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Chiral Principal Series Categories

Abstract

This thesis begins a study of principal series categories in geometric representation
theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker ob-
jects in the unramified principal series category. This provides an alternative approach
to the Arkhipov-Bezrukavnikov theory of Iwahori-Whittaker sheaves that exploits the

geometry of the Feigin-Frenkel semi-infinite flag manifold.

iii



CONTENTS

Acknowledgements
1. Introduction
2. Conventions

Part 1. The Chevalley complex

3.

© XN T

Review of Zastava spaces

Limiting case of the Casselman-Shalika formula
Identification of the Chevalley complex I

Dramatis personae

Fusion with the Whittaker sheaf (a technical point)
Identification of the Chevalley complex 11
Construction of the functor

Part 2. Chiral categories

10.
11.
12.
13.
14.
15.

A guide for the perplexed

Lax prestacks and the unital Ran space
Multiplicative sheaves and correspondences
Chiral categories and factorization algebras
Chiral categories via partitions
Commutative chiral categories

Part 3. Appendices

16.
17.
18.
19.
20.

D-modules in infinite dimensions

Iwahori vs. semi-infinite Borel

Comparison of baby and big Whittaker categories
Sheaves of categories

The twisted arrow construction and correspondences

References

iv

28
28
40
48
54
93
106
109

111
111
124
143
167
186
204

214
214
278
285
293
319
329



ACKNOWLEDGEMENTS

I am deeply grateful to my advisor Dennis Gaitsgory for the mentorship he has pro-
vided to me for the past five years. He has challenged and inspired me, not only math-
ematically, and I owe a great deal to him.

I would also like to thank Sasha Beilinson and Mitya Boyarchenko for their mentorship,
especially in my undergraduate years at the University of Chicago. I closely carry my

experience of studying with them both.
I am further pleased to thank:

Nir Avni, Jonathan Barlev, Dario Beraldo, Justin Campbell, Dustin Clausen, Giorgia
Fortuna, Carl Mautner, Andrei Negut, Ryan Reich, Nick Rozenblyum, Simon Schieder,
Bhairav Singh, Roman Travkin, Sasha Tsymbaliuk, and Xinwen Zhu for many interest-
ing conversations about geometric representation theory, and for their friendship and

camaraderie.

Omar Antolin Camarena, Stergios Antonakoudis, Tobias Barthel, George Boxer, Lu-
cas Culler, Gijs Heuts, Bao Le Hung, Erick Knight, Jerry Wang, and any other of my
fellow graduate students I mistakenly overlooked for always providing interesting conver-
sations, teaching me interesting mathematics, and for always being willing to entertain

a silly question. Bao deserves particular recognition for this all.

Dima Arinkin, Roman Bezrukavnikov, Sasha Braverman, Vladimir Drinfeld, Pavel
Etingof, Dick Gross, David Kazhdan, Sergey Lysenko, Jacob Lurie, Ivan Mirkovic, and

Sophie Morel for their support, encouragement, interest and mathematics.

...and Susan Gilbert, without whom I could have never navigated the Harvard math-

ematics department.

It is with great love that I recognize the support of my parents, grandparents, and
sisters.

Above all, I thank Charlotte, who always pushes me to be better.

v



1. INTRODUCTION

1.1.  The goal of this thesis is initiate the chiral study of the spectral theory of Whittaker
sheaves. The precise meaning of these words will be given below, but roughly: we will
give a version of the work [AB09] of Arkhipov-Bezrukavnikov — considered to be such
a description “over a point in a smooth curve” — that allows “points in the curve to
collide.”

In this thesis, we will give a new construction of the functor in Arkhipov-Bezrukavnikov
theory by very different methods. We intend to show in a future publication that this

functor coincides with the functor (inverse to) to the functor of [AB09].

1.2.  The motivation for this work comes from problems in the geometric theory of
unramified automorphic forms. Chiral methods are useful for moving from local to global
in this theory. The Iwahori-Whittaker theory of [AB09] is the starting point for much of
the progress in the local geometric Langlands program.

In the forthcoming work [Ras] we will explain an application along these lines of our
theory to the problem of the spectral decomposition of geometric Eisenstein series in the

global unramified setting.

1.3.  This introduction is structured as follows. In §1.5-1.8 we will review the Arkhipov-
Bezrukavnikov theory of Iwahori-Whittaker sheaves over a point. In §1.9-1.17 we will
recall what the word “chiral” entails. Then in §1.26 we begin to describe the main
construction.

The subject of this thesis is technical, and it is not the intention of this introduction
to emphasize the technical points. Where it is possible to communicate the sense of
a definition rather than giving the definition itself, we prefer to do that, leaving the
proper treatment to the body of the text and hoping that the reader will not find this
informality too unsettling.

1.4.  We fix an algebraically closed field k of characteristic zero throughout this thesis.
1



1.5. We need the following notations from Lie theory.

Let G be a (necessarily split) reductive group over k, let B be a Borel subgroup of G
with unipotent radical N and let 7" be the Cartan B/N. Let B~ be a Borel opposite to
B,ie., B~ nB—>T. Let N~ denote the unipotent radical of B~.

Let G denote the corresponding Langlands dual group with corresponding Borel B,
who in turn has unipotent radical N and torus 7' = B/N, and similarly for B~ and N~.
Let g, b,n, t, b=, n, g b, a, £ b~ and A~ denote the corresponding Lie algebras.

Let A denote the lattice of weights of T and let A denote the lattice of coweights. Let
Za be the set of vertices in the Dynkin diagram of G. We recall that Zs is canonically
identified with the set of simple positive roots and coroots of G. For i € Z, we let o; € A

(resp. &; € A) denote the corresponding root (resp. coroot).

1.6. Let K = k((t)) be the local field of Laurent series with k-coefficients, and let
O < K consist of the subring of Taylor series. Let G(K) denote the loop group: the
group indscheme (over k) of maps D= Spec(K) — G. Let G(O) < G(K) denote the
group scheme of maps from the disc D = Spec(O) to G, and similarly for the other
groups.

Let ev : G(O) — G be the map given by evaluation on the closed point of D and let
I be the Iwahori subgroup ev—!(B). The choice of B~ gives rise to the opposite Iwahori
subgroup I~ = ev }(B7).

Let ; = ev (N) and (])* = ev 1(I7) denote the unipotent radicals of these Iwahori

subgroups.

1.7. Choose a character w/;, : Lie(?‘) — k non-degenerate in the sense that 1%7 ln-(0)
factors through n=(0O) — n~ and iﬂ%f (fi) # 0 for every i € Zg and 0 # f; € g in the root
space —q; of the negative simple root corresponding to i € Zg.

By unipotence of } ~, this character integrates to a character .7 - — G, of ; ~. Let zb;_
denote the multiplicative D-module on ; ~ induced by pullback from the exponential

D-module on ; -,



1.8. Let Grg and FI& denote the indschemes G(K)/G(O) and G(K)/I respectively.

For our purposes, the principal result of [AB09] is the following.

Theorem 1.8.1. There is a canonical equivalence of categories:

D(FIEN" %%~ ~ QCoh(#/B).

o
1= 3
7= denotes

Here D(FIZT) is the derived category of D-modules on FI2, D(FIA)
the full subcategory of objects satisfying (j' -, w;f)—equivariance, n/ B denotes the stack
quotient, and QCoh indicates the derived category of quasi-coherent sheaves on this
stack.

By comparison, we have the following variant of the results of [FGV01] (see also

[ABB*05] Corollary 2.2.3):

o
I~

D(Grg) i~ Rep(G) := QCoh(BG).

Here BG is the stack quotient Spec(k)/G.

Remark 1.8.2. In truth, the cited references use the language of perverse sheaves and
the Artin-Shreier sheaf in positive characteristic. One can translate as follows: first, the
arguments are purely sheaf-theoretic, and therefore apply verbatim to the setting of
holonomic D-modules. Then, as in [BD] §5.3.4, one sees that the relevant DG categories
of D-modules are compactly generated, with compact objects exactly the holonomic

objects.

1.9. Factorization. Next, we recall the meaning of the almost synonymous words chiral
and factorization.
The subject begins with the Beilinson-Drinfeld theory of chiral algebras from [BD04],

whose features we recall below.



Remark 1.9.1. We will give a somewhat leisurely introduction to the theory of chiral
algebras below. We offer two justifications for this decision.

First, a substantial portion of the present thesis is to develop the chiral theory further
in the derived setting.

Furthermore, the subject of chiral algebras carries a reputation of being very technical
and for lacking applications, or at least, lacking applications in which the role played by
the chiral structure is straightforward and easy to isolate from the arguments. However,
there is a rich folklore around this subject, only partially written down, which explains
what these things are good for. We hope that in presenting the general aspects of this
material, the strategy of the present series of works will be made more transparent to

the reader.

1.10. The Beilinson-Drinfeld theory of chiral algebras on a smooth curve X has the

following salient features:

(1) Chiral algebras are of local origin on the curve X. Many of their invariants (e.g.,
modules at a point) are closely related to the geometry of the formal punctured
disc, especially algebraic loop spaces and de Rham local systems on the formal
punctured disc.

Moreover, chiral algebras tend to “decrease the complexity” in the following
sense. A chiral algebra whose fibers involve only the disc will have invariants
associated with the whole of the formal punctured disc. For instances, the chiral
geometry of an arc space tends to encode the usual geometry of the associated
formal loop space. As another example, the chiral geometry of the Beilinson-
Drinfeld affine Grassmannian, recalled below, tends to encode information about
the whole of the algebraic loop group, and in particular its group structure.

(2) If X is a proper curve then chiral algebras give rise to interesting global invariants

(e.g., through chiral homology).



(3) Chiral algebras appear naturally in much of the geometric representation the-
ory involving the curve X. For example, see [KL 4], [BFS98], [Gai08], [BD] and
[BGO8]. Note that chiral algebras naturally arise through both algebraic and

geometric constructions.

The combination of the above techniques makes the theory of chiral algebras especially
relevant to geometric Langlands. Recall that the local geometric Langlands program
seeks to decompose representations of the algebraic loop group of a reductive group
G, with spectral parameters de Rham local systems on the formal punctured disc with
structure group G the dual reductive group to G.

The geometric and spectral sides each appear in (1) as arising from chiral algebras,
and it is therefore natural to expect that local geometric Langlands admits a chiral
avatar (c.f. the introduction to [Bei06]). Moreover, this should make the subject easier:
in certain nice settings, we can move from the simple geometry of the disc to the much
more complicated geometry of the formal punctured disc.

Then the local-to-global techniques can be brought to bear to give global applications

as well.

Ezample 1.10.1. A primordial example of the above procedure is implicit in [BD], where
the Feigin-Frenkel identification of critical-level chiral W-algebras for Langlands dual

Lie algebras is used to construct Hecke eigensheaves for regular opers.

1.11. A wonderful discovery of Beilinson-Drinfeld, explained in [BD04], is the two guises
of chiral algebras: as chiral Lie algebras and as factorization algebras.

Chiral Lie algebras, a coordinate-free variant of the more classical notion of vertex
algebra (see [Bor86] and [BF04]) are technically convenient in providing an algebraic
perspective on chiral algebras. For example, the construction of a chiral Lie algebra from
a Lie-* algebra (in the vertex language: vertex Lie algebras) is realized more naturally

as an induction functor analogous to the usual enveloping algebra of a Lie algebra.
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Factorization algebras, invented by Beilinson-Drinfeld, provide a much more geometric

perspective. This is the perspective on which we will presently focus.

1.12. The factorizable Grassmannian. To motivate the definition of factorization
algebra, it is convenient to recall the definition and features of the Beilinson-Drinfeld
affine Grassmannian.

Let X be a smooth curve over k£ and let x € X be a closed point.

Let K, denote the field of Laurent series at x and let O, < K, denote its subring of
integral elements. Let I" be an affine algebraic group over k.

By fpqc descent, the affine Grassmannian Grp, = I'(K,)/I'(O,) at x is the moduli
space of I'-bundles on X with a trivialization on the open X\z € X.

For a positive integer n, the Beilinson-Drinfeld affine Grassmannian Grpx» is the
moduli space of an n-tuple of points z1, ..., x, of X, a I'-bundle on X and a trivialization
of the I'-bundle away from x1,...,x,.

The spaces Grp x» satisfy the following factorization property, say for n = 2:

GYF,X2 \(XxX)\X = GYF,X X GI“F,X \(XxX)\X
(1.12.1)

GrI"F,X2 |X =~ GI“F,X

where X — X x X is the diagonal embedding.

1.13. Factorization algebras. Let X be a k-scheme of finite type.
A factorization algebra A on X is a rule that assigns to each positive integer n a D-
module' Ax» on X" equivariant for the symmetric group S, and satisfying a linearized

version of (1.12.1) that says e.g. for n = 2 that we have Sy-equivariant equivalences:

Axe|(xxxpx = Ax KAx|(xxx)x
(1.13.1)

AXQ‘X =~ -AX-

IWe only take D-modules as a sheaf-theoretic context for concreteness. One can take quasi-coherent
sheaves or f-adic sheaves just as well.
6



In our setting of D-modules, the latter restriction should be understood in !-sense.
For example, we have the trivial example w defined by the dualizing D-modules n —

wxn.

Remark 1.13.1. Factorization spaces in geometry such as n — Grg x» are a rich source
of factorization algebras. For example, taking the (quasi-coherent) global sections of the
distributional D-module on the unit X" < Grg x» one obtains a factorization algebra
encoding the loop algebra g(K,) = g@;}Kx for varying points z. One obtains the so-called
chiral algebra of differential operators for the loop group of G by a similar procedure,
c.f. [AGO02].

More generally, correspondences between factorization spaces are very fruitful for pro-

ducing factorization algebras by means of D-module operations.

1.14. &,-algebras. There is a close analogy between factorization algebras on a curve
X and algebras over the homotopy theorist’s little 2-discs operad, or more generally,
factorization algebras on a smooth scheme X of dimension n are in analogy with operads
over the little 2n-discs operad. The reader may safely skip this analogy, as it will play
no role in the text below.

Among classical — that is, non-derived — algebras, there are associative algebras
and commutative algebras. The &£,-algebras appear as intermediates in settings of more
homotopical complexity, where & -algebras are associative algebras and £,-algebras are
commutative algebras.

In a traditional setting, namely, in a symmetric monoidal (1, 1)-category, an &,-algebra
struture for n > 2 is equivalent to an &, -algebra structure. However, when there is
greater homotopical flexibility, this is no longer the case.

For example, in the 2-category of (1,1)-categories, a Ey-algebras is a braided monoidal
category, which appeared in the 1980’s as an intermediate between monoidal categories
and symmetric monoidal categories. Similarly, n-fold loop spaces in topology carry an

& -algebra structure that cannot generally be upgraded to an &, -algebra structure.
7



Remark 1.14.1. Under this analogy, the factorization structure of the affine Grassman-
nian appears because the double loop space Q*(BG) may be realized as the space of
continuous maps:

D= {(z,y) e R?| 2* +4* < 1} - BG

sending the boundary éD = S! to the base-point. In words, this is the moduli of G-
bundles on the disc with trivialization on the boundary S!, which functions here as an

analogue to the punctured disc.

Perhaps the simplest characterization of &-algebra in a symmetric monoidal (higher)
category C is the following: the category Alg(C) = &£ —alg(€) forms a symmetric monoidal
category itself, under the usual tensor product of associative algebras. Therefore, we can
ask for associative algebras in Alg(C), i.e., Alg(Alg(C)). In other words, we have an
algebra A € C with defining multiplication m; : AQ A — A, and a second multiplication
mo : AQA — A such that ms is a morphism of algebras where A® A and A are regarded
as algebras with respect to m;.

Similarly, one may define an &,,-algebra by asking for n-compatible multiplications.

We refer to [Lurl2] for a greater discussion of this analogy, where it is explained how

to relate &£,-algebras and a topological analogue of factorization algebras.

1.15. Factorization categories. The analogy above suggests that not only the notion
of factorization algebra is of relevance to representation theory, but also of factorization
category as well. Indeed, a factorization category on a smooth curve is analogous to a
braided monoidal category, which is well-known to be of great importance in represen-

tation theory.

Remark 1.15.1. The mathematical physicist’s fusion procedure can be implemented
mathematically in several different ways to draw a closer connection between braided

monoidal categories and factorization categories.
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In the case X = P!, [KL 4] used analysis to pass from the algebraically defined
structure of factorization category on Kac-Moody representations, to obtain a braided
monoidal category structure defined. Following physicists, Kazhdan and Lusztig referred
to the resulting tensor product as fusion.

In fact, in some circumstances the fusion product can be constructed algebraically as
well, as in [Gai0l]. A general theory of fusion by means of nearby cycles, which is as yet
undeveloped but still highly plausible, would be needed for the comparison between our

functor and the Arkhipov-Bezrukavnikov functor.

A theory of factorization categories has been anticipated for some time now (c.f.
[Gai08]), but has not appeared in the literature at this point due to the technical diffi-
culties foundational in the subject. Such a theory will be provided in detail in Part 2 of

this text.

1.16. A difficulty that one must grapple with in the theory of factorization algebras
is the fact that the equivalences (1.13.1) must be understood in the derived category
(already in the case of the dualizing sheaf!), and the equivalences must be then be
required to be homotopy compatible in some appropriate sense.

Beilinson and Drinfeld circumvent this problem in [BD04] by working only with
smooth curves and sheaves Axr such that Axr[—|I]] lies in the heart of the usual
(alias: perverse) t-structure on the category of D-modules on X7 (this t-structure is
referred to in loc. cit. as the t-structure for left D-modules); favorable arithmetic then
provides a supply of examples of factorization algebras for which only abelian categories

are necessary.

1.17.  The recent advances in homotopical algebra, notably in [Lur09] and [Lurl2], pro-
vide an easy language of higher categories in which the notion of homotopy compatibility

may be used in a systematic way, unburdened by the construction of clever resolutions
9



and model category structures.? This language allows for a different approach, working
directly with collections of complexes of sheaves with homotopy compatible equivalences
(1.13.1).

This approach is pursued in [FG12], where the theory of higher categories is shown to
provide adequate foundations to develop the theory of factorization algebras on arbitrary
schemes of finite type, allowing for schemes more general than smooth curves and for
complexes of sheaves unfettered by any ¢-structure.

Moreover, many of the factorization algebras constructed in geometric representation
theory by means of Remark 1.13.1 are inherently derived: they are constructed by sheaf-
theoretic operations that only under limited and special circumstances preserve the
heart of any t-structures. That is, they fall under the purview of the theory of [FG12]

exclusively.

Remark 1.17.1. Even in the case of a smooth curve, the Francis-Gaitsgory approach
provides a conceptually simpler and more unified theory than overlapping material in

[BDO4).

1.18. It is desirable to have a version of Theorem 1.8.1 that holds for factorization
categories.

There are several difficulties here:

(1) The left hand side does not factorize. Indeed, unlike the maximal parahoric sub-
group G(0O), the Iwahori subgroup I itself is not compatible with the factorization
structure on G(K).

Indeed, let us attempt to define a factorization version of the Iwahori subgroup
that lives over X?2: a point should be a pair of points z;, 25 in X, G-bundle on
X with a trivialization away from x; and x5, and with a reduction to the Borel

B at the points x; and 5.

2Note that model categories appear inadequate to the problem at hand: compare to [BD04] §0.12.
10



However, to formulate this scheme-theoretically, we need to ask for a reduction
to B at the scheme-theoretic union of the points x; and x,. Therefore, over a
point z in the diagonal X < X?, we are asking for a reduction to B on the first
infinitesimal neighborhood of x, which corresponds to a rather smaller subgroup
than the Iwahori group.
(2) The right hand side does factorize, but it feels incorrect. Indeed, as in [BD04],
any algebraic stack gives rise to a factorization stack.?
However, as in §1.10, one expects the spectral theory of Whittaker sheaves to
relate the geometry of de Rham local systems on the punctured disc, which are

incompatible with this description.

We will explain the necessary modifications to (1) in §1.20 and to (2) in §1.21-1.22

below.

1.19. Group actions on categories. Before proceeding, it is useful to have some of
the language of actions of the loop group on categories available. This theory, due to
unpublished work of Gaitsgory and realized in the literature in [Ber] (and to a lesser

and only implicit extent, in the present thesis) gives rise to the following language.

Remark 1.19.1. Let us clarify some potentially confusing language at this point: a group
scheme is a scheme (possibly of infinite type) equipped with a group structure. A typical
example is I'(O) for I" an affine algebraic group. Recall that any affine group scheme is a
filtered projective limit under dominant structure morphisms of affine algebraic groups,
i.e., affine group schemes of finite type.

A group indscheme is an indscheme equipped with a group structure, where we use
the appropriate product of indschemes in the definition (e.g., we can take the product

of underlying prestacks here). A typical example is I'(K).

3In the setting of §1.14, this is analogous to the procedure of restriction from &,-algebras to £-algebras.
11



An ind-group scheme is a group indscheme that can be written as a union of closed
group subschemes. A typical example is I'(K) for I" a unipotent group, or some variants,
such as N(K)T'(O).

Note that for G' a non-trivial reductive group, G(K) is never an ind-group scheme.

Note that this aspect is evident already for G = G,,.

Remark 1.19.2. One obtains an analogy with the theory of groups over a local field
by replacing k£ with a finite field and passing to k-points. Then algebraic groups are
analogous to finite groups, group schemes are analogous to compact totally disconnected
groups, and group indschemes are analogous to group objects in the category of ind-

profinite sets.

We work in the “linear” setting of cocomplete (i.e., admitting all direct sums) DG
categories € equipped with continuous functors. For a group indscheme G, there is a
notion of category (more precisely: cocomplete DG category) acted on by G. This notion
functions as an analogue of the notion of complex representation of a p-adic group.

There is a well-behaved theory of invariants and coinvariants for group schemes §G.

Moreover, “Maschke’s theorem” holds in this setting — we have an equivalence:

Cq —> €Y

induced by the averaging functor € — @9, which by definition is the right adjoint to the
structure functor 9 — €. This averaging functor should be regarded as a categorical
analogue of the norm map from usual representation theory.

Duality of cocomplete DG categories, in the sense of [Gail2a] or §19, canonically
intertwines invariants and coinvariants.

This gives rise to a manageable theory of invariants and coinvariants for ind-group

schemes. Indeed, for § = UG; we can take:
12



€Y := lim €% and €g := colim Cg,

where the limits and colimits here understood in the homotopy sense and are taken in
the world of cocomplete DG categories. However, as one would expect by analogy with

the group-theoretic context, Maschke’s theorem fails in this setting.

Remark 1.19.3. There is a good theory of D-modules on spaces such as G(K). It has
been developed in the abelian categorical setting in [KV04], and in the specific case of
the loop group, in [AG02]. In the derived setting, this theory was developed in some
form in [BD] §7 and [FGO06], and has recently been improved using modern homotopical
algebra following ideas of Gaitsgory. Gaitsgory’s theory has recently been developed by
Beraldo in [Ber| and in the present thesis in the extended appendix §16.

This theory interacts well with regard to the theory of loop group actions. The group
G(K) acts on its category of D-modules D(G(K)).* Moreover, for a compact-open sub-
group K of G(K), i.e., a group subscheme, the quotient G(K)/K exists as an indscheme

of ind-finite type, and we have a canonical identification:

D(G(K)/K) ~ D(G(K))*

where the functor from left hand side to right is given by pullback.

1.20. In the language of group actions on categories, the Arkhipov-Bezrukavinkov cat-
egory D(Flzﬂ)?i’%— is obtained from the factorization category D(G(K)) by impos-
ing two Iwahori-type conditions: Iwahori-equivariance on the right and ¢;_—twisted .? -
equivariance on the right.

First, we replace j’ ~ and its character 1/1;7 by the group N~ (K) and 9 y-(k), where

Yn- (k) is given on the level of Lie algebras as the composition:

4For reasons explained in §16, it would be better if we wrote either D'(G(K)) here.
13



(fi)iEZG’_’ZieIG Res(f;dt)

n(K) — <n_/[n_,n_]>(K) - K (1.20.1)

e
for t a coordinate and Res the residue map.

Indeed, [AB09] already acknowledges that the use of ; ~ in place of N~ (K) is some-
what unsatisfactory, and that they make this choice only to avoid group indschemes (or

Drinfeld’s compactification: c.f. [FGVO01]).

Remark 1.20.1. For factorization purposes, it is better to incorporate a twist by 1-forms
into the definition of the group N~ (K) so that we do not need to choose a coordinate t.

We postpone this issue to the body of the text.

One can show that the categories of (N7(K),v¥n-(k)) and (.(;_, w?_)—equivariant D-
modules on the affine flag variety are canonically equivalent: we include this result in
the appendix §18 for the reader’s convenience.

One has the following general result (modeled on a standard result of p-adic represen-

tation theory):

Proposition 1.20.2. If C is a DG category acted on by G(K) that is compactly gen-
erated such that every compact object X € € is equivariant for some sufficiently small

(depending on X ) compact open subgroup of C. Then the functors:

Cr — Cro) — Cniyr(0)

EN(K)T(0) _, @B(O) AVB(O) 1% el

are equivalences, where C; — Cpo) i the left adjoint to the tautological functor Cpo) —

Cr, and similarly for Avpo)—r.x.

Remark 1.20.3. Under the “norm” equivalences €¢; — € and €y — CP©), the

functor Cpo) — C; identifies with Avgo)—r«.
14



Remark 1.20.4. Under the above hypotheses, one obtains a somewhat complicated equiv-

alence between €NF)TO) and Cnxyr(0)-

We include a proof of this result in §17.

