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DG INDSCHEMES

DENNIS GAITSGORY AND NICK ROZENBLYUM

To Igor Frenkel on the occasion of his 60th birthday

ABSTRACT. We develop the notion of indscheme in the context of derived algebraic geometry,
and study the categories of quasi-coherent sheaves and ind-coherent sheaves on indschemes.
The main results concern the relation between classical and derived indschemes and the

notion of formal smoothness.
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INTRODUCTION

0.1. What is this paper about? The goal of this paper is to develop the foundations of the
theory of indschemes, especially in the context of derived algebraic geometry.

0.1.1. The first question to ask here is “why bother”? For, it is more or less clear what DG
indschemes are: functors on the category of affine DG schemes, i.e., co-prestacks in the termi-
nology of [GL:Stacks], that can be written as filtered colimits of DG schemes with transition
maps being closed embeddings.

The definition of the category of quasi-coherent sheaves on a DG indscheme X is also auto-
matic: the category QCoh(X) is defined on any co-prestack (see [GL:QCoh, Sect. 1.1] or [Lul,
Sect. 2.7]), and in particular on a DG indscheme.

Here is, however, the question, which started life as a remark in another paper, but answering
which in detail was one of the main reasons for writing the present one:

0.1.2. Consider the affine Grassmannian Grg corresponding to an algebraic group G. This is
an indscheme that figures prominently in the geometric Langlands program. We would like to
consider the category QCoh(Grg) of quasi-coherent sheaves on Grg.! However, a moment’s
reflection leads one to conclude that the expression QCoh(Grg) is ambiguous. Namely, the
affine Grassmannian itself can be understood in two, a priori different, ways.

Recall that, as a functor on the category of commutative algebras, Grg assigns to a commuta-
tive algebra A the groupoid of G-torsors over Spec(A[t]) with a trivialization over Spec(A((t))).

Now, we can first take A’s to be classical, i.e., non-derived, commutative algebras, and thus
consider Grg as a classical indscheme. Let us denote this version of Grg by “Grg. As for any
classical indscheme, we can consider the category QCoh(“'Grg).

The second possibility is to take A’s to be DG algebras, and thus consider Grg right away
as an object of derived algebraic geometry. Thus, we obtain a different version of QCoh(Grg).

There is a natural functor
(0.1) QCoh(Grg) — QCoh(“Grg),
and our initial question was whether or not it is an equivalence.

If it were not an equivalence, it would signify substantial trouble for the geometric Langlands
community: on the one hand, “Grg is a familiar object that people have dealt with for some
time now. However, it is clear that the Grg is “the right object to consider” if we ever want to
mix derived algebraic geometry into our considerations, which we inevitably do. 2

To calm the anxious reader, let us say that the functor (0.1) is an equivalence, as is guaranteed
by Theorem 9.3.4 of the present paper.

In fact, we show that Grg is “the same as” “‘Grg, in the sense that the former is obtained
from the latter by the natural procedure of turning classical schemes/indschemes/oco-stacks into

IThe other main result of this paper, also of direct relevance to geometric Langlands, is described in Sect. 0.3.1
below. It expresses the category QCoh(Grg) in terms of the corresponding category of ind-coherent sheaves on
Grg.

20ne might raise an objection to the relevance of the above question by remarking that for geometric
Langlands we mainly consider D-modules on Grg, and those only depend on the underlying classical indscheme.
However, this is not accurate, since along with D-modules, we consider their global sections as quasi-coherent
sheaves, and the latter do depend on the scheme-theoretic structure.
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derived ones, ® which preserves the operation of taking QCoh (see [GL:QCoh, Lemma 1.2.5] for
the latter statement).

0.1.3. Another result along these lines, Proposition 6.8.2, concerns formal completions.

Let X be a classical scheme and Y C X a Zariski-closed subset. Consider the formal
completion X{. By definition, as a functor on commutative algebras, X{* assigns to a ring A
the groupoid of maps Spec(A4) — X, such that their image is, set-theoretically, contained in Y.

However, again there are two ways to understand X{: as a classical indscheme, which we
then turn into a DG indscheme by the procedure mentioned above. Or, we can consider it as
a functor of DG algebras, obtaining a DG indscheme right away.

In Proposition 6.8.2 we show that, under the assumption that X is Noetherian, the above
two versions of X{ are isomorphic.

So, by and large, this paper is devoted to developing the theory in order to prove the above
and similar results.

0.2. What is done in this paper. We shall presently proceed to review the main results of
this paper (not necessarily in the order in which they appear in the paper).

We should say that none of these results is really surprising. Rather, they are all in the spirit
of “things work as they should.” *

0.2.1. DG indschemes via deformation theory. The first theorem of this paper, Theorem 5.1.1,
addresses the following issue. Let X be an oo-prestack, such that the underlying classical oo-
prestack is a classical indscheme. What are the conditions that would guarantee that X is itself
a DG indscheme?

There is a natural guess: since DG algebras can be thought of as infinitesimal deformations
of classical algebras, if we know the behavior of the functor X on the latter, its behavior on the
former should be governed by deformation theory.

By deformation theory we mean the following: if an algebra A’ is the extension of an algebra
A by a square-zero ideal J, then the groupoid of extensions of a given map z : Spec(A) — X to
a map 2’ : Spec(A’) — X is determined by the cotangent space to X at x, denoted T,X, which
is understood just as a functor on the category of J’s, i.e., on A-mod.

If we expect X to be a DG indscheme, then the functor
(0.2) T:X : A-mod — oo-Grpd

must have certain properties: for a given algebra A, as well as for algebra homomorphisms
A — B. If an abstract oo-prestack X has these properties, we shall say that X admits connective
deformation theory.

Our Theorem 5.1.1 asserts that if X is such that its underlying classical oco-prestack is a
classical indscheme, and if X admits connective deformation theory, then it is a DG indscheme.

3This procedure is the left Kan extension along the embedding Schaf — DGSch?f | followed by sheafification
in the fppf topology.

4For the duration of the paper we make the technical assumption that our DG indschemes are what one
could call “ind-quasi compact and “ind-quasi separated.”
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0.2.2. Formal smoothness. Let us recall the notion of formal smoothness for a classical scheme,
or more generally for a classical co-prestack, i.e., a functor

(0.3) X : (Sch*®)°P — 00 -Grpd.

We say that X is formally smooth if whenever S — S’ is a nilpotent embedding (i.e., a closed
embedding with a nilpotent ideal), then the restriction map

mo(X(S")) — mo(X(S5))
is surjective.

The notion of formal smoothness in the DG setting is less evident. We formulate it as follows.
Let X be an oo-prestack, i.e., just a functor

(DGSch*)°P — o0 -Grpd .
We say that it is formally smooth if:

e When we restrict X to classical affine schemes, the resulting functor as in (0.3), is
formally smooth in the classical sense.

e For an affine DG scheme S = Spec(A), the i-th homotopy group of the co-groupoid
X(S) depends only on the truncation 72~¢(A) (i.e., amap A; — As that induces an iso-
morphisms of the i-th truncations should induce an isomorphism of m;’s of X(Spec(A;))

and X(Spec(Ay)). °

It is well-known that if a classical scheme of finite type is classically formally smooth, then
it is actually smooth. This implies that it is formally smooth also when viewed as a derived
scheme. ©

The question we consider is whether the same is true for indschemes. Namely, if X is a
classical indscheme, which is classically formally smooth, and locally of finite type, is it true
that it will be formally smooth also as a DG indscheme? (By “as a DG indscheme” we mean the
procedure of turning classical co-stacks into derived ones by the procedure mentioned above.)

<

The answer turns out to be
rem 9.1.2.

‘yes”, under some additional technical hypotheses, see Theo-

Moreover, the above theorem formally implies that (under the same additional hypotheses),
every formally smooth DG indscheme is classical, i.e., is obtained by the above procedure from
a classical formally smooth indscheme.

The theorem about the affine Grassmannian mentioned above is an easy corollary of this
result.

0.2.3. Loop spaces. We don’t know whether Theorem 9.1.2 remains valid if one omits the locally
finite type hypothesis. It is quite possible that this hypothesis is essential. However, we do
propose the following conjecture:

Let Z be a classical affine scheme of finite type, which is smooth. Consider the corresponding
DG indscheme Z((t)) (see Sect. 9.2 for the definition). It is easy to see that it is formally smooth.

We conjecture that, although Z((t)) is not locally of finite type, it is classical. The evidence
for this is provided by [Dr, Theorem 6.4]. This theorem says that Z((¢)) violates the locally finite

5Tt is quite possible that a more reasonable definition in both the classical and derived contexts is when the
corresponding properties take place not “on the nose”, but after Zariski/Nisnevich/étale localization. It is likely
that the notion of formal smoothness defined as above is only sensible for co-prestacks that are “locally of finite
type”, or more generally of Tate type.

5We do not know whether the latter is true in general without the finite type hypothesis.
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type condition by factors isomorphic to the infinite-dimensional affine space, and the latter does
not affect the property of being classical.

We prove this conjecture in the special case when Z is an algebraic group G.

0.3. Quasi-coherent and ind-coherent sheaves on indschemes. With future applications
in mind, the focus of this paper is the categories IndCoh(X) and QCoh(X) of ind-coherent and
quasi-coherent on a DG indscheme X. 7

We shall now proceed to state the main result of this paper.

0.3.1. Comparison of QCoh and IndCoh on the loop group. Let us return to the situation of
the affine Grassmannian Grg, or rather, the loop group G((t)). As we now know, both of these
DG indschemes are classical.

In the study of local geometric Langlands, one considers the notion of category acted on by
the loop group G((¢)). This notion may be defined in two, a priori, different ways:

(a) As a co-action of the co-monoidal category QCoh(G((t))), where the co-monoidal structure
is given by pullback with respect to the multiplication map on G((t)).

(b) As an action of the monoidal category IndCoh(G((¢))), where the monoidal structure is
given by push-forward with respect to the same multiplication map. 8

Obviously, one would like these two notions to coincide. This leads one to believe that the
corresponding categories QCoh(G((t))) and IndCoh(G((t))) are duals of one another (duality is
understood here in the sense of [GL:DG, Sect. 2.1]).

Moreover, unless we prove something about QCoh(G((t))), it would be a rather unwieldy
object, as QCoh(X) is for a general DG indscheme X. For instance, we would not know that it
is compactly generated, etc.

0.3.2. To formulate a precise statement, we shall return to the case of the affine Grassmannian.
We claim that the functor

QCoh(Grg) — IndCoh(Grg)

given by tensoring with the dualizing sheaf wa,, € IndCoh(Grg) is an equivalence.

In fact, we prove Theorem 10.1.1 that asserts that a similarly defined functor is an equivalence
for any formally smooth DG indscheme locally of finite type (with an additional technical
hypothesis).

This theorem was originally stated and proved by J. Lurie in 2008.

We give a different proof, but it should be noted that Lurie’s original proof was much more
elegant. The reason we do not reproduce it here is that it uses some not yet documented facts
about Ext computations on indschemes.

"We the refer the reader to [GL:IndCoh] where the category IndCoh(X) on a prestack X is studied. For it to
be defined, X needs to be locally almost of finite type (see [GL:Stacks, Sect. 1.3.9] for what the latter means).

8We should remark that when talking about IndCoh(G((t))), we are leaving the realm of documented mathe-
matics, as G((¢)) is not locally of finite type. However, it is not difficult to give a definition of IndCoh “by hand”
in the particular case of G((t)), using the affine Grassmannian.
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0.3.3. QCoh and IndCoh on formal completions. Another set of results we establish concerning
QCoh and IndCoh is the following.

In order to prove Theorem 10.1.1 mentioned above, we have to analyze in detail the behavior
of the categories QCoh and IndCoh on a DG indscheme obtained as a formal completion X3
of a DG scheme X along a Zariski-closed subset Y.

We show that the category QCoh(X¢) (resp., IndCoh(X¢})) is equivalent to the localization
of QCoh(X) (resp., IndCoh(X)) with respect to QCoh(U) (resp., IndCoh(U)), where U = X -Y.

This implies some favorable properties of QCoh(Xy), e.g., that it is compactly gener-
ated (something, which is not necessarily true for an arbitrary indscheme). We also endow
QCoh(X3) with two different t-structures, one compatible with pullbacks from X, and another
compatible with push-forwards to X.

In addition, we show that the functors ¥, Z, ¥V =V that act between QCoh and IndCoh (see
[GL:IndCoh, Sects. 1.1, 1.5, 9.3 and 9.6]) are compatible for X{ and X under the push-forward
and pullback functors.

0.4. Conventions and notation. Our conventions follow closely those of [GL:IndCoh]. Let
us recall the most essential ones.

0.4.1. The ground field. Throughout the paper we will be working over a fixed ground field k.
We assume that char(k) = 0.

0.4.2. co-categories. By an co-category we always mean an (oo, 1)-category. By a slight abuse
of language we will sometimes talk about “categories” when we actually mean oo-categories.
Our usage of oo-categories is not tied to any particular model, but it is their realization as
quasi-categories that we actually have in mind, the basic reference to which is [Lu0].

By 0o -Grpd we denote the oo-category of co-groupoids, which is the same as the category 8
of spaces in the notation of [Lu0].
There is a natural functor
oo -Cat — co-Grpd
which is the right adjoint of the inclusion functor. It sends an oo-category C to its maximal

subgroupoid, which we will denote by C&Pd. Le., C&™P4 is obtained from C by discarding the
non-invertible 1-morphisms.

For an oco-category C, and z,y € C, we shall denote by Mapsg(z,y) € co-Grpd the cor-
responding mapping space. By Homg(z,y) we denote the set mo(Mapsg(z,y)), i.e., what is
denoted Homy,c(z,y) in [Lu0].

When working in a fixed co-category C, for two objects z,y € C, we shall call a point of
Mapsc(z,y) an isomorphism what is in [Lu0] is called an equivalence. L.e., a map that admits
a homotopy inverse. We reserve the word “equivalence” to mean a (homotopy) equivalence
between oo-categories.

0.4.3. Subcategories. Let ¢ : C' — C be a functor between oo-categoris.

We shall say that ¢ is 0-fully faithful, or just fully faithful if for any ¢/, ¢}, € C’, the map
(0.4) Mapsc (cy, €3) — Mapsc(6(ct), ¢(c5))
is an isomorphism (=homotopy equivalence) of co-groupoids. In this case we shall say that ¢
makes C’ into a 0-full (or just full) subcategory of C.

We also consider two weaker notions:
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We shall say that ¢ is I-fully faithful, or just faithful, if for any c/,c), € C’, the map (0.4)
is a fully faithful map of co-groupoids. Equivalently, the map (0.4) induces an injection on mg
and a bijection on the homotopy groups 7;, i > 1 on each connected component of the space
Mapsc (cf, ¢5).

ILe., 2- and higher morphisms between 1-morphisms in C’ are the same in C’ and C, up to
homotopy.

We shall say that ¢ is faithful and groupoid-full if it is faithful, and for any ¢, ¢}, € C’, the
map (0.4) is surjective on those connected components of Mapsa(¢(c)), ¢(ch)) that correspond
to isomorphisms. In other words, ¢ is faithful and groupoid-full if it is faithful and the restriction

¢grpd . C/grpd N Cgrpd
is fully faithful. In this case, we shall say that ¢ makes C’ into a I-full subcategory of C.

0.4.4. D@ categories. Our conventions regarding DG categories follow [GL:IndCoh, Sects. 0.6.4
and 0.6.5].

In particular, we denote by Vect the DG category of chain complexes of k-vector spaces.

Unless specified otherwise, we will only consider continuous functors between DG categories
(i.e., exact functors that commute with direct sums, or equivalently, with all colimits). In other
words, we will be working in the category DGCateon; in the notation of [GL:DG]. °

For a DG category C and c1,cy € C we let
Mapsg(c1,c2)

denote the corresponding object of Vect. We can regard Mapsg(ci,c2) as a not necessarily
connective spectrum and thus identify

Mapsg(cq, ce) = Q% (Mapss(c1, c2)).

For a DG category C equipped with a t-structure, we denote by C=" (resp., C=™, CS™2™)
the corresponding full subcategories. The inclusion C=" — C admits a right adjoint denoted
by 7=", and similarly, for the other categories. We let C¥ denote the heart of the t-structure,
and by H' : C — C the functor of ith cohomology with respect to our t-structure. Note that
if c € C=" (resp., C=™) then H'(c) = 0 for i > n (resp., i < m), but the converse is not true,
unless the t-structure is separated.

0.4.5. (Pre)stacks and DG schemes. Our conventions regarding (pre)stacks and DG schemes
follow [GL:Stacks]:

Let DGSch*® denote the oo-category opposite to that of connective commutative DG algebras
over k.

The category PreStk of prestacks is by definition that of all accessible!” functors
(DGSch*™)°P — 00 -Grpd.
The category Stk is a full subcategory in PreStk that consists of those functors that satisfy fppf

descent (see [GL:Stacks, Sect. 2.2]). This inclusion admits a left adjoint, denoted L, referred
to as the sheafification functor.

90ne can replace DGCatcont by (the equivalent) (oo, 1)-category of stable presentable co-categories tensored
over Vect, with colimit-preserving functors.

10Recall that an accessible functor is one which commutes with k-filtered colimits for some regular cardinal
k. This condition ensures that we can avoid set theoretic difficulties when dealing with categories which are not
small. See [Lu0] for a discussion of accessible co-categories and functors.
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We remark that for the purposes of the current paper, the fppf topology can be replaced
by the étale, Nisnevich or Zariski topology: all we need is that a non-affine (DG) scheme be
isomorphic to the colimit, taken in the category of stacks, of its affine open subschemes.

0.5. The notion of n-coconnectivity for (pre)stacks. For the reader’s convenience, in this
subsection, we briefly review the material of [GL:Stacks| related to the notion of n-connectivity.

0.5.1. Let n be a non-negative integer.

We denote by <nDGSch* the full subcategory of DGSch? that consists of affine DG schemes
S = Spec(A), such that H~*(A) = 0 for i > n. We shall refer to objects of this category as
“n-coconnective affine DG schemes.” When n = 0 we shall also use the terminology “classical
affine schemes”, and denote this category by Sch®f.

The inclusion <"DGSch*® < DGSch*® admits a right adjoint given by cohomological trun-
cation below degree —n; we denote this functor by S+ 757(S).

0.5.2. The case of prestacks. In this paper, we make extensive use of the operation of restricting
a prestack Y to the subcategory <nDGSch™®. We denote this functor by

Y > S"Y . PreStk — <"PreStk,
where <"PreStk is by definition the category of all functors (S"DGSch*®)P — o0 -Grpd.

The above restriction functor admits a (fully faithful) left adjoint, given by left Kan extension
along <"DGSch*® < DGSch*?; we denote it by

LKE (<npGsensit)ope s (DGSenaityor © " PreStk — PreStk .
The composition
Y = LKE (<0 pasens)ors (DGschayor (5"Y)
is a colocalization functor on PreStk; we denote it by Y +— TS"(H). When Y is an affine scheme

S, this coincides with what was denoted above by 7="(S).

We shall say that a prestack Y is n-coconnective if it belongs to the essential image of
LKE <1 pasena)on s (DGSchaftyor s OF equivalently if the canonical map 7="(Y) — Y is an isomor-
phism.

Thus, the functors of restriction and left Kan extension identify <"PreStk with the full
subcategory of PreStk spanned by n-coconnective prestacks.

We shall say that Y is eventually coconnective if it is n-coconnective for some n.

We shall refer to objects of <CPreStk as “classical prestacks”; we shall denote this category
also by “PreStk. By the above, the category of classical prestacks is canonically equivalent to
that of 0-coconnective prestacks.

0.5.3. The notion of n-coconnectivity for stacks. By considering fppf topology on the category
<nDGESch™® | we obtain the corresponding full subcategory

="Stk C ="PreStk.
The restriction functor PreStk — <"PreStk sends
(0.5) Stk — ="Stk,
but the left adjoint LKE <npggenattyors (Dagcnattyor does not send <SStk to Stk. The left adjoint

to the functor (0.5) is given by the composition

LKE
SnQtk < S"PreStk

(SnDGSchaffyop y (DGschaffyop
—

PreStk —= Stk,
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and is denoted LLKE(S?LDGSChaff)op%(DGSChaff)op. The functor LLKE(SnDGSChaff)opH(DGSChaff)op
is fully faithful. The composition of the functor (0.5) with LLKE(SnDGSChaff)opH(DGSChaff)op is
a colocalization functor on Stk and is denoted Y ~ Lr="(Y).

We shall say that a stack Y € Stk is n-coconnective as a stack if it belongs to the essential
image of the functor LLKE(gnDGSChaff)opH(DGSChaff)Op, or equivalently, if the canonical map

Lrsn(Y) — Y is an isomorphism.

We emphasize, however, that if Y is n-coconnective as a stack, it is not necessarily n-

coconnective as a prestack. The corresponding morphism 75" (Y) — Y becomes an isomorphism

only after applying the sheafification functor L.

Thus, the functor (0.5) and its left adjoint identify the category <"Stk with the full subcat-
egory of Stk spanned by n-coconnective stacks.

We shall say that Y is eventually coconnective as a stack if it is n-coconnective as a stack for
some 7.

We shall refer to objects of <9Stk as “classical stacks”; we shall also denote this category
by “Stk. By the above, the category of classical stacks is canonically equivalent to that of
0-coconnective stacks.

0.5.4. DG schemes. The category Stk (resp., <"Stk) contains the full subcategory DGSch
(resp., S"DGSch), see [GL:Stacks], Sect. 3.2.

The functors of restriction and LLKE(gnDGSC]ﬂaff)op%(DGSChaff)[,p send the categories DGSch
and ="DGSch to one another, thereby identifying <"DGSch with the subcategory of DGSch
that consists of n-coconnective DG schemes, i.e., those DG schemes that are n-coconnective as
stacks.

For n = 0 we shall refer to objects of S°DGSch as “classical schemes”, and denote this
category also by Sch.

Notational convention: In order to avoid unbearably long formulas, we will sometimes use the
following slightly abusive notation: if Z is an object of <"DGSch, we will use the same symbol
Z for the object of DGSch that should properly be denoted

LLKE(gn DGSChaff)opH(DGSChaff)up (Z) .

Similarly, for n’ > n, we shall write Z for the object of <n'DGSch that should properly be
denoted

Sn (LLKE(SnDGSChaff)op_)(DGSChaff)op (Z)) .

0.5.5. Convergence. An object Y of PreStk (resp., Stk) is said to be convergent if for any
S € DGSch*? | the natural map
Y(S) — LimY(r="(9))

is an isomorphism.
Equivalently, Y € PreStk (resp., Stk) is convergent if the map
Y- RKE(<°°DGSchaff)OP%(DGSchaff)OP(y|<°°DGScha“)

is an isomorphism. Here, <*DGSch®® denotes the full subcategory of DGSch® spanned by
eventually coconnective affine DG schemes.
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The full subcategory of PreStk (resp., Stk) that consists of convergent objects is denoted
convPreStk (resp., ©*VStk). The embedding

VPreStk — PreStk

admits a left adjoint, called the convergent completion, and denoted Y ~ ™Y, 11 The
restriction of this functor to Stk sends

Stk — “°"VStk,
and is the left adjoint to the embedding “°"VStk < Stk.
Tautologically, we can describe the functor of convergent completion as the composition
Y — RKE(<cc pggensttyores (DGsehat yor (4] <o Dasenatt )-
Le, the functor of right Kan extension RKE <cpggepattjors (DGgchattyor along
(<*DGSch*)°P s (DGSch?T)op
identifies the category <*°PreStk with ©™PreStk, and <*°Stk with “©"VStk.

0.5.6. Weak n-coconnectivity. For a fixed n, the composite functor

convpreGtk <y PreStk "HOn <npragik

also admits a left adjoint given by
(0.6)
Hn — COHVLKE(SnDGSChaff)Op;}(DGSChaff)()p (%Jn) =

COI’IV(

LKE (<npaschatyor s (DGSchat)yor (Un))-
Equivalently, when we identify <*°PreStk ~ ©°*VPreStk, the above functor can be described as
LKE (<npaschattyor s (<o DGSchat)or -
The composite functor
Y = CLKE(<npasenartyor s (DGscha)or (Y] <npasenatt)
is a colocalization on “°™PreStk, and we will denote it by ™=,

Similarly, the composite functor

convstk o Stk reStri_ct>i0n S”Stk

also admits a left adjoint given by
(0.7)
}Jn — COHV’LLKE(SnDGSChaff)opH(DGSchaff)op (yn) =

conv(

PLKE (<npasenattyor s (Dasenatyor (Un))-

Alternatively, when we identify <°°Stk ~ ©"VStk, the above functor can be described as

<ocL
LKE(gnDGSChaff)op(_>(<ooDGSChaff)op .

The composite functor

conv,L - .
Y= LKE(<npascnatyor s (Dasenatyor (9] <nDagens)

is a colocalization on ““®'Stk, and we will denote it by ©nv-Lrsn,

We shall say that an object Y of “*PreStk (resp., ©"VStk) is weakly n-coconnective if it
belongs to the essential image of the functor (0.6) (resp., (0.7)). Equivalently, an object as
above is weakly n-coconnective if and only if its restriction to <mDGSch* is n-coconnective
for any m > n.

1y, [GL:Stacks], this functor was denoted Y 9
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It is clear that if an object is n-coconnective, then it is weakly n-coconnective. However, the
converse is false.

0.6. Acknowledgments. We are much indebted to Jacob Lurie for many helpful discussions
(and, really, for teaching us derived algebraic geometry). We are also grateful to him for sharing
with us what appears in this paper as Theorem 10.1.1.
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us to Sect. 7.12 of [BD], and especially to Proposition 7.12.22, which is crucial for the proof.
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1. DG INDSCHEMES

When dealing with usual indschemes, the definition is straightforward: like any ”space”
in algebraic geometry, an indscheme is a presheaf on the category of affine schemes, and the
condition we require is that it should be representable by a filtered family of schemes, where
the transition maps are closed embeddings.

The same definition is reasonable in the DG setting as long as we restrict ourselves to n-
coconnective DG schemes for some n. However, when dealing with arbitrary DG indschemes,
one has to additionally require that the presheaf be convergent, see Sect. 0.5.5.

Thus, for reasons of technical convenience we define DG indschemes by requiring the existence
of a presentation as a filtered colimit at the truncated level. We will later show that a DG
indscheme defined in this way itself admit a presentation as a colimit of DG schemes.

In this section we define DG indschemes, first in the n-coconnective setting for some n, and
then in general, and study the relationship between these two notions.

As was mentioned in the introduction, the class of (DG) indschemes that we consider in this
paper is somewhat smaller than one could in principle consider in general: we will only consider
those (DG) indschemes that are ind-quasi compact and ind-quasi separated.

1.1. Definition in the n-coconnective case.

1.1.1. Let us recall the notion of closed embedding in derived algebraic geometry.

Definition 1.1.2. A map X; — X, in DGSch or S"DGSch is a closed embedding if the
corresponding map of classical schemes X1 — Xy is.

Recall that the notation “X means X|cpggepet, i-., we regard X is a functor on classical
affine schemes, and if X was a DG scheme, then “X is a classical scheme (see [GL:Stacks, Sect.
3.2.1)).

Let (DGSch)elosea (resp., (S"DGSch)ciosed) denote the 1-full subcategory of DGSch (resp.,
SnDGSch), where we restrict 1-morphisms to be closed embeddings. Let

DGSChqsep_qc C DGSCh, (DGSChqsep—qc)closed C (DGSCh)Closed,

S"DGSchgsep-qe € S"DGSch, (S"DGSchysep-qe)closed C (S"DCSch)closed

be the full subcategories corresponding to quasi-separated and quasi-compact DG schemes (by
definition, this is a condition on the underlying classical scheme).
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1.1.3. We give the following definition:

Definition 1.1.4. A ="DG indscheme is an object X of <"PreStk that can be represented as
a colimit of a functor
A — ="PreStk

which can be factored as
A — (S"DGSchgsep-qe)closed — ="PreStk,

and where the category A is filtered.

Le., X € PreStk is a <”DG indscheme if it can be written as a filtered colimit in <"PreStk:
(1.1) colim X,
where X, € S”D(}Schqsep_qc and for a; — o, the corresponding map iq, ,a, : Xo, = Xa, is a
closed embedding.

Let ="DGindSch denote the full subcategory of <"PreStk spanned by <"DG indschemes.
We shall refer to objects of °DGindSch as classical indschemes; we shall also use the notation
indSch := <°DGindSch.

Remark 1.1.5. Note that the quasi-compactness and quasi-separatedness assumption in the
definition of ="DG indschemes means that not every <"DG scheme X is a ="DG indscheme.
However, a scheme which is an indscheme is not necessarily quasi-separated and quasi-compact:
for example, a disjoint union of quasi-separated and quasi-compact <"DG schemes is a <"DG
indscheme.

1.2. Changing n.
1.2.1. Clearly, for n’ < n, the functor
<nPreStk — <" PreStk,
corresponding to restriction along
<"'DGSch™ < <"DGSch™,

sends the subcategory <"DGindSch to <7 DGindSch.

Indeed, if X is presented as in (1.1), then o'y = X|<n'pagenar can be presented as

co{Xim ("X ,).
Thus, restriction defines a functor
="' DGindSch + ="DGindSch .

1.2.2. Vice versa, consider the functor

<ny,
(1.2) LKE(S"/DGSch‘dff)OP<—>(§"DGSch‘”‘“)°P =
S”LL (¢] LKE(SW',DGSChaff)OD<—>(§7LDGSChaff)Op : Sn, Stk — Snstk,
left adjoint to the restriction functor. In the above formula <"L : <"PreStk — <" Stk is the
sheafification functor, left adjoint to the embedding <"Stk <+ <"PreStk.

We claim that it sends <" DGindSch to <"DGindSch. Indeed, if X’ € =" DGindSch is written
as
X' = colim X, Xo € <" DGSch
[0
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(the colimit taken in <" PreStk), then
Sn’LLKE(Sn/DGSChaff)op%(Sn,DGSChaff)op (:X:/) ~ co{xim Xa,

where the colimit is taken in <"PreStk, and X,, is perceived as an object of <?DGSch, see the
notational convention in Sect. 0.5.4.

1.2.3. We obtain a pair of adjoint functors
(1.3) ="' DGindSch = <"DGindSch,
with the left adjoint being fully faithful.

An object X € S*"DGindSch belongs to the essential image of the left adjoint in (1.3) if and
only if it is n’-coconnective as an object of S"Stk, i.e., if it belongs to the essential image of
the left adjoint (1.2).

Moreover, if X € ="DGindSch has this property, it admits a presentation as in (1.1), where
the X, are n/-coconnective.

1.3. Basic properties of <"DG indschemes.
1.3.1. We observe:
Proposition 1.3.2. Every <"DG indscheme belongs to <"Stk i.e., satisfies fppf descent.
The proof is immediate from the following general assertion:
Lemma 1.3.3. Let a — X, be a filtered diagram in <"PreStk. Set
X := colim X,,.
Y

Then if all X, belong to <"Stk and are k-truncated for some k (see [GL:Stacks, Sect. 1.1.7]),
then X has the same properties.

