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The impact of source contribution uncertainty on the effects
of source-specific PM2.5 on hospital admissions: A case
study in Boston, MA
Marianthi-Anna Kioumourtzoglou1, Brent A. Coull2, Francesca Dominici2, Petros Koutrakis1, Joel Schwartz1 and Helen Suh3

Epidemiologic studies of particulate sources and adverse health do not account for the uncertainty in the source contribution
estimates. Our goal was to assess the impact of uncertainty on the effect estimates of particulate sources on emergency
cardiovascular (CVD) admissions. We examined the effects of PM2.5 sources, identified by positive matrix factorization (PMF)
and absolute principle component analysis (APCA), on emergency CVD hospital admissions among Medicare enrollees in Boston,
MA, during 2003–2010, given stronger associations for this period. We propagated uncertainty in source contributions using a block
bootstrap procedure. We further estimated average across-methods source-specific effect estimates using bootstrap samples. We
estimated contributions for regional, mobile, crustal, residual oil combustion, road dust, and sea salt sources. Accounting for
uncertainty, same-day exposures to regional pollution were associated with an across-methods average effect of 2.00%
(0.18, 3.78%) increase in the rate of CVD admissions. Weekly residual oil exposures resulted in an average 2.12% (0.19, 4.22%)
increase. Same-day and 2-day exposures to mobile-related PM2.5 were also associated with increased admissions. Confidence
intervals when accounting for the uncertainty were wider than otherwise. Agreement in PMF and APCA results was stronger
when uncertainty was considered in health models. Accounting for uncertainty in source contributions leads to more stable
effect estimates across methods and potentially to fewer spurious significant associations.
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INTRODUCTION
Particulate air pollution has consistently been associated with a
variety of adverse health outcomes, including increased mortality1

and hospital admissions.2 Results from a growing number of epide-
miological studies suggest that some fine particulate matter (PM2.5)
constituents are more toxic than others.3 Multicity studies of acute
PM effects, for example, show that the relation between ambient
PM2.5 and hospital admissions varies by city,4,5 with this variation
attributed in part to differences in particle composition.6,7

Several factor analysis and source apportionment methods have
been developed to apportion sources of ambient PM2.5,8–10 the
estimates of which have subsequently been used in epidemiological
studies to investigate the association between source-specific PM2.5

and health. Ozkaynak and Thurston,11 for example, found increased
risk of mortality after exposure to particles associated with iron/steel
emissions and coal combustion. Laden et al.12 used specific rotation
factor analysis to show that particles from mobile and coal
combustion sources are associated with significant increases in
daily mortality in six US cities. Using positive matrix factorization
(PMF) and chemical mass balance, Sarnat et al.13 found significant
associations between mobile sources and biomass burning and
cardiovascular disease (CVD)-related hospital admissions in Atlanta,
GA, USA. Significant effects between mobile sources and
cardiovascular hospital admissions were also observed by Lall
et al.14 in New York, NY, USA, using PMF. Although these studies

used different source apportionment methods, the results from an
intercomparison of source apportionment methods suggest that
different source apportionment methods produce similar findings in
health effect studies.15

None of these studies, however, have accounted for the
uncertainty in the prediction of the source contributions. By
failing to account for uncertainty in the source apportionment,
uncertainty associated with factor estimation, that is source
contribution estimation, was ignored, potentially leading to an
underestimation of the uncertainty (i.e., standard errors) asso-
ciated with the estimated health effects.16,17 To address this issue,
we investigate the impact of propagation of the uncertainty
associated with prediction of source contributions in the
association between specific PM2.5 sources and emergency CVD
hospital admissions, using two source apportionment methods
and air pollution and health data from Boston, MA, USA.