The category of D-modules on G(K), or Whittaker D-modules on G(K), both sat-
isfy this hypothesis. Therefore, we can replace D(FIZ) with either D(G/(K))NEIT©) or
D(G(K))nyro)

It is convenient (for reasons we do not presently explain) to choose D(G(K))n(x)r(0)-
We denote the category by D(F [%) and consider as a category of D-modules on the non-
existant semi-infinite flag manifold G(K)/N(K)T(O): see [FF90] for more discussion on
this point.

Therefore, we obtain our geometric category: we take (N~ (K), 1 n-(x))-invariants and
N(K)T(O)-coinvariants on the left and on the right of D(G(K)). We denote this category
by WhitZ .

This category factorizes: we provide a detailed discussion of this structure in §6.

Remark 1.20.5. Working with N(K)T'(O) in place of Iwahori introduces new technical
difficulties of various kinds. To single out one, the Iwahori subgroup is parahoric, so
FI2 is and ind-proper indscheme. Not only is G(K)/N(K)T(O) not an indscheme, but
this parahoric feature of Iwahori bears no obvious counterpart for the semi-infinite flag

variety. This is especially troublesome in the factorization setting.

1.21.  Replacing the category QCoh(#t/B) is somewhat more direct.

For a point x € X and an affine algebraic group I, let LocSysF(lo?x) denote the
prestack of de Rham local systems on 20?1

Formally: we have the indscheme Connp of Lie(I")-valued 1-forms (i.e., connection
forms) and this is equipped with the usual gauge action of I'(K,). We form the quotient

and stackify for the étale topology on AffSch and denote this by LocSys (D,).
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Remark 1.21.1. LocSysp(D,) is not an algebraic stack of any kind because we quotient
by the loop group I'(K}), an indscheme of ind-infinite type. It could be considered as a

prototypical semi-infinite Artin stack, the theory of which has not been developed.

The assignment x — LocSys(D,) obviously factorizes.
For I' = G,, one easily shows that LocSys(D,.) is canonically isomorphic to the affine
line crossed with BG, by showing that every connection is gauge equivalent to one with

regular singularities and then taking the residue of the resulting form.

More generally, for I unipotent we have a canonical identification:

LocSysF(lo)x) —> Lie(I)/T"

by the same construction.

However, this identification does not at all factorize: as in the discussion of the ob-
struction to factorizing the Iwahori subgroup, the notion of connection with regular
singularities is not compatible with factorization.

Similarly, we let LocSys (D, ) denote the category of local systems on the disc, defined
as above but where we take the group I'(O,) and the group scheme of 1-forms without
poles. This is (compatibly with factorization) identified with the stack BI': every local
system is trivial, and trivializations are equivalent to trivializations of the underlying
G-bundle on a point.

We therefore replace 1/ B with the equivalent space:

LocSysz(D,) X LocSysi(Dy)
LocSysTv(ﬁm)

of B-local systems on the punctured disc whose underlying 7-local system has been
extended to the non-punctured disc.
As in the discussion above, this space is point-wise over the curve equivalent to /B3,

but carries a different factorization structure.
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1.22.  Recall that for a finite type scheme (or stack) Z, [GR14] has defined a DG cat-
egory IndCoh(Z) of ind-coherent sheaves on Z. We recall simply that for Z smooth, we
have a canonical identification of IndCoh(Z) with QCoh(Z), and we recall that in the
general setting the compact generation properties of IndCoh are much simpler than of
QCoh.

We would like to replace the category QCoh(in/B) = IndCoh(1i/B) by the factorization

category:

z — IndCoh( LocSys;; (f)z) X LocSys;(Dy)).
LocSysT(l%w)

However, IndCoh has not been defined in this setting: the spaces of local systems on
the punctured disc are defined as the quotient of an indscheme of ind-infinite type by a

group of ind-infinite type.

Remark 1.22.1. The choice of notation IndCoh in place of QCoh is because we anticipate
that IndCoh should be much more manageable for “semi-infinite” types of spaces, due
to its better functoriality and categorical properties. Moreover, we expect that in the
factorization setting, there is a meaningful difference between IndCoh and QCoh for the

spaces we are considering.
Ignoring these issues, we formulate the following rough conjecture:

Main Conjecture. There is an equivalence of factorization categories:

Whit? > (x — IndCoh(LocSysB(ZoDz) X LocSySTv(D:C))). (1.22.1)

LocSys (ﬁz)

1.23.  The main achievement of this thesis is a functor very close to the functor (1.22.1).
However, since the right hand side of (1.22.1) is not defined, we need to explain the

substitute that we use. We will address this point in §1.25.
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1.24.  We briefly recall Lurie’s approach to deformation theory [Lurllal.

Suppose that X is a “nice enough” stack and x € X is a k-point. Then the shifted tan-
gent complex Ty ,[—1] identifies with the Lie algebra Lie(Auty(x)) of the (derived) auto-
morphism group of X at =, and there is an identification of the DG category IndCoh(X})
of ind-coherent sheaves on the formal completion of X at x with Ty ,[—1]-modules.

o

1.25.  The stack LocSysy(D,) has shifted tangent complex HjR(IO)x,ﬁ ® k) as a (de-
rived) Lie algebra. Ignoring the slight problem of defining this de Rham cohomology, the
philosophy of [BD04] indicates that modules for this Lie algebra should be equivalent to
chiral modules for the chiral envelope of the Lie-* algebra n ® kx on X.

A slight variant: consider D(Grr) as a commutative chiral category. This chiral cat-
egory is an avatar of the symmetric monoidal category of A-graded vector spaces. The
grading on n makes it a Lie-x algebra in this commutative chiral category, and chi-
ral modules for its chiral envelope model A-graded modules for the graded Lie algebra
H jR(fDx, 1 ® k). We denote the corresponding chiral algebra in D(Gry) by i, following
notation introduced in [BGO0S].

Therefore, chiral modules in D(Grr) for T model the category of ind-coherent sheaves

on:

LocSysp (20)96) " X LocSys;(D,)

o

LocSysy(Dy)

where LocSysp (D, )" is the formal completion at the trivial local system.

1.26.  'We now can state our main construction is a reasonably precise form:

We construct a functor Whit? to Tg-mod™*(D(Grr)) to the category of (unital) chiral
modules for ;.

This functor is constructed by the following natural technique. We have a functor
Whit?z — D(Grr) constructed by forgetting the Whittaker condition and then applying

the !-restriction along the map Gry — S[%.
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The main theorem in our construction is the following.

Theorem 1.26.1. Under this functor, the unit object in the unital factorization category

Whit> maps to the factorization algebra Ty € D(Grr).

The formalism of chiral categories then produces the desired functor.®

2. CONVENTIONS

2.1.  We fix an algebraically closed field k of characteristic zero throughout the thesis.

All schemes, etc, are understood to be defined over k.

2.2. Lie theory. We understand reductive group to be a connected reductive group over
k. We consider Langlands dual reductive groups as also being defined over k.

We fix a (connected) reductive group G through the thesis, and use the accompanying
notations from §1.5. Moreover, we fix a choice of Chevalley generators {f;};es,, of n™.

Finally, we use the notation p for the half-sum of the positive roots of g.

We let A and A denote the weights and coweights of G. We let e.g. A* denote the
dominant weights, and let A?** denote the Z>°-span of the simple coroots (and similarly

for AP° and A™).

2.3. Let X be a smooth projective curve.

We let Bung denote the moduli stack of G-bundles on X. Recall that Bung is a
smooth Artin stack locally of finite type (though not quasi-compact).

Similarly, we let Bung, Buny, and Buny denote the corresponding moduli stacks of
bundles on X. However, we note that we will abuse notation in dealing specifically with
bundles of structure group N~: we will systematically incorporate a twist discussed in

detail in §3.7.

> A toy model: Given a monoidal category € with unit Ie¢ and a lax monoidal functor F : € — D, the
functor F naturally upgrades to a functor € — F(1e)-mod(D). We remark that in the analogy between
chiral categories and monoidal categories, the role of chiral functor is played by that of lax monoidal
functor.
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2.4. Higher categories. We rely heavily on the theory of higher categories, whose
existence is due to the work of many mathematicians. This theory was developed sys-
tematically in Lurie’s [Lur09] and [Lurl2], and we use these as our preferred reference
where appropriate.

We assume that the reader is comfortable with higher category theory and derived
algebraic geometry. However, we will carefully establish notation and conventions below,
highlighting the points where our terminology differs from [Lur09] and [Lurl2].

Unlike [Lur09], our use of the theory is model independent: there are different® models
of (o0, 1)-categories” (quasicategories, Segal sets, etc.), each with its own intrinsic notion
of, say, homotopy colimit. We use the theory only in as much as it can be implemented
in each of these different models, that is, we allow ourselves to use the language of
homotopy colimits, but not to use the language of, say, quasicategories.®

We use terms such as isomorphism and equivalence interchangeably.

2.5.  We find it convenient to assume higher category theory as the basic assumption in
our language. That is, we will understand “category” and “l-category” to mean “(co, 1)-

M«

category,” “colimit” to (necessarily) mean “homotopy colimit,” “groupoid” to mean “co-
groupoid” (aliases: homotopy type, space, etc.), “2-category” to mean (o0, 2)-category,
etc. “Morphism” means 1-morphism. We use the phrase “set” interchangeably with

“discrete groupoid,” i.e., a groupoid whose higher homotopy groups at any basepoint

vanish.

SHowever, these theories are mutually Quillen equivalent; see [Toé05].

"We recall for the reader’s convenience that (n, m)-category (0 < m < n < o) refers to a higher category
with possibly non-trivial k-morphisms for k < n, and in which k-morphisms are assumed invertible for
k= m. E.g., a (1,1)-category is a usual category, a (2,2)-category is a usual 2-category, etc.

8The reader uncomfortable with this approach may happily understand everything to be implemented in
quasicategories as in [Lur09], though our language will differ from loc. cit. at some places; the translation
should always be clear.
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When we need to refer to the more traditional notion of category, we use the term
(1, 1)-category.

In particular, we refer to the notion of “stable oo-category” from [Lurl2] as a stable
category.

When we say that D is a full subcategory of €, we mean that there is a functor D — €

given inducing equivalences on the groupoids of morphisms.

2.6. Aside: on new foundations. We draw the reader’s attention to Voevodsky’s
program [V*13]. This program, not yet fully implemented, offers a different perspective,
and one that we implicitly take up in our use of higher category theory. Namely, that
the idea of set theory as a foundation for mathematics is inadequate, and should be
replaced by more categorical foundations.

In set theory, the predicate is equality of elements of a set. This is inadequate to
standard mathematical practice: for example, it allows one to speak of different sets
with one element, even though there is no “test” using practical mathematics that could
distinguish such sets. This problem is also visible in the difference between isomorphism
and equivalence of (usual) categories, reflecting that the usual definition of category as
founded on set theory is an inadequate notion.

By contrast, in Voevodsky’s vision, the basic predicate is that of having specified an
identification between two different objects. Immediately, the atomic sets are replaced
by the more fluid homotopy sets, i.e., co-groupoids: indeed, here we see objects, ways of
identifying two objects, ways of saying that two identifications of two objects are the
same, and so on.

This is the perspective that we implicitly take, anticipating that proper foundations
based on groupoids and not on sets will be completed. Still, as emphasized above, there
are various frameworks (such as [Lur09]) in the set-theoretic paradigm that are perfectly

adequate for our needs.
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2.7. Conventions regarding 2-categories. The theory of (unital) chiral categories
is most naturally developed using the theory of 2-categories. Recall that Segal cate-
gories provide an adequate model for 2-categories, granted a theory of 1-categories (this
approach is developed in detail e.g. in [GR14]).

Every 2-category has an underlying 1-category in which we forget all non-invertible 2-
morphisms. For many purposes (such as computing limits and colimits), this underlying
category is perfectly adequate, and where it is irrelevant, we do not pay particular
attention to the distinction, hoping that this makes it easier for the reader.

For € a 2-category, we use the notation Home(X,Y') (as opposed to Home(X,Y)) to
indicate that we take the category of maps X — Y, not the groupoid of maps.

We say that a functor F' : € — D of 2-categories is I-fully faithful if the induced maps:

Home(X,Y) — Homqg(F(X), F(Y))

are fully-faithful functors. A 1-full subcategory means the essential image of such a
functor. If in practice “full subcategory” means that we impose some conditions on a
class of objects, then “1-full” means that we impose conditions on both objects and

morphisms.

2.8. Accessibility. We will typically ignore cardinality issues that arise in category
theory. The standard way to do this is through the use of accessible categories (we
recall that this condition is satisfied for essentially small categories and for compactly
generated categories). The author’s opinion is that focusing too much on accessibility
issues distracts the reader who is not familiar with the ideas, while omitting these points
will not create confusion for the reader who is.

But we will enforce the following conventions:

e Categories are assumed to be locally small, i.e., Hom groupoids are essentially

small.
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e We use the term “indexing category” synonymously with “essentially small cat-
egory.” A category seen indexing a colimit or limit is assumed to be essentially
small. If we use e.g. the term “all colimits” (as in: “such and such functor com-
mutes with all colimits”), this certainly means “all small colimits.”

e All functors between accessible categories are assumed to be accessible.

e DG categories are always assumed to be accessible.

e The term “groupoid” nearly always refers to an essentially small groupoid.

2.9. Notation. Let Cat denote the (2-)category of essentially small categories and let
Gpd denote the category of essentially small groupoids.

Let Caty,..s denote the category of presentable (i.e., cocomplete and accessible) cat-
egories under functors that commute with arbitrary colimits. We consider Cat,., as a
symmetric monoidal category equipped with the tensor product ® of [Lurl2] §6.3.

For € and D categories, we let Hom(C, D) denote the category of functors between €
and D.

For € an essentially small category, we let Ind(€) denote the category of its ind-objects,

as in [Lur09].

2.10. Grothendieck construction. For F' : J — Cat a functor, we let Groth(F) — J
denote the corresponding coCartesian fibration attached by the (higher-categorical)
Grothendieck construction, and we let coGroth(F) — J° denote the corresponding
Cartesian fibration.

For o : i — j a morphism in J and Y € F(i) = Groth(F') x4 {i}, we will often use the
notation «a(Y") for the induced object of F'(j) = Groth(F') x5 {j}.

2.11. DG categories. By DG category, we mean an (accessible) stable category en-

riched over k-vector spaces. We denote the category of DG categories under k-linear
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exact functors by DGCat and the category of cocomplete DG categories under continu-
ous’ k-linear functors by DGCatop. As with Catyyes, we consider DGCat,p,: as equipped
with the symmetric monoidal structure ® from [Lurl2] §6.3.

Recall that from the higher categorical perspective, the cone is equivalently a cokernel.
Therefore, we use the notation Coker where others might use Cone.

For € a DG category equipped with a t-structure, we let CZ° denote the subcategory
of coconnective objects, and <Y the subcategory of connective objects (i.e., the notation
is the standard notation relative to the cohomological grading convention). We let C¥
denote the heart of the t-structure.

We let Vect denote the DG category of k-vector spaces: this DG category has a t-
structure with heart Vect” the abelian category of k-vector spaces. Similarly, for A a
k-algebra (i.e., an algebra in Vect), we let A-mod denote the DG category of its left
modules.

We use the material of the short note [Gail2a] freely, taking for granted the reader’s

comfort with the ideas of loc. cit.

2.12. Monoidal categories. We assume the reader is throughly familiar with this the-
ory.

We will use the following conventions.

We use the term colored operad in place of the term of co-operad from [Lurl2], prefer-
ring to use operad for a “colored operad with one color.” We assume the presence of units
according to standard conventions, so e.g. “commutative operad,” we understand the op-
erad controlling unital'® commutative algebras. Symmetric monoidal functors between

symmetric monoidal categories are assumed to be unital, though we allow ourselves

9There is some disagreement in the literature of the meaning of this word. By continuous functor, we
mean a functor commuting with filtered colimits. Similarly, by a cocomplete category, we mean one
admitting all colimits.

10T not be misleading: the phrase “commutative algebra” appearing in isolation indicates a unital
commutative algebra.
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to speak of e.g. symmetric monoidal functors between non-unital symmetric monoidal
categories, obviously meaning the non-unital version.

Next, we use the term laz symmetric monoidal functor F : € — D between symmetric
monoidal categories to refer to a morphism of the underlying colored operads. We recall

that such an F'is equipped with functorial associative maps:

FX)®F(Y) > F(X®Y)

for X, Y € C. We use the term colax monoidal functor for the dual notion, in which we

have functorial morphisms:

FIX®Y)—> F(X)® F(Y).

2.13. Cofinality. There is some disagreement in the literature over the meaning of
cofinal (typically due to trying to avoid confusion with the word “final,” which ought
not to take disparate meanings in category theory). We say that a functor F' : J — J
of indexing categories is cofinal if for every category C, a functor G : § — € admits a

colimit if and only its restriction to J does, and the induced map:

colimG o F' — colim G

is an equivalence. We use the term op-cofinal to mean that F°P : J? — J° is cofinal,

i.e., that the above conditions are satisfied for limits instead of colimits.

Remark 2.13.1. Our use of cofinal is in accordance with [Lur09]. In [Lurl2], Lurie uses

the terminology left cofinal for our cofinal, and right cofinal for our op-cofinal.

2.14. Derived algebraic geometry. Following our “always-derived” conventions, our
default assumption is that algebraic geometry means derived algebraic geometry.
Roughly, the development goes as follows: the category AffSch is defined to be the op-

posite category to the category of commutative k-algebras that are connective as vector
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spaces, i.e., commutative k-algebras in Vect<". We then define the category PreStk of
prestacks as the the category of (accessible) functors AffSch”” — Gpd. We have Yoneda
embedding AffSch < PreStk, and schemes are defined so that this extends to an embed-
ding AffSch < Sch — PreStk.

We say that an affine scheme is classical if it is of the form Spec(A) with H'(A) = 0
for i # 0, i.e., if it is a “usual” affine scheme. More generally, we say that a prestack
is classical if it lies in the subcategory of functors AffSch” — Gpd that are left Kan
extensions of their restriction to the (1,1)-category of classical affine schemes.

For X a prestack, we let QCoh(X) denote the symmetric monoidal DG category of
its quasi-coherent sheaves, defined by right Kan extension from the functor Spec(A) —
A-mod. A crucial point of derived algebraic geometry (that is not true in classical alge-

braic geometry) is that for X — Z « Y schemes, the map:

QCoh(X) ® QCoh(Y) — QCoh(X xY)
QCoh(Z) Z

is an equivalence.
For G' a group stack, we let BG = B(G) denote the classifying stack of G, i.e., the

étale sheafification of the functor:

(S € AffSch®?) > B(G(S))

where in this equation, B is also denoting the delooping functor for group-like monoids
in Gpd.

For X a scheme, we let QY € QCoh(X)<’ denote the cotangent complex, and let
QY = H°(QL) € QCoh(X)? denote the classical cotangent sheaf.

To avoid overburdening the terminology, we use “finite type” for a morphism in derived
algebraic geometry where others use “almost finite type.” When we say a scheme X is

finite type, this certainly means relative to the structure map X — Spec(k).
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2.15. Non-derived algebraic geometry. In fact, the heart of this thesis is about
geometric computations with D-modules, which are immune to the distinction between
derived and classical schemes (or even classical and reduced schemes). Therefore, in Part
1 and in §16, we impose the convention that schemes and prestacks are supposed to be
classical, since it would be overly burdensome to write “classical” everywhere. We alert

the reader’s attention to this point here, though we reiterate in loc. cit.

2.16. D-modules. We use the D-module formalism in the format developed in [GR14].
For S a scheme of finite type, we let D(S) denote the DG category of D-modules on
S. Recall that the prestack Syr is defined by Syg(T) := S(T<"°?) for an affine scheme

Tcl,red

T, where is the reduced classical scheme underlying 7'; then we have:

D(S) = QCoh(Sur) < IndCoh(Sun)

for w the dualizing sheaf of the ind-coherent theory.

For f: S — T a morphism, we let f' : D(T) — D(S) denote the corresponding map.
Recall that this functor is the *-pullback in the QCoh picture and the !-pullback in the
IndCoh picture. Let fiq4r : D(S) — D(T) denote the de Rham pushforward functor
constructed in [GR14]. We let f, and f*9% denote the corresponding partially-defined
left adjoints.

For S a scheme with structure map p : S — Spec(k), we let wg = p'(k) € D(S) and
ks = p*i®(k) € D(S) denote the dualizing sheaf and the constant sheaf respectively. Let
ICs € D(S) denote the intersection cohomology D-module. Recall that for S smooth,
ICs = kg[dimg]| = wg[— dimg].

We consider D(S) as equipped with the t-structure called the “right ¢-structure” in
[GR14]. We note that for S smooth, this is the t-structure considered in the usual D-
module theory, and for general S it corresponds to the perverse t-structure under the
Riemann-Hilbert correspondence; in particular, we have ICg € D(S)". We therefore refer

to this t-structure as the perverse t-structure where such clarification is necessary.
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We will also use the constructible t-structure on the regular holonomic subcategory,
the t-structure whose heart corresponds to constructible sheaves under Riemann-Hilbert.
We use §'<) to denote the standard tensor product of D-modules, for which F (;9 G =
A (F X G) for A the diagonal, and the “partially-defined tensor-product” (;), for which
F®G is A*IE(F X G) if it is defined (which is the case e.g. if F and G are holonomic, or

if one of them is lisse).

Part 1. The Chevalley complex

We remind the reader that throughout this part, all schemes are assumed to be clas-
sical (meaning: non-derived) schemes, and similarly, all (pre)stacks are assumed to be
classical.

We assume for convenience that the derived group of G is simply-connected. How-
ever, one may remove this assumption following [Sch12] §7, and accordingly noting that

[Sch12] also allows us to remove the corresponding hypothesis from [BEGMO02].

3. REVIEW OF ZASTAVA SPACES

3.1. In this section, we review the geometry of Zastava spaces, introduced in [FM99]

and [BFGMO02].

3.2. The basic affine space. Recall that the map:

G/N — G/N := Spec(H(T(G/N, Og/n))) = Spec(Fun(G)™)

is an open embedding. We call G/N the basic affine space G/N the affine closure of the
basic affine space.

The following result is direct from the Peter-Weyl theorem.

Lemma 3.2.1. A map ¢ : S — G/N with ¢~'(G/N) dense in S is equivalent to a
“Drinfeld structure” on the trivial G-bundle G x S — S, i.e., a sequence of maps for

Ae AT.
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O'A 2€A®OS —>V>\®OS
k k
that are monomorphisms of quasi-coherent sheaves.

Remark 3.2.2. By dense, we mean scheme-theoretically, not topologically (e.g., for Noe-

therian S, the difference here is only apparent in the presence of associated points).

Example 3.2.3. For G = SLy, G/N identifies equivariantly with A2 The corresponding

map SLy — A? here is (necessarily) given by:

a b
— (a,c) e A’
c d

3.3. Let T be the closure of T = B/N < G/N in G/N.

Lemma 3.3.1. (1) T is the toric variety Spec(k[A*]) (here k[A*] is the monoid al-
gebra defined by the monoid A+ ). Here the map T = Spec(k[A]) — T corresponds
to the embedding AT — A and the map Fun(G)N — k[AT] realizes the latter as
N -coinvariants of the former.

(2) The action of T on G/N estends to an action of the monoid T on G/N (where

the coalgebra structure on Fun(T') = k[A™] is the canonical one, that is, defined

by the diagonal map for the monoid A™ ).

Here (1) follows again from the Peter-Weyl theorem and (2) follows similarly, noting
that V* @Y < Fun(G)Y = Fun(G/N) has A-grading (relative to the right action of T'
on G/N) equal to A € A*.

3.4. Note that (after the choice of opposite Borel) T is canonically a retract of G/N,

i.e., the embedding T < G/N admits a canonical splitting:

G/N —T. (3.4.1)
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Indeed, the retract corresponds to the map k[A™] — Fun(G)" sending A to the canon-

ical element in:

AR VA VM < Fun(G)

(note that the embedding ¢»Y < VAV uses the opposite Borel).

By construction, this map factors as G/N — N-\(G/N) — T.

Let T act on G/—N through the action induced by the adjoint action of T" on G.
Choosing a regular dominant coweight Ay € A* we obtain a G,,-action on G/—N that
contracts'* onto 7. The induced map G/N — T coincides with the one constructed

above.

Warning 3.4.1. The induced map G/N — T does not factor through 7. The inverse
image in G/N of T < T is the open Bruhat cell B-N/N.

3.5. Define the stack BB as G\G/N/T. Note that BB has canonical maps to BG and
BT.

3.6. Local Zastava stacks. Let 2 denote the stack B~\G/B = BB~ xps BB and and
let ¢ denote the stack B~™\(G/N)/T = BB~ xpg BB. We have the sequence of open

embeddings:

BT < ( < ¢

where BT embeds as the open Bruhat cell.

The map BT — ( factors as:

BT = T\(T/T) «— T\(T/T) = BT x T/T — (. (3.6.1)

e recall that a contracting G,,-action on an algebraic stack ) is an action of the multiplicative
monoid A' on Y. For schemes, this is a property of the underlying G,, action, but for stacks it is not.
Therefore, by the phrase “that contracts,” we rather mean that it canonically admits the structure of
contracting G,,-action. See [DG13] for further discussion of these points.
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One immediately verifies that the retraction G/N — T of (3.4.1) is B~ x T-equivariant,
where B~ acts on the left on G/N and T acts on the right, and the action on T is similar
but is induced by the T" x T-action and the homomorphism B~ xT" — T x T'. Therefore,

we obtain a canonical map:

¢=B\G/N/T — B\T/T — T\T/T.