Proof. By assumption, '
X, and X : "DGSch*T — 0o-Grpd
take values in the subcategory (k 4 n)-groupoids.

Recall that for a co-simplicial object c® in the category of m-groupoids, the totalization
Tot(c*) maps isomorphically to Tot” ! (c*), where Tot”**(—) denotes the limit taken over the
category of finite ordered sets of cardinality < (m + 1).

Hence, for an fppf cover S’ — S and its Cech nerve S’*/S, for its (k + n + 1)-truncation
Gesk+ntl /G the restriction maps

Tot(X4(5"*/S)) — Tot=*+m+D (X (5*/S)) and Tot(X(5'*/S)) — Tot=k+m+D(x(5'*/9))
are isomorphisms.

In particular, it suffices to show that the map X(S) — Tot=*F7+D(3(57*/S)) is an isomor-
phism.

Consider the commutative diagram

colim X,(S) —— Tot=(ktn+1) (colimXa(S"/S)>

dl [

colim X, (S) —— colim (Totg(k+"+1)(Xa(S’°/S))).

[e%
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The bottom horizontal arrow is an isomorphism, since all X, satisfy descent. The right vertical
arrow is an isomorphism, since filtered colimits commute with finite limits. Hence, the top
horizontal arrow is also an isomorphism, as desired.

O

1.3.4. We obtain that if X € S"Stk is written as in (1.1), but where the colimit is taken in the
category <"Stk, then X is a <"DG indscheme.

Indeed, Proposition 1.3.2 implies that the the natural map from the colimit of (1.1) taken
in ="PreStk to that in <"Stk is an isomorphism.

1.3.5. Let Y be an object of S"DGSch, and let X € <"DGindSch be presented as in (1.1). We
have a natural map

(1.4) colaim Maps(Y, X,) — Maps(Y, X).
If Y is affine, the above map is an isomorphism by definition, since colimits in
SnPreStk = Func(S"DGSch™, 0o -Grpd)
are computed object-wise.

For a general Y, the map (1.4) need not be an isomorphism. However, we have:

Lemma 1.3.6. If Y is quasi-separated and quasi-compact, then the map (1.4) is an isomor-
phism.

Proof. This follows from the fact that X belongs to <"Stk , and that a quasi-separated and
quasi-compact DG scheme can be written as a colimit in <"Stk of a finite diagram whose
terms are in <"DGSch*?, and the fact that filtered colimits in co-Grpd commute with finite
limits. O

Remark 1.3.7. The reason we ever mention sheafification and work with Stk rather than simply
with PreStk is Lemma 1.3.6 above. However, the proof of Lemma 1.3.6 shows that we could
equally well work with étale, Nisnevich or Zariski topologies, instead of fppf.

1.4. General DG indschemes.
1.4.1. We give the following definition:

Definition 1.4.2. An object X € PreStk is a DG indscheme if the following two conditions
hold:

(1) As an object of PreStk, X is convergent (see Sect. 0.5.5).
(2) For every n, <"X := X|<npgsenar 15 a <"DG indscheme.

We shall denote the full subcategory of PreStk spanned by DG indschemes by DGindSch.
1.4.3. We will prove the following (see also Proposition 1.6.4 below for a more precise assertion):
Proposition 1.4.4. Any DG indscheme X can be presented as a filtered colimit in PreStk
(1.5) colaz'm Xa,

where X, € DGSchysep-qc and for a1 — o, the corresponding map ia,,ar : Xa; —+ Xa, 5 @
closed embedding.

The above proposition allows us to give the following, in a sense, more straightforward,
definition of DG indschemes:
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Corollary 1.4.5. An object X € PreStk is a DG indscheme if and only if:

e [t is convergent;
o As an object of PreStk it admits a presentation as in (1.5).

1.4.6. Note that unlike the case of S"DG indschemes, an object of PreStk written as in (1.5)
need not be a DG indscheme. Indeed, it can fail to be convergent.

However, such a colimit gives rise to a DG indscheme via the following lemma:

Lemma 1.4.7. For X € PreStk given as in (1.5), the object
oMY € PreStk
belongs to DGindSch.

Proof. Indeed, "X is convergent by definition, and for any n, we have <" (®°"vX) ~ <SP,
O

1.4.8. If X is a DG indscheme, then
S =X

<nDGSchf

is a <"DG indscheme. In particular, X is a classical indscheme. Thus, we obtain a functor

(1.6) <"DGindSch + DGindSch .

Vice versa, if X,, is a <"DG indscheme, set
f)C = COHV’LLKE(gnDGSChaff)opc_)(DGSChaff)op (xn)

Explicitly, if X,, is given by the colimit as in (1.1), then X is the convergent completion of the
same colimit taken in PreStk, but where X, are understood as objects of DGSch, see notational
convention in Sect. 0.5.4. By Lemma 1.4.7, we obtain that X is a DG indscheme.

This defines a functor
(1.7) S"DGindSch — DGindSch,

which is left adjoint to the one in (1.6). It is easy to see that the unit map defines an isomorphism
from the identity functor to

<"DGindSch — DGindSch — <"DGindSch.
Le., the functor in (1.7) is fully faithful.

1.4.9. In what follows, we shall say that a DG indscheme is weakly n-coconnective if it is such
as an object of Stk, see Sect. 0.5.6, i.e., if it belongs to the essential image of the functor (1.7).

Thus, the above functor establishes an equivalence between <”DGindSch and the full subcat-
egory of DGindSch spanned by weakly n-coconnective DG schemes. In particular, it identifies
classical indschemes with weakly 0-coconnective DG indschemes.

We shall say that X is weakly eventually coconnective if it is weakly n-coconnective for some
n.

1.4.10. We shall say that a DG indscheme is n-coconnective if it is n-coconnective as an object
of Stk, i.e., if it lies in the essential image of the functor

(1.8) PLKE (<npasenstyores (DGsenattyor © Stk — Stk

We shall say that X is eventually coconnective if it is n-coconnective for some n.
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1.4.11. The X condition. We shall say that X € <"DGindSch is R if there exists a presentation
as in (1.1) with the category of indices equivalent to the poset N.

We shall say that X € DGindSch is Ny if for it admits a presentation as in Proposition 1.4.4,
with the category of indices equivalent to the poset N.

We shall say that X € DGindSch is weakly N if for every n, the object
S € S"DGindSch

is No.
1.5. Basic properties of DG indschemes.

1.5.1. We claim:
Proposition 1.5.2. Every X € DGindSch belongs to Stk, i.e., satisfies fopf descent.

Proof. Let S’ — S be an fppf map in DGSch®®, and let §7*/S be its Cech nerve. We need to
show that the map
Maps(S, X) — Tot(Maps(S'®/S, X))
is an isomorphism.
For an integer n, we consider the truncation =S € <"DGSch®? of S. Note that since S’ — S

is flat, the map <n§’ — <n§ is flat, and the simplicial object <(5"*/S) of <"DGSch®T is the
Cech nerve of ="§’ — =15,

We have a commutative diagram
Maps(S, X) — Tot(Maps(
lim Maps(S"S,5"X) —— lim_Tot(Maps(S"(S'*/S),<"X))

neNepP neNep

'*/5,%))

In this diagram the vertical arrows are isomorphisms, since X is convergent. The bottom
horizontal arrow is an isomorphism by Proposition 1.3.2. Hence, the top horizontal arrow is an
isomorphism as well, as desired.

O

1.5.3. As in Sect. 1.3.5 we consider maps into a DG indscheme X from an arbitrary DG scheme
Y, and we have the following analog of Lemma 1.3.6 (with the same proof, but relying on
Proposition 1.4.4):

Lemma 1.5.4. For X € Stk written as in (1.5), and Y € DGSch, the natural map
colim Maps(Y, X,) — Maps(Y, X)
18 an tsomorphism, provided that'Y is quasi-separated and quasi-compact.

1.6. The canonical presentation of a DG indscheme. We shall now formulate a sharper
version of Proposition 1.4.4, which will be proved in Sect. 3.
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1.6.1. We give the following definition:

Definition 1.6.2. A map Y1 — Yo in PreStk is said to be a closed embedding if the corre-
sponding map Y1 — Yy is a closed embedding (i.e., its base change by an affine scheme yields
a closed embedding).

Note that in the DG setting, being a closed embedding does not imply that a map is
schematic'?. Indeed, a closed embedding of a DG scheme into a DG indscheme is typically
not schematic.

It is easy to see that for maps Y1 — Yo — Y3 with Yo — Y3 being a closed embedding, the
map Y; — Y5 is a closed embedding if and only if Y; — Y5 is.

1.6.3. For a DG indscheme X, let

(DGSChqsep—qc>closed inx C (DGSChqsep—qc)/X

be the full subcategory, consisting of those objects for which the map Z — X is a closed
embedding in the above sense.

In Sects. 3.2 and 3.5 we will prove:
Proposition 1.6.4. Let X be a DG scheme.

(a) The category (DGSchysep-qc)closed in x 15 filtered.
(b) The natural map

(1.9) lim Z — X,

CO
Z€(DGSchgsep-qc)closed in X

where the colimit is taken in PreStk, is an isomorphism.

1.6.5. Combined with Lemma 1.5.4, we obtain the following:
Corollary 1.6.6. Let X be a DG indscheme. The functor

(1.10) (DGSchgsep-ge)closed in x — (DGSchggsep-ge) /x
is cofinal.

Proof. We need to show that for X € DGSchgeep-qc and a map X — X, the category of its
factorizations
X —>7Z X,

where Z — X is a closed embedding, is contractible. However, the above category of factoriza-
tions is the fiber of the map of spaces

colim Maps(X, Z) — Maps(X,X
ZG(DGSChqscp—qc)closed in X P ( ) P ( )

over our given point in Maps(X, X). O
Finally, we can give the following characterization of DG indschemes among PreStk:

Corollary 1.6.7. An object X € “°™PreStk is a DG indscheme if and only if:

o The category of closed embeddings Z — X, where Z € DGSchysep-qc, 5 filtered.
e The functor (1.10) is cofinal.

12\We recall that a map of prestacks is called schematic if its base change by an affine DG scheme yields an
affine DG scheme.
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1.6.8. Let us also note that Lemma 1.5.4 implies that for any presentation of a DG indscheme
as in Proposition 1.4.4, the tautological map

A — (DGSchgsep-qc)closed in X

is cofinal.
1.7. The locally almost of finite type condition.

1.7.1. We shall say that X € <"DGindSch is locally of finite type if it is such as an object of
<nPreStk (see [GL:Stacks, Sect. 1.3.2]), i.e., it belongs to <"PreStkys in the terminology of loc.
cit.

By definition, this means that X, viewed as a functor
(5" DGSch™)°P — o0 -Grpd,
equals the left Kan extension under
(5" DGSchi)*P < (<" DGSch")*P

of its own restriction to (5" DGSchif)oP, where <" DGSchi ¢ < DGSch™™ denotes the full
subcategory of n-coconnective affine DG schemes of finite type. 3

We shall denote the full subcategory of <"DGindSch spanned by <"DG indschemes locally
of finite type by <"DGindSchg.

We shall say that X € DGindSch is locally almost of finite type if it is such as an object
of PreStk, see [GL:Stacks, Sect. 1.3.9], i.e., if in the notation of loc.cit. it belongs to the
subcategory PreStkj,;x C PreStk. By definition, this means that

<X e S"DGindSch

must be locally of finite type for every n. We shall denote the full subcategory of DGindSch
spanned by DG indschemes locally almost of finite type by DGindSchy,g .

1.7.2. It is natural to wonder whether one can represent objects of DGindSchy,¢ as colimits of
objects of DGSch,¢; under closed embeddings. (We denote by DGSch,g the category of DG
schemes almost of finite type, i.e., DGSchug := DGSchyar, N DGSchye, see [GL:Stacks, Sect.
3.3.1].)

In fact, there are two senses in which one can ask this question: one may want to have a
presentation in a “weak sense”, i.e., as in Lemma 1.4.7, or in the “strong” sense, i.e., as in
Proposition 1.4.4.

The answer to the “weak” version is affirmative: we will prove the following:
Proposition 1.7.3. For a DG indscheme X locally almost of finite type there exists a filtered
family
A— (DGSChaft)closed oA Xa,

such that X is isomorphic to the convergent completion of

(1.11) colim X,
acA

where the colimit is taken in PreStk.

13We remind that Spec(A) € =™ DGSch*! is said to be of finite type if HO(A) is a finitely generated algebra
over k, and each H*(A) is finitely generated as an H°(A)-module.



20 DENNIS GAITSGORY AND NICK ROZENBLYUM

1.7.4. Before we answer the “strong question”, let us note that it is not true that for any
Y € PreStkyas, the functor

(DGSchf) jy — (DGSch™™)

is cofinal. However, if X € DGindSch),¢ admitted a presentation as a colimit of objects of
DGSch,g, it would automatically have this property. We have the following general result that
will appear in [GR]:

Theorem 1.7.5. Suppose that Y € PreStky,s admits deformation theory. 4 Then, the functor
(DGSchift) y — (DGSch™™)
is cofinal.

This theorem makes it less suprising that that the answer to the “strong” question is also
affirmative:

Proposition 1.7.6. For a DG indscheme X locally almost of finite type there exists a filtered
family
A— (DGSChaft)closed N Xa,

such that X is isomorphic to

1.12 lim X
(142 Qg X

where the colimit is taken in PreStk.

1.7.7. In fact, we shall prove a more precise version of the above assertions. Namely, in Sect. 3.5
we will prove:

Proposition 1.7.8. Let X be an object of DGindSchy,g .
(a) The category (DGSchatt)closed in ¢ 18 filtered.
(b) The natural map

colim Z — X,
Z€(DGSchagt )closed in x

where the colimit is taken in PreStk, is an isomorphism.
As a formal consequence, we obtain:

Corollary 1.7.9. For X € DGindSchy.g the following functors are cofinal:

(113) (DGSChaft)closed in X — (DGSChqsep—qc>/x
(114) (DGSChaft)closed in X — (DGSChqsep—qc)closed in X
(115) (DGSChaft)closed inX — (DGSChaft)/DC

and

(116) (<OODGSChaft)closed in X — (<OODGSChaft)/3C-

14p particular case of this notion, namely, what it means for X to admit connective deformation theory, is
reviewed in Sect. 4.
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Corollary 1.7.10. An object X € DGindSchy,gy C PreStk lies in the essential image of the
fully faithful functor
LKE(DGSCII:?{)DP(_)(DGSChaff)Op : Funct((DGSCh:g)Op, OO-Grpd) —
— Funct((DGSch*®)°P. 00 -Grpd) = PreStk .

Equivalently, the functor
(DGSch2f) jx — (DGSch™™)

a

is cofinal.

Corollary 1.7.11. An object X € “°"VPreStk belongs to DGindSchy.g if and only if:

o The category of closed embeddings Z — X, where Z € DGSch,y, is filtered.
e The functor (1.13) is cofinal.

1.7.12. Note that Lemma 1.5.4 implies that for any presentation of X as in Proposition 1.7.6,
the tautological map

A— (DGSChaft)closed in X

is cofinal.

2. SHEAVES ON DG INDSCHEMES

2.1. Quasi-coherent sheaves on a DG indscheme.
2.1.1. For any Y € PreStk, we have the symmetric monoidal category QCoh(Y) defined as in
[GL:QCoh, Sect. 1.1.3]. Explicitly,

QCoh(Y) = lim QCoh(9).

S€e((DGSch?) /1y )op

2.1.2. In particular, for X € DGindSch we obtain the symmetric monoidal category QCoh(X).
If X € DGindSch is written as (1.5), we have:
QCoh(X) ~ lim QCoh(X,),

where for az > a1, the map QCoh(X,,) — QCoh(X4,) is i}, ,,- This follows from the fact
that the functor

QCohp,cgyi : PreStk® — DGCateont
takes colimits in PreStk to limits in DGCatcont.
Since the category QCoh(X) is given as a limit, it is not at all guaranteed that it will be

compactly generated.

2.1.3. We have the following nice feature of the category QCoh on DG indschemes that are
locally almost of finite type. Namely, we “only need to know” QCoh on affine DG schemes that
are almost of finite type to recover it. More precisely, from Corollary 1.7.10, we obtain:

Corollary 2.1.4. For X € DGindSchy,g, the functor

Coh(X) = li Coh(S) — lim Coh(S),
QCoh(X) Se((DGsZc%ff)/y)op QCoh(S) Se(DamL) op QCoh(9)

aft

given by restriction, is an equivalence.

2.2. A digression: perfect objects in QCoh.
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2.2.1. Recall the notion of a perfect object in QCoh(Y) for Y € PreStk, see, e.g., [GL:QCoh,
Sect. 4.1.6].

The subcategory QCoh(Y)P*™ coincides with that of dualizable objects of QCoh(Y) (see, e.g.,
[GL:QCoh, Lemma 4.2.2]).

2.2.2. Recall also that if Y = X is a quasi-separated and quasi-compact scheme, then the
category QCoh(X) is compactly generated and QCoh(X )¢ = QCoh(X)P*f. Moreover, we have
the canonical self-duality equivalence

D% . QCoh(X)Y ~ QCoh(X)
which can be described in either of the following two equivalent ways:
e The corresponding *° equivalence DEEYS )+ (QCoh(X))°P ~ QCoh(X)* is the duality
functor with respect to the symmetric monoidal structure on QCoh(X):
F — IV : (QCoh(X)PH)°P — QCoh(X)Pe.
e The pairing QCoh(X) ® QCoh(X) — Vect is the composition

(X0

QCoh(X) ® QCoh(X) & QCoh(X) "5 Vect .

2.2.3. Note that for an object Y € PreStk (and, in particular, for X € DGindSch), the functor
I'(Y, —) : QCoh(Y) — Vect is not, in general, continuous. Therefore, the functor

QCoh(Y) ® QCoh(Y) & QCoh(Y) F(‘i;) Vect

is not continuous either, and as such cannot serve as a candidate the duality paring.
2.2.4. Let Y be an arbitrary object of PreStk. We shall say that Y is quasi-perfect if

(i) The category QCoh(Y) is compactly generated.
(ii) The compact objects of QCoh(Y) are perfect, and the duality functor

(2.1) T FV : (QCoh(Y)PerH)oP ~ QCoh(Y)Pert
sends (QCoh(Y)¢)°P to QCoh(Y)°.
Note that for Y quasi-perfect, there exists a canonical equivalence
D;ai"e : QCoh(Y)" ~ QCoh(Y),
given by the equivalence
D ecy) : (QCoh(Y))°P =~ QCoh(Y)°
induced by the duality functor (2.1).

The corresponding pairing QCoh(Y) ® QCoh(Y) — Vect can be described as follows: it is
obtained by ind-extending the pairing on compact objects given by

?1,92 € QCOh(%)C — I‘(DC, F1 ® ffz) € Vect .
Oy
Indeed, this follows from the fact that for F € QCoh(Y)P**f and F’ € QCoh(X), we have a
functorial isomorphism
Maps(FY,F') ~T(X, T @ F).
Ox
Furthermore, note that QCoh(X)¢ is a monoidal ideal in QCoh(X )Pert.

I5We recall that for a compactly generated category C we have a canonical equivalence (CV)¢ ~ (C¢)°P.
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2.2.5. We shall see that certain DG indschemes are quasi-perfect in the above sense (see Sect. 7.2
and Sect. 10.3.1).

2.3. Ind-coherent sheaves on a DG indscheme.

2.3.1. Let Y be an object of PreStkjg. Following [GL:IndCoh, Sect. 10.1], we define the
category IndCoh(Y), which is a module category over QCoh(Y) (see [GL:IndCoh, Sect. 10.3]
for the latter piece of structure).

Explicitly,

IndCoh(Y) = lim IndCoh(S),
Se((<°° DGSch2t) ,y)op

aft

where for (f : 51 — Sq) € (OODGSChgg)/y, the functor IndCoh(Ss) — IndCoh(S;) is f'.

It follows from [GL:IndCoh, Corollaries 10.2.2 and 10.5.5] that in the following commutative
diagram all arrows are equivalences:

lim IndCoh(S) —— lim IndCoh(S)
S€((DGSchag) /y)°P Se((DGSch) ,y)op
lim IndCoh(S) —— lim IndCoh(S) =: IndCoh(Y).
Se((<>°DGSchayy) /y )P Se((<°DGSchaif) /y)op

The following is immediate from the definitions:
Lemma 2.3.2. The functor
IndCohpyesti,,y : (PreStkias)® — DGCateont
takes colimits in PreStki.g to limits in DGCateont .
2.3.3. Let us denote by IndCohiDGindSChlaft the functor
(DGindSchyag )P — DGCateont,
obtained from IndCoh!prCStklaft by restriction along the fully faithful embedding
DGindSchyag < PreStkiag; -
Thus, for every X € DGindSchy.s, we have a well-defined DG category IndCoh(X), which is
a module for QCoh(X).
We have:
Lemma 2.3.4. Let X € DGindSch be written as in (1.11). Then the natural map
IndCoh(X) — lign IndCoh(X,),

s an equivalence.
Proof. Follows from Lemma 2.3.2. O

Remark 2.3.5. We present results using the presentation of a DG indscheme as in (1.11) rather
than in (1.12), because many DG schemes that occur in practice come in this form. The
possibility of presenting them as in (1.12) is the result of Proposition 1.7.6 and is seldom
explicit.

2.4. Interpretation of IndCoh as a colimit and compact generation.

2.4.1. One of the main advantages of the category IndCoh(X) over QCoh(X) for a DG indscheme
X is that the former admits an alternative description as a colimit.
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2.4.2. Indeed, recall that for a closed embedding of DG schemes i : X7 — X5, the functor
i' : IndCoh(X5) — IndCoh(X})
admits a left adjoint, i™4C°"  see [GL:IndCoh, Sect. 3.3].
By Lemma 2.3.4 and [GL:DG, Lemma. 1.3.3], we have that for X as in (1.11),
(2.2) IndCoh(X) ~ colaim IndCoh(X,),

where for ap > a1, the map IndCoh(X,,) — IndCoh(X,,) is (i, a, )0,

*

2.4.3. For X € DGindSchyg, we let Coh(X) denote the full subcategory of IndCoh(X) spanned
by objects
ndCoh(g) . X — X is a closed embedding and F € Coh(X).

By [GL:DG, Sect. 2.2.1], we obtain:

Corollary 2.4.4. For X € DGindSch, the category IndCoh(X) is compactly generated by
Coh(X).

2.4.5. We are going to prove:

Proposition 2.4.6.
(a) Coh(X) is a (non-cocomplete) DG subcategory of IndCoh(X).
(b) The natural functor Ind(Coh(X)) — IndCoh(X)) is an equivalence.

(¢) Every compact object of IndCoh(X) can be realized as a direct summand of an object of
Coh(X).

2.4.7. For the proof of the above proposition, we will need the following observation:
Let
X' LxLx”
be closed embeddings.
We would like to calculate the composition
(i) o (#)IndCh . TndCoh(X") — IndCoh(X").

Let A denote the category (DGSchagt )closed in %, S0 that X’ and X" correspond to indices «
and o, respectively. Let B be any category cofinal in

Aqvar) = Aay ﬁ Aury-
For 5 € B, let
X' = X, 4 X5 Xy = X"
denote the corresponding maps.
The next assertion follows from [GL:DG, Sect. 1.3.5]:
Lemma 2.4.8. Under the above circumstances, we have a canonican isomorphism

(i/)! o (i//)indCoh ~ CngBm (iaﬁ)! o (ia,”@)indCoh.
€
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2.4.9. Proof of Proposition 2.4.6. To prove point (a), we only need to show that the category
Coh(X) is preserved by taking cones. L.e., we have to show that in the situation of Sect. 2.4.7,
for

F € Coh(X"), ¥’ € Coh(X")
and a map
(’L'/)indCOh(ff/) N (’i”),lkndCOhC}r”) c IndCoh(DC),
this map can be realized coming from a map
(ia/7b)indCoh(3:/) N (ia”,b)indCOh(ffH) c IndCoh(Xb)
for some b € A,y /. However, this readily follows from Lemma 2.4.8.

Point (b) follows from point (a) combined with Corollary 2.4.4. Point (c) follows from point

(b).
O

2.5. The t-structure on IndCoh.

2.5.1. For X € DGindSchy,s;, we define a t-structure on IndCoh(X) as follows. An object
F € IndCoh(X)

belongs to IndCoh=" if and only if for every closed embedding i : X — X with X € DGSchag,
the object i'(F) € IndCoh(X) belongs to IndCoh(X)=°.

By construction, this t-structure is compatible with filtered colimits, i.e., IndCoh(X)=° is
preserved by filtered colimits.

2.5.2. We can describe this t-structure and the category IndCoh(X)<? more explicitly. Fix a
presentation of X as in (1.11). For each «, let i, denote the corresponding map X, — X. By
(2.2), we have a pair of adjoint functors

(ig) 4O TndCoh(X,,) = IndCoh(X) : i!,.

Lemma 2.5.3. Under the above circumstances we have:

(a) An object F € IndCoh(X) belongs to IndCoh=° if and only if for every «, the object it (F) €
IndCoh(X,) belongs to IndCoh(X,)=Y.

(b) The category IndCoh(X)=Y is generated under colimits by the essential images of the functors
(iq)dCoh (Coh(X,4)=0).

Proof. Tt is easy to see that for a quasi-compact DG scheme X, the category IndCoh(X)=? is
generated under colimits by Coh(“X)=C. In particular, by adjunction, an object F € IndCoh(X)
is coconnective if and only if its restriction to X is coconnective.

Hence, in the definition of IndCoh(X)2°, instead of all closed embeddings X — X, it suffices
to consider only those with X a classical scheme.

This implies point (a) of the lemma by Lemma 1.3.6. Point (b) follows formally from point

(a).
0
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2.5.4. Suppose ¢ : X — X is a closed embedding of a DG scheme into a DG indscheme. We
then have:

Lemma 2.5.5. The functor idCM js t_ezact.

Proof. Since imdC°h ig the left adjoint of ', it is right t-exact. Thus we need to show that
for F € IndCoh(X)Z°, we have i}, o il"dCh(F) ¢ IndCoh(X,)Z° for every closed embedding
iq : Xo — X. However, this follows from Lemma 2.4.8. O

2.5.6. Recall the full (but not cocomplete) subcategory Coh(X) C IndCoh(X), see Sect. 2.4.3
above. From Lemma 2.5.5 we obtain:

Corollary 2.5.7. The full subcategories
Coh(X) C IndCoh(X)¢ C IndCoh(X)
are preserved by the truncation functors.

Thus, taking into account Proposition 2.4.6, we obtain that the t-structure on IndCoh(X)
can also be described as the ind-extension of the t-structure on Coh(X):

Corollary 2.5.8. The category IndCoh(X)=Z° is generated under filtered colimits by Coh(X)=°.

2.6. Serre duality on DG indschemes. We shall now show that the category IndCoh(X) is
canonically self-dual, i.e. there exists a canonical equivalence

(2.3) D5e™e : IndCoh(X)Y ~ IndCoh(X).
2.6.1. Let us write X asin (1.11). Combining (2.2) with [GL:DG, Lemma 2.2.2] and [GL:IndCoh,
Sect. 9.2.3], we obtain:

Corollary 2.6.2. Serre duality defines a canonical equivalence:
IndCoh(X)" ~ IndCoh(X).
Note that by Sect. 1.7.12, any other way of writing X as in (1.12) will give rise to a canonically
isomorphic duality functor.

2.6.3. Let us describe the equivalence of Corollary 2.6.2 more explicitly. Namely, we would like
to describe the corresponding pairing:

(2.4) IndCoh(X) ® IndCoh(X) — Vect .
2.6.4. For a DG scheme X almost of finite type, let
rindCoh(x ) : ITndCoh(X) — Vect
denote the functor (px )¢t of [GL:IndCoh], Proposition 3.1.1, where px : X — pt.
For a DG indscheme X, written as in (1.11), we define the functor
pindCeh iy IndCoh(X) — Vect
to be given by the compatible family of functors I'™dCh (X —): IndCoh(X,) — Vect.

Again, by Sect. 1.7.12, the above definition of I'™dC°h(X —) is canonically independent of
the choice of the presentation (1.11).

2.6.5. The definition of the functor D™ in (2.3) and [GL:IndCoh, Sect. 9.2.2] imply:

Corollary 2.6.6. The functor (2.4) is canonically isomorphic to the composite

! IndCoh (o _
IndCoh(X) ® IndCoh(X) —=5 IndCoh(X x X) 2% mdCoh(X) = —5" ) Vect.
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2.7. Functoriality of IndCoh under pushforwards.

2.7.1. Recall the functor IndCohpgsen,;, : DGSchagy — DGCateont of [GL:IndCoh, Sect. 3.2],
which assigns to X € DGSch,g the category IndCoh(X) and to a map f : X; — X the functor

f49N - IndCoh(X;) — IndCoh(X>).

Let
(DGSChaft)closed - (DGSChaft)proper C DGSchag
be the 1-full subcategories, where we restrict 1-morphisms to be closed embeddings (resp.,
proper). Let

IndCOh(DGSCh and IndCOh(DGSch

aft)closed aft)proper

be the restriction of IndCohpgsen, ;. to these subcategories.

aft

2.7.2. We shall say that a map of classical indschemes f : X1 — X5 is an ind-closed embedding
(resp., ind-proper) if the following condition is satisfied:

Whenever X; — X; are closed embeddings with X; € Schg such that there exists a commu-

tative diagram
X1 —_— DCl

f 'l lf
X2 —_— :X:Q7
the map f’ (which is automatically unique!), is a closed embedding (resp., proper).

Equivalently, one can reformulate this as follows: if

X1 := colim X1, and Xg := colim X5 3,
1 wEA 1,a 2 BeA 2,8

then for every index «, and every/some index § for which X7, — X1 — X2 factors as
Xi1a = X235 = Xy,
the map X; o — X2 3 is a closed embedding (resp., proper).
It is easy to see that if X1 = X; € Schysep-qc, then f: X1 — Xy is an ind-closed embedding

if and only if it is a closed embedding.

Remark 2.7.3. Note that, in general, “closed embedding” is stronger than “ind-closed embed-

ding.” For instance,
Spf(k[t]) — Spec(k[t])
is an an “ind-closed emnedding”, but not a closed embedding.
2.7.4. We shall say that a map of DG indschemes f : X1 — Xj is an ind-closed embedding (resp.,

ind-proper) if the induced map of classical indschemes “/X; — /X, is an ind-closed embedding
(resp., ind-proper).
Let
(DGindSChlaft)ind—closcd C (DGindSChlaft)ind—propcr
denote the corresponding 1-full subcategories of DGindSchyayg; .

Let
(2.5) IndCoh(paGindSchias )ind-ctosear MACON(DGInASch ot )ina proper 20 INACOLDGIndSCh a5
denote the left Kan extensions of the functors

IndCoh(paschus )ageeas 1NdCON(DasER and IndCohpgsen

aft)proper aft
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along the fully faithful embeddings
(DGSChaft)closed — (DGindSChlaft)ind—closed7 (DGSChaft)proper — (DGindSChlaft)ind—proper

and
DGSch,¢ — DGindSchyag,

respectively.

