition in the pore pres-
sure equation. Next we use a matrix diagonalization valid when Dy, # Dy, to decouple

our pair of diffusion equations, leading to

wT Dth 0 T
- D + ) (CI7)
N DhyfyDth wT + Wp 0 Dhy II w
where we have defined,
Dy,
N=p+ ——"-—T. Cas8
p Dry— D (C18)

The decoupled diffusion equations can now be solved independently using the Green’s

function,

Glx—2\y—y;a) = L exp < M) . (C.19)

dra(x — ') Aoz — o)

This leads to the solutions for 7" and II on the fault plane y = 0,

Tn() =T+ [ [ Gla =i Duur(e', )y e, (Cao)
—1J—-00

IL,,,(z) = /1/ G(x —2',y'; Dyy)
Dn, (C.21)

<wp(l”, y)+ mw(aﬁﬁ y’)) dy'da’.
Y
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Following Viesca and Garagash [2012]**, we now take advantage of the fact that the inte-

grals over i’ can be done exactly. For example we will show how this works for the integral

representing the frictional heating term in the heat equation

/j /_: \/%exp (—my”) exp (_Wﬂ_y)) dy'd’.

Combining the exponentials and separating the integrals over y" and 2’ we find

/“"’ T(2)\V(x)) /°° exp (_1 + 47 Dy (x —, z') y’Q) dy/de.
1 /4Dy (x — 2') J -0 4Dy (z — 2')

The integral over ' can be done exactly, leading to

[,
1 \/1+47TDth<SC—l’,) '

(C22)

(C23)

(C24)

The other integrals in equations (C.20) and (C.21) can be done in a similar fashion, leading

to the equations for the pore pressure and temperature ony = 0

Tonle) =Ty + [ Alw =)@V () + Bl — ) exp (—

-1

Loy (')
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where the functions A, B, C and D are defined as,

H(x —2')
1+ 47Dy, (x — 2')

N - Hix — 2
A= B=-Ry, w-z)
1+ 472Dy, (z — ')

(C27)

)

Q)

_ H(ZL' — J}/) Dhy i Dth (C 2,8)
Dy — Dy, \/1+47rDhy(x—x’) \/1+47rDth(x—x’) ’ '

ﬁ— (R . Dhthh > H({L‘—l‘/)
" Diy— Du) \/1+ 4x3Dpy(z — 7

Dtthh H(ZL' — Jf/)
Dy = Din \/1 + 47 32Dy (x — 2')

(C29)

and H is the Heaviside function. Functions similar to A and C' where previously used by
Andrews [2002]* to model thermal pressurization alone.
Next, we use the pore pressure on the mid-plane predicted by equation (C.26) to find the

fault strength

) =1 / 11 Oz — )@ )V (&) + D — o) exp (— Tmia:')) dr'. (Cs0)

We know that within the slipping region = € [0, L] this strength must be equal to the shear

stress predicted by equation (C.s) leading to the integral equation

11— /1 C(x — 2')r(2)V (") +D(z — 2') exp (_Tmi$')> dz’
_ L [ve
s r—¢&

(C31)
de.
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A second integral equation can be found using the conservation of energy accounting for

thermal decomposition,

~

Tonp(z) =T1 + /_1 Az — 2 )7(2")\V(2') + B(x — o) exp (—#) dz’. (C32)

In the next subsection we solve this pair of integral equations for the slip rate and tempera-

ture profiles within the slip pulse as well as the slip pulse length and slip duration.

C.2.2  Solution using Gauss-Chebyshev quadrature

To solve this pair of integral equations we use the numerical methods outlined in Viesca
and Garagash [2012] *»»+, which combine the Green’s function approach from Garagash
[2012]*® with the Gauss-Chebyshev quadrature methods for singular integral equations

from Erdogan and Gupta [1972]7" and Erdogan et al. [1973)7*. To begin we define the two

sets of Chebyshev nodes
20— 1m
i ) ) - ]-7 ) ]-7 C
T COS<n+12> 1 n + (C.33)
‘rj :COS( 7T> 9 .] :17 7n (C34)
n-+1

The set of points x; are the base for the Gauss-Chebyshev quadrature rule,

+1 n
V1—22f(z)dx = Z w; f(z;), (C3s)

-1
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with the weights,

T2 J
— . C36
A (n+1ﬂ> (€36)

Defining the function v(z) through V(z) = v/1 — 22 v(x) we can write the stress at the

points x; as
1 wj

The Gauss-Chebyshev quadrature is next used to evaluate the fault strength, leading to

K
T — 1-— C@(T'U)j — Dij exp (—T) s (C38)
J

where
B U)]D(IEZ — .lej)

1/1—35?

Setting the fault stress from equation (C.37) equal to the fault strength from equation

Cij =w;C(x; —x;) , Dy (C39)

(C.38) at every point of the z; grid we obtain n 4 1 equations. More equations can be
obtained by applying the quadrature to the integral equation modeling the conservation

of energy. This leads to

K
T, =T + A;j(tv); + Bjjexp (—T) , (C.40)
J
w;B(x; — x;
Ay =wjA(x; —x;) , By = =" (1 - ) (C.41)
-

J
Note that to evaluate equations (C.38) and (C.40) we must know 7 on the z; grid, but

equation (C.38) gives us the shear stress on the «; grid. Similarly, in equation (C.40) we
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require the temperature profile on the x; grid, yet equation (C.40) gives us the tempera-
ture profile on the x; grid. To move between the two grids we use the barycentric Lagrange

interpolation matrix

n+1
Tj— Ti=
L = H " 7(x)) = LT (2), (C.q2)
- L — Ti=m
m=1,m#j

which is accurate and efficient for functions approximated on Chebyshev nodes®”. Equa-
tions (C.38) and (C.40) lead to a nonlinear system of 2n + 1 equations, where n + 1 come
from setting the stress equal to the strength on the 2; grid and the other 7 coming from
multiplying equation (C.40) through by I;; to find a consistent temperature profile on the
x; grid. This nonlinear system can be solved for v on the z; grid, 7" on the ' grid, and L

using Newton-Raphson iteration. Once a solution is found we calculate k7, using

4 1 x dr
k = - —d f— . C.
’ W@/_n/l_mﬂ 0 (C.43)

Repeating this for many imposed slip durations leads to k, as a function of Tj,yse /1.

This curve is then tracked until k7, vanishes and a self-healing solution is found.

We perform a convergence test on the system above for several values of the driving stress
7y and the parameters from Table s.1. The results from this convergence test are shown
in Figure C.1. We see that the method is second order — as found in Erdogan and Gupta
[1972]7" — and that the percentage error in the values of T, and L at which self-healing oc-
curs is acceptable when . > 400. The majority of calculations in this paper are performed
withn = 1000, though sometimes we use a higher value of 7 at the lowest values of 7,

where the slip is confined to a narrow zone very close to the rupture tip.

345



Percentage errorin T,

Percentage error in L

10

0Tavg = . 0Toyg = -

Figure C.1: A plot showing a convergence test for the numerical scheme outlined in Appendix C.2.
This test was done using the parameters in Table 5.1 and three different values of the driving stress

Tp. We see that the method is second order - as found in Erdogan and Gupta [1972]7*- and the per-

centage errorin Ty, and L is smalloncen > 1000. The majority of the simulations in this paper
aredone usingn = 1000, with a few higher resolutions for the smallest values of T, where slip is
confined to a small zone immediately adjacent to the rupture tip.

C.3 Validation of reaction kinetics approximation

The Green’s function solution outlined above relies on approximating the reaction kinetics
in the deforming zone as the product of the reaction kineticon y = 0 and an assumed
Gaussian shape in the across fault direction. Here we test this approximation by replacing

equations (s.5) and (s5.7) with

or 144 *T Q
Ura—x = E + Oétha—yQ — mkE, exp (_ﬁ ) (C.44)
dp oT Pp Q
= v, A— P, —— .
vra Uy o + gy e + mP, exp ( =T (C.4s)
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Figure C.2: A plot showing how the results from the Newton-Raphson method outlined in appendix
C.2 compare with the finite difference simulations outlined in Appendix C.3. These results were pro-
duced using the parameters in Table 5.1. The good agreement between the two methods validates
the assumptions we made about the reacting zone shape. We see that for the dimensionless slip
pulse length the best agreement occurs for 3 = 3, and for the slip duration the best agreement oc-
curs for § = 2. Based on these plots we choose an optimal value of 5 = 2 that is used in all other
simulations in this paper.

Note that these equations make no assumptions about the shape of the reacting zone, and
the reaction rate is calculated for all y using the temperature at that location.

These equations are solved numerically via an iterative procedure that starts with a ve-
locity profile V() and solves for the shear strength and temperature evolution within the
pulse using finite differences. Assuming that the shear strength and shear stress are equal
within the slip pulse this new shear strength profile can be used to predict a new slip rate

profile using Rice [1968]" and Garagash [2012]%,

_ 2 L x(L—x)T d¢
vie =25 [ g oS (40

This new slip rate profile is then used as the input for the next finite difference calculation
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and we continue to iterate until the difference between the slip rate profile used to drive the
finite difference calculation and the new slip rate profile predicted by equation (C.46) agree
to within a small tolerance, which is typically assumed to be ~ 107* — 1072 in dimension-
less units.

Figure C.2 shows how the method that makes no assumption about the reacting zone
shape compares with the method that assumes a reacting zone with a Gaussian shape and
fixed thickness for different values of 3. We see good agreement between the two methods
with the best agreement in the value of T}, occurring for 3 = 2 and the best agreement
in L occurring for 8 = 3. These observations validate the assumptions made about the
shape of the reacting zone and suggest an optimal value of 3 = 2. This value of 3 is used
for the rest of the calculations presented in this paper. Another slightly more complicated
method that we use extensively in this paper includes the dimensionless self-healing condi-
tion k;, = 0 in the Newton-Raphson iteration. This leads to one additional equation that
is used to solved for the slip duration T, at which self-healing occurs. This second method
is found to be much more computationally efficient and is used to generate the majority of

the results in this paper.
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Additional Materials for Chapter Six

D. Numerical methodology

Our numerical implementation uses centered finite-differences on a Cartesian grid, yielding
a second-order accurate approximation to the governing equations. Our grid setup allows
for three refinement levels in the vicinity of the singularity at the transition point between

stream and ridge in the mechanical model (see Section 6.2.1). We do not use grid refinement
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in our solution to the thermal model (see Section 6.2.3) because our temperature field is
capped at the melting point, which implies constant temperature in the vicinity of the stress
singularity.

We solve the mechanical and thermal models iteratively by repeating the following com-
putational steps: First, we seek an approximate solution to our mechanical model (equa-
tion (6.1)). Second, we compute the dissipative heating associated with the estimated veloc-
ity field and interpolate it to coincide with the temperature grid. Third, we compute the
temperature field resulting from this dissipative heating term by solving equation (6.10).
Fourth, we update our estimates for the effective viscosity, thermal conductivity and spe-
cific heat based on the new temperature field. Once the coupled mechanical and thermal
models have converged to a stable solution for the temperature and velocity fields of the
stream-ridge system, we estimate melt production (equation (6.16)).

Solving our thermal model (equation (6.10)) requires an iterative procedure in itself be-
cause the extent of the temperate zone depends on temperature. At each iteration, we up-
date the source term based on the revised estimate for the extent of the temperate zone. We
also shift the transition between the boundary condition at the base of the domain such
that geothermal heat flux is imposed only underneath the portion of the ridge that is frozen
(although we continue to maintain a no-slip condition underneath the entire ridge). We
construct two Heaviside distributions, the first representative of the temperate zone and
the second representative of the crevassed zone as described in Section 6.2.5. In both cases,
we use a standard trigonometric taper to regularize the Heaviside distribution. We solve
equation (6.10) through a multigrid solver* in which we cycle through a hierarchy of four

grids. We have also found satisfactory results with classical iterative techniques such as suc-
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A. Asymptotically decreasing error with increasing width
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Figure D.1: Validation of our computational approach. Panel A shows that the percentage error be-
tween the numerical and analytical estimates for the nonsingular shear heating, 27pég X 1,at

6 = 0°, decreases as the ice-stream width increases. The grid resolution in the vicinity of the singu-
larity is 0.1 m for all computations. Panel B summarizes the results of a convergence test performed
for awide ice stream with W/ H =~ 80at = 0°.

cessive overrelaxation, but the multigrid is computationally more efficient and less prone to

error oscillations, particularly along the bed.

351



An important concern when solving our mechanical model numerically for a creep-type
rheology is to sufficiently resolve the singularity at the base between stream and ridge. To
validate our computational approach, we benchmark it against an approximate analytic re-
sult valid for very wide ice streams with a temperature-independent viscosity sliding over
a stress-free bed. Our analytic derivation is based on the insight that the transition from a
slipping ice stream to a locked ridge is analogous to a crack problem. In this analogy, the
singularity at the bed between stream and ridge represents the crack tip and the base of the
ice stream can be thought of as a shear crack. Using this parallel, we can study the dissipa-

tion in the near-tip field with the analytical techniques developed for crack mechanics.

.CC“‘CCCCC‘Q.‘.‘CCC:‘C.C.C’ FEIZ XS 3
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Radius [m]

Figure D.2: Plot of the angular dependence of dissipation for nine different angles from 5° — 175°
represented by a specific color as detailed in the inlet on the upper left. For each angle, the dotted
lines represent the analytic and the full lines the numeric result. Evidently, the importance of the
far-field contribution to shear heating depends primarily on the distance from the singularity, but
also on the angle.