Moreover, up to the choice of \g from loc. cit. this retraction realizes BT x T/T as a
“deformation retract” of (.

We will identify 7\T/T with BT x T/T in what follows by writing the former as
T\(T/T) and noting that T" acts trivially here on T/T.

In particular, we obtain a canonical map:

(—T/T. (3.6.2)

By Lemma 3.3.1 (2) we have an action of the monoid stack T/T on (. The morphism
¢ BT x T/T 2 T/T is T/T-equivariant.

Lemma 3.6.1. A map ¢ : S — T/T with o' (Spec(k)) dense (where Spec(k) is realized

as the open point T /T ) is canonically equivalent to a A9 yalued Cartier divisor on S.
First, we recall the following standard result.

Lemma 3.6.2. A map S — G, \A' with inverse image of the open point dense is

equivalent to the data of an effective Cartier divisor on S.

Proof. Tautologically, a map S — G,,\A! is equivalent to a line bundle £ on S with a
section s € I'(S, £).
We need to check that the morphism Og —» £ is injective as a morphism of quasi-

coherent sheaves under the density hypothesis. This is a local statement, so we can
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trivialize £. Now s is a function f whose locus of non-vanishing is dense, and it is easy
to see that this is equivalent to f being a non-zero divisor.

U

Proof of Lemma 3.6.1. Let G’ < G denote the derived subgroup [G,G] of G and let
T' =T~ G and N’ = N A G'. Then with T’ defined as the closure of 7" in the affine

closure of G'/N’, the induced map:

T /T - T)T
is an isomorphism, reducing to the case G = G'.
Because the derived group (assumed to be equal to G now) is assumed simply-

connected, we have have canonical fundamental weights {¥;}iez,, ¥; € A*. The map

[Ticz, i : T — Ilicr,, Gm extends to a map T — [],.r, A" inducing an isomorphism:

T/T = (A'/Gy,)*e.

Because we use the right action of T on T, the functions on T are graded negatively,
and therefore we obtain the desired result.

O

3.7. Twists. Fix an irreducible smooth projective curve X. We digress for a minute to
normalize certain twists.

First, for an integer n, we will sometimes use the notation 2% for Q?{", there being
no risk for confusion with n-forms because X is a curve.

We fix Q)%( a square root of Qx. This choice extends the definition of Q% to n € 3Z.

We obtain the T-bundle:

Pem = p(Q3) = 2p(052). (3.7.1)

We use the following notation:
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Buny- = Bung- x {P7"

BunT

Bung- = BunGmeaB x {Qx}.

ung,,,

Here G,, acts on G, by homotheties, i.e., G,, x G, is the “positive” Borel of PGL,.
Note that BunGg classifies extensions of Ox by {2y and therefore there is a canonical

map:

cang- : Bung- — HY(X,Qx) = G,.

The choice of Chevalley generators {f;}icz, of n~ defines a map:

B™/[N",N7] - | [(Gy x G).

iEIG

By definition of P7*", this induces a map:

n t; - Buny- — H BunGg .

iEZG iEZG

We form the sequence:

[liez,, can
2 G GCL
Buny- — H BunG; — H G, — G,

€L i€La

and denote the composition by:

can : Buny- — G,.

3.8. For a pointed stack (), y € Y(k)) and a test scheme S, we say that X x S — ) is
non-degenerate if there exists U € X x S universally schematically dense relative to S
in the sense of [GAB*66] Exp. XVIII, and such that the induced map U — Y admits a

factorization as U — Spec(k) -4 Y (so this is a property for a map, not a structure).
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We let Maps,,,,, _gegen. (X, ) denote the open substack of Maps(X, ) consisting of non-
degenerate maps X — ).

We consider ¢, ¢, and T/T as openly pointed stacks in the obvious ways.

3.9. Zastava spaces. Observe that there is a canonical map:

¢ — BT (3.9.1)

given as the composition:

(=BB~ x BB —» BB~ — BT\
BG

Let Z be the stack of P{"-twisted non-degenerate maps X — (, i.e., the fiber product:

Mapsnon—degen.(X’ g) X {P’;an

uny
where the map Maps,,,,, _gegen. (X, () — Bung is given by (3.9.1).

Let % C Z be the open substack of P#"-twisted non-degenerate maps X — 2 . Note
that Z and 27 lie in Sch < PreStk. We call Z the Zastava space and % the open Zastava
space. We let 7 : 20,’ — Z denote the corresponding open embedding.

We have a Cartesian square where all maps are open embeddings:

Buny- x Bung —— Buny- x Bung
Bung Bung

The horizontal arrows realize the source as the subscheme of the target where the two

reductions are generically transverse.

3.10. Let Divé\f}m = Maps X,T/T) denote the scheme of AP*-divisors on X

non—degen.(

(we include the subscript “eff” for emphasis that we are not taking A-valued divisors).
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We have the canonical map:

deg : WO(Divééos) — AP,

pos

For A € AP let Divé\gos denote the corresponding connected component of Divé\ff

Remark 3.10.1. Writing \ = Yz, Mid; as a sum of simple coroots, we see that Divé\ﬁ is

a product HiEIG Sym" X of the corresponding symmetric powers of the curve.

Recall that we have the canonical map r : { — BT xT/T'. For any non-degenerate map
X x S — ¢, Warning 3.4.1 implies that the induced map to T/T (given by composing
with the second projection) is non-degenerate as well.

Therefore we obtain the map:

. Apos
7 Z — Diviy" .

We let 7 denote the restriction of 7 to z% . It is well-known that the morphism 7 is affine.

Let Z* (resp. %’\) denote the fiber of Z (resp. 27) over Divi‘ﬁ. We let 7 (resp. )
denote the restriction of 7 to Z* (resp. é)‘) We let 7 : %;\ — Z* denote the restriction
of the open embedding ;.

Note that 7 admits a canonical section s : Divééos — Z, whose restriction to each
Div(’;\ﬁ we denote by s*. Note that up to a choice of regular dominant coweight, the
situation is given by contraction.

Each Z* is of finite type (and therefore the same holds for %’\) It is known (c.f.
[BEGMO2] Corollary 3.8) that 2% is a smooth variety.

For A = 0, we have 20— 20 = Div%; = Spec(k).

We have a canonical (up to choice of Chevalley generators) map Z — G, defined as

the composition Z — Buny- —> G,. For &; a positive simple coroot the induced map:

Z% - Divii xG, = X x G, (3.10.1)
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is an isomorphism that identifies Z% with X x Gn,.
Remark 3.10.2.

The dimension of Z* and Z* is (2p, A) = (p, A) + dim Divéﬁ (this follows e.g. from the
factorization property discussed in §3.11 below and then by the realization discussed in
§3.12 of the central fiber as an intersection of semi-infinite orbits in the Grassmannian,

that are known by [BFGMO02] §6 to be equidimensional with dimension (p, A)).

Example 3.10.3. Let us explain in more detail the case of G = SLs. In this case, tensoring

1
with the bundle 2% identifies Z with the moduli of commutative diagrams:

vy
X\
0 QX 8 OX I 0
w@h
LY ® Qx
Ox

in which the composition L — LY ®g, 2x is zero and the morphism ¢ is non-zero.
The subscheme Z is the moduli where the induced map Coker(L — &) — LY gg Qx
is an isomorphism. The associated divisor of such a datum is defined by the injection
L — Ox.

Because we have removed a twist above by tensoring with Q)%(, the forgetful map
Z — Bungy, is given by mapping the above to € ® Q;(%, and similarly for the forgetful
map to Bung.

Over a point x € X, we have an identification of the fiber %i of 4%1 over r € X
(considering 1 € Z = ASL2 as the unique positive simple coroot) with G,,. The point
1 € G,, corresponds to a canonical extension of Ox by Q% associated to the point x,

that can be constructed explicitly using the Atiyah sequence of the line bundle O x(x).
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Recall that for a vector bundle €, the Atiyah sequence (c.f. [Ati57]) is a canonical

short exact sequence:

0 — End(€) — At(&) — Tx — 0

whose splittings correspond to connections on €. For a line bundle £, we obtain a
canonical extension At(L£)®0N% of Ox by QL. Taking £ = Ox(x), we obtain the extension
underlying the canonical point of 20,’;

Note that we have a canonical map £ = Ox(z) — At(Ox(z)) ® Q) that may be
thought of as a splitting of the Atiyah sequence with a pole of order 1, and this splitting
corresponds to the obvious connection on Ox (z) with a pole of order 1. This defines the

o
corresponding point of Z! completely.

3.11. Factorization. Now we recall the crucial factorization property of Z.

Let add : Divééos X Divééos — Divéf];os denote the addition map for the commutative
monoid structure defined by addition of divisors. For A and j fixed, we let add™" denote
the induced map Div(’;\ff x Divly — Divi‘f;@r "

Define:

[Divé\é)os X Divégos]disj c Divé\éos X Divé;fm
as the moduli of pairs of disjoint A?**-divisors. Note that the restriction of add to this

locus is étale.

Then we have canonical “factorization” isomorphisms:

. jpos . kpos ~ . Apos . _jpos

Z X [Dlveff X Dlveff ]disj — (Z X Z) X ) [DlVeﬂc X DlVeH ]dz’sj
DivAros DivAP?®  DiyAP®

that are associative in the natural sense.

The morphisms 7 and s are compatible with the factorization structure.
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3.12. The central fiber. By definition, the central fiber 3% of the Zastava space 2 is

the fiber product:

3;\:=ZS‘ x X

Div}
where X — Divéﬁ is the closed “diagonal” embedding, i.e., it is the closed subscheme
where the divisor is concentrated at a single point. We let ‘%X denote the open in 3%
corresponding to 1%5‘ — ZA, Similarly, we let 3 € Z be the closed corresponding to the
union of the 35‘.

We let g (resp. X;\) denote the closed embedding 3* < Z* (resp. %X — zg,’)‘)

3.13. Twisted affine Grassmannian. Let Pg", Pg" and PZ" be the torsors induced
by the T-torsor P#" under the embeddings of 7" into each of these groups.
We let Grg x denote the “Pg"-twisted Beilinson-Drinfeld affine Grassmannian” clas-
can

sifying a point # € X, a G-bundle P on X, and an isomorphism P&"|x\, ~ Pg|x\s-

More precisely, the S-points are:

x:S — X, PsgaG-bundle on X x S,
{ o an isomorphism Pa|xxs\r, =~ PE" | xxs\1, }
Similarly for Grp x, etc. We define Gry- x = Grp- x Xary X the map X — Grry
being the tautological section.

7

Let Grp x denote the “union of closures of semi-infinite orbits,” i.e., the indscheme:

r:S—>X,p: X x8—>G\(G/N)/T,
@B,X : S+ < « a factorization of ©|(xxs)r, through the
canonical map Spec(k) — G\(G/N)/T.

Here I', denotes the graph of the map .

3.14. In the above notation, we have a canonical isomorphism:
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3 — Gry-x x Grpx.
GrG7X

Indeed, this is immediate from the definitions.
Note that Grp x has a canonical map to Grrx = [ [5c Gr;yx. Letting Gr’;’X be the

fiber over the corresponding connected component of Grr x, we obtain:

< 5
3)\ GrN_,X X GI’B’X
Grg, x

3.15. By §3.6, we have an action of Divf};os on Z so that the morphism 7 is Divéflfm—
equivariant. We let actz denote the action map Divé\éos x Z — Z. We abuse notation in
denoting by act§ the induced map Divééos x,% — Z (that does not define an action on
2,07, i.e., this map does not factor through 2,07)

For A € A acting on Z* defines the map:

Ay AP b
actz : Divyy xZ% — Z.

For 7j € AP we use the notation act’* for the induced map:

ALy A A+
actz” : Divgg xZ7 — Z°77,

Similarly, we have the maps act) and act’".
z z

The following lemma is well-known (see e.g. [BFGMO02]).

Lemma 3.15.1. Each map actjz"77 1s a finite morphism and act’:\j77 15 a locally closed
Z

embedding. For fized X the set of locally closed subschemes of ZA:

{acty" (Divig x2)} ;55
2 f,7EAPOS
forms a partition by locally closed subschemes.
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3.16. Intersection cohomology of Zastava. For A € A? we now review the descrip-
tion from [BFGMO02] of the fibers of the intersection cohomology D-module IC ;5 along

the strata described above, i.e., the D-modules:

aCtgﬂj!(ICZ?\) € D(DiVfo xZﬂ), 1, [t € Apos’ ftn= A

Theorem 3.16.1. With notation as above, the D-module:

act? (1C ;5) [~ dim 2] € D(Div’y x%’v‘)
z

1s a constructible sheaf, i.e., it lies in the heart of the constructible t-structure on the

category of reqular holonomic D-modules.
Remark 3.16.2. As above, Z" is equidimensional with dim Z# = 2(p, 1).

1
3.17. Locality. For X asmooth (possibly affine) curve with choice of 2%, we obtain an
identical geometric picture. One can either realize this by restriction from a compactifi-
cation, or by reinterpreting e.g. the map Z — G, through residues instead of through

global cohomology.

4. LIMITING CASE OF THE CASSELMAN-SHALIKA FORMULA

4.1. The goal for this section is to prove Theorem 4.3.1, an unpublished result of Gaits-

gory regarding the vanishing of certain Whittaker cohomology groups.

4.2. Artin-Schreier sheaves. We define the !-Artin-Schreier D-module 1'p € D(G,) to
be the exponential local system normalized cohomologically so that 12[—1] e D(G,)".
Note that ;'b is multiplicative with respect to upper-! pullback.

We define the #-Artin-Schreier D-module :D € D(G,) to be the Verdier dual to 1'ﬁ Note
that {Z lies it the heart of the constructible t-structure on G, and is multiplicative sheaf

with respect to upper-= pullback.
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4.3. For A\ € Aros let Pax € D(Zj‘) denote the =pullback of the Artin-Schreier D-

*
module v via the composition:

3 can
Z* > Buny- 45 G,.

Note that 1[dim 2] € D(Z*)?. Also define:

Theorem 4.3.1. If X\ # 0, then:
T (IC 5 @ 53 ) = 0.

The proof will be given in §4.5 below.
This theorem is étale local on X, and therefore we may assume that we have X = Al

1
In particular, we have a fixed trivialization of 2%.

4.4. Central fibers via affine Schubert varieties. In the proof of Theorem 4.3.1 we
will use Proposition 4.4.1 below. We note that it is well-known, though we do not know
a published reference.

Throughout §4.4, we work only with reduced schemes and indschemes, so all symbols
refer to the reduced indscheme underlying the corresponding indscheme. Note that this
restriction does not affect D-modules on the corresponding spaces.

Let Jetsy"(T) denote the group scheme of jets into 7" over X. Because we have chosen

an identification X ~ Al we have a canonical homomorphism:

Crpx ~ A' x A — Jets?(T) ~ A' x T(K)

(2, A) = (2, A(t))
41



where t is the uniformizer of A!. Of course, the formula Grrx =~ Al x A is only valid
at the reduced level. This induces an action of the X-group indscheme Gry x on Grp x,
Grg,x and Gry- x = Gr%_’X.

Using this action, we obtain a canonical isomorphism:

) —X ~ N
3 = Gry x x Grgyx — Grl_ x X Gr
GrG,X Grg G, X

of X-schemes for every 7 € A.

Proposition 4.4.1. For 1 deep enough'® in the dominant chamber we have:

A+n

GrB— X

# X
x Grp, = Grlj_ x X Gr +”.
GI‘ G, X GrG X

This equality also identifies:

A7) A+n
Gl x X Grgy = Grl,_ x X Grgly.
Grg, x Grg, x

Proof. Tt suffices to verify the result fiberwise and therefore we fix r = 0 € X = A! (this
is really just a notational convenience here). We let 3;;\ (resp. §;) denote the fiber of 3*
(resp. %’\) at x. Let t € K, be a coordinate at x.

Because there are only finitely many 0 < 2 < A and because each g’; is finite type,

for 1) deep enough in the dominant chamber we have:

537 = Gry-o 0 Ad_y(N(O,)) - jilt)

(f(t) being regarded as a point in Grg ., here and the intersection symbol is short-hand
for fiber product over Grg ;) for all 0 < i < \. Choosing 77 possibly larger, we can also
assume that 7 + 2 is dominant for all 0 < i < A. Then we claim that such a choice 7

suffices for the purposes of the proposition.

2This should be understood in a way depending on .
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Observe that for each 0 < i < A we have:

GrB_ A Griy T = () - 35 c GrB_ m(N(Om) S+ f])(t)) - GrB_ NG
Recall (c.f. [MVO07]) that @ﬁ: is a union of strata:

rar s/ B
Grg,,ft < A

while for ji:

Ui At _
GrB,@ NnGrg,' =J

unless /i = 0. Therefore, Gr” B- . intersects Gr’ B only in the strata Gr’g” for 0 < i < A

The above analysis therefore shows that:

. S R
Grl,_ mGer,:D GrB_ NGr M’.

Now observe that B(O,) - (A + ij)(t) is open in Gr*. Therefore, we have:

—A
Glr’\Jr77 < Gry "
giving the opposite inclusion above.

It remains to show that the equality identifies Si in the desired way. We have already

shown that:

X
GrB, mGrB " GrB, N Gr +”.

so it remains to prove the opposite inclusion. Suppose that y is a geometric point of
the right hand side. Then, by the Iwasawa decomposition, y € Gr’gj for some (unique)

7€ A and we wish to show that i = \.
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Because:

i-+1] A-+1]
ye Grig [ nGry ) # &

we have i < . We also have:

Y€ Gr’vgf‘,r77 N GT%_@ #

which implies i > 0. Therefore, by construction of n we have:

7 A+ 7 At A+
yeGry  nGrg, < Gry. nGrg,' < Grg,

but Grgj N Gréﬂ“ﬁ —Fif o # A (because fi + 7 and A + 7 are assumed dominant) and

therefore we must have /i = A as desired.

We continue to use the notation introduced in the proof of Proposition 4.4.1.
Recall that 8* (resp. ¥*) denotes the closed embedding 3% — Z* (resp. 3% — Z%).

For z € X, let 8 (resp. ¥*) denote the closed embedding 3} — Z* (resp. ‘%;\ — z%)‘)

Corollary 4.4.2. (1) If 0 # X\ € AP then for every x € X we have:

2dim3% (93 St
Hipe ™ ( 2 Ve (Qﬁg;)) = 0.

(2) If 0 # X\ € AP then we have Euler characteristic vanishing:

X(FdR,c< i,ﬁi’*(Ing élzzx))) =0.

- *
Remark 4.4.3. To orient the reader at this point, we note that e.g. xﬁ’*(qﬂgi) is a local

o .
system shifted to lie in the heart of the constructible t-structure on 37.

Proof of Corollary 4.4.2. Fix 0 # X and then 7 as in the proof of Proposition 4.4.1. As

in loc. cit. we use 1 to identify:
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~ 7 )\+n
31—>GrB, NGrg" .

By Proposition 4.4.1 and the Casselman-Shalika formula [FGV01] Theorem 1, the
-« * [
. . )\’ . . )\ .
restriction of ¥7 *(¢§x) to every irreducible component of 37 is a non-constant rank 1
local system, implying (1).

It remains to show (2). The key step is to establish the following equality:

[82*(1C )] = [(IC_ )] € Ko(Dy(32))

rG,z

in the Grothendieck group of bounded complexes of coherent and regular holonomic

D-modules on 3;}. Here the map ¢ is defined as:

~ 7 X X
3, — Gr77 . NGrg +77 — Gr +77.

It suffices to show that for each 0 < i < \ the =restrictions of these classes coincide in

the Grothendieck group of:

GrB, N Gr’“r".

Indeed, these locally closed subvarieties form a stratification as fi varies.

First, note that the =-restriction of 1C to Gr“ " has constant cohomologies (by

>\+n
G T

G(O)-equivariance). Moreover, by [Lus83| the corresponding class in the Grothendieck

group is the dimension of the weight component:

dim V(i + 77) - [IC, ss]-
G,z

Restricting to GrB, N Gr“+"

by:

we obtain that the right hand side of our equation is given

dim VA7) - [1C el
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By having U(fn~) act on a highest weight vector of VA we observe that for 7 large
enough, VM(ji + 7) is isomorphic to the (i — A)-weight component U(&~)(jz — A) of
Umn).

The similar identification for the left hand side follows from the choice of 7 (so that
Gr?g_yx N (;‘rr’g;]g7 identifies with 3;) and the main result of [BFGMO02].

Therefore, to prove (2) it suffices to prove that:

W(Tane (3220 ) ) -0
rG,ac
Even better: by the geometric Casselman-Shalika formula [FGVO01], this cohomology

itself vanishes, so its Euler characteristic does too.

4.5. Now we give the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. We proceed by induction on (p, A).

By factorization and induction, we see that Wf\(ICZ; é@*bz;) is concentrated on the
main diagonal X < Divé\ﬁ. Its (+ =I-)restriction to X is the -pushforward along 3* — X
of ﬂx*(ICZ; (;);ZZ;). Moreover, since 3 > X is a “fibration” (i.e., locally a product so
that our sheaf is an external product with a constant sheaf on X) the cohomologies of

m(IC ) on X are lisse and the fiber at z € X is:

1ﬂdR,c( i\v B;V\’*(ICZX ®wzk)> .
By Corollary 4.4.2 (2) the Euler characteristics of the fibers (on the main diagonal)
vanish. Therefore, it is enough to show that F!S‘(IC ZA éw zx) 1Is a perverse sheaf, i.e., lies
in D(Div};)?.

- x ¥
Because 7 is affine and IC 23 @Y z5 is a perverse sheaf, we have:

N x ¥ -
W!)‘(ICZX Rtpz) € D(Divyg)=°.
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On the other hand, recall that by Theorem 3.16.1 for every decomposition \ = 7 + i

we have:

aCtz’ﬂ’!(ICZx é@bzx)[* dim Z7] e D(Div’; x Z%)
z
is a constructible sheaf. Moreover, the fibers of the composition:

ath’ﬂ . I .
B m Z AT A
Divgg x 2" — Z% — Divjg

have dimension (p, fi). Therefore, we deduce that:

. - * *
M actg‘f actg“"(ICZx ®z)

is concentrated in constructible cohomological degrees:

< 2(p, 1) — dim Z# = 0.

Moreover, for x € X < Divé\ﬁs the “top” cohomology of this fiber is 0 by Corollary 4.4.2
(1), and therefore the corresponding fiber is concentrated in constructible cohomological

degrees < —1. Because:

. . ¥ k¥
b b 7*
m actgf act;“ (ICzx ®Y zx)

is concentrated on X and lisse along X this implies that it is in perverse degrees < 0 as
desired.
But now the vanishing of Euler characteristics noted above immediately implies the

result.
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5. IDENTIFICATION OF THE CHEVALLEY COMPLEX I

5.1. The goal for this section is to identify the Chevalley complex in the cohomology
of Zastava space with coefficients in the Whittaker sheaf. This computation will be the
main input in §9.

We first give finite-dimensional versions of the computation, and then in §8 we will

easily deduce a Ran space version.

5.2.  We will use the language of graded factorization algebras.
The definition should encode the following: a Z>°-graded factorization algebra is a

system F,, € D(Sym" X) such that we have, for every pair m,n we have isomorphisms:

~

(Srm g’n> ’[Symm X xSym"™ X]gis; - (Srm-i-n) ’[Symm X xSym"™ X]gis;

Note that the addition map Sym™ X x Sym"™ X — Sym”*" X is étale when restricted
to the disjoint locus, and therefore the restriction notation above is unambiguous.
Formally, the scheme Sym X = [ [ Sym" X is naturally a commutative algebra under

correspondences, where the multiplication is induced by the maps:

[Sym" X x Sym™ X 4s;
Sym" X x Sym™ X Sym™*" X.

Therefore, as in §13 we can apply the formalism of §12 to obtain the desired theory.

Remark 5.2.1. We will only be working with graded factorization algebras in the heart of
the t-structure, and therefore the language may be worked out “by hand” as in [BD04],

i.e., without needing to appeal to §12.

Similarly, we have the notion of AP*-graded factorization algebra: it is a collection of

D-modules on the schemes Div); with similar identifications as above.
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5.3. Recall that [BGOS] has introduced a certain AP**-graded commutative factorization
algebra, i.e., a commutative factorization D-module on Divgém. This algebra incarnates
the Chevalley complex of 0. In loc. cit., this algebra is denoted by Q(ix): we use the
notation (2; instead. We denote the component of 2; on Divé\ﬂ by 2.3 Recall from loc.

cit. that each Q2 lies in D(Div)y)®. 1

Remark 5.3.1. To remind the reader of the relation between {2; and the cohomological
Chevalley complex C*(it) of @i, we recall that the !-fiber of Qs at a AP?*-colored divisor
P N\ T (here A\; € A* and the z; € X are distinct closed points) is canonically

identified with:

where C"(ﬁ)*j‘i denotes the —\-graded piece of the complex.

Remark 5.3.2. Recall that [BD04] associates to any commutative algebra a canonical
(commutative) factorization algebra over X, in the sense of loc. cit. The algebra
arises by a (derived version of a) similar procedure, but by considering C*(#t) as a AP°s-

graded commutative algebra (through the opposite grading to the natural one).

Remark 5.3.3. As is apparent already, it would be more natural to be using A" := —Aros

here.