From (2.2) and Sect. 1.7.12 we obtain:

Corollary 2.7.5. For X € DGindSchyag, the value of the functor IndCohpgindSchy,,
on X is canonically equivalent to IndCoh(X).

)ind—closed

2.7.6. By construction, we have the natural transformations

(2.6)  IndCoh(pGindSchia)ina-proper — TNACONDGindSchiys, [(DGindSchiace)ina-proper A0

IndCoh(pgindschiae)ima-ctosea — THACON(DGINAS chiate)proper | (DGinAS chiate)ind-ctosea
Proposition 2.7.7. The natural transformations (2.6) are equivalences.

Proof. For a given X € DGindSch, the value of the functors (2.5) on it are given by

colim IndCoh(X), colim IndCoh(X)
X €(DGSchagt)closed in x X €(DGSchaft ) proper over x
and
colim IndCoh(X),
X €(DGSchar)
respectively.

Hence, to prove the proposition, it suffices to show that the functors
(DGSchaft ) closed in x — (DGSchagt ) proper over x — (DGSchag ) /o
are cofinal. Since both arrows are fully faithful embeddings, it suffices to show that the functor
(DGSchaft )closed in x — (DGSchagt) /x

is cofinal, but the latter is given by Corollary 1.7.9.
O

2.7.8. Thus, from Proposition 2.7.7 we obtain that for a morphism f : X; — Xy we have a
well-defined functor
fimdCoh . ThdCoh(X;) — IndCoh(Xs).

Concretely, the functor fI"4Ceh can be described as follows. By (2.2), objects of IndCoh(X)

are colimits of objects of the form (i;)dC°h(F,) for F; € IndCoh(X;), where X; is a DG
scheme almost of finite type equipped with a closed embedding X; = X;. By continuity, the
functor fIdCoh is completely determined by its values on such objects.

By Corollary 1.7.9, we can factor the map
D RN RN
as 4
X35 Xy B X,
where Xo € DGSch,s and i being a closed embedding. We set

findCoh((il)indCoh(grl)) — (iQ)IndCoh(gIndCoh(gfl)).

* *
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The content of Proposition 2.7.7 is that this construction extends to a well-defined functor
fIndCoh . TndCoh(X;) — IndCoh(Xy).

Note that the functor T'™d€eh (0, —) of Sect. 2.6.4 is a particular instance of this construction
for X1 = X and Xy = pt.
2.7.9. It follows from the definition of the self-duality functors
D5 : IndCoh(X;)¥ — IndCoh(X;), i=1,2
that the dual of the functor fdC°h jdentifies canonically with f'.

2.7.10. For a morphism of DG indschemes, the pushforward functor on IndCoh interacts with
the t-structure in the usual way:

Lemma 2.7.11. Let f : X1 — Xy be a map of indschemes. Then the functor flRdCoh s [eft
t-exact. Furthermore, if f is a closed embedding, then it is t-exact.

Proof. Let € IndCoh(X;)Z°. We wish to show that £ (F) € ITndCoh(X2)Z°. By Corol-
lary 2.5.8, we can assume that F = (i;)4C°0(F ) for F; € IndCoh(X;)Z° where iy : X1 — X
is a closed embedding.

Let now
X5 X, 3%,
be a factorization of f o1, where is is a closed embedding. We have:
indCOh(EF) ~ findCoh((il)indCoh(g:l)) _ (iQ)indCoh(gindCoh(:}rl))'
By Lemma 2.5.5, (iy)ndCoh(gndCoh (g ) ¢ IndCoh(X4)Z0.

Suppose now that f is a closed embedding. In this case, we wish to show that fIrdCoh jg

also right t-exact. Let F € IndCoh(X;)<?. By Lemma 2.5.3(b), we can assume that F =
(i1)dCoh(F) for F; € IndCoh(X;)=? where i; : X; — X; is a closed embedding. The result
now follows from the fact that the composed map

X1 — DCl — XQ
is a closed embedding and Lemma 2.5.5. O

2.8. Adjunction for proper maps.

2.8.1. Consider the functor
IndCohpginasen, . : DGindSchy%, — DGCatcons,

and let

! !
IndCOh(DGindSChlaft) and IndCOh(DGindSChlaft)ind-closed

ind-proper

be the restrictions of IndCohiDGindSchlaft to the corresponding 1-full subcategories.
In addition, consider the corresponding functors

IndCohpggen,,» MACoh(pagen, ) and IndCoh{p g,

for DGSch,g instead of DGindSchjag;.

proper aft)closcd

As in Proposition 2.7.7, we have:
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Lemma 2.8.2. The natural maps

! !
IIldCOh(DGindSChla&)ind-proper — RKE(DGSChaft )g]ﬁopcr ;)(DGindSChl'@ft)?x:)(l-proper (IndCOh(DGSChaﬁ)proper )
and

! !
IndCoh(pgindSehian)ina-croses > REE(DGScha0)70,.o — (DGindSchnas)3%y oponed MACONDES ) ctoeea)

are isomorphisms.
We shall now deduce the following:

Corollary 2.8.3. The functor
IndCOh(DGindSChlaft)ind_proper : (DGindSChlaft)ind—proper — DGcatcont
is obtained from the functor

IndCON(pGindS e )i proper © (D GINASchuag ) oo — DGCatcon

nd-proper
by passing to left adjoints.

This corollary means that for a proper map f : X1 — Xo in DGindSchy,¢, the functor
fImdCoh . TndCoh(X;) — IndCoh(X5)

is the left adjoint of f' : IndCoh(X3) — IndCoh(X;) in a way compatible with compositions,
and that this data is homotopy-coherent.

Proof. This follows from the corresponding fact for the functors IndCohpgsen and

aft) proper

IndCoh!(DGSCh (see [GL:IndCoh, Theorem 5.2.2(a)]), and the following general assertion:

aft)proper
Let F': C; — C; be a functor between oo-categories. Let @, : C; — DGCatont be a functor
such that for every ¢} — ¢, the corresponding functor
D4 (cy) = Pi(cf)
admits a continuous right adjoint. Let ¥; : C]¥ — DGCat be the resulting functor given by
taking the right adjoints.
Let @5 and Uy be the left (resp., right) Kan extension of ®; (resp., ¥;) along F (resp., F°P).
The following is a version of [GL:DG, Lemma 1.3.3]:

Lemma 2.8.4. Under the above circumstances, the functor Ws is obtained from ®4 by taking
right adjoints.

O
2.9. Proper base change.

2.9.1. Let
Yy 21

Wl |

Yo —L Xy
be a Cartesian diagram of DG indschemes, with the maps fx and fy ind-proper. From the
isomorphism of functors
1! ! !
g1°fx = fyogs,
by adjunction, we obtain a natural transformation

(2.7) (fy)49M 0 g7 = gy o (fx )OO,
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Proposition 2.9.2. The natural transformation (2.7) is an isomorphism.

The proof of this proposition will occupy the next few subsections.

2.9.3. Proof of Proposition 2.9.2, Step 1. The assertion readily reduces to the case when Y, is
a DG scheme, denote it Ys. Next, we are going to show that we can assume X5 is also a DG
scheme.

2.9.4. Interlude. Consider the following general paradigm. Let G : Cy; — C; be a functor
between oo-categories. Let A be a category of indices, and suppose we are given an A-family
of commutative diagrams

1,0
CLQ (1— Cl
] To
i2,o<
Cyo +—— Co.

Assume that for each o € A, the functor G, admits a left adjoint F,. Furthermore, assume
that for each map o/ — o’/ in A, the natural transformation in the diagram

(28) CLa// % CLa/

is an isomorphism.
Finally, assume that the functors

Cl — lim Cl P and CQ — lim CQ @
acA acA 7

are equivalences.
Under the above circumstances we have:

Lemma 2.9.5. The functor G admits a left adjoint, denoted F, and for every a € A, the
natural transformation in the diagram

i1,
Cl,a < Cl

Fo F

C,

C2,o¢
12,

18 an isomorphism.
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2.9.6. Proof of Proposition 2.9.2, Step 2. Write

Xo >~ colim X3 o
acA

where A is the category (DGSchgg)/xQ. Set
DCLQ = XQA’oé X 361.
X2
It is clear that
X1 =~ colim X 4,
acA
where the colimit is taken in PreStkj.g.

Hence, by Lemma 2.3.2,
IndCoh(X;) ~ lizn IndCoh(X; ).
aEcA°P

Set
CQ = IHdCOh(XQ), Cl = IndCoh(f)Cl), CQ,Q = IndCoh(Xgﬁa), Cl,a = IndCoh(f)CLa).

The condition of Lemma 2.9.5 is equivalent to the assertion of Proposition 2.9.2 when instead
of Xy € DGindSchy,f, we take Xo o € DGSchyqgy.

Thus, the assertion of Lemma 2.9.5 reduces the assertion of Proposition 2.9.2 to the case
when both Y5 = Y5 and Xy = X5 are DG schemes.

2.9.7. Proof of Proposition 2.9.2, Step 3. Write

X1 >~ colim X, g,
BEB

where X g € DGSchag, and ix g : X1,3 = Xq are closed embeddings.

Set
Yig =Yy x Xq3.
1,p 2 X 1,8

We have:
Y1 =~ colim Y7 3,
! BEB L

Let iy g denote the correspoding closed embedding Y7 g — Y1, and let gg denote the map
Y1 3 — X1,3. Note that the maps fx oixg: X1 3 = X2 and fy oiyg: Y1 3 — Yo are proper,
by assumption.

By (2.2), we have:

IdIndCoh(Xl) ~ colim (ixﬁ)}kndCOh [¢] (Z'Xﬂ)! and IdIndCoh(‘zdl) ~ colim (iy,g)}kndcc}h o (iyﬁ)l
BeB BeB
Hence, we can rewrite the functor (fy)Pd€°h o gt as
calim (9% 0 iy ) 9% 0 i)' o 6

and the functor g} o (fx)mdCoh ag

cglelglg'z ° (fX)indCOh o (iXB)indCOh o ( !.

ix,3)

)

It follows from the construction that the map in (2.7) is given by a compatible system of
maps for each 8 € B
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(fy)idCoh o (iy g) 9N o (3y 5) 0 g} = (fy 0iy,5) %M o (g1 0iy8)" ~

(fy oiy,8)"%M o (ix g 0 gs)' = (fy 0iy,g) 4% 0 ghoily 5 —

IndCoh _ ! IndCoh . IndCoh
o . o (ix,8)s

—gho(fxoixp)t .5~ 950 (fx) iX,3 oix g,

where the arrow

(fy 0iy,p)4%" 0 g — gy o (fx 0ix,p)Io"

is base change for the Cartesian square
Yig —2— Xig
fYOiY,Bl leOix‘/a

Yy, —2 5 X,.

Hence, the required isomorphism follows from proper base change in the case of DG schemes,
see [GL:IndCoh, Proposition 3.4.2].
O

2.9.8. Let
Y £ X1

Wl |

Y2 R X2
now be a Cartesian diagram of DG indschemes, where the maps ¢g; and g are ind-proper. From
the isomorphism of functors
(92)IndCoh o (fy)lndCoh ~ (fX)IndCoh o (gl)lndCoh

* * * *

by adjunction, we obtain a natural transformation

(2.9) (fy )i 0 gy — g3 o (fx)LM4OM
Proposition 2.9.9. The natural transformation (2.9) is an isomorphism.

Remark 2.9.10. Tt is easy to see from Corollary 2.8.3 that when both pairs of morphisms (i.e.,
(fx, fy) and (g1,92)) are ind-proper, then the natural transformations (2.7) and (2.9) are
canonically isomorphic.

Proof. By (2.2), we can assime that X1 = X; € DGSch,g. Factor the map f: X3 — Xy as a
composition
X1 — X2 — XQ,

where X9 € DGSch,s, and Xo — Xs is a closed embedding. Such a factorization is possible by
Corollary 1.7.9.

This reduces the assertion of the proposition to the analyses of the following two cases: (1)
when the morphism f is a closed embedding (and, in particular, proper); and (2) when both
X1 = X7 and X5 = X5 are DG schemes.

Now, the assertion in case (1) follows from Proposition 2.9.2. The assertion in case (2) follows
by repeating the argument of Step 3 in the proof of Proposition 2.9.2.
O
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Remark 2.9.11. The isomorphisms as in (2.7) and (2.9) can be defined for all Cartesian diagrams
of DG indschemes, i.e., we one does not need to require that either pair of maps be ind-proper.
However, the construction is more involved as there is no a priori map in either direction.

For an individual diagram, such an isomorphism is easy to deduce from [GL:IndCoh, Sect. 5],
where the corresponding natural transformations were constructed in the case of DG schemes.

A functorial construction of these natural transformations for indschemes compatible with
composition requires additional work and will be carried out in [GR]. Furthermore, as in
[GL:IndCoh, Sect. 10.6] one can combine the functors

IndCohp,egyy,.;, © (PreStkias)® — DGCateont

and
IndCOhDGindSchla& : DGiIldSCh]aft — DGCatCOm

to a functor

IndCOh(PreStkla“) : (PreStkIaft)corr:ind—sch;all — DGcatcon‘m

corr:ind-sch;all

where (PreStkiaf:)corr:ind-schian 1S the category of correspondences, whose objects are prestacks
locally almost of finite type Y, and whose morphisms are correspondences

Yo —2— Yy
i
gQa

where the morphism g is arbitrary, and the morphism f is ind-schematc (i.e., a morphism such
that its base change by an affine DG scheme yields a DG indscheme).

2.10. Groupoids in DGindSch.

2.10.1. Let X*® be a simplicial object in DGindSch, arising from a groupoid object
(2.10) pe,pr: X' = X°
(see [Lu0], Definition 6.1.2.7).

Suppose that the face maps in the above simplicial DG indscheme are ind-proper (equiva-
lently, the maps ps,p: in (2.10) are ind-proper).

In this case, the forgetful functor
Tot(IndCoh(X*)) — IndCoh(X°)

admits a left adjoint; moreover, the resulting monad on IndCoh(X°), when viewed as a plain
endo-functor of IndCoh(X?), is naturally isomorphic to

()49 o (py)".

The proof is the same as that of [GL:IndCoh, Proposition 8.2.3].



INDSCHEMES 35

2.10.2. Assume that in the situation of Sect. 2.10.1, the groupoid arises as the Cech nerve of
a morphism f : X — Y, which is ind-proper and surjective.'® Let X*/Y denote the resulting
simplicial object.

In this case, the augmentation
X*/d—
gives rise to a functor
(2.11) IndCoh(Y) — Tot(IndCoh(X*/Y)).

As in [GL:IndCoh, Proposition 8.2.3] we have:

Lemma 2.10.3. Under the above circumstances, the functor (2.11) is an equivalence.

Note that the composition

IndCoh(Y) — Tot(IndCoh(X*/Y)) — IndCoh(X)

is the functor f', and hence its left adjoint is fIrdCoh,

3. CLOSED EMBEDDINGS INTO A DG INDSCHEME AND PUSH-OUTS

Let X be a scheme, and Z; and Zs be two closed subschemes. In this case, we can consider
the subscheme given by the union of Z; and Zs; in fact, this is the coproduct in the category
of closed subschemes of X (locally, the ideal of the union is the intersection of the ideals of Z;
and Zs). The same operation is well-defined when X is no longer a scheme, but an indscheme:
indeed the union of Z; and Z, in X is the same as their union in X’, if X’ is another closed
subscheme of X which contains Z; and Zs.

However, one might be suspicious of the operation of union in the DG setting since closed
DG subschemes are no longer in bijection with “ideals.”

The goal of this section is to show that in this case, the operation of union behaves as well
as for schemes.

In addition, we will consider a particular situation in which push-outs in the category of
DG schemes exist and are well-behaved. This will allow us, in particular, to show that DG
indschemes contain “many” closed subschemes.

3.1. Closed embeddings into a DG scheme.

3.1.1. For a morphism f:Y — X in DGSchggep-qc consider the category
(DGSChqsep_qC)y/ /X

of factorizations of f; i.e. objects are given by

Y5 25X
and morphisms are commutative diagrams
Z
TN
(3.1) Y \ / X.
A ¢2

161 ¢., the base change of f by an object of DGSch:ff{ yields a morphism surjective on geometric points.
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Let
DGSChY/,closcd in x C (DGSChqsep-qc)Y/ /X

be the full subcategory, spanned by those objects Y — Z 2 x , for which the map ¢ is a closed
embedding.

3.1.2. We shall prove:

Proposition 3.1.3.

(a) The category DGSchy ciosed in x contains finite colimits (and, in particular, an initial ob-
ject).

(b) The formation of colimits in DGSchy closed in x 5 compatible with Zariski localization on
X.

Proof.

Step 1. Assume first that X is affine, given by X = Spec(4). Let
(3.2) i (Y = Zi 8 X)),

be a finite diagram in DGSchy/ closed in x-

Set B :=T(Y,0y). This is a (not necessarily connective) commutative k-algebra. Set also
Z; = Spec(C;). Consider the corresponding diagram

(3.3) i~ (A= C; = B)
in ComAlgA/ /B-
Set B
(C = B):=1lim(C; — B),
where the limit taken in ComAlg, ;. Note that we have a canonical map A — 5, and

(A— C — B) € ComAlg,, /5
maps isomorphically to the limit of (3.3) taken in, ComAlg,, /5.

Set
C:=75%C) x Im (HO(A) ~ HO(@)) :
HO(C)
where the fiber product is taken in the category of connective commutative algebras (i.e., it is
750 of the fiber product taken in the category of all commutative algebras).

We still have canonical maps
A— C — B,

and it is easy to see that for Z := Spec(C), the object
(X = Z —Y) € DGSchx/, closed in v
is the colimit of (3.2).
Step 2. To treat the general case it suffices to show that the formation of colimits in the affine
case commutes with Zariski localization. L.e., that if X is affine, )O( C X is a basic open, then

for Y := f’l(;(), %Z = gbi_l()o(), 7= qi)*l()o(), the map

(o] [e]
colimZ; — Z,
7
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is an isomorphism, where the colimit is taken in DGSch, o.
Y/, closed X

However, the required isomorphism follows from the description of the colimit in Step 1.
O

3.1.4. As before, let
i (Y = 2, 8 X)),
be a finite diagram in DGSchy closed in x - In this case, note the following property of colimits.
Let g : X — X’ be a closed embedding. Set
Y —>Z—-X)= coliim(Y —=Z;i—»X)and (Y - 7' = X') = coliim(Y = Z; = X'),
where the colimits are taken in DGSchy closed in x and DGSchy ) closea x7, Tespectively.

Consider the composition
Y 75X X,

and the corresponding object
(Y = Z = X') € DGSchy/, ciosed x” -

It is endowed with a compatible family of maps in DGSchy closea x':
Y - Z, - X")—= (Y = Z—=X).

Hence, by the universal property of (Y — Z’ — X’) € DGSchy/, closed x/, We obtain a
canonically defined map

(3.4) 7'~ 7.
We claim:
Lemma 3.1.5. The map (3.4) is an isomorphism.

Proof. We construct the inverse map as follows. We note that by the universal property of
(Y = Z" = X') € DGSchy/, ciosea x5 We have a canonical map

Y72 XY= (Y -X - X'),
and hence a compatible family of maps
Y—-Z—-X)= Y -7 X)) (Y =X - X).
The latter gives rise to a compatible family of maps in DGSchy closea x
Y —=Zi—-X)—= (Y =27 = X),
and hence, by the universal property of (Y — Z — X)) € DGSchy/ ciosea x, the desired map
Z— 7.

3.1.6. The closure of the image. For f : X — Y a morphism in in DGSchggsep-qc, let
Im(f) € DGSChY/,Closed X

denote the initial object of this category. We will refer to it as the closure of the image of f.
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3.1.7. We have the following properties of the formation of colimits in DGSchy, closed x

Lemma 3.1.8. Let i+ (Y — Z; — X) be a finite diagram in DGSchy ciosed x, and let
Y—>Z7—-X
be its colimit.

(a) Suppose that the DG schemes Z; are n-coconnective. Then so is Z.

(b) Suppose that f :'Y — X is affine (resp., of cohomological amplitude k for the functor
fx : QCoh(Y) — QCoh(X)). For an integer m, consider the diagram

SmY 5 Smz0 o X,

and let
smy 7' 5 X

be its colimit in DGSch<my ciosed x- Then the natural map
snzl — =g
is an isomorphism whenever m > n+1 (resp., m>n+ 1+ k).
Proof. Both assertions follow from the explicit construction of colimits in Step 1 in the proof

of Proposition 3.1.3.
O

3.2. The case of DG indschemes.

3.2.1. For X € DGindSch, Y € DGSchgsep-qc and a morphism Y — X, we consider the category

(DGSChqsep_qC)y/ /X
and the corresponding full subcategory

DGSChY/,cIosed in X -

Proposition 3.2.2. The category DGSchy closed in x cOntains finite colimits.

As in the case of DG schemes, for a given map f : Y — X, we let Im(f) denote the initial
object of the category DGSchy closed in x-

Remark 3.2.3. As Proposition 3.2.2 will be used in the proof of Proposition 1.4.4, we will not be
able to use the existence of a presentation as in (1.5). If we could assume such a presentation,
the proof would be immediate.

Proof of Proposition 3.2.2. Assume first that Y, Z; and Zs are eventually coconnective, i.e.,
n-coconnective for some n. Then we can work in the categories S*DGSch and <"DGindSch.
We replace X by "X, and representing it as in (1.1), we obtain that the statement follows from
Lemma 3.1.5.

Writing “/X as in (1.1), let @ € A be an index such that the map “Y — X factors via a
map

Af, ly - X, — 94X,
Let k denote the cohomological amplitude of the functor

(“%f4)« 1 QCoh(Y) — QCoh(X,).

Let
(3.5) i— Y —Z - X)
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be a finite diagram in DGSchy, closeq x- For an integer m, consider the corresponding diagram
smy — smzo o X,

Let
Smy 5 Zm 5 X

denote its colimit in DGSch<my ) ciosed x-

For an integer n set
A Snva

for any m > n+ 1 + k. Note that this is independent of the choice of m by Corollary 3.1.8(b).
For the same reason, for ny < ng we have

M~ SmZnQ

The sought-for colimit of (3.5) is Y — Z — X, where Z € DGSch is such that
snz =27"

3.2.4. As a corollary of Proposition 3.2.2, we obtain:

Corollary 3.2.5. For X € DGindSch, the category of closed embeddings Z — X, where Z €
DGSchgsep-qc, 28 filtered.

Note that the assertion of Corollary 3.2.5 coincides with that of Proposition 1.6.4(a).

3.3. A digression on push-outs. Let

(3.6) Y

be a diagram in DGSch.

We wish to consider the push-out of this diagram in DGSch. Note that push-outs of (DG)
schemes are not among the standard practices in algebraic geometry; this operation is in general
quite ill-behaved unless we impose some particular conditions on morphisms under which we
are taking push-outs. In what follows we will consider three rather special situations where
push-outs are manageable.

3.3.1. Push-outs in the category of affine schemes. Let
1—Y, i€l
be an I-diagram in DGSch*® for some I € co-Cat.

Let Y denote its colimit in the category DGSch®®. Le., if Y; = Spec(4;), then Yy = Spec(ﬁ),
where

A= limAi,

where the limits is taken in the category of connective k-algebras.
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3.3.2. In particular, consider a diagram Y; <~ Y — Y5 in DGSch* and set YV := Y1}|_/| Y5, where

the push-out is taken in DGSch™®. Le., if ¥; = Spec(4;) and Y = Spec(A), then Y = Spec(A),
where

Av = A1 X AQ,
A
where the fiber product is taken in the category of connective k-algebras.

Note that if Y — Y7 is a closed embedding, then so is the map Yo — Y.

3.3.3. The case of closed embeddings. We observe the following:

Lemma 3.3.4. Suppose that in the setting of Sect. 3.5.2, both maps Y — Y; are closed embed-
dings. Then:

(a) The Zariski topology on Y is induced by that on Y7 UY5.

(b) For open affine DG subschemes Y; C Y; such that Y1 NY = YaNY =Y, and the

[e] ~
corresponding open DG subscheme Y C Y, the map

Yl [ Y2 —Y
Y
18 an tsomorphism.
(¢) The diagram
Y — Y1

Lo

Yy —— Y
s a push-out diagram in DGSch.

3.3.5. From here we obtain:

Corollary 3.3.6. Let Y1 + Y — Y5 be a diagram in DGSch, where both maps Y; — Y are
closed embeddings. Then:

(a) The push-out Y :=Y; }I_I/YQ in DGSch ezists.

(b) The Zariski topology on Y is induced by that on Yi UYs.
(¢) For open DG subschemesY; CY; such that Y1NY =YoNY =Y, and the corresponding

open DG subscheme Y C }7, the map

Y1 (] Y2 —Y
Y
s an isomorphism.
Remark 3.3.7. Note that if one of the maps f; fails to be a closed embedding, it is no longer

true that the push-out in the category of affine DG schemes is a push-out in the category of
schemes. A counter-example is

Al x (A —0) <> {0} x (A’ —0) = {0} x A"
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3.3.8. We give the following definition:

Definition 3.3.9. A map f: X1 — X5 in DGSch is said to be a nil-immersion if it induces
an isomorphism

cl,reXm N cl,redX2
where for a DG scheme X, we let 572X denote the underlying classical reduced scheme. If f

1s in addition a closed embedding, then it is said to be a closed nil-immersion.

3.3.10. Push-outs with respect to nil-immersions. Consider the following situation. Let ¢ — Y
and Y be as in Sect. 3.3.1.

Assume that the maps Y; — Y are nil-immersions. In particular, the transition maps
Yi, =Y,
are nil-immersions as well. In this case we have:

Lemma 3.3.11. Assume that the maps Y; — Y are nil-immersions.

(a) For an open affine DG subscheme Y C 17, and the corresponding open DG subschemes
Y, CY;, the map

colimY; -»Y
3

is an isomorphism, where the colimit is taken in DGSch*.
(b) The diagram

i~ (Y; =Y)
is also a colimit diagram in DGSch.
3.3.12. From Lemma 3.3.11 we obtain:
Corollary 3.3.13. Let Y7 <+ Y — Y5 be a diagram in DGSch where the maps Y — Y; are

nil-immersions. Then:
(a) The push-outY :=Y; }I_/I Y, in DGSch exists, and the maps Y; — Y are nil-immersions.

(b) For an open DG subscheme Y C 17, and the corresponding open DG subschemes Y; C Y;,
Y CY, the map

Y. Y=Y

<o

s an isomorphism.

3.3.14. The push-out of a closed nil-immersion. Finally, we will consider the following situation.
Let
Y, — Yll

be a closed nil-immersion of affine schemes, and let f : Y7 — Y5 be a map, where Y5 € DGSch?.

Let Yy =Y/ }|7| Ya, where the colimit is taken in DGSch™®. Note that the map
1

A
Y, = Y,
is a closed nil-immersion.

We claim:
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Lemma 3.3.15. (a) For an open affine DG subscheme Yo C Yo, f~1(Yy) =: Y, C Y1, and
the corresponding open affine DG subscheme Y, C 'Y/, the map
o [e] [e]
Y U Yy =Y,
Y.
is an isomorphism, where the push-out is taken in DGSch®f.

(b) The diagram

Y — Y,

Lo

Y — Y]
is also a push-out diagram in DGSch.

3.3.16. As a corollary we obtain:

Corollary 3.3.17. Let Y7 — Y7 be a closed nil-immersion, and f : Y1 — Y5 be a quasi-separated
quasi-compact map between schemes. Then:

(a) The push-out Yy :=Y/ U Y> exists, and the map Y2 — Yy is a nil-immersion.
1

(b) For an open affine DG subscheme 10/2 CcYs, f*1(532) =: 10/1 C Y3, and the corresponding
open affine DG subscheme 3(3'; c Y/, the map
YU Vs V)
Y1
is an isomorphism, where the push-out is taken in DGSch.
(c) If f is an open embedding, then so is the map Y{ — Y5.

Proof. We observe that it suffices to prove the corollary when Y5 is affine. Let us write Y7 as
colim U;, where U; are affine and open in Y;. In this case,
1

Y] ~ colim U],
1

where U/ are the corresponding open DG subschemes in Y7.

We construct Y7 }g Ys as
1
colim (U] LI Ys).
i U,

This implies points (a) and (b) of the corollary via Lemma 3.3.15. Point (c) follows formally
from point (b).
0

3.3.18. We will use the following additional properties of push-outs:

Lemma 3.3.19. Let Y1,Y!, Y5, Y] be as in Corollary 3.5.17. Suppose that the map f : Y] — Y
is such that the cohomological amplitude of the functor f. : QCoh(Y7) — QCoh(Y2) is bounded
by k. Then the map

smy!l ) SMy, — Smy)
<my;

defines an isomorphism of the n-coconnective truncations whenever m > n + k.

3.4. DG indschemes and push-outs.
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3.4.1. Let us observe the following property enjoyed by ind-schemes:

Proposition 3.4.2. Let
Yy —— Yl

L

Yo —— Y
be a push-out diagram in DGSchysep-qc, where Y,Y1,Ys are eventually coconnective. Then for
X € DGindSch, the natural map

Maps(}N’, X) — Maps(Y1, X) X Maps(Ys, X)
Maps(Y,X)

s an isomorphism.

Proof. Suppose that Y,Y7,Ys are n-coconnective. By adjunction, we obtain that Y is n-
coconnective as well.

The assertion of the proposition now follows from Lemma 1.3.6 and the fact that fiber

products commute with filtered colimits.
O

Remark 3.4.3. In the above proposition we had to make the eventual coconnectivity assump-
tion, because it will be used for the proof of Proposition 1.4.4. However, assuming this
proposition, and hence, Lemma 1.5.4, we will be able to prove the same assertion for any
Y, Y1,Y € DGSchggep-qc. The next corollary, which will be also used in the proof of Proposi-
tion 1.4.4, gives a partial result along these lines.

Corollary 3.4.4. Let
Yi — Y

Lo

Y/ — Y]
be a push-out diagram as in Lemma 3.5.17, where Y1,Y2 € DGSchqsep-qc- Then the natural map

Maps(Y;, X) — Maps(Y7{, X) X Maps(Yz, X)
Maps(Y7,X)

s an isomorphism.
Proof. Consider the following two inverse families of objects of DGSchysep-qc:

n S"Y) and n— S"Y) U S
<ny,

There is a natural map <. By Lemma 3.3.19, this map induces an isomorphism of m-
coconnective truncations whenever n > m.

Therefore, for any X € DGindSch (and, indeed, any X € “°*VPreStk), the induced map

lim Maps(S"Yy, X) — lim Maps <5”Y1' g SNYy, DC)
n n <ny;

is an isomorphism.
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Consider the composite map

Maps(Ys, X) — Maps(Y7,X) X Maps(Ys, X) =
Maps(Y71,X)

5 lim Maps(S"Y/, X) X lim Maps(S"Yy, X) &
n linm Maps(="Y7,X) ™
5 lim (Maps(S"Y{,X) X Maps(= ”Yg,f)C)) .

