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If implementation of proposals to engineer the climate through solar radiation 19 
management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. 20 
However, modeling studies examining the effectiveness of solar radiation 21 
management (SRM) as a strategy to offset anthropogenic climate change have used 22 
only the standard parameterizations of Atmosphere-Ocean General Circulation 23 
Models (AOGCMs) that yield climate sensitivities close to the Coupled Model 24 
Intercomparison Project (CMIP) mean. Here, we use a perturbed physics ensemble 25 
modeling experiment to examine how the response of the climate to SRM 26 
implemented in the stratosphere (SRM-S) varies under different greenhouse gas 27 
(GHG) climate sensitivities. When SRM-S is used to compensate for rising 28 
atmospheric concentrations of GHGs, its effectiveness in stabilizing regional 29 
climates diminishes with increasing climate sensitivity.  However, the potential of 30 
SRM-S to slow down unmitigated climate change, even regionally, increases with 31 
climate sensitivity. On average, in variants of the model with higher sensitivity, 32 
SRM-S reduces regional rates of temperature change by more than 90 percent and 33 
rates of precipitation change by more than 50 percent.  34 

 35 
The Royal Society has defined solar radiation management (SRM) as techniques that 36 
"attempt to offset effects of increased greenhouse gas concentrations by causing the Earth 37 
to absorb less solar radiation" [1].  The most plausible large-scale method is to increase 38 
the loading of light-scattering aerosols in the stratosphere (SRM-S) [1]. A number of 39 
AOGCM modeling studies suggest that SRM can compensate for many of the 40 
temperature and precipitation changes associated with global warming, even at the 41 
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regional level [2-4], though these regional compensatory effects are not uniform [4,5]. 42 
These previous studies have used models in which the climate’s equilibrium sensitivity to 43 
greenhouse gas forcing (henceforth, CS) reflects near-median estimates of CS. However, 44 
both observationally-constrained and expert-elicited estimates of CS have a substantial 45 
“high tail” [6,7] and it is arguably more likely that if SRM is deployed it will be because 46 
CS, and the impacts from climate change, turn out to be higher than current best 47 
estimates.   Here we examine the effectiveness and side effects of SRM-S across a range 48 
of CS to check if use of the mean CS biases our understanding of SRM. 49 
 Evaluating the effectiveness of SRM-S requires first specifying the conditions in 50 
which it might be implemented and the effects that would be desired. There are various 51 
scenarios under which SRM might be employed. From a conventional policy viewpoint 52 
in which SRM is one of a portfolio of strategies alongside mitigation and adaptation, it 53 
could be used to minimize net social costs of climate change [8,9]. Alternatively, SRM is 54 
often framed as disaster insurance to be employed in case of the “extreme warming” that 55 
would occur under high CS [10] (and which may bring about “catastrophic” changes such 56 
as rapid deterioration of the Greenland ice sheet or large releases of methane from 57 
thawing permafrost [11]).  58 

To investigate how SRM-S might be used to counterbalance future GHG-induced 59 
climate change in model variants with high CS that are also consistent with recent 60 
observed climate change, we perform a "perturbed physics" ensemble (PPE) modeling 61 
experiment with the HadCM3L AOGCM  [12-15]. Like other PPEs [16,17], we simulate 62 
past and future climate scenarios using a wide range of model parameter combinations 63 
that both reproduce past climate within a specified level of accuracy but simulate future 64 
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climates with a wide range of climate sensitivities.  We chose 43 members (“model 65 
variants”) from a subset of the 1,550 from the British Broadcasting Corporation (BBC) 66 
climateprediction.net (cpdn) project that have data that allow restarts (see Methods, 67 
Supplementary Methods and Supplementary Figure S1). [12,13]  68 

Anthropogenic emissions were modeled using a mid-range standard emissions 69 
scenario, SRES A1B [18]. SRM-S is simulated in the model by specifying a globally 70 
uniform aerosol optical depth (AOD). The simulations run through 2000-2080 with 71 
SRM-S forcings applied from 2005. A first cpdn experiment using HadCM3L’s standard 72 
physical parameters (i.e., the “standard physics” model variant) to look at global and 73 
regional responses to 135 different potential SRM-S scenarios [3] showed that, even 74 
regionally, changes to stratospheric AOD produce approximately colinear temperature 75 
and precipitation responses. Using the SRM-S scenarios that best stabilized global 76 
temperature in that experiment, we analyze the effects of four SRM-S scenarios (no-, 77 
low-, medium-, and high-SRM) to simulate with the PPE.  The low-, medium- and high-78 
SRM scenarios are designed to approximately counteract rising radiative forcing from 79 
anthropogenic emissions and stabilize global mean temperature within 1˚C relative to 80 
present day in all model variants (see Methods, Supplemental Methods and Figure S2). 81 
The no-SRM scenario used a constant stratospheric AOD corresponding to mean natural 82 
volcanic activity in the recent past. [19]  83 