Remark 5.3.4. We emphasize the “miracle” mentioned above and crucially exploited in
[BGO8] (and below): although C*(n) is a commutative (DG) algebra that is certainly
non-classical, its D-module avatar does lie in the heart of the ¢-structure. Of course, this
is no contradiction, since the !- fibers of a D-module in the heart are only required to

live in degrees > 0.
BIn [BGO8], the authors use a different sign convention, preferring to denote this component by

Q(ﬁx)i)‘.

HMWe explicitly note that in this section we exclusively use the usual perverse t-structure.
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5.4. Observe that j[(IC%) naturally factorizes on Z. Therefore, 'y, (IC%) is naturally a
factorization D-module in D(Divg\éos).
The following key identification is essentially proved in [BGOS8], but we include a proof

with detailed references to loc. cit. for completeness.

Theorem 5.4.1. There is a canonical identification:

H(s'3(IC4)) —
of AP*-graded factorization algebras.

Remark 5.4.2. To orient the reader on cohomological shifts, we note that for A € AP
fixed, IC%X is concentrated in degree 0 and therefore the above H is the minimal

cohomology group of the complex ' ]g(Ing).

Proof of Theorem 5.4.1. Let j : Diviy.

3 3 194 7
simple de€note the open consisting of “simple

divisors, i.e., its geometric points are divisors of the form '  ¢&; - z; for &; a pos-
itive simple coroot and the points {z;} pairwise distinct. For each A e AP we let

jX . Div?, — Divé\ﬂ denote the corresponding open embedding. Note that j and

eff ,simple

each embedding j;\ is affine.
Observe that Diveg simpie has a factorization structure induced by that of Diveg. The
restriction of 25 to Diveg simpie identifies canonically with the exterior product over i € Zg

of the corresponding “sign” (rank 1) local systems under the identification:

. N e
Dlveff,simple - 1_[ Symsilmple X

€la

where A\ = > n;&; and on the right the subscript simple means “simple effective

iEIG
divisor” in the same sense as above. Moreover, these identifications are compatible with

the factorization structure in the natural sense.

Let Zimpie and ZA denote the corresponding opens in Z and Z* obtained by fiber

simple
A

simple denote the corresponding restrictions of s and s,
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Then 2> «GYY as a Div? -scheme by (3.10.1), and these

= DlV

simple eff ,simple eff,simple”

identifications are compatible with factorization.

Therefore, we deduce an isomorphism:

~

H'(s, (ICy ) —=>j'(%)

szmplej'
szmple

of factorization D-modules on Div’ note that the sign local system appears on

eff szmple (

the left by the Koszul rule of signs).

Therefore, we obtain a diagram:

H%(s'n(IC5)) Qx

l (5.4.1)

~

IC% ) — ]*]'(Qﬁ)

simple

]*HO( szmplej'(

Note that the bottom horizontal arrow is a map of factorization algebras on Divf}éos.
By [BG08| Lemma 4.8 and Proposition 4.9 the vertical maps in (5.4.1) are monomor-

phisms in D(Divg\;;os)QQ and by the analysis in loc. cit. §4.10, there is a (necessarily unique)

isomorphism H°(s' j;(IC%)) —> 2 completing the square (5.4.1). This isomorphism is

therefore necessarily an isomorphism of factorizable D-modules.

5.5. Observe that the D-module @ZJ% canonically factorizes on Z and therefore jg(wg)
factorizes in D(Z).

By Theorem 5.4.1 we have canonical maps:

Ei\,dR HY <5 Wi (IC )) = 5y dR(Q:) - (IC ).

compatible with factorization as we vary A. Note these maps are between objects of

D(ZX)@ and are monomorphisms in this category.
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* *
Applying 1 » é:) — and using factorization and lissity of 1) and the canonical identifi-

.k
cations %A (¢ 5) — k. s we obtain maps:
eff

N Suan() — JIX(;Z%; ®IC,,).
Note that these are maps between objects that are up to a shift in the heart of the
t-structure and as such are monomorphisms. Because everything above is compatible
with factorization as we vary \, the maps n;\ are as well.
Welet n : 5, qr(Q:) — j;(lz%éIC%) denote the induced map of factorizable D-modules
on Z.

Theorem 5.5.1. The map:

O = msi () = M an() " Mty ®IC,) = 71y ®IC,)

o
zZ

. . . . APOs
1s an equivalence of factorizable D-modules on Dlvé\ﬁ .

Remark 5.5.2. In particular, the theorem asserts that all non-zero cohomology D-modules

of 76%;(2#% ® IC%) vanish.

Proof of Theorem 5.5.1. Tt suffices to show for fixed A € AP°® that ﬂf\(n;\) is an equiva-
lence.

Recall from [BGO8] Corollary 4.5 that we have an equality:

[RIC )] = D) [actl, jo(QUBICz)] € Ko(Dly(2Y).
fifieApos
fitii=A

*
in the Grothendieck group of regular holonomic D-modules. Therefore, because 1 is

lisse, we obtain a similar equality:
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[ (g, ®1C )] = 3 [actD, (AU E (g, ®1Cz0))]
fi,eAPos
fit7i=A

by the projection formula.

For every fi 4+ 7] = A, note that each map athlp is proper and therefore we have:

o actl (Qg (g, ® 1czﬂ>) — add™, (Qz (g, @ ICZﬂ)>.
By Theorem 4.3.1, this term therefore vanishes for i # 0.

Therefore, because 77;\ is a monomorphism in the shifted heart of the t-structure on

D(2%), we see that (") is an equivalence as desired.

5.6. We will use a Verdier dual version of the above computations.
We let Ty denote the AP*-graded D-module obtained by termwise taking Verdier

duals to the terms Q;;\, Le.

Té = ]D)Verdz’er<9§\>‘

Again, each component of T; lies in the heart of the ¢-structure. Note that Y tauto-

logically factorizes, though it is no longer commutative as a factorization algebra.

Remark 5.6.1. Note that T} is termwise holonomic, so we may make sense of its =-fibers.
Moreover, these are canonically identified with the corresponding graded component of

the homological Chevalley complex C,(n) for n.

Remark 5.6.2. In the setting of Remark 5.3.2, we may say that YTj is obtained by taking

the (derived) AP**-graded Lie-* algebra fiy := i®ky, taking the chiral enveloping algebra,
then passing to the corresponding factorization algebra. Here kx is the constant sheaf

on X, which of course is in cohomological degree 1.
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5.7. We have the following immediate consequence of Theorem 5.5.1, given by passing

to Verdier duals.

Corollary 5.7.1. There is a canonical identification:

! !

®1C,)

o

Tﬁ > W*,dR(wg

of AP _graded factorization algebras.

6. DRAMATIS PERSONAE

6.1. The goal for this section is to introduce the semi-infinite flag variety in the context
of factorizable geometry, and its associated Whittaker D-modules.
A summary of what is achieved is given in §6.34, and may be motivating to read before

the remainder of the section.

6.2. We fix a smooth affine curve X.

We will use the language and notation of factorization categories from Part 2. In
particular, we will be constructing chiral categories using the material of §14.

However, we will make the following change for ease of notation: using the 1-affineness
of Xy established in [Gail2b] we avoid the language of sheaves of categories used earlier
and work with their global sections instead.

We also will require the theory of D-modules on indschemes developed in §16, and

will freely appeal to the notions developed in loc. cit.

6.3. Let I be a finite set. Let Y be some fixed affine scheme.
We recall in §6.4-6.6 the definition of the jet space Jetsx:(Y) and the meromorphic

jet space Jets¢" (Y).

6.4. Jet spaces. Let n € Z7° be an integer.

For S an affine test scheme, we define the nth jet space Jetsx:(Y)™ to have S-points:
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Jetsxr (V)™ (S) = {x = (2)ies: S — Xl and v: T(W — Y} (6.4.1)

where I', € X x S is the scheme-theoretic union of the graphs I';, of the maps z;, and
I is the nth infinitesimal neighborhood of T, in X x S. Note that Jetsys (V)™ s
represented by a scheme of finite type over X7,

As n varies, the spaces Jetsy:(Y)™ form an inverse system under affine structure
maps. We let Jetsxr(Y') denote the projective limit.

The following is well-known: we include a proof for completeness.

Lemma 6.4.1. Suppose Y a smooth scheme. Then for every pair m,n € Z=°, the scheme

Jetsxr(Y)™ is smooth, and the structure maps:

Jetsyr (V)™ = Jetsyr (V)™

are smooth, affine and surjective on geometric points.

Proof. We have already noted that the map is affine. The surjectivity follows by formal
smoothness of Y.

Let S be an X’-scheme that is affine, and let it be equipped with the structure map
x:S — X1

A map S — Jetsy:r(Y)™ is equivalent to a map ¥ : e Y, so the cotangent

1
(XetsXI

'™, X x 89— 5.

complex 2 (vymx1 Testricts to S as TX*(Q5,), where 7 = m, is the composition
Because Y is smooth, Q). is a vector bundle concentrated in a single cohomological
degree. Therefore, the same is true for ¥*(2},). Because 7 is finite flat, 7,¥*(Q3,) is also
a vector bundle concentrated in exactly one degree. Therefore, we deduce smoothness of
Jetsxr(Y)™ from the fact that the cotangent complex is a vector bundle.
It remains to show smoothness of the structure maps. We perform the relative tangent

space computation. For ¥ : T{""™ — YV the relevant map is:
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Tn4+m,* (X* (TY)) — Tn,x (X* (TY> |F§cn) )

where Ty is the tangent complex (i.e., tangent sheaf) of Y. Since the maps ; are affine,
it suffices to show the surjectivity on I‘gﬁm), before applying 7, +m . But this is obvious:

we are dealing with a restriction map for vector bundles on an affine scheme.

6.5. Discs. Let S be an affine test scheme and let z = (2;)ie; : S — X' be a map.

We define the formal disc ﬁx at x to be the formal completion of X x S along I',.
Note that ﬁx is an ind-affine indscheme.

We define the adic disc D, € AffSch to be the value of the partially defined left adjoint
of the functor AffSch < PreStk evaluated on D,. Note that ind-affineness of D, implies
that this functor is defined here: it is the spectrum of the limit of the corresponding
commutative rings.

Observe that formation of ﬁx is étale local on X in the natural sense.

Note that Jetsx:(Y) is equivalently described as the moduli of maps z : S — X7 plus
amapﬁanoeraY.

We define the punctured disc Zo?x € Sch at x as:

D, == D\,

These constructions organize into the diagram:

6.6. Loop spaces. Finally, we define:
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Jetsi(Y)(S) = {x S — X' and ¥ : YOD:C — Y} (6.6.1)

As in [KV04] Proposition 3.5.2, Jets%"(Y) is represented by an indscheme (of ind-

infinite type), and formation of Jetsy¢"(Y') is étale local on X.

Remark 6.6.1. If Z is an affine X-scheme, then we have notions of “relative jets” and
“relative meromorphic jets” that generalizes the constructions above when Z = X x Y.

This is actually the level of generality we will be using in practice, but we find it
convenient to write the material that follows in the product situation. See §6.10 and
6.15 for more discussion of this point.

Note that representability questions in the relative case reduce to the product case
treated in [KV04]: factor the map Z to X through its graph, and then the relative
(resp. meromorphic) jets embed as a closed subscheme (resp. sub-indscheme) of the

corresponding “absolute” jets.

6.7. Factorization of the disc. Let Set_, denote the category of (possibly empty)
finite sets under (possibly non-surjective) maps.

Let f: I — J be a map in Set.,, let S be an affine scheme and let © = () ey : S —
X7 be a map. Let 2’/ = (2}) = (z4¢;)) : S — X' be the map induced by f.

Note that I'$? is a closed subscheme of I"¢ giving a canonical map D, — D,.

Therefore, we obtain an op-correspondence:

D\

N

o

— D\ DN, == D,.

o
D,

Remark 6.7.1. If f is surjective then the reduced schemes underlying I', and I',s coincide.

Therefore, in this case the right map in (6.7.1) is an isomorphism.
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6.8. Chiral categories. Varying I € fSet, we obtain that the rules I — Jetsx:(Y') and
I — Jets7 (V) factorize.

Applying Proposition 16.50.1, we obtain chiral categories (a la §14) on Xyg:

(I — D!(Jetsyr (Y))) and (1 - D’(:;etsg?”(y))).

Passing to the limit over I, we obtain the categories D'(Jetsgany (Y)) and D'(Jetsper (V).

We use the notation D'(Jets(Y)), D'(Jets™ (Y)) € Cat™(X4z) to denote the corre-

sponding chiral categories.

6.9. Unital structures. Suppose Y is an affine scheme of finite type.
Let f : I — J be a map in Set.,. Using the notation of §6.7, let Hy,; denote the
moduli of maps x : S — X7 plus a map (D,\['wr) — Y, defined formally as in (6.6.1).

Applying (6.7.1), we obtain a correspondence:

Hy.s
ay,f By, f
\ (6.9.1)
Jets P (Y) JetsPT(Y).

For f the identity, this correspondence is the identity correspondence. For f : [ — J

and g : J — K, we obtain a canonical diagram:

HY,gof
%Y7f HY,g
JetsTs(Y) JetsT (V) Jetsi(Y)

where the middle diamond is Cartesian.
In other words, we obtain a functor Set.,, — IndSch.,, sending I to Jets7"(Y"). This

functor is compatible with factorization in the natural sense.
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Moreover, for f as above, one sees that the map:

By.f: Hyp — Jetsy7 (Y)

is finitely presented. Therefore, by §16.44, we obtain that:

[~ D' <Jets’;g?“(Y))

defines a unital chiral category on Xyg:

D' (Jetss(Y)) € Cat (Xyp)

refining our earlier non-unital chiral category.

Remark 6.9.1. For amorphism f : I — J € Set, the corresponding map D'(Jetss"(Y)) —
D!(fjets%c}r(Y)) is the computed by the functor ﬂyj’*,;_dRa!Y’f. We recall that the functor
Byt 1—ar of -dR #pushforward is defined for any finitely presented morphism and is

the functor of §16.44.

Remark 6.9.2. The unit object in D'(Jetsfer (Y')) is obtained by I-dR #-pushforward
Of Wyetspan  (v)- Here, the symbol wyessy,, . (v) refers to the compatible system of objects
(I = wyets ;(v)) and the term “I-dR -pushforward” refers to the appropriate compatible

system of such functors.

Remark 6.9.3. For a morphism Y; — Y5 of schemes of finite type, we obtain canon-

mer

ical maps Jets'}]

(Y1) — JetsPe(Y2). These maps are obviously compatible with the

correspondences above and therefore define a canonical strictly unital morphism:

D! (3€t8mer(§/2>) _ D! (3et3mer<y-1))
computed as !-pullback over each X7,
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Notation 6.9.4. For I and J two finite sets, we will sometimes use the notation Hy s s

in place of Hy s with f the tautological embedding I — IT]J.

6.10. Forms of algebraic groups. We will be working with group schemes G over X
that are forms of affine algebraic groups. See §6.15 to see the examples we will use.

We will say that two group schemes over X are forms of each other if they are
isomorphic as group schemes étale'® locally on X.

Therefore, being a form of an affine algebraic group means that the group scheme G is
a smooth, affine group scheme that is a form of G° x X for G° an affine algebraic group.
In this case, we abbreviate the situation in saying that G is a form of G°.

For the remainder of this section, we fix G an affine group scheme over X of the type

above.

Example 6.10.1. Every reductive group scheme over X is a form of the associated split

reductive group.

6.11. In applying the Beauville-Laszlo principle [BL95],'6 it is convenient to have the

following well-known technical result. We include a proof for completeness.

Lemma 6.11.1. Let z : S — X! be a map from an affine scheme S. Let G be a form of

an algebraic group over X. Then the restriction map:

(G-bundles on D,} — {G-bundles on D,}

s an equivalence of groupoids.

I5A warning: There is a risk that taking étale forms means that e.g. the associated affine Grassmannian
will be an ind-algebraic space, not an indscheme, which is somewhat problematic since §16 is written
for indschemes. However, we note that 1) the forms we will take are Zariski locally trivial (c.f. §6.15),
removing the problem for us in practice, and 2) the material in loc. cit. extends to the setting of algebraic
spaces using [Ryd09] and an appropriate generalization of the relevant material of [GR14]. For these
reasons, we will ignore the issue in what follows and deal with D-modules on our indschemes without
further mention.

I6Which is necessarily about D — not D — since it involves the punctured disc.
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Proof. First, we claim that Og, considered as a representation of G over X, is a union
of subrepresentations that are finite rank vector bundles on X. Indeed, it is always true
that comodules for an A-coalgebra B are a union of A-finitely generated submodules,
and because X is a smooth curve, submodules of Og (which is flat) are necessarily flat.

Pulling G back to D,, we see that there are again “enough” vector bundle repre-
sentations. Therefore, using the Tannakian formalism, we reduce to treating the case
G§=GL,x.

Let S = Spec(A), and let A,, denote the commutative algebra of functions on the
(affine) scheme i (so Ag = A). Let B = lim,, A,,, so Spec(B) = D,. Let I,, € B denote
the kernel of the (surjective) map B — A,,.

Let € be a finitely generated projective B-module of rank r. Because € is a direct
summand of a finite rank free B-module, & — lim,, &/I,,. This proves fully-faithfulness.

It remains to show essential surjectivity. Here we need to show that the limit & =
lim,, &, of a compatible system {€,} of rank r projective A,-modules is a finitely gener-
ated projective B-module.

We can write € @ &) —> AP for €/ a rank s vector bundle on Spec(A).

Therefore, by formal smoothness of GL,,s/GL, x GLg, we can lift the compatible
system {€,} to a compatible system (E,,&., €, ® &, —> AZT™)) such that the n = 0
case is given by our earlier choice. But this obviously realizes € itself as a direct summand

of a finite free module.

In particular, we obtain the following corollary from formal smoothness of the map

X - X/G.

Corollary 6.11.2. In the notation above, a G-bundle on D, is trivial if and only if its

restriction to S is.
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6.12. The affine Grassmannian. We will specialize the above material to the case of
(relative) jets into G, considered as in Remark 6.6.1.

Fix a finite set 1.

In this case, Jetsyx:(G) is a group scheme over X! Moreover, since each Jets y1(G)™ is
a smooth group scheme over X!, Jetsy:(G) satisfies the hypotheses of Example 16.29.3
as a group scheme over X7,

We also have the Beilinson-Drinfeld affine Grassmannian Grg xr with the usual Jets'2¢"(G)-
equivariant (relative to the left action on the source) map mg xr : JetsPi"(G) — Grg x1.

We recall that Grg yr parametrizes points (z;);e; of X, a G-bundle Pg on X, and a
trivialization 7 of Pg defined on X\{x;};c;. This is understood in families in the usual
way.

We have the following well-known result (proved by reduction'” to G = GL,,):

Lemma 6.12.1. The space Grg x1 is an ind-algebraic space of ind-finite type. If G is
reductive, then Grg x1 is ind-proper over X1, If G is Zariski-locally constant,'® then then

Grg x1 1s an indscheme of ind-finite type.

We deduce:

mer mer

Proposition 6.12.2. The map mg x1 : Jets{(G) — Grg x1 realizes JetsP7(G) as an

étale-locally trivial Jetsxi(G)-torsor over Grg xi."

Proof. We follow [BD] Theorem 4.5.1, where this is proved over a point.
After Zariski localization, we can assume that X admits an étale map to A!, and

after étale localization, that G is constant (in particular, pulled back from A!), and

1"This reduction step is justified as in the proof of Lemma 6.11.1.
181 ¢., Zariski-locally of the form G° x X for G° an affine algebraic group.

1y fact, Zariski-locally trivial if G is a Zariski form.
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therefore we reduce to the case X = A'. We abuse notation in also denoting by G the
corresponding affine algebraic group.

We embed X = A! into its compactification P* with oo denoting the point comple-
mentary to Al.

In this case we will show that Jets’;g?”(g) — Grg xr admits a section Zariski-locally on

the target. Because Jetsy¢"(G) acts transitively on geometric points of Grg x1, it suffices

to show that there is a Zariski neighborhood of the unit X! < Grg x: that admits a
section.

Form the fiber product:

U=GCGrgxr x BG

Bung (P1)
where BG — Bung(P') is the map defined by the trivial bundle. Note that BG —
Bung(P!) is an open embedding (specifically because we deal with P!) and therefore
the map U — Grg xs is an open embedding. Of course, the map X' - Grg x1 factors

through U.

The composition:

BG — Bung(P') &3 BG

is the identity. Therefore, one obtains that U is the moduli of (x;)ic; in X = Al and a
map P'"\{(z;)ier} — G sending o to 1 € G. We obtain a map U — Jets5"(G) given by

taking Laurent expansions, giving the desired section.

Convention 6.12.3. For the ease of exposition, we systematically ignore the differences
between schemes and algebraic spaces for the remainder of the section (since the forms

we will use are Zariski-locally trivial).
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The following now results from Example 16.49.4 and Lemma 6.4.1, since Grg xs is an

indscheme of ind-finite type.
Corollary 6.12.4. Jets'?¢"(G) is a placid indscheme.
We obtain the following from Construction 16.53.6 of §16.53.

Corollary 6.12.5. The indscheme Jetsgg?"(g) carries a canonical dimension theory 79

such that for any finite type subscheme T = Grg x1 we have:

79 (751)(1(T>) = WS’XI (dimy).

6.13. Note that I + Grg x: defines a unital factorization indscheme, i.e., for every

f : I — J we have correspondences:

GI'gXI X XJ
kA XI

7 .

Grg,XI Grgny

where the left map is obvious and the right map is given by sending;:

((xj)jej, Pg, T a trivialization of Pg|X\{$f(i)}id> € Grg yv

to the point:

((xj)jer Pg, T|X\{a¢j}jeJ>‘

Here we note that X\{z;};e; & X\{2f()}ier, so that this restriction makes sense.

Therefore, I — D(Grg x1) defines a unital chiral category D(Grg) € Cat™ (Xr).

mer

Remark 6.13.1. The natural maps 7g x1 : Jets ¥ (G) — Grg x1 are compatible with the

correspondences (6.9.1) for Jets™"(G). Moreover, for every f : I — J, the square:
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Hg. s

|

Grg x1 )?IXJ JetsTT (G)

~_ |

GI‘gth]

is Cartesian. Therefore, the functors 7r!g 1 define a strictly unital factorization functor:

75 : D(Grg) — D'(Jets™(G)). (6.13.1)

Remark 6.13.2. Formation of the unital factorization indscheme I + Grg xr is obviously
functorial in G: given a morphism G; — G, we obtain morphisms Grg, xr — Grg, x1
compatible with the unital factorization structures. Moreover, for every I — J, the

square:

Grg, x1 x X7
X%

7

Grgth Grglsz X XJ
l .
Grg%xl

is (obviously) Cartesian.

Therefore, we obtain a strictly unital chiral functor:

D(Grgl) - D<Gr92)

given by de Rham pushforwards (which is well-behaved because all the indschemes

present are ind-finite type).
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6.14. Pure inner forms. Let G; and G, be two smooth group schemes over X. Recall
that they are said to be pure inner forms of each other if there is a specified bitorsor for
these groups: a Gi-torsor P on X with a commuting Gs-action realizing P as a Go-torsor
as well.

In this case, we have a canonical isomorphism of stacks:

X/G1 — X/G,.

For example, the map X /G; — X /G, is defined by the Gs-torsor P/G; on X /G, (note that
we can speak about Go-torsors on X /G; because we have a canonical map X/G; — X).

In particular, if X is proper, we can identify the algebraic stacks:

Bung, — Bung, . (6.14.1)

If P is a bitorsor for G; and G, observe G, is the group scheme of G;-automorphisms
of P: this follows by considering the local case where P is trivialized as a G;-torsor.
Therefore, given any group scheme G; with a torsor P we canonically obtain a pure
inner form G, of G; as the group scheme of automorphisms. Moreover, we see that pure
inner forms of G = G are classified by G;-torsors.

To summarize, for any G with torsor P, we obtain a form G’ := Autg(P).

6.15. Recall the torsors Pz, Pg™, Pg™ and P& from §3.13.
Let G, B and B~ “" denote the corresponding pure inner forms of G, B and B~
respectively. Note that commutativity of 7" means that 7" is a constant family.

Let N7 denote the form of N~ obtained by twisting P by the adjoint action of

B~ on N™. Note that N7°" is not an inner form of N~. We treat N°" similarly.

Example 6.15.1. Suppose that G = GLy. Then G is the group scheme whose sections

are matrices:
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e
w g
with f, g € Ox, w € Qx, and p € O}, and with determinant fg—¢®w € Ox everywhere

non-zero.

Convention 6.15.2. To avoid including twists in the notation everywhere, we will write
e.g. JetsR (G) for the relative jets into G (in the sense of Remark 6.6.1). The same

goes for Jets, Jets™e"

and Gr, etc. of G and our other groups.
The truth is that these twists do not play a role at all until we discuss Whittaker
invariants, and we could work just as well with any other twists of our groups until then

(including the constant one). However, for reasons of notation, we choose to make the

official policy to include these twists at every step.

Remark 6.15.3. By (6.14.1), this twist gives rise to the same automorphic forms as the

split form of G.

Notation 6.15.4. We will use the notation pl)‘;‘} and ql)‘g‘} for the maps:

l GTB,XI l
y KO?
GTG,XI GI'T7XI .

(Here the notation loc indicates that these are “local” counterparts to the maps p :
Bung — Bung and q : Bung — Buny from [BG02)).
By the above, Piofm and qff"éR have canonical structures of (strictly) unital chiral

functors.