Maps(S7Y3,X)

It equals the map
Maps(Yy, X) — lim Maps(S"Yy, X) 5

5 lim Maps (S"Yl' ] S”Yg,f)C) =
n ny;

S lim (Maps(S"Y{,X) X MapS(S"YQ,X)> ,
n Maps(="Y7,X)
where the last arrow is an isomorphism by Proposition 3.4.2 above. This shows that

Maps(Y;, X) — Maps(Y7, X) X Maps(Ya, X)
Maps(Y1,X)

is an isomorphism as well.

3.5. Presentation of indschemes.

3.5.1. We shall now prove point (b) of Proposition 1.6.4. In fact, we will prove a slightly
stronger (but, in fact, equivalent) statement; namely, we will prove Corollary 1.6.6.

Proof. We have to show that for Y € DGSchqsep-qc and a map f : Y — X, the category of its
factorizations

Y—>Z->X,

where Z € DGSchysep-qc; and Z — X is a closed embedding, is contractible.

By Proposition 3.1.3, the category in question admits coproducts. Hence, to prove that it is
contractible, it remains to show that it is non-empty.

Consider the map °f : €Y — <X, Since “X is a classical indscheme, there exists a factor-
ization
cy Del, g, 9l ey
where Z¢ € Schysep-qc and g is a closed embedding.

Let k be the cohomological amplitude of the functor (hy). : QCoh(¢'Y’) — QCoh(Z,;), and
let n be an integer > k.

Consider the truncation <Y and its map <"f to <"X. Since <"X is a ="DG indscheme, the
map ="f can be factored as

<nY hn Z In <nx
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where Z,, € =" DGSchgsep-qc and gy, is a closed embedding. Moreover, without loss of generality,
we can assume that we have a commutative square

he
CZY ; ? ch

clhn

cl(gny) , Ceru

where the right vertical map is automatically a closed embedding. In particular, we obtain that
the cohomological amplitude of the functor (“h,). also equals k. Therefore, the same is true
for the functor

(hy)« : QCoh(S"Y) — QCoh(Z,,).
Thus, Lemma 3.3.19 applies to h,,. Let
Z:=Y U Z,eDGSch.
<ny

By Corollary 3.4.4, we have a canonical map g : Z — X, which is a closed embedding since
at the classical level this map is the same as g,. Thus

Y—>Z-5X

is the required factorization of f.
O

3.5.2. Let us now prove Proposition 1.7.8. Our proof will rely on the notion of square-zero
extension, which will be reviewed in Sect. 4.5.1.

We begin with the following observation:

Lemma 3.5.3. Let C be an oco-category and i : C1 — C a fully faithful functor. Assume that
C is filtered. Then i is cofinal if and only if every object of C admits a map to an object in Cy.
In this case Cy is also filtered.

We take C := (DGSchggsep-qc)closed in x and Ci = (DGSchagt)closed in x- Having proved Corol-
lary 1.6.6, it remains to show that every closed embedding

f:Y—=X

admits a factorization
Y - Z -2 X,

where Z € DGSch,g and g is also a closed embedding.
Step 1. Consider a factorization of °f
oy Dety, 7, 9 el

where g, is a closed embedding. We claim that the “locally almost of finite type” assumption
on X implies that the classical scheme Z.; is automatically of finite type.

This follows from the next lemma:

Lemma 3.5.4. If X is a classical indscheme locally of finite type, and X, — X a closed
embedding, where X, € Sch, then X, € Schy.
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Proof of Lemma 3.5.4. Note that a classical scheme X, is of finite type if and only if for any
classical k-algebra A and a filtered family i — A; of subalegbras such that A = UA;, the map

colim Maps(Spec(4;), X)) — Maps(Spec(A), X¢1)

is an isomorphism.

Note that since A; — A are injective, the diagram
colim Maps(Spec(A;), X)) —— Maps(Spec(4), X))

| !

colim Maps(Spec(A;), X)) — Maps(Spec(4), Xer)

is Cartesian. However, the bottom horizontal arrow is an isomorphism since X € APreStkg.
O

Step 2. We shall construct the required factorization of f by induction on n > 0. Namely, we
shall construct a sequence of factorizations of S"f : <Y — <nX as

Sny ny g 9% <ny

with Z,, € S"DGSchg, ¢, a closed embedding, and such that for n > n’, we have a commutative

diagram
<n’ Sn/gn <n’
=n Zn — =n x

ﬁ Tid
’ S"IQ , ’
sz — S
Setting
Z = colim Z,,
n

(where the colimit is taken in DGSch) we will then obtain the desired factorization of f.
Step 3. Suppose (Z,,—1,gn—1) have been constructed. Note that the maps
hpet: SV = Z, 1 and SV7Y — Sy
satisfy the conditions of Corollary 3.3.17. Set
Zl=Z,1 U ="

<n—1y

We have Sn~17! ~ <n=17 , and by Proposition 3.4.2 we obtain a natural map ¢/, : Z/, —
sny.

To find the sought-for pair (Z,, g,), it suffices to find a factorization of g/, as
Zl — Z, I =ny,
so that Z, € =" DGSchy, and <"~1Z/ — <"~17  is an isomorphism.
Step 4. Note that the closed embedding
snoly sy
has a natural structure of a square-zero extension, see Corollary 4.5.8, by an ideal

J € QCoh (<"~1v) 7 [n].
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Hence, the closed embedding Z,,_1 — Z], also has a structure of a square-zero extension by

J:= (hn_1)(J) € QCoh(Z,,_1)"[n].
Step 5. Write J as a filtered colimit colim J,,, where

Jo € Coh(Z,_1)"[n].
The category Coh(Z,,_1) is well-defined since Z,_; is almost of finite type.

By Sect. 4.5.1, we obtain a family o +— Z,, of objects of <"DGSch, for all of which
snely o~ SPT1Z, 45 moreover, we have isomorphisms

/! .
Z,, ~ lz;n Zn,a

as objects of <"DGSch.
Now, since X is locally almost of finite type as an object of <"PreStk, the map

colim Maps(Zy, , <"X) - Maps(Z},, <)

is an isomorphism. In particular, the map g/, factors through some g, o : Zp o — <"X.

Now, the DG schemes Z,, ,, all belong to <"DGSchy, by construction. This gives the required

factorization.
O

4. DEFORMATION THEORY: RECOLLECTIONS

This section is preparation for Sect. 5. Our goal is the following: given X € PreStk such that
i is a classical indscheme, we would like to give necessary and sufficient conditions for X to
be a DG indscheme. In this section we shall discuss what will be called Conditions (A), (B)
and (C) that are satisfied by every DG indscheme. In Sect. 5 we will show that these conditions
are also sufficient.

Conditions (A), (B) and (C) say that X has a reasonable deformation theory. We will encode
this by the property of sending certain push-outs (in DGSchaH) to fiber products (in co-Grpd).

4.1. Split square-zero extensions and Condition (A).

4.1.1. Split square-zero extensions.

For 7 € S"DGSCthCp_qC. We define the category <"SplitSqZExt(Z) of split square-zero exten-
sions of Z to be the opposite of QCoh(Z)= <0,

There is a natural forgetful functor

S"SplitSqZExt(Z) — (S"DGSchqsep-ac) 7/, F > Zs.

Explicitly, locally in the Zariski topology if Z = S = Spec(A), and M :=T'(S,F),
Sy := Spec(4A & M),

where the multiplication on M is zero.
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4.1.2. The category
=nSplitSqZExt(Z) = (QCoh(Z)=~=0)°p
has push-outs: for F1,Fo — F € QCoh(Z)Z~™=0 the sought-for push-out is given by
3:/ = 9:1 X 3:2,
F

where the fiber product is taken in QCoh(Z)Z~™<0 i..,

F ~ 70 (3"1 X ng> .
F

By Corollary 3.3.17, the forgetful functor
<"SplitSqZExt(Z) — (S"DGSchysep-qe)zy — ="DGSchgsep-qc
commutes with push-outs. Le., for F1, %5, F,F as above, the map
Zy, ZI_L Ly, = Lo

is an isomorphism, where the latter push-out is taken in the category S”DGSCthCp_qC. More-
over, if Z is affine, the above push-out agrees with the push-out in the category <"DGSch®f.

4.1.3. Let X be an object of <"PreStk. For S € <"DGSch®! and a map z : S — X, consider
the category <"SplitSqZExt(S, ) consisting of triples

{F € QCoh(S)=7™=Y 2/ : S5 = X, 2'|s ~ x}.

Le.,

SnSplitSqZExt(S, x) := <"SplitSqZExt(S) X (S"DGSch*)g/ /x.
(£»DGSchaff) g,

Definition 4.1.4. We shall say that X satisfies indscheme-like Condition (A) if for any S and
x as above, the category <"SplitSqZExt(S, x) is filtered.

We can reformulate the above condition in more familiar terms. Another familiar reformu-
lation is described in Sect. 4.1.7 below.

4.1.5. Consider the functor
Z7(TrX) : QCoh(S)=7™=0 — co-Grpd

defined by
(4.1) 2T (TEX)(TF) = {2 : Sg = X, a'|g ~ x}.
ILe.,
F— {55} S"SplitSijZExt(S) SnQplitSqZExt(S, z) = { Sy} (S"Dchhaff)s/ (S”DGSChaH)S/ .

The following results from [Lu0, Prop. 5.3.2.9]:

Lemma 4.1.6. The prestack X satisfies Condition (A) if and only if the functor =" (T;X)
preserves fiber products.
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4.1.7. The pro-cotangent space. Recall ([Lu0, Cor. 5.3.5.4]) that for an arbitrary oo-category
C that has fiber products, and a functor F' : C — oco-Grpd, the condition that F' preserve fiber
products is equivalent to the condition that F' be pro-representable.

Thus, we obtain:
Corollary 4.1.8. A prestack X satisfies Condition (A) if and only if for every
(S,z:S = X) € (S"DGSch™™) o,

the functor
Z7(TX) : QCoh(S)="™=% - 0o-Grpd

is pro-representable!”.

Henceforth, whenever X satisfies Condition (A), we shall denote by =~"(T;X) the corre-
sponding object of Pro(QCoh(S)Z~™=0). We shall refer to Z~"(T;X) as “the pro-cotangent
space to X at z : § — X.”

Thus, an alternative terminology for Condition (A) is that the prestack X admits connective

pro-cotangent spaces. 18

4.1.9. Since fiber products in QCoh(S)Z~™=% correspond to push-outs in <"SplitSqZExt(S5),
from Lemma 4.1.6 we obtain that Condition (A) is equivalent to requiring that the functor

S"SplitSqZExt(S) — oo-Grpd
given by

(4.2) Sy {2’ : Sy = X, 2|s ~ 2} = {S} X <"SplitSqZExt(S, z)
<nSplitSqZExt(S)

take push-outs to fiber products.
Since the forgetful functor
="SplitSqZExt(S) — ="DGSchgsep-qe
preserves push-outs, from Proposition 3.4.2, we obtain:

Corollary 4.1.10. Any X € <"DGindSch satisfies Condition (A).

4.1.11. Going back to a general prestack X, assume that X satisfies Zariski descent. This allows
us to extend X to a functor

(S"DGSchysep-qe )P — 00-Grpd

by

z li Maps(S, X
= gelm aps(S, X),

where Zar(Z) is the category of affine schemes endowed with an open embedding into X.

The following is straightforward:

17Since X is an accessible functor, so is =~ (T} X).

I8Note that k-Artin stacks for k > 0 viewed as objects of PreStk typically do not satisfy the above condition,
as their (pro)-cotangent spaces belong to QCoh(S)Z~"<F but not to Pro(QCoh(S)Z~"=9): i.e., they do not
satisfy the connectivity condition.
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Lemma 4.1.12. If X satisfies Condition (A), Z € S"DGSchysep-qec and x : Z — X is a map,
then the functor

Z7(TEX) : QCoh(Z)27™=0 — 00-Grpd, T+ {Z5} x (S"DGSchgsep-qe) s/ /0
(S"DGSchgsep-qc) z/

preserves fiber products.
In particular, we obtain that =" (T*X) is given by an object of Pro(QCoh(Z)Z~™=0).
4.1.13. The relative situation. The functor =~"(T;X) can be defined in a relative situation, i.e.,

when we are dealing with a map of prestacks ¢ : X — Y. Namely, for = : S — X as above, we
set TX/Y to be the functor

QCoh(S)="™=0 — 50-Grpd
defined by

F i+ {S5} X S"SplitSqZExt(S, z).
<7 SplitSqZExt(S,pox)

where S5 defines the point of <"SplitSqZExt(S, ¢ o x) equal to the composite

Sy 55 2%y

and where 7 : S — S is the canonical projection.

Note that if both X and Y admit connective pro-cotangent spaces, TxX/Y, as an object of
Pro(QCoh(S5)=~™=9)  is given by

727" (Cone(T},, Y — Ty X)) .
4.2. A digression: pro-objects in QCoh.

4.2.1. Let C be an oo-category. We consider the category Pro(C), which is, by definition, the
full subcategory of Funct(C, co-Grpd) that consists of accessible functors

F:C — oo-Grpd

that can be written as filtered colimits of co-representable functors.

Let @ : C; — C; be a functor between oo-categories. Then the functor

LKEg : Funct(Cy, 00-Grpd) — Funct(Cs, 0o -Grpd)
sends Pro(Cj) to Pro(Cs); we shall denote by
Pro(®) : Pro(C;) — Pro(Cs)

the resulting functor.

Note that if ® admits a right adjoint, denoted ¥, then Pro(®) can be computed as
(4.3) (Pro(®)(F))(c2) = F(¥(ca)), F €Pro(Cq),cq € Co.

4.2.2. Let C be a stable co-category. In this case, the category Pro(C) is also stable. °
If C; and Cs is a pair of stable categories and ® : C; — C; is an exact functor, then Pro(®)

is also exact.

19Note, however, that even if C is presentable, the category Pro(C) is not, so caution is required when
applying such results as the adjoint functor theorem.
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4.2.3. Let C be a stable co-category and F' an object of Pro(C). Then F gives rise to an exact
functor

FSP . C — Spectra,
such that
F ~ Q> o F5P,
If C arises from a DG category (or, equivalently, is tensored over Vect), then the functor
FSP can be further upgraded to a functor
FVet . C — Vect.
4.2.4. Suppose that C is endowed with a t-structure. In this case, Pro(C) also inherits a
t-structure: its connective objects are those F' € Pro(C) such that F(z) = 0 for € C>°.
Restriction of functors defines a map
Pro(C)=? — Pro(C=9),
which is easily seen to be an equivalence. Similarly, for any n > 0, the natural functor
Pro(C)="™=0 — Pro(C="=0)
is an equivalence.
4.2.5. Now consider the following situation specific to QCoh. Let Z be a DG scheme. We have
the following two categories

Pro(QCoh(Z)) and SelZiz’Z'L(Z) Pro(QCoh(S5)).

Left Kan extension along
F = Flg : QCoh(Z) — QCoh(S)
defines a functor

(4.4) Pro(QCoh(2)) — SEZZZ';?;L(Z) Pro(QCoh(S5)).

This functor admits a right adjoint, which is tautologically described as follows. To

{§ +— (Fs € Pro(QCoh(95)))} € SelZiZL(Z) Pro(QCoh(S))

it assigns F' € Pro(QCoh(Z)) given by

F(?) = lim Fs(?|s).
Se€Zar(Z)

We claim:

Lemma 4.2.6. Assume that Z is quasi-separated and quasi-compact. Then the above two
functors

(4.5) Pro(QCoh(Z2)) = SelZingL(Z) Pro(QCoh(S5))

are mutually inverse.
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Proof. A standard argument shows that instead of Zar(S) we can consider a finite limit corre-
sponding to a Zariski hypercovering.

Note that by (4.3), the left Kan extension Pro(QCoh(Z)) — Pro(QCoh(S)) can be also
expressed as the functor

F = FO (js)*7
where jg denotes the open embedding S — Z.

Then the fact that the two adjunction maps are isomorphisms follows from the fact that
Idgcon(sy) — lign (Js)«oJds

is an isomorphism and the functors F' and Fs involved commute with finite limits.
O

Note that the lemma (with the same proof) also applies when we replace the category
Pro(QCoh(Z)) by Pro(QCoh(Z)=~"=%) for any n > 0.

4.3. Functoriality of split square-zero extensions and Condition (B).

4.3.1. Let ¢ : Z1 — Z be an map between objects of <"DGSchysep.qc. Direct image ¢,
composed with the truncation 7=° defines a functor

<0, : QCoh(Z;)=Z~™=% - QCoh(Zy)= =0,

i.e., a functor
=nSplitSqZExt(Z;) — ="SplitSqZExt(Zy).
It follows from Corollary 3.3.17 that the following diagram is commutative

<nSplitSqZExt(Z;) —— ="SplitSqZExt(Z2)

(4.6) J l

(DGSchgsep-qe)z,) — (DGSchgsep-qe) 2,/
where the bottom horizontal arrow is the push-out functor
ARSI ZLI Zs.
4.3.2. Assume now that Z; = S and Z5 = S, are affine. Let X be an object of <nPreStk, and
r9 an Se-point of X. Set 1 := x5 0¢ : Sy — X. Composition defines a map

(4.7)  ="SplitSqZExt(S;) X SnQplitSqZExt(Ss, ) — S"SplitSqZExt(S1, x1).
=7 SplitSqZExt(S2)

Definition 4.3.3. We shall say that X € <"PreStk satisfies indscheme-like Condition (B) if
the above functor is an equivalence for any (S1,S2,¢).

4.3.4. Using (4.6), we can reformulate Condition (B) as saying that the presheaf X should take
push-outs in S"D(}Schqsep_qc of the form (S1)7, SI_I S to fiber products, where S7, So € DGSch®f,
1

By Proposition 3.4.2, we obtain:
Corollary 4.3.5. Any X € ="DGindSch satisfies Condition (B).
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4.3.6. Let us assume that X satisfies Condition (A). In this case, by (4.3), the map (4.7) can
be interpreted as a map in Pro(QCoh(S;)=~™=Y):

(4.8) =TTy X) — Pro(Z~"¢*) (Z7(T,X)) -
We obtain:

Lemma 4.3.7. As object X € <"~'PreStk, satisfying condition (A), satisfies Condition (B) if
and only if the map (4.8) be an isomorphism.

4.3.8. We shall use the following terminology:

Definition 4.3.9. We shall say that X € <"PreStk admits a connective pro-cotangent complex
if it satisfies both Conditions (A) and (B).

In other words, X admits a connective pro-cotangent complex if it admits connective pro-
cotangent spaces, whose formation is compatible with pullbacks under morphisms of affine DG
schemes.

4.3.10. Let us now assume that X satisfies Zariski descent, as well as Conditions (A) and (B).
Thus, for Z € S"DGSchysep-qc and @ : Z — X, we have a well-defined object
Z7"(TFX) € Pro(QCoh(Z)="=0).
We wish to compare the restriction of Z~"(T;X) to a given affine Zariski open S C Z with
=TTy, X) € Pro(QCoh(8)=~™=").

As in (4.8), we have a natural map
(4.9) =TT, %) = 2T s

z|s
We claim:
Lemma 4.3.11. The map (4.9) is an isomorphism.

Proof. This follows from the description of Pro(QCoh(Z)Z~™<9) given by Lemma 4.2.6.
O

4.4. The cotangent complex of a DG scheme.

4.4.1. Assume for a moment that X = X € S"DGSchqsep_qc. It is well-known that in this case
the object =~"(T;X) € Pro (QCoh(S5)=~"=) actually belongs to QCoh(S)=~"=0:

Proof. 1t is easy to readuce the assertion to the case when X is affine. It is enough to show that
the functor Z="(T7X) commutes with filtered limits. But filtered limits in QCoh(S)=~™<0
map to filtered colimits in S"D(}Schaﬂr, and the assertion follows. O

4.4.2. We obtain that for any X € S”DGSCthCp_qC we have a well-defined object Z~"(T*X) €
QCoh(X)Z~™=0 such that for any affine S with a map z : S — X, we have

(4.10) ZTUTEX) ~ 2T (27T X)),
Moreover, as schemes are sheaves in the Zariski topology, the isomorphism (4.10) remains

valid when S € <"DGSch®? is replaced by an arbitrary object Z € <"DGSchgsep-qe-

4.4.3. In particular, taking Z = X and x to be the identity map, we obtain that the identity
map on =~ "(T*Z) defines a canonical map

Dcan : ZZ—"(T*Z) — Z
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4.4.4. Assume now that X € <"DGindSch, and is written as in (1.1) for some index set A, and
let Z € S"DGSCthEP_qC.

Let x : Z — X be a map that factors through a map z,, : Z = X,,. We obtain that
Z="(T¥X) can be explicitly presented as a pro-object of Pro(QCoh(Z)=~™<%). Namely, we
have:

(4.11) ZTUTEX) =~ “lim” 27T Xa),
QGAQD/ «

T
where x,, denotes the composition Z —> Xy = Xa-
4.4.5. Let X again be an arbitrary object of <"PreStk, satisfying Condition (A), S € <"DGSch*T
and x : S — X a point. We claim that there exists a canonical map in Pro(QCoh(S)Z~™<0)
(4.12) (dx)* : Z7™(TFX) — =7(T*S).

Indeed, it corresponds to the map S>—n(p-g) — X given by the composite

S nireg) ¥ S 5 X

The same remains true with S € <*DGSch™® replaced by Z € <"DGSchygep-gc, Whenever X
satisfies Zariski descent.

4.5. General square-zero extensions.

4.5.1. Let Z be an object of S""!DGSchysep-qc- The category S"~1SqZExt(Z) of square-zero
extensions of Z is defined to be the opposite of

o

((QCoh(2)= " 1=0)> e gyyy) ™
4.5.2. We have a natural forgetful functor
SP1SqZExt(Z) — (5" ' DGSchgsep-qe) 75

defined as follows.
For J € QCoh(Z)Z~"*+1:=0 and a map v : 2~ "(T*Z) — J[1], we construct the corresponding
scheme Z' as the push-out in <"DGSchsep qc

(4.13) Z U Z,
Zg)

where the first map Zy;; — Z is the projection, and the second map corresponds to ~y via the
universal property of Z~"(T*Z).

We note that when Z is affine, by Corollary 3.3.17, the push-out in (4.13) is isomorphic to
the corresponding push-out taken in DGSch?T
4.5.3. Let us denote by i the resulting closed embedding

Z—=7Z U Z
Z911)

corresponding to the canonical map of the first factor.
We have an exact triangle in QCoh(Z'):
ix(J) = Oz — i,(QCoh(2)).



INDSCHEMES 55
Remark 4.5.4. Informally, we can think of the data of i.(J) € QCoh(Z)Z~"*+L=0 for

(9,7) € (QCoh(Z2)= " 1=0)= (g 1)1y,

as the “ideal” of Z inside Z’. The fact that this “ideal” comes as the direct image of an object in
QCoh(Z) reflects the fact that its square is zero. This explains the terminology of “square-zero
extensions.”

Remark 4.5.5. Let us emphasize that, unlike the situation of classical schemes, the forgetful
functor

Sno18qZExt(Z) — (5" ' DGSchgsep-qe) 2/
is not fully faithful. I.e., being a square-zero extension is not a property, but is extra structure.
4.5.6. However, we have the following:
Lemma 4.5.7. For Z € =" 1DGSchsep-qc, the forgetful functor

SPISqZExt(Z) — (5" 'DGSchgsep-ac) 7/

induces an equivalence between the full subcategories of both sides corresponding to Z < Z' for
which S"72Z — <7277 s an isomorphism.

Corollary 4.5.8. For Z' € (S"DGSchysep-qc), the canonical map <"~'Z — Z has a canonical
structure of an object of <"SqZExt(Z').

In addition, we have:
Lemma 4.5.9. For Z € Schyscp-qc, the forgetful unctor
S08qZExt(Z) — (S°DGSchysep-qc) z/

is fully faithful and its essential image consists of closed embeddings Z — 7', such that the
ideal J of Z in Z' satisfies 2 = 0.

4.5.10. Let ¢ : Z1 — Z5 be an affine map between objects of S"_1D(;‘:S(:hqsep_qc. There is a
canonically defined functor

(4.14) Sn=18qZExt(Z;) — S"1SqZExt(Zs),
which it sends

(J1.m) € (QCoh(Z1)= ™ =)= (ge )21y
to

(J2,72) € (QCoh(Z2)= "1 =0)> 0 7y 1y
where

J2 := ¢x(J1),

and 7y, is obtained by the (¢*, ¢.) adjunction from the map

2 (2T Z,)) WL 2o z,) g,
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4.5.11. The following assertion results from the construction:

Lemma 4.5.12. The following diagram commutes
Sn=18q7ZExt(Z;) —_ Sn=18q7ZExt(Z3)

| !

(Sn_lDGSChqseP-qC)Zl/ — (Sn_lDGSCthEP-qC)Z2/7
where the bottom horizontal arrow is the push-out functor
Zy— Z1 U Zs.
Z1
4.6. Infinitesimal cohesiveness and Condition (C).

4.6.1. Let S € <»~'DGSch® and let (J,7) be an object of <"~ 1SqZExt(S). Let

S'=8u S
Sap)

be as in (4.13).
For X € <"PreStk, consider the resulting map
(4.15) Maps(S’, X) — Maps(S, X) X Maps(S, X).
x

Maps(Sy(17,X)

Definition 4.6.2. We shall say that X satisfies indscheme-like Condition (C) if the map (4.15)
is an isomorphism for any (S,J,7) as above.

An alternative terminology for prestacks satisfying Condition (C) is infinitesimally cohesive.
4.6.3. Note that from Proposition 3.4.2 we obtain:
Corollary 4.6.4. Any X € ="DGindSch satisfies Condition (C).

4.6.5. For S € =" 1DGSch*!, let <n—=18qZExt(S, z) be the category of triples
{S—= 9 2/:5 =X, 2'|s =z},
where S < S’ is a square-zero extension with S’ € S"~1DGSch. Le.,

Sn=1QqZExt(S, ) := <" 1SqZExt(S) i Sn=1DGSchy) /o -
sn- c1:‘9/

Suppose now that X satisfies Condition (A). For S € <n=1DGSch*?, recall the map in
Pro(QCoh(S)=~"=<0)
(dx)* : 27(TFX) — =~™(T*S).
Consider the object
Cone((dz)*)[~1] € Pro(QCoh(S)=""+1<1),
Hence, we obtain:

Lemma 4.6.6. An object X € <"PreStk, satisfying Condition (A), satisfies condition (C) if
and only if the naturally defined functor

<n—1 >-n+1,<0 o
SqZExt(S, z) — ((QCOh(S ) )COHE((dZ)*)[—l]/)

1§ an equivaence.
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4.6.7. Assume now that X satisfies Zariski descent as well as Conditions (A) and (C). We
obtain that for Z € <"~ 1DGSch and a given = : Z — X, the description of the category
sn=18qZExt(Z, x) as

—-n y Op
((QCon(2)> =) i)

remains valid.
Moreover, we have the following:
Lemma 4.6.8. Under the above circumstances the following are equivalent:
(a) The category S"~1SqZExt(Z, z) is filtered.
(b) T¥Z/X[—1] ~ Cone((dx)*)[—1] belongs to Pro(QCoh(Z)Z~n+1,<0),
(¢) The map
HO((dz)*) : H® (27™(T;X)) = H° (Z7™(T*2))
18 surjective.

4.6.9. We note that condition (c) in Lemma 4.6.8 is satisfied when X is an indscheme, and the
map z : Z — X is a closed embedding.

4.6.10. Let ¢ : S1 — S5 be a map in <n-1pGSch. For T9 : So — X, composition defines a
map

(4.16) Sn=18qZExt(Ss, x2) X Sn=18qZExt(S)) — ST 1SqZExt (S, x1).
<n—18qZExt(Ss)

using the functor (4.14).

From the definitions, we obtain:
Lemma 4.6.11. If X satisfies Conditions (B) and (C), then the map (4.16) is an isomorphism.

4.6.12. If X satisfies Zariski descent, then the same continues to be true for S; and S; replaced
by arbitrary objects Z1, Zs € S"7!DGSchsep-qc, but keeping the assumption that f: Z; — Z,
be affine.

In other words, the map (4.16) is an isomorphism, where
S1SGZExt(Zy) — ST ISqZExt(Zy)
is the functor defined in (4.14).

4.6.13. Now suppose that 71,75 € S"_IDGSchqsep_qC are as above, but the map f is not
necessarily affine. Assume that X satisfies Zariski descent, and let x5 : Zo — X be a map
satisfying the equivalent conditions of Lemma 4.6.8. Let 1 = w2 o f. In this situation, the
Sect. 4.6.12 still applies. Namely, we have:

Lemma 4.6.14. In the above situation, if X satisfies conditions (A), (B) and (C), there is a
canonically defined functor

Sn1QGZExt(Zy, 1) — S"TISqZExt(Zs, x2),
such that the diagram
Sn=1SGZExt(Zy, 1) ———  S"TISqZExt(Zs, x0)

l l

(SnilDGSChQSeP-QC)Zl/ EE— (SnilDGSChqseP-qC)Zz/
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commutes, where the bottom horizontal arrow is the push-out functor

2 s 20U 7o,
Z1

Proof. By definition, an object of <"~'SqZExt(Zy,x1) is given by a map T, Z1/Y — I[1] for
J € QCoh(Z,)=~"+1=0 This gives a map T}, Z>/Y — f.(J[1]). By assumption on x, this map
canonically factors through 771 £,(J[1]) = 7=°(£.J)[1]. This gives the desired functor

S7lflquExt(Z1, x1) — S"718(1ZEX‘5(Z2, Z2).

Let Z] be the square zero extension of Z;, and Z) the corresponding square zero extension of
ZQ; i.e.,

Z=2, U Zs
(Z2).<0(4,9)1)

It follows from Corollary 3.3.17 that

Z{ LI Zg >~ Z2 (] ZQ-
4 (Z2) <0, (9

Furthermore, by the above discussion, both maps (Z2),<oy (5;1) — Z2 canonically factor
through (Z2),<o(s,9y[1) (compatibly with the map to X). This gives the comparison map

Zy U Zy — 7,
Z1
and it remains to show that it is an isomorphism. By Corollary 3.3.17, it suffices to show it is

an isomorphism when Zs is affine. In this case, by Lemma 3.3.15, the pushouts can be taken
in DGSch*?®, in which case the statement is evident. O

4.7. Dropping n-coconnectivity. Finally, note that the above considerations are valid for
an object X € PreStk, simply by omitting the n-coconnectivity conditions.

Definition 4.7.1. We shall say that X € PreStk admits connective deformation theory if it is
convergent, and satisfies Conditions (A), (B) and (C).
5. A CHARACTERIZATION OF DG INDSCHEMES VIA DEFORMATION THEORY

5.1. The statement. Let X be an object of <"PreStk, such that “X is a classical indscheme.
We would like to give a criterion for when X belongs to <"DGindSch.

Theorem 5.1.1. Under the above circumstances, X € S"DGindSch if and only if X admits an
extension to an object X, 11 € S"t1PreStk, which satisfies indscheme-like Conditions (A), (B)
and (C).

