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Abstract

Genetically identical cells sharing an environment can display markedly different phenotypes. It is

often unclear how much of this variation derives from chance, external signals, or attempts by

individual cells to exert autonomous phenotypic programs. By observing thousands of cells for

hundreds of consecutive generations under constant conditions, we dissect the stochastic decision

between a solitary, motile state and a chained, sessile state in Bacillus subtilis. The motile state is

memoryless, exhibiting no autonomous control over the time spent in the state, whereas chaining

is tightly timed. Timing enforces coordination among related cells in the multicellular state.

Further, we show that the three-protein regulatory circuit governing the decision is modular, as

initiation and maintenance of chaining are genetically separable functions. As stimulation of the

same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial

commitment to multicellularity that external signals could extend.

Cell fate decisions often result from explicit extracellular triggers1-3. It is now appreciated

that internal stochastic fluctuations4-10 can also drive a cell to switch fates even in the

apparent absence of external signals11-17. Neighboring cells in the developing gonad of

Caenorhabditis elegans compete to become ventral uterine or anchor cells18, and

subpopulations of growing Escherichia coli cells probabilistically enter a quiescent,

antibiotic resistant state14, 19. But whether occurring in the body of a nematode or in shaking

culture, these decisions take place against a backdrop of environmental change driven by

continued growth. With rising interest in quantitative properties of gene networks20, 21, one

central question is how much of a cell's behavior can be attributed to the environment and

how much to the internal program, i.e., the behavior the network would implement were the

environment fixed.

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
§Co-corresponding authors. Correspondence and requests for materials should be addressed to J.P.
(Johan_Paulsson@hms.harvard.edu) or R.L. (losick@mcb.harvard.edu)..

Author contributions T.M.N. and N.D.L. designed and fabricated the microfluidic device, cloned strains, and collected the data. All
authors were involved in conceiving the study, analyzing results, and writing the paper.

The authors have no competing financial interests.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2014 May 28.

Published in final edited form as:
Nature. 2013 November 28; 503(7477): 481–486. doi:10.1038/nature12804.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.nature.com/nature


A prototypical situation arises in the conversion of bacteria from free-living, planktonic cells

into sessile, multicellular communities known as biofilms22, 23. Like many complex fates,

biofilm formation is a product not just of a cell's individual behavior, but also of

reinforcement by environmental cues created by nutrient depletion, the production of

matrix24, quorum sensing25, and hypoxia26. Here we use a microfluidic device to investigate

the earliest stages of multicellular growth by the soil bacterium Bacillus subtilis. Our

approach removes confounding environmental influences while allowing for high-

throughput quantitative imaging, thereby revealing the cell's internal programs of

development.

B. subtilis provides a natural model system for decision-making. During the exponential

phase of growth, it exists in two states: as individual, motile cells and as long, connected

chains of sessile cells27. Switching between these states has been thought of as a bet hedging

strategy28-30, with motile cells acting as foragers and chains representing periodic attempts

to settle down and start a colony. At the heart of the decision is a simple three-protein

network between SinI (henceforth I), SinR (R), and SlrR (Slr)31, 32. Commitment to each

state is controlled by a double-negative feedback loop in which R represses the Slr gene,

and Slr binds to and titrates R (Figure 1a). Motility corresponds to the SlrLOW state in

which R represses the gene for Slr and other chaining-associated genes. Chaining occurs

during the SlrHIGH state in which Slr forms a complex with R, both titrating its activity

against chaining genes and redirecting it to repress motility-associated genes 33. Though

both states are present during exponential growth, the chained state is strongly reinforced

during biofilm formation by further antagonism of R by I, which is produced in response to

environmental signals34, 35. This three-gene network thus supports a two state process of

decision-making that can be influenced by environmental signals.

Visualizing fate switching in real time

Microfluidic systems that allow individual cells to be imaged over time as the growth

medium is replenished provide an excellent opportunity to examine autonomous

developmental programs. Extracellular signaling is removed, and cells cannot accumulate

and starve themselves. Building on previous studies14, 36-40, we constructed microfluidic

channels from polydimethylsiloxane (PDMS, Figure 1b) that were sized to accommodate

chains of B. subtilis (75 μm long and 1.6 μm wide). A unique feature of our design is the

shallow side channels that surround the cells, creating a ‘bath’ of medium that enables

efficient feeding over long length scales41. The channels are closed on one end, and on the

other they empty into a feeding channel that supplies fresh medium (by diffusion) and

washes away excess cells as they are pushed out by growth. To prevent cells from

swimming out of the channels, the ability of the flagellum to generate force was disrupted

through a straight flagellum mutation42.