METHODS
Data Collection
Hospital admissions data. Daily counts of emergency hospital admissions
were obtained from billing claims of Medicare enrollees 464 years old for
Boston, MA, USA (2003–2010), for the counties Middlesex, Essex, Norfolk,
and Suffolk. Only admissions that occurred through the emergency
department were included, as scheduled admissions are likely not related
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to short-term air pollution exposures. Each billing claim contains
information on the date of hospitalization, age, residence county, and
primary and secondary diagnoses. Using codes from the International
Classification of Diseases, 9th Revision (ICD-9; Center for Disease Control
and Prevention 2008), we considered hospital admissions for all CVD
conditions (codes 390–429).

Air pollution and weather data. Ambient measurements of PM2.5 and its
components were measured at the EPA PM Center stationary ambient
monitoring supersite, located in downtown Boston on the roof of the
Countway Library at the Harvard Medical School. The 24-h integrated PM2.5

samples were collected using a Sequential Sampler (Partisol Model 2300 by
Rupprecht and Patashnick, Albany, NY, USA) at a flow rate of 16.7 LPM.
PM2.5 samples were analyzed for mass using gravimetric analysis and for
elemental concentrations using X-Ray Fluorescence at the Harvard School
of Public Health. Continuous black carbon (BC) concentrations were
measured every 5 min using an Aethalometer (model AE-14 by Magee
Scientific, Berkeley, CA, USA). Temperature and dew point were obtained
from the hourly surface observations of the National Weather Service First
Order Station at Logan Airport (East Boston).

Data Analysis
For our study, we restricted analyses to concentrations measured between
2003 and 2010. During this period, we observed strong source-specific
PM2.5 effects, allowing us to assess how propagation of uncertainty affects
non-null estimates. Data from a longer time period (1998–2010) showed
weaker associations, with a significant association only for mobile sources.
For the purposes of this study, strong effects were crucial, as uncertainty
propagation when the effect estimates are null would not be meaningful.

All statistical analyses were conducted using the R Statistical Software,
version 2.14.1 (Foundation for Statistical Computing, Vienna, Austria).

Source apportionment. Sources of PM2.5 in downtown Boston were
identified using two different methods: US Environmental Protection
Agency PMF 3.0 (ref. 9) and the absolute principle component analysis
(APCA).10 These methods were selected because both have been
extensively used in fine particulate source apportionment in the past.14,18,19

Briefly, both methods assume unknown source profiles. APCA is an
extension of principle components analysis (PCA); once PCA is conducted,
the principle components are rotated and the component scores rescaled
relative to a reference of zero pollution. Total PM2.5 mass concentrations are
then regressed on these factor scores and thus both component scores and
loadings are provided.10 PMF, on the other hand, minimizes a least squares
function that also takes into account the uncertainty associated with the
daily measurements of each element. PMF further imposes the restriction
that both source profiles and contributions are non-negative.9

For the APCA method, we used the SAS software, version 9.3 (SAS
Institute, Cary, NC, USA), whereas for PMF we used the ME-2 multilinear
engine executable and script files under the EPA public license, available
with installation of EPA PMF 3.0.

Base health analyses. As ‘‘base analyses’’ we refer to all analyses
conducted without considering the impact of uncertainty.

We fit case-crossover analyses using a time-stratified approach; control
days were chosen bidirectionally for subjects on the same year, month,
and day of week of the admission.20,21 This design eliminates confounding
by personal characteristics that do not change over time22 and limits
confounding by seasonality and long-term trends.23

We ran conditional logistic regressions for total CVD admissions, for each
of the two source contribution data sets, generated by PMF and APCA. We
ran our models including all factors simultaneously to account for potential
confounding by factors, and separately by factor. We used linear
adjustments for same-day temperature, same-day dew point, and 2-day
moving averaged temperature starting from the day before to 3 days
before admission. We additionally adjusted for PM2.5, given previous
associations with the health outcomes, differential correlation with the
factors included in the model, and with other pollutants not included in
the model that could act as confounders.24

We examined associations for moving averages of 1, 2, 4, 6, and 7 days.
Results are presented as % change in CVD admissions per IQR increase of
each estimated source contribution.