Our strategy for solving for the stress, strain rate and dissipation in the near-tip field con-

sists of two steps: First, we can deduce from Rice [1967] ™, reinterpreted for nonlinear vis-
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cous flow, and Rice [1968]™ that the shear heating in the near-tip region is given by

3Jtip
2rr

(\/ 4 — sin 0 + cos 0) - , (D.)

QTEéE =

where 1 and ¢ are the polar coordinates centered on the slip singularity such that r is the
radial distance from the slip singularity and 0 the angle taken to be zero at the bed under-
neath the ridge (see Appendix D.2 for details). Second, we derive an approximate estimate
of the unspecified constant, J;, in equation (D.1), which captures the intensity of straining
at the crack tip due to far-field loading, using the path-independence of J-type integrals as

detailed in Appendix D.3. We estimate J;;;, as
Jtip = HTlatélat 5 (DZ)

where 7, is the average shear stress, 7,,, at the margin that would balance the gravitational
load of the ice stream and €;,; is the strain rate associated with that average lateral shear
stress. Note that contrary to the exact result for the near-tip field (see equation (D.1)), the
evaluation of the J-integral in equation (D.2) is approximate and based on the simplifying
assumptions that (1) the rheological behavior of ice is independent of position, hence ne-
glecting the effect of temperature variations and (2) ice streams are much wider than thick
(H<W).

It is unreasonable to expect the numerical and analytical solutions to match exactly for
two reasons: First, the analytical solution is an approximate result that applies strictly only
to very wide ice streams. We can still use it to benchmark our computational technique,

however, by verifying that the error between analytical and numerical results decreases with
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increasing ice-stream width. Second, the analytical treatment only captures the contribu-
tion to shear heating that results from the stress singularity at the bed. The effect of the
nonsingular, but still intense, shear heating throughout the entire depth extent of the ice is
not accounted for by the singular term only. The numerically estimated shear heating will
thus never agree exactly with the analytical estimate, but the error should be smallest in the
immediate vicinity of the singularity (r — 0) and increase with increasing distance. To en-
sure comparability between our numerical model and the analytical benchmark results, we
neglect crevassing, the temperature-dependence of the ice rheology and thermal conductiv-
ity and the advection terms for all computations in this section. We also assume zero basal
stress underneath the ice stream.

Figure D.1A confirms that the percentage error between the numerical and the analytical
estimates for the non-singular dissipation, 27pég X ratf = 0°, decreases with increasing
ice-stream width. To isolate the asymprotic effect of ice-stream width, all computations
were performed at the same grid resolution of 0.1 m in the vicinity of the singularity. The
flattening of the error curve in Figure D.1A indicates that ice-streams with widths of about
100 H are well approximated by the assumption of a very wide stream and suggests that the
remaining error is dominated by the finite resolution of our computations. In Figure D.1B,
we demonstrate that the percentage error between numerical and analytical results for an
ice stream of W = 80 H atf = 0° drops well below 1% for grid resolutions of < 0.1 m,
highlighting that we can accurately reproduce the analytical behavior with a sufficiently
refined grid.

Beyond serving as a benchmark, the comparison between analytical and numerical re-

sults also allows us to verify if and when the far-field contribution to shear heating starts
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dominating the total dissipation in the shear margin. Figure D.2 shows that for a wide ice
stream with W = 80 H and a fine-grid resolution of 0.1 m, the far-field contribution to
shear heating already becomes important at radial distances of just a few meters, render-
ing the analytical solution that only captures heating in the near-field of the singularity less
adequate. As the radius approaches zero, however, the numerical solutions become increas-
ingly dominated by numerical errors associated with the quickly diverging stresses and are
less reliable. As demonstrated in Figure D.1B, the singularity can be captured more accu-
rately with sufficient computational expense, but ultimately there will always be a finite, if

vanishingly small, radius below which the analytical result is more accurate.

D.2 The near-tip field parameterized by J;;,

By reinterpreting the material rheology, a parallel can be drawn between the downstream
velocity profile in a two-dimensional margin and an anti-plane crack problem. In an elastic
(or “deformation theory” elastic-plastic) body, the stress depends on the strain, while in the
viscous material considered here the stress depends on the strain rate. The stress fields in the
elastic and viscous problems are identical. Strain rate in the viscous problem is analogous to
strain in the elastic problem and downstream velocity is analogous to displacement.

In this section, we will solve analytically for the shear heating profile near the point where
the bed transitions from slipping to locking. To develop the analytic solution, we must ne-

glect the temperature dependence of the rheology and assume a relationship of the form

éE = ATE, (D})
where A and n are constant. Our problem is now mathematically equivalent to the anti-
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123 which solved for the stress field in a

plane crack problem solved in Rice [1967,1968
material with a linear stress-strain relationship up to a given yield stress and an arbitrary
nonlinear stress-strain relationship (including a power-law relationship as a special case)

182

above the yield stress. The solution in™ relies on a transformation to the hodograph plane.

This transformation interchanges the dependent and independent variables, allowing us to
solve for y and 2 as a function of the strain rate components €, and €. As shown in™,

the solution for the field near the crack tip takes the form
y=X(ég)+ F(ég)cos2¢ and z= F(ég)sin2¢p, (D.4)
where we have used the polar coordinates
€y = —€psing and €, = égcoso. (D.s)
For the power-law rheology given in equation (D.3) the functions X (ég) and F'(ég) are
Jtip n—1__ .

Smiprpleg) P4 Xléw) = o Fn), (D.6)

F(ép) =

where the constant J;;, is determined by the far-field loading on the margin, and the evalu-
ation of Jy;;, will be discussed in detail in Appendix D.3. The function F'(é) can then be

related to the shear-heating rate through

QTEéE:ﬂ_ L (D.7)

To solve for F'(ég), we first eliminate ¢ from equation (D.4), which uncovers the equa-
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Figure D.3: Sketch showing the two paths Ftip and l—‘fa,n used to evaluate the path independent
integral defined in equation (D.13). Ftip is taken sufficiently close to the transition point so that the
stress field is described by the solution in Appendix D.2, and Ffar is evaluated along the border of
the domain.

tion for a circle

(y — X(ép))* +2* = F(ép)”. (D.8)

Thus, lines of constant shear heating form circles in the (y, 2)-plane with a radius of F'(ég)
and acenteraty = X (ég),z = 0.

For a Newtonian rheology (n = 1), X (ég) = 0 and thus equation (D.8) simplifies to

QTEéE = 5 (D9)

wherer = \/m . This means that lines of constant frictional heating form circles
about the point where the bed transitions from slipping to locking. Consequently, the
shear heating within the ridge and the ice stream is the same. For the more realistic Glen’s
Law (n = 3), the solution is more complicated. In this case, X (ég) = F(éz)/2 and there-

fore equation (D.8) is a quadratic equation in F'(éx). Noting that /' > 0 is required for a
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physically relevant frictional heating profile, the only solution is

F(ép) = (W - y) . (D.10)

2
3
This can be simplified by using polar coordinates centered on the transition point,

y=rcosf and z=rsinf (D.)

leading to the final from of the frictional heating profile

3Jtip
2rr

QTEéE =

( 4 — sin? 0 — cos 9) - . (D.12)

For Glen’s law, the circles that show the lines of constant shear heating are no longer cen-
tered on the transition point, but are shifted towards the ridge by an amount X (ég) =
Jiip/ (4T TRéR) that varies with the magnitude of shear heating. This means that the shear

heating is skewed, with more intense heating in the ridge than in the ice stream.

D.3 J-integral evaluation for an anti-plane flow

In this section, we use a path independent integral to evaluate the constant J;;,, from Ap-
pendix D.2, linking the far-field loading on the ice stream to the shear heating singularity
near the transition from a slipping to a locking bed. This is an extension to J-type inte-
grals, which were pioneered by Rice [1968]™*, Cherepanov [1968]*° and Bilby and Eshelby
[1968]" in the context of cracks in elastic solids, but have been generalized to more com-

88,130,126,10

plex, nonlinear creep rheologies relevant for our case and applied to glaciers by
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McMeeking and Jobnson [1986]™°.

Our domain of ice is made to coincide with that of a classical anti-plane crack problem,
for an ice slab of thickness 2, when we add to our domain its mirror image about the
base. We thus have a classical crack problem, with v = 0 along the prolongation of the
slipping zone into the locked zone z = 0 and y > 0, gravity loadings in the respective do-
mains z > 0and z < 0, traction-free surfaces, 7,, = 0,at 2 = £ H and with 7, = Tp4ee
on both sides of z = 0 where y < 0.

Assuming that the properties of ice do not change with temperature (or that tempera-

ture varies only with z), the appropriate path-independent integral for our problem is

J = / (P(ep, 2) — pgsinau)dz — T - n%ds, (D.13)
r 9y

where T = (7yy, T4»), ® is analogous to the strain energy density function from elasticity

and is defined for a creeping solid as

B(ep) = /0 e () de (Dug)

n is the outward unit normal to the curve I', and ds is evaluated in a counter-clockwise
fashion. For any closed curve I that does not enclose the transition point (i.e., the crack
tip), J = 0 so that the integral is path-independent.

For classical crack problems, I' is taken to start on the lower crack surface 2 = 07,y < 0,
encircle the crack tip and end on the upper crack surface z = 07,y < 0. J is indepen-
dent of path I" for all paths with the same starting and ending points. If there is no trac-

tion on the crack faces (745 = 0), J is independent of where we start and end along the
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faces. When 745 # 0, we start and end at a point close to the tip on the crack face where
y < 0. Then we take the limit y — 0 on both faces and define .J;;, as the value of J. Sub-
sequently, we focus on the part of any path I in the domain 2 > 0 so that the result of
equation (D.13), taken along that part of the path, is Jy;;, /2.

We now evaluate Jy;;, along the two curves I';, and I ¢4, shown in Figure D.3, which
meet these specifications, with I'y;, sufficiently close to the transition point that the defor-
mation can be described by the solution in Appendix D.2. Evaluation along I';;), just con-
firms the relations involving J;;, in that appendix. For a typical ice-stream geometry, the
contribution to J from the portion of I' ¢4, in the center of the ridge is negligible, so for the

boundary conditions highlighted in Figure D.3

i o . ’ du(y, 0
;p = / [® (é;.) — pgsin au]yszﬂ dz + / Thase %dy. (D.1s)

H —W/2

To calculate the two integrals in equation (D.1s), we need to know u within the ice stream.
An approximate evaluation can be produced using a simple one-dimensional model with
a constant basal stress Ty, beneath the ice stream. Assuming that 7,,, and u are functions
of y alone, we integrate the equation for mechanical equilibrium from z = Oto z = H,

arriving at
d7yy

dy

= — <pg sin o — TIE6> and  é,, = A1}, (D.16)

where it may be noted that the first of these is exact if we reinterpret 7,,, as its average over
the thickness /1 in the z direction. This average becomes arbitrarily larger than the average
of 7., as W/ H becomes increasingly large. In that same limit, €,, becomes much larger

than €, and the flow law reduces to the second equation. Treating the problem in that
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large W/ H limit, we integrate outwards from the stress free boundary aty = —W/2 to

calculate 7, (y) and hence the strain rate profile

d n "
ﬁ =24 (pg sin o — Tl;l;e) <y + %) . (D.1y)

To create the single boundary condition needed to integrate this equation, we assume that
the downstream velocity vanishes at the margin, as is appropriate to the large W/ H limit,

and find

24 _ Thase \™ | (W " W
u-n+1 <pgsma— 7 ) [(?) — (y—i—?) . (D.18)

The boundary condition used here is an approximation since the velocity field in the vicin-
ity of the margin will be a function of both y and 2z and will not completely vanish. How-
ever, comparing the predictions for velocity in the center of the ice stream from equation (D.18)
and two-dimensional computational models, we find that in the limit H < W/2, equa-
tion (D.18) is the asymptotic limit of such models.
Using the one-dimensional model to evaluate .J;;;,, which relies only on the value of u at

the center of the ice stream, equation (D.1s) gives

Jtip 2AH ( . Tbase>n+1 2 i
e/ A — — ) D.
2 T pgl \PIEReT T 2 (D-19)

Defining the average lateral shear stress at the margins and the corresponding equivalent

strain rate

ase W .
Tiat = (pg sina — TZ}{ ) > and €&, = ATy, (D.20)
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we can simplify the equation for Jy;), to

4H

in = ———Tiat€la D.ar
tip n+1ltlt ( )

when W > H.
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Additional Materials for Chapter Seven

Ex Derivation of near-tip solution

In this appendix we solve for the stress field and velocity near the transition from a deform-
ing to an undeforming bed, assuming a sharp transition thatoccursaty = z = 0. Todo

this we use the hodograph plane methods from Rice [1967]™, Rice [1968]™ and Suckale

216 216

et al. [2014]*°, though we use a slightly different approach than Suckale er al. [2014]
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because we want to solve for the downstream velocity profile as well as the stress field.