Only motile cells expressed the flagellin genes (Supplemental Video 1) as visualized with a

Phag-mKate2 reporter (colored green), and only chains expressed matrix genes as visualized

with a PtapA-cfp reporter (colored red). We therefore used these reporters as proxies for the

corresponding phenotypic states. B. subtilis interconverted between the motile and chained

states while growing in the channels (Figure 1c and Supplemental Movie 2), leading to
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anticorrelated flagellin and matrix gene expression. In keeping with the premise that the

chains had switched to the SlrHIGH state, imaging of slr (visualized with a Pslr-mKate2

reporter, artificially colored green) and matrix coexpression revealed that slr was expressed

in chains (Figure 1d), and that matrix and slr expression were tightly correlated in time

(Figure 1e).

Several million cell divisions were imaged, but we only report data for the fates of the

uppermost cell in each channel, since these could be monitored throughout the experiment

without being washed away (Figure 2a, Supplemental Video 2). We thus tracked the

histories of thousands of individual bacteria through ~300 generations of growth. To define

more precisely the motile and chained states, we found thresholds on the matrix reporter that

coincided with onset of matrix expression and the subsequent return of motility, but similar

results were obtained for a range of thresholds (Extended Data 1). All measured properties

remained constant in time and across the device: a generation time of ~27 minutes was

sustained for as long as seven days (Extended Data 2), chaining occurred at a uniform rate

(Extended Data 3), and within each lineage there was no correlation between the lengths of

successive visits to the motile state (Figure 2b) or the chained state (Extended Data 4). The

switching behavior was thus homogeneous throughout the device and experiment duration,

reflecting a stochastic process at steady state. With the influence of environmental changes

removed, we next set out to characterize the autonomous motility and chaining programs.

Memoryless motility and timed chaining

We monitored transitions between motile and chained states to determine if cells exercise

temporal control, or if they exit states independently of their history. The latter

‘memoryless’ behavior would imply exponentially distributed residence times between

events and thus a coefficient of variation (standard deviation divided by mean) in residence

times of CV=100%, while other switching mechanisms could exploit history-dependence to

produce narrower distributions. We further quantified history dependence by asking how

each state ‘ages’, as measured by mean residual lifetime curves, i.e., the expected time left

in a state given that the system is still there, as a function of time. Memorylessness produces

horizontal aging curves (blue line in Figure 2c) while perfect timing produces linearly

decreasing curves with a slope of −1 (green curve in Figure 2c)43.

The distribution of residence times in the motile state was almost perfectly exponential with

a mean of ~81 generations (~36 hours) and CV≈100% (Figure 2d) after correcting for the

length of the experiment (SI). The aging curve also conformed to the expectation for an

exponential random variable (Figure 2e), and we observed no correlations between the

residence times of successive events. Thus, despite the complex underlying circuit, cells

decide to chain according to the simplest possible switching scheme: a motile cell does not

‘remember’ when it last chained, and the probability of chaining is the same whether the cell

has been motile for one generation or hundreds of generations.

Chains displayed a radically different behavior. The residence time distribution was sharply

peaked at a mean of 7.6 generations and had a 28% relative standard deviation (Figure 2f),

resembling a gamma distribution with a shape parameter of 13 and with an aging curve
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prototypical of tight timing before eventually flattening out (Figure 2g). Thus while motile

cells set long average residence times and allow widely variable commitments, chains

instead orchestrate briefer, tightly-timed transitions. This difference makes teleological

sense given their respective lifestyles. As motile cells grow as individuals, their properties

are insensitive to how long they remain motile, leaving no obvious reason to keep track of

the residence time. In contrast, any decision that depends on coordination among progeny

will require some degree of memory. Chains have strong incentives to preclude both very

short and very long commitments. The chained phenotype accumulates over time, where

chaining for T generations produces chains of length 2T. Relatively small differences in T

then translate into great differences in chain length. Memoryless exit from the chained state

would in fact have extreme consequences, where many chains would break down almost

instantaneously while others could contain millions of cells. The narrow time distribution

guarantees a minimum chain length while preventing a high fraction of cells from

effectively entering the chained state irreversibly.