6.16. Group actions on categories. It will be convenient to have the basic aspects

of the theory of group action on categories available to us.
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Remark 6.16.1. Because we need to work in a relative framework, it is not sufficient for

us to appeal to [Ber].

Let S be a base scheme of finite type and let H — S be a group indscheme over S
that is placid as a mere indscheme.
By Proposition 16.50.1, the category D'(JH) obtains the structure of coalgebra in the

symmetric monoidal category D(S)-mod(DGCat,n) >~ ShvCat/g,,..

Definition 6.16.2. A category (1-)acted on by H (over S) is a left comodule for D'(F)

in ShvCat/g,,,. We denote the corresponding category by H-mod.

Example 6.16.3. If T' is an indscheme over S with an action of I, then by Proposition
16.50.1, H acts on D'(T).

Remark 6.16.4. The “Hopf algebra” structure on H implies that H-mod admits a

symmetric monoidal structure with symmetric monoidal forgetful functor H-mod —

ShvCat/g, .. For C,D € H-mod, the coaction map on C ® D is induced in the obvious
' D(S)

way from the coaction for C and D separately, and the l-restriction functor D'(H x sH) —

D'(H) induced by the diagonal H — H x g K.

Remark 6.16.5. The forgetful functor H-mod — ShvCat/g, . admits a right adjoint C
C®ps) D'(H).

Moreover, we claim that 3-mod — ShvCat/g,, commutes with limits. Note that D'(X)
is dualizable as an object of ShvCat/g, . by placidity and by Proposition 19.12.4 (3).
Therefore, tensoring in ShvCat/g,, with D'(H) commutes with limits, so the result is
proved as [Lurl2] Corollary 4.2.3.5.

In particular, we see that every C € H—mod admits a bar resolution:



Given C acted on by H, we define the category C’* of invariants C as the limit of the

bar construction:

CcH = 1 C —= D'(K —
i ( @8 )

There is a tautological functor:

Oblv : C’* - C.

Example 6.16.6. The category D'(H) acts on itself, and we have D(S) — D'(H)*

>~

by splitting the relevant cosimplicial object. Here the corresponding functor D(S) —

D' (30)* 2 D'(%) is I-pullback.

Remark 6.16.7. Suppose that H = u;H; is an ind-group scheme. Then for every C acted

on by H, we have:

C* = lim €74,

Indeed, this follows by commuting limits with limits.

We recall that D'(H) is dualizable as a D(S)-module category with dual D*(H)
because H is assumed placid. Under this duality, the coalgebra structure on D'(H)
transfers to the canonical algebra structure on D*(H) e ShvCat/g,, induced by the
multiplication on .2

We therefore obtain:

Proposition 6.16.8. Under the above hypotheses on I, categories acted on by I are
canonically equivalent to left D*(H)-modules in ShvCat/g,,, .
20Here we are repeatedly using the canonical identification from [GR14] of (f')¥, the functor dual to

f', with fs qr for a morphism f of finite type schemes.
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For C acted on by H, we refer to the corresponding D*(H)-action as convolution.

For the remainder of this discussion, we suppose that H is a group scheme over S,
and moreover that I satisfies the hypotheses of Example 16.29.3, i.e., H is a filtered
limit of smooth affine S-group schemes under smooth surjective homomorphisms.

By Proposition 16.38.1, the pullback D(S) — D'(H) then admits a right adjoint in
ShvCat/g,,, of renormalized de Rham pushforward functor of §16.36.

We refer to [Lurl2] Theorem 6.2.4.2 and [Gaill] §4.4.7 for an introduction to the

Beck-Chevalley formalism used below.

Proposition 6.16.9. Under the above hypotheses on I, the cosimplicial object defining

C’C satisfies the Beck-Chevalley conditions.

Corollary 6.16.10. The functor Oblv : C¥* — C admits a right adjoint Avscc. =
Avye . = Avy in D(S). In particular, formation of Av, commutes with base-change of
the (finite type) scheme S.

Moreover, for a morphism C — D of categories acted on by H, the diagram:

Cc——>D

l/ AV* l AV*

cH —— D*
commutes (i.e., the relevant natural transformation is a natural isomorphism). More

precisely, Av, is given by convolution with wi", this object being defined by the dimension

theory on I obtained by pullback from the standard dimension theory on S.
We we will use the following in the proof of Proposition 6.16.9.

Lemma 6.16.11. For C acted on by I, let



be the endofunctor induced by the coaction map:

C—-C ® D'(H)
D(S)

!

and considering the right hand side as a (D'(H),®)-module.

Then this endofunctor is an equivalence.

Proof. Recall that D'(H) is dualizable as a D(S)-module category. Therefore, by Remark
6.16.5 we reduce to the case where C = D ®p(g) D'(H) for D € ShvCat/g,,,. Here the

result is obvious.

Proof of Proposition 6.16.9. For every integer n, the functor:

C ® D'H) ® ® D'(H)—->C ® D'(H) ® ® D'(H)
D(S) D(S) D(S) D(S) D(S) D(S)
n t‘i;nes (n+ lsftimes

coming from tensoring on the right with the pullback D(S) — D'(H) admits a right
adjoint, as noted before. Moreover, we claim that for every morphism [n] — [m] € A,
we need to show that the following diagram commutes (i.e., the base-change map should

be an equivalence):

C® D'H) ® ... ® D'(H) — C ® D'(H) ® ... ® D'(K
D(S) D(S) D(S) D(S) D(S) D(S)
(n+1‘)rtimes n t‘i;nes

| |

C® D'H) ® ... ® D(H) —C ® D'(H) ® ... ® D'(H)
D(S) D(S) DS D(S) D(s) D)

. / . J/
v~ v~

(m+1) times m times

where horizontal arrows are these left adjoints and vertical arrows are the structure

maps, [n + 1] — [m + 1] being induced from [n] — [m] by adjoining a new infimum.
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Rather than get bogged down in notation, we prove this instead for “representative”
morphisms [n] — [m], the general argument being the same.

Namely, suppose that n = 0 and m = 1. If 0 — 1, the commutativity is tautological.
Therefore, suppose that 0 — 0. Then the corresponding map C — C®p(s) D'(H) is the

coaction map, and we should prove that the diagram:

C ® D'(H) C
D(S)

l coact ®id coact

C ® D'(H) ® D(H) — C ® D'(H)
D(S) D(S) D(5)

commutes, where the horizontal arrows are given by taking renormalized de Rham co-
homology in the last variable.
Intertwining the lower two terms using Lemma 6.16.11, we see that this diagram is

isomorphic to:

C ® D'(H)
D(S)

L (6.16.1)

C ® D'(H) ® D'(H) — C ® D'(H)
D(S) D(S) D(5)

@

where now the two vertical arrows are induced by tensoring appropriately with the
pullback D(S) — D'(X).

To see that the diagram (6.16.1) commutes, it suffices to show that in the diagram:

p1

HxH

X
S
llm T
H
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. | 1 .. . . . .
the natural transformation pymy ren — D1.4ren™ arising from adjunction is an equivalence.

To this end, we extend the diagram to:

Hox H — Hox H e G

S
lPQ lidg{)(ﬂ' ‘Tl’
r

p2

H—>HxS — 8
where I'; indicates the graph of the map 7. Now base-change is obvious for the right

square, and for the left square it follows from Proposition 16.38.1.

6.17. The unipotent case. Let S be a finite type base scheme again.

Definition 6.17.1. A unipotent S-group scheme is a smooth S-group scheme that has a
central filtration by smooth S-group schemes with subquotients forms (in the sense of
6.10) of G, x S.

A prounipotent group S-scheme is a group S-scheme that is a projective limit of
unipotent S-group schemes under smooth surjective group homomorphisms.

A unipotent group indscheme over S is a group indscheme over S that is a union of

closed subgroup schemes each of which is prounipotent.

Example 6.17.2. Any form K of a unipotent group H° over Spec(k) is unipotent: indeed,
this follows from comparing the lower central series of H with that of H°. The group
scheme Jets x1 (V) is prounipotent. For any form G of an algebraic group, Ker (3 etsxr(G) —

g) is prounipotent. The group indscheme Jets{"(N) is a unipotent group indscheme

over X1,
Remark 6.17.3. Obviously unipotent group indschemes are placid.
Let JH be a unipotent group indscheme over S for the remainder of this section.

The key feature for our purposes is the following:
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Proposition 6.17.4. For every C acted on by H, the functor:

Oblv: C* - C

is fully-faithful in ShvCat/g, ..

Proof. By Remark 6.16.7 and Corollary 19.4.5, we reduce to proving this in the case
when H is a prounipotent group scheme over S.

In this case, note that D(S) — D'(X) is fully-faithful and admits a fully-faithful right
adjoint in ShvCat/g,,,. Indeed, under the identification D' ~ D*, f' identifies with f*%
by Proposition 16.38.1, so the result follows from the contractibility of affine space.

Therefore, for any D € ShvCat/g,,,, the induced functor:

is fully-faithful.

By Lemma 6.16.11, we see that each morphism in the semicosimplicial diagram (un-
derlying the cosimplicial diagram) defining C* is fully-faithful. By contractibility of the
category of the semisimplex category (i.e., finite totally ordered sets under injections

preserving the orders), we deduce the result from Corollary 19.4.5.

O

6.18. Semi-infinite Borel. Let 3@753?}?’“(3)0 denote the “connected component of the

identity,”?! i.e., the group indscheme over X':

JetsT(B)° = Jets"(B)  x  Jetsxi(T).
Jetsﬁﬁr(T)

Remark 6.18.1. Note that Jets"(B)" is an ind-group scheme: indeed, choose a coordi-

nate t on X and then Jets%s"(B)° is the union of the subgroups Ad_j5, (Jetsx:(B)) for

2IWe remark that this is poor terminology scheme-theoretically: for example, T(O) is not the connected
component of the identity of T'(K) due to the existence of nilpotents.
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A a dominant coweight, and one readily checks that these subgroups do not depend on

the choice of coordinate.

Remark 6.18.2. Varying the finite set I, one sees that Jets7s"(B)? is another factoriza-
tion group scheme. It has a unital structure under correspondences induced by that of

Jetsgg?“(B).

6.19. Semi-infinite flag variety. In this section, we consider Jets%{"(G) acting on

itself through the right action.
We define D'(F [?(,) as the Jets7¢"(B)°-coinvariants category of D'(Jetsw"(G)).

We have a tautological functor:

0 0

pg*,ren : D'(SetSQ?T(G)) - D'(S[)Q(I)

These categories are compatible with restrictions between X! as I € fSet varies by
Proposition 16.50.1 and by the base-change results of §16.44. Therefore, we obtain the
category D'(F1Z,. ), which arises as the global sections on an underlying sheaf of cate-

Ranx

gories D'(F [%) on Rany,,, equipped with the tautological functor:

[o's]

L D Fetser (G)) — DMFIZ. ).

2
pRanX,*,ren . Ranx Ranx

There is an evident structure of chiral category on D'(F [§) (which we will upgrade to

unital chiral category in what follows), equipped with the functor p,?, ren © D' (Jets™ (G)) —
D'(317).

Remark 6.19.1. While the semi-infinite flag variety §[3, does not exist as an indscheme,
the notation follows the standard convention in the literature to pretend that it does.

Then p% would be map JetsP¢ (G) — S[?(,.

Remark 6.19.2. As discussed in §1.20, we could have chosen to work with invariants

instead here. The present choice is more natural for the purposes of §9.
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6.20. Intermediate Grassmannian. We will need the following intermediate space
between the semi-infinite flag variety § [?(, and Grg xr.

For each finite set I, let Grg g yr be the intermediate Grassmannian parametrizing a
point x = (7;)ic; € X!, a G®-bundle P on X with a trivialization on X\z = X\{z; }icr

and a reduction to B on D, (this is understood in families in the usual manner).

Remark 6.20.1. For a closed point x € X with a trivialization of Q%ZIDI (to eliminate
the twist of §6.15), the fiber of Grg g x over a closed point z € X is the indscheme (of
ind-infinite type) G(K,)/B(O.).

We have obvious maps Grg g xr — Grg xr, and by Proposition 6.12.2, Grg g xr is a
placid indscheme. Clearly I — Grg g x1 factorizes.

Moreover, the unital structure (in the sense of correspondences) on (I — Jets'P¥"(G))
defines a unital structure on (I — Grg g xr). For example, the unit map over X I'ig given

by the correspondence:

Jetsx1(G)/Jetsxr(B)

/ \ (6.20.1)

XI GrG,B,XI .

Therefore, the assignment:

I — D!(GI‘G’B’)(I)
defines a unital factorization category D'(Grg p) € Catff:l(XdR) on Xyg.

6.21. We can more explicitly express the category D!(Slf(,) by realizing it as a local-
ization of D'(Grg p x1) as follows.
We have a canonical functor:
D int e
)

P gren D' (Grg px1) — D'(S12,
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obtained by writing D'(Grg g xr) as the Jetsy:(B)-coinvariants of D'(Jets7s (G)) via
Proposition 16.48.1.
This is a functor of D(X')-module categories (i.e., sheaves of categories on XJ), and

we will show in §6.22 that it is a localization functor as such.

6.22. As in Remark 6.18.1, we can write Jets7 (B)° as a filtered union of subgroup
schemes K, beginning with Jetsy:(B) and such that the subquotients are locally finite-
dimensional affine spaces over X7'.

It follows tautologically that:

o]

D'(F1Z,) ~ Co(llim D' (JetsTs(G))k.,

with the coinvariant category on the right defined as the colimit of the appropriate bar
construction.

By Proposition 16.48.1, we have a canonical identification:

D' (Jetski" (G))sets () = D'(Gro,pxr)

with the equivalence induced by the functor of renormalized de Rham pushforward along
36t8nX1?T(G) — GrG,B,XI‘

We claim that for each of our distinguished subgroups IC,, the functor:

D' (Grg g xr) = D'(Jets5 (G))gers , (8) = D' (Jetss (G))x., (6.22.1)

admits a fully-faithful left adjoint.

Indeed, there is a canonical indscheme (of ind-infinite type):

Jetsi(G)/Kq

so that JetsR7 (G) — JetsPi (G)/Kq is a Ky-torsor (for K, = Jetsyr(B), we obtain

GrG,B,XI)'
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By Proposition 16.48.1, we have:

D' (Jetsed (G))k, =~ D'(Jets(G)/Kq)

fe%

so that the functor (6.22.1) corresponds to the renormalized pushforward:

D!(GrG,B,XI) - D!(ﬁeté’%r(G)/’Ca)-

Then the existence of the left adjoint follows from Proposition 16.59.1: it is computed
as the upper-! functor under this dictionary. Moreover, the fact that the fibers of our
map are affine spaces implies the fully-faithfulness of this left adjoint.

Passing to the colimit over the groups K, and applying Proposition 19.7.3, we obtain

L int . . . .
that the functor p3;, _ is a localization functor as desired.

Remark 6.22.1. Note that D!(S[?;I) is not a localization of D'(Jets7s"(G)): the problem

is that B(O) admits the non-trivial reductive quotient 7.

6.23. Unitality of the semi-infinite flag variety. For every finite set I, let ; denote

Z int
X1 % ren’

the kernel of the functor p

For I and J two finite sets, let:

Har1,g = Hap,y

aG,B Ba.B
\ (6.23.1)

XI X GrG,B,XJ GI‘G’B’)(I]_[J

denote the associated unit correspondence, where f : I < I]]J is the tautological

inclusion.
Lemma 6.23.1. The unit functor ﬁG,B7*,!—dR04!G,B maps D(X1) @K to Krq1a-

Proof. Suppose that F e D(X!) ® K;. We need to show that:
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p?;}iIT[LtJ7*7T6n6G,B,*,!—dRa!G,B(‘rf) =0.
Step 1. First, let us show that the left hand side is zero when restricted to [ X' [ [ X7]as;,
the locus where the corresponding point in Rany x Rany lies in [Rany x Rany ;.
Each of our functors is intertwined by this restriction to this open: indeed, this is
obvious for ¢ B «1—ar and O‘!G, 5, and for p)%;}igiy*’ren this follows by combining the analysis
of §6.22 with Proposition 16.59.1.
Then the claim follows because our correspondence restricts to the obvious correspon-

dence:

[Jetsxi(G)/Jetsxi(B) x Grg g x|

/ \

[XI X GrG,B,XJ]dz'sj [GTG,B,XI X GrG,B,XJ]disj

Here the notation [—]4s; everywhere indicates that we restrict to [X Iy X7 Jdisj- More-

0 0 s
=,int E,znt

©
5 int 5 ® p
X1 % ren X7 x,ren

XT11Y 5ren . From here, the

over, the map p restricts to this locus as p

claim is obvious.

Step 2. To complete the above analysis, we need the following digression.

Suppose that we are given [ = I [ [ [ and a map € : I, — J.

We associate to this datum a locally closed subscheme Z <> X! x X7, defined as the
locus of points ((:1:1-)2-61, (:vj)jej)) such that, for every i € I;,j € J, we have x; # x;,
and for every ¢ € I, we have x; = ;). (The scheme-theoretic meaning of z; # z; for
S-points is that the map (x;,z;) : S — X x X factors through the complement to the
diagonal).

For example, if [ = I, I = &, then Z = [ X' x X7]4;. In general, Z is isomorphic

to [X™ x X7]4s;, and the map Z — X! x X7 factors as:
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Z = [XD x X gig; — [ X7 x (X2 Y] gy = XT % X7 (6.23.2)

EXidJ

where the first map is the diagonal embedding defined by the surjection Io[[J — J.

Note that as the data (I = I1[[Iz,e : Is — J) vary, the associated locally closed
subschemes cover X! x X7 Indeed, given a geometric point ((z;)ier, (z)jes)) € X! x X7,
let I; be the set of 7 such that z; # x; for all j € J, let I; be its complement, and define
¢ : Iy — J by choosing for each i € I, some j € J such that z; = z;.

We remark that this construction does not form a partition: there is some redundancy.

Step 3. Let I = 11| [ I, e: I — J and Z be as above.
Using factorization and the composition (6.23.2), we see that the restriction of (6.23.1)

to Z is isomorphic to:

Jetsxn (G)/Jetsxn (B) x X2 x Grg g xv

/ \

XI X GI‘G7B7XLI GrG,B,Xll ><AXVI2 X GrG,B,XJ .

The same argument as in Step 1 implies that our functors are intertwined by !-

. . . . Q,int |
restriction to Z in the obvious way. Therefore, we see that p 211y, . 86 B« 1-drOG 5(F)

has vanishing !-restriction to the locus:

GrGBxl]_[J X .
9’ 9’ XIL[J

But this suffices, since varying our choice of I = I; [[I; and € : I — J we obtain a

cover of X! x X7 by locally closed subschemes.
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Therefore, varying I and .J, we see that D!(S[%) has a canonical structure of unital
sheaf of categories. We will denote the corresponding object of Shvcat/Ran“X’;R by the

same notation.

Lemma 6.23.2. Let f: [ — J be a surjection of finite sets. Then the functor:

JC[ ® D(XJ) —>g<:J

D(XT)

induced by -restriction is an equivalence.

Proof. Let Kx1, S 36258??(3)0 be a subgroup scheme as in §6.22 (there denoted K,
where there was only one finite set at play). Let Ky, denote the restriction of Cxr ,

along the closed embedding:

Grg,p,xs = Grg,px! XIXJ — Grgpx1 - (6.23.3)
X

Note that Ky, = Jets’z5"(B)° is a subgroup scheme of the same type as considered in
§6.22.
Define K, and X, respectively as the kernels of the renormalized pushforward

functors:

D!(Grg p x1) — D'(Jetsks (G)/Kxt.0)
resp. D'(Grg p.xs) — D'(Jetss (G)/Kxs o).

Because these pushforward functors admit fully-faithful left adjoints, the corresponding

functors:

JC)(I@ — D!(GI'G7B7_)(I)

KXJ’Q — D!(GIG,B,XJ)
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do as well. Moreover, they are D(XT)-equivariant. Applying this to I, we see that the

functor:

:Kl,a & D(XJ)_)D!(GTG’,B,XI)

® D(X7)
D(xT) D(x7)

is fully-faithful as well. By Proposition 16.50.1, the functor:

D!(GrG,B,XI) D(XJ) - D!(GrG,B,XJ)

®
D(XT)

is an equivalence, so we see that:

Kra ® D(X) K0 (6.23.4)

D(XT)
is fully-faithful.

Now observe that (6.23.3) is a finitely presented closed embedding (having been ob-
tained by base-change from X7 < X7), and therefore the !-restriction functor admits
a fully-faithful left adjoint of !-dR =-pushforward. This left adjoint is a morphism of
D(XT)-module categories by Remark 16.15.5. Moreover, by Proposition 16.39.1, we see
that this !-dR =-pushforward functor coincides with renormalized pushforward up to
cohomological shift, and therefore it maps X, to K; 4.

Therefore, we see that (6.23.4) is essentially surjective and therefore an equivalence.

The proof of Proposition 19.7.3 shows that the colimit colim, X;, considered as a
subcategory of D!(GrG’ p.x1) coincides with X; comparing with the same expression for

X s, we obtain the result.

Therefore, we see that the conditions of §13.5 are satisfied, so that D'(F [%) obtains a
canonical structure of unital chiral category. As such, it is equipped with the canonical

strictly unital functor:
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i DNGrap) — D'(31%) € Cat (X p).
6.24. Fix a finite set 1. Let ixs : Grp x1 — Grg g x: denote the canonical map induced
by the embedding B — G. As in Remark 6.9.3, these maps give a canonical strictly

unital chiral functor:

i! : D!(GI'G,B> - D(GI‘B)
Proposition 6.24.1. There is a unique unital chiral functor:

.0
2

i7': D'(§17) — D(Gry) € Cat™(Xyg). (6.24.1)

with an isomorphism:
ey L int .l ! h
1270 p*Q,ren ~ quO,ZR oi : D (GTG,B) - D(GI"T) € Catzn(XdR).

jeeiy]
2

The unital functor vz is strictly unital.

Proof. By construction of the factorization structure on D'(F [%), it suffices to show that
for every finite set I, the kernel of the functor

wnt

p)?(l’,*,ren : D!(GI'G737xl) i D'(S[;,)

N . . .
l)%,*,dR oiyr. Here ixr : Grg x1 — Grg g x1 is the obvious

is annihilated by the functor q
map.

Let K, be a subgroup scheme of 36t$§?T(B)O as in §6.22. It suffices to show that
i', maps the kernel of the functor (6.22.1) into the kernel of the pushforward functor
ql)‘;c,’*,dR for the map q'% : Grp x1 — Grp x1.

As in loc. cit., (6.22.1) may be realized as the renormalized pushforward along the

placid morphism:
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GrG,B,XI — 36t$§?r (G)/ICQ

Therefore, the result follows by the base-change property of Proposition 16.59.1, as

applied to the (Cartesian) square in the diagram:

Grp x1 — JetsPy (B) /Ko — Grp xr
| J
GI‘G’B’)(I _— 3€t82?r(G)/lCa.

O

Remark 6.24.2. As in Remark 6.19.1, the notation 72 refers to the would-be embedding;

Gry = Jets™ (B)/Jets™ (B)? — =

6.25. Whittaker conditions. The remainder of this section is devoted to imposing the
Whittaker condition on D'(F [%), and especially to establishing its structure as a unital

chiral category.

6.26. Whittaker character. Observe that we have a canonical homomorphism:

JetsET(N7) — Jetsy"(N7/[NT,N7]) = Jetsyf (Dier, %) —> [ [ G ™' G
i€la
!
and we let ¢ x1 € D'(Jets’is" (N ™)) denote the induced character D-module on Jetsz" (N ™)
! !
given by !-pulling back the character D-module ¢ € D(G,). Note that 1)y canonically

descends to an object:

~

@Dxl € D(Ger,XI)'
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Let D(X')¥ denote the category D(X') considered as a category acted on by Jets7s" (N 7))
via the character D-module 1'¢. Let D(X!)~% denote the same, but with the character

!
D-module vy replaced by its pullback under the inversion map on JetsT" (N 7).

6.27. For any category C acted on by Jetst7" (N ™), we let Whity:(C) = Whit(C) denote
the (I-) Whittaker category:

(C ® DXy,
D(XT)

By unipotence, the functor:

Whit(C) — C

is locally fully-faithful.

Ezample 6.27.1. We have {/;Xz € Whit(Gry- x1). In fact, the functor D(X') — Whit(Gry- x1)

given by tensoring with 1; xI 1S an equivalence.

Remark 6.27.2. The category constructed above is sometimes called the !-Whittaker cat-
egory. It plays the role of Whittaker invariants. There is a dual construction of Whittaker
coinvariants sometimes called the *-Whittaker category.

For further discussion of these points, see [GailOb] and [Ber].

6.28. For each finite set I, define Whitﬁf? the absolute Whittaker category over X' as
Whitx: (D'(Jetsys™ (G))).

Varying I, we obtain a chiral category:

I — Whit¥ := Whitx: (D' (Jetsys"(G)))

Similarly, we obtain the chiral categories:
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I — Whit’?! := Whity: (D' (Gre x1))
[ — Whiti == Whitx: (D'(Grg p.xr1))-
6.29. Unital structures on Whittaker categories. We now describe the construc-

tion of unital chiral category structures on Whittaker categories.

Our key technical tool for this is the following lemma.

Lemma 6.29.1. Let Z be one of the factorization spaces Jets™*" (G), Grg, or Grg p.

Then for each pair I,.J of finite sets, we have:

(1) The unit functor:

D(XY® D" (Zx1) — D'(Zxr11)

admits a D(X') ® D(XY)-linear right adjoint.
(2) This right adjoint:

D' (Zyis) — DX ® D' (Zy)

preserves the Whittaker subcategories.