To begin we define the Legendre transform of the downstream velocity u as

Y=yl + 27— (Ex)

where 7, and ¥, are the engineering strain rates defined by

ou . _8u

Ty = oy = 5 (E-2)

These engineering strain rates are equal to twice the tensor strain rates defined in equation
(7.1), the effective engineering strain rate is equal to [ + §7] 1/2 and the power law rheol-
ogy given in equation (7.3) can be written as Y = 2A7". Differentiating equation (E.1) with

respect to ¥, and ¥, and noting that

ou . Oy n 0z ou . Oy n 0z (Es)
T — s 2 y . — . 2 A 3
Yy W 0y ! Oy 07: i 07z 7 07:

we can relate the first derivatives of 1) to the coordinates y and z

o o
7, U o

z. (E.4)

Following Rice [1967]™* we rewrite the equation for mechanical equilibrium as

oy 0z

OTwy  OTy

=0 (E.s)
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and define polar coordinates in the strain plane by

= —Asing , 4. =4 coso. (E6)

Note that in the hodograph plane, radius from the origin is equal to the equivalent engi-

182

neering strain rate . As shown in Rice [1967]", the equation for mechanical equilibrium

in the hodograph plane can be written as

T(¥) 0% 10y 19%
W Aoy e 7

For the power law rheology defined in equation (7.3) this leads to

Py 1o 1321/;_0

"o TR0y Titos (58)

Note that transforming from the physical plane to the hodograph plane has turned the

nonlinear equation for v into a linear equation for v, which is the Legendre transform of w.
Having determined the equation that must be solved in the hodograph plane we next de-

termine the boundary conditions. In the physical plane there are two boundary conditions.

First, on the deforming bed we have a traction free boundary condition, which leads to
4, =0 on z=0,y<0. (E.9)
Second, where the bed is undeforming we have the no slip condition

u=0 on z=0,y>0. (E.10)
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Figure E.1: A sketch of the physical plane and hodograph plane used in Appendix E.1 showing the
equations solved, boundary conditions used, and coordinates in both planes.

We can determine where these two boundary conditions map to in the hodograph plane
by noting that for the traction free condition 4, = 0and“, < 0, while for the no slip
boundary condition 4, = 0and ., > 0. Thus the no slip condition maps to the positive
*,-axis and the traction free condition maps to the negative 7, -axis.

Having found where the boundary conditions are applied in the hodograph plane we
next determine the form of the boundary conditions. We find that for the no slip condition

all three terms in equation (E.1) vanish, leading to

=0 on ¢=0. (E.xx)

In the physical plane the traction free boundary condition occurs on z = 0, and thus equa-

tion (E.4) tells us that along this boundary 0t /07, = 0. This is equivalent to saying that
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the normal derivative must vanish, which leads to

8—w:0 on ¢=m/2. (Er2)

09

Figure E.1 shows a sketch of the physical plane and hodograph highlighting the equations
solved, boundary conditions used, and domain solved in.
The equation given in (E.8) and the boundary conditions given in (E.ir) and (E.12) can be

solved by the simple separable solution

Y =—Cy " gin ¢, (E.3)

where C' > 0 is an arbitrary constant that will be determined later and the negative sign
is required to ensure that when we map back to the physical plane our solution will lie in
z > 0. Note that equation (E.13) is a much simplified case of the eigenfunction expansion

182

given in the original solution of this problem from Rice [1967]"*. Using the solution for
1 given in equation (E.13) we can now determine the mapping that allows us to switch be-
tween (7, ¢) in the hodograph plane and (r, §) in the physical plane. To do this we use the

identities relating the first derivates of 7 to the physical coordinates y and z given in (E.4).

In the hodograph plane polar coordinates defined in equation (E.6) these identities become

y = —sin (bg—i} — CO; ¢ g—z, (E14)
Z = COS (b?)_:i — Siz¢g—§. (E.15)
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Inserting the solution from (E.13) we find,

1
y = —C/~(nt/n ((" i ) sin? ¢ — 1) : (E.16)
n
1
L=t CH~ D/ sin ¢ cos ¢. (E.17)
n

First we find the polar angle ¢ in the physical plane by dividing 2 by ¥ to find

(n+1)tan¢

tanf = .
n — tan® ¢

(E.18)

This allows us to find 0 as a function of ¢, and noting that equation (E.18) defines a quadratic

equation in tan ¢ we can also solve to find

(n+1)cotd \/(n + 1)2cot? 0
+ +n

tan ¢ = —
an ¢ 5 1

Next we find the radius 7 in the physical plane using 7* = y* + 2%, leading to

1 1—
r= 07—<"+1>/"\/( Z”) ( . ”) sin2 + 1. (E.20)

Equation (E.20) can be rearranged to give 7 in terms of r

7(n+1)/n — g\/<1 + n> <1 _ n> sin? ¢ + 1, (E.21)
r n n
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where tan ¢ is given by equation (E.19) and we use the trigonometric identity,

(E.22)

Now we solve for the constant C' using the J-integral, which links the far-field loading to
the asymptotic solution valid right at the transition from a deforming to an undeforming
bed. This process is greatly simplified by comparing with the solution for the stress field
around a sharp transition from Suckale et al. [2014]*°. Comparing our solution for z given

] 216

in equation (E.15) with equation (B2) in Suckale et al. [2014]*° allows us to relate the func-

tion F' defined in Suckale et al. [2014]*° to our solution through

n+1 —(n n
F=—=—=C5 (n+D)/n, (E.23)

Using the definition of F' given in equation (B4) of Suckale et al. [2014]*° allows us to
find,
C= M. (E.24)
m(n+1)
Determining the constant C' completes our solution for 7).
Now that we have solved for 1) and can move between the hodograph and physical
planes we invert for v using
u=yjy+ 27— (E.25)

Using the polar coordinates defined in equations (E.4) we can show equation (E.2s) is

equivalent to

0
u= va—f _y, (E26)
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allowing us to find the velocity field around the transition point in terms of % and ¢

1
u= WW_I/” sin ¢. (E27)

Using equations (E.19) and (E.21) we an rewrite this in terms of 7 and 6 to find

24 1 1/(n+1) 27, n/(n+1)
u = ( (n + )) ( tlp) ,r,l/(n—&—l)g(e), (E28)

n ™

where the shape of the velocity field is given by the function

n2 fr+l 1/(2n+2)
0) = 2
o0 = (G i 779) (2
and the function f(#) is
f(0) :n+(nL21)200t29— (n—l—l)cot@\/@coﬁﬁ%—n. (E30)

E.2  Solution for circular channel and Newtonian rheology

In this appendix we develop an analytic solution for a circular channel in ice flowing with
a Newtonian rheology. This solution uses complex variables, and thus cannot be extended
to other stress exponents - # 1. To begin we assume that the basal resistance acting on
the deforming bed is much smaller than the concentrated stresses associated with the tran-
sition from a deforming to an undeforming bed, allowing us to model the deforming bed
as a stress free boundary. Following this we generalize the solution to account for the finite

basal resistance that Perol et al. [2014]™* argued may occur due to the efficient drainage

370



associated with a channel.

E2.1  Negligible basal resistance

To begin we define the complex coordinate £ = y + iz = e and the holomorphic
function G such that

u=2AIm(G(E)), (E31)

where Im(G) indicates the imaginary part of the complex function G. Differentiating G

with respect to § we find

G'(&) =7p + Ty (E.32)

Based on the small scale yielding assumption validated in Section 7.3, we know that G' must

match the solution for a sharp transition as § — 00, leading to the boundary condition

T\ /2
G’(g)%(ﬁ) V2 as € . (E.33)

We also have a traction free boundary condition at the channel facer = R
TayTly + Ty = 07 (E34)

where n,, and n, are the y and 2 components of the unit normal to the channel wall re-
spectively. Using our definition of { and equation (E.32) this boundary condition can be

written as

Im[e®G'(€)] = 0. (E35)
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To match the stress free boundary condition at = R we look for a solution with

/ Jtip 1/2 iy 00 Ck
G(f):(%) § 12<1+;g>, (E.36)

using the fact that all holomorphic functions are analytic to write G’(§) as a series expan-
sion in &. This series expansion naturally satisfies the no slip condition at ¢ = 0 and the

traction free boundary condition at § = 7. Inserting (E.36) into (E.35) leads to

Im [eie/Q (1 + Z C’kR_ke_ike)] =0, (E37)

k=1

which can be solved by setting Cy = R and Cj, = 0 for k > 1. Thus our final solution for

G'(§) is
/ Jtip 12 -1/2 R
G'(§) = (%) § (1 + E) : (E38)

We can extract the shear stress along the undeforming portion of the bed by setting { = ,

Jtip 12
S A E.
(2*1”9) Yy (E39)

E.2.2  Finite basal resistance

which leads to

The method used to calculate the maximum stress on the locked portion of the bed for a
Newtonian rheology and a circular channel can be generalized to allow for a non-zero basal

stress. When the deforming bed applies a non-zero shear stress 7 to the ice the far-field
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solution for a singular crack becomes

Jtip

1/2
Tos + Ty = 7 (%) &, (E.40)

which is equal to the linear superposition of a constant stress field (7, 7,») = (0, 7¢) and
the solution for a sharp transition assuming that the bed provides no resistance. To find a

solution that approaches the singular solution as { — 0o we again use a series expansion

- + iT _ Tf + Jtip 1/2 571/2 1 + i % . (E4I)
za T Moy 2 A £ gk

Inserting this expansion into the traction free boundary condition given in equation (E.3s)

we arrive at

Tpsing + 4/ Qijij Z Cisin((1/2 —n)0)) = 0, (E.42)
k=0

where we have set Cy = 1. To find the coefhicients C}, we use the series expansion

sinf = Z Dgsin((n—1/2)0) , —n<6<m, (E.43)
k=1
which is equivalent to

sin 21 = Z Dy sin (ny) —g§¢<

k=1,3,5,...

NN
%
2
N

To find the coefficients Dj, we use the orthogonality condition

w/2
/ Sln(n¢) Sm(mf/f)d"éff = g5mna (E-45)

—7/2
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where 0,,,, is the Kronecker delta and m, n are both odd. Using this we can calculate the

formula for Dy,

9 /2
Dy, = —/ sin(24) sin(ky)dy (E.46)
T J_n/2
and evaluate this to find
8 (k+1)
Dy = —1) 7= E.

Having found the values for D, we can convert this to the coefficients C},. We find that,

87y [2mAR
3T Jm‘p ’

2t AR 87'f
- -1 > 2. E.
Cn \/ Jip (21 +1)(2n — 3)( o2 (E.49)

These coefficients allow us to calculate the stress applied to the locked portion of the bed

01:1+

(E.48)

B Jrip = R\"
Tee = Tf + oAy <1+ZCn(y) ) (E.s0)

n=1
E3 Generalization of locking radius to n # 3

In this appendix we generalize the analysis in section 7.6 to stress exponents . # 3. To do

this we use the maximum stress on the bed given by equation (7.18),

iy 1/(n+1)
_ Mty E.
X <(n + 1)7rAR) (Es1)
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This maximum stress is compared with the yield strength of the undeforming bed adjacent

to the channel from equation (7.30),

PwgSQu \ "
2f (ﬂ'LpiARQ) (E.s2)

Setting the stress less than or equal to the yield strength of the undeforming bed we now

determine when locking occurs. This leads to the inequality,

v nJip 1/(n+1)<2f PwgSQu \ " (E53)
(n+ 1)7AR wLp; AR? ' >3

This inequality can be rearranged to find the critical locking radius that must no be ex-

ceeded by the channel radius for a stable margin configuration to occur

R < Rlock (E54)
where the locking radius is defined as
n(n+1) nt1 n_
2f\ "2 (ppgSQu \ "2 [(TA(n 4+ 1)\ "2
Riger, = | — — —_— : (E.ss)
X wLp; A nJtip

Recalling that for fixed material properties and loading conditions 1 and Ry, depend

only on the water flux through the channel @), we can rewrite the inequality R < Rjoe, to

find

Qw > Qlocka (E56)
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where the critical water flux that must be exceeded for locking to occur is

3(n+2
Qo — 255 (L Y5 (1, 2) %
lock = & °nF — | 5t
oc 7'('51/2 p
8n(n+1)

sn_ (Es7)
X n+2 WLpZA Sénii;) thip Bnt2
2f PuwgS TA(n +1) '
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manuscript was Brooks Proctor. I became involved in this project after the
experiments were completed and worked closely with Brooks to construct
the thermal models used to demonstrate that weakening occurs at a critical
contact temperature and that the evolution of surface temperature can
explain the bysteresis seen in the friction data. The work in this chapter
has already been published and the relevant citation is: Proctor, B. P,

T. M. Mirchell, G. Hirth, D. Goldsby, F. Zorzi, J. D. Platt, and G. Di
Toro (2014), Dynamic weakening of serpentinite gouges and bare-surfaces at

seismic slip rates, Journal of Geophysical Research, 119, 8107-8131.

Dynamic Weakening of serpentinite gouges

and bare-surfaces at seismic slip rates

F.o Abstract

To investigate differences in the frictional behavior between initially bare-rock surfaces

of serpentinite and powdered serpentinite (“gouge”) at sub-seismic to seismic-slip rates,
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we conducted single velocity-step and multiple velocity-step friction experiments on an
antigorite-rich and lizardite-rich serpentinite at slip rates (V') from 0.003 m/s to 6.5 m/s,
sliding displacements up to 1.6 m, and normal stresses (0,,) up to 22 MPa for gouge and

97 MPa for bare surfaces. Nominal steady-state friction values (ft,,55) in gougeat V' =

1 m/s are larger than in bare surfaces for all o, tested and demonstrate a strong o, depen-
dence; fiyss decreased from o.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, fi,,55 values
for bare surfaces remained ~ 0.1 with increasing 0, and V. Additionally, the velocity at
the onset of frictional weakening and the amount of slip prior to weakening were orders
of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress de-
pendence for fi,,55 suggests that the behavior of antigorite gouge approaches that of bare
surfaces at 0, > 60 MPa. X-ray diffraction revealed dehydration reaction products in sam-
ples that frictionally weakened. Microstructural analysis revealed highly localized slip zones
with melt-like textures in some gouge experiments and in all bare-surfaces experiments for
V' > 1m/s. 1-D thermal modeling indicates that flash heating causes frictional weakening
in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and

after longer displacements than bare surfaces because strain is more distributed.