The rest of this subsection is devoted to the proof of this theorem 2°. The “only if’ direction
is clear: if X € S"DGindSch, the extension

anrl = Sn+1LLKE§nDGSChaff<_>§n+1DGSChaff (DC)
belongs to <"*1DGindSch, and hence satisfies Conditions (A), (B) and (C).

For the opposite implication, we will argue by induction on n, assuming that the statement
is true for n’ < n. In particular, we can assume that <"7'X = X|<u—1pggear belongs to
<n=1DGindSch.

20A more streamlined proof will be given in [GR].
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5.1.2. Step 0: initial remarks.

First, we note that by Corollary 4.5.8, the induction hypothesis combined with Condition
(C) implies that the prestack X satisfies Zariski descent. Hence, deformation theory of maps
into it from objects of S"D(}Schqsep_qc, described in the previous section applies.

Thus, for X € <" 1DGSchygep-qc and a map f: X — <"~1X, we have a well-defined object
2_”_1(T}‘xn+1) € Pro(QCoh(X)Z~""1=0),
whose formation is compatible with pull-backs.

Moreover, we have:
<n >—n,<0 P
="SqZExt(X, f) ~ ((QCOh(X)— = )Cone(z—"—l(T;9Cn+1)—>2—"—1(T*X))[—l]/) :

Let =""'DGSchelosed in x denote the full subcategory of ("~ 'DGSchgsep-qc) /x that consists
of those f: X — X, for which f is a closed embedding. In particular, a map

(X1, f1) = (X2, f2)
in this category is given by
(0: X1 = X, fi= o fo),
where the underlying map ¢ : X; — X5 is also a closed embedding, and in particular, affine.

We obtain that push-out makes the assignment
(X, f) = ="SqZExt(X, f)
into a category co-fibered over <" 1DGScheiosed in x- We denote it by
S"SqZExt(=" ' DGSchelosed in x)-

By Sect. 4.6.9, we have that for (X, f) € S*"'DGScheiosed in s
(5.1) Cone(Z "N (T}Xps1) = =" H(T*X))[~1] € Pro(QCoh(X)="™=7).
Hence, by Lemma 4.6.8, the category <"SqZExt(X, f) is filtered.

5.1.3. Step 1: creating closed embeddings.
It is of course not true that for any (X, f) € <" 'DGSchejosed in x and

(5.2) (i: X = X', f: X' = X) e S"SqZExt(X, f),
the map f’ is also a closed embedding.

Let
(5.3) SPSQZEXt(X, f)etosed in x C ="SqZExt(X, f)

denote the full subcategory spanned by objects for which the map f’ is a closed embedding.
We claim that the functor (5.3) admits a left adjoint.

Indeed, for an object (5.2), given by a pair
Cone(Z " (T} Xp11) = =" HT"X))[-1] = I, I € QCoh(X)Z ™=,
the image of the map
H° (Cone(Z ™" "N T} Xng1) = =" 1T X))[-1]) — H°(J)
is a well-defined object J € QCoh(X)Y, by (4.11).
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The value of the sough-for left adjoint on the above object of <"SqZExt(X, f) is given by
Cone(Z "N T} Xpt1) = 27" HT*X))[-1] = 7,
where J € QCoh(X)=""=0 fits into the exact triangle
T34
In particular, we obtain that the embedding (5.3) is cofinal. We also obtain that the category
SNSqZExt(X, f)elosed in x i also filtered.

Let
SrrLSClZ:I'__‘)}(t’;(S71711)(}SCh/DC)closed in X

denote the corresponding full subcategory of <"SqZExt(S"~'DGScheiosed in ). The existence
of the left adjoint to (5.3) implies that the forgetful functor

SnSqZEXt(Sni1DG'SCh/I)C)closed inX — SnilDGSChclosed in X

is also a co-Cartesian fibration.

5.1.4. Step 2: construction of the inductive system. Let

Sy~ colim X,

acA

be a presentation as in (1.1) with X, € S"_1D(}Schqsel[,_qc. For every a € A, let f, denote the
corresponding map X, — <"~1X. For an arrow a; — as, let fan,a, denote the corresponding
map Xo, —+ Xa,-

For each a, let B, denote the category
SnSqZEXt(AXVou fa)closed in X-
For 3 an object of B,, we will denote by X4 the corresponding <"DG scheme X/, and by fs

the closed embedding f/,. Let ig denote the closed embedding X, — X. We have an evident
functor from B, to the category of <"DG schemes endowed with a closed embedding into X.

The above construction makes the assignment
a— B,

into a category co-fibered over A. Let ¢ denote the tautological map B — A. Since A is filtered
and all B, are filtered, the category B is also filtered.

It is also clear that the assignment
(B €B) (X5 22 %)
is a functor from B to the category of <"DG schemes equipped with a closed embedding into X.
For an arrow (81 — B2) € B, let fg, 3, denote the corresponding closed embedding Xg, — X3z, .

Thus, we obtain a map

5.4 limXg — X
(5.4) colim Xp — X,

and we claim that it is an isomorphism.

In other words, we have to show that for §’ € S"DGSch?, the maps fz induce an isomor-
phism:

(5.5) cgleién Maps(S’, X3) ~ Maps(S’, X).
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5.1.5. Step 3: a map in the opposite direction. Let us construct a map that we shall eventually
prove to be the inverse of (5.5):

(5.6) Maps(S’,X) — cgleign Maps(S’, X3).

For S’ € S"DGSch?, set § := ="~18’. Tautologically, we have:
(5.7) Maps(S’, X) ~ cgleiz\n {z:8— Xo, 2" : 8" =X, 2'|s = faox}
We can view S’ as a square-zero extension of S by the object
H™"(0g/) € QCoh(S)¥[n] € QCoh(8)=~"=0,
see Corollary 4.5.8.
By Lemma 4.6.14, we obtain an isomorphism in co-Grpd:

{z:8—=Xp, 218 =X, 2|s = faox}~

~ colim z:8 = Xo, S'U X~ X1
(XﬁxweSnSqZExt(mea){ @ 5 Xa= Xo)

Taking into account that
B, = SnSqZEXt(AXow fa)closcd in X < SnSqZEXt(‘Xom fa)
is cofinal, we have an isomorphism in co-Grpd:

{z:8 = X4, 2" : S = X, x’\ngaom}:cﬂoelém{x:S%Xa,S'IﬁXa:XB}.

Combining this with (5.7), we obtain a canonical isomorphism in oo -Grpd:
/ ~ . . . / ~
Maps(S’, X) ~ cglezgn (CBOGZZBZL {z:5—>X,, S 4 Xo =~ Xg}) .

We have a canonical forgetful map
colim <colim {z:8— X, S'U X, ~ Xﬂ}> — colim (colim {z/: 8" — Xg}) ~
aEA BEB, S a€cA BEB4
~ coli "8 = Xg}.
colim {x 8}
Thus, we obtain the desired map
Maps(S’, X) — cglién {2’ 8" — Xz}
€
of (5.6).
It is immediate from the construction, the composite arrow

r5)

Maps(S’, X) 68 cgleién Hom(S5", X3) 63 Hom(S’, X)

is the identity map.
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5.1.6. Step 4: computation of the other composition. It remains to show that the composition
(5.8) cglign Maps(S’, X ) 63 Maps(S’, X) 68 cglién Maps(S’, X3)
€ €

is isomorphic to the identity map.

To do this, we introduce yet another category, denoted I". An object of I' is given by the
following data.

An arrow (8 — f1) € B, which projects by means of ¢ to an arrow (o — a1) € A,
A map gg,a, : S"_lX@ — Xoqs
e A commutative diagram of square-zero extensions compatible with maps to X

Xﬁ fon, 7 Xﬂl

jﬁT Tiﬁl
Sn—lXB 98,1 )(C¥17
where jg is the canonical map, corresponding to the truncation (see Corollary 4.5.8),
e An identification of the composition

<n-—1;

i _ 98.c ;
X —P<n 1Xﬁ — Xa, with fa’o‘l’

A homotopy between the resulting two identifications, making the following diagram

commutative:
far ©9pay 0 ="y ——— fgojso=""lig fgoig
fal o f(x,al ? fa

We can depict this data in a diagram:

X/g fﬁﬁl XB

Tﬂﬁ

Sn_lXﬁ iy
B
5 9) fa,oq
( : Xa XO¢1 f x
ai

Morphisms in T' are defined naturally (so that the corresponding diagrams of DG schemes
commute).

There are tautological maps 1,1, : I' = B that remember the data of 8 and (31, respectively.

The colimit

. ’
cglezlm Maps(S’, X)),

admits a tautological map

(5.10) T cgéilm Maps(S”, Xy () = cgleign Maps(S’, X3).
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Note, however, that we have another map

. y 4 ) 4
(5.11) T cglezlzn Maps(S”, Xy (y)) — cglezgn Maps(S’, X3),

which for v € T', sends Maps(S’, Xy(,)) to Maps(S’, Xy, (y) by means of fy(y) ., (y). However,
the same edge fy ()4, () Provides a homotopy between these two maps of colimits.

It follows from the construction that the composite
coleilm Maps (S, Xy (1)) — cglién Maps(S’, X5) 63 Maps(S’, X) 68 cglién Maps(S’, X3)
v € €

coincides with the map ry.

Therefore, to prove that the composition in (5.8) is isomorphic to the identity map, it suffices
to show that the map r is an isomorphism in co-Grpd. To do this, we will repeatedly use the
following observation:

Lemma 5.1.7. Let F': C' — C be a functor between oo-categories.

(a) Suppose that F is a Cartesian fibration. Then F is cofinal if and only if it has contractible
fibers.

(b) Suppose that F is a co-Cartesian fibration, and that F has contractible fibers. Then it is
cofinal.

It is easy to see that the functor 4 is a Cartesian fibration. Applying Lemma 5.1.7, we obtain
that it is sufficient to show that the fibers of ¢ are contractible.

5.1.8. Step 5: contractibility of the fibers of 1. For 8 € B, let I'g denote the fiber of . Explic-
itly, I consists of the data of

e An object a; € A, and an arrow ¢(8) =: o — ;.

e Amap gga, : "X — X,

e An identification of the composition

<n-—1;

i _ 98.c ;
X —P<n 1Xﬁ — Xa, with fa’o‘l’

A homotopy between the resulting two identifications, making the following diagram
commutative:

foar © 98,01 © S”_liﬂ —— faojgo 3"_12'5 ~ fgoig
foq ofa,ocl > fa-

A lift of & — 4 to an arrow 8 — ;.
e A commutative diagram of square-zero extensions compatible with maps to X

XB f/t/il

] Ton

_ 98,
sn-ly, 2Ry,

We introduce the category Ag to consist of the first four out of six of the pieces of data in
the description of I's given above. lLe., an object of Ag corresponds to a diagram
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Xs

b

Sn—leg

gﬂ,oq
S"_liﬁT \
X

oo

[e% Xal fal x

(5.12)

We have a natural forgetful map I's — Ag. It is easy to see that this functor is a co-Cartesian
fibration. Hence, by Lemma 5.1.7, it is enough to show that Ag is contractible, and that the
fibers of I's over Ag are contractible.

5.1.9. Step 6: contractibility of Ag. By construction, we have a left fibration Ag — A/, and
hence the homotopy type of Ag is

colim | Maps(=""'X4, X,,) X pt ],
a1€A,, Maps(Sn—1Xg,X) X Maps(Xa,Xa;)
Maps(Xa,X)

where pt — Maps(S""Y(X3), X) is the map fz o j5 and pt — Maps(Xa, Xa,) iS fa.a,-
Since the category A, of objects a; € A under « is filtered, we can commute the colimit

and the Caretesian products, and we obtain that the homotopy type of Ag is

<colim Maps(S"" X5, X,,) X pt.
a1€A, )
Maps(="—1Xg,X) X < colim Maps(Xa,Xa1)>

Maps(Xq,X) \ ¥1€Aq /

Since the DG schemes and X, and Xg are quasi-separated and quasi-compact, the maps

(f?el%\m/ Maps(S" "X 5, X, ) = c(i)llgiz Maps(S""'X 3, X,,) — Maps(S" "X 4, S"71X)

and

colem Maps(Xq, Xa, ) = coliTAﬂ Maps(Xe, Xo,) — Maps(Xq, S"71X) ~ Maps(Xq, X)
a1€Ay ) a1 €

are isomorphisms.

We obtain that the homotopy type of Ag is

Maps(gn*lXﬂ, X) X pt ~
Maps(="—1X3,X) (>< )Maps(me)C)
Maps(Xa,X
~ Maps(=" "X 3, X) X pt ~ pt.
Maps(="~1X3,X)
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5.1.10. Step 7: contractibility of the fibers I's — Ag. For an object dg € Ag as above, the fiber
of I'g over it is the category of

L Bl S Bala

e A map of square-zero extensions:

VNG
XB - XBl

q
<n—1y, 9P
= g — Xays
compatible with the maps to X.
Let j : Z < Z' be any square-zero extension in <"DGSch, and let 21 : Z — X,,, 2" : Z/ = X
be fixed maps equipped with an identification
fa, 01 =2 0.
(In our case, we are going to take Z = =""1X5 and Z’ = X;.) Consider the category of pairs:

4 /81 S Bala
o A map of square-zero extensions

A—— N

1T
Z 2 X,

compatible with the maps to X

We claim that this category is contractible. Indeed, if we omit the condition of compatibility
with the given map 2’ : Z’ — X, we obtain the category whose homotopy type is

golém {maps of square-zero extensions as above},
16 aq

which, by the definition of B,,, is homotopy equivalent to

Maps(Z',X)  x  pt,
Maps(Z,X)

where the map pt — Maps(Z, X) is given by fo, cx1 =2’ 0 j.
Reinstating the compatibility condition results in taking the fiber product

colim | {maps of square-zero extensions} X pt
B1€Bq, Maps(Z’,X) X pt
Maps(Z,X)

Since B, is filtered, the above colimit can be rewritten as

colim {maps of square-zero extensions} X pt ~
B1€Ba, Maps(Z’,X) X pt
Maps(Z,X)
~ (Maps(Z’, X) x pt) X pt ~ pt.
Maps(Z,X) Maps(Z’,X) X pt
Maps(Z,X)

5.2. The Ry condition. In this subsection we will give a characterization of the Ny property
in terms of pro-cotangent spaces.
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5.2.1. Let C be a category. We shall say that an object of Pro(C) is N if it can be presented
as an inverse limit over a category equivalent to N as a poset.

5.2.2. Let X be an object of ="DGindSch. We shall denote by X, ;1 its canonical extension to
an object of ="*'DGindSch, i.e.,

it = ELKE(X).

Proposition 5.2.3. An object X € S"DGindSch is X if and only if the following two conditions
hold:

(a) The classical indscheme <X is Rg.

(b) The following equivalent conditions hold:

(i) There exists a cofinal family of closed embeddings x : Z — <X, where Z € Schysep-qe,
such that the object =~ "~ H(T;X,41) € Pro(QCoh(Z)=~""1=0) s N,.

(i) Same as (i) but for any map x : Z — <X (i.e., not necessarily a closed embedding).

(iii) Same as (ii), but with Z required to be affine.

5.2.4. Proof of the equivalence of (i), (ii) and (%i). The implication (ii) = (i) is tautological.
The implication (i) = (ii) follows from the fact that the formation of Z="~1(T*X,, ) is com-
patible with pull-backs, i.e., Condition (B). The implication (ii) = (iii) is again tautological.
The implication (iii) = (ii) follows from the next lemma:

Lemma 5.2.5. The equivalence of Lemma 4.2.6 for Pro(QCoh(—)Z~"=0) preserves the cor-
responding Ng subcategories.

Proof. Tt is easy to see that it is enough to prove the lemma for Pro(QCoh(—)) instead of
Pro(QCoh(—)Z~<0),

By induction, the assertion reduces to the following statement: let Z = Z; U Z5 be a covering
of Z be two Zariski open subsets. Let F' € Pro(QCoh(Z)) be an object such that

Pro(57)(F) € Pro(QCoh(Z1)) and Pro(j3)(F) € Pro(QCoh(Z5))
are Ng. Then F'is Ny.

It is easy to see that if ¥ — F” — F"' is an exact triangle in Pro(QCoh(S)), then the
condition of being Xy has the “2 out of 3” property. Considering the exact triangle

F — Pro(j14) o Pro(j1%)(F) — Cone (F — Pro(j1«) o Pro(ji)(F)),
we obtain that it is sufficient to show that Cone (F' — Pro(ji.) o Pro(ji)(F)) is No.

However, Cone (F' — Pro(j1x) o Pro(j7)(F)) is supported on a Zariski-closed subset con-
tained in Z5 and isomorphic to

Cone (Pro(j3)(F) — Pro(ji2,2«) © Pro(jifs.2)(F)) .

(where ji22 denotes the open embedding Z; N Zy < Z3), which is Ry by the “2 out of 3”

property.
g

This finishes the proof of the equivalence of properties (i), (ii) and (iii) in Proposition 5.2.3.
O
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5.2.6. Proof of "the only if” direction. Suppose X is Rg. Fix its presentation as in (1.1), where
the index set A is equivalent to N. For a € A (resp., for an arrow a; — az) let fo, (resp., fa,,as)
denote the corresponding closed embedding f, : X, — X (resp., Xo, = Xa,)-

For a quasi-separated and quasi-compact Z € <*DGSch equipped with a map z : Z — X,
let ag be an index such that x factors through a map 4, : Z — Xa,. By (4.11), we have:

>—n—1 * ~ W >—n—1 *
- (Tm xn+1) — aéZAm (TxaoofaovaXOé)’
ag/

and the category of indices is explicitly equivalent to N.
d

5.2.7. Proof of 7if” direction. First, we observe that the “2 out of 3” property of an object of
QCoh(2)=z7"~1:=0 of being Ry implies that if conditions (i), (ii) or (iii) hold for Z € Schysep-qc
equipped with a map to X, then the same will be true for any Z € S"D(}Schqsep_olc equipped
with a map to <"X.

By induction, we may assume that the truncation

<
sn 1x = x|§n—1DGSChaff

is No.

Fix a presentation of <"~1X as in (1.1), where the category A is equivalent to the poset N.
Consider the corresponding category B (see Step 3 in the proof of Theorem 5.1.1), mapping to
A by means of ¢. We shall use the following lemma:

Lemma 5.2.8. Let ¢ : B — A be a co-Cartesian fibration of categories, where A is equivalent
to N, and every fiber admits a cofinal functor from N. Then B also admits a cofinal functor
from N.

Hence, by the lemma, it suffices to show that for each oo € A, the corresponding category B,
admits a cofinal functor from N. By construction, the category

B, = S”SqZExt(Xa, fa)closed in X

is cofinal in S"SqZExt(X,, f), and the embedding admits a left adjoint. Therefore, it is enough
to show that the latter admits a cofinal map from N.

We have
SMSqZExt(Xa, fa) = ((QCOh(Xa) ™™ =%) cone((dra))-1])  »
where (df,)* is the canonical map in Pro(QCoh(X,)=~""1):

27T Xpga) = =" (T Xa).

The assertion now follows from the assumption that Z_”_I(Tfa Xnt1) is No.

5.3. The “locally almost of finite type” condition.
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5.3.1. We shall characterize <"DG indschemes locally of finite type in terms of their pro-
cotangent spaces.

As before, let X be an object of <*DGindSch, and set
i1 = LLKE(X).
Proposition 5.3.2. The following conditions are equivalent:
(a) X is locally of finite type.

(b) “'X is locally of finite type and the following equivalent conditions hold:
(i) There exists a cofinal family of closed embeddings x : Z — ‘X, where Z € Schg, such
that the object
2= 1(T*X,11) € Pro(QCoh(Z)=""~1=0)
belongs to Pro(Coh(Z)Z—"~1:<0),
(i) Same as (i) but for any map x : Z — /X (i.e., not necessarily a closed embedding).
(iii) Same as (ii), but with Z required to be affine.
5.3.3. Proof of the equivalence of (i), (ii), and (iii). This is similar to Sect. 5.2.4, using the
following interpretation of
Pro(Coh(Z)="™=% < Pro(QCoh(Z)=~™=<")
for Z € DGSchyg:

Lemma 5.3.4. For a Noetherian scheme Z, an object F € Pro(QCoh(Z)Z~™"=9) belongs to
Pro(Coh(Z)Z=™=9%) if and only if, when viewed as a functor

F : QCoh(Z)=~™=Y — 00-Grpd,
it commutes with filtered colimits.

5.3.5. Proof of Proposition 5.3.2. The implication (a) = (b) follows using Lemma 5.3.4 from the
fact that an object of <"+1PreStk, which is locally of finite type, takes limits in <"+'DGSch?
to colimits, see [GL:Stacks, Corollary 1.3.8].

Let us show that (b) implies (a). By induction, we can assume that <"71X := X|<»pagepst
is locally of finite type.

We claim now that conditions (i), (ii) and (iii) of Proposition 5.3.2(b) hold for any Z €
<" DGSchg, mapping to "X (and not just classical schemes). This follows from the next
observation:

Lemma 5.3.6. Let Z be an object of DGSch™ | and F € Pro(QCoh(Z)Z~™<9). Then F
belongs to Pro(Coh(Z)Z=™<%) if and only if its restriction to °Z does.

Remark 5.3.7. The assertion of Lemma 5.3.6 is valid, with the same proof, when we replace the
categories Pro(QCoh(Z)Z~™=%) and Pro(Coh(Z)Z~™=0) by the categories QCoh(Z)=~"™<0
and Coh(Z)Z~™=0 respectively.

Proof. The property of commutation with filtered colimits is enough to check on QCoh(Z)%,
and direct image defines an equivalence QCoh(“Z)" ~ QCoh(Z)®.
O

The rest of the proof of Proposition 5.3.2 is the same as that of Proposition 1.7.6 in Sect. 3.5.2.
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6. FORMAL COMPLETIONS
6.1. The setting.

6.1.1. In this section we will study the following situation. Let X be an object of PreStk, and
let Y be an object of

clyredpraGtk :— Funct((TedSChaH)()p, 0o-Grpd),

where "¢?Sch® denotes the category of classical reduced affine schemes. Let Y — 74X be a
map, where ¢-7ed) .= X

redQchaff .

Definition 6.1.2. By the formal completion of X along Y, denoted X%, we shall mean the object
of PreStk equal to the fiber product

X — X

l l

RKE(T»edSChaff)op‘_)(DGSChaff)op(y) —_— RKE(redSChaff)op<_>(DGSChaff)op(Cl’redx).
In plain terms for S € DGSch®®, we set Maps (S, Xy) to be the groupoid consisting of pairs
(z,y), where z : S — X, and y is a lift of the map
et reag : TedG — chredy
to a map y : 74 — Y,
6.1.3. Several remarks are in order:
(i) If X is convergent, then so is X{).

(ii) X and X{j have “the same deformation theory.” In particular, if X satisfies Conditions (A),
(B) or (C), then so does X{j, and for any x : S — X, the map

Ty — Ty
is an isomorphism of functors out of QCoh(S)=°.

(iii) The formation of Xy is compatible with filtered colimits in the sense that for a filtered
category A and functors

A — PreStk : a — X, and A — 7°PreStk : a0 — Y,
and a natural transformation Y, — °7¢?X,, the resulting map
lim (Xo)§ — X3
Qe e = 1y
is an isomorphism, where

X :=colim X, and Y := colim Y,.
a€cA aEA

(iv) For a map X’ — X in PreStk, let Y :=Y x  <b7¢4X’. Then
clyred oy

IN o YA /
G = X X X

6.1.4. When defining formal completions, we can take Y — X

redgepatt t0 be an arbitrary map.

For example, taking X = pt, we obtain an object of PreStk isomorphic to
RKE(rcdSC}laff)op%(DGSChaff)op (‘H)

The latter object is otherwise known as the “de Rham space of Y” and is denoted Yqgr.



70 DENNIS GAITSGORY AND NICK ROZENBLYUM

6.1.5. Given a map of prestacks Y — X, let DC@ denote the formal completion of X along
chredy _y cliredy’ e can express xg in terms of the de Rham spaces of X and Y; namely,

92 X x lédR.
Xar
6.2. Formal completions along monomorphisms.

6.2.1. Let us now assume that the map Y — 47°4X is a monomorphism. ILe., for S € *?Schf
and a map S — °b7°?X if there exists a lifting S — Y, then the space of such liftings is
contractible.

Note that in this case the map xg — X is also a monomorphism. In particular, if Z; — X,
i = 1,2 are maps in PreStk that factor through X{d\, then the map

(61) 21 X Zog — 21 X Zo
X

Xy

is an isomorphism.

6.2.2. The above observation implies that if f : Z — xg is a map such that the composition
Z — DC@ — X is a closed embedding, then the original map f is a closed embedding.

Remark 6.2.3. Note that the converse to the above statement is not true: consider X := A(llR,
and Y = pt. We have 74X = Al cagyarr, and we let Y — 47°4X be the map corresponding
to {0} € A'. Then X = pt. The tautological map X{j — X is now

pt — AéR,

and it is not a closed embedding: indeed, its base change with respect to A! — Aly yields
(Al)?o} which is not a closed subscheme of A!.

6.2.4. We would like to consider descent for DC@ This is not completely straightforward since
the restriction of the fppf topology to "?Sch®® does not make much sense.

Let
13 N cl,redx

(6.2) l l
Y clred(L(X))
be a Cartesian diagram in ¢"¢PreStk in which the horizontal arrows are monomorphisms.
Lemma 6.2.5. Under the above circumstances, the natural map
L(Xg) = (L(X))yr
18 an isomorphism.

Proof. Recall that the sheafification functor L maps monomorphisms into monomorphisms.
Therefore both maps

L(X45) — L(X) and (L(X))y, — L(X)

are monomorphisms. Hence, the map in the lemma is a monomorphism as well. It requires to
see that it is essentially surjective.
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Thus, let z : S — L(X) be a map that factors through (L(X)){},. We wish to show that it
factors through L(DCQ) as well. Let 7 : .S — S be an fppf cover, such that = o 7 lifts to a map
Z: S — X. It suffices to show that Z|e,reag factors through Y. However, Z|c,reag factors through

! X cl,red

cl,red(1,(X))

by construction, and the required factorization follows from the fact that the diagam (6.2) is
Cartesian.
O

Corollary 6.2.6. If X is a stack, then so is DC@

6.2.7. From now on, we will assume that the map Y — °47¢?X is a closed embedding. I.e., for
S € medSch®f and a map S — 47°?X, the fiber product

S x Y,

cl,red g
taken in ““"¢?PreStk, is representable by a (reduced) closed subscheme of S.

6.3. Formal completions of DG indshemes. The next proposition shows that the procedure
of formal completion is a way of generating DG indschemes:

Proposition 6.3.1. Suppose that in the setting of Sect. 6.2.7, X is a DG indscheme. Then the
formal completion I)C@ 1s also a DG indscheme.

We shall give two proofs.

Proof. (an overkill)

We shall prove the proposition by applying Theorem 5.1.1. We note that Conditions (A),
(B) and (C) hold for X{j because they do for X, see Sect. 6.1.3(ii) above. Hence, it remains to
show that cl(xg) is a classical indscheme. However, this is obvious, as the latter is the colimit

colim Z,
Ze—tX

taken over the (filtered!) category of closed embeddings that at the reduced level factor through
Y.
O

Note that using Proposition 5.3.2 and Sect. 6.1.3(ii), the above argument also gives:
Corollary 6.3.2. If X is locally almost of finite type, then so is DCQ

6.3.3. The second proof of Proposition 6.3.1 comes along with an explicit description of DC@ as
a colimit of DG schemes:

For X € DGindSch, consider the full subcategory

DGSchggsep-qe ) closed in x  DGSch/yn .
( chqsep-ge)closed xDGSch/x Ch/xg

Le., it consits of those closed embedding Z — X, which factor through xg Note that by
Sect. 6.2.2, for any

7 € (DGSchyeen. n % DGSch yn,
( qsep qc)closed X DGSeh ) x /I)Cy

the resulting map Z — DCQ is a closed embedding.
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Proposition 6.3.4. The category (DGSchysep-qc)closed in X X DGSch/xQ is filtered, and
DGSCh/x ¢

the map

colim Z — X3,
Z€(DGSchgsep-qe)closed in xDGsfh/xDGSCh/xg

is an isomorphism, where the colimit is taken in PreStk.

Proof. Tt suffices to show that for S € DGSch®® and a map S — X that factors through Y at
the reduced classical level, the full subcategory of

DGSChS’/ﬁlosed in X
consisting of

S—7—=X, Z e (DGSchqsep-qc)closed in x  DGSch/xn
( chgsep-qe ) closed xDGSch/x ch/xg

contains finite colimits.
The proof follows from the description of finite colimits in (DGSch) g/ ciosed in x, given in the

proof of Proposition 3.2.2.
O

Remark 6.3.5. Tt is not difficult to see that the category

DGSchysen-ge )elosed in x  DGSch /yn
( qpq>1 d xDGSch/x /%5

used in the above proof is the same as (DGSchgsep-qc ) closed in x> i.e., the assertion on Sect. 6.2.2
is “if and only if” for X a DG indscheme and Z = Z € DGSchgsep-qc-

Indeed, let Z denote the closure of the image of Z in X. It is enough to show that the map

Z x Z — Z is a closed embedding. However, since Z — X also factors through DCQ, the map
X

Z X Z—-2xZ
X)) x
is an isomorphism, and the map
Z x Z—=2Z,
Xy
being a base change of Z — DCQ, is a closed embedding, by assumption.

6.3.6. Note also that if X is written as in (1.5), then if we set Y, := Y n<redX, by Sect. 6.1.3
(iii) and (iv), we have:
X§ ~ colim (X4)y, »

where the colimit is taken in PreStk.

6.4. Formal (DG) schemes. Let us recall the following definition:

Definition 6.4.1. A classical indscheme X is called a formal scheme 1 ’”ed(xcl) is a scheme.

21

In the derived setting, we give the following one:
Definition 6.4.2. A DG indscheme X is called a formal DG scheme if the underlying classical

indscheme X is formal.

21Recall that we denote by Y — "¢4Y the functor ¢PreStk — ¢\:"¢@PreStk corresponding to restriction along
redgchaff 5 Schaff,
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We have, tautologically:

Lemma 6.4.3. In the situation of Proposition 6.3.1, if Y is a scheme, then DCQ is a formal DG
scheme.

6.5. Formal completions of DG schemes. For the rest of this section we will take X to be
a DG scheme X, and Y to be a Zariski closed subset Y of ¢©7¢4X . Consider the corresponding
formal completion X3.

In this situation, we shall always assume Y is quasi-compact and quasi-separated, in order
for X{ to be a DG indscheme according to our definition.

6.5.1. First, we have:
Proposition 6.5.2. X7 is a DG indscheme.

We note that Proposition 6.5.2 is not, strictly speaking a consequence of Proposition 6.3.1,
since if X fails to be quasi-separated and quasi-compact, then it is not a DG indscheme in our
definition. However, it is easy to see that either of the first two proofs of Proposition 6.3.1
applies in this case as well.

We also note that 7¢4(X{}) ~ Y. Hence, we obtain:
Corollary 6.5.3. Xy is a formal DG scheme.