(3) The induced functor:

Whit(D'(Zyr114)) — D(X") @ Whit(D'(Zx.))

admits a D(X') ® D(X7)-linear left adjoint.

We will prove (1) and (2) in §6.30-6.31. The proof of (3) requires the introduction of
some new ideas that are orthogonal to our current purposes, so we will delay this part

of the argument to §7.

Corollary 6.29.2. The chiral category Whit®® admits a unique structure of unital chiral

category such that Whit™ — D'(Jets™"(G)) upgrades to a unital chiral functor.
86



For I and J two finite sets, the corresponding unit functor:

D(XT) ® Whitss — Whitis,

is the left adjoint of Lemma 6.29.1 (3).
The same results hold with Jets™ (G) replaced by Grg (resp. Grg.p) and Whit®*
replaced by Whit*™" (resp. Whit™ ).

Remark 6.29.3. We emphasize that in Corollary 6.29.2, e.g. the inclusion functor Whit®* —

D'(Jets™(()) is lax unital, not strictly unital.

Proof that Lemma 6.29.1 implies Corollary 6.29.2. Lemma 6.29.1 exactly implies that
the hypotheses of Proposition 13.4.2 are satisfied, and therefore loc. cit. implies the

result.

6.30. Let G be as in §6.10 and fix finite sets I and J.

We claim that the corresponding unit map:

D(X")® D'(Jetsk5 () — D'(Jetsyiii.(G))

admits a continuous right adjoint, and we claim that this functor is a morphism of
D(X! x X7)-module categories.

Indeed, form the correspondence, using Notation 6.9.4:

Ho 1
a=ag BQ:IB
\ (6.30.1)
X! x fjetsg(”?}r(g) 3@3&”?@(9)

with f : I — I]]J the tautological embedding. Then the unit map is computed as

5*,!—dR o Oé!.
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mer

Note that Hg, s is placid because Hg 1,5 — Jetsy{];,(G) is a finitely presented closed
embedding. We record for future use the observation that Hg s therefore inherits a
dimension theory from §16.54.

We immediately see from §16.46 that 8., 4r has right adjoint 3.

Lemma 6.30.1. The map:

a:Hgrg— X7 x Jets¥T(G)

is a placid morphism.?

Proof. We will prove this by an explicit construction.

Let n,m > —1 be two fixed integers. Define the indscheme H";, parametrizing:

xr = (2;)ic; € X', x5 = () jes € X7, Pg a G-bundle on X,
7 a trivialization of Pg|x\(z;},e,
o a trivialization of Pg on Fg}) V) anf).
Here, we use the natural convention that Fgfl) = ¢ for any = : S — X . We emphasize
that the symbol U here indicates sum of effective divisors.
As in Lemma 6.4.1, as n and m vary, we obtain a projective system under maps that
are affine smooth covers. Since for n = m = —1, we obtain X’ x Grg x7, we see that the

Mg, actually are indschemes.

By Lemma 6.11.1, we have:

lim /Hg:;—ri] = 'HgJ,J

n,m
: —1m _ I ~
than’I’J = X" x Jets{T(G).

22This subsection requires the most subtle use of the notion of placid morphism, so we recall (as
in §16.9) that the notion of placid morphism is introduced in §16.37 and §16.58, and is something
like a pro-smooth morphism. The key point is Proposition 16.59.1, which roughly says that placid
morphisms behave like smooth morphisms in this setting, and the implicit dimension shifts in the
infinite-dimensional D-module theory make o' behave like o* 4%,
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Therefore, taking for J the filtered category Z=~! x Z>~! (with Z>~! considered as a
category by its ordering), we see that the map « can be written as obtained from the

compatible affine smooth covering maps:

. n,m . —l,m
im#gy , — limHg

giving the result.

One easily shows that the dimension theories on Hg ; ; coming from « and 3 respec-
tively coincide. Therefore, by Proposition 16.59.1, o/ admits the right adjoint c .

We record the following feature of c e, for future use.

Lemma 6.30.2. Suppose that G is a form of a unipotent algebraic group. Then the

functor o' is fully-faithful, i.e., the counit for the adjunction (o, (s ren) s an equivalence.

Proof. We use the same notation as in Lemma 6.30.1.
Unipotence implies that the pullback functors for each of the maps:
3~ T
are fully-faithful, since the fibers are fibrations with affine space fibers.

The argument easily follows from here — we form the commutative square:

Hg —— X! x Jetser (G)

|

n,m —1,m
g,I1,J HQ,I,J‘

and note that, by definition, it suffices to check that the counit is an equivalence after

pushing forward to ’H;lfy for every m. Moreover, we can check this after applying the
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counit to objects pulled back from 7-[;117; (by smoothness of these structure maps). From

here the claim is obvious.

Variant 6.30.3. We use the notation of (6.23.1) for the unit correspondence for Grg p .

Note that in general we have:

Heprs=Haers/Jetsxins (B).

As above, the unit functor ¢ g «1—dr © o}GB admits the right adjoint ag, B« ren © B’G’B.

We also note that the corresponding statement for Grg is true and vacuous.

6.31. In the setting of §6.30 with G our twisted form of GG, we claim that the functor
G % ren ﬁ!G preserves the corresponding Whittaker equivariant subcategories on each side.

In the diagram:

/HN*,I,J = IHN*,f
ay— &
X1 x Jets¥T (N7) 36255}"”%”(]\7_)
the two corresponding character D-modules on Hy- ; ; obtained by pullback from o or
[ obviously coincide.

Therefore, we can make sense of the Whittaker category of D'(Hg, ;7). Moreover,
Bt obviously preserve Whittaker categories. Therefore, it suffices to show that Qs ren
preserves these Whittaker equivariant categories.

We begin by showing that ag «ren maps the Jetsyrirs (N~ )-equivariant category of
D'(Hn-1.5) to the Jetsys (N ~)-equivariant (i.e., X! x Jetsxs (N~ )-equivariant) category
of D'(X x Jetsn (G)).

We have the diagram:
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act
Jetsxiis(N7)  x  Hearg He,rg
XIxxJ

/
l g ag

X! x Jetsxs(N7)  x X! x Jets5(G) o X' x Jetss(G).
XIxxJ

(6.31.1)

Noting that the horizontal maps are placid, we claim:

Lemma 6.31.1. The base-change map:

! / !
act’ G xren = Qg 4 pen ACH

18 an equivalence.

Proof. The diagram (6.31.1) is isomorphic in the usual way to:

D2
JetSXI]_{J(N_) x Harg Harg
XIxxJ

/
l [e%e} aG

p
X x Jetsxs(N7)  x X! x Jets5(G) : X' x Jetss(G).
XIxxJ

Therefore, it suffices to see that the base-change map is an isomorphism for this diagram.

We enlarge this diagram to:

36tSXI]_[J(N7) X HG7[7J SetSXIUJ(Ni)XHGJ’J Ha
XIxxJ

L o apn— Xag

A
X! x Jetsxs(N7) o X' x JetsT(G) — X! x Jetsxs(N7) x X! x Jets(G) P X« Jet
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where we have abused notation in several ways, not least of all that ax- denotes the
restriction of ay- to Jetsyris(N7). It suffices to show the base-change property for
each of these squares separately.

For the left square above, note that this square is Cartesian, and that the maps A are
finitely presented because X' x X7 is finite type. Therefore, Proposition 16.59.1 implies
the base-change property.

For the right square, the result follows immediately from Lemma 6.30.2.

O

From the lemma and Lemma 6.30.2, it is obvious that a « ren maps the Jets 115 (N 7)-
equivariant category of D'(H - 1.5) to the Jetsxs (N~ )-equivariant (i.e., X' xJetsys (N7)-
equivariant) category of D'(X' x Jets75(Q)).

The same argument as above applies verbatim to larger congruence subgroups with (or
just as well, without) the twist by the Whittaker character (which restricts to Jets(/N ™)

as the trivial character). Exhausting Jets Y “11,(N7) by these compact open subgroups,

we obtain the result.

Variant 6.31.2. As in Variant 6.30.3, the right adjoints to the unit functors for Grg p

and Grg also preserve the Whittaker subcategories.

6.32. As was mentioned in §6.29, we now postpone the proof of the third condition
from loc. cit. to §7, assuming it (and therefore Corollary 6.29.2) for the remainder of

this section.

6.33. Let I be a finite set. Define Whitﬁ, € ShvCat x: as the Jets'ys™(B)°-coinvariants
of Whit‘}é’f. Varying I, we obtain a chiral category Whit? e Cat(X45).2

The lemmas of §6.23 apply verbatim, and therefore Whit? inherits a unital chiral
category structure. The tautological functor:
231t is natural to ask if formation of these coinvariants commute with the formation of the Whittaker
invariants. Over a point, this is true by §17, and for G = GL,, it follows from work in progress by

Beraldo, extending his results [Ber] to the factorization setting.
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LD int

P2ren © Whit™ — Whit

%
is again strictly unital.

Moreover, we have an obvious lax unital chiral functor:

Whit? — D'(F(7). (6.33.1)

6.34. The results of this section may be summarized as follows:

We have a diagram:

Grg =—— Jets™"(G) —— Gr?fB — I3
where subscripts have been removed and the right map is a fiction in the style of Remark

6.19.1. This induces a diagram:

e}
2

Whit"™ ——~ Whit

| |

D(Grg) — D'(Jets™"(G)) — D'(Grlyly) —— D'(F1?)

Whit*P" Whit®

of unital chiral categories. Here all functors are (lax) unital chiral functors defined ap-
propriately as -pullback or renormalized pushforward, and the the two horizontal lines

consist of strictly unital chiral functors.

7. FUSION WITH THE WHITTAKER SHEAF (A TECHNICAL POINT)

7.1. This purpose of this section is to the complete the proof of Lemma 6.29.1 by
proving (3) of loc. cit. The proof of the proposition is given by combining a fusion

construction with some well-known facts about Drinfeld’s compactification of Gry-.
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7.2. Before proceeding, we begin with a somewhat informal description of the method
in the case when I and J are singleton sets, and say for definiteness that Z = Jets™*"(G).

We will use e.g. the notation:

G(K) x G(K) ~ G(K)

for the space Jets?s"(G), where this should be read as describing a factorization space
that is G(K,) x G(K,) away from the diagonal specializing to G(K) over the diagonal.
Suppose that F € Whit%* := Whit(Jets2" (G)). We are supposed to show e.g. that we

can !-average the induced object:

536t8x(G) T F

with respect to the Whittaker character (here dy¢s «(¢) is the 6 D-module on meromorphic
jets supported on regular jets).?*

We construct a space:

Gra- xG(K) wo G(K)

encoding the action of N~ (K') on G(K). Moreover, we show that given F € Whit(Jets¥" (G)),

we can form an object:

by B TF o F (7.2.1)

encoding the Whittaker equivariance of . These constructions we refer to as fusion.

We moreover have a space:

Gro xG(K) wo G(K)

24We note that the required task appears completely obvious in the given notation, due to the holo-
nomicity of d3es 5 (a).- However, this ignores the important “interaction” occurring over the diagonal,
preventing such a naive argument from going through.
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encoding the action of G(K) on itself. Moreover, the *-extension of (7.2.1) to this lo-
cus coincides with the !-extension. Indeed, it suffices to see this over the closure of
((Gry- xG(K) v~ G(K)), and here it follows from the usual considerations of the
Whittaker character of N~ (K).

We then show that the pullback to (G(K) x G(K) v~ G(K)) of this D-module

computes the desired left adjoint.

7.3. We begin by studying the semi-infinite orbits of Grg in the factorization setting.
Fix a finite set 1 and A = (\;) a collection of coweights for G defined for each i € I.

Observe that there is a canonical section:

XI — GI‘T’)(I

associated to ). Indeed, it suffices to define a relative Cartier divisor valued in A on the
relative curve X x X! — X1 and we take 3. \; - [;], where 2, : X! — X x X! is the

section defined by:

(Ti)ier — <i%, (l‘i)z‘el)
and [z;] is the associated effective Cartier divisor.

Note that every geometric point of Grp xs is in the image of one of these sections for

appropriate choice of .

7.4.  We define Gréjxl as the fiber product:

Gr% xI = GI"B,XI X XI
7 Grp x1

where the map X! — Grp x1 is the section defined by A

Ezample 7.4.1. Suppose that I = {1,2}. Then the fiber of Grg x2 over (z,y) € X? is

Grgx X Grﬁy for x # y, and is Gr’]\gl;FA2 for z = v.
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7.5. We give a variant of Gr5,‘3 with Grp replacing Grp.
First, note that we can define @RXI to parametrize points z = (1;);c; in X7, a G-
bundle on X with a Drinfeld reduction to B, and a trivialization of this data away from

{x;}icr, incorporating twists by P in the obvious way.

Remark 7.5.1. One easily finds that Grp yr — @B,Xz is a Zariski open embedding (in

particular, schematic).

It is easy to see that the morphism:

GrB,XI — GrG,XI ;I GrT,XI

is an ind-closed embedding, and in particular, that @37 7 is an ind-proper indscheme.
We then define @27” using the map @sz — Grp x1, as with Gr;j\B’XI. Note that
@; x1 — Grg xr is an ind-closed embedding.

In the special case A = 0 (i.e., each A; = 0), we use the notation Gry xr for @%7}(1.

7.6. We have similarly spaces Gr;]\g_’XI, @279{1, and @N*, 1 defined again as fiber
products with the section X’ — Gryp x: defined by A\, via the natural map e.g. Grg- x1 —
Grp xr.

Observe that Jets'P¢" (N ™) acts on Gr’;,’XI and @é,’XI for each .

By the usual conductor considerations, one finds:

Whit(D(Gry- yr)) =0

when —\ is not a dominant coweight.
Let jy- x: denote the open embedding Gry- x1 — @N_yxz. As in Example 6.27.1,

we have:

]N*,XI,*,dR(JXI) € Whit(D(@N:XI))
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and the above remarks imply that the induced functor:

D(X") — Whit(D(Gry- x1)) (7.6.1)

given by tensoring with this object is an equivalence.

Variant 7.6.1. The above considerations also apply to describe the Whittaker coinvari-

ants of D(Gry- x1). Here one finds that the functor:

D<@N*,XI) - D(XI>

given by l-restriction to Gry- xs followed by twisting by the character J x1 and then
applying de Rham pushforward to X7’ is an equivalence after applying Whittaker coin-

variants. Indeed, this again follows by analysis of strata.

7.7. From actions to fusion. Fix G over X a form of an affine algebraic group and
I and J two finite sets. Suppose that Z is an indscheme over X” with an action of
JetsTT(G).

Under certain hypotheses, we will construct a new indscheme Sus% ;(Z) that lives over
XTHY and that over the disjoint locus of the base is isomorphic to the restriction of
Grg xr xZ. The construction is inspired by [Gai01].

Recall the space Hg .y from §6.9 (see Notation 6.9.4 in particular). We have a mor-

phisms:

/ \ (7.7.1)

JetsT5h,(9) X' x Jets75(G)
between placid group indschemes over X117 In particular, Hg.r. acts on X! x Z, using

the action of Jets¥7(G) on Z and the right leg of (7.7.1). We consider Hg 1,; acting on
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the right on JetsT5;,(G) via the left leg of (7.7.1). We obtain the diagonal action of

HgJ’J on:

JetsPi,(G) x X'x Z (7.7.2)
XIJ

Definition 7.7.1. We say that the action of Jets?5 (G) on Z is fusive if the quotient of

(7.7.2) by the action of Hg s, exists as an indscheme for each 1.

When the action is fusive, we let Sus% ;(Z) denote the corresponding quotient; see
Remark 7.7.5 for a description of what the resulting space looks like.

Note that there is a canonical action of Jets't{;,(G) on Suﬁi ;(Z) arising from the
action of Jets{(;,(G) on (7.7.2) through its action of the left on the first factor of loc.

cit.

Ezxample 7.7.2. Suppose that Z = Grg xs, equipped with the usual action. This action is

fusive: one easily finds that the desired quotient is Grg yi117, where the structure map:

Jets311,(G) x (X' x Grg xs) = Grg xii1s
XIIJ

is defined by the action of Jets57;,(G) on Grg yr11s and the unit map X' [ Grg ys —

GI‘gJ(I][J.

Counterezample 7.7.3. The trivial action of G (i.e., its action as a group scheme over X

on X itself) is not fusive.

Ezample 7.7.4. Suppose that Z = Jets'Y5(G), equipped with the left action. This action
is again fusive: in this case, the desired quotient Suz% 7(Jets5(G)) is the moduli of
points ((2;)er, (%;)jes) € XY a G-bundle Pg on X trivialized away from the points
((xi)ie[7 (%) e J), and with an additional trivialization on the formal neighborhood of
the points (z;),es. One shows that this moduli is a placid indscheme in the usual way,

using the increasing infinitesimal neighborhoods of the points z;.
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We have an obvious map X' x Jets75(G) — Fus? 7.7(Jets'¥5(G)), realizing the latter
as the locus where the G-bundle Py is instead trivialized on the complement to the
points (z;)jecs. There is also an obvious action of JetsT%;,(G) on 3’u51J(Jetsmer(g)),
essentially coming from the action of jets on the affine Grassmannian. Therefore, as in

Example 7.7.2, we obtain the structure map:

Jets¥111.(G) XIXLIJ (X' x JetsT(G)) — Susl S (Jets'¥T(G))

by combining these two observations.

Remark 7.7.5. It is instructive to analyze the space {S’uﬁ% ;(Z) in the combinatorially
simplest case, in which I = J = . In this case, away from the diagonal of X2, we have
Hg 1 ~ Jetsx(G) x JetsZ (G), while over the diagonal it is isomorphic to Jets¥"(G).

Therefore, we have:

Jetsx (G) xJetsZe(G) act
Fus? (Z)|x2a = JetsT(G) x Jetsy (G) X Zlxaa TR Grox xZ|x2a
3etsmer(g)
Jusl ()]s = Jets}7(G) " % ZE 7

Here the superscript of a group over a Cartesian product indicates that we take the

quotient by the appropriate diagonal action.

7.8. Fusion of sheaves. Suppose in the setting of §7.7 that Jets}5 (G) acts fusively on
Z — X’. Suppose moreover that F is a Jetsy (G)-equivariant D-module on Z, i.e., F

is an object of the equivariant category:

D!(2)7579),

We obtain a new D-module:

susg,J(?) € D!(glwzg,J( Z))" " X9 (7.8.1)
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by the following construction:

Note that:

wyr®TF e DN(X! x Z) (7.8.2)

is X1 x JetsF (G)-equivariant (i.e., equipped with an equivariant structure), and there-
fore equivariant for Hg ;s acting through the right leg of (7.7.1). Pulling back (7.8.2)

along the map:

~ mer I I
‘jetsX,U,,(g) XIXHJ (X X Z) - X'xZ

we obtain a D-module equivariant for the diagonal action of Hg ;s considered in §7.7,
and for the left action of Jetsy7};,(G) on the first factor of this space.
Descending to Suﬁi ;(Z) via the first of these equivariance observations, and appealing

to the second, we obtain (7.8.1) as desired.

Ezample 7.8.1. In the setting of Remark 7.7.5, the D-module 8115% ;(&) is isomorphic to

Warg x X1 F away from the diagonal, and isomorphic to F over the diagonal.

Variant 7.8.2. Given F € D(X") @ D'(Z)**"*x7 9 we claim that we can generalize the

above construction to produce:

Sus?ﬁ,(?) € D’(Suggj(z))ﬁe“}lihJ(g)'

in such a way in the case F = wys X F, we recover our earlier construction of Z{uﬁi S(F).
Indeed, we simply replace wy: X F in (7.8.2) by 7.

Observe that this new construction is D(X!) ® D(X7)-linear.

Remark 7.8.3. We can reformulate this construction in the following way. The map:

X' x Z — Fus{ ,(2)
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induces a restriction functor:

D!(SuE?,J(Z))ﬁetS;Z?T]_[J(g) N D!(XI « Z)HQ’I’J

that is an equivalence (c.f. Proposition 16.48.1) with inverse Fus.

Remark 7.8.4. The above construction can be performed more generally on any sheaf of

categories on X/ acted on by Jets75(G).

7.9. Compactification. Suppose now that G is our preferred form of our reductive
group G and that Z — X is acted on fusively by G.

We have a canonical map:

Jusy , (Z) — Fusy ,(2).

. . >N . .
We will presently use Drinfeld’s method to construct us; ; (Z), a “compactification” of

this map.

Ezample 7.9.1. We begin by explicitly treating the case of Z = Grg xs from Example
7.7.2.

In this case, we define 5?5?7; (Grg x7) as the moduli of ((:UZ-)Z-E[, (:z:j)jej) e X'V a
G-bundle P on X with a polar Drinfeld reduction to N~ (in the P{*-twisted sense), the
poles being at the points z;, and a trivialization of this datum on X\{z;, z;}ies jes. Here
a polar Drinfeld reduction of the specified type means that we give a Drinfeld reduction

defined on the complement to the union of the graphs of the points ;.

Remark 7.9.2. As in Remark 7.7.5, it is instructive to see what happens when I = J = =.

In this case, one easily finds:

S’uﬁi\: (GTG,X)|X2\A ~ GrN*,X X GI"G7X |X2\A

Suﬁi\: (GI"G7)()|A ~ GrG7X
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It is easy to see that the tautological map %ﬁv‘; (Grg x7) — Grg yris is an ind-closed

embedding, and the natural map:

Fus (Gre.xs) — Jus, , (Crg xs)

is an ind-open embedding.

Remark 7.9.3. Recall from [FGVO01] that for X a proper curve, the moduli space of a
point of z = (z;) € X’/ and G-bundle on X with a polar Drinfeld reduction to N~
defined away from the points z; is an ind-algebraic stack B_mf]j\?l_ v locally of finite type
(proof: bound the order of the poles allowed). Then %?Z (Grg xs) may be computed

as the fiber product:

— N-
3u5LJ (GrG,XJ)

| |

I pol pol
X xBunN,7XJ N- XTI -

GI'G,XI]_[J

—— Bun

.. =N . . .
Before giving us  in the general case, we need to observe the existence of a certain

group action.

Construction 7.9.4. Recall from §6.12 that 7 yr115 denotes the structure map Jetsy{, (G) —
Grg x1117. We will construct an action of Hg 1,7 on W&}X,”J(%f; (Grg xv7)) (the action
is on the right, so to speak).

Indeed, we have:
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v = ((2i)ier, () jes) € XTI,
a G-bundle Ps on X with a
-1 =V . . .
7TG7xl]_[J(Su5LJ (Grg xvs)) = Pom-twisted Drinfeld reduction to N™= on X\{z;},
a trivialization of this datum on X\{z;, ;}icr jer,

and a trivialization of Pg on st

and Beauville-Laszlo allows us to rewrite this as:

r = ((2)ier, (x;)jes) € XTH,
a Pgr-twisted map 9 : Dx\( UjeJ F,Ej> — G/N, }
and a lift of 5\207 to a map 10933 - G.

The action of:

Hor = 1o = (wdier, (@5)se0) € XU DA (Vjes Ty ) — G

on this space is now clear: it arises from the G-equivariant map G — G/N/T.

Construction 7.9.5. We are now equipped to define %?];(Z ).

We take it to be the quotient of:

_ ~—N-
s (Susy s (Grg x7)) e X'x Z. (7.9.1)

by the diagonal action of H¢ ;. Note that JetsTe,,(N7) acts %?Z(Z) through its

left action on WC_;}X,UJ(%?;(GrG,XJ)).

Remark 7.9.6. The quotient of:

Moy (Bustly (Gra ) x X'xZ

by He 1,5 is obviously isomorphic to the quotient of:
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Jets™er (N~ X'x 7
Je SXIHJ( )XIXLIJ X

by Hy- 1.

Lemma 7.9.7. The restriction functor:

Whit 1115 (Fus; ; (Z)) — Whit i1 (Fus) (2)) (7.9.2)

18 an equivalence.

Proof. Note that the map:

_ =—N-
X% Z > mily, Fusyy (Grg xs) x X'xZ

W&}XIUJ(%'UE?S(GTG,XJ)) X e

XI]_[J

is an open embedding of ind-finite type.

Therefore, the functor (7.9.2) admits a right adjoint in Sthat/XégJ given by (*, dR)-
extension. It suffices to check that the unit of the adjunction is an equivalence, and we
can check this after restriction using a covering of X! x X7 as in the proof of Lemma

6.23.1. Now the result follows because (7.6.1) is an equivalence.

O

7.10. Suppose that Z is an indscheme over X7 acted on fusively by Jets5 (G), and
let F be an object of D(XT)®Whit(D'(Z)). Twisting and untwisting by the character v
and applying Variant 7.8.2, we form @'\Jusjlv; (F) e Whit 115 (D! (Fus? ;,(Z))). By Lemma
7.9.7, this object canonically lifts to an object:

Fus, ; (F) € Whityr1 (Fus, , (2)).

Moreover, the assignment F m?{;(f}) is obviously D(X') ® D(X7)-linear.

We claim that the functor:
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Whit 1115 (Fus; ; (2)) — D(X') ® Whitys(2) (7.10.1)

induced by restriction along the map:

X!'x Z — Jus; , (2)

. . . . . ~—_N~ . ..
is an equivalence, with inverse provided by §us; ;. Indeed, this follows by combining

Remark 7.8.3 with Lemma 7.9.7, and the observation that the functor:

D' X! x Z)Mv-10¥ o DNXT) ® Whit(D'(Z))

is an equivalence, where the superscript ¢ indicates that we take invariants twisted with
respect to the character of Jetst{], (V™). We note that the last observation is trivial:
the functor is fully-faithful since both are subcategories of D'(X! x Z), and is then an

equivalence since Hy- acts on X! x Z through X! x Jets5 (N 7).