Memoryless initiation from noisy antagonism

Slow and memoryless switching can arise from positive feedback loops, in which rare

fluctuations allow the system to break out of the basin of attraction of each stable point 44.

Indeed, one of the key features of the motility-chaining decision network is the R-Slr double

negative feedback loop. As expected, mutating slr eliminated chaining: over the course of a

six day experiment, we saw sustained high expression of flagellin in all cells and observed

no morphological evidence of cells growing as connected groups. However, our sensitive

time-lapse microscopy allowed us to detect exceedingly rare and weak expression signals,

showing that an slr mutant exhibited small and infrequent bursts of matrix expression

(Figure 3a, Supplemental Video 3). We refer to these events as pulses, to distinguish them

from chains that pair high matrix expression with repression of flagellin. We note that they

also appear in the wild type data, but fail to trigger expression of Slr (Extended Data 5).

Strikingly, the residence times between subsequent initiation attempts, whether resulting in

chains or pulses, followed indistinguishable exponential distributions for wild type cells and

the slr mutant (Figure 3b). Removal of Slr thus abolished the chaining phenotype, but left

the memoryless process of initiation perfectly intact.

Having determined that initiation arose from a factor upstream of the feedback loop, we

examined the I protein that antagonizes R during biofilm formation. I was sufficient to drive

chaining, as cells containing an IPTG (isopropyl β-D-1-thiogalactopyranoside)-inducible I
gene rapidly chained upon induction. It was also necessary: cells mutant for I did not chain,

and pulses were absent in cells doubly mutant for I and Slr (red curve in Figure 3c). These

results suggest that noisy antagonism of R by I drives spontaneous chaining in a way that is

quantitatively independent of the Slr feedback control system, as discussed below.

To test how cells control the duration of the chained state, we briefly switched (10 min) on

the inducible I gene to provide a defined initiating signal (Figure 4a, Supplemental Video 4).

Strikingly, the aging behavior of the resulting chains was virtually identical to that of

spontaneously occurring chains (cf. Figures 4b and 2g). Even switching on I synthesis a

second time in cells that had started to revert from chaining (3 h after first pulse) or using a
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longer initiating signal led to no increase in the average duration of the resulting chains

(Extended Data 6). The chained state is thus stereotyped: once a signal to chain is registered,

the same program is executed in a way that is independent of the nature of the initiating

signal or of the history of the cell. This tight timing is an intrinsic property of the R-Slr
feedback loop rather than the initiating event, as the spontaneous pulses seen in slr mutant

cells showed little evidence of temporal organization (red curve in Figure 2g). Furthermore,

chains lasted longer than pulses under both spontaneous and induced conditions (Figures

4c,d), suggesting that the feedback loop coordinated action after the initiating signal had

faded. Indeed, adding an additional copy of slr to strengthen feedback led to longer chaining

events (Extended Data 7). Thus we again see network modularity45: just as the R-Slr
feedback loop did not affect the initiation of chaining, the duration of the chained state was

independent of the initiation process.

To dissect how cells time their exit from the chained state, we analyzed the temporal pattern

of gene expression during hundreds of chaining events. Examining the rate of gene

expression in these traces (SI) revealed two distinct phases: a build-up phase of matrix

expression was followed by a pure dilution phase when expression was negligible and levels

exponentially decreased due to growth (Figure 4e). Motility then reinitiated once levels fell

below a threshold. The two phases were approximately equal in length, with the duration of

the dilution phase more narrowly distributed than the build-up phase (CVbuild-up = 0.44,

CVdilution = 0.23).

Expression rates in the build-up phase varied substantially between chains at any given time

(Extended Data 8), but also over time in any given cell. By ensuring that each chain

committed to an extended buildup phase, Slr allowed cells to effectively ‘time-average’4

over such noisy expression rates since the total amount of accumulated protein reflected the

average of a long history of expression. Because the build-up phase was longer than the

correlation time of the random expression process, the variability between chains in matrix

gene expression decreased substantially as the build-up phase progressed (Figure 4f).