Uncertainty propagation. To assess the uncertainty associated with the
estimation of the source contributions, we used a block bootstrap

procedure, allowing for overlapping blocks, to account for serial correlation
among observations in the time series.25 We selected the block size by
assessing the autocorrelation and deseasonalized autocorrelation
of the base analysis identified factors. No serial correlation remained
after 15 days for any of the factors and we, therefore, conservatively
selected blocks of 20 days.

We created 1500 bootstrap samples. For each bootstrap sample we
apportioned PM2.5 sources using both the PMF and APCA methods,
selecting a priori the number of factors selected in the base analysis. We
then ‘‘mapped’’ the identified factors to the base factors, that is, matched
each bootstrap factor to the base factor with which it had the strongest
correlation. We designated a factor as unmapped if its correlation with the
base factor was o0.60. Subsequently, for both PMF and APCA and each
bootstrap sample, we ran the health models, including unmapped factors.
The health effect estimate for each factor, and for each source
apportionment method, was estimated as the median of the distribution
of the 1500 effect estimates. Confidence intervals (CIs) were calculated using
the 2.5% and 97.5% percentiles of that distribution. We assessed the %
change in the width of the CIs of these estimates compared with the base
results for both source apportionment methods, directly on the regression
coefficients and not the % change per IQR increase of each factor.

In addition, we calculated the across-methods average factor-specific
effect estimate. For each bootstrap sample we calculated the average health
effect estimate for each factor identified by the two methods. The across-
methods average estimate for each factor was then estimated as the median
of the distribution of the 1500 averages and its CIs were calculated using the
2.5% and 97.5% percentiles of that distribution.

A flow diagram of the methods employed is presented in the
Supplementary Material.

RESULTS
Descriptive statistics for PM2.5 and the species included in our
analyses are presented in the Supplementary Table S1. In Boston,
a median of 58 daily CVD-related hospitalizations was observed.

Base Source Apportionment
Six factors were identified by both PMF and APCA: regional,
mobile, and crustal sources, residual oil combustion, road dust,
and sea salt (Supplementary Table S2 and Supplementary Figure S1).
Overall, the factors identified by the two methods were strongly
correlated, with across-method by-factor correlation coefficients
ranging from 0.79 to 0.98, with the exception of road dust
(r¼ 0.33) (Supplementary Figure S2). Within methods, we observed
larger correlations across factors in the PMF solution, with
maximal correlation between road and mobile sources (r¼ 0.45),
and orthogonal factors in the APCA solution (Supplementary
Table S3).

Base Health Analyses
For both source apportionment methods, stronger associations
were observed for mobile and regional sources and residual oil
combustion, whereas inconsistent associations across methods
were observed for road dust and crustal sources (Figures 1–6 and
Supplementary Table S4).

When all factors were included in the health model simulta-
neously, we observed strong positive associations between
regional PM2.5 sources and CVD admissions for the shorter
exposure durations; for instance, same-day exposure to regional
PM2.5 was associated with a 1.44% (� 0.01, 2.90%) for PMF and
2.35% (0.77, 3.95%) for APCA increase in the rate of admissions.

We also observed positive effects for mobile sources for same-
day exposures (0.89% (95% CI: � 0.06, 1.86%) for PMF and 0.76%
(� 0.04, 1.58%) for APCA increase in the rate of CVD admissions
per IQR increase of the factor). Similar increases were observed for
4-day averaged exposures. For 6- and 7-day averaged exposures,
we only observed strong positive effects for PMF, whereas for
APCA the effects were not as strong.

For residual oil combustion we observed strong positive
associations for all exposure windows, with effects increasing
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with exposure duration. The strongest associations were observed
for weekly averaged exposures (PMF: 1.89% (0.52, 3.29%) and
APCA: 2.15% (0.71, 3.62%), respectively).