7.11. We now obtain that the !-restriction functor:

Whit(D'(Fus{ ;(Z))) — D(X") ® Whitxs(D'(Z))

admits a left adjoint. Indeed, from the equivalence (7.10.1), we need to show that the

functor:

Whit(D'(Fus$ ,(2))) — Whit(D' (Fus, (2)))

admits a left adjoint. But the map %?{; (Z) — Susg ;(Z) is a finitely presented closed

embedding, so the functor of I-dR *-pushforward provides the desired left adjoint.

7.12.  We now establish the third point of Lemma 6.29.1. First, we specialize to the
case Z = Jetsi (G).

Recall that e.g. Whit%; denotes the category of Whittaker D-modules on Jets(G).
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We have the Cartesian diagram:

Har,g JetsPih . (G)
lac L (7.12.1)
X' x JetsPs (G) — guﬁgj(ﬁetsﬁf}’"(G)).

We are supposed to show that the functor:

G renB - Whit? ), — D(XT) ® Whit%s

admits a left adjoint.

As in Lemma 6.30.1, the right and left vertical maps in (7.12.1) are placid. Therefore,
by Proposition 16.59.1 we may compute ag «,enf by base-change. Then the existence
of the left adjoint follows from placidity of the right vertical map, Proposition 16.59.1,
and §7.11.

The other cases for Z work similarly, since in each case the corresponding indscheme

over X'V maps placidly to %uﬁﬁj(ZXJ).

8. IDENTIFICATION OF THE CHEVALLEY COMPLEX II

8.1. The goal for this section is to deduce Ran space counterparts to the computations

of §5.

8.2. Fix a non-empty finite set I. For each A € AP° we have a canonical incidence

scheme:

D <A I
DlVeff,XI C Divgg xX

consisting of pairs (D, {z;}iez) of a AP**-divisor of degree A and an I-tuple of points such
that the divisor D is supported set-theoretically at the points {z;}, i.e., its restriction to

X\{x;}ier is the empty divisor. Let Divé\gj{ ; be the corresponding union over A € AP
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Note that we have a canonical closed embedding:

. _Apos
Dlveﬂp,XI — GrT,XI .

We define:

o o ¢ . o
ZN, c Z) x X1 = Div), o x ZMx X!
X eff, X .
Div)g x X1

o o X ]
. Apos
ZyC Zx X =Divig’yr  x  Zx XL
" Diveg x X7

Note that as I varies in fSet, these schemes form a covariant system. Passing to the

]\pos

off Rany » POth living over Ranx.

o
colimit over I, we obtain Zg,,, and Div

[\pos

off Rany UD€ structure map, or where there is no

o
o .
We denote by Trany @ ZRany — Div
confusion, for the corresponding map to Gry g, -

We introduce the notation:

Pyt ZRany — 2

(8.2.1)
[\pos
eff Ranx

Apos

Ppiv : Div — Div g

for the structure maps.

Apos

off Rany are€ pseudo-indschemes in the

o
Remark 8.2.1. By construction, Zgra.,, and Div
sense of [Gaill]. In particular, we can make sense of D-modules: it is the limit under
I-restriction of the categories of D-modules on the corresponding indschemes of ind-finite

type, or equivalently, the colimit in DGCat,,,; of the corresponding categories under de

Rham pushforwards.

Remark 8.2.2. Recall that ¢ denotes the stack B~\G/B.
The space Z xr can be realized as the moduli of a point © = (z;),c; € X! and a Pge"-
twisted map X — ¢ with a trivialization of the induced map X\{x;},e; — ¢ (i.e., this

map should factor through BT < Z ).
107



8.3. Next, in §8.4, we compare two Ran space versions of Tj, the main factorization
algebra of our interest (c.f. §1.25).

Here’s why it is necessary: we want an intrinsic Ran space characterization of Ty,
namely, as the chiral enveloping algebra of the A-graded Lie-* algebra a®@kx (c.f. §8.4).

However, in §5, we used a version of YT that did not involve Ran space: it only
involved the finite-dimensional geometry of symmetric powers of the curve. In particular,
Corollary 5.7.1 involves this finite-dimensional version.

The comparison between these two constructions (and the details of the first construc-

tion) are given below.

8.4. Observe that Divé\;;anx factorizes compatibly with the factorization structure on

[\pos ) .

Rany, so defines a factorization category on Xyp with global sections D(Diveg gan

We will abuse notation in denoting this factorization category by the same notation as

its global sections.

. . _APpos . Apos
Moreover, the addition structure on Divyg g, defines on D(Divgg ., ) the structure

of commutative factorization category.?® Therefore, we may speak of Lie-* algebras in
this category, as in §15.
As in Remark 5.6.2, the A?*-grading on # defines a Lie-* structure on it ® kx in the

category D(Divéé?ﬁanx). Therefore, we may form the chiral enveloping algebra U (i ®

[\pos )

kx) and define Tg rany to be the associated factorization algebra in D(Diveg gay.

Lemma 8.4.1. There is a canonical isomorphism Vi Rrany =~ poi(Ya) of factorization

Apos
eff,RanX ) ‘

algebras in D(Div

Proof. The framework of §13 and §15 works just as well for Divé\;os, and we use the

corresponding language.

251n fact, it is the commutative factorization category associated with the symmetric monoidal category
of AP°*-graded vector spaces by the procedure of §15.
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One can consider n®kx as a Lie-* algebra in D(Divééos). Note that this Lie- algebra
is supported only on the locus of those divisors concentrated at a single point.

Therefore, one easily finds that i ® kx pulls back along p;, to give the same-named
Lie-+ algebra in D(Divéggmx).

Moreover, one readily shows that p}y;, commutes with Koszul duality. Then using the
chiral PBW theorem, one shows that it commutes with taking chiral envelopes.

We then immediately obtain the result from Remark 5.6.2.
O

! Lo
8.5. Let ¥, denote the !-pullback of the sheaf ¢% ® IC% via the structure map:

Ran x

o] ]

p% . ZRanX — Z.

The main result of this section is the following:

Theorem 8.5.1. There is a canonical equivalence:

! ~
ﬂRanX,*,dR(@ZJOR ) — Tﬁ,RanX- (851)
&l’lX

Proof. Immediate by base-change from Corollary 5.7.1 and Lemma 8.4.1.

9. CONSTRUCTION OF THE FUNCTOR

9.1. In this section, we perform the main construction of this thesis. This is a routine

matter of drawing together material already developed in other parts of this thesis.

e}
27

9.2, Recall from Proposition 6.24.1 that we have a unital chiral functor iz : D'(§1>) —

D(Grr). We obtain a (lax) unital chiral functor Whit> — D(Grr) by composition with

X
2

the structure map (6.33.1) from Whit> to D'(F1? ). We also denote this functor by

-0

Theorem 9.2.1. The functor iz : Whitz — D(Gry) sends the unit object to Ti rany -
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Proof. By §6.34, we have strictly unital chiral functors:

5 ,int
2 X
2

. v imt P oren .
Whit?" — Whit"™ "5 Whitz .

As in Proposition 6.24.1, we have an identification:
.90 L int

1270 p*Q,Ten ~ qiko,ilR O i! : D!(GI'G7B) — D(GI‘T) € CatZZ(XdR).

sph loc

Therefore, it suffices to compute where the unit of Whit™" maps to under q,%5p o i,
By construction, the unit object of Whit*" is the #-extension of the Whittaker sheaf
on Gry-. Therefore, by base-change, the image of the unit is obtained by pulling and

pushing this Whittaker sheaf along the diagram:

Gry- x Grp
Grg

~ I

GINf GI"B I GI‘T.

o

Noting that that fiber product is the open Zastava space Z, we obtain the result from
Theorem 8.5.1.

9.3. Recall from Proposition 14.14.1 that I — T gany—mod-"(D(Gry x1)) defines a
weak chiral category T gany mod2(D(Crp)). Moreover, this proposition combined

with Theorem 9.2.1 implies that we obtain a functor:

Whit? — Tg Ran,—mod2*(D(Gry))

of unital weak chiral categories (the left hand side being a true chiral category). This

functor is obviously strictly unital in the obvious sense.
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9.4. We conclude with the following concrete conjecture concerning this functor, which

appears to be very much in reach.

Conjecture 1. Define Whit;}mn as the compactly generated category whose compact

sph

objects are the full subcategory of Whit;, generated from compact objects in Whity;

using the functor Whit;?? — Whit?, (c.f. §6.34) and the action of compact objects in
D(Gry x1) under its action on Whit2, .
Define Ti Rany fmodff‘rft(D(GrTVXI))’"e" to be compactly generated by modules induced

from compact Lie-+ modules for the Lie-= algebra n~ @ kx.

Then the induced functor:

(1 - Whit?;fe”) - (1 = T Ranx *mOdfua;t(D(GrT,Xf))mn>

15 an equivalence of factorization categories.

Remark 9.4.1. This conjecture amounts to proving the main conjecture (c.f. §1.22) in

the formal neighborhood of regular local systems inside of all local systems.

Part 2. Chiral categories
10. A GUIDE FOR THE PERPLEXED

10.1.  The goal of the following foundational sections is to develop a theory of chiral
categories, chiral algebras in them, and chiral modules for these chiral algebras. This
material has been heavily influenced by [BD04], [FG12], [Lurl2] §5, [Gai08], and private

conversations with Dennis Gaitsgory.

10.2.  Our goals in developing the theory of chiral categories are modest, and the mate-
rial itself is technical. These technicalities largely are due to the use of derived categories:
the combinatorial aspects of [BD04] need to be replaced by more abstract formulations

to be used in higher category theory.
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We find it convenient in presenting this material to describe the goals and motivation
in isolation from its technical implementation. The present section is devoted exactly to
giving an introduction to these ideas, beyond what was already said in §1.

The hope is to provide some general narrative structure for the technical material that
follows, and to help equip the reader who so desires to skip most of Part 2 and refer back
to it only as necessary. In particular, we draw the reader’s attention to §10.12 below,
which explicitly spells out what is accomplished in Part 2 with regard to constructing

the functor (1.22.1).

Remark 10.2.1. We note from the onset that most of the technicalities occur only in the

unital setting, where the meaning of the word unital is indicated below.

Remark 10.2.2. Below, we discuss everything at a very heuristic level. In particular, we

ignore higher compatibilities (such as associativity) throughout.

10.3. Sheaves of categories. Let X be a scheme of finite type.

To discuss chiral categories in analogy with chiral (or more appropriately: factor-
ization) algebras, we need a “linear algebra” of categories over X, meant to be one
categorical level higher than quasi-coherent sheaves or D-modules on X.

This theory is provided by the theory of sheaves of categories from [Gail2b] (see
also §19). Recall that there is a notion of (DG) category € over X: for X = Spec(A)
an affine (DG) scheme, this amounts to a cocomplete DG category enriched over the
symmetric monoidal DG category A-mod, and for general X the notion is obtain by
gluing. Categories over schemes are contravariantly functorial with respect to morphisms
of schemes.

Moreover, we have a general notion of category € over X with a connection, also known
as a crystal of categories. This amounts to saying that given any two infinitesimally close
points of X, we identify the fibers of C in a functorial way satisfying the (higher) cocycle

conditions.
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The notion of crystal of categories on X can be summarized more succinctly: we have
the prestack Xygr, and there is a general notion of sheaf of categories on a prestack.
Crystals of categories on X are equivalent to sheaves of categories on X g, since Xyp is
the quotient of X by its universal infinitesimal groupoid (c.f. [GR14]).

We want to have quasi-coherent and D-module versions of the theory of chiral algebras
and chiral categories, and therefore we replace X with a general prestack X, so that for
X = X we obtain the quasi-coherent version and for X = X z we obtain the D-module
version.

Note that there is a canonical sheaf of categories QCohy on the prestack X, whose
global sections (in the sense of sheaves of categories) is the category QCoh(X) of quasi-
coherent sheaves on X. This sheaf of categories plays the role that Oy plays one cate-

gorical level down.

Convention 10.3.1. We use the language of quasi-coherent sheaves in what follows, noting

that the D-module language is a special case by the above.

Terminology 10.3.2. Recall that [BD04] defines notions of both chiral and factorization
algebra on X,r, and proves that the two notions are equivalent by means of a non-trivial
functor (e.g., it doesn’t commute with the forgetful functor to D-modules).

The notion of chiral algebra is much less flexible than that of factorization algebra:
e.g., it can only be defined in the de Rham setting, not in the general quasi-coherent
setting. In particular, only the factorization perspective generalizes to categories.

Therefore, we use the terms chiral category and factorization category interchangeably
in the categorical setting because there is no risk for ambiguity. However, for sheaves,

we will be much more conservative in the use of the word chiral.

10.4. Ran’s space. Next, we recall the Ran space construction from [BD04].

The idea of Ran space Rany is to parametrize non-empty finite subsets of a space X.
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Remark 10.4.1. Any construction of Rany builds it out of the schemes X’ for I a finite

set. This translates to saying that specialization in Rany allows points to collide.

It has been treated formally in algebraic geometry in a number of ways, and we follow
[FG12] and [Gaill] in treating it as a prestack. The construction is defined for any
prestack X, giving rise to a prestack Rany.

The key point is that quasi-coherent sheaves F on Rany are equivalent to systems
of quasi-coherent sheaves Fyr on each X! as I varies under non-empty finite sets, and
such that these sheaves are compatible along diagonal restrictions (note that we consider
the reordering of coordinates as a diagonal restriction, so these quasi-coherent sheaves
are automatically equivariant for the symmetric group). The same holds for sheaves of

categories.

Remark 10.4.2. One may heuristically think that a quasi-coherent sheaf ¥ on Rany is
an assignment of a vector space F,, . ., for every finite subset {z;} < X, such that these
vector spaces behave “continuously” as points move and collide. Similarly, a sheaf of

categories on Rany is a continuous assignment of cocomplete DG categories Cy, ...

10.5. Unital sheaves on Rany. There is also a notion of unital quasi-coherent sheaf of
Rany, implicit in [BD04] §3.4.5, and appearing again in [GailOal, [Gaill], and [Barl2].

Here we are again given quasi-coherent sheaves Fy: for each finite set I, now also
allowing the empty set as well. For every morphism f : I — J of finite sets, giving rise

to the map Ay : X7 — X!, we should be given:

AT:(?)@') - ?XJ

in a way compatible with compositions of morphisms of finite sets, and such that, if Ay
is a diagonal embedding (i.e., f is surjective), this map should be an isomorphism. In

particular, for every I we have a canonical unit map:
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ff@@k@xl —>5tXI.

Similarly, we have a notion of unital sheaf of categories on Ranxy.
Obviously, unital quasi-coherent sheaves on Rany are quasi-coherent sheaves on Rany

with additional structure.

Remark 10.5.1. Unital quasi-coherent sheaves on Rany do not quite fall under the
purview of quasi-coherent sheaves on prestacks. However, in §11, we show that the
language of lax prestacks — moduli problems valued in categories rather than groupoids
— does suffice.

Namely, we define a lax prestack Rany"” whose points are morally the (possibly empty)
finite subsets of X, considered as a category by taking morphisms that are inclusions
of finite subsets, and show that this lax prestack gives a good theory of unital quasi-

coherent sheaves.

Remark 10.5.2. In the heuristic of Remark 10.4.2, a unital quasi-coherent sheaf F on

Rany is a continuous assignment:

({z1, ..., 20} € X) = Foy. 0, € Vect

as before (now allowing n = 0), and such that for every inclusion:

{z1,.. ., xn} S {1, Ty T, T € X (10.5.1)

we have a map:

Ferran = Fan,. (10.5.2)

n »Tm

satisfying the natural compatibilities.
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Remark 10.5.3 (Lax unital functors). The heuristic notion of unital sheaf of categories is
identical to the discussion of Remark 10.5.2. However, a difference emerges in the notion
of morphism of unital sheaves of categories.

Given unital sheaves of categories € and D on Rany, we have two notions functor
C — D, strict and lax.

For a strict functor, we require that we are given functors:

-----

commutes, where the vertical arrows come from the unital structure.
For a lax functor, we merely require that the diagram lax commute, i.e., we are given

a natural transformation:

le ,,,,, Tn
e$1,...,:vn ®$17 Tn
Coryovitm R

This difference is a general feature of working with sheaves of categories on lax
prestacks that is different from the more restricted theory of sheaves of categories on
usual prestacks. It is discussed in detail in §11, where we remove the adjective “lax”
from the term “lax functor.”

For the importance of working with lax functors of unital sheaves of categories, see

the discussion of Remark 10.6.3 below.
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10.6. Factorization algebras. The heuristic idea of a factorization algebra in a factor-
ization category C is that we are given have A € QCoh(Rany), and for {zy,...,x,} € X,

we are given isomorphisms:

Agizn = Az @ ... Q Ay, (10.6.1)

that are continuous as we vary the points ;. There is a somewhat subtle requirement as

points collide: if we choose 1 < k < n, then we require that the induced isomorphisms:

‘Axh---ﬂ»’n = ‘A$17---7$k ®‘A$k+17---7$n

extend only when we allow points z; to collide with points z; only when 1 < 7,j <k
or k < 1,5 < n. In particular, for a pair {z,y} of distinct points of X, we do not at all

specify the behavior of the isomorphism:

Apy = A, ® A, (10.6.2)

as x and y collide.

Remark 10.6.1. In practice, it is unreasonable (except for A = Ox) to require that the
isomorphisms (10.6.2) to extend when z and y collide. However, we may require a map
to exist in one direction: this gives the theory of commutative factorization sheaves, that

we develop in §15.

Similarly, we have the notion of unital factorization sheaf. Here we require that the
isomorphisms (10.6.1) be compatible in the natural sense with the unital maps (10.5.2).

Again, the notion of (resp. unital) chiral category can be described similarly. Note
that we can speak about factorization algebras inside of a chiral category C,: this is a
continuous assignment of objects Ay, .. € €, ., with identifications:

n

-Axl,...,zn = Axl X... ®Axn
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in the identified (by chirality) categories:

Cotan =Cp ®...®C,,.

Remark 10.6.2 (Unit objects). The unital factorization conditions force €y ~ Vect
canonically. Considering ¢ — {x}, we see that C, contains a canonical unit object

unite , which by definition is the image of k € Vect under the induced functor:

Vect = Cz — C,.

Remark 10.6.3 (Unital factorization functors). What a factorization functor should be
should be clear in the above heuristics: it is a functor F' : € — D of categories over

Rany, such that, e.g., for every pair of distinct points x,y € X, the diagram:

Foy
Coy Dy
L N l N (10.6.3)
FQF,
€. ®C, D, ®D,.

As in Remark 10.5.3, there are two notions of unital factorization functor, laz and
strict.

The difference primarily occurs at the level of underlying sheaves of categories, i.e., in
the setting of loc. cit. That is to say, we still require the diagram (10.6.3)

The key distinction between lax and strict here is that a strictly unital factorization
functor preserves unit objects, while for a lax unital factorization functor, we only have

a morphism:

unitp - F(unit@).
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This is relevant for the purposes of this thesis because, as in §1.26, the factorization
functor we are interested in does not preserve unit objects; rather, it is merely lax unital

(c.f. also to Footnote 5).

10.7.  The idea for implementing §10.6 is to exploit the chiral multiplication of Rany
and Rany", that we describe below.

Recall that if S € PreStk is equipped with a commutative and associative multiplica-
tion, we can speak of multiplicative quasi-coherent sheaves on S; for m the multiplication

operation, these are quasi-coherent sheaves A € QCoh(S) with isomorphisms:

m*(A) ~ AXIA

satisfying the natural commutativity and associativity requirements.
Note that Rany admits a natural commutative semigroup structure: the multiplication
operation is given by union of subsets of X. Similarly, Rany" has a commutative monoid

structure given in the same way.

Remark 10.7.1. We only say “semigroup” here because Rany does not contain the empty
subset of X, which would correspond to the unit: this should only ever be regarded as a

minor issue.

The chiral multiplication can be thought of as a partially-defined multiplication, where
we are only allowed to add two subsets of Rany if they are disjoint.
Then we say that e.g. a factorization sheaf on Rany is a multiplicative sheaf with

respect to this partially-defined multiplication.

10.8. Correspondences. However, there is still a substantive technical issue: what do
we mean by “partially-defined multiplication?”
One convenient approach here is to use the formalism of correspondences here, devel-

oped in the homotopical setting in [GR14].
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Recall that if C is a category with fiber products, the category C.. is defined to have

the same objects as €, with morphisms X — Y given by hats:

X/H\Y

in C. Composition of morphisms is defined by fiber products, i.e., we regard diagrams:

Hj
H, H,
X Y Z
with inner square Cartesian as realizing the correspondence (X « H3 — Z) as the
composition of the morphisms X — Y and Y — Z in G,

If € is equipped with a symmetric monoidal structure, then €., inherits a symmetric

monoidal structure in the obvious way.
Remark 10.8.1. We recall the construction from [GR14] in more detail in §20.

10.9. Chiral multiplication via correspondences. We can now say that chiral mul-
tiplication is a (non-unital) commutative algebra structure on Rany when regarded as an

object of PreStk.,,, where the multiplication operation is defined by the correspondence:

[Rany x Ranx]s;
Ranx X Ranx Ranx
where the notation disj indicates that we take the locus of this product where points

are pairwise disjoint, and where the right map is the addition map.
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In §12, we develop a theory of multiplicative sheaves of categories on lax prestacks
with commutative algebra structures defined using correspondences, giving a definition

of factorization category. This is specialized to the case of Ran space in §13.

10.10. Factorization modules. Next, we discuss the idea of factorization modules.
Let A be a factorization algebra and let zy be a point of X. A factorization module
structure at x( for a vector space M is essentially a rule that associates to every finite set

{xg,x1,...,2,} of points of X a vector space M, «, such that, for every 0 < k <n

05T 150y

we have identifications:

M$07---755n = M$07---75’7k ®‘Awk+17---7xn

compatible with refinements in the obvious sense.

This notion generalizes in the usual ways: we can allow the xg to move, or to take
factorization modules at several points at once, or to take unital factorization modules,
or to take factorization module categories for a chiral category, etc.

An important point is Theorem 13.13.2, which says that under certain hypotheses,
modules for the unit factorization algebra in a unital chiral category are just objects of
the underlying category.

A second important point is the construction of external fusion from §13.12, that
takes chiral modules at two distinct points (or disjoint subsets of points) and produces

a module at their union.

Remark 10.10.1. Heuristically, external fusion should make factorization modules for a
factorization algebra into a factorization category. However, since the tensor product
of DG categories is unwieldy in many respects, we expect that this is only true after
appropriate renormalization in the sense of [FG09]. In general, the only structure is that

of lax factorization category, as is discussed in §14.
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10.11. Factorization without Rany. In §14, we present an alternative approach to
chiral categories.

This approach is much more combinatorial than the approach using prestacks and
correspondences. Proofs of foundational results, while largely possible in this setting,
are much less clean. However, this second approach has the advantage that it only uses
finite-dimensional geometry (say if X = X or Xyr), without explicit recourse to the Ran
space.

Roughly, in this perspective a factorization sheaf A on Rany is a compatible system
Ax:r of D-modules on each X!, and with identifications:

Aoer 0 Ao |poer xacr sy = Aot 17|t e

disj disj*

10.12. User’s guide. There are two basic results in Part 2 that we will need for Part

1.

(1) Proposition-Construction 11.26.1, and its consequence Proposition 13.4.2. These
results will be used for constructing unital chiral category structures on various
Whittaker categories, and ultimately, on WhitZ .

For simplicity, here is what these propositions say we should do to construct a
unital structure on Whit" := Whit(D(Grg)) (i.e., Whittaker sheaves on Grg).

First, we construct a unital structure on D(Grg). For {z1,...,z,} S {x1, ..., Tn, Tpi1, -, Tm} ¢

X as in Remark 10.5.2, the corresponding unit maps (10.5.2) are given by:

D(Grgs,)®...Q D(Grga,) ~ D(Grga, ) ®...Q D(Grg,,) ® Vect® . .. ® Vect —
D(GI‘G@J ®...® D(GI‘G@n) &® D(GI‘G@”JA) ®...® D(GI‘G@m)

where for each n < i < m, the map Vect — D(Grg,) sends k to the 6 D-module

concentrated at the unit point in Grgg,.
122



For Whittaker sheaves, this construction does not work verbatim because
Vect — D(Grg,,) does not factor through the subcategory of Whittaker sheaves.
Therefore, we further compose it with the functor of l-averaging against the Whit-
taker character.?¢

The precise conditions that are needed for this format — which are somewhat
more subtle than they appear above because we need to allow points to collide
— are discussed in Remark 11.26.2.

(2) Next, under certain favorable circumstances, we show in Theorem 13.13.2 that for
a unital chiral category € with unit object unite, we have unite —modfzft((‘f) ~ C,
where these symbols are made sense of in §13. L.e., the result says that the
structure of unital module for the unit object is no extra structure at all —
certainly a familiar kind of statement!

We apply this result as follows.

As was discussed in §1.26, we have a l-restriction functor D(F[7) — D(Gry)

inducing a composite functor:

F : Whit? — D(Grr)

sending the unit object of Whit? to the factorization algebra T € D(Grr) from
§1.25 (c.f. Theorem 1.26.1). This functor is a lax unital functor of unital chiral
categories, as in Remark 10.6.3 above.