6.5.4. In the present situation, we can slightly improve the presentation of X{* given by Propo-
sition 6.3.4:

Proposition 6.5.5. As an object of PreStk, X{ is isomorphic to

colimY’,
YIS X

where the colimit is taken over the category of closed embeddings whose set-theoretic image is
Y.

Proof. By Corollary 1.6.6, we know that X{ is isomorphic to

colim Z,
Z—X

where the colimit is taken over the category of closed embeddings Z — X whose image is
set-theoretically contained in Y.

By Lemma 3.5.3, is suffices to show that any such Z — X can be factored as Z — Y’ — Z,
where Y/ — Z is a closed embedding whose set-theoretic image is exactly Y.

Let Y/

.n be the reduced closed subscheme of X corresponding to Y.

Consider the map "¢4Z — X The latter canonically factors as ¢-7¢4Z — Y/~ — <X, The
required Y is then given by

Z U Y!

clyredy ~ €an’
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6.5.6. Note, however, that in general X{ will fail to be weakly R, even at the classical level.
E.g., we take X = A* := Spec(k[t1,t2,...]) and Y = {0} C A*>.

However, X¢ is weakly Ny under the following additional condition:

Proposition 6.5.7. Assume that Y can be represented by a subscheme Y’ of “X , whose ideal
is locally finitely generated. Then X3 is weakly o as a DG indscheme.

Remark 6.5.8. We expect that X{ is actually Ro (see Sect. 1.4.11 for the distinction between
the two notions), but we cannot prove it at this time. However, we will prove this when X is
affine, and for general X, “up to sheafification”, see Proposition 6.7.7.

Proof. We shall deduce the assertion of the proposition from Proposition 5.2.3.

We note that condition (b) of Proposition 5.2.3 follows from Sect. 6.1.3(ii), as it is satisfied
for X.

It remains to show that the classical indscheme underlying X9 is Xo. However, the quasi-
compactness hypothesis in Y and the assumption that the ideal J of Y is locally finitely
generated imply that the subschemes Y,/ given by J" are cofinal among all subschemes of X
whose underlying set is Y. O

6.6. Formal completion of the affine line at a point.

6.6.1. We continue to study formal completions of the form X, where X is a DG scheme, and
Y is a Zariski closed subset of X, which is quasi-separated and quasi-compact.

We will impose the assumption made in Proposition 6.5.7. Namely, will assume that Y can
be represented by a subscheme Y of X, whose ideal is locally finitely generated.

We will show that in this case, the behavior of X¢ exhibits some additional favorable features.

6.6.2. First, we shall calculate the most basic example: the formal completion of A! at the
point {0}. Namely, we have:

Proposition 6.6.3. The natural map
colim Spec(k[t]/t") — (Al)f{\o},
n
where the colimit is taken in PreStk, is an isomorphism.

The statement of the proposition is obvious at the level of the underlying classical prestacks,
i.e., when we evaluate both sides on Sch* ¢ DGSch?. However, some care is needed in the
derived setting.

The rest of this subsection is devoted to the proof of this proposition.

6.6.4. Proof of Proposition 6.6.3, Step 1.

Both sides of the proposition are a priori functors (DGSchaH)Op — 00-Grpd. However, we claim
that they both, along with the map between them, naturally upgrade to functors

(DGSch®™)°P — o0 -PicGrpd,
where 0o -PicGrpd is the category of oo-Picard groupoids, i.e., connective spectra.

Consider first the functor Mapsp, gy (—, A!) : (DGSch*®)P — 50 -Grpd represented by Al.
We claim that it naturally upgrades to a functor

Mapsp,esi(— A : (DGSch*®)°P — 00 -PicGrpd .
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This comes from the structure on A! of abelian group object in

Sch*®  DGSch® ¢ PreStk.

Consider now the object

colim Spec(k[t]/t") € “PreStk,

where the colimit in the above formula is taken in “PreStk. The binomial formula endows the
above object with a structure of abelian group object in “PreStk.

Consider the object
nilp := LKE gcpatryor , (Dagchattyor (colnim Spec(k[t]/t™)) € PreStk.
It equals
colnim nilp,,,
where the colimit is now taken in PreStk, and where

nﬂpn(s) = MapsDGSchaff(Sa Spec(k[t]/tn)), S € DGSChaH .

By the functoriality of LKE gcpattyor _, (pagenattyor, and since the forgetful functor
00 -PicGrpd — oo-Grpd
commutes with filtered colimits, we obtain that nilp canonically lifts to a functor

Nilp : (DGSch™™)°P — 00 -PicGrpd.

The same construction shows that the map of functors
Illlp — MapSPrcStk(fv Al)
naturally upgrades to a map of functors with values in co-PicGrpd

Nilp — Mapspeser(— AL).

Consider now the functor Mapsp,.sx (—, (A1)€0}). Since (A')f,, < A' is a monomorphism

and gives rise to subgroups at the level of 7y, we obtain that this functor also naturally upgrades
to a functor

Mapspesix (—, (Al)f0}> : (DGSch*™)°P — 56 -PicGrpd,

and the natural transformation Nilp — Mapspageett (—, Al) factors canonically as

Nilp — Mapspesix (77 (Al)?0}> - MapsDGSchaff(*a Al)
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6.6.5. Step 2.

To prove the proposition, we need to show that for S = Spec(4) € DGSchaH, the map in
oo -PicGrpd

Nilp(A) — A
is an isomorphism onto those connected components of A that correspond to nilpotent elements
in m(A) = “A. In the above formula, we view a connective algebra A as a connective spectrum,
i.e., object of co-PicGrpd.

Hence, it suffices to show that for a connective commutative DG algebra A, the map
m(Nilp(A)) = mi(A)

is an isomorphism for i > 1, and that mo(Nilp(A4)) maps isomorphically to the set of nilpotent
elements in my(A) = “A. Here by 7; for i > 1 we mean the ith homotopy group of the
corresponding space based at the point 0.

6.6.6. Step 3. We first consider the case ¢ > 1.
We regard each nilp,,(A) as a pointed object of co-Grpd. Hence, from the isomorphism
0Q°°(Nilp(A)) = nilp(A) ~ colim nilp,,(A)
in co-Grpd, /, for each ¢ > 1, we have an isomorphism of (ordinary) groups:

7 (Nilp(A)) ~ colnim m; (nilp,, (4)).

Hence, it suffices to show that the map
(6.3) colim m;(nilp,, (A4)) = m(Q°(4))
is an isomorphism.

We have a Cartesian square in DGSch:
Spec(k[t]/t") —— Al

l lpowcr n

{0} — Al
and the corresponding Cartesian square in co-Grpd:
nilp,,(A) —— Q>(A)

l lpower n

* — Q=(A).
Hence, we obtain a long exact sequence of homotopy groups
i1 (Q(A) TES T w1 (27°(4)) = minilp,, (A) = m(QF(A)) "5 (Q(A)...

power n

However, for ¢ > 1 and n > 1, the map m;(Q*°(4)) " — m;(2°°(A)) is zero. Indeed, this
follows from the fact for any two connective algebras A; and As, the canonical map

O%(A1) x Q°(A2) = Q°(A1 ® Ag)
induces a zero map
mi (2% (A1) ® m (27 (A2)) — mi(Q7 (A1 @ Ag))
fori>1.
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Hence, every n we have a short exact sequence
0 = 141 (Q(A)) = m(nilp, (4)) — m( Q% (A)) - 0.
Moreover, for n”” > n’, in the diagram
Tir1(Q°(4)) —— m;(nilp,, (A)) —— m(Q>°(4))

l l l

i1 (2°°(A4)) —— mi(nilp,/(A)) —— m(Q>(4))

the right vertical map is the identity, whereas the left vertical map corresponds to the map
Al — Al given by raising to the power n” — n/, and so vanishes for n” > n’.

This shows that (6.3) is an isomorphism.
6.6.7. Step 4. The fact that
mo(Nilp(A)) — “'A
is an isomorphism onto the set of nilpotent elements is proved similarly.

O(Proposition 6.6.3)

6.7. Formal completions along subschemes of finite codimension. We now return to
the case of a general X and Y satisfying the assumption of Sect. 6.6.1.

6.7.1. Assume that the DG scheme X is eventually coconnective. It is natural to ask whether

the same will be true for the DG indscheme X3.

Note, however, that asking for a DG indscheme to be eventually coconnective (i.e., eventually
coconnective as a stack) is a strong requirement, since it is difficult to satisfy it together with
convergence, see [GL:Stacks, Sect. 1.2.6].

However, the answer to the above question turns out to be affirmative:

Proposition 6.7.2. If X is eventually coconnective, then X is eventually coconnective as a

DG indscheme.

6.7.3. In order to prove Proposition 6.7.2, we will give a more explicit description of the formal
completion X3 in the situation of Sect. 6.6.1 when X is affine. This description will be handy
for the proof of several other assertions in this paper.

Let X = S[E(A), and let Y’ be a closed subscheme of X whose ideal is generated by
elements f1,...,fm in
@A = H°(A) = 70(Q°(Sp(4))).
Let f1,..., fm be points of Q°°(A) that project to the fi,...,fm.

For an integer n, set A,, := Aty 1, ..., tn,m], Where the generators ¢, ; are in degree —1, and
d(tn,i) = fi"

For n’ < n” we have a natural map A,» — A, which is identity on A, and which sends
tor i = fI0 7" -ty ;. We will prove:

Proposition 6.7.4. The natural map
(6.4) colim Spec(A,) — X,

where the colimit is taken in PreStk, is an isomorphism.
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Proof. The functions fi, ..., f;, define a map
Spec(A4) — A™,
and by definition, X7 maps isomorphically to the fiber product
(A™)foy % Spec(A)
Since fiber products commute with filtered colimits, from Proposition 6.6.3, we obtain that
(A™)70y %, Spec(4)
is isomorphic to the colimit over n of

(65) ({0} x A™) x Spec(4),

where the map A™ — A™ is given by raising to the power n along each coordinate. Now, by
definition, the DG scheme in (6.5) is isomorphic to Spec(A4,,), as required.
O

6.7.5. Let us show how Proposition 6.7.4 implies Proposition 6.7.2:

Proof of Proposition 6.7.2. First, note that the assertion is local in the Zariski topology on X.
Thus, we can assume that X = Spec(A) is affine.

Now, the assertion follows from the fact that if A is [-coconnective, then each of the algebras

A, is (m + l)-coconnective, by construction.
g

6.7.6. Here is another corollary of Proposition 6.7.4:
Proposition 6.7.7. The DG indscheme X3 can be written as a colimit in Stk
limY),
where Y — X are closed embeddings with set-theoretic image is equal to Y, and where the
category A of indices is equivalent to the poset N.

Remark 6.7.8. This proposition does not prove that X{ is Rg, because the colimit is taken in
Stk and not PreStk.

Proof. First, note that Proposition 6.7.4 gives such a presentation if X is affine (moreover, in
this case, the colimit can be taken in PreStk). Le., in this case, X7 is Rg as a DG indscheme.

Let S; be a (finite) collection of affine open DG subschemes of X that covers Y. For each 4,
let A; be the corresponding index set (isomorphic to N) for the formal completion (S;)§,y--

For o; € A; let Y@/ «; be the corresponding DG scheme equipped with a closed embedding
into S;. Let Yim be the closure of its image in X, see Sect. 3.1.6.

For a:= {i — (a; € A;)} set Y. be the coproduct of 7:-70” in (DGSchys-gs)closed in X -

We claim that the family « — Y has the desired property. Indeed, it is sufficient to show
that for every ¢, the colimit of the family

a—Y! xS,
b'e
is isomorphic to (5;)§,~y. However, this is clear since this colimit is also given by the colimit

of the family i — Y/, .
a
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6.8. Classical vs. derived formal completions. We shall now show how Proposition 6.7.4
helps answer another natural question regarding the behavior of X{.

6.8.1. Let X a DG scheme, which is 0-coconnective (=classical), i.e., the sheafification of a left
Kan extension of a classical scheme.

One can ask whether the DG indscheme X3 is also 0-coconnective. That is, we consider the
classical indscheme ¢/ (X{), and let

X := "LKE gepattyon s (DGschatyor (“(X7)) -
By adjunction, we obtain a map
(6.6) X — Xy,
and we wish to know whether it is an isomorphism.

Again, we emphasize that it is a rather strong property for a DG indscheme (or any conver-
gent stack) to be 0-coconnective (rather than weakly 0-coconnective), see [GL:Stacks, Remark
1.2.6).

However, the answer to the above question turns out to be affirmative, under an additional
assumption that X be Noetherian (see [GL:IndCoh, Sect. 0.6.9] for the notion of Noetherianness
in the DG setting):

Proposition 6.8.2. If X is Noetherian, the map (6.6) is an isomorphism.

6.8.3. Proof of Proposition 6.8.2, Step 1. The assertion readily reduces to the case when X is
affine; X = Spec(A), where A is a classical k-algebra. Let fi,..., fin € A be the generators of
the ideal of some subscheme Y’ C X whose underlying Zariski-closed subset is Y. Let A, be
the algebras as in Proposition 6.7.4.

For each n, let A’ be the classical algebra H°(4,,), so that
X = colim Spec(A.,),
n
where the colimit is taken in PreStk. We will show that inverse systems {4, } and {A]} are
equivalent, i.e., that the natural map
. 12 .
(6.7) czlg&n Spec(A]) — crolle%n Spec(Ay)
is an isomorphism in PreStk.

6.8.4. Proof of Proposition 6.8.2, Step 2. We will prove:
Lemma 6.8.5. For every n there exists N > n such that the map Ay — A, can be factored as
An — Ay — A,
Let us show how Lemma 6.8.5 implies that (6.7) is an isomorphism. We construct the

sequence i1, i, ..., C N inductively, starting with i; = 1. Suppose i has been constructed. We
take n := 1y, and we let 541 be the integer N given by Lemma 6.8.5.
We obtain the maps
czleigz Spec(4;,) — czleigz Spec(4;,)
and
Tk+1

. . . /
czlesz Spec(4;,) — czlesz Spec(4; . )

that induce mutually inverse maps in (6.7).
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6.8.6. Proof of Proposition 6.8.2, Step 3. We will deduce the assertion of Lemma 6.8.5 from
the following version of the Artin-Rees lemma:

Lemma 6.8.7. Let B — A be a map of (classical) Noetherian rings; let I C B be an ideal ,
and let M be a finitely generated A-module. Then for every i > 0, the inverse system

n +— Tor? (M, B/I™)
s equivalent to zero, i.e., for every n there exists an N > n, such that the map
Tor?(M, B/IN) — Tor? (M, B/I™)
18 zero.

Proof of Lemma 6.8.5. 1t is easy to see by induction that a map of connective commutative
DG algebras C7; — C5 can be factored as

Cy — H(Cy) — Cy
if and only if the maps
H™(Cy) — H™'(Cy)
are zero for ¢ > 0.
Hence, we need to show that for every n, we can find N > n such that the maps
H™"(An) — H™'(Ay)
are zero for ¢ > 0.

Let us apply Lemma 6.8.7 to A being our algebra A, B = k[t1,...,t;], and B — A being
given by f1, ..., fm. Let I C B be the ideal generated by t1, ..., t,,. Let 'I™ be the ideal generated
by t{,...,t1,. Note that

H™(A,) ~ Tor? (A, B)'T").

Finally, the system of ideals n +— I™ is cofinal with n — "1™,
O

6.8.8. Ezxponential map. Let @a and @m be the formal completions of G, and G,,, at 0 and 1,
respectively. These are both formal group schemes. By Proposition 6.8.2, we have that G, and
G,y are both 0-coconnective as prestacks. Hence, the exponential map in “PreStk

cl@a - cl@m’
defined by the usual fomula, gives rise to a canonical isomorphism in PreStk.
exp: Gy = G-
Furthermore, exp is an isomorphism of E,-group objects in PreStk, i.e., as functors

(DGSch*™)°P — 50 -PicGrpd .
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6.8.9. For a connective k-akgebra A, let Nilp(A) denote the connective spectrum (i.e., co-Picard
groupoid)
ker (A — Cl’redA) .
Note that by Proposition 6.6.3, the above definition of Nilp(A) agrees with one in Sect. 6.6.4.

Let A* denote the connective spectrum of invertible elements in the E,-ring spectrum A,
and similarly for 4m¢?4. Set

Unip(A) := ker (A% — bredq) .
We obtain that the exponential map defines a functorial isomorphism
exp : Nilp(A) — Unip(A)
of functors (DGSch™)°P — 0 -PicGrpd.

7. QUASI—COHERENT AND IND-COHERENT SHEAVES ON FORMAL COMPLETIONS

7.1. Quasi-coherent sheaves on a formal completion. Let X be a DG scheme, and Y — X
a Zariski closed subset. We shall assume that Y is quasi-separated and quasi-compact. Let U
be the open DG subscheme of X equal to the complement of Y; let j denote the corresponding
open embedding.
7.1.1. We have a pair of mutually adjoint functors

7% QCoh(X) = QCoh(U) : js,

which realizes QCoh(U) as a localization of QCoh(X). Note, however, that the functor j, is
not a priori continuous, since j is not necessarily quasi-compact.

Let QCoh(X)y denote the full subcategory of QCoh(X) equal to
ker(j* : QCoh(X) — QCoh(U)).

Let 7 denote the canonical map X{ — X, and consider the corresponding functor

P : QCoh(X) — QCoh(X$).

We can ask the following questions:
(i) Is the composition i* o j, : QCoh(U) — QCoh(X?) zero?
(i) Does the functor 7* induce an equivalence QCoh(X )y — QCoh(X{)?
We will answer these questions in the affirmative under an additional hypothesis on the pair
X and Y. We learned the corresponding assertion from J. Lurie.
7.1.2. We will impose the assumption of Sect. 6.6.1, i.e., that Y can be represented by a closed

subscheme Y of “X | whose ideal is locally finitely generated.

In this case, the morphism j is quasi-compact (being an open embedding, it is automatically
quasi-separated). In particular, by [GL:QCoh, Proposition 2.1.1], the functor j. is continuous
and satisfies the base change formula, which immediately implies that the composition

* 0 j, : QCoh(U) — QCoh(X3)

vanishes.
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Proposition 7.1.3. Under the above hypothesis, the composite functor

7 QCoh(X)y < QCoh(X) —5 QCoh(X])
s an equivalence.

7.1.4. Proof of Proposition 7.1.3. The assertion is Zarski-local, so we can assume that X =
Spec(A) is affine. Let fi, ..., fm, and A,, be as in the proof of Proposition 6.7.4.

Consider the functor
QCoh(Xy) — QCoh(X)

given by direct image i, with respect to the morphism /z'\, i.e., the right adjoint of the functor

i 22

Warning: The functor ;* is not continuous and does not commute with Zariski localization.

We obtain that 7, and 7* induce a pair of mutually adjoint functors

(7.1) (QCoh(X))qconw) = QCoh(X3),

where (QCoh(X))qcon(wy denotes the localization of QCoh(X) with respect to QCoh(U), and
the latter is mapped in by means of j,. To prove the proposition it suffices to show that:

(a) The functor < in (7.1) is fully faithful, and
(b) The functor — in (7.1) is conservative.

Assertion (a) is equivalent to the functor 0 being fully faithful. I.e., we need to show that
the adjunction map ¢* o ¢, — Id is an isomorphism.

Fix an object of QCoh(X¢), thought of as a compatible system of A,-modules {F,,}; let F
be its direct image on X. By definition,

F~limT,,
where in the right-hand side, the F,,’s are regarded as A-modules.

We need to show that for every ng, the map

Ay @F = Ty,
A
is an isomorphism.

Since A,,, is compact as an A-module, we can rewrite the left-hand side as lim (Ano F, ),
n A

and further as
(w40 @ 5,)
For n > ng consider the canonical map A,, ® A, — Ao, and let K,, denote its kernel. The
A
required assertion follows from the next claim:

Lemma 7.1.5. For every n there exists N > n, such that the map Ky — K, is zero as a map
of An-modules.

22Recall that direct image g, although in general non-continuous, is defined for any morphism g : Y1 — Y2
in PreStk, by the adjoint functor theorem.
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Proof. Let B denote the polynomial algebra klt1, ..., t,,]. We have A,, ~ A@B)Bn, as commutative
k-algebras. With respect to this identification, we have
K,~A®KDB,
B
as A,-modules, where K} denotes the corresponding object for the algebra B. Hence, it is
enough to prove the assertion for A replaced by B.
To simplify notation, we will only consider the case when m = 1, i.e., B = k[t]. In this case
B, % By, ~ Cone(t" : k[t]/t"° — k[t]/t"°).
When n > ng, the map ¢™ : k[t]/t" — k[t]/t"™ is zero, so K,, ~ k[t]/t"[1]. For n’ > n, the

corresponding map K, — K, is given by multiplication by t"' =", Hence, we can take N = 2n.
O

Let us now prove point (b). Recall the elements fi, ..., f, of A. Let Y} be the closed DG
subscheme of X cut out (in the derived sense) by the equations fi, ..., fi; i.e.,
Yk = Spec(A[tl, ...,tk}, d(tl) = fl),
let i, : Y, — X denote the corresponding closed embedding. In particular ¢7¢?Y,, =Y.

It suffices to show that if for F € QCoh(X) we have i¥,(F) = 0, then F belongs to the
essential image of j,.. Taking the cone we can assume that j*(F) = 0 as well, and we need to
show that ¥ = 0.

By induction on k, we may assume that m = 1. The assumption that i}(F) = 0 means
that fi : § — F acts invertibly, i.e., F — (F)y, is an isomorphism, where (F);, denotes the
localization of F with respect to fi. However, j*(F) = 0 implies (F);, = 0.

O(Proposition 7.1.3)
7.1.6. Let us denote by eR€°" the tautological embedding
QCoh(X)y — QCoh(X).
We note that it admits a (continuous) right adjoint, denoted rQC°", given by
F +— Cone(F — j. 0 j*(F))[-1].
The adjoint pair (eQC°", rQCeh) realizes QCoh(X)y as a co-localization of QCoh(X).

By construction, we have a commutative diagram

QCoh(X{) +——— QCoh(X)

(7.2) '?*T Tld

£ QCoh
QCoh(X)y +—— QCoh(X),
where the left vertical arrow is the functor from Proposition 7.1.3.

Hence, we obtain that the functor 7* : QCoh(X) — QCoh(X$), in addition to having a
non-continuous right adjoint ¢., admits a left adjoint, which we denote by 7.

Thus, we can think of QCoh(X{) as both a localization and a co-localization of QCoh(X)
with respect to the essential image of QCoh(U).

Note that under such circumstances, we have a canonical natural transformation

(7.3) i = iy
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7.1.7. Consider now the non-continuous functor
QCoh(X) - QCoh(X{) =5 QCoh(X),
i.e., the localization functor on QCoh(X) with respect to the essential image of QCoh(U).

This functor is called the functor of formal completion of a quasi-coherent sheaf along Y.
Its essential image (i.e., the essential image of i,) is referred to as objects of QCoh(X) that are
adically-complete with respect to Y.

7.2. Compact generation and duality. Assume now that the scheme X is quasi-separated
and quasi-compact. It is well-known that if Y is locally given by a finitely generated ideal, then
the category QCoh(X)y is compactly generated by QCoh(X)y N QCoh(X)Pert,

Combining this with Proposition 7.1.3 and (7.2) we obtain:

Corollary 7.2.1. The category QCoh(X3) is compactly generated. The compact objects are

obtained as images under i* of compact objects of QCoh(X) that are set-theoretically supported
onY.

Recall now the notion of quasi-perfectness, see Sect. 2.2.4. We obtain:
Corollary 7.2.2. For X andY as above, the DG indscheme QCoh(X3}) is quasi-perfect.

Let us recall that being quasi-perfect means by definition that the category QCoh(X¢) is
compactly generated, and that its compact objects belong to QCOh(X{))perf.

As was shown in Sect. 2.2.4, the above property implies that there exists a canonical equiv-
alence:

(7.4) DY : QCoh(X7)Y =~ QCoh(Xp),
characterized by either of the following two properties:

e The canonical anti self-equivalence Dgi(ijﬁ(xg) : (QCoh(X )P — (QCoh(XP)© is

given by the restriction of the functor F — FV : ((QCoh(X$)Pe)°P — QCoh(X¢)Pert.
e The pairing
(7.5) QCoh(X3) ® QCoh(X3) — Vect
is given by ind-extension of the pairing

F1,F5 € QCOh(XQ)F — F(XQ,H‘& ® 3‘“2) € Vect .

OX}A,
7.2.3. Note that although the natural transformation (7.3) is not an isomorphism, we have the
following:

Lemma 7.2.4. The natural transformation (7.3) it induces an isomorphism when restricted to
compact objects of QCoh(X3).

Proof. Follows from the fact that compact objects of QCoh(X) with set-theoretic support on
Y are both left and right orthogonal to the essential image of QCoh(U). O
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7.2.5. Recall that the category QCoh(X) is also self-dual. From the description of the functor
]]])glc“(’jl( xp) We obtain that there exists a canonical isomorphism

Gon(x) © ir = 17 0 DEEE, (xp) + (QCOh(XP))°P — QCoh(X)*.

By [GL:DG, Lemma 2.3.3], this implies:
Corollary 7.2.6. Under the identifications
D : QCoh(X)" ~ QCoh(X) and DY : QCoh(Xp)" =~ QCoh(X3)'
the dual of the functor?* identifies with i
7.2.7. Note under the identifications
D3¢ . QCoh(X)Y ~ QCoh(X) and DV : QCoh(U)" ~ QCoh(U)
we have (j,)Y =~ j*. This implies that the category QCoh(X )y is also naturally self-dual, such
that the dual of the natural embedding
eQCh : QCoh(X)y — QCoh(X)
is the functor rQceh,
By [GL:DG, Lemma 2.3.3], this implies:
B eun(x) 0 €3 ~ rRCh o DS ) 1 (QCoh(X)5)P — QCoh(X)°.
It follows that:
Cor.ollary 7.2.8. The above self-duality of QCoh(X)y is compactible with the self-duality
DnXaévc of QCoh(X$) via the equivalence of Proposition 7.1.3.
7.3. t-structures on QCoh(X¢). In this subsection we will show that the category
QCoh(X3) ~ QCoh(X)y
possesses two natural t-structures: for one of them the functor e2°" (i.e., the left adjoint of

rQCoh z?*) is t-exact, and for the other, the functor i, (i.e., the right adjoint of i* ~ rQCeh) s
t-exact.

7.3.1. Let us recall the following general paradigm: let C be a DG category equipped with a
t-structure. Let F' : C; < C be a fully faithful functor. Assume that F admits a left (resp.,
right) adjoint, denoted F'X (resp., F%). We have:
Lemma 7.3.2.
(a) If the composition F o FL (resp., Fo FX) is right (resp., left) t-ezact, then C; has a unique
t-structure such that F is t-exact. With respect to this t-structure, the functor FL (resp., FT)
is right (resp., left) t-exact.
(b) If the composition F o F¥ (resp., Fo F®) is left (resp., right) t-ezact, then Cy has a unique
t-structure such that FX (resp., FT) is t-exact. With respect to this t-structure, the functor F
is left (resp., right) t-exact.
7.3.3. We will apply point (a) of the lemma (with right adjoints) to C = QCoh(X) and C; =
QCOh(X)y .

Let us first take F' := €M and FF := rQh  We obtain that QCoh(X)y admits a t-
structure, compatible with its embedding into QCoh(X). This t-structure is compatible with
filtered colimits (i.e., truncation functors commute with filtered colimits).

We shall refer to this t-structure on QCoh(X73) as the “inductive t-structure.”
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7.3.4. We shall now introduce another t-structure on QCoh(X3).

Recall (see [GL:QCoh, Sect. 1.2.3]) that for any Z € PreStk, the category QCoh(Z) has a
canonical t-structure defined by the following requirement: an object F belongs to QCoh(Z)<°
if and only if for every S € DGSch™™ and ¢ : S — Z, we have ¢* (F) € QCoh(S)=Y. Let us call
it “the canonical t-structure on QCoh(2).”

Proposition 7.3.5. The functor
i, : QCoh(X$) — QCoh(X)
is t-exact for the canonical t-structure on QCoh(X¢).
A few remarks are in order:
(i) Since the functor i* : QCoh(X) — QCoh(X{) is right t-exact, we obtain that the proposition
implies that the localization functor
i, 01" : QCoh(X) — QCoh(X)

is also right t-exact. Thus, the canonical t-structure on QCoh(Z) falls into the paradigm of
Lemma 7.3.2(a) with left adjoints.

(ii) The canonical t-structure on QCoh(X?{}) is different from the one of Sect. 7.3.3: for the
former the functor ¢* is right t-exact, and for the latter it is left t-exact.

(iii) Let F be an object of QCoh(X)Y which is scheme-theoretically supported on some sub-
scheme Y’ C X whose underlying set is Y. Then it is easy to see that F, regarded as an object
of QCoh(X)y, lies in the heart of both t-structures.

(iv) The canonical t-structure on QCoh(X73) is typically not compatible with colimits, as can
be seen in the example of X = A! and Y = pt.
Proof of Proposition 7.3.5. The functor i, is left t-exact, being the right adjoint of a right

t-exact functor, namely, i*. Hence, we need to show that 0, is right t-exact.

Let Y be an object of Stk, and let f : Y — X be a morphism, where X € DGSch. Assume

that Y is written as a colimit in Stk
colim Y,
ga:Y/,—Y
where Y, € DGSch. In this case, the functor
QCoh(Y) — lim QCoh(Y})

is an equivalence (this follows from [GL:QCoh, Corollary 1.3.7 ], and the fact that the functor
QCoh(—) takes colimits in PreStk to limits in DGCat).

This implies that the (non-continuous) functor f, : QCoh(Y) — QCoh(X) can be calculated
as follows: for ¥ € QCoh(Y), given as a compatible family F, := g% (F) € QCoh(Y),

We apply this to Y := X7 written as a colimit as in Proposition 6.7.7. Thus, in order to
show that i, is right t-exact, we need to check that if F, € QCoh(Y)=0 for all a € A, then

lim (ia)+ () € QCoh(X)=°

where i, denotes the map Y, — X.
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Since the index category is A is N, we need to show that the functor lim' applied to the

family o — H%((ia)+(Fo)) vanishes. However, this is the case, since the maps in this family

are surjective.
g

7.4. Ind-coherent sheaves on formal completions. Let X be a DG scheme almost of finite
type; in particular, it is quasi-compact and quasi-separated.
7.4.1. Recall (see [GL:IndCoh, Sect. 4.1]) that we have a pair of adjoint functors

§mdCeh* TndCoh(X) = IndCoh(U) : jmdCeh

that realize IndCoh(U) as a localization of IndCoh(X). Let IndCoh(X)y C IndCoh(X) be the
full subcategory equal to

ker(j49°"*) : IndCoh(X) — IndCoh(U).

We let e™dC°h denote the tautological embedding
IndCoh(X)y < IndCoh(X).

IndCoh

This functor admits a right adjoint, denoted r given by

F— Cone (3: N jindCoh OjIndCoh,*(g:)) [71]

7.4.2. As was shown in Corollary 6.3.2, for a Zariski-closed subset Y, the DG indscheme X3 is
locally almost of finite type, so IndCoh(X¢) is well-defined.