F1 Introduction

Our understanding of the frictional behavior of faults at seismic slip velocities (>0.1 m/s)
has significantly improved over the last 15 years with experiments performed on initially

bare rock surfaces’®»7"°7** and gouges*»****+5>7°_In general, these studies of high-velocity
friction (HVF) demonstrate that rock friction coefficients decrease dramatically from ~o.7

to as low as o.1 as slip velocities approach seismic rates and (in most cases) increase rapidly
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as velocities decelerate; this general behavior is nominally independent of rock compo-
sition®**. Such dynamic fault-weakening behavior revealed in laboratory experiments

is consistent with several earthquake-related observations retrieved from: 1) seismology:
e.g., the large stress drops constrained from analysis of seismic radiation patterns of some
earthquakes™*"*?, or the (debated) breakdown of the scaling between radiated energy and
seismic moment”"**; 2) geophysics: e.g., the lack of a pronounced heat flow anomaly along
major fault zones™>* or the large seismic slip accommodated in fault patches in the Suma-
tra 2004 earthquake of moment magnitude (Mw) 9.3 (15 m of max slip, Stein and Okal,
[2005]* and the Tohoku 2011 Mw 9.0 (50 m of max slip, Fujiwara et al., [2011] **) event
3) geology: e.g., estimates of coseismic frictional strength obtained from ancient exhumed
taults (e.g., Di Toro et al., [2006]%%; Griffith et al., [2009] %) or active deep-drilled seismic
faults (Chester et al., [2013]*°; Hirono et al., [2007]%).

A number of physical mechanisms have been proposed to explain the dynamic weak-
ening behavior observed in experiments and postulated to occur on faults (see ***+"7 for a
summary). In particular, mechanical data and microstructural investigations of experimen-
tally deformed bare rocks are consistent with flash heating of asperities *>*¥, frictional melt-
ing*o%554 silica gel weakening™?* and superplasticity (grain boundary sliding accom-
modated by dislocation motion or diffusion)*+'***°°. However, all faults generate a mm to
cm thick layer of gouge during rupture and seismic slip'”*, even within their deeper roots
(6 — 15 km, e.g., Sibson [1977]7°%; Snoke et al., [1999]**). This raises the questions: Which
dynamic-weakening mechanisms occur in gouge-bearing faults? How might the presence
of gouge modify the occurrence and/or efhicacy of these weakening processes at seismic

slip rates? Lubrication due to the presence of powders?*7%** is inconsistent with the rapid
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recovery of frictional strength at the end of sliding. Moreover, in exposed fault zones it is
commonly observed that slip tends to be localized along very thin surfaces within gouge
(e.g., Chester and Chester [1998]**; Fondriest et al. [2013]7°; Sibson [2003]*7), leading some
workers to suggest that once strain is localized within gouge the system will emulate bare
surface slip behavior (e.g., Smith et al. [2012]*°). Butis it appropriate to extrapolate rock
friction behavior obtained in rock-on-rock friction experiments to natural gouge-bearing
faults? Furthermore, how does the effective normal stress affect this behavior? Interest-
ingly, the results from Smith et al. [2013]*" on calcite gouge and Han et al. [2007]7 on
(cohesive) calcite-bearing marble suggest that the shear stress or strength of calcite gouge
is a factor of 2 or greater than marble bare surfaces at seismic slip velocities despite having
localized strain.

Serpentinite is a common rock type in the oceanic lithosphere, and earthquakes may
propagate into serpentinized mantle along mid-oceanic ridges, transform faults and sub-
duction zones; the latter alone release about 85 — 90% of the global seismic moment™”.
For this reason, the frictional behavior of serpentinite has been studied over a wide range of

106,125,

slip rates from plate rates to seismic slip rates 72, Moreover, serpentine group minerals
are expected to react to talc, olivine and enstatite due to frictional heating during rapid slip.
These minerals are thought to be stable in the geologic record, and could therefore provide
evidence for seismic slip*. Currently, the only widely accepted evidence for ancient seis-
mic faulting is the presence of pseudotachylytes**. Other proposed geologic evidence for

169

seismic slip includes thermally altered biomarkers in sedimentary rocks™?, peculiar crystal-

16,211

plastic feature'®*", injection of fluidized gouge”***** and the combination of mirror-like

surfaces with truncated and exploded grains”****. As a consequence, the occurrence of ser-
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pentine breakdown minerals in slipping zones could be indicative of ancient seismicity in
faults exhumed from seismogenic depths, outlining the importance for further field studies
of exhumed fault zones hosted in oceanic rocks.

Employing a rotary-shear apparatus, we extend the study of the frictional behavior of
serpentinite rocks to higher normal stresses (up to 96.6 MPa for bare surfaces and 22.4 MPa
for gouges) and slip velocities (up to 4.3 m/s for bare surfaces and 6.5 m/s for gouges) than
investigated previously. We also explore differences in dynamic frictional-weakening behav-
ior observed on serpentine gouge and during tests on initially bare surfaces of serpentine
by conducting relatively short displacement, high-velocity experiments while varying the
normal stress between tests. Following each experiment the slip surfaces and wear material
were analyzed with X-ray powder diffraction (XRPD) and several microstructural analysis
techniques. These analyses, coupled with 1-D thermal modeling, allow us to constrain the
effects of velocity, normal stress, shear heating, strain localization and dehydration reactions

on dynamic frictional weakening of serpentine and, by extension, other materials.

F.2  Experimental procedures

F.a.1  Sample preparation and data acquisition

Twenty-seven frictional sliding experiments on initially bare-surfaces and powdered rock
samples were performed with SHIVA (Slow- to HIgh-Velocity rotary-shear friction Appa-
ratus) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy (for a
description of SHIVA see Di Toro et al. [2010]°°; Niemeijer er al. [2011]™?). Two materials
were tested: an antigorite-rich serpentinite (ATG) and a lizardite-rich serpentinite (LIZ).

ATG samples contain 90% antigorite with minor magnesite and magnetite; LIZ samples
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contain 80% lizardite, 14% clinochlore (chlorite) and minor magnetite and trace amounts
of olivine and enstatite, as determined by petrographic and XRPD analyses (Table 1).

Bare surface samples were first cored into two ~s0 mm long solid cylinders. The cylin-
ders were pressed inside precut aluminum rings with an inner and outer diameter of 50 mm
and ss mm respectively and cemented within the rings with epoxy. Next, using a lathe, a
depression was machined into the end face of each cylinder to yield an annulus with so and
30 mm outer and inner diameters, respectively. The sliding surface was ground with 320
grit sandpaper and samples were loaded into SHIVA using holders described in Niemei-
Jjer et al. [2011] ™ (Figures F.1a and F.1b). Powdered (“gouge”) samples were crushed and
sieved between 37 and 105 1um, although some finer-grained material was also present in the
starting material. The powder was evenly packed into a steel gouge holder (55 and 35 mm
outer and inner diameters) and sheared between two roughened steel discs (Figures F.1c,
F.1d, and F.1e) (for a description of the steel gouge holder and its calibration, see Smith
et al. [2013]*"). Normal stress was applied from the non-rotary end with an air-actuated
pneumatic piston cylinder and servo-controlled via an electro-valve in parallel with a digi-
tal pneumatic regulator. The regulator has a resolution of 0.02 bars and a response time of
0.2 s for a step of 50% of full scale [Di Toro et al., 2010].

In all gouge experiments, 4 g of powder was used, yielding a ~1.7 mm thick layer of com-
pacted gouge. Slight variations in thickness occurred after initial loading of the gouge. This
produced small fluctuations in the shear stress data with a wavelength of ~150 mm, consis-
tent with the average circumference of the gouge holder (outer and inner circumferences
of 173 and 1 mm). The normal stress also fluctuated in response to variations in thickness.

These fluctuations were in some cases accentuated by the delayed servo-response of the reg-

382



. Stationary
Side | Side

50 mm
0 mm
1
Q
s

btationary Pieces

(®)  Orowypieces  Gouge Holder

f [ Stationary pieces Outer springs (5)
| Sliding metal surfaces Outer ring ~1.7 Q’lm
v

Gouge layer A
Base disc
Inner ring

Stationary base plate Rotary 10 mm
Pieces

130mm

19Le] 5nony
e, ———————

Inner spring

Rotary driving pins (3)

Mounting bolts ﬂ ﬂ

Figure F.1: Sample assembly for bare-surface and gouge experiments. (a) Photograph of rotary side
of bare-surface sample holder with serpentinite sample prior to deformation. (b) Schematic of bare
surface experimental assembly. (c) Photograph of gouge holder (rotary side) loaded with serpenti-
nite powder. (d) Schematic of gouge holder (modified after Smith et al. [2013]%'?). (e) Enlargement
of (d) showing gouge sample compartment (green) and lubricated metal-metal rotary contacts (red).
Dashed line indicates typical location of strain localization within the gouge.

ulator such that the stress was either over-or under-corrected causing variations as high as
5%; we report the average imposed normal stress during deformation in Table F.1. In most
experiments the sample holder prevented extrusion of the gouge, but in Runs 70s, 818, 825
and 826, as much as ~o0.2 g (~8s jum of thickness) of the gouge leaked from the holder dur-
ing deformation. In Runs 727 and 733 sliding displacement was not recorded; however we

still report mechanical data assuming that the imposed velocity profile was similar to that

383



in other experiments with identical experimental parameters. Mechanical data (axial load,
torque, axial displacement, and angular rotation) were acquired at a frequency of 25 Hz
for samples deformed at velocities less than o.1 m/s and 25 kHz for higher slip velocities.
The total slip, slip rate, and shear stress were determined following methods discussed in
Di Toro et al. [2010] *°. High-frequency noise in the data was reduced with a Fast-Fourier-
Transform (FFT) smoothing filter (Appendix F.6).

Following each gouge experiment, a portion of the slip surface was collected for XRPD
analysis. Similarly, following each bare surface experiment a portion of the wear material
was collected for XRPD analysis. All but one XRPD analysis was conducted at Geosciences
Dept. Padua, Italy (see Appendix F.7 for XRPD analysis details).

Micro-imaging was conducted with an Olympus SZX16 optical microscope fit with a
digital camera, a JEOL 6500 and LEO 1500 VP field-emission scanning electron microscope
(SEM) with an accelerating voltage of 10 — 20 kV and a Cameca SX100 electron micro-

probe.

F2.2 Multiple velocity-step experiments

In each multiple velocity-step experiments we imposed the identical preset velocity func-
tion. Samples were first deformed at a sliding velocity of ~3 mm/s to a displacement of

6o mm, then the velocity was stepped to ~4.5 m/s then decelerated back to rest, resulting in
a total displacement of ~o.5 m. We imposed an acceleration and deceleration of ~40 m/s?,
however, the servo-controlled response of the motor tends to overshoot this value and we
observe initial peaks as high as 65 m/s® during acceleration and 70 m/s* during decelera-

tion (see Table 1). In these experiments a constant normal stress (0,,) was imposed, ranging
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from 4.9 to 19.5 MPa in bare-surface experiments (Runs 734, 727, 735, and 733), and 7 to
8.5 MPa in ATG gouge experiments (Runs 824b and 818), and 8.5 MPa in one LIZ gouge

experiment (Run 7os).

F.2.3  Single velocity-step experiments

In single velocity-step experiments, samples were accelerated from rest to a set velocity then
decelerated back to rest after a preset amount of displacement. In one suite of experiments
the samples were slid at 1 m/s for ~1 m of displacement with an imposed acceleration and
deceleration of ~20 m/s%; actual accelerations and decelerations peaked as high as 65 m/s
(Table 1). In bare-surface experiments (Run 736) a constant 0, was imposed, ranging from
s to 97 MPa, which is the highest normal stress ever applied in high-velocity friction ex-
periments on natural rocks: four times higher than in the study of Hirose and Bystricky
[2007]™°° (see Appendix F.8 for normal stress calculation of these runs). In ATG gouge ex-
periments (Runs 820, 74s, 821, 822, and 823), a constant o, was imposed, ranging from 4
to 22.4 MPa and in LIZ gouge experiments (Runs 747, 746, 748, 825, and 826) from 3.8 to
18.7 MPa. We were not able to deform gouge at higher normal stresses due to the torque
limit of SHIVA. We also deformed ATG gouge at 0.1 m/s and 13.3 MPa for 1 m of slip (Run

835) and ~6.5 m/s and 10.9 MPa for 1.6 m of displacement (Run 834), respectively.

F.3 Results

F.3.1  Multiple velocity-step tests

Results from all multiple velocity-step tests are reported in Table F.1. Three representative

experiments (Runs 70s, 824b and 735) are shown in Figure F.2a. These tests illustrate dif-
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ferences between the frictional behavior of serpentine bare surfaces and serpentine gouge at
sub-seismic and seismic slip velocities.