Figure 1 shows five-year-running-mean global-mean surface air temperature and 84 
precipitation rates for each model variant for the no-SRM, low-SRM and high-SRM 85 
scenarios.  SRM cannot simultaneously compensate for the impacts of rising greenhouse 86 
gases on both temperatures and the hydrological cycle.  Most of the effect of either SRM 87 
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or GHGs on mean precipitation is via temperature, but if their effects on temperature are 88 
made to cancel, changes in mean precipitation are driven by the direct effects of their 89 
radiative forcings, both of which reduce precipitation (by reducing surface radiative 90 
heating and reducing tropospheric radiative cooling, respectively) [20, 21].  Under the 91 
no-SRM scenario, global-mean temperature and precipitation increased with all model 92 
variants.  While results vary, both high- and low-SRM yield relatively stable 93 
temperatures after 2020 and show decreasing precipitation. 94 

To analyze the regional impacts of different levels of SRM-S we examined mean 95 
temperature and precipitation anomalies over land in 23 “Giorgi regions”  [22] (responses 96 
over the ocean are not displayed but tend to be similar). Results are presented for each 97 
PPE model variant using the projected warming without SRM-S from 2000 to 2050 as the 98 
independent variable. The projected warming is correlated with CS and the results of 99 
analyses presented in the following sections are the same if CS is used as the independent 100 
variable. 101 

As an example of how regional responses to greenhouse gas and SRM-S forcings 102 
vary among model variants, Figure 2 shows decadal-mean temperature and precipitation 103 
changes between 2000 and 2050, normalized by the ensemble-mean inter-annual 104 
variability of control climates unperturbed by greenhouse gases or SRM, for just two 105 
regions and two model variants: the standard physics variant (∆T2050=2.1 C) and the 106 
ensemble’s highest-warming variant (∆T2050=4.1 C).   107 

With both model variants, Region 1 gets warmer and wetter under A1B, while 108 
Region 2 gets warmer and drier. When SRM-S is used, both regions move back towards 109 
their baseline climate states in both model variants. In the standard physics model variant, 110 
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with the right amount of SRM-S, each region could return almost exactly to its 2000 111 
baseline for both annual-average temperature and precipitation although the amount of 112 
forcing required is different for the two regions. In the high CS model variant, the closest 113 
each region can return to its baseline climate state is approximately one standard 114 
deviation. (These data points were selected for illustrative purposes, but are reasonably 115 
representative. Not all low sensitivity model variants return Region 1 and Region 2 so 116 
close to the origin, and some regions cannot be simultaneously returned to their baseline 117 
values of temperature and precipitation even in the standard physics model variant. See 118 
Supplementary Figures S3 and S4.) 119 
 The ensemble design allows analysis of the relationship between various regional 120 
measures of SRM-S efficacy and the overall global warming or CS of the model variant. 121 
Regional SRM-S efficacy-defined here as the fractional extent that SRM-S can return 122 
regional climates from the no-SRM case toward the baseline-can be expressed in both 123 
relative and absolute terms.  These measures are averaged for presentation using three 124 
different weightings: each region is unweighted; each is weighted by its population; or 125 
each is weighted by its economic output. [23] 126 

To assess the diversity of likely regional preferences for the amount of SRM-S, 127 
we first consider OD*, the change in optical depth that returns the region's climate closest 128 
to its baseline (the origin in Figure 2) in terms of combined interannual standard 129 
deviations of temperature and precipitation. We also consider regional anomalies (the 130 
variability-normalized regional temperature, precipitation, and combined temperature and 131 
precipitation changes) for variously weighted mean-OD* and the ratio of regional 132 
anomalies at global-mean-OD* to those associated with no SRM. 133 
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Analyzing precipitation rather than, for example, soil moisture to evaluate the 134 
effect of SRM-S on the hydrological cycle does not seem to result in a systematic 135 
overestimation of its efficacy. For example, as the amount of SRM-S increases, regional 136 
precipitation anomalies associated with anthropogenic emissions, are generally 137 
‘overcorrected’ (SRM changing the sign of the anomaly compared with the no-SRM 138 
case) before runoff (precipitation minus evaporation) anomalies are. 139 