Variation in the outcome of the build-up phase meant that cells with higher expression

require more time to dilute, but the mechanism of dilution naturally suppresses this

heterogeneity. First, because the dilution rate is set by cell growth rather than by a noisy

reaction network, dilution can potentially extend the time spent in the state without adding

heterogeneity. Indeed, we found that the dilution phase proceeded largely deterministically:

the reporter's intensity at the onset of dilution precisely predicted the exit time, and the

trajectories were well-described by exponential decay (Extended Data 9). The threshold

marking the end of dilution and entrance into the motile state thus seemed high enough that

random segregation of molecules between daughter cells at low numbers10, 46 was made

irrelevant. Second, the exponential nature of dilution – reducing levels two-fold every

generation – further tightened control by making the timing robust to heterogeneity in the

initial level of protein. Specifically, the time spent diluting then depends logarithmically

rather than linearly on the initial amount. Cells that, by chance, have much more or less

protein initially, will then vary marginally in the time spent diluting. Indeed, the 30%

deviations in matrix abundance at the onset of dilution was reduced to a 23% deviation in

the dilution time, closely following the expectation from a noise-free exponential dilution
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process (SI). Thus, by extending the build-up phase in chains, Slr is responsible for

translating widely variable initiating signals into a precisely-timed pattern of gene

expression.

Memory enables multicellular cooperation

The choice between motility and multicellularity is central to the lives of many bacteria, as

cells must relinquish their autonomy to benefit from living together22, 23. The chaining

program may underlie the earliest steps of multicellularity: by coordinating behavior across

many generations, the tight timing provided by Slr enforces cooperation among the progeny

of a cell that initiates a new sessile community. The long-term commitment to chaining seen

during biofilm formation could in turn rely on continued initiation or on feedback

mechanisms that lock cells into the multicellular state. While we saw no evidence that Slr
feedback could provide the requisite commitment, the initiator I is indeed strongly expressed

both in response to desirable niches (e.g. plant polysaccharides)47 and growth related

stresses (e.g. starvation or hypoxia)24, 26. Our results show that different environmental

signals are channeled into the same robust chaining behavior, and cessation of the stimulus

ultimately leads to coordinated exit. Maintenance is thus contingent on continued

stimulation, but even small signals will suffice to renew commitment. The role of Slr
feedback may thus be to provide a well-defined ‘trial period’ of multicellular growth whose

continuation is periodically reevaluated.

Regulation of chaining weaves together stochastic gene expression, transcriptional feedback

and post-translational regulation. Any quantitative property of the decision could therefore

have been a product of several factors acting in concert. Yet observation of thousands of

chaining decisions free from environmental influences revealed a modular network that

separates initiation from control of the residence time; eliminating one function leaves the

other intact in quantitative detail, allowing the overall behavior to be explained in terms of

these two pieces. This type of excitable dynamics, in which the system is randomly kicked

out of a stable state but returns after a well-defined excursion, is often explained in terms of

linked feedback loops, and has been implicated in other B. subtilis decision networks16, 17.

In this case, however, an exceedingly simple alternative mechanism may explain most of the

behavior. R and I are known to form an inactive complex with binding constants in the

nanomolar range48. Since more R is produced than I, R typically titrates out all free I
molecules, thereby acting as a buffer against small fluctuations. However, a rare persistent

accumulation of I levels transiently reverses the roles, leading to a buffering pool of free I
instead. This mechanism can generate long periods of virtually no free I (corresponding to

the motile state) followed by long stretches of I dominance which induces chaining. The

memory in the chained state is in turn largely explained by the production-dilution

mechanism above in which feedback could play a role in narrowing the probability

distribution of time spent producing matrix proteins.

Other systems may also display memory and memorylessness for the times spent sessile and

motile, respectively49, but we suspect any broader principles will follow from the sensitivity

of a phenotype to the time spent in the state. Decisions that aim only to set the occupancy of

a particular state14, 15, 19 do not require explicit timing, and may therefore randomize
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commitments with memoryless switching. In contrast, when the effectiveness of a cell fate

choice is tied to population size50, timed decision making could again be used to ensure

cooperation among progeny. In higher organisms, stochastic cell fate decisions are often

stabilized after the fact by lateral inhibition18. Timing the adopted state could provide an

initial window of commitment to give extracellular feedback time to take hold. Our

approach—observing the cell's intrinsic dynamics while keeping everything else static for

extended periods of time—may reveal that many complex developmental choices can be

explained by surprisingly simple dynamical principles in individual cells.

Methods

Strain construction

All strains were derived from Bacillus subtilis NCIB3610 using standard molecular biology

techniques. Strain genotypes, full construction details, and a list of primer sequences are

provided in the SI. To prevent motile cells from swimming out of the channels, all strains

bore a hagA233V straight flagellum mutation, which impairs the ability of the flagellum to

generate force while leaving its construction intact42.