During slip at 3 mm/s, ATG bare surfaces and LIZ and ATG gouge had similar nomi-
nal steady-state values of the friction coefficient (1t,,55) but differed in their frictional sta-
bility. ft,ss is the average of the relatively constant friction values generated during slip at
these velocities. We use the term “nominal” to acknowledge that friction may evolve with
continued displacement due to changes in the shear zone microstructure and/or thermal
structure. Values of fi,,55 for ATG were ~0.67 for bare surfaces (although slightly higher at
lower normal stresses), ~o.7 for ATG gouge, and ~0.65 for LIZ gouge (Table F.1, labeled
Slow fiyss). Both LIZ and ATG gouge displayed stable sliding and slight strain hardening.
Conversely, stick-slip instabilities occurred in all bare surface experiments at 3 mm/s. These
events were audible and produced 0.1 — 0.25 MPa stress drops, as reflected in the friction
record (Figure F.2b).

After the velocity increased, friction of both bare surface and gouge samples first de-
creased (dynamically weakened) over a finite sliding displacement, reaching a minimum
value. During deceleration, friction increased (recovered), resulting in a U-shaped friction
versus displacement profile (e.g., Figure F.2a). In all runs there were sustained flat regions
defining the minimum of the U-shaped profiles in which friction was relatively constant
with changes in velocity. Similar to sliding at lower velocities, we define the average friction
over these flat regions as /1,55 (labeled as Fast f1,,55 in Table F.1). The fi,,55 values for ATG
bare surfaces were ~o.1 while those for ATG and LIZ gouge ranged from 0.35 to 0.38 (Table
F.1).

To characterize the dynamic weakening, we report the amount of slip required to reach
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Figure F.2: (a) Results from three multiple velocity-step experiments; 3 mm/s for ~6 cm of displace-
ment, acceleration to ~4.5 m/s and deceleration to rest. The approximate thermal- weakening dis-
tance (Dyy,) and slip-weakening distance (D),,,) are indicated for Run 735 (see text for details). Stars
indicate the displacement at which the friction rapidly decreases; the corresponding velocity (fall-
off velocity) is shown in (b). (b) Frictional stick-slip instabilities observed in Run 735 at 3 mm/s. (c)
The imposed velocity profiles for experiments shown in (a). Note that the acceleration is very similar
in both gouge and bare surface experiments.

the new nominal steady-state friction value after the velocity step. Previous studies have

defined this length-scale as either the slip-weakening distance (D,,), the distance over which

108,150

the shear stress (or friction) drops by 95% of the total stress drop , or the thermal-weakening
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distance (Dyy,), the distance over which stress falls to 1/e of the total stress drop . We re-
port both distances in Table F.1 for comparison with previous studies, however we discuss
only Dy, in this study. Values of Dy, in bare surface experiments on ATG ranged from 3
to 8 mm. In contrast, for the same acceleration and normal stresses, Dy, values in both the
ATG and LIZ gouge experiments were over an order of magnitude larger, ranging from 40
to 180 mm.

To further quantify dynamic weakening, we report the velocity at the onset of frictional
weakening, which we refer to as the fall-off velocity (V). Values of V; were determined by
first noting the displacement at which friction rapidly decreases (green and gray star in Fig-
ure F.2a), then finding the corresponding velocity for the given displacement (Figure F.2c).
Values of V; thus determined are simply a first-order observation dependent upon the im-
posed experimental conditions. For otherwise equivalent experimental conditions, V; in

gouge was as much as an order of magnitude larger than that in bare surface experiments

(Table F.1).

F.3.2  Single velocity-step tests at 1m/s

The results of all single velocity-step experiments are reported in Table F.r and illustrated
in Figure F.3. In general, these experiments demonstrated similar differences between the
behavior of bare surfaces and gouge observed in the multiple velocity-step experiments. In
addition, because the velocity was held constant and normal stress was varied we were able
to explore the normal stress dependence on fi,,55, Dy, and Vy (compiled in Figure F.4).
Values of ft,,ss decreased with increasing normal stress in both gouge and bare surface

experiments (Figures F.3a, F.3b and F.3¢); the normal stress dependence is larger for gouge
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Figure F.3: Results from single velocity-step experiments with peak velocities of 1 m/s on (a) antig-
orite bare-surfaces, (b) ATG gouge, and (c) LIZ gouge. A representative velocity profile is shown for
each suite of experiments (grey line). Large wavelength oscillations in gouge friction are caused by
inconsistencies in gouge thickness (see Methods section).

than for bare surfaces (Figure F.4a). Values of 1,55 for bare surfaces decreased from o.14 to

o.11 with an increase in ¢, from 5 to ~30 MPa and remained at a value of ~o.11 with ad-

390



0.7
ATG bare surf.,
single-step
0.6 ATG bare surf..
multiple step.
ATG 3
os BN LRty
ATG 3
E \‘ B ultiple-step
L4 o Wy A iz
‘ R LIZ 3
RPN B W L g,
= R
021 Q ?
& °oe
r L [ e o °
0110 0 @
0 a L L L L L
0 20 40 60 80 100
Normal Stress (MPa)
-
£ 10
g’ ATG bare surf.,
—_ single-step
N ATG b: f.
8 © Lultiple-step
3 u ATG '
g = "a EE S
= 102t o AT,
£ n multiple-step
E = B |, LiZgouge,
° multiple-step
o0
=
g
=
St
<
2 ®
= 0% o
E] ]
E ® o0
— b o
21
= 10 100
Normal Stress (MPa)
3.0
ATG bare surf.,
- ® Cnglestep
& 2.5 u ) AT(;»hare surf.,
g multiple-step
ATG 3
= m 4TS e
2.0¢ L ATG X
< B ltiple-step
£ LIZ 3
3 A A e
el A LIZ gouge,
< multiple-step
=~
g 1o LI
= ]
x
B 0.5
e e® e o o oeec
o 1€
! 10 100
Normal Stress (MPa)

Figure F.4: Normal stress dependence on (a) nominal steady-state and minimum friction values (LI1Z
gouge), (b) thermal weakening distance, and (c) the fall-off velocity for multiple velocity-step and

single velocity-step experiments.

ditional increase in 0, from 30 to ~97 MPa (Figure F.4a). The friction data for gouge are

more scattered than for bare surfaces. Interpretation of these experiments is complicated

by (1) variations in sample thickness which caused sinusoidal oscillations in shear and nor-
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mal stress, and (2) sample leaks, which caused spikes in the data. As such, the reported fiy,5
values have larger standard deviations (Table F.1). Values of 1,55 for ATG gouge decreased
from o.s1 to 0.39 with an increase in ¢, from 4 to 22.4 MPa (Figure F.4a). Friction for LIZ
gouge did not appear to reach a steady-state value in any single-velocity experiment (Fig-
ure F.4a); for these experiments we report only a minimum friction value (ftp;»). Values of
[min for LIZ gouge decreased from o.50 to 0.31 with an increase in 0, from 3.8 to 18.7 MPa.
The ATG and LIZ gouge samples deformed at o,, ~12 MPa (Runs 821 and 748) deviate
somewhat from this general trend. Values for 1,55 from multiple velocity-step experiments
(with maximum slip rates of ~4.5 m/s) are generally consistent with single velocity-step
results (with maximum slip rates of ~1m/s) (Figure F.4a). Values of Dy, for both ATG
bare surfaces and gouge decreased with increasing normal stress, though there is scatter

for the gouge samples (Figure F.4b). We did not calculate Dy, values for LIZ gouge be-
cause steady-state friction was not reached. Values of Dy, for ATG bare surfaces decreased
from 0.46 to 0.15 mm with an increase in ¢,, from ~11 to 97 MPa. Values of Dy, for ATG
gouge are more than an order of magnitude greater than for ATG bare surfaces and de-
creased from 130 to 57 mm with an increase in 7,, from 4 to 22.4 MPa. Values of D,;, from
multiple velocity-step experiments are similar to those observed from single velocity-step
experiments on both bare surface and gouge samples (Figure F.4b).

Values of V; are independent of normal stress in bare-surface experiments and decrease
modestly with increasing normal stress in gouge experiments; V is much smaller for bare
surface samples than gouge samples deformed at the same conditions. Figure F.4c shows
that values of V; for all ATG bare surface experiments were ~0.2 m/s. In contrast, for ap-

proximately the same velocity profile, V; decreased from 1 to 0.76 m/s for LIZ gouge and

392



from 1 to 0.87 m/s for ATG gouge with increasing normal stress. These trends in V for
gouge also reflect a decrease in the amount of slip that occurred prior to frictional weak-
ening with increasing normal stress; at low 0, the gouge experiments reached the peak
velocity (1 m/s) and continued to slip for tens of millimeters before frictional weakening
occurred, while at higher ,,, the gouge weakened during acceleration before the peak ve-
locity was attained. For bare surfaces, values of V; in multiple velocity-step experiments are
similar to those observed from single velocity-step experiments (Figure F.4c). In contrast,
for gouge samples, values for V; are significantly higher in the multiple velocity-step experi-

ments (Figure F.4c).
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Figure F.5: Velocity dependence of antigorite gouge; inset shows velocity profile for corresponding
experiments. Run numbers are indicated in parentheses.
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F.3.3 Additional single velocity-step tests

To better constrain the velocity and displacement dependence of friction for the ATG
gouge samples, we conducted two single velocity-step experiments at 0.1 m/s and ~6.5 m/s
(Runs 835 and 834, Figure F.5). These experiments were conducted at normal stresses of 13.3
and 10.9 MPa, respectively. No frictional weakening was observed at 0.1 m/s (Run 83s, blue
trace in Figure F.s); the value of pt,,5s remained ~o0.65 throughout the duration of the 0.9
m slip cycle. In contrast, the sample deformed at a peak velocity of 6.5 m/s (Run 834, red
trace in Figure F.s) yielded a value of the friction coefficient of 0.31. This sample was also
deformed to a larger amount of slip, ~1.6 m, than in the other single-velocity tests (slip ~1
m) and velocity-stepping tests (slip ~0.45 m). As is shown in Figure F.s, the friction coef-
ficient was independent of velocity and achieved a steady value (~o0.3) during the accelera-
tion stage for V' > 4 m/s (after 0.2 m of slip) and began to increase during the deceleration

stage for V' < 2.5 m/s (after 1.5 m of slip).

F.3.4 Velocity dependence and frictional hysteresis

In all of the high-velocity experiments, we observe hysteresis in plots of friction versus ve-
locity, with greater velocity dependence and higher friction values during acceleration than
deceleration (e.g., Figures F.2a, F.3a, F.3b, F.3c and F.5). In Figure F.6a we plot unfiltered
data for two multiple velocity-step experiments on ATG bare surfaces (Runs 734 and 735;
blue and green traces). In this figure the value of friction traces a clockwise “path” in log
velocity space. During acceleration from 3 mm/s to ~o.1 m/s, the friction remains nom-
inally constant; friction then begins to decrease at a velocity of ~o.1 m/s, and decreases

more rapidly at velocities above ~0.3 m/s. In Figure F.6b we plot the friction data for ATG
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gouge during one single velocity-step experiment (Run 834, red trace in Figure F.6b). In
this run, there was no initial period of slow slip at 3 mm/s; the sample was accelerated from
rest to the target slip rate of 6.5 m/s. We also plot the data from a multiple velocity-step
gouge experiment (Run 824b, black trace in Figure F.6b); in this test, the sample was slid
for 6o mm at 3 mm/s and then accelerated to 4.5 m/s.

During acceleration, the gouge experiments show behavior similar to that for the bare
surface experiments, except that for the gouge, the onset of weakening is shifted to higher
velocities (~1 m/s) producing a larger hysteresis (Figure F.6b). During deceleration, friction
during both ATG bare surface and ATG gouge experiments increases to values somewhat
lower than those determined during the initial low-velocity portion of the experiments;
friction for the gouge recovers at a higher velocity (~0.2 m/s) than for the bare surfaces
(< 0.02 m/s) (Figures F.6a and F.6D).

In Figure F.6 we superimpose fi,,; data on the friction path data for experiments on
bare surfaces (green circles) and gouge (green squares). In both diagrams, black numbers
correspond to the run number. For velocities below ~o.1 m/s, values of /4,5, are similar to
the transient values observed during acceleration. In contrast, at higher velocities, values of

[nss are similar to the transient values observed during deceleration.

F.3.5  Microstructural and mineralogical analysis

E.3.5.1 Bare surface experiments

All bare-surface samples deformed at velocities of 1 m/s and higher developed grooved stria-
tions and exhibit glass-like material on the slip surface. The glass-like material was observed

in two textural forms. The first was a dark-green veneer with glassy sheen that occurred in
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Figure F.6: Hysteresis and velocity dependence of (a) ATG bare surfaces and (b) ATG gouge. Lines
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bands along topographically higher ridges on the slip surface (Figure F.7a). This material
was observed in all bare-surface experiments. An SEM micrograph of one of these surfaces

shows finger-like tendrils and bulbous structures (Figure F.7b), similar to glass fibers de-

396



scribed in Friedman et al. [1974]%°. The second textural form of glass-like material was

10 — 20 pom thick glassy patches of light-green and translucent material observed on the slip
surface (Figures F.7c and F.7d) of samples deformed at o,, > 20 MPa. The glassy material is
composed of a nominally homogenous ultra-fine grained matrix (i.c., the matrix grain-size
is either too small to resolve with an SEM (<10 nm) or amorphous) with larger magnetite
inclusions as suggested by backscattered electron SEM micrographs (Figure F.7e and F.7f)
and exploratory micro-chemical analyses. These glassy patches occurred as bands oriented
parallel to striations on the slip surface (similar to the “melt welts” described by Brown and
Fialko [2012]*°) and are more numerous in samples deformed at higher normal stresses. At
the highest normal stress the entire slip surface appeared to be covered with the glass-like
material.