Precipitation and temperature changes, albeit very important, are only two of the 140 
many variables likely to have climate related impacts. The potential for moderating 141 
effects such as sea level rise and ice sheet melt (while more difficult to accurately model 142 
in AOGCMs) will also be relevant to decisions by some parties about whether to 143 
implement SRM-S. As such, our SRM efficacy metrics are useful indicators of tradeoffs 144 
that occur when attempting to stabilize regional GHG-driven climate changes using 145 
SRM-S, but are not definitive normative measures of regional impacts or likely 146 
preferences.  Because our simulations do not include 'threshold' effects such as collapse 147 
of the thermohaline overturning or catastrophic release of methane, our metrics also 148 
cannot measure the ability of SRM-S to counteract the type of forcing feedbacks that 149 
would occur if certain climate tipping points were surpassed [24] before SRM-S 150 
implementation. 151 

Ten-year mean values of various efficacy measures against model variant 152 
temperature response for decades averaged around 2030, 2050 and 2070 are shown in 153 
Figure 3 and in Supplementary Figures S5 and S6. As greenhouse gas concentrations rise, 154 
more SRM-S is required to compensate (Figure 3). Mean regional preferences for the 155 
amount of optical depth modification (i.e., mean-OD*) are fairly insensitive to modelled 156 
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CS regardless of weighting. This should be expected physically because a model variant 157 
more sensitive to one radiative forcing is generally similarly sensitive to the other 158 
radiative forcing and SRM-S is used to cancel roughly the same amount of forcing 159 
regardless of the modelled CS. Results are similar using median-OD* rather than mean. 160 
Trends for seasonal data are similar, though the economic output weighted slopes do 161 
change noticeably because economic output is concentrated in the Northern Hemisphere 162 
(not shown). 163 

The standard deviation of regional preferences for OD* (Supplementary Figure 164 
S7) decreases with modelled temperature response. This should also be expected 165 
physically as the smaller variation in the strength of SRM-S would have more impact if 166 
climate sensitivity were higher.   167 

However, the mean and standard deviation of regional anomalies at mean-OD* 168 
increase with modelled warming (Supp Figure S5), again regardless of weighting. On 169 
average across the ensemble, at OD* these SRM-modified climates are slightly warmer 170 
and drier than their baseline climates, as is physically expected [21,22]. The higher 171 
regional anomalies are driven by amplified regional drying in high-CS worlds; there is no 172 
statistically significant relationship between modelled warming and the magnitude of 173 
regional temperature anomalies with SRM-S set at mean-OD*. As a proxy for regional 174 
impacts with SRM, the higher mean anomalies imply that SRM-S is less effective overall 175 
as a substitute for mitigation in higher sensitivity worlds – precisely when SRM-S seems 176 
most likely to be deployed.  Higher standard deviations of regional anomalies in higher 177 
CS model variants also suggest interregional heterogeneities associated with an SRM-S 178 
substitution would be greater in higher sensitivity worlds.  179 
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 Conversely, the mean and the standard deviation of the ratio of regional 180 
anomalies at mean-OD* to anomalies with no SRM-S decrease with modelled CS and 181 
decrease over the length of the simulations (Supp Figure S6). By these measures, SRM-S 182 
is more effective and equitable at reducing the risk from climate change when CS is high.   183 
 From some impacts perspectives, rates of regional climate change matter more 184 
than absolute anomalies [25,26]. On average, without SRM-S, regional rates of warming 185 
and precipitation change are more than twice as high in the ensemble’s highest sensitivity 186 
model variants as in the lowest sensitivity model variants and are similar in magnitude to 187 
the regional rates of change simulated by the same variant between 1996-2005. With 188 
SRM-S applied, the rates of temperature change are insensitive to the modelled CS 189 
(Figure 4a). Rates of precipitation change are marginally (but statistically significantly) 190 
higher in higher CS model variants (Figure 4c), but on average, SRM-S reduces regional 191 
rates of temperature change by more than 90% and rates of precipitation change by more 192 
than 50% in the highest CS model variants (forecast warming greater than 3.5°C). The 193 
ability of SRM-S to reduce rates of change in the face of high CS does not depend 194 
strongly on the inter-regional weighting scheme, implying that while divisions between 195 
Giorgi regions are socioeconomically meaningless, the average responses of the regions 196 
are still meaningful. Effectiveness also does not depend on the decade, implying that the 197 
effectiveness of SRM-S in reducing change is roughly independent of when it is 198 
implemented.   199 
 Given the regional heterogeneity of SRM-S effectiveness and the fact that it will 200 
only moderate, never eliminate regional climate changes, it is unlikely that all regions 201 
would find their local outcomes comparably satisfactory, and many regions may find the 202 