Microfluidic device fabrication

The master mold for the device was fabricated in four layers by UV photolithography using

standard methods (for detailed protocol, see SI). For each layer, Shipley or SU-8

(Microchem) photoresist was applied to a silicon wafer by spin coating to appropriate

thickness (corresponding to the channel height) and patterns were then created by exposing

the uncured photoresist to UV light through custom quartz-chrome photomasks (Toppan

Inc.).

Microfluidic devices were fabricated by molding channel features into a

polydimethylsiloxane (PDMS) slab and then bonding that slab to a glass coverslip. To

produce the slab, dimethyl siloxane monomer (Sylgard 184) was mixed in a 5:1 ratio with

curing agent, poured onto the silicon wafer master, degassed under vacuum, and cured at

65°C overnight. Holes to connect the feeding channels to the external tubing used for

medium perfusion were then introduced using a biopsy punch, and individual chips were cut

and bonded onto KOH-cleaned cover slips using oxygen plasma treatment the day of the

experiment. Bonded chips were baked at 65°C for at least an hour before use.

Cell preparation and device loading

Immediately before use, the microfluidic device was passivated with a 10 mg/mL solution of

bovine serum albumin (BSA). B. subtilis cells were grown to late stationary phase in LB to

decrease their size and thus increase efficiency of loading. They were then passed through a

5 μm filter (Pall Acrodisc) to remove chains, concentrated by centrifugation, and injected

into the feeding channel. The chip was mounted on a custom-machined platform that could

be inserted into a standard benchtop centrifuge, and cells were forced into the cell channels

by centrifugation. Syringes containing LB medium with 0.1 mg/mL BSA were connected to

the device using Tygon tubing (VWR), and were pumped at a flow rate of 3 μL/min using

syringe pumps (New Era Pump Systems). BSA was provided as a lubricant to prevent cells
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(and chains in particular) from adhering to the surface of the main feeding conduit as they

are pushed out of the device.

Microscopy and image acquisition

The microfludic device was mounted on a fluorescence microscope immediately after

loading. We used a Nikon Eclipse Ti inverted microscope equipped with an Orca R2

(Hamamatsu) camera, a 60X Plan Apo oil objective (NA 1.4, Nikon), an automated stage

(Ludl), and a Lumencor SOLA fluorescent illumination system. Image acquisition was

performed using MATLAB scripts interfacing with μManager51. The microscope was

encased in a custom-built incubator that maintained it at 37 °C throughout the experiment.

The following filter sets were used for acquisition: GFP (Semrock GFP-1828A), mKate2

(Semrock mCherry-B), CFP (Semrock CFP-2432C), YFP (Semrock YFP-2427B). The slrR/

tapA co-expression experiment was performed on an almost identically configured

microscope that instead had a Lumencor SPECTRA fluorescent illumination system.

Exposures were done at very low illumination intensities with 2×2 binning (CCD chip

dimension of 1344 × 1024 pixels, pixel size of 6.45 μm × 6.45 μm) and typical acquisition

periods of 200 - 500 msec. The Lumencor light sources produce little ultraviolet or infrared

light, obviating the need for supplemental filters to block these wavelengths. Cells were

allowed to equilibrate in the device for several hours before imaging, and all data prior to the

first chain or pulse in each lineage was ignored in subsequent analysis. Images were

acquired every ten minutes and saved as 16 bit TIFFs. Focal drift was controlled through the

use of the Nikon PerfectFocus system and a custom-built, image-based autofocus that

imaged a sacrificial position over many planes.

Induction of chaining with IPTG

To induce chaining, two syringes carrying either LB with 0.1 mg/mL BSA or LB with 0.1

mg/mL BSA and 100 μM IPTG (isopropyl β-D-1-thiogalactopyranoside) were connected

via soft tubing to a Y-junction connector that fed into a common line connected to the

device. The line that was not in use was clamped shut with a binder clip. Each syringe was

loaded into an independently controlled syringe pump, and a pulse of IPTG was produced by

switching to the IPTG-bearing syringe for 10 minutes.