We found strong negative effects for the APCA-identified road
dust for same-day and 2-day averaged exposures. We saw null
effects for longer moving averages and for all exposure windows
when PMF-identified road dust was used. We also found no
association between crustal and salt PM2.5 and rate of increased
admissions, with the exception of same-day exposure to the
APCA-identified crustal.

We found similar results when we ran models containing PM2.5

contributions from a single source (Supplementary Figures S4–S8).
These effect estimates, however, likely have invalid inferences,

as the uncertainty in the source contributions has not been
propagated into the health models.

Uncertainty Propagation
In all 1500 bootstraps, we mapped the PMF-identified factors to
the PMF base factors. For APCA, 6–10% of all bootstraps (across all
exposure windows) yielded unmapped factors. Of these, 96% were
unmapped to the factor sea salt and o4% to regional sources. The
distributions of the correlations between the base and the
bootstrap factors are presented in Supplementary Table S5.

The impact of accounting for uncertainty in source contribu-
tions on the effect estimates and their CIs, when all factors were
simultaneously included in one model, is shown in Figures 1–6
and Supplementary Table S4. The % change in the CI widths of the
regression coefficients is presented in Table 1.

We did not observe any systematic changes in the effect
estimates compared with the base case when we accounted for the
uncertainty in the source contributions, suggesting that the original
estimates did not incur noticeable bias. We observed strong
associations between mobile and regional sources and increased
rate of CVD admissions for shorter exposure durations (same-day
exposure and 2- and 4-day moving averages) and between residual
oil combustion and rate of CVD-hospitalizations for 4- to 7-day
moving averages (Figures 1–6 and Supplementary Table S4).

For 2003–2010, when all factors were included in the health
model simultaneously, we observed strong associations between
regional PM2.5 sources and CVD admissions for the shorter
exposure durations. Regional PM2.5 was associated with a 2.01%

(0.21, 3.69%) increase in the rate of admissions for PMF and 1.96%
(� 0.07, 4.19%) for APCA for same-day exposures and 1.58%
(� 0.36, 3.67%) increase in the rate of admissions for PMF and
1.60% (� 0.60, 4.09%) for APCA for 4-day averaged exposures.

Mobile sources for same-day and 2-day averaged exposures
were also associated with an increase in the rate of CVD
admissions of 1.44% (95% CI: 0.02, 3.11%) for PMF and 0.95%
(� 0.31, 2.20%) for APCA per factor IQR increase for 2-day
exposures. Similar effects were observed for 4-day averaged
exposures. Contrary to the base results, no strong effects were
observed for longer moving averages for either method, when
uncertainty was propagated.

For residual oil combustion, we no longer observed strong
positive associations for all exposure windows. In contrast to the
base results, with significant APCA results for same-day and 2-day
exposures, we only observed strong associations for both
methods for exposures longer than 4 days, with strongest effects
observed for weekly exposures: 2.20% (0.25, 4.30%) for PMF and
2.04% (0.08, 4.15%) for APCA.

For crustal, road dust, and salt PM2.5, we observed mostly null
effects, with the exception of 2-day exposure to APCA-identified
road dust (� 0.69% (� 1.67, 0.09%)). This was in contrast to our
base findings, showing that same-day and 2-day APCA-identified
road dust and same-day APCA-identified crustal were strongly
related to hospital admissions, but not when PMF was used.