X-ray powder diffraction analysis of wear material collected after bare surface experi-
ments showed evidence of serpentine dehydration products, olivine and enstatite (Table
F.1), in all samples tested (all of which were deformed at high enough slip velocity to cause
frictional weakening). In several ATG bare surface experiments (e.g., Runs 733, 734, and
735) magnesite was detected, but never in the LIZ experiments where carbonates were not
present in the starting material. A comparison of XRPD profiles shows a systematic in-
crease in the peak heights of olivine with increasing applied normal stress (Figure F.8), sug-
gesting a relative increase in the mass of the reaction products. None of the bare surface

samples showed XRPD evidence for talc.
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Figure F.7: Microstructures of antigorite bare-surfaces. (a) Photomicrograph showing dark stria-
tions on slip surface at low normal stress; Run 727, 0,, = 8.8 MPa. (b) SEM micrograph of dark
band from sample from Run 727 showing melt-like tendrils and bulbous features on the slip sur-
face. (c) Photomicrograph showing glass-like band on cut section of the slip surface at higher normal
stress; Run 733, 0,, = 19.5 MPa. (d) Magnified region from F.6c showing glassy luster and trans-
parent nature of the material. (€) SEM micrograph from polished glassy surface shown in (d). (f) En-
largement from 7e showing gray ultra-fine grained matrix with bands of nm-scale iron-rich minerals
that are too fine-grained to resolve.
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E.3.5.1 Gouge experiments

In all gouge samples some degree of strain localization and grain-size reduction was ob-
served. The ATG gouge sample tested at V' = 0.1 m/s was poorly consolidated after de-
formation and developed a 400 — 500 pum-thick zone of reduced grain size where strain
was apparently localized (Figure F.9a). The localized zone was composed of a matrix of

50 — 500 nm rounded antigorite grains (Figure F.9b). This sample did not develop a well-
defined slip surface or slickenlines.

ATG and LIZ gouge samples deformed at V' > 1 m/s developed 100 — 200 pum thick
fine-grained localized zones consisting of an ultra-fine-grained matrix hosting clasts ranging
from < 1to 20 um in diameter (Figures F.9c and F.ge). The fine-grained zones tend to be
welded in all samples (e.g., Figures F.od and F.of). In some cases, microstructures indicate
that the welded zones were brecciated after welding. The inspection of the localized zone
from Run 746 (LIZ) illustrates clasts that are welded aggregates of fine-grained material
(Figure F.of), suggesting a welded zone formed first then became brecciated and commin-
uted. In instances where the localized slip surface was exposed during sample recovery, we
observed dark glassy striated patches (Figure F.10g). These thin zones appeared translucent
and became more abundant in samples deformed at higher normal stresses. An SEM im-
age shows the cross-sectional profile of the dark glassy material (Figure F.1oh). At higher
normal stresses and at the highest slip velocities (Run 834) we observed whitish (e.g., Figure
F.10g) and brownish streaks along the slip surface in addition to the dark glassy material.
Brownish streaks are composed of micron- to submicron-in size granular clasts; spot XRPD
analysis of one of these streaks revealed strong peaks for olivine and weak peaks for enstatite

(Run 834, Table F.1). A cross-section through a whitish streak in an ATG sample (Run 823,
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Figure F.10i and F.10j) shows an ultra-fine-grained matrix with amoeboid-shaped vesicles.
The vesicles are dispersed in a glass-like matrix probably resulting from quenching of the
friction melt. The vesicles become smaller with increasing distance from the slip surface;
next to the latter they become interconnected defining a shear-parallel fabric (Figure F.10j).
Similar glass-like material and degassing related textures were observed in LIZ samples. Fig-
ures F.1ok and F.10l show an ultra- fine-grained zone that appears to have been injected into
the brecciated zone. In this sample we note a high density of vesicles near the top of this
apparently once-molten layer.

In both LIZ and ATG gouge samples strain localized within the gouge layer near the in-
terface between the gouge holder and the stationary side of the shearing rotary disk (dashed
line, Figure F.1e). In all ATG samples deformed at V' > 1 m/s we observed little textural
evidence for deformation outside of the 100 — 200 pm thick localized zone. This is also
true of LIZ gouge samples at lower normal stresses (<10 MPa), however, in samples from
Runs 825 and 826 deformed at a normal stress of 18 and 19 MPa, respectively, we observed
localized zones containing ultra-fine-grained (glassy) material adjacent to both the station-
ary and rotary-side of the sheared layer. Further microstructural inspection of these samples
revealed a varying degree of deformation throughout the shearing gouge layer.

X-ray powder diffraction revealed a general trend that gouge samples that underwent
frictional weakening showed evidence for serpentine dehydration products (Table F.1).

In contrast, Run 835 (which was conducted at 0.1 m/s and showed no frictional weaken-
ing) did not show XRPD peaks for olivine or enstatite (Table F.1). Two samples did not
fit this trend. One LIZ sample (Run 747) did not demonstrate frictional weakening, yet

contained trace amounts of olivine and enstatite; we suspect these phases were inherited
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Figure F.9: Microstructures of antigorite and lizardite gouges, all BSE-SEM micrographs with ex-
ception of Fig. (g). The SEM micrographs show cross-sectional profiles; samples are oriented such
that top surface was adjacent to non-rotary disk, however in all cases the section of the gouge zone
closest to the stationary side was not recovered. (a) Run 835 (ATG) deformed at 0.1 m/s; orientation
of shearing is not known, o,, = 13.3 MPa. (b) Enlargement of granular fine-grained material within
localized zone from 9a (black arrow). (c) Run 821 (ATG) deformed at 1 m/s; sample is cut perpendic-
ular to shearing direction, o,, = 11.8 MPa. (d) Enlargement of ultra fine-grained material in (c)
(black frame box). (e) Run 746 (L1Z) deformed at 1 m/s; sample is cut parallel to shearing direction,
0, = 8.5 MPa. (f) Enlargement of brecciated clast within localized zone in (e).
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Figure F.10: (g) Photomicrograph of slip surface from Run 823 deformed at 1 m/s showing vitre-
ous and striated dark material and whitish streaks; rotary direction is indicated with black arrow,
0, = 22.4MPa. (h) Enlargement of dark glassy material shown in (g); sample is cut perpendicular
to shearing direction. (i) Enlargement of whitish streak in (g) showing vesicular ultra-fine-grained
material along the slip surface; sample is cut along black dashed line. (j) Enlargement of (i) show-
ingirregular-shaped vesicles. (k) Run 826 deformed at 1 m/s showing an ultra-fine-grained zone
“flowing” into the brecciated zone; sample is cut parallel to shearing direction, o,, = 19 MPa. (l)
Enlargement of (k) (dashed box) showing flow structure.
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from the starting material. One ATG sample (Run 820) demonstrated frictional weaken-
ing, yet contained no XRPD evidence for dehydration; since this sample was deformed at
4 MPa we suspect the amount of reaction products may have been too small to resolve with

XRPD. Diffraction peaks for talc were not found in any samples.

F.4 Discussion

Our experiments show that serpentine bare surfaces and gouge undergo frictional weaken-
ing during high-velocity shear experiments. However, friction evolves differently in each
material with changes in slip displacement, velocity and normal stress. These differences
can be reconciled by exploring the underlying processes that promote dynamic weakening:
strain localization and shear heating. In the following discussion we first compare our bare
surface data to previous high-velocity friction studies on similar materials. This comparison
allows us to develop a conceptual model to better understand experimental observations on
serpentine bare surfaces. We then use 1-D thermal models to explore how measured friction
values are affected by frictional heating at the surface-scale (mm) and asperity-scale (um) in

both bare-surface and gouge experiments.
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Figure F.11: Interpretation of friction hysteresis in high speed experiments on serpentinites. (a)
Comparison of ATG bare-surface friction data from this study with results from short displacement
experiments from Kohli et al. [2011] ?° (see text for discussion). Parentheses indicate the Run num-
ber. (b) Schematic model illustrating friction hysteresis during an earthquake slip event (EQ) for
serpentinite bare-surfaces (solid lines) and dry gouge (dashed lines) (see text for discussion). (c)
Predicted friction profile (black curve) using flash weakening model **¢ for bare surface sample
(Run 735); equation (F.1) is used to model surface temperature increase during slip, which is then
inserted into the formula for V,,, from Rice[2006] 186 Model shows that the deceleration friction
path will be offset to lower velocities and the measured friction data (green trace) only partially fits
the model during deceleration. (d) Predicted friction profile (black curve) during acceleration using
flash weakening model *®° for gouge sample (Run 834); the temperature of the deforming zone is

assumed constant.

405



1 T T T T T
. a Acceleration Antigorite
0.9 N
Bare Surfaces

0.8} . -
E 2
507} < :
= 0.6 i
D
=
Q05 i
=
.2 0.4 | | == 4.9 MPa (734) A
g == 4.9 MPa (735)
B 03 @ My GecFig 6 i
= Atg Bare Surface Steady State,

0.2 5MPa, <0.05m disp. Kohli et al. [2011] .

: Atg Bare Surface Deceleration,
5MPa, <0.05m disp. Kohli et al. [2011]
0.1 O Atg Bare Surface Acceleration, T
0 5MPa, <0.05m disp. Kohli et al. [2011]
L L L L L
10° 107 10! 10° 10
Velocity (m/s)
Overstep train localizati
. o e e i strain localization
\sl;p initiates Velocity | s oeahoation >

EQ

Friction Coefficient

Velocity

Log Velocity
1 1 .
09/ C ATG Bare Surface (735) 0.9 d ATG Gouge (834)
E 0.8 é 0.8
;g 0.7 § 0.7
£ 0.6 £ 0.6
(3 0.5 Deviation from 8 0.5
,E 0.4 flash curve E 0.4
S b1
203 =03
=02 0.2
0.1| === Flash Model 0.1 === Flash Model
0 0
10 10 10° 10' 10 10° 10'
Velocity (m/s) Velocity (m/s)

Figure F.11: (continued)
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F.4.1  Displacement- and velocity-dependent hysteresis of friction on bare surfaces

Values of macroscopic friction for a given sliding surface are a manifestation of frictional
heating and temperature evolution on both the macro- (slip-surface) scale and the asperity-
scale (pum). These relationships are qualitatively demonstrated via variations in hysteresis
loops between short and long displacement experiments shown in Figure F.11a. In Figure
F.1ra we plot results from our ATG bare-surface experiments together with results of 5o ex-
periments from Kobli et al. [2011]" on ATG bare surfaces conducted at a normal stress of
5 MPa, a maximum velocity of 0.3 m/s, and a maximum acceleration of 10 m/s?. This data
set can be subdivided into two friction paths shown schematically in Figure F.ub. Path 1is
modeled after the friction data from small displacement experiments (<o.0s m) from Kohli

12§

et al. [2011]™ shown in Figure F.ita. Kobli et al. [2011]™ concluded that weakening oc-
curred via flash heating of asperities above a critical weakening velocity (V,,) of ~o.1 m/s for
samples deformed at room temperature, based on the coincidence of the steady-state fric-
tion data (grey diamonds in Figure F.11a) with the deceleration-path data, the observation
of talc in XRPD analyses from the wear material of high velocity samples, and the general
agreement between the data and theoretical descriptions for flash weakening®*°.

Flash weakening theory predicts that values of friction should decrease when the asperity
velocity exceeds the weakening velocity V,,™*°. However in all experiments in which the
slip rate was accelerated above V,, friction remained transiently high before decreasing to
steady-state values (black ovals, Figure F.11a) resulting in a modest hysteresis. This velocity
overstepping represents a deviation from theoretical predictions and is characterized using

the difference between the fall-off velocity (V) and the critical weakening velocity (V,,),

defining an overstep velocity (V; — V,,) (Figure F.ub). Following Kohli et al. [2011]™ and
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Figure F.12: Results from 1-D thermal modeling with projected antigorite phase diagram (see text
details). (a) Sliding surface temperatures in four ATG bare-surface experiments; the applied normal
stress and run number are noted by the corresponding temperature profile. (b) Asperity contact
temperatures for bare surface samples modeled in (a); line colors correspond with (a). (c) Shear zone
temperatures in five ATG gouge experiments assuming a 150 pum-wide shear zones. (d) Asperity
contact temperatures within deforming gouge; line colors correspond with (c).