Image processing and lineage construction

All data analysis was based on a custom MATLAB image processing pipeline described in

detail in the SI. For each image, the top cell in each channel was identified as summarized in

Extended Data 10. The mean fluorescence intensity within these cells was then calculated

for each fluorescence channel. A simple tracking algorithm was used to follow cells as they

grew and divided, producing long lineages lasting the duration of the experiment. Cell

division events were identified by looking for instances where a cell's calculated area

dropped to less than 60% of its previous value. If a tracked cell died spontaneously, the

algorithm continued the lineage from the dead cell's closest relative.
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Measuring residence times in the two states

Motility and chaining durations were called by examining the trace of PtapA-cfp fluorescence

within a lineage. To identify the level of background fluorescence, rough peaks were

identified using a peak finding algorithm (Nathanael C. Yoder, available at http://

www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder) on traces smoothed

with a Savitzky-Golay filter, and the average fluorescence outside these peaks was

subtracted from all traces. Final peak boundaries were called where the matrix reporter

signal crossed pre-defined thresholds. These thresholds chosen to correspond to phenotypic

transitions: onset of matrix gene expression defines the beginning of the peak, and onset of

motility gene expression defines the end (Extended Data 1). We note that the main

conclusions of the paper are insensitive to the threshold values (Extended Data 1). All peaks

were manually curated before calculating statistics.

With the cell fate history of each lineage in hand, we compiled statistics describing

residence time in the chained state (chain/pulse periods) and residence time in the motile

state (subsequent initiation times and motility periods). We define a chain or pulse period as

the duration of matrix expression within a peak (identified as described above) and the

motility period as the duration of uninterrupted motility gene expression between chaining

events. In Figure 3b, we instead measured the time between the start times of consecutive

peaks (‘subsequent initiations’), meaning either chains or pulses. Due to the long average

residence time in the motile state, long motility periods are difficult to adequately sample.

We account for this issue in the calculation of motility-related statistics, and include a

complete discussion of the correction in the SI.

Log transformation

We define the log transformation of a cumulative distribution function F(t) as log(1-F(t)).

This transformation facilitates comparisons, as exponential distributions are transformed to

straight lines.

Memory (mean residual lifetime)

We measured the memory associated with each state using the mean residual lifetime,

defined as m(t) = E[T − t | T > t] for a distribution of residence times, T. The mean residual

lifetime at time t is the average amount of time a cell will remain in its current state given

that it has already spent t time units there.

Average expression profiles

Average profiles of matrix gene expression during pulses and chains were created by

normalizing all measured events' heights to 1, aligning the events' leading edges, and

averaging the expression values at each time point. This procedure normalizes away

variability in peak height so that variation between average traces derives primarily from

differences in timing.
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Identifying chain build-up and dilution phases

Each chaining event was decomposed into ‘build-up’ and ‘dilution’ phases based on rates of

matrix reporter synthesis and dilution that were calculated from each trace. Briefly, traces

were smoothed using a Savitsky-Golay filter, the resulting polynomial was differentiated,

and the rate of expression was inferred from a kinetic model of gene expression (see SI) that

assumed a time varying synthesis rate and exponential degradation of reporter. The ‘build-

up’ phase was defined as the time over which the synthesis rate of reporter was at least 20%

of the dilution rate, and the ‘dilution’ phase was the remaining time in which dilution

dominated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tracking cell fate switching in Bacillus subtilis
a, Genetic logic governing the motile and chained states. b, Top and isometric schematics of

microfluidic channels in which individual bacteria are held. Channels connect to a larger

channel through which medium is continuously replaced and excess cells are washed away.

c, Kymograph showing a single cell (highlighted in yellow) of strain TMN690 (Phag-gfp

PtapA-mKate2 hagA233V) transitioning from motile growth (marked in green by expression

of a Phag-gfp reporter for flagellin) to chained growth (marked in red by expression of a

PtapA-mKate2 reporter for matrix expression). Frames taken ten minutes apart. d,
Kymograph showing co-expression of matrix and slr reporters in TMN1180 cells (PtapA-cfp

Pslr-mKate2 hagA233V). e, Average co-expression profiles of matrix and slr reporter

expression in chains (TMN1180, 25 events).
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Figure 2. Dynamics of cell fate switching
This figure examines chaining in strain TMN1157 (Phag-mKate2 PtapA-cfp hagA233V). a,

The uppermost cell's fate was tracked in each channel, yielding traces of flagellin (Phag-

mKate2, green curve) and matrix (PtapA-cfp, red curve) reporter expression. Five chaining

events are shaded. b, Correlation between subsequent residence times in the motile state. c,