Average effects across methods. When averaging across PMF and
APCA, the associations between mobile and regional sources and
increased rate of CVD admissions remained strong for shorter
exposure durations (same-day exposure and 2- and 4-day moving
averages), and between residual oil combustion and rate of CVD
hospitalizations for 4- to 7-day moving averages (Figures 1–6).
For example, same-day exposures to mobile and regional
sources were associated with a 1.07% (0.08, 2.28%) and 2.00%
(0.18, 3.78%) increase in the rate of CVD admissions, whereas
weekly exposures to residual oil combustion were associated
with a 2.12% (0.19, 4.22%) increase in the rate of hospitalizations
(Supplementary Table S7). The results were consistent
when the factors were included separately in the health
models (Supplementary Tables S6 and S8 and Supplementary
Figures S4–S8).
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Figure 1. Percent change in total CVD hospital admissions per IQR increase in regional PM2.5 factor for all exposure windows when all factors
were simultaneously included in the health model.
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Confidence intervals. For both source apportionment methods, all
factors, and exposure windows, we found that the width of the CIs
increased when uncertainty was propagated, although with no
apparent relationship to exposure durations. The increase in the CI
widths was smallest for factors that were identified in a more
stable manner and were consistent across source apportion-
ment methods, such as regional and crustal sources. For
both PMF- and APCA-identified factors, the correlation between
base and bootstrap factors was close to one for regional and
crustal sources (0.981–0.997). When comparing with the base
results, after propagating uncertainty, the CI widths of the
regression coefficients for regional sources increased by 16.1–
21.5% for PMF and 18.2–33.0% for APCA across exposure
windows. Correspondingly, the increase in the CI widths of the
regression coefficients for crustal sources ranged from 10.6 to

31.3% for PMF and from 14.8 to 41.3% for APCA across exposure
windows.

Conversely, the increase in the CI widths was much larger when
the correlations between the base and bootstrap factors were not
as strong. For example, for PMF-identified residual oil, for which
the 2.5 percentile of the distribution of correlations was 0.790, the
increase in the CI widths of the regression coefficients ranged
between 89.3 and 200.8%. Moreover, for APCA-identified salt, for
which we observed unmapped factors, the increase in the CI
widths of the regression coefficients ranged between 341.4 and
803.6% as compared with the base results.

DISCUSSION
We investigated the impact of uncertainty in source contributions
on the association between PM2.5 sources identified using two
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Figure 2. Percent change in total CVD hospital admissions per IQR increase in mobile PM2.5 factor for all exposure windows when all factors
were simultaneously included in the health model.
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Figure 3. Percent change in total CVD hospital admissions per IQR increase in residual oil PM2.5 factor for all exposure windows when all
factors were simultaneously included in the health model.
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source apportionment methods and CVD emergency hospital
admissions. For our selected study period, we observed strong
associations between shorter exposures to mobile and regional
sources and longer durations of exposure to residual oil combus-
tion, and increased rate of CVD emergency admissions. These
associations remained strong after propagating the uncertainty in
the source contributions. Moreover, strong associations observed
in the base analysis between same-day exposures to road dust and
crustal sources and CVD admissions were no longer significant
after accounting for uncertainty in source contributions.

As the two source apportionment methods we employed differ
in their approach, it was not surprising that their source
contributions and subsequent health estimates would also differ,
although in most cases not significantly, with similar effect

estimates and widely overlapping CIs. This is in agreement with
findings from the workshop on the source apportionment of PM
health effects15,19,26 that reported that the choice of source
apportionment method contributes B15% to the uncertainty of
the health effect estimates.26

Furthermore, we demonstrated that failure to account for
uncertainty in the source contributions, regardless of the choice of
method, leads to invalid inferences, that is, more narrow
CIs of the health effect estimates. The increase in the CI widths
depends mainly on how consistently a factor is identified, and also
on the statistical power one has to observe any effects that factor
might have. For example, in our study, regional sources were very
consistently identified across methods and bootstraps and we
therefore saw the smallest increase in the CI widths. Conversely,
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Figure 5. Percent change in total CVD hospital admissions per IQR increase in road dust PM2.5 factor for all exposure windows when all factors
were simultaneously included in the health model.
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although salt was consistently identified with PMF, the lack of
daily variability of the factor, and consequently decreased
statistical power, led to large increases in the CI widths. Moreover,
accounting for uncertainty contributed to fewer spurious
significant results and more consistent findings across methods,
as was the case with our road dust and crustal findings.