Ricke et al., November 2011 Draft, Do Not Cite  10

result increasingly unsatisfactory over time. Conceivably some regions will prefer their 203 
new climates to those of 2000.  In addition there are other risks (such as potential for 204 
stratospheric ozone depletion [27, 28]) and imperfections (such as a failure to address 205 
ocean acidification [29]) associated with SRM-S which may also vary with CS.  206 

We have explored how much existing assessments of SRM-S, by using standard 207 
GCMs with near-median CS, may ignore important contingencies. As noted above, a 208 
major motivation for studying SRM is to evaluate its potential effectiveness as insurance 209 
against higher-than-expected sensitivity of climate to radiative forcing due to greenhouse 210 
gases.   We find that SRM-S is least effective in returning regional climates to their 211 
baseline states and minimizing regional rates of precipitation change under precisely such 212 
high CS conditions.  On the other hand, given the very high regional temperature 213 
anomalies associated with rising greenhouse gas concentrations under high CS, this is 214 
also where SRM-S is most powerful in reducing change relative to the no SRM-S 215 
alternative.  216 
 217 
METHODS  218 
Ensemble Design 219 
The standard versions of AOGCMs have generally benefited from considerable tuning: 220 
the set of values of model parameters has been developed to give physically-based 221 
realistic simulations.  A PPE deliberately “detunes” the model, setting parameters to any 222 
physically plausible value, to explore uncertainty space. Many of the original 1,550 223 
climateprediction.net model variants thus provide a poor simulation of recent observed 224 
climate change. We aim to use only model variants that provide a credible simulation of 225 
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the past 50 years while maintaining a large diversity in the response in 2050. A number 226 
of the choices we made in the design are for pragmatic reasons rather than being based on 227 
a formal sampling algorithm, since we do not seek to interpret the distribution of model 228 
variants in the new ensemble in any probabilistic terms.  Several factors were considered 229 
in selecting model variant runs. 230 

First, we held constant the future solar forcing scenario [30], and the future 231 
anthropogenic sulphate emissions trajectory. To avoid discontinuities in the solar forcing 232 
at the year 2000 we only consider simulations with a solar forcing very close to the 233 
chosen scenario in 2000. Second, we only used model variants with a relatively stable 234 
base climate.  We eliminated model variants in which the initial-condition ensemble 235 
average of the control simulations exhibited a drift greater than 0.5K/century fitted over 236 
1960-2080.  Finally, we selected model variants through a comparison of the modelled 237 
and observed spatio-temporal pattern of temperature change over the past 50 years (see 238 
Supplementary Methods). 239 

Supplementary Figure S1 plots the goodness of fit between models and 240 
observations against simulated warming in 2050 with our forty-three-member PPE 241 
ensemble.  The colour code for those points indicates the model’s calculated equilibrium 242 
climate sensitivity from corresponding equilibrium slab ocean simulations, which is 243 
correlated with transient warming (see Supplementary Methods). 244 

To select a subset of the models for inclusion in the new ensemble that ensured a 245 
wide range of responses in the future, models were binned by projected warming in 2050 246 
into 10 equally spaced bins spanning the range of responses. In each bin, the model 247 
variant with the lowest r2 was automatically included, along with 4 others sampled 248 
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probabilistically (see Supplementary Methods), avoiding duplicates. In the two highest 249 
response bins there were less than 5 model variants that met the selection criteria, and 250 
hence our selection yielded only 43 model variants.   251 

A 10-member initial condition ensemble was generated for each model variant. 252 
(see Supplementary Methods) For our analysis, the 430-member ensemble was run for 253 
each of the 4 SRM-S scenarios, giving a total of 1720 model simulations. 254 