Schematic of aging curves. Memoryless switching (blue dashed curve) between states gives

rise to horizontal curves, while deterministic timers (red dashed curve) create curves

descending with slope −1 from the average duration of the state 〈T〉. Many other

mechanisms are bounded by these extremes (SI): e.g., progression through a series of

discrete, exponentially distributed steps yields the grey curve. d, Distribution of motility

periods (307 events). Red curve shows exponential fit. Inset shows log transformed

cumulative distribution function of motility period duration (black curve) and the

exponential fit (red curve). e, The aging curve for the motile state (black line) is compared to

the expectation for memoryless switching adjusted for undersampling of long motility

periods (blue dashed curve, SI) and that for a timer (green dashed curve). f, Distribution of

chain durations (440 events). g, Aging curves for chains (blue curve) in cells wild type for

slr (TMN1157) and pulses (red curve) in slr mutant cells (TMN1158, which is TMN1157

mutated for slr). All qualitative features of distributions were replicated in at least three

separate experiments and quantitative parameters in at least two.
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Figure 3. Memoryless initiation of chaining
a, An example trace of flagellin (Phag-mKate2, green curve) and matrix (PtapA-cfp, red

curve) reporter expression from slr mutant cells (TMN1158). Seven matrix pulses are

shaded. b, Log transformed cumulative distribution functions of times between subsequent

initiations (of pulses or chains) in cells wild type (blue curve, TMN1157, 399 events) or

mutant for slr (red curve, TMN1158, 296 events) strains. Plotted this way, exponential

distributions yield straight lines. This result separately reproduced in a strain with different

fluorescent reporter proteins. c, Example matrix expression traces in slr mutant cells (blue

curve, TMN1158), and in slr mutant cells further deleted for the initiator I (red curve,

TMN1198).
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Figure 4. Slr executes a stereotyped chaining program
a, Example matrix and flagellin traces from strains where chaining (top panel, TMN1195 =

Phag-mKate2 PtapA-cfp hagA233V Pspank-sinI) or pulsing (bottom panel, TMN1196, which is

TMN1195 mutated for slr) were inducible by addition of IPTG. b, Aging curve for induced

chains is shown (177 events). Green dashed curve shows expectation for a timer. c, Average

matrix expression profiles for chains arising spontaneously (blue curve, TMN1157, 198

events) and pulses arising spontaneously in slr mutant cells (red curve, TMN1158, 278

events). Shaded regions denote ± 1 standard deviation. Average profiles are scaled to reflect

the average height difference between chains and pulses. d, The same analysis for chains

(blue curve, TMN1195, 26 events) and pulses (red curve, TMN1196, 42 events) induced by

addition of IPTG. e, Matrix expression during chaining naturally breaks down into a build-

up phase (red curve), where synthesis of new proteins dominates, and a subsequent dilution

phase (blue curve). Grey curve shows the calculated synthesis rate (SI) used to call the two

phases. f, Long build-up phases reduce noise in matrix expression by time averaging. The

plot shows the fraction of chains achieving a build-up phase of a given duration (black

curve) and the variability in matrix expression of those chains (red curve). Similar results

have been obtained in three replicate experiments.
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Extended Data 1. Aging behavior is independent of choice of threshold
Initially, the duration of a chaining event was called as the time between when matrix

expression was first detectable to when flagellin expression began to increase. However, in

order to compare chains (in strain TMN1157) and pulses (in strain TMN1158), we examined

whether it was possible to call the end point using only the matrix reporter since flagellin

expression does not fall during pulses. In both methods, the beginning of a chain was called

as the time when the matrix signal was first detectable above background fluctuations (~33

fluorescence units, SI). a, To call the end of a chain using only the matrix signal, various

thresholds were applied. The figure plots the difference in chain duration between this single

reporter method for different thresholds and the two reporter method. A threshold of 150

fluorescence units called the duration of chaining to within 20 minutes of the two reporter

method and was used throughout the text to call the end of the events. b, To show that the

primary conclusions are unchanged by the choice of threshold, the aging curves for the

chained state are plotted for all thresholds shown in the previous panel. As the motile state is

extremely long in comparison to the chained state, properties of the motile state are

completely insensitive to how we called chains.
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Extended Data 2. Cell growth is homogeneous in time
Sliding window average of division time plotted as a function of time (in strain TMN1158).