Goldsby and Tullis [2011]%, we posit that the overstepping results from the displacement
required for strain localization and subsequent shear heating to occur within the thin gouge
layer generated by wear between the bare surfaces. The displacement that occurs during
acceleration between V and V,, is defined as an overstep displacement (9) following Kohli
et al. [2011]™ (labeled §,, therein). All § values are reported in Table F.1 assuming V,, =
0.1 m/s. In this study d was ~o0.4 mm for single step velocity-step tests and ranged from

0.5 to 1 mm in multiple-velocity step tests, consistent with o values observed by Kohli et al.
125

[2011]

Path 2 is defined by experiments conducted in this study (green and blue traces in Fig-
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ure F.11a) that have higher total displacement, peak velocities and normal stresses than the
Kobli et al. [2011]"™ experiments. In our experiments the friction during acceleration is sim-
ilar to that observed in the short displacement (Path 1) experiments of Kohli et al. [2011]";
the somewhat higher value for V; in the Path 2 experiments arises from greater accelera-
tion (50 m/s* compared to 10 m/s?). Nonetheless, d remains approximately the same (Table
F.1), indicating that the initial weakening results from flash heating in both suites of exper-
iments. At peak velocities, the Path 2 steady-state friction values are lower than the Path 1
values, but are consistent with the overall weakening trend and the results of Hirose and

106

Bystricky [2007]*°° on serpentine bare surfaces slid at 1 m/s. During deceleration frictional
recovery is delayed to lower velocities than observed in Path 1 experiments, resulting in a
larger hysteresis loop (Figure F.uib). We suggest that the difference between Path 1 and Path
2 experiments is in part due to the sensitive dependence of V,,, on the fault surface tempera-
ture (T p), where Vi, o< (T — Tsuryp)?; if the difference between the surface temperature
and the weakening temperature (75,) is reduced by a factor of two, a typical value seen in
our thermal models, then V,, decreases by a factor of 4™°. The higher displacements, slip
rates and normal stresses used in Path 2 experiments generate higher surface temperatures,
leading to lower values of V,, during deceleration than seen in Path 1 experiments. This is
consistent with the observation that in Run 734 performed at 4.9 MPa normal stress, the
recovery of the friction coefhicient occurs at a higher velocity than in Run 735 performed

at 14.9 MPa (Figure F.11a). Small patches of melt produced on the slip surface may further
delay Path 2 recovery. Conversely, in Path 1 experiments there is not enough time for the

surface temperature to significantly increase, thus V,, remains constant, resulting in rapid

friction recovery at velocities higher than in Path 2 experiments. In the following section we
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use 1-D thermal modeling to further explore this hypothesis.

F.4.2  1-D Thermal Modeling: Bare Surfaces

To quantitatively explore differences in temperature evolution between the slip surface
and asperity contacts in bare surface experiments we employ 1-D thermal models. These
models do not consider the latent heat of reaction; nonetheless they allow for a first-order
exploration of the processes governing dynamic weakening and frictional recovery. For the
bare surface experiments we calculate the surface temperature using the following model

(see Appendix F.9 for derivation)

d', (F.1)

tr(tV (¢ 1
1 surf 1 0 / T( ) ( )
o pc Arun(t — )

where T} is the initial temperature (21 °C), 7(#') is time dependent shear stress, V' (¢') is
time dependent velocity, pc is the effective heat capacity per unit volume, and oy, is the
thermal diffusivity. The heat capacity and thermal diftusivity for antigorite are 2700 k] (K

257! respectively™. For a given experiment the integral is evaluated

m?®)~! and 0.90 mm
numerically using measured values for 7 and V. In Figure F.12a we plot T, ¢ for three sin-
gle velocity-step tests and one multiple velocity-step test together with a projection of the
MgO-SiO2-H5O phase diagram ™+ and the wet solidus for ultramafic rocks** (see discus-
sion below). Figure F.12a shows that peak surface temperatures increase with increasing
normal stress from ~200 °Cat § MPa to > 1600 °C at 97 MPa which is generally consis-
tent with the microstructural observation of glassy material on samples deformed at the

highest normal stresses. However, recall that olivine and enstatite were observed in the wear

material in all bare-surface experiments (Table F.1), even those at the lowest normal stress
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(e.g., Run 734). The presence of these dehydration products is inconsistent with the 1-D
thermal model for the surface temperature. To reconcile this observation with the thermal
model, we consider the temperature evolution at the asperity contacts (1},) with the fol-

lowing flash-heating model (see Appendix F.9)

1 Vd 1/2
Tasp = Tsurf + L ( ) ) (FZ)

PC \TQp

where T, is the contact shear stress and d is the contact diameter. Here we have assumed
that a contact ceases to exist after it has slipped a distance equal to the contact diameter, and

12§

thus the contact lifetime is equal to d/ V. Following Kobli et al. [2011]"* T, is approximated
as 3 GPa (based on indentation hardness measurements® and plasticity data for antig-
orite’®) and d is estimated to be 5 um (based on the critical slip distance observed during
velocity changes at low slip velocities on identical samples of similar roughness'”*). Figure
F.i2b shows that T, ), in all experiments quickly increased above antigorite thermal stability
over slip displacements < 1 mm. The total displacements at which the onset of weaken-
ing was observed (stars in Figure F.12b) is coincident with predicted antigorite dehydration
reactions and generally consistent with the flash weakening temperature inferred by Kohli
et al. [2011]™ (~600 °C). Recall that  is the displacement that occurs during accelera-
tion between V; and V,,, where V,,, is 0.1 m/s. So the total displacement prior to weakening
is simply d plus the slip that occurs from the onset of acceleration to 0.1 m/s which is on
the order of 200 to 300 pum. Furthermore, using experimental parameters from Kohli et

al. [2011]™, equation (F.2) predicts temperatures consistent with their observation of talc

in the wear material. In contrast, our experiments have over an order of magnitude larger

velocity, which promotes asperity temperatures significantly above the talc stability field,
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into the olivine and enstatite field, and eventually above the wet solidus, consistent with the
observation of olivine and enstatite in the wear material and the glass-like textures and ma-
terials on the slip surface (e.g., Figure F.7b). The modeled asperity temperature is only valid
before the onset of weakening, since we have neglected changes to the contact shear stress
and possible latent heat effects that accompany the onset of weakening.

These models also suggest that flash heating is likely causing the initial weakening ob-
served in Path 2 experiments, similar to the Path 1 (Figure F.12b); moreover, the fact that
both samples from Runs 734 and 735 (performed at normal stresses of 4.9 MPa and 14.9 MPa,
respectively), weaken at about the same slip rate of 0.1 m/s (Figure F.6a), suggest that the
initial weakening is independent of normal stress, consistent with the flash heating mech-

anism ™

. However, with increasing displacement/deformation time the 7, ¢ increases at
a rate dependent on the shear stress and velocity. For high enough slip and velocity, weak-
ening due to flash heating will be associated with asperity melting, which will lead to the
generation of melt patches with increasing power dissipation and eventually lead to bulk
melting of the entire fault surface***°*. A first order fit of the friction data from Run 735

:| 186

(ATG) with the flash weakening model given in Rice [2006]"°, such that T, is allowed
to increase using equation F.1 (Figure F.1ac), demonstrates that an increase in surface tem-
perature alone cannot explain the delayed recovery during deceleration. We therefore con-

clude that the delayed frictional recovery shown in Path 2 is in part a manifestation of this

transition from flash weakening to bulk melting.
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F.4.3 1-D Thermal Modeling: Gouge

To quantitatively explore differences in temperature evolution between a uniformly shear-
ing gouge zone and asperity contacts between clasts within the zone we modify the 1-D
thermal modeling to account for the thickness of the deforming zone. Similar to bare sur-
face models we do not consider the latent heat of reaction; nonetheless these models allow
for a first-order exploration of the processes governing dynamic weakening in gouge. To

calculate the temperature within the gouge samples (T;4,4) we set y = 0 in equation (F.9)

to find

LTtV (t) 1
Toone = Ti +/ dt’, F.
goug 0 0 pe o \/WQ T 204th(t _ t/) ( 3)

where W is the half width of the deforming zone. Ty, is the maximum temperature in
the deforming zone (at y = 0), where shearing is most intense; repeating the analysis using
the average temperature in the deforming zone did not significantly alter our results. Fig-
ure F.12c shows the predicted temperatures for three single velocity-step experiments with
a peak velocity of 1 m/s (Runs 820, 745 and 823), one single velocity-step experiment with

a peak velocity of 0.1 m/s (Run 835) and one multiple velocity-step experiment with a peak
velocity of 4 m/s (Run 824b). We use a deforming zone thickness of 150 pum (i.e., W = 75
pum), based on our microstructural observations (see Figures F.9 and F.10). Repeating the
analysis for thicknesses ranging from so to soo jum resulted in negligible differences (~25
°C). The model predicts that gouge temperatures may become high enough to dehydrate
serpentine for all experiments at o, > 5 MPa, which is consistent with XRPD data, except
for Run 835 that did not contain dehydration products. Additionally, the model predicts

temperatures high enough to produce melt in Run 823, consistent with the melt textures
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along the slip surface. However, if dynamic weakening occurs for 7" > 600 °C, the model is
inconsistent with the observed total weakening distances in the all experiments. For exam-
ple, Runs 820 and 745 dynamically weakened after 200 mm and s mm of slip respectively
whereas the model predicts that the temperatures in both runs should be ~200 °C for the
given slip, far below the critical temperature.

To reconcile this inconsistency we explore the role of flash heating within the gouge zone
using the relationship suggested by Beeler et al. [2008]*, which accounts for the width of

the deforming zone. In this case, the flash-heating model (F.11) is modified to

. (V(g/w)d\"*
Tasp = Tgoug + T_ (M) s (F4)

pc Ty,

where g is the grain size and w is the thickness of the deforming gouge layer. Again, we as-
sume the deforming gouge layer thickness is ~150 pm (ie., w = 2W = 150 pm) based
on the width of ultra-fine grained zones in our experiments. The initial grain size (g) within
this deforming zone is less obvious. The grain size prior to deformation (i.c., the grain size
of the starting material) will undoubtedly be somewhat comminuted during initial slip as
strain becomes more concentrated into the ~150 f1m shear zone. As demonstrated by Di
Toro et al. [2013] %, once strain becomes highly localized very little additional deformation
occurs outside the localized zone, thus the material adjacent to the localized zone should
preserve the grain size at the onset of localization. In our experiments the grain size of the
material adjacent to the ultra-fine grained zones was ~15 jum suggesting a g /w ratio of ~o.1.
In equation (F.4) we assume (g/w) = 0.1 while all other physical constants remain the
same as previously assumed in equation (F.2). Figure F.12d shows that the asperity-scale

temperature increase varies dramatically with varying normal stress and velocity, and that
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the magnitude of the temperature rise for a given displacement is significantly lower than
in equivalent bare- surface experiments (Figure F.12b). Similar to bare surface experiments,
there is a strong correlation between the onset of dynamic weakening (stars, Figure F.12b)
and model temperatures > 600 °C, suggesting that dynamic weakening is caused by flash
heating in gouge. However the dynamic weakening in gouge occurs after larger displace-
ments and at higher velocities than bare surfaces because strain is more distributed. Re-
markably, the gouge flash heating model predicts that Run 824b and 823 should have sim-
ilar asperity-scale temperatures with slip despite having different imposed normal stresses
and velocity profiles, consistent with the total weakening distances observed in both runs
(Figure F.12d). Our conclusion that dynamic weakening in the gouge is promoted by flash
heating is also supported by comparison of the friction data (during acceleration) with the
model illustrated in Figure F.12d.

Flash heating has also been observed in HVF experiments on carbonate gouge. In exper-
iments conducted at < 2 MPa, De Paola et al. [2011]%° and more recently Mirchell et al.
[2013]*** showed CO4 degassing after only a few hundred microns of slip suggesting that

flash heating was occurring. In higher normal-stress experiments (8.5 MPa), Smith et al.

211

[2013]*" demonstrate that dynamic weakening in carbonate gouge initiates at sliding dis-

placements of (100 — 150 mm), similar to the behavior seen in our experiments.

The application of phase equilibria to high-velocity frictional processes remains a chal-
lenge due to short reaction times, high energy input rates and dynamic nature of the physi-
cal parameters under which reactions occur. Based on the identification of crystalline reac-
tion products in wear material, in conjunction with the thermal models, we conclude that

reaction kinetics must be rapid enough for phase transformations to occur within the life-
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time of an asperity (few milliseconds). In the short-displacement experiments of Kohli et al.
[2011] ™, the consistency between the modeled asperity temperatures, XRPD observation
of talc and the predicted reaction temperature suggests near-equilibrium phase relation-
ships at pressures similar to the asperity normal stress are applicable in HVF systems. For
material not in contact at asperities, the reaction pressure will be set by the pore fluid pres-
sure (which is lower than the asperity pressure), thus generally reducing the reaction tem-
perature in these zones. Following this logic, in Figure F.12 we projected phase boundaries
through ambient pressures for T,y and Ty,y4 plots and through 5 — 6 GPa for asper-
ity temperature plots (based on our assumption that the contact shear stress is 3 GPa and
friction is ~0.6 prior to weakening). Nonetheless, we acknowledge that considerable un-
certainty remains regarding the magnitude, spatiotemporal variability of pressure at the
asperity scale.

Other textural observations suggest the application of equilibrium phase boundaries is
more complicated in HVF systems. Recall that in antigorite bare surface and gouge exper-
iments we observed melt-like textures directly on the slip surfaces (e.g., Figures F.7b, F.7d
and F.10j). These textures suggest the reaction Atg —melt + HyO, which is not consis-
tent with equilibrium thermodynamics. Thus, rapid heating apparently promotes reaction

overstepping.