 255 
SRM Forcings 256 
SRM-S activities were simulated by specifying globally uniform variations in 257 
stratospheric optical depth. This is distributed in the vertical proportional to the mass of 258 
air in each stratospheric level in each level above the tropopause, which is diagnosed for 259 
each point and timestep using a lapse-rate-based criterion [31]. 260 

A baseline SRM-S scenario (medium-SRM) was formulated using the results 261 
from the standard physics experiment [3] in which 135 SRM-S scenarios were 262 
formulated, designed to offset the net forcings associated with long-lived greenhouse 263 
gases, tropospheric sulphur aerosols and tropospheric ozone; and spanning the 264 
uncertainties associated with these anthropogenic forcings.  The two scenarios which best 265 
stabilized global surface air temperature in that experiment according to a least-squares 266 
fit analysis were averaged. In the no-SRM scenario, stratospheric AOD was set to 0.01 267 
(at 0.55 microns, the reference wavelength [31]), a level approximately equal to mean 268 
volcanic activity in the recent past [19], over the entire length of the simulations. The 269 
high-SRM-S and low-SRM-S scenarios are the same as the baseline SRM-S scenario 270 
except for the addition (0.075) or subtraction (0.015) of a constant amount of optical 271 
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depth at all points in the simulations (see Supplementary Figure S2 and Supplementary 272 
Methods).  273 
 274 
Statistical Analysis 275 
For each of the 43 model variants we average output over a 10-member initial condition 276 
ensemble to improve the signal-to-noise ratio. All best fits shown were fitted using least-277 
squares regression.  (See Supplementary Table S1 for all regression coefficients and 278 
corresponding p-values.)  The latter are calculated using standard assumptions including 279 
Gaussian noise, which may be misleading, particularly in the far tails.  We therefore do 280 
not specify p-values beyond 2 decimal places. 281 
 282 
Regional Population and Economic Weightings 283 
Population and economic output data for the year 2005 were obtained from the Nordhaus 284 
G-Econ dataset, which contains gross output and population at a 1°x 1° resolution and 285 
mapped onto the 22 “Giorgi regions,” plus New Zealand [23]. 286 
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Figure 1. Time series of temperature and precipitation of the no-SRM, low-SRM and 377 
high-SRM scenarios examined, with initial condition sub-ensembles averaged for each of 378 
the 43 PPE model configurations analyzed. (a) Five-year running-mean global mean 379 
near-surface (1.5 m) air temperature, and (b) five-year running-mean global mean 380 
precipitation rate, all displayed over the length of the 80 model-year simulations. 381 
 382 
Figure 2. Example of regional responses to A1B and SRM-S forcings in units of standard 383 
deviations for two model variants and two regions. Region 1 is Eastern North America; 384 
Region 2 is Southern Europe/Northern Africa. Blue-edged points show the no-SRM 385 
(black-centre), low-SRM (green-centre) and high-SRM (magenta-centre) responses for 386 
the standard physics model variant (∆T2050=2.1 C). Orange-edged points corresponding 387 
responses for the ensemble’s highest sensitivity model variant (∆T2050=4.1 C). 388 
Temperature and precipitation anomalies are the difference between ten-year averages 389 
centered on 2050 and 2000, divided by the interannual variability of the control climate. 390 
Arrows indicate the trajectory as SRM-S increases.  391 
 392 
Figure 3. Mean regional values of OD*, the amount of optical depth modification that 393 
returns each regional climate closest to its baseline state (the origin in Figure 2), plotted 394 
against 2050 forecast warming of the model variant for decadal means about 2030, 2050 395 
and 2070. Points show the mean-OD* for each model variant when equal weight has 396 
been given to each of the 23 regions.  Solid lines show best fits to these points.  Dashed 397 
and dotted lines show best fits to points (not shown) that result if each geographic region 398 
is weighted by its economic output (dotted) or by its population (dashed).   399 
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 400 
Figure 4. The mean value of the absolute values of regional rate of change (a and c) and 401 
standard deviation of regional rates of change (b and d) for temperature (a-b) and 402 
precipitation (c-d), shown for both the medium-SRM (see Methods) and no-SRM 403 
scenarios for decadal intervals centered on 2030 (red), 2050 (black) and 2070 (blue), 404 
plotted against model forecast warming. In the case of precipitation, points and best-fit 405 
lines for the No-SRM simulations are shaded more lightly to distinguish them from the 406 
medium-SRM simulations. 407 
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