Each point in the curve represents the average of all division times that occurred within a

250 minute window. Grey shaded area denotes ± 1 standard deviation, while red shaded

error denotes ± 1 standard error of the mean. A flat trend indicates that conditions in the

device do not change in time.
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Extended Data 3. Chaining incidence is constant in time
Histogram of the number of chaining events observed in successive 330 minute windows in

the experiment described in Figure 2 of the main text. As the number of observed lineages

was constant throughout the experiment, these measurements reflect the average chaining

rate in each window. A flat trend occurs when this average rate is constant in time, and thus

that the factors controlling the switching decision have reached stationarity. Chains

occurring early in the movie were excluded from subsequent analysis to avoid any transient

effects associated with adapting to growth in the device (SI).
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Extended Data 4. Successive visits to the chained state are uncorrelated
Scatter plot of the durations of sequential visits to the chained state within each wild type

lineage (440 events), analogous to Figure 2b for the motile state. Note that some points fall

on top of each other due to the discrete nature of the measurements.
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Extended Data 5. Slr is expressed strongly only in chains
Average expression traces of slr during chains (blue curve, 25 events) and pulses (green

curve, 14 events) seen in strain TMN1180 (PtapA-cfp Pslr-mKate2 hagA233V).
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Extended Data 6. Chaining program is independent of cellular state
To test whether the initial state of the cell influenced the chaining program, cells (of strain

TMN1195) were forced to chain with a burst of I expression from an IPTG-responsive I
gene (created by switching to medium containing 100 μM IPTG for 10 minutes). When

some cells began to return to the motile state (3 hours later), a second IPTG treatment was

administered. a, Average matrix expression profiles in chains induced by single pulses of

IPTG (blue curve) or two consecutive IPTG pulses (red curve). The average amount of time

spent as a chain after the second IPTG treatment was similar to the time seen in the chained

state following a single treatment (260 minutes vs. 280 minutes, 177 and 28 events,

respectively). b, The plot scatters matrix expression level at the time of the second IPTG

treatment against the duration of the ensuing chain, indicating that the state of the cell at the

time of treatment had no effect on the subsequent chain duration. c, 10 minute (blue curve,

84 events) and 20 minute (red curve, 99 events) IPTG treatments were used to induce

chaining, resulting in near identical distributions of chain durations. Note that the 10 minute

data set contained two exceptionally long chaining events that explain the slightly higher

average duration.
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Extended Data 7. Strongly enhanced commitment to the chained state in strains overexpressing
slr
The figure shows an example trace of a chain made by the strain TMN1206 (PtapA-cfp Phag-

mKate2 hagA233V ywrK::PslrR-slrR), which bears an additional copy of the gene for Slr
under its native promoter. In this strain, most chains last long enough that they are

eventually pulled out by the flow of fresh medium running through the device. Using the

time to fallout as a lower bound for the average duration of the chaining state suggests that

the chained state lasts at least ~420 minutes (~15.5) generations in these cells.
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Extended Data 8. Variation in matrix expression rate over time during build-up phase
As described in the main text, chaining events can be naturally broken down into a build-up

period, when new synthesis dominates, and a subsequent dilution period where new

synthesis is minimal. The rate of matrix reporter expression was calculated at each time

point during the build-up period for all chaining events, producing a time-varying

distribution of possible expression rates. The figure plots the coefficient of variation of this

distribution, showing that expression rates show a roughly constant CV of ~0.5 over much

of the build-up period. Note that most chains have ceased the build-up phase by about 250

minutes in, so the end of the graph is less informative. This figure should be compared with

Figure 4f in the main text, which shows that the CV in the abundance of the matrix reporter

decreases over the same period due to the time averaging principle described in the main

text.
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Extended Data 9. Dilution phase is well-described by a deterministic model for exponential decay
Scatter plot comparison of observed and predicted dilution phase durations in spontaneous

chains. Expected dilution times were derived from a deterministic model for exponential

decay of the reporter (SI). Close proximity to the line y = x (black line) indicates that the

data are well-described by the model.
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Extended Data 10. Image processing used for image quantification
a, Cells are identified using a constitutive YFP construct. b, Images are rotated so that

channels are oriented vertically. c, Images are contrast enhanced to better identify cell

boundaries. d, Cells are preliminarily identified by edge detection. e, The mask identifying

cells is improved by morphological processing. f, Mother cells are identified (highlighted in

white). g, Superposition of segmented cell boundaries and rotated data YFP image.
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