Consider the functor 23

7' : IndCoh(X) — IndCoh(X3),

i.e., the !-pullback functor with respect to the morphismgz X{ — X. It is easy to see that this
functor annihilates the essential image of IndCoh(U) under jndCeh,
7.4.3. We now claim that the functor 7' admits a left adjoint, to be denoted by /ilndc‘)h.

Indeed, by Sect. 2.4.2, we have:

(7.6) IndCoh(X3) = colim IndCoh(Y,),
[e%

where Y, run over a family of closed DG subschemes of X with the underlying set contained
in Y. If we denote by i, the closed embedding Y, < X, the functor E“dc"h, left adjoint to ?,
is given by the compatible family of functors

(ig)1n9C°" : TndCoh(Y,) — IndCoh(X).

23The usage of notation 7! here is different from [GL:IndCoh, Corollary 4.1.5]. Nevertheless, this notation is
consistent as will follow from Proposition 7.4.5.
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7.4.4. By construction, the essential image of the functor i™4°°" belongs to
IndCoh(X )y C IndCoh(X).

(Or, equivalently, the right adjoint i of /i\indCOh factors through the co-localization functor
IndCoh
r J)

Let
(7.7) 7jndCoh . 1ndCoh(X3) = IndCoh(X)y : /7
denote the resulting pair of adjoint functors.

We will show:
Proposition 7.4.5. The adjoint functors of (7.7) are equivalences.
Proof. As in the proof of Proposition 7.1.3, we need to show two things:
(a) The functor 71ndCoh . IndCoh(X${) — IndCoh(X) is fully faithful.
(b) The essential image of the functor 724" generates IndCoh(X )y .

We note that (b) follows from [GL:IndCoh, Proposition 4.1.7(a)]. It remains to prove (a).
The assertion is Zariski-local, so we can assume X = Spec(A). Let A, be as in the proof of
Proposition 7.1.3. Set Y,, := Spec(4,,).

For n' <n”, let i,/ ,» denote the closed embedding Y,, — Y,,~, and 4,, the closed embedding
Y,, = X. To prove (a), we need to show that for an index ng and F € IndCoh(Y,,,), the map

(7.8) CnOiZn’r? z'non 0 (ing.m)P4CP (F) — Z-!nO 0 (i )14C0R ()

is an isomorphism.

Both sides in (7.8) commute with colimits in the F variable. So, we can take F € Coh(Y,,).
In this case both sides of (7.8) belong to IndCoh(Y,,,)*. Hence, by [GL:IndCoh, Proposition
1.2.4], it suffices to show that the map in (7.8) induces an isomorphisms by applying the functor
Py, : IndCoh(Yy,) — QCoh(Yy,). Since Y is affine, we can furthermore test whether a map
is an isomorphism by taking global sections.

Hence, we obtain that it suffices to show that

(7.9) coiim Maps 4, mod(Ang, F) — Maps 4_04(Ang, )
n-=no
is an isomorphism. The map (7.9) can be rewritten as

0

crgznr()]@ MapsAno_mod((Ano E@n A) %) Apy, F) — Mapsy

-mod (Ano % Anm S.f‘)

Hence, the required assertion follows from Lemma 7.1.5.
O

7.4.6. Proposition 7.4.5 implies the commutativity of the following diagram, analogous to (7.2):

IndCoh(X7?}) — IndCoh(X)
(7.10) /’{’I Tld

IndCoh

IndCoh(X)y ¢—— IndCoh(X),
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7.4.7. Compatibility with the t-structure. Recall from Sect. 2.5, that the category IndCoh(X$})
has a natural t-structure. Note that the category IndCoh(X)y also has a natural t-structure
for which the functor e"4C°h is t-exact. Indeed, this follows by Lemma 7.3.2(a) from the fact
that the functor

e dCoh o plndCol ndCoh(X) — IndCoh(X), F + Cone (F — j," o jm4CM*(F)) [-1]
is left t-exact.
We claim:
Lemma 7.4.8. The equivalence in (7.7) is t-exact.
Proof. By Lemma 7.3.2(a) we only have to show that the functor
indCoh . 1ndCoh(X$) — IndCoh(X)
is t-exact. However, this follows from the description of this functor given in Sect. 7.4.3. 0
7.5. Comparison of QQCoh and IndCoh on a formal completion.

7.5.1. Recall ([GL:IndCoh, Sect. 10.3.3], Sect. 9.3.2) that for any Y € PreStkj.s we have a
canonical functor

Ty : QCoh(Y) — IndCoh(Y),
given by tensoring with the dualizing object wy € IndCoh(Y).

By construction, the following diagram of functors commutes:

QCoh(X{) +—-—— QCoh(X)
(7.11) rxél l“rx

IndCoh(X)) +—— IndCoh(X)

7.5.2. Recall that if Z is a DG scheme, then the category IndCoh(Z) is self-dual, and the
functor Yz identifies with the functor ¥}, the dual of the naturally defined functor

Uz : IndCoh(Z) — QCoh(2),

see [GL:IndCoh, Proposition 9.3.3]. However, the functor Wy is not intrinsically defined for
Z € PreStkyg.

Nevertheless, for X € DGindSch, we still have a canonical self-duality
D5 : IndCoh(X)" ~ IndCoh(X)
(see Corollary 2.6.2), and if X is quasi-perfect (see Sect. 2.2.4), then we also have a self-duality
D3}V : QCoh(X)Y ~ QCoh(X).
So, in this case, we can consider the functor T¥ : IndCoh(X) — QCoh(X), dual to Yx.
Consider the resulting functor
(7.12) QCoh(X) ® IndCoh(X) Idg& QCoh(X) ® QCoh(X) — Vect,
where the last arrow is the pairing corresponding to the self-duality D%*V® of QCoh(X):

By construction and Corollary 2.6.6, it is isomorphic to the composite

IndCoh (o _
QCol(X) ® IndCoh(X) — IndCoh(X) © —" Vect,

where the first arrow is the canonical action of QCoh(—) on IndCoh(—).
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7.5.3. The discussion in Sect. 7.5.2 applies in particular to X = X¢.

Passing to dual functors in (7.11), and using Corollary 7.2.6 we obtain another commutative
diagram:

%

QCoh(X{) —%— QCoh(X)
(7.13) TX(/\T me

~“IndCoh

IndCoh(X{) ——— IndCoh(X).

Lemma 7.5.4. The functor X, is t-exact, when we consider the t-structure on IndCoh(X¢})
Y
of Sect. 2.5 and the inductive t-structure on QCoh(X¢) of Sect. 7.3.3.

Proof. The assertion follows from the fact that the functors i™4C°" and 7, are t-exact and

conservative, and the fact that ¥x is t-exact. O
7.5.5. Consider now the functors
(7.14) ip 07" : QCoh(X) — QCoh(X) and 7M€ 07! : IndCoh(X) — IndCoh(X).
Lemma 7.5.6. The functor ¥x : IndCoh(X) — QCoh(X) intertwines the functors of (7.14).
Proof. The functors of (7.14) are isomorphic to

Cone(Id — j, 0 j*)[~1] and Cone(Id — jIndCoh o jindCohxyr_ g1

respectively. So, it is enough to show that the functor ¥x intertwines the functors j. o j*
and jndCoh o jindCohx ~ However, the latter follows from [GL:IndCoh, Propositions 3.1.1 and
3.5.4]. O

Combining this with the fact that the horizontal arrows in (7.13) are conservative (in fact,
fully faithful), we obtain:

Corollary 7.5.7. The diagram of functors
QCoh(X{) +-—— QCoh(X)
(7.15) T;QT TQX

IndCoh(X{)) «+——— IndCoh(X),

obtained from (7.13) by passing to right adjoint functors along the horizontal arrows, and which
a priori commutes up to a natural transformation, is commutative.

Passing to dual functors in (7.15), we obtain yet another commutative diagram of functors:
QCoh(X)) —“— QCoh(X)
(7.16) Tip l quj(

“IndCoh
IndCoh(X{) ~—— IndCoh(X).
The diagram (7.16) can be alternatively obtained by passing to left adjoint functors along
the horizontal arrows in (7.11). Thus, the resulting diagram, which a priori commutes up to a
natural transformation, is actually commutative.
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7.6. QCoh and IndCoh in the eventually coconnective case. In this subsection we will
assume that X is eventually coconnective. By Proposition 6.7.2, the ind-scheme X3¢ is also
eventually coconnective.

7.6.1. Recall (see [GL:IndCoh, Proposition 1.5.3]) that for X € DGSch,s eventually coconnec-
tive, the functor ¥x : IndCoh(X) — QCoh(X) admits a left adjoint, denoted Zx. It is charac-
terized by the property that it sends QCoh(X)P'f ~ QCoh(X)¢ to Coh(X) ~ IndCoh(X)¢ via
the tautological map
QCoh(X)Perf 5 Coh(X),

which is well-defined because X is eventually coconnective.

Also, recall that the functor Z¥% : IndCoh(X) — QCoh(X), dual to Zg, is the right adjoint
of U¥, and it can be described as

—_
—

Ex =~ Homgoen(x) (Wxs =),
(see [GL:IndCoh, Lemma 9.6.7]).

We emphasize that the functors Z and ZV are defined specifically for DG schemes, and not
arbitrary eventually coconnective objects of PreStki,.

However, for any object Y € PreStk),g we can still ask whether the right adjoint E; of Ty
is continuous.

If Y is equipped with self-duality data for QCoh(Y) and IndCoh(Y), in which case the functor
Ty is well-defined, we can ask whether the left adjoint Zy of Ty exists.

7.6.2. By passing to right (resp., left) adjoint functors is Diagrams (7.16) and (7.15), respec-
tively, we obtain two more commutative diagrams

Tx
K2

QCoh(X{) +— QCoh(X)
(7.17) = | J=x

IndCoh(X{) +——— IndCoh(X),
and

QCoh(X)) —“— QCoh(X)
(7.18) Ele lax

ZIndCoh

IndCoh(X{) ——— IndCoh(X).
In particular, we obtain that the functor E}Q Is continuous, and =y is defined, for the DG

indscheme X3p.

7.6.3. We now claim the following;:
Proposition 7.6.4. The diagrams of functors

~

QCoh(X{) +—— QCoh(X)
(7.19) Ele lzx

IndCoh(X{) +——— IndCoh(X)
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and
QCoh(X{) —“— QCoh(X)
(7.20) = | J=x

~“IndCoh

IndCoh(X{) ——— IndCoh(X),

obtained from the diagrams (7.17) and (7.18), respectively, by passing to adjoint functors along
the vertical arrows, and which a priori commute up to natural transformations, are commutative.

Proof. The two diagrams are obtained from one another by passing to dual functors. Therefore,
it is sufficient to show that (7.20) is commutative. Taking into account (7.17) and the fact that
in the latter diagram the horizontal arrows are co-localizations, it suffices to show that the
functor Z¥ intertwines the functors

i 01" : QCoh(X) — QCoh(X) and iM% 7' : IndCoh(X) — IndCoh(X).

As in the proof of Lemma 7.5.6, it suffices to show that =% intertwines the functors

jx 0% : QCoh(X) — QCoh(X) and jndcoh o jndCohx . 1hqCoh(X) — IndCoh(X).

It is clear that

=V, =V -IndCoh,*
J o=x=%y°J :

So, we have to show that the natural map

B 0 MM = G 0 By
is an isomorphism. Let Fx € QCoh(X) and Fy € IndCoh(U) be two objects. We have
Mapsqcon(x) (Fx, EX 0 2N (Fur)) = Mapsyqcon(x) (Fx @ wx, j" 9N (Fvr)) =~
= MaPSIndCOh(U)(jIndCOh’*(fer ®wx), ) ~ MapslndCoh(U) (J*(Fx)® jIndCOh’*(WX) Fu) ~

=~ Mapsipqcon(w) (1 (Fx) @ wu, Fv) = Mapsqeonn (7 (Fx ), EG(Tv))-

8. FORMALLY SMOOTH DG INDSCHEMES

8.1. The notion of formal smoothness. Let X be an object of “PreStk.

Definition 8.1.1. We say that X is formally smooth if for every closed embedding
S — 9
of classical affine schemes, such that the ideal of S inside S’ is nilpotent, the map of sets
7o(Xa (")) = mo(Xer(S))
18 surjective.

Clearly, in order to test formal smoothness, it is sufficient to consider closed embeddings of
classical affine schemes

S5,
such that the ideal 7 of S inside S’ satisfies 72 = 0.
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8.1.2. Let X be an object of PreStk.

Definition 8.1.3. We say that X is formally smooth if:

(1) The classical prestack X := X|genare s formally smooth in the sense of Definition 8.1.1.

(2) For every n and S € DGSch®® | the map X(S) — X(="S) induces an isomorphism on
T

We can reformulate Definition 8.1.3 as follows.

Lemma 8.1.4. Let X € PreStk be such that X is formally smooth. Then X is formally smooth
if and only if X is convergent and for any integers i > j and S € <iDGSch*® the map

X(S) — X(SIS)
induces an isomorphism on ;.

Remark 8.1.5. As was alluded to in the introduction, the property of formal smoothness, in
both the classical and derived contexts, has a substantial drawback of being non-local in the
Zariski topology. For example, we could have given a different definition by requiring the
corresponding properties to hold after Zariski localization with respect to the test affine scheme
S. We will see a manifestation of this phenomenon in Sect. 8.2.9 for 0-truncated prestacks that
admit connective deformation theory.

However, it will turn out that in the latter case the difference between the two definitions
disappears if we restrict ourselves to prestacks locally almost of finite type (see Sect. 8.3), which
will be the main case of interest in the rest of this paper.

8.1.6. All the examples of prestacks that we consider in this paper are O-truncated in the sense
of [GL:Stacks, Sect. 1.1.7]. Le., we consider prestacks Y such that for all n and S € <nDGSch?,
Y(S) € n-Grpd C co-Grpd.

In this case, we have the following reformulation of the Definition 8.1.3.
Lemma 8.1.7. Let X € PreStk be a O-truncated prestack such that X is formally smooth as
a classical prestack. Then X is formally smooth if and only if for every n and S € DGSch?,
the map

X(S) = X(="S)

identifies the right-hand side with the n-truncation of (the Postnikov tower of ) X(S).
8.1.8. Let X be a DG indscheme, and let Y be a reduced classical scheme, equipped with a
closed embedding Y < <br¢dX. Consider the formal completion X4
Proposition 8.1.9. The following conditions are equivalent:
(a) X is formally smooth.
(b) For every Y — bredX as above, the formal completion X4 is formally smooth.
Proof. Since X§(S) is a connected component of X(S), condition (a) implies condition (b).
For the opposite implication, write “X as colim X,. We claim that it is enough to show that

each X% is formally smooth. Indeed, both conditions of formal smoothness can be checked

separately over each point of ¢-7¢dS — cbredX and every such point factors through some X,.
O

8.2. Formal smoothness via deformation theory.
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8.2.1. Let X € PreStk admit connective deformation theory (see Definition 4.7.1).

Proposition 8.2.2. Suppose that X is O-truncated. Then X is formally smooth if and only if
the following equivalent conditions hold:

(a) For every S € DGSch™™ and z: S — X, the object
T:X € Pro(QCoh(S5)=?)
has the property that
Hom(TX, F[i]) = 0, VF € QCoh(S)* and i > 0.

(b) Same as (a), but for S a classical affine scheme.

(¢) Under an additional assumption that X is locally almost of finite type, the same as (b), but
for S reduced.

Proof. Tt is clear that if X is formally smooth, then it satisfies (a): indeed, consider the split
square-zero extension of S corresponding to F[i]. The converse implication follows from defor-
mation theory using Lemmas 4.5.7, 4.5.9 and Lemma 8.1.4.

Condition (a) implies condition (b) tautologically. The converse implication follows from
the fact that every object of QCoh(S)? is the direct image under the canonical map ¢S — S.
Indeed, for a point = : S — X, the pull-back of T*X under “S — S identifies with 17, X, where

cly is the composition ¢S — S 5 X.

Condition (b) implies condition (c) tautologically. For the converse implication, we note
that under the assumption that X is locally of finite type, by Lemma 5.3.4, the functor 7;X
commutes with colimits in QCoh(S)Y. This allows to replace any F € QCoh(S)” by one
obtained as a direct image from 7¢4S.

(]

8.2.3. The following definition will be convenient in the sequel. Let S be an affine DG scheme,
and let F' be an object of Pro(QCoh(S)=Y).

We shall say that F'is convergent if for every § € QCoh(S)=Y, the natural map
(8.1) F(F) = lim F(r=""(7))
neNepP
is an isomorphism in co-Grpd.
We have:

Lemma 8.2.4. Let X € PreStk admit connective deformation theory, and let x : S — X be a
map. Then T;X € Pro(QCoh(S)=) is convergent.

Proof. Follows from the fact that the condition of admitting connective deformation theory
includes convergence. O

8.2.5. Let S be an affine classical scheme. Let us characterize those objects
F € Pro(QCoh(S)=)
that satisfy property (a) of Proposition 8.2.2.
We have:
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Lemma 8.2.6. For S € Sch®® and F € Pro(QCoh(S)=°) the following are equivalent:
(a) F is convergent and o (F(Fi])) = 0 for all F € QCoh(S)* and i > 0.
(a’) o (F(F)) =0 for all F € QCoh(S)<Y.
(b) F belongs to the full subcategory
Pro(QCoh(S)¥P*J) ¢ Pro(QCoh(S5)=°)

where QCoh(S)Pr s the full subcategory of projective objects in QCoh(S)".
(b’) F is convergent, belongs to the full subcategory

Pro(QCoh(S)¥) C Pro(QCoh(S)=?),
and the functor

F— mpo F(F), QCoh(S)Y — Sets
is Tight exact.

Remark 8.2.7. This lemma is not specific to QCoh(S); it is applicable to any stable co-category
equipped with a t-structure, whose heart has enough projectives and injectives.

Proof. The equivalence of (a) and (a’) is immediate. It is also clear that (b) implies (a).
Suppose that F satisfies (a’), and let us deduce (b). Consider the category
{P € QCoh(8)¥P), fp € H(F(P))}.
The assumption implies that this category is cofiltered, and it is easy to see that the resulting

map in Pro(QCoh(S)=~"<0)

F — “lim” P
(P,fp)

is an isomorphism.

The implication (b) = (b’) is also immediate. Let us show that (b’) implies (a). By assump-
tion, F' is given as an object

“lim” Fo € Pro(QCoh(S)%),
(1S
where the category of indices A is filtered. By definition,

mo(F(F)) ~ coli/zn Hom(F,, ).
aE
Hence, if F € QCoh(S)? is injective, then mo(F (F[i])) = 0 for i > 0. The exactness of F
on the abelian category implies that 7o(F(F[1])) = 0 for any F € QCoh(S)% by the long exact
cohomology sequence. The assertion that mo(F(F[i])) = 0 for n > i > 1 and any F € QCoh(S)"

follows by induction on ¢, again by the long exact cohomology sequence.
O

8.2.8. In what follows, for S € Sch®? we shall refer to objects of F' € Pro(QCoh(S)=°) satisfying
the equivalent conditions of Lemma 8.2.6 as pro-projective.
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8.2.9. We can now better explain the non-locality of the definition of formal smoothness men-
tioned in Remark 8.1.5:

Let S be an affine classical scheme, and let F' be an object of Pro(QCoh(S)"). It is a natural
question to ask whether the property of F' to be pro-projective is local in the Zariski topology.

Namely, if S; is an open cover of S by affine subchemes and F|s, € Pro(QCoh(S;)?P o)),
will it be true that F itself belongs to Pro(QCoh(S)Y-Pi)?

Unfortunately, we do not know the answer to this question, but we think that it is probably
negative.

Remark 8.2.10. Note, however, if we ask the same question for F being an object of QCoh(S),
rather than Pro(QCoh(S)"), the answer will be affirmative, due to a non-trivial theorem of
Raynaud-Gruson, [RG].

8.3. Formal smoothness for prestacks locally of finite type.

8.3.1. Let S be an affine DG scheme, and let F' be an object of Pro(QCoh(S)=~™<0).
We shall say that F' is pro-coherent if, when viewed as a functor
QCoh(8)=? — co-Grpd,
it commutes with filtered colimits.

Note that this condition is satisfied for F arising as =~ "(TX) for z : S — X, where X admits
connective deformation theory and belongs to PreStkjg; .

Also note that when S is Noetherian, by Lemma 5.3.4, pro-coherence is equivalent to F'
belonging to Pro(Coh(S)=~<0).

In general, F' is pro-coherent if and only if it can be represented by a complex
prntapm, Pt PY
in Pro(QCoh(S)"), whose terms belong to Pro(QCoh(S)Y-Preif-e) where
QCoh(S)¥Proife « QCoh(9)”
denotes the category of projective finitely generated quasi-coherent sheaves.
8.3.2. We have:

Lemma 8.3.3. Let S be a classical affine scheme and let F' € Pro(QCoh(S)Y) be pro-coherent.
Then its property of being pro-projective is local in the Zariski topology.

Proof. We will check the locality of condition (b’) of Lemma 8.2.6.

First, it is easy to see that the property for an object of Pro(QCoh(S)<%) to be convergent
is Zariski-local.

Hence, it remains to check that the property of the functor
F — mo(F(F)), QCoh(S)Y — Sets

to be right exact is also Zariski-local, under the assumption that F' is pro-coherent. We will
show that this property is in fact fpqc-local.

Thus, let f :S” — S be an fpqc map, where S = Spec(A) and S’ = Spec(B). We assume
that the functor
F':=Pro(f*)(F) : B-mod — oo-Grpd
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is such that

F'Y =m0 F': (B-mod)” — Sets
is right exact, and we wish to deduce the same for

FY =m0 F:(A-mod)¥ — Sets.
Note that by adjunction, F’?(M) = F(f.(M)) for M € (B-mod)®.

Consider the object F¥(A) € Sets. The action of A on itself as an A-module defines on
FY(A) a structure of an A-module. There is a natural map of functors (A-mod)"¥ — Sets

(8.2) N%FWA%»FWNL

where in the above formula we are using the non-derived tensor product.

Note the map in (8.2) is an isomorphism whenever F is pro-coherent and F* is right exact.
Indeed, both functors are right exact and commute with filtered colimits, so the isomorphism
for any N follows from the case N = A.

And vice versa, if (8.2) is an isomorphism then F* is right exact. Indeed, the left-hand side is
a right exact, and the right-hand side is left exact, so if the map in question is an isomorphism,
and both functors are actually exact.

Also note that (8.2) is an isomorphism for F¥ pro-coherent whenever N is A-flat, by Lazard’s
lemma.

In order to show that (8.2) is an isomorphism under our assumptions, let us tensor both
sides with B, and consider the commutative diagram

Ne@F?(A)® B —— FY(N)® B
A A A

l I

N§> F°(B) —— F@(N(j% B).

Since B is faithfully flat over A, it is enough to show that the upper horizontal arrow is an
isomorphism.

In the above diagram the vertical arrows are isomorphisms since B is A-flat. However, the
lower horizontal arrow identifies with

N® F'°(B)~ (N® B)® F'°(B) - F/'*(N® B),
A A B A

which is an isomorphism by (8.2) applied to F'“.
U

8.3.4. In view of Proposition 8.2.2, the above lemma implies that for O-truncated prestacks
that admit connective deformation theory and are locally almost of finite type, the definition
of formal smoothness is reasonable, in the sense that it is Zariski-local.

As a manifestation of this, we have the following assertion that will be useful in the sequel.
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8.3.5. Let X be a formal DG scheme with the underlying reduced classical scheme X. Denote
T*X|X = T;DC
where z : X — X is the tautological point.

Corollary 8.3.6. Suppose that X is locally almost of finite type, and that T*X|x is Zariski-
locally pro-projective. Then X is formally smooth.

Proof. We will check that the conditions of Proposition 8.2.2(c). Note that every map S — X,
where S is a reduced classical affine scheme, factors through a map f : S — X. Thus, we need
to show that for every such f, the object

Pro(f*)(T*X|x) € Pro(QCoh(S)=?)
is pro-projective.

First, the Zariski-locality of the t-structure on Pro(QCoh(X)=) implies that 7*X|x belongs

to the full subcategory

Pro(QCoh(X)") € Pro(QCoh(X)=%).
Now, since X is locally almost of finite type, the classical scheme X is of finite type. Hence,
Proposition 5.3.2 implies that T*X|x belongs to

Pro(Coh(X)¥) c Pro(QCoh(X)¥) c Pro(QCoh(X)=?).
Finally, by Lemma 8.3.3, we obtain that 7*X|x belongs to
Pro(Coh(X)%P™}) ¢ Pro(Coh(X)%) c Pro(QCoh(X)%) C Pro(QCoh(X)=Y),

and in particular to '
Pro(QCoh(X)¥*J) ¢ Pro(QCoh(X)=Y).

However, it is clear that for any f : S — X with S € Sch®®, the functor Pro(f*) sends
pro-projective objects to pro-projective objects, as required.
O

8.4. Examples of formally smooth DG indschemes. In this subsection we will give three
examples of formally smooth DG indschemes.

8.4.1. The first example is the most basic one: we claim that the affine space A", considered as
an object of PreStk, is formally smooth. Indeed, the definition of formal smoothness is satisfied
on the nose as

Maps(Spec(A4), A™) ~ Q> (Sp(A))*".

8.4.2. Let X be a classical smooth scheme of finite type over k. We claim that X, considered
as an object of PreStk (i.e., LLKE(SChaff)opH(DGSChaff)op (X)), is formally smooth.

Indeed, it suffices to show that the conditions of Proposition 8.2.2 are satisfied. In fact, we
claim that 7% X, is an object of Coh(X)", and is locally projective.
The question is local on X, so we can assume that X fits into a Cartesian square
X —— A"

(8.3) l lf

0 —— A™,
where the map f is smooth, and where the fiber product is taken in the category of classical
schemes.
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Since f is flat, the above square is also Cartesian in the category of DG schemes. Hence,
T*X can be calculated as

Cone(f*(T*A™)|x — T*A"|x),
and the smoothness hypothesis on f implies the required properties of 7% X.

Corollary 8.4.3. Let X be a smooth classical scheme locally of finite type, and let Y C X
be a Zariski-closed subset. Then the formal completion X{¥ is formally smooth as an object of
PreStk.

Proof. This follows from Proposition 8.2.2 as Q: X3¢ — X induces an isomorphism on pro-
cotangent complexes. O

Also, note that by Proposition 6.8.2, the DG indscheme X3 is 0-coconnective, i.e., is a left
Kan extension of a classical indscheme.

8.4.4. The following example will be needed for the proof of Theorem 9.1.2. Consider the formal
DG scheme A™™ := Spf (k[x1, ..., Tu][Y1, s Ym]), i-€., the formal completion of A" along the
subscheme A" < A"t embedded along the first n coordinates.

Let fi,..., fx be elements of k[zy, ..., 7,][y1, -, Ym], and let fi,...fx be their images under
Elx1, oy Tnllyns oo Ym] = E[z1, ..y ).

Set
X:=0x A" and X :=0 x A",
Ak Ak
Suppose that the Jacobi matrix of fi, ..., fx is non-degenerate when restricted to X. I.e., the

matrix k x (m + n)-matrix 0;(f;)|x, viewed as a map
oM™ — 0%
is a surjective map of vector bundles when restricted to X.
From Corollary 8.3.6 and Corollary 6.3.2, we obtain:

Corollary 8.4.5. Under the above circumstances, the DG indscheme X is formally smooth.

We now claim:
Proposition 8.4.6. The DG indscheme X is 0-coconnective.

Proof. Consider the scheme
~A™™ = Spec (k[x1, o, Tnl[Y1s s YUm])

and its map to A* given by fi,..., fr. The assumption on the Jacobi matrix implies that this
map is flat on a Zariski neighborhood U of X C ~YA™™. Therefore, the Cartesian product taken
in the category of DG schemes

“X~0xU
Ak

is 0-coconnective as a DG scheme.
The formal DG scheme X is obtained from ~X as a formal completion along X. Since all

the schemes involved are Noetherian, the assertion follows from Proposition 6.8.2.
O
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8.4.7. In what follows we shall refer to formal DG schemes X of the type described in Sect. 8.4.4
as elementary.

We shall say that a classical formal scheme is elementary if it is of the form X for X an
elementary formal DG scheme.

9. CLASSICAL VS. DERIVED FORMAL SMOOTHNESS

The focus of this section is the relation between the notions of formal smoothness in the
classical and derived contexts when X is a DG indscheme. Namely, we would like to know
under what circumstances a formally smooth DG indscheme X is O-coconnective, i.e., arises as
a left Kan extension from a classical indscheme. The reader may have observed that this was
the case in all the examples that we considered in Sect. 8.4.

And vice versa, we would like to know when, for a classical formally smooth indscheme X,
the object

X = LLKE(SChaff)Op;)(DGSChaff)Op (:X:Cl) S Stk

is a formally smooth DG indscheme. (Note that it is not clear that X defined as above is a DG
indscheme, since the convergence condition is not a priori guaranteed.)

Unfortunately, we do not have a general answer for this question even in the case of schemes:
we do not even know that the DG scheme

X = LLKE(Schaff)OP;)(DGSch“ff)OP (Xet)

is smooth when X.; is a smooth classical scheme, except when X; is locally of finite type.

9.1. The main result. The main result of this section and the first of the two main results
of this paper is a partial answer to the above questions, under the assumption that our (DG)
indschemes are locally (almost) of finite type.

9.1.1. Let X.; be a classical formally smooth Ng indscheme. Assume that X is locally of finite
type. Set

X:= LLKE(SChaff)op(_)(DGSChaff)op(xcl) € PreStk.
We will prove:
Theorem 9.1.2. Under the above circumstances, X is a formally smooth DG indscheme.

This theorem gives a partial answer to the second of the two questions above. We shall
presently show that it also gives a partial answer to the first question.

9.1.3. We have the following observation:

Proposition 9.1.4. If X is a formally smooth DG indscheme such that
PLKE goqattyon o (Daseneyon (1 X) € Stk

is also a formally smooth DG indscheme, then the natural map
FLKE g opottyon s (Daseneyon (1) = X

is an isomorphism. In particular, X is 0-coconnective.
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Proof. By assumption, both sides in
(91) fX:/ = LLKE(SChaff)OPH(DGSCha“)“p (le)C) — x

are formally smooth DG indschemes, and the above map induces an isomorphism of the under-
lying classical indschemes.

By deformation theory, it suffices to show that for every affine DG scheme S and a map
7' : S — X', the map
TriX — 10X
is an isomorphism, where x is the composition of 2’ and the map (9.1).
Using Proposition 8.2.2(a), we obtain that it suffices to check that the map
(9.2) = XN(F) — TEX(TF)

is an isomorphism for every ¥ € QCoh(S)". Since any such J comes as a direct image from
clS_ this reduces the assertion to the case when S is classical.

We have

T X' (F) ~ Maps(Sy, X') X @,
Maps(S,X’)

and similarly for 7X(F). When S is classical and F € QCoh(S)", the DG scheme Sy is
also classical. So, both sides of (9.2) only depend on the restrictions of X|gepate and X'|ggpatt,
respectively, and, hence are isomorphic by construction.