To account for the differences in the effect estimates obtained
by the two different source apportionment methods, we also
estimated average across-methods source-specific effects using
the bootstrap effect distributions. Estimation of effects across
methods would otherwise not be possible, as the derivation of the
analytical form of the variance of an average effect, which would
also incorporate the uncertainty in the estimation of the source
contributions by both methods, is not straightforward. Use of
bootstrap effect estimate distributions allows us to consider
differences in the source apportionment methods while
accounting for uncertainty in their estimation, akin to an
ensemble of their resulting health effect estimates. Although
ensemble-trained source apportionment methods have been

previously developed,27,28 to the best of our knowledge, this is
the first effort to combine across-methods source-specific health
effect estimates.

An across-methods source-specific effects ensemble reflects the
weight of the evidence as well as addresses potentially conflicting
signals at the same time. For example, for mobile sources, both
source apportionment methods yielded positive, more similar
effect estimates for shorter exposure durations, whereas for longer
moving averages the base effects were conflicting, with signifi-
cantly positive PMF, but not APCA, effects. Accounting for
uncertainty, the pattern became more clear, with better agreement
between the effects estimated by the two source apportionment
methods. The same pattern was also clear in the across-methods
average effect, with consistency across the two methods yielding
reduced variability compared with the individual effect estimates.

In terms of potential bias when failing to account for
uncertainty, in a simulation study, Nikolov et al.16 observed
biased health effect estimates when they did not account for
uncertainty in the source contributions. However, their study
design, study population, and statistical analyses were very
different than ours, as they investigated cardiovascular effects in
a much smaller sample of dogs and the bias occurred in a linear
health model. In this study, we did not observe any significant bias
in the health effect estimates of our base analyses. Even though
the effect estimates were in cases somewhat different in the
bootstrap results, any oscillations occurred well within the CIs and
thus do not appear as systematic bias.

Our study is limited by the use of measurements conducted at a
single monitor; some PM2.5 components and sources, moreover,
are more spatially variable than others. A study also addressing
the impact of such errors, while accounting for uncertainty
propagation, would provide a more comprehensive picture, as we
were not able to address exposure error with our analyses.
Furthermore, the effects of PM2.5 sources on health have been
shown to be heterogeneous in time and space, and thus more
studies should be conducted to examine factors contributing to
this heterogeneity. Finally, with our analyses, our goal was to
address the impact of uncertainty specifically associated with the
estimation of source contributions. We, therefore, did not examine
the impact of multiple sources of uncertainty, such as measure-
ment error, spatial misalignment, and error associated with XRF
analysis.
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Figure 6. Percent change in total CVD hospital admissions per IQR increase in salt PM2.5 factor for all exposure windows when all factors were
simultaneously included in the health model.

Table 1. Percent change in the CI width of the regression coefficients
for each factor, as compared with the base case, when all factors were
simultaneously included in the health model.

Same
day

2-Day
mv avg

4-Day
mv avg

6-Day
mv avg

7-Day
mv avg

PMF
Regional 19.6 18.9 21.5 17.5 16.1
Mobile 38.8 25.5 42.8 49.9 52.0
Residual oil 89.3 136.4 147.8 161.2 200.8
Road dust 23.8 26.1 34.4 27.3 29.8
Crustal 10.6 10.8 31.3 25.6 25.0
Salt 79.3 101.2 132.1 132.8 175.1

APCA
Regional 33.0 21.0 22.5 25.2 18.2
Mobile 103.4 119.9 106.8 70.1 65.3
Residual oil 35.1 46.0 58.7 60.5 62.6
Road dust 65.8 37.1 18.6 17.2 28.4
Crustal 27.2 14.8 41.3 22.4 22.6
Salt 803.6 476.8 404.6 428.5 341.4
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To our knowledge, this has been the first study to quantify the
impact of uncertainty in the source contributions on health effect
estimates, employing two widely used source apportionment
methods. We demonstrated that uncertainty propagation results
in increased CI widths. Finally, our findings qualitatively extend to
other cases in which exposure estimates are used as ‘‘true’’
exposures in health analyses.
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