F.4.4 Comparisons of gouge and bare surfaces at higher normal stress

With increasing normal stress the high-velocity friction behavior of gouge approaches that
of bare surfaces. This trend is demonstrated by both ¢ and /4,55 values. As discussed above,

values of ¢ characterize the onset of dynamic weakening. In gouge, values of § decrease with
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increasing normal stress while values for bare surfaces remain approximately constant (e.g.,
Figure F.12d and Table F.1). Similarly, values of 1,45 for gouge decrease with increasing nor-
mal stress while values for bare surfaces remain approximately constant (e.g., Figure F.4a).
A linear approximation to the ji,,.5 data for gouge predicts that both gouge and bare sur-
faces would have the same values of fi,,; at normal stresses ~60 MPa or larger (as shown by
dashed line in Figure F.4a) and data for both would be nominally independent of normal
stress. A normal stress of 6o MPa corresponds to a depth of ~5 km along an Andersonian
normal fault at hydrostatic conditions™. It remains unclear if bare-surface samples would
actually strengthen if wear material was allowed to accumulate during slip; in our experi-
mental assembly, wear products are flung out of the assembly, leaving a minimal thickness

of wear debris.

F.4.5 Geophysical Implications

The results of this study have potential implication for earthquakes in geologic locations

that contain serpentine, such as within oceanic transform faults”, oceanic detachment

140 151

faults™° and some locations along the San Andreas fault™'. However, all natural faults
contain a layer of gouge material produced during a seismic rupture propagation even in
initially cohesive fault rocks'”*. Thus, some of the first-order observations found in this
study may be applicable for all nominally dry faults as those reproduced in our experiments
(room-humidity).

For serpentine-rich fault zones at low normal stresses (<60 MPa) under nominally dry

conditions, dynamic frictional-weakening will be delayed to longer slip by the presence of

unconsolidated material possibly resulting in smaller slips during earthquakes. For rup-
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tures that propagate into shallow unconsolidated fault-patches, less seismic energy will be
emitted due to smaller static- and dynamic-stress drops. These interpretations complement
hypotheses derived from slow velocity experiments on gouge, which have been interpreted
to promote the lack of shallow seismicity in some fault zones™*. For large slip events (>5 m)
gouge likely has no ability to subdue radiated seismic energy; previous studies have demon-
strated for long displacements (5 — 25 m) under room-humidity conditions, friction values
will decay to ~o.1 for phyllosilicate-rich gouges™*'*?. We suspect these friction trends are
also applicable in highly permeable fluid-saturated faults, with the added complication that
water cools the asperity contacts rendering the flash-heating weakening mechanism less ef-
ficient than in room-humidity*”. In water saturated faults with low permeability, thermal
pressurization may occur adding further complication™. In such cases it is not clear how
the presence of gouge may affect dynamic weakening during seismic slip; no machine to
date can simulate these conditions. At normal stresses > 60 MPa the presence of uncon-
solidated serpentine within the fault may have no direct effect on the onset of dynamic

weakening or steady state friction values.

F.s Conclusions

Our work finds significant frictional differences between the serpentinite bare surfaces and
gouge at low normal stresses (<22 MPa). We demonstrate that the frictional behavior is
strongly normal stress dependent in gouge while relatively normal stress invariant in bare
surfaces. Extrapolation of our data suggests that the behavior of antigorite gouge will ap-
proach that of bare surfaces at normal stresses >60 MPa (~s km depth). We thus infer the

presence of gouge will alter the weakening properties of shallow sections of serpentine-rich
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faults, but have little effect at greater depths. Using 1-D thermal modeling, X-ray diffrac-
tion and microstructural analysis, we constrain the effects of velocity, normal stress, shear
heating, strain localization and dehydration reactions on frictional weakening. We show
that the evolution of friction for a given slip event on either bare surfaces or gouge zones is
dependent on the evolution of temperature at both the asperity-scale and surface-scale and
we show that both scales need to be modeled in order to reconcile experimental data. We
conclude that flash heating is the primary process causing initial weakening in bare surfaces.
Flash heating also occurs in gouge, however because strain is more distributed, dynamic
weakening occurs at higher velocities and after larger displacements than in bare surfaces
experiments. We find values of friction in LIZ gouge have longer weakening distances than
ATG gouge but generally have similar dynamic weakening trends. Finally, we observe slip-
generated dehydration products and melt textures in both bare-surface and gouge samples.
These mineral and textural signatures likely form in natural serpentine-rich faults, the pres-

ence of which would indicate seismic slip.

F.6  Appendix A: Smoothing data

High frequency noise was removed from all data using a fast-fourier-transform (FFT)
smoothing filter. Figure F.13 shows filtered or smoothed friction data from three represen-

tative experiments (black, green and blue lines) and corresponding unsmoothed (raw) data

(gray lines).
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Figure F.13: Results from high-frequency noise filtering in three characteristic friction experiments.
Parentheses indicate experimental Run number.

F.7  Appendix B: X-ray powder diffraction methods

Twenty-six X-ray powder diffraction analyses were conducted at the Geosciences Depart-
ment at the University of Padua used a Panalytical 6-6 diffractometer (Cu radiation) equipped
with a long, fine-focus Cu X-ray tube (operating at 40kV and 40mA), sample spinner, Ni
filter and a solid-state detector (X’Celerator). The system optics consist of a fixed 1/2° diver-
gent slit and 1° antiscatter slit on the incident beam path and soller slits (0.04 rad) on inci-
dent and diffracted beam paths. The powders were mounted on a 32-mm (internal diame-
ter) circular sample holder. Scans were performed over the 26 range 3 — 80° with a virtual
step size of 0.0r7° in 26 and a counting time of 100 s/step. Phase identification and semi-
quantitative analysis were performed using the software package X’ Pert HighScore Plus;
the phase identification was confirmed by comparison with the reference pattern database
Panalytical-ICSD (Inorganic Crystal Structure Database). One additional XRPD analysis
was conducted at Brown University on sample 834 using a Bruker D-8 Advance diffrac-

tometer with DaVinci system, a Cu X-ray tube operating at 40 kV and 40 mA and a Bruker
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Vantec-500 (Xe-COs gas filled) detector with a 13.5 cm diameter window set at 20 cm from
the goniometer center and Ni filter. The scans were performed over the 26 range 25 — 80°
with a virtual step size of 0.25° in 26/ and a counting time of 6os /step. The phase identifi-
cation was performed using the software package Diffrac.Eva by Bruker and confirmed by

comparison with the ICDD (The International Centre for Diffraction Data).

F.8 Appendix C: Area correction for single velocity-step bare-surface experiments

In the suite of 1 m/s experiments on ATG bare surfaces (Runs 736a to 736h), one sample
was used for eight consecutive slip cycles, with 1 m of slip per cycle. The applied normal
force was increased after each cycle from 6.2 kN during the first cycle up to 53 kN during
the last cycle. This force correlates with an increase in nominal normal stress from ~s to
40 MPa assuming the initial nominal area of the slip surface (~12.5 cm?) remained con-
stant. However, during each slip cycle the area progressively decreased because the sample
on the stationary side became progressively wedge shaped due to wear during sliding (Fig-
ure F.14a). Wear of the sample on the opposing rotary side resulted in significant loss of
material normal to the fault, but the surface area remained approximately constant. The
final slip surface area (dashed orange region in Figure F.14c) was determined via imaging
software to be 5.38 cm?, indicating that the actual normal stress was 96.6 MPa during the

last cycle.
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Figure F.14: Photographs of deformed bare-surface sample (Run 736) after eight consecutive de-
formation cycles: (a) the stationary surface and (b) rotary surface. (c) Sequential mechanical erosion
reduced the surface area of the non-rotary side by ~57%; yellow lines indicate initial surface area
and orange dashed lines outline final slip surface area. (d) Mass of wear material collected after each
deformation cycle with the corresponding applied normal force and axial shortening for the given
slip cycle. (e) Cross-sectional diagram modeling the final sample shape (green) and material lost to
erosion (white). The initial shape is indicated with bold black lines (see text for description of model).
(f) Cumulative collected wear (blue diamonds) and the estimated total mass of wear material (black
line), assuming 60% of wear material was captured. The modeled volume of wear material (purple
circles) was fit to the estimated wear and the corresponding surface area parameter (lambda, green
triangles). (g) Modeled surface area after each deformation cycle (Runs 736a to 736h) and the calcu-
lated normal stress (applied normal force/surface area). The measured initial and final surface areas
are indicated with black stars.
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We constructed a simple model to estimate the area of the slip surface after each slip cy-
cle. The model is constrained by the final slip surface outline in plane view, the initial and
final area of the slip surface, the mass of wear material collected after each slip cycle and
the axial shortening. The axial shortening was monitored with a linear variable differential
transformer (LVDT) and the wear material was collected in a foil tray located under the
sample. In Figure F.14d the cumulative mass of collected wear material and cumulative ax-
ial shortening are plotted for all eight slip cycles; both data sets show a similar non-linear
increase with increasing normal force. The final shape of the slip surface is modeled as a
wedge-shaped quadrilateral (in cross-section) on one side (Figure F.14¢) and as a migrating
flat surface on the other side (Figure F.14e). The effective annular width of the slip surface
(y) is calculated from the final measured surface area (Figure F.14c). The thickness of the
stationary sample (Z1) remained approximately constant, while the thickness of the rotary
sample (Z2) decreased in accord with axial shortening. The evolution of the cross-sectional
area of the top sample is calculated using mass balance and the change in the annular width
(A); values of \ are estimated by assuming that the eroded angle remains constant. The to-
tal volume of wear calculated from this model is ~6.5 cm® (purple circle in Figure F.14f).
The total volume of collected wear (collected mass/density of antigorite) was somewhat
less than the value determined by mass balance (blue diamond in Figure F.14f), indicat-
ing that ~60% of the total wear material was recovered. We ignore changes in mass due to
frictional-heating-induced metamorphism. The black line in Figure Cif shows cumulative
wear by assuming that 60% of the total wear material was collected after each slip pulse.
This assumption is reasonable because the collection tray did not capture all particles ex-

pelled from the sample. We then use the cumulative collected wear in conjunction with the
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LVDT displacement to calculate the value of A that is consistent with the estimated volume
of wear material produced after each slip cycle (green triangles in Figure F.14f). Finally, we
use A to calculate the surface area. The modeled surface area values were used to correct the

recorded normal stress and shear stress values for each slip cycle (Figure F.14g)

F.9 Appendix D: Thermal Model

To model the temperature evolution within the deforming zone we use the one- dimen-
sional heat equation
: 2

L e am%, (Fs)
where t is the time since slip began, ¥ is the distance from the center of the deforming zone,
7 is the shear stress, is the strain rate, oy, is the thermal diffusivity, and pc is the effective
heat capacity per unit volume. The initial conditions are T" = Ty att = 0, which models
the ambient laboratory conditions before deformation begins. For the boundary condi-
tions we choose T" — Tj as y — 00. These boundary conditions ignore the presence of the
metal gouge holder, which will have a higher thermal diffusivity than the gouge. However,
for the typical experiment durations of about one second it is likely that thermal diffusion
through the gouge holder has a small effect, justifying our choice of boundary conditions.

The frictional heating in the deforming zone is controlled by the shear stress and strain

] 186

rate. Rice [2006]"° argued that unrealistically high accelerations are required to make in-

ertial effects important within the gouge layer, and thus the shear stress should be constant

166

throughout the deforming zone. Platt et al. [2014]"°° used numerical simulations to show

that this assumption is valid for the normal stresses considered here. We assume that the
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deforming zone has a gaussian shape

. 1% y? )
= exp | — ) F.6
1= e P ( 772 (F.6)
where IV is the half-width of the deforming zone. A better approach would be to model
the physical processes driving strain localization within the gouge, but this is beyond the
scope of this paper.

For the shear stress and strain rate profiles justified in the previous paragraph we can

solve equation (F.5) using a Green’s function approach, leading to the solution

y,2> / / / /
=T+ —L )Gy -yt —t;au)dydt, (F.
0 //OO ch\/% ( 52 (y—y w)dy'dt’, (F.7)

where the Green’s function is

1 (y—y)’ >
G — /’ t —_ t/7 = - . F8
b-y ) Aoy, (t — ) b < doup(t — 1) (F8)

The integral over ' can be done exactly leading to

t TtV (t) 1 ( y? >
T ,t =T + / ex _ dt’
v:) ‘ 0 pcV2T \/I/V2 + 20y, (t — 1) P 2W?2 + day(t — t')
(F.9)

This expression was previously derived in Andrews [2002]* and was used to model thermal
pressurization during seismic shear.
To find the temperature evolution of the sliding surface for the bare surface experiments

we set the deforming zone thickness equal to zero in equation (F.9). This is equivalent to
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solving using a Green’s function for a half-space heated by a flux at the boundary, and leads

to the solution for the surface temperature

LrV 1
Tsurf:T0+/ T( )V< ) dt/. (F.IO)

0 pc A, (t — 1)

Equation (F.10) can be repurposed to calculate the asperity temperature using the typ-
ical flash heating model by setting the shear stress equal to the contact shear stress 7, the
slip velocity equal to the current value from the experiment, and the initial temperature 7T
equal to the current temperature on the sliding surface. The assumptions of constant veloc-
ity and shear stress allow us to evaluate the integral in equation (F.10) to find the maximum

asperity temperature

Tc

Tas =dgyrf + —
P ! pc(

1/2
Vd ) (F.u)

T,

where d is the contact (i.e., asperity) diameter.
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