O

9.1.5. Combining Proposition 9.1.4 and Theorem 9.1.2, we obtain:

Theorem 9.1.6. Let X be a formally smooth DG indscheme, such that X := X|gepate is locally
of finite type and Rg. Then X is 0-coconnective, i.e., the natural map

1
LLKE(SChaff)opc_,(DGSChaff)op (c X) - X
s an isomorphism. Moreover, X is locally almost of finite type and weakly N .
Proof. The first assertion is immediate.

Writing “/X as a colimit in “PreStk of X,, with X, being classical schemes closed in <X
and hence of finite type, we obtain that

X ~ colim X,

where the colimit is taken in PreStk, and X, are now understood as objects of DGSch,yg;.
Hence, X € PreStkj.g.

The fact that X is weakly Ny follows from Proposition 5.2.3. 0
Thus, we obtain:

Corollary 9.1.7. There exists an equivalence of categories between the category of classical
formally smooth Ry indschemes locally of finite type and that of formally smooth weakly Xg DG
indschemes locally almost of finite type.

9.1.8. Prior to proving Theorem 9.1.2, let us see some of its corollaries in concrete geometric
situations.

9.2. Loop spaces.
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9.2.1. Let Z be an object of PreStk. We define the objects Z[t]/t*, Z[t] and Z((t)) of PreStk
as follows: for S = Spec(A) € DGSch®T,

Maps(S, Z[t]/t*) := Maps(Spec(A[t]/t*), Z), Maps(S, Z[t]) := Maps(Spec(A[t]), Z)
and
Maps(S, Z((£)) == Maps(Spec(A((1)), Z).
Note that by definition,
Z[t] ~ lilgn Z[t]/tF,
as objects of PreStk.

Lemma 9.2.2. Assume that Z is formally smooth as an object of PreStk. Then so are Z[t]/t*,
Z[t] and Z((t)).

Proof. This is immediate from the fact that for a DG algebra A, the maps
TEM(AL /) = (PSR (A) [ /17, TR (AL) — (=T A)[H] and 7E"(A() = (T="A)(1)

are isomorphisms, and that for a surjection of classical algebras A; — A with a nilpotent
kernel, the corresponding maps

Aqft)/tF — Aq[t]/tF, AL[t] — Ag[t] and A1 ((t) — Aa((t)

have the same property. O

9.2.3. From now on we are going to consider the case when Z € DGSch,g. We have:

Proposition 9.2.4. Under the above circumstances, we have:
(a) Z[t]/t* € DGSchayg, and is affine if Z is affine.

(b) Z[t] € DGSch, and it is affine if Z is affine.

(¢c) If Z is affine, then Z((t)) is a DG indscheme.

Proof. For all three statements, it is enough to assume that Z is affine. Note that Z[t]/t*, Z[t]
and Z((t)), considered as objects of PreStk are convergent. Hence, it is sufficient to show that

= (2[8)/t%) = Z[t)/t <wpasensr, =M(Z[H]) := Z[t]|<npasener and

=M(Z(1) = Z(t)|<npasener

are representable by objects from <"DGSch®T (for the first two) and <"DGindSch, respec-
tively. Note that the above objects only depend on the truncation <"Z. The assertions of the
proposition result from combining the following observations:

(i) The assignments Z v~ Z[t]/tk, Z + Z[t] and Z — Z((t)) commute with limits.

(ii) Every object of <"DGSchaf can be obtained as the totalization of a truncated cosimplicial
object whose terms are isomorphic to affine spaces A”.

(iii) The subcategories
S"DGScha ¢ ="DGSch™ ¢ ="PreStk and <"DGindSch ¢ <"PreStk

are stable under finite products.

(iv) For Z = A", both assertions of the proposition are manifest.
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9.2.5. Suppose now that Z is a classical scheme which is smooth over k (and in particular,
locally of finite type). We have:

Proposition 9.2.6. The DG schemes Z[t]/t* and Z[t] are 0-coconnective.

Proof. To prove that Z[t]/t* is 0-coconnective, by Proposition 9.1.4 and Sect. 8.4.2, it is suffi-
cient to show that the classical scheme

NZ[H/*) = Z[t)/t" |scon
is smooth. By Lemma 9.2.2, ¢/(Z[t]/t*) is formally smooth as a classical scheme, which implies
that it is smooth, since “(Z[t]/t*) is locally of finite type by Proposition 9.2.4(a).

To treat the case of Z[t], we will have to go back to the proof of Proposition 9.2.4. We
can assume that Z is affine and that it fits into a Cartesian square (8.3). Hence, we have a
Cartesian square

Z[t] —— A™[t]

| |

0 —— A™[t].
Since the affine schemes A™[t] and A™[t] are 0-coconnective, to show that Z[t] is also 0-
coconnective, it suffices to show that the map f[t] is flat. The latter is the limit of the maps
flt)/t* = An[t]/tk — A™[t]/t*, and smoothness of f implies that each of these maps is flat.
Hence, f[t]/t* is flat as well.
O

9.2.7. Question. What are the conditions on a classical scheme of finite type Z (viewed as a
0-coconnective DG scheme), that will guarantee that Z[t] will also be 0-coconnective?

It is easy to see that this is not always the case: for instance, consider Z = Spec(k[t]/t?).
However, the smoothness condition on Z is not necessary, as can be seen from the following
example:

Let g be a semi-simple Lie algebra, and let N C g be its nilpotent cone. We have:
Corollary 9.2.8. The DG scheme N[t] is 0-coconnective.
Proof. By definition, N fits into a Cartesian square
N—— g
0 —— g//G,

taken in the category of classical schemes, where g//G is the GIT quotient of g by the adjoint
action of G, i.e., Spec(Sym(g*)%), and w is the Chevalley map.

However, by Kostant’s theorem, the map w is flat, so the above square is also Cartesian in
the category of DG schemes. Hence, we have a Cartesian square

Nl —— oli]

I

0 —— g//G[t].
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Since g and g//G are smooth schemes of finite type (in fact, isomorphic to affine spaces), the
DG schemes g[t] and g//G[t] are 0-coconnective. Hence, to show that N[t] is O-coconnective,
it suffices to know that the map w|t] is flat. However, the latter is Theorem A.4 in [EF].

0

9.2.9. The case of loops. Let Z be an affine smooth scheme of finite type over the ground field.
We propose:

Conjecture 9.2.10. The DG indscheme Z((t)) is 0-coconnective.

In this next subsection we will prove this conjecture in a particular case when Z is an
algebraic group G.

9.3. Loop groups and the affine Grassmannian.

9.3.1. Let G be an algebraic group. We define the affine Grassmannian Grg as an object of
PreStk as follows:

Maps(Spec(A4), Grg) is the co-groupoid of principal G-bundles on Spec(A[t]) equipped with
a trivialization over Spec(A((t))).

It is easy to show that Grg is convergent and that it belongs to Stk (i.e., it satisfies fppf
descent). We have a naturally defined map G((t)) — Grg, which identifies Grg with the quotient
of G((t)) by G[t] in the fppf and the étale topology (indeed, it is easy to see that any G-bundle
on Spec(A[t]) admits a trivialization after an étale localization with respect to Spec(A)).

It is well-known that the underlying object “Grg € Stk is a classical indscheme, which is
RNy and locally of finite type.

Proposition 9.3.2. Grg is a DG indscheme. Moreover, it is formally smooth.

Proof. To prove that Grg is a DG indscheme, we will apply Theorem 5.1.1. For S € DGSch??
and a point g : S — Grg we need to study the category of extensions of g to a point ¢’ : S' —
Grg for square-zero extensions S < S’. The question is local in the étale topology on S, so we
can assume that the point g admits a lift to a point g : S — G((¢)). Multiplication by § defines
a map

SplitSqZExt(S, 1gpy) — SplitSqZExt(S, g),
where 1gp : S — G[t] is the constant map to the unit point of G[t]. Consider the correspond-
ing map

a:T;G(1) — Tf‘G[[t]]G[[t]].

We claim that Cone(a)[—1] represents T,y Grg. This follows from the fact that any extension
g S — Grg also admits a lift to g’ : S" — G((t)) and if F € QCoh(S) is the ideal of
S inside S, the ambiguity for such lift is given by the fiber of SplitSqZExt(S, 1¢p) over
Sy € SplitSqZExt(S). This shows that Grg satisfies scheme-like Conditions (A) and (C), while
Condition (B) follows from the construction.

To show that Grg is formally smooth, it suffices to show that Cone(a)[—1] satisfies prop-
erty (b) of Proposition 8.2.2. Multiplication by the inverse § defines an isomorphism between
Cone(a) and the situation when § = 1g(). In the latter case, Cone(c) isomorphic to the
object of Pro(Coh(S)") equal to “lign” Og ® V¥, where a +— V, is the filtered family of finite-

dimensional k-vector spaces, such that
colim V,, ~ g((t))/a[t].
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9.3.3. Let us now observe the following corollary of Theorem 9.1.6:

Theorem 9.3.4. Grg is 0-coconnective. Moreover, it is weakly Rg, and locally almost of finite
type.

We shall now use Theorem 9.3.4 to prove the following:
Theorem 9.3.5. The indscheme G((t)) is 0-coconnective.

Proof. Let f:X; — Xy be a map in Stk such that Xy is 0-coconnective, and for any S € Sch®
and a map S — Xy, the fiber product S x Xs € Stk is also 0-coconnective.
Xy

Lemma 9.3.6. Under the above circumstances, Xo is also 0-coconnective.

We apply this lemma to X1 = G((t)) and Xy = Grg. It remains to verify that for a classical
affine scheme S and a map g : S — Grg, the fiber product S x G((¢)) is 0-coconnective. The
Grg

question is local in the étale topology on S. Hence, we can assume that g admits a lift to an
S-point of G((t)). However, this left defines an isomorphism

S x G(t) =S x GItl,

and the assertion follows from Theorem 9.3.4 and Proposition 9.2.6.
O

9.4. The (pro)-cotangent complex of a classical formally smooth (ind)scheme. For
the proof of Theorem 9.1.2 we will need to establish several facts concerning the pro-cotangent
complex of classical formally smooth indschemes.
9.4.1. Let X, be a classical indscheme; set
X := "LKE gapattyop s (DGsehattyor (Xe) € PreStk .
Proposition 9.4.2. The indscheme X, is classically formally smooth if and only if for every
S € Sch®® and x : S — X, the object
Z=HT*X) € Pro(QCoh(S)=~1=0)
1§ pro-projective.
Proof. Let =~ 1(TX) € Pro(QCoh(S)=~1=%) be pro-projective. By Lemma 4.5.9, it suffices to
show that
mo (Maps(=~1(T; %), F[1])) = 0
for F € QCoh(S)Y. However, the latter is given by condition (a) Lemma 8.2.6.

For the opposite implication, let us assume that X.; is formally smooth. We will check that
Z=1(T*X) satisfies condition (b’) of Lemma 8.2.6. Let x be a map S — X, where S € Sch*.

The fact that the functor
F—m (Maps(z_l(T;f)C),CF)) , QCoh(S)O — Sets

is right exact follows from the assumption on X, and the definition of 7'X in terms of split
square-zero extensions in Sect. 4.1.3. Hence, it remains to show that H~1(T}X) = 0.

Let
Xep =~ colim X,
acA

where X, € Schysep-qe- Let ag be an index such that x factors through a map x4, : § = Xq,.



106 DENNIS GAITSGORY AND NICK ROZENBLYUM

Since the t-structure on Pro(QCoh(S)) is Zariski-local, we can assume that the map zq,
factors as

J
S = Uyy = Xy,
where Uy, is an open affine inside X,,.

Let ta : Xa, = X denote the tautological map. For (g — a) € A, let ty,,o denote the
corresponding closed embedding X, — X,.

It is easy to see that it is sufficient to show that
H (T, 0%) =0
as an object of Pro(QCoh(Uy,)").
By (4.11), we have

H? (Tj ij) ~ i H™! (T* XB).
ag

€Ay, Lag,a0]

So, we need to show that for a given M € QCoh(U,,)", ap — « and
d) : Hil(T:,U,aona) - Ma
there exists a — 3, such that the composition

HY T Xg) = H YT . Xa) S M

Lao,ﬂoj Lao,aoj

vanishes.

Since tq,,q is a closed embedding, Uy, is the pre-image of an open affine U, in X,. Replacing
M by its direct image under U,, — U,, we can assume that a = ag. Further, embedding M
into an injective sheaf, we can assume that the map ¢ extends to a map ¢ : T*U, — M[1]. We
wish to find an index 8 € A, such that the composition
(9.3) T7 ;X —= T Us 5 M1
vanishes.

However, the data of 1 as above is equivalent to that of a square-zero extension U/ of
U,. And the data of a splitting of (9.3) is equivalent to that of an extension of the map
ta,30] : Uy = Xp to amap U, — Xg. Thus, giving such an index J is equivalent to extending
the map U, — X to a map U, — X.. The existence of such an extension follows from the
classical formal smoothness of X;.

O

Corollary 9.4.3. Let X, be a classical scheme, and consider it as a DG scheme. Then X is
classically formally smooth if and only if T* X, satisfies:

(a) H-Y(T*X ) = 0.
(b) HY(T* X)) is projective over every affine subscheme of X.

Proof. We only need to show that if S is an affine scheme mapping to X,;, then the pull-back
of T* X to it is projective. By assumption, we know this locally in the Zariski topology on
S. The assertion now follows from the theorem of Raynaud-Gruson mentioned earlier that

projectivity of a module is a Zariski-local property.
O
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9.4.4. The following somewhat technical assertion will be needed in the sequel:
Let X be a classical formal scheme with the underlying reduced scheme X, and set
X :="LKEsehattyonc s (pGsenetyor (Xet)-
Corollary 9.4.5. Suppose that X, is locally of finite type, and that =~1(T*X|x) is locally

pro-projective. Then Xy is classically formally smooth.

This follows from Proposition 9.4.2 in the same way as Corollary 8.3.6 follows from Propo-
sition 8.2.2.

9.5. Classical formally smooth indschemes locally of finite type case. In this subsection
we will reduce Theorem 9.1.2 to a key proposition (Proposition 9.5.2) that describes the general
shape of formal classical schemes locally of finite type.

9.5.1. Let X, be as in Theorem 9.1.2. Let Y be a reduced classical scheme and let Y C "¢4(X,;)
be a closed embedding. (Note that such a Y is automatically locally of finite type.)

By Proposition 8.1.9, in order to prove Theorem 9.1.2; it suffices to show that the formal
completion X4 is formally smooth. Moreover, by Proposition 8.2.2 and Lemma 8.3.3, we can
assume that Y is affine.

We will prove that X% is formally smooth by quoting/reproving the following result (see
[BD, Proposition 7.12.22]). This proposition will also be useful to us in the sequel.

Proposition 9.5.2. Let Z. be a classical formal scheme. Assume that:

o As a classical indscheme, Z is locally of finite type and Ng.
e The classical scheme "°%(Zy) is affine.
e Z. is classically formally smooth.

Then Z; is isomorphic to retract of a filtered colimit, taken in “‘PreStk, of classical formal
schemes each of which is elementary (see Sect. 8.4.7).

9.5.3. Let us deduce Theorem 9.1.2 from Proposition 9.5.2. This will be done via a series of
lemmas. First, we have:

Lemma 9.5.4. For any Xy € <°DGindSchyg, a reduced classical scheme Y and a closed
embedding Y C "*4(X,,), the canonical map

PLKE (g epattyor s (Dasenaityon (7 (X5)) = X3,
where X := LLKE(SChaff)op_,(DGSChaff)op (Xer), is an isomorphism.
Proof. Let X ~ colozjm X, where the colimit is taken in “PreStk. Then
X~ co%lim Xa,
where the colimit is taken in Stk.
Without loss of generality, we can assume that Y is contained in each X4 . Then
() = colim ™ (Xo)}),
and the left-hand side in the lemma is
colim LLKE(schaff)op<—>(DGschaff)op (Xa)?);

(03

where the colimit is taken in Stk.
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We now claim that the map
AN
L (colim((Xa)Q)) — (L(colimXa)) =Xy,
e} &3 Y
where both colimits are taken in PreStk, is an isomorphism. This follows from Lemma 6.2.5
and Sect. 6.1.3(iii).
Thus, the right-hand side in the lemma identifies with colim (X, )%, where the colimit is
taken in Stk.
Hence, to prove the lemma, it suffices to show that for every «a, the canonical map
PLKE (g patryor s (Dasenatyor @ ((Xa)$) = (Xa)$

is an isomorphism. However, this is the content of Proposition 6.8.2, which is applicable since

X, is of finite type, and in particular, Noetherian.
O

Lemma 9.5.5. Let Z.; be as in Proposition 9.5.2. Then
PLKE gepattyore s (Dasenattyor (Zet)
is a formally smooth DG indscheme.
Let us assume this lemma and finish the proof of Theorem 9.1.2.

Proof of Theorem 9.1.2. We need to show that X{ is formally smooth. By Lemma 9.5.4, this
is equivalent to “LKEgupattyoney (pasensyor (1(X5)) being formally smooth. The required as-
sertion follows Lemma 9.5.5 applied to Z. = <(X$).

O

9.5.6. Proof of Lemma 9.5.5. Since the notion of formal smoothness is stable under taking
retracts, we can assume that
Zer = colim Zg i,
«
(colimit taken in “PreStk), where each Zq,cl is elementary.
Hence, Z := LLKE(Schaff)op(_,(DGSChaff)op(ch) is isomorphic to
colim Z,,
(o9
where the colimit is taken in Stk, where

Za = LLKE(SC}laff)Op(_)(DGSChaff)op(Za,cl).
By Proposition 8.4.6 combined with Corollary 8.4.5, each Z, is a formally smooth DG ind-
scheme. Thus, it remains to prove the following:

Lemma 9.5.7. Let a— Z, be filtered family of objects if Stk, each of which is formally smooth
as an object of PreStk. Assume that for every n, all Zo|<npggenatt are k-truncated for some k.
Then Z := colim Z, is also formally smooth as an object of PreStk, where the colimit is taken

in Stk.

Proof. Consider the object Z' := colim Z, where the colimit is taken in PreStk. Since homo-

topy groups commute with filtered colimits, we obtain that Z’ is formally smooth as an object
of PreStk. In particular, it is convergent. It remains to show that the canonical map 2/ — Z
is an isomorphism. To show this, it suffices to show that Z' satisfies descent. By convergence,
it is enough to check the descent condition on <nDGSch™™. But the latter follows from the
truncatedness assumption by Lemma 1.3.3. d
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O(Lemma 9.5.5)

9.6. Proof of the key proposition. In this subsection we will prove Proposition 9.5.2, re-
producing a slightly modified argument from [BD], pages 328-331. 4

Remark 9.6.1. Note that the statement of [BD, Proposition 7.12.22] is slightly stronger: it
asserts that, under the (innocuous) additional assumption that "?(Z;) is connected, we have
an isomorphism

Zet = 2o, % (SPE (K[21, 22, - - .])) s
where Zg . is elementary. The reason we choose the formulation given in Proposition 9.5.2 is
that it makes it more amenable for generalization in the non-finite type situation.

9.6.2. Step 0: initial remarks. Denote Z :="4(Z,) and Z := LLKE(SChaff)op_)(DGSChaff)op (Zer).

By Proposition 5.3.2, the finite type condition implies that the object T*Z|z belongs to

Pro(Coh(2)<%), where

T*Z|Z = T:Z,
where z : Z — Z is the tautological map. Proposition 5.2.3 implies that T*Z|z is 8y as an
object of Pro(Coh(Z)=?).

By Proposition 9.4.2 and [BD, Proposition 7.12.6(iii)], 7*Z|z is the dual of a Mittag-Leffler
quasi-coherent sheaf M on Z. By [BD, Theorem 7.12.8], the Ny condition implies that M is
actually projective.

Multiplying Z by a suitable formally smooth classical indscheme as in [BD, Proposition
7.12.14], we can assume that M is a free countably generated Oz-module. 2°

Thus, we obtain that we can assume that
(9.4) H°(T*Z|) € Pro(Coh(2))

can be represented as P := “éing}” Py, where Py, are locally free (in fact, free) sheaves on Z of
€
finite rank, and the maps Pyx,1 — Pj are surjective.

Let us write Z. =~ colig}n Z, with Z = Z;. Let J,, denote the sheaf of ideals of Z in Z,,. The
ne

finite type hypothesis implies that J,, € Coh(Z,)¥. Consider J,|z ~ J,,/92 € Coh(Z)% and
denote
Iz = “lim” J,,| z € Pro(Coh(Z)?).

By Proposition 9.4.2; the long exact cohomology sequence for the map Z — Z gives rise to a
4-term exact sequence in Pro(Coh(Z)"):

(9.5) 0 HYT*Z) = |z = HY(T*Z|z) — H*(T*Z) — 0.

9.6.3. Step 1: “the finite-dimensional case”. Let us first assume that H(T*Z|z) is an object
of Coh(Z). In this case we will prove that /2 is elementary.

By (9.4), H°(T*Z|z) is locally free of finite rank over Z.

As in [BD], top of page 329, it suffices to show that the system of coherent sheaves n +— J,,|z
stabilizes. However, (9.5) implies that J|z is in fact an object of Coh(Z)%. Since the maps
Jn+1lz — Jnlz are surjective, this implies the stabilization statement.

24The reason that we include the proof instead of just quoting the result from [BD] is that it seems that the
considerations that involve derived pro-cotangent spaces that we introduce help to make the argument of loc.
cit. more conceptual.

25This last procedure is the reason the word ”retract” appears in the formulation of Proposition 9.5.2.
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9.6.4. Step 2: choosing generators for the ideal. For a general Z. we will construct an object
Q € Pro(Coh(Z)%) of the form

Q = “lim” Qm,
meN
where @, are locally free sheaves on Z of finite rank, and the maps Q,,+1 — @, are surjective,
and a map f : Q — J|z, such that the composition
Q— Iz — HY(T*Z|z) = P
in injective and has the property that coker(Q — P) belongs to Coh(Z) and is locally free.
Consider again (9.5). Let k be an index such that the map P — H°(T*Z) factors through
amap P, —» H(T*Z), and let Q := ker(P — P). Set
R := j|Z X Q
P
By construction, the map R — @ is surjective, i.e., we have the following short exact sequence
in Pro(Coh(Z)%):
0— HYT*Z) - R — Q — 0.
Since @ is pro-projective and the category of indices is N, the map R — ) admits a right
inverse, which gives rise to the desired map f: Q — R — J|z.
9.6.5. Step 3. We shall now use the above pair (Q, f : Q — J|z) to construct the desired family
of sub-indschemes of Z.;, each being as in Step 1.
For every n consider the object
Iz, = “Uim” Jw|z, € Pro(Coh(Z,)%).

We can extend the locally free sheaves @), to a compatible family of locally free finite rank
coherent sheaves n — @Q,,|z, and a compatible family of maps

flz, : Qlz, = “lim” Qml|z, = J|z,.
Let Q™|z, be the kernel of the map Q|z, — @m|z,. For each m we define the closed
sub-scheme Z)" of Z,, to be given by the ideal J]' equal to the image of
flzy
Q™|z, = Qlz, =% |z, = Jn.
We set
Zn = colim Z].
n
It is clear from the construction that
Ze >~ colim 27 .
m

9.6.6. Step 4. It remains to show that each Z[;} is a classical indscheme satisfying the assump-
tions of Step 1. Let

M = LLKE(SChaff)op<_>(DGSChaff)op (ZZZ)

Using Corollary 9.4.5, it suffices to show that H°(T*2™|z) € Pro(Coh(Z)%) is locally free of
finite rank and that H=Y(T*2™|z) = 0.

For that it suffices to show that the map
“lim” Jm |z — HO(T*2|z)
n
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is injective and that the quotient belongs to Coh(Z)¥ and is locally free of finite rank. However,
by construction, we have a surjective map

Q™ :=ker(Q — Q) —» “lign” Iz,

and the required properties follow from the corresponding properties of the map f.
O(Proposition 9.5.2)

10. QCoh AND IndCoh ON FORMALLY SMOOTH INDSCHEMES

10.1. The main result. The goal of this section is to prove the following result, originally
established by J. Lurie using a different method:

Theorem 10.1.1. Let X be a formally smooth DG indscheme, which is weakly Ry and locally
almost of finite type. Then the functor

Ty :=— & wy : QCoh(X) — IndCoh(X)
Ox
s an equivalence.

Note that by Theorem 9.1.2, the DG indscheme X is 0-coconnected, so QCoh(X) is equivalent
to
QCoh(*r (X)) ~ QCoh (7 (X)),
where the latter equivalence is because of [GL:QCoh, Corollary 1.3.7].
We also note the following corollary of Theorem 10.1.1 and Corollary 2.4.4:

Corollary 10.1.2. Let X be a formally smooth DG indscheme, which is weakly Ry and locally
almost of finite type. Then the category QCoh(X) is compactly generated.

The rest of this section is devoted to the proof of Theorem 10.1.1.
10.2. Reduction to the “standard” case.

10.2.1. Write @X as colim X, where X, are classical schemes locally of finite type. Let X, :=

DCﬁ\ean be the formal completion of X along "*“X,. Each X, is DG indscheme satisfying the
assumptions of the theorem.

Since
colim Xy — X,
@

is an isomorphism (the above colimit taken in PreStk), the functors

QCoh(X) — lim QCoh(X,) and IndCoh(X) — lim IndCoh(X,,)
are both equivalences, where the first limit is taken with respect to the *-pullback functors, and
the second limit is taken with respect to the !-pullback functors.

Since for o« — 3 the diagrams
QCoh(X) —— QCoh(X3) —— QCoh(X,)

| [ Je-
IndCoh(X) — IndCoh(X3) — IndCoh(X.)

are commutative, it suffices to show that each of the functors
(10.1) To, : QCoh(X,) = IndCoh(X,)
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is an equivalence.

So, from now on we will assume that X is formal.

10.2.2. By [GL:IndCoh, Proposition 4.2.1], the functor IndCoh satisfies Zariski descent. So,
the statement about equivalence in (10.1) is local in the Zariski topology. Therefore, we can
assume that X is affine, and thus apply Proposition 9.5.2.

10.2.3. Since the statement of the theorem survives taking retracts and colimits of DG ind-
schemes, we can assume that X is elementary (see Sect. 8.4.7). The proof that the functor
T« is an equivalence in this case is a rather straightforward but somewhat tedious verification,
which we shall presently perform.

10.3. The functor Y¥.

10.3.1. Recall the notation of Sect. 8.4.4. Let us denote by Y the DG indscheme A™™. Let
f X — Y denote the corresponding closed embedding.

Since

X~0xY,
Ak

by [GL:QCoh, Proposition 3.2.1], we have:

(10.2) QCoh(X) ~ Vect ®  QCoh(Y).
QCoh(Ak)

By Sect. 7.2, the indscheme Y is quasi-perfect (i.e., the category QCoh(Y) is compactly
generated and its compact objects are perfect). We claim:
Lemma 10.3.2. The DG indscheme X is quasi-perfect.

Proof. From (10.2) we obtain that a generating set of compact objects of QCoh(X) is obtained
as the essential image under the functor f* of compact objects of QCoh(Y). The assertion of
the lemma follows from the fact that the pullback functor preserves perfectness. O

In particular, from Lemma 10.3.2 we obtain a self-duality equivalence
(10.3) D3¢ ; (QCoh(X))Y ~ QCoh(X),
Using also
D5 : (IndCoh(X))Y ~ IndCoh(X),
we can consider the functor
T : IndCoh(X) — QCoh(X),
dual to Y.

Showing that Ty is an equivalence is equivalent to showing that T¥. is an equivalence.
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10.3.3. Let ~Y := ~A™™ be the scheme introduced in the course of the proof of Proposi-
tion 8.4.6. Let ~X be the DG scheme

0x~Y.
Ak

As we saw in Sect. 8.4.4, the DG scheme X is also 0-coconnective.

The formal /(\DG) scheme X is obtained as a formal completion of ~X along a Zariski-closed
subset X. Let i : X — ~X denote the corresponding map, and let

~X - X = Uy DX

be the complementary open embedding.

Since the DG scheme ~X is Noetherian, the category IndCoh(X) and the functor

Uy : IndCoh(X) — QCoh(X)

are well-defined (see [GL:IndCoh, Sect. 1.1]).

10.3.4. We will deduce the fact that Y% is an equivalence from the following statement:

Proposition 10.3.5. The diagram of functors

~IndCoh

IndCoh(X) ——— IndCoh(~X)

r;l \IJle

QCoh(X) —“— QCoh(~X)

commutes.

Remark 10.3.6. This proposition does not formally follow from the commutativity of (7.13),
because the latter relied on the finite type assumption of the ambient DG scheme (in our case
the ambient scheme is ~X, and it is not of finite type).

10.3.7. Let us assume this proposition for a moment and finish the proof of the fact that Ty is
an equivalence (and thereby of Theorem 10.1.1).

Proof. We have a commutative diagram

IndCoh, *

IndCoh(~X) Z——— IndCoh(Ux)

wee | [ e

QCoh(¥X) —2 s  QCoh(Ux)
(see [GL:IndCoh, Proposition 3.5.4]).
By Proposition 7.1.3, the category QCoh(X) identifies with the kernel of the functor
J* : QCoh(~X) — QCoh(Ux).
By Proposition 7.4.5, the category IndCoh(X) identifies with the kernel of the functor
jindCobx . IThdCoh(~X) — IndCoh(Ux).
(We remark that in Proposition 7.4.5 it was assumed that the ambient scheme is almost of

finite type over the field, but the proof applies in the case when it is only assumed Noetherian,
which is the case for ~X.)
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The required assertion follows from the fact that the functors ¥~y and ¥y, are equivalences,
since the corresponding DG schemes are 0-coconnective and the underlying classical schemes
are regular (see [GL:IndCoh, Lemma 1.1.6]).

O

10.4. Proof of Proposition 10.3.5. We shall compare the functors
QCoh(~X) ® IndCoh(X) = Vect
that arise from the two circuits of the diagram and the duality pairing
(=, —)QCon(~x) : QCoh(~X) ® QCoh(~X) — Vect,
corresponding to the functor D}V of (10.3).
For F € QCoh(~X) and F’ € IndCoh(X) we have:

(10.4) (F,i7 0 T (F1)) qron(~x) = (i (F), Tx(F1))qeon(xy = T (X, i () & F),
X

where the first isomorphism follows from Corollary 7.2.6, and the second one from Sect. 7.5.2.

The description of the functor /i\i“dc‘)h given in Sect. 7.4.3 (which is valid for all Noetherian

schemes) implies that we have a canonical isomorphism

FIndCoh(:X: _) ~ FIndCoh(Nx _) O’Z-\IndCoh
Hence, the expression in (10.4) can be further rewritten as
FIndCoh (N:X:’and(}oh(/{*(&r) ® 3'1)) ,
Ox
which by the projection formula is canonically isomorphic to

FIndCoh (~x73: ® EndCoh(gﬂ) )
O~

Now,
@3W~xogﬁﬂbhmﬁ»Qomwx)ﬁlﬂmwd%Nx#To® andCoh (7)),
~X
as required.
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