By functoriality of modules for factorization algebras, this induces a functor:

Whit? =~ unit ~mod®*t(Whit?) — T-mod™*(D(Gry))

oo}

Whit 2
as desired.

26Working in families, there’s no a priori reason why this l-averaging should be defined, since we deal

with non-holonomic D-modules. This is essentially be the subject of §7.
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11. LAX PRESTACKS AND THE UNITAL RAN SPACE

11.1. In this section, we introduce Ran space as a prestack and its unital counterpart
as a lax prestack. We discuss sheaves on lax prestacks in detail.
An important point is Proposition-Construction 11.26.1, which we will use to construct

certain important unital sheaves of categories on Ran space.

11.2. Notation for categories of sets. Let Set denote the (1,1)-category of sets. Let
Set_,, < Set denote the full subcategory of finite sets. Let fSetz < Set_,, denote the non-
full subcategory with the same objects, but in which we only allow surjective morphisms.
Finally, let fSet < fSety denote the full subcategory of non-empty finite sets.

We consider each of these categories as a non-unital symmetric monoidal category un-
der disjoint unions. Of course, in all cases except fSet, this symmetric monoidal structure

is in fact unital with unit the empty set.

Remark 11.2.1. The notation fSet is borrowed from [Gaill].

11.3. Let G e Gpd be fixed. We define the groupoids:
Rang := colim G’
TefSetoP

Rang g = colim g!
IefSet}

Remark 11.3.1. Rang & is just Rang with a disjoint basepoint adjoined. We denote this

basepoint by ¢ where convenient and unambiguous.

The (resp. non-unital) symmetric monoidal structure on the functor I — G’ from
fSety (resp. fSet) determines the structure of (resp. non-unital) commutative monoid on
Rang o (resp. Rang), using that product in Cat commute with colimits in each variable.

We denote the corresponding maps:
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Rang x Rang — Rang

Rang & x Rang o — Rang g
both by add.

Example 11.3.2. Suppose that G € Set < Gpd. In this case, one can show that Rang is
actually a set as well, and that it identifies in the obvious way with the set of non-empty
finite subsets of §. Similarly, Rang & then identifies with the set of possibly empty finite

subsets of G.

Remark 11.3.3. Observe that G +— Rang and § — Rang 5 commute with sifted colimits
in the variable G. Indeed, colimits commute with colimits, and for I finite, § — G’
commutes with sifted colimits by definition of sifted.

Therefore, we can recover the functors § — Rang and § — Rang g as the left Kan

extensions of their restrictions to Set_.

11.4. Unital Ran categories. Let G be a groupoid. We will give three perspectives on

a certain category Rang”.

11.5. Partial-ordering. In the first construction, suppose first that G is a set. Recall
that in this case Rang g is the set of finite subsets of G. We consider this set as a
partially-ordered set under inclusions.

We then declare Rang" := Posetran, ,, to be the category associated with this partially-
ordered set. It is easy to see that this construction commutes with filtered colimits in
the variable G.

Following Remark 11.3.3, we then extend this definition to an arbitrary groupoid G

by declaring that it should commute with sifted colimits.

11.6. Unital Ran as a lax colimit. We now give a second construction of Rang".
We will begin by defining a second groupoid /Rangn, and then in Corollary 11.6.2 we

will show that ‘Rang” is isomorphic to Rang".
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Consider the functor Set”, — Gpd defined by I — G’. We denote this functor tem-
porarily by Wg.

We then form the Cartesian fibration coGroth(Vg) — Set?

<007

and define 'Rang" to
be the result of inverting all arrows in coGroth(Wg) that are Cartesian and lie over a
surjective morphism in Set_,, i.e., a morphism in fSet®.

Note that unions induce a canonical symmetric monoidal structure on 'Rang” (c.f.

§12.15).

Proposition 11.6.1. (1) The functor G — 'Rang” commutes with sifted colimits.
(2) For S a set, the functor:

coGroth(Vg) — Posetrang (11.6.1)

sending a datum (I € Set_y,z € G7) t0*" x € Rang g induces an equivalence:

'Rang" — Posetran, - (11.6.2)

Corollary 11.6.2. There is a functorial equivalence of Rang" ~ ’Rang" of symmetric

monoidal categories.

Proof of Proposition 11.6.1. The first part follows easily from the fact that § — G’
commutes with sifted colimits for I finite.

The map (11.6.1) sends Cartesian arrows over fSet” to isomorphisms, and therefore
induces the symmetric monoidal functor (11.6.2).

The prove that this functor is an equivalence (and in particular, that the left hand
side is a 1-category), we will explicitly construct an inverse.

For [ = {xy,...,z,} a finite subset of G, we attach an object of coGroth(¥g) in the

tautological way: a point of coGroth(Wg) is a pair of a finite set and a subset of § indexed

2THere we are using that objects of Posetrang ,, are points of Rang g.
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by that finite set, and we attach the finite set I with the tautological associated subset
of §. This operation is evidently functorial, and projecting to ‘'Rang™ evidently provides

an inverse.

O

11.7. Unital Ran space via tuples of finite sets. We now give a final construction
that more explicitly describes Rang™ as a category by essentially describing its objects
and morphisms and composition law. More precisely, we will describe its complete Segal

groupoid.

11.8. Recall that [n] denotes the totally ordered set {0,1,...,n} of order n + 1.

Let fSety; |, denote the (1,1)-category whose objects are data:

]OL)A&_“&)]”

with each I; a (possibly empty) finite set and ¥; an arbitrary map of sets, and where

morphisms are given by commutative diagrams:

¥1 ¥2 ¥n
Iy I I,
R
Jo J1 In

The data [n] — fSetgv[n] defines a simplicial category in the obvious way.

Ezample 11.8.1. For n = 0, we recover the category fSety by this construction. This is

the reason we include & in the notation.

Variant 11.8.2. We let fSet,, denote the subcategory of fSety in which we only allow

non-empty finite sets to appear.

11.9. For G a groupoid, we obtain a functor:
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—>,Op
fSetQ’[n] — Gpd
/ALy LI LN U 1

We define Rang’y 1, as the corresponding colimit:

Rang’y ) = colim G e Gpd. (11.9.1)
(To~5 12 21 L )efSet 07

FEzample 11.9.1. For n = 0, we recover Rang g through this construction.

—
s n

Variant 11.9.2. As in Remark 11.8.2, we also obtain groupoids Rang’,,; by forming the

colimit (11.9.1) over fSet;:”” instead of fSet /.

Ezample 11.9.3. For § a set, one can show as in Example 11.3.2 that Rang g [, is the
set with elements data So < S; < ... < S, € G with each S; finite.

Rang’,,; is similar, but with each 5; additionally assumed non-empty.

11.10.  We observe that the assignment [n] — Rangy ,,) defines a simplicial groupoid.

Indeed, for p : [m] — [n] a map in A, we are supposed to specify a map:

Rang g ,) = Rang g ;) - (11.10.1)

We construct it explicitly below.
Recall that [n] — fSety [, is functorial for [n] € A%. For p as above and Iy LN

L% e fSet 1), the induced object of fSety 1, is:

¥ (2) (m) R N
Ip(o) ry p(1) Xp—> - Xp—> p(m) € fSetgy[n] S fSetg?[m].

Observe that we have a corresponding map:

Gln — Gloem)
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Indeed, there is a canonical map I, — I,, and we restrict along it to obtain Gh =
HOIII(In, 9) — Hom(Ip(m), 9) = 911’“”).

This gives a map:

§' — Glm — Rang g 1

inducing (11.10.1) as desired.
Ezrample 11.10.1. In Example 11.9.3, this is the obvious simplicial structure.

11.11. One easily finds that the simplicial groupoid [n] — Rang’s 1, is a complete

Segal space, and therefore defines a category ” Rang".
Proposition 11.11.1. "Rang" is canonically identified with Rang".

Proof. For G a set, this follows from Example 11.9.3. But one clearly has that § —
Rang’; 1,,) commutes with sifted colimits.

O

Remark 11.11.2. That [n] — Rang’y [, is a simplicial commutative monoid gives rise
to the symmetric monoidal structure on ”Rang”. The above comparison with Rang"

evidently extends to match up these two symmetric monoidal structures.

11.12. Before moving on, we record for later use some notation for the most important
cases of the constructions. The reader may safely skip this section and refer back to it
as necessary.

First, we follow [Gaill] is using the notations:

Rang” := Rangy) Rang ', := Rang ;.

Our simplicial structure gives rise to the following natural maps:

We have the left and right forgetful maps:
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Oblv™ : Rang’y; — Rang

Oblv™ : Rang 'y — Rang

normalized so that for G a set, we have:

OblvT(ScT<c§G) =S5

Oblv7(ScTc<c9) =T.

We also have the map:

o : Rang gr — Rang

(Sc9—(ScSc9)
(the formula being literally true for G a set, and given the obvious meaning otherwise).

Note that o serves as a simultaneous section to both Oblv™ and Oblv™.

11.13. The disjoint loci. It is convenient to record the following constructions before
proceeding.

Recall that a monomorphism of groupoids is synonymous with “fully-faithful functor.”
In other words §; — G is a monomorphism if the morphism 7y(G;) — 7o(G2) is an

injective morphism of sets, and the canonical morphism:

§1— G2 x 7r0(91)

0(S2)

is an equivalence. Note that, for G, fixed, the assignment (G; — G3) — 70(5G1) E 7(G2)
defines a bijection between monomorphisms §; — G5 and subsets of 7 (Gs).

Returning to G our fixed, groupoid, define the monomorphism:

[Rang x Rang]ss; — Rang x Rang

by allowing those (homotopy) points in Rang x Rang whose class in:
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mo(Rang x Rang) = Rang,(g) x Rans gy = {S,T < my(G) pairs of finite subsets}

is given by a pair of disjoint subsets of my(9).

On the other hand, for I, J two non-empty finite sets, we also have the monomorphism:

[S" x §7]ais; — G x G’ (11.13.1)
defined in the same way, or equivalently, as:

[91 X Sj]disj = (91 x G7) X [Rang x Rang]gs;-

Rang x Rang

We have the canonical morphism:
. I J
1,92}&?0?[9 X 9 ]disj — [Rang X Rang]disj. (11132)

Lemma 11.13.1. The morphism (11.13.2) is an equivalence.

Proof. Immediate from the universality of colimits in PreStk.

O

Variant 11.13.2. Because the 1-full subcategory of Rang" formed by invertible morphisms
identifies with Rang, we obtain the corresponding full subcategory [Rang" x Rang"|4is;

of Rang" X Rang”.

11.14. Lax prestacks. We will digress temporarily to introduce the following conve-

nient formalism.
Definition 11.14.1. A lax prestack is an (accessible) functor AffSch”” — Cat.

We denote the 2-category of lax prestacks by PreStk'®®. We have an obvious embedding

PreStk < PreStk!® that admits a right adjoint we will denote by ) — YPreStk. Note
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that for ) a lax prestack and S an affine scheme, YP5%(S) is computed as the maximal
subgroupoid of Y(5).
We say a lax prestack is locally almost of finite type if it is obtained by left Kan

extension from AffSchy, ;.

11.15.  For any lax prestack ), we can make sense of QCoh())) as the category of natural

transformations ) — QCoh : AffSch®”? — Cat.

Remark 11.15.1. Because we require that ) take values in small categories, QCoh(}) is

locally small.

If Y is locally almost of finite type, then we similarly have categories IndCoh()) and
D(Y"). Note that formation of QCoh, IndCoh and D are contravariant in Y, and we denote
restriction functors in the usual ways.

Note that if ) is a usual prestack, i.e., Y takes values in Gpd < Cat, then the above

notions coincide with the usual ones.

11.16. Somewhat more explicitly, e.g. a quasi-coherent sheaf F on a lax prestack ) is

an assignment:

(f . S—>Y,Se AfFSch) — [*(F) € QCoh(S)
(T 9, 8L, Y, S, T e AffSch) — g* f*(F) ~ (f o g)*(F) (11.16.1)
(e: 7= g€ V() = 1*(9) - g"(9).
11.17. The notion of sheaf of categories on a lax prestack is somewhat more subtle:
some 2-categorical problems play a role.
Here is what we want to model:

naive d

As in §10.5.3, for Y a lax prestack we want to define two categories ShvCatjy" an

naive

ShvCat)y of sheaves of categories on ). The objects are the same, but ShvCat}y"™ <

ShvCat/y is merely a 1-full subcategory.
132



Sheaves of categories on ) admit a description as in (11.16.1). Then morphisms C — D

in ShvCat/y amount to the data:

(f : S—>y,SeAfFSch> — 1y 1 f5(C) — f*(D)

f*(€) —= ¢*(C)

(esmveys)e v S |

f*(D) — g¢*(D)
(T 2> 85,8, e AffSch) — g*(ny) = nyey.
Here the notation on the second line means that we specify a 2-morphism between the

compositions:

(£7(Q) = f7(D) = *(D)) — (f(C) = g°(C) = 4°(D)).

naive

A morphism as above is a morphism in ShvCat 7y if and only if these natural transfor-

mations are natural equivalences.

FEzample 11.17.1. For C = D = QCohy, we have the canonical equivalence:

HomSh\,Cat/y(QCohy, QCohy) = QCoh(Y).

Indeed, this is the main motivation for constructing ShvCat/y as we have.
By comparison, if ™ is the prestack obtained from ) by termwise inverting all

arrows, then we have:

Homgy,cygpg (Qohy, QCohy) = QCoh(Y™).

Here the induced functor QCoh(Y™) — QCoh()) is given by pullback along ) — Y™,

and is fully-faithful.
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Remark 11.17.2. We will give a precise construction of the above in what follows. The

reader who can take the above on faith may safely skip ahead to §11.20.

11.18. Lax functors. Given a category®® € and a 2-category D, there is a l-category
Hom!**(@, D), the category of laz functors @ — D, described as follows. Objects of
Hom'** (@, D) are functors F : € — D. Morphisms (alias: laz natural transformations)
n : F — G are given by data of natural maps nx : F(X) — G(X) defined for every
X € €, plus for every f: X — Y in €, we are given a 2-morphism in D between the

compositions:

“ (11.18.1)

For the identity map idx : X — X, this natural transformation should be the tautologi-
cal 2-isomorphism. Of course, the data above are required to be natural in all variables,
compatible with categorical operations (e.g., composition), all understood in the natural
meaning given by higher category theory.

Let D'~ denote the 1-category underlying D, in which we only allow invertible
2-morphisms. Note that Hom'*(€, D) contains Hom(C, D'~**) as a 1-full subcategory,
where objects are the same but morphisms require the 2-morphism (11.18.1) to be in-

vertible.

Remark 11.18.1. If the morphism f : X — Y € € above is invertible, then the natural
transformation (11.18.1) is necessarily invertible. Therefore, Hom'™* (€, D) = Hom(@, D'~¢at)

if € is a groupoid.

28More generally, a 2-category can be allowed, but we will not use the construction in this generality.
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Remark 11.18.2. Formation of Hom'* (@, D) is appropriately functorial in € and D. The
best way to say this precisely is to use the definition for € allowed to be a 2-category, and

to say that we have a certain 2-category of 2-categories where the category of functors

@ — D is taken to be Hom'*(€, D).

Remark 11.18.3. More generally, suppose that J is an indexing category and consider
objects i — C; and i — D, of Hom(J,2-Cat). Then we have a category Hom'* (@, D) con-
structed in the same way as above, where roughly, objects of Homl‘“’(e, D) are compatible
functors C; — D;, and morphisms are compatible systems of lax natural transformations.

One can alternatively recover this notion from the one presented above (in the case

J = ) by using the Grothendieck construction; we do not pursue this here.

11.19. In the framework of Remark 11.18.3, for J a lax prestack, we define ShvCat,y as
the category of lax morphisms ) — ShvCat,_, where ShvCat,_ is the functor AffSch®” —
2-Cat sending S to ShvCat/g.

We define Sthat%‘ﬁm as the category of usual functors J — ShvCat,_.

naive

Remark 11.19.1. Tautologically, ShvCat) contains ShvCat)y;" as a 1-full subcategory
with the same underlying groupoid, and therefore we may speak without hesitation about
a sheaf of categories on ) € PreStk'®®: the only ambiguity is in speaking of morphisms

of sheaves of categories. Of course, if ) is a usual prestack then this issue disappears.
Ezample 11.19.2. We have the obvious sheaf of categories QCohy, on V.

Remark 11.19.3. Note that both ShvCat/; and Sthat%‘ﬁ"”e admit obvious 2-categorical
enhancements, and we will sometimes abuse notation by denoting the corresponding
2-categories by the same notation.

Even better, they both are enriched over DGCat,,,;. We abuse notation in letting Hom
also denote the enriched Hom over DGCat,,,,;.

By Example 11.17.1, for C € ShvCat/y, we define I'()), C) € DGCatops as:
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['(Y, C) := Homghycat ,, (QCohy, C).

11.20. For every lax prestack ), recall that YFrSt* denotes the (non-lax) prestack un-
derlying ).

We have the following obvious lemma:

Lemma 11.20.1. The functors:

QCOh(y) N Qcoh<yPreStk)

ShvCat/y — ShvCat ypres

of restriction along the map:

yPreStk N y

are conservative.

11.21. Ran space for prestacks. If X is a prestack, then we obtain the prestack Rany
defined by

Rany(S) := Ranyg) € Gpd

for S € AffSch, and similarly, we have the prestack Rany s = Rany ][ and the lax
prestack Rany".

Each of Rany & and Rany” admits a commutative monoid structure defined by add,
and Rany admits a commutative semigroup structure.

Note that the prestack Ran&"’PmStk underlying Rany" is Rany .

Remark 11.21.1. We obtain prestacks Rany” and Rany’ by the same procedure, referring
to §11.12 for the corresponding construction for groupoids. We use the notations Oblv™

and Oblv™ in the same way as in loc. cit.
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We recall that Rany” should be thought of as parametrizing pairs S € 7' < X of finite
sets, and that Oblv™ is the forgetful map corresponding to the S-variable, while Oblv™

is the forgetful map corresponding to the T-variable.

11.22. By definition, a wunital quasi-coherent sheaf on Rany is a quasi-coherent sheaf
on Rany”. Similarly, we have the notion of unital sheaf of categories over Rany.
For X a scheme of finite type, we say a unital D-module on Rany is a quasi-coherent

sheaf on Rany’ = (Rany')4r, and similarly for unital crystal of categories on Rany.

Notation 11.22.1. For, say, C a unital sheaf of categories on Rany, we generally do not
differentiate in our notation between the underlying sheaves of categories on Rany" and

Rany g, leaving the distinction to context or to some explicit signifier where necessary.

11.23.  We will need the following general constructions with unital sheaves of categories
on Ran space.

For such C a unital sheaf of categories, we have a canonical unit or fusion morphism:

Fus = Fusc : Oblv™*(C) — Obly™*(C) € ShvCat/pany (11.23.1)

where the relevant notation was introduced in Remark 11.21.1.

Remark 11.23.1. Of course, such a map exists for unital quasi-coherent sheaves, D-

modules, etc.
The following hypothesis is natural to require on the unit of a chiral category.

Definition 11.23.2. The sheaf of categories C is adj-unital if the unit map Fusc admits

a right adjoint in the 2-category Sthat/Raanj.

11.24. For C as above, let Cyz € DGCatp: denote the fiber of C along the map

Spec(k) 2, Rany". Suppose that we are given an identification Cg ~ Vect.
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Applying the restriction functor for sheaves of categories on Rany" to Rany, the map

Susc produces a canonical map:

QCohgan, — C e ShvCat/gan,

or equivalently, an object unitc of I'(Rany, C).

Definition 11.24.1. The resulting object unitc is called the unit object of the unital sheaf

of categories C.

Terminology 11.24.2. According to Corollary 11.6.2, a unital sheaf of categories is equiv-
alent to a system (in the homotopical sense) of sheaves of categories Cy: € ShvCat/ys

defined for every finite set I, plus compatible morphisms:

Aj; (Cxl) - CxJ

for every f: I — J, with Ay : X/ — X' the induced map, and such that when f is a
surjection this map is an equivalence.

For a pair of finite sets I and J, the inclusion I < I'[[J therefore defines a map:

CxI QCOth — Cxl]_{J

that we will also refer to as a unit functor.

11.25. Let Y € PreStk'® be fixed. As in §19.4, we say that a functor D — C in ShvCaty
is (locally) fully-faithful if for every affine scheme S and map f : S — ) the corresponding
functor I'(S, f*(D)) — I'(S, f*(C)) is fully-faithful.

The following lemma records the immediate consequences of the definition.

Lemma 11.25.1. Let Y be a lax prestack.

(1) A morphism D — C in ShvCat)y is fully-faithful if and only if its restriction to

yPreStk is.
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(2) Every fully-faithful functor is a monomorphism in the category ShvCaty. More-
over, giwen D — C fully-faithful and a map ¢ : E — C, to see if © factors through
D it suffices to check this after restriction to Y7tk

(8) For D — C fully-faithful, the induced functor:

I'(y,D) - T, C)

18 fully-faithful.

(4) Fully-faithful functors are preserved under pullbacks Y — Y.

(5) Given C € ShvCatjy with restriction Ce ShvCat/ypesw, the datum of a fully-
faithful functor D — C in Sthat%‘ﬁm is equivalent to the datum of a fully-faithful

embedding:

5 — E S Shvcat/yPreStk

such that, for every test scheme S and pair of morphisms f,g : S — Y with a

2-morphism ¢ : f — g € Y(S5), the induced functor:

L(S,f*(0) - T(5.9%(0)
maps T'(S, f*(D)) to I'(S, g*(D)).

11.26. Next, we give a general construction of unital sheaves of categories that is useful,
for example, in dealing with the geometric Whittaker models. The reader without interest
in such applications may safely skip this material and go ahead to §11.27.

The following result is somewhat technical and perhaps difficult to interpret. We

present it in a more down-to-earth way in Remark 11.26.2.

Proposition-Construction 11.26.1. Suppose that C is an adj-unital sheaf of cate-
gories on Rany, D is a sheaf of categories on Rany o, and we are given a fully-faithful

functor:
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D — Ce ShvCat;Rany -

Suppose that we have Dy —> Cy ~ Vect, where the former is induced by the fully-
faithful functor and the latter is an extra piece of structure.

Let:

Fus¢ : Oblv™*(C) — Oblv™*(C) € ShvCat, gany,

denote the right adjoint to the functor Fusc from (11.23.1).
Suppose that Fusg sends Oblv™*(D) into Oblv*(D) < Oblv™*(C).

Suppose, moreover, that the corresponding functor:

Oblv™*(D) — Oblv™*(D) € ShvCat,rany

admits a left adjoint Fusp.
Then D inherits a canonical unital structure such that the functor D — C upgrades to

a functor of unital sheaves of categories on Rany. The unit for this structure is given by

Susp.

Remark 11.26.2. We use the notation of §10.5 to speak about unital sheaves of categories.
For compatibility with loc. cit., we use the notation X in place of X, and € and D in
place of C and D.
The question Proposition-Construction 11.26.1 addresses is, given € a unital sheaf of
categories and a (non-unital) subcategory D, when does D inherit a unital structure?
One easy answer: if the unit maps preserve D. L.e., in our heuristic, this says that for

every embedding:

{1, .,z Sz, Ty Tagt, - T} € X

we have:
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‘Dml,..l,zn """""" > {D:cl,...,a:m

[ { (11.26.1)

Coren = Cara
Proposition-Construction 11.26.1 gives a less obvious situation in which D still inherits
a unit structure.

It asks the following:

e The functors Cy, . 4, — Cu,... 4, should admit right adjoints.

e The right adjoints C,, ., — Cu . 4, should take D,, . to D, .., ie. we

s5Tm

ask for the mirror image of the diagram (11.26.1).

o The resulting functors Dy, . .. — D, . 4, should admit left adjoints.

n

In this case, D will admit a unit structure with unit maps:

Dxl,,..,x

- Dxl,...,az

n m

given by these left adjoints.

We emphasize that this does not at all force the diagram (11.26.1) to commute (and
it will not for Whittaker sheaves!): this is exactly the difference between ShvCat,_ and
ShvCat}*"**.

Warning 11.26.3. The heuristic of Remark 11.26.2 sweeps an important point under the
rug: it is not enough to check these properties pointwise — one needs to verify them as
the points move and are allowed to collide. In fact, §7 exists expressly to make such a

verification that is obvious pointwise.

Proof of Proposition-Construction 11.26.1. We freely use the description of unital Ran
space from §11.7. We also assume the 2-categorical formalism of [GR14], which allows

us to functorially pass to adjoints.
141



Let Rany"” denote the lax prestack in which we take opposite categories at every
point.

The adj-unital condition on C produces a sheaf of categories C on Rany™” with
“fusion” given by (11.26.1).

Then Lemma 11.25.1 produces a sheaf of categories D on Rany"” with a fully-faithful

functor:

D — C & ShvCat/{i .

Finally, passing to left adjoints, we obtain the desired result.

11.27. We define [Rany x Rany]4s; and [Rany” x Rany"]4s; as prestacks termwise by
§11.13.

Tautologically, the morphisms:

[Rany x Rany]qs; — Rany x Rany
(11.27.1)
[Rany" x Rany"|4s; — Rany” x Rany”

are termwise fully-faithful.

11.28. Let PreStk.,, and PreStk'®* ~denote the categories of correspondences associ-

ated with the complete categories PreStk and PreStk'®®. We regard these categories as
equipped with the usual symmetric monoidal structures computed objectwise by Carte-
sian products.

Because the morphisms (11.27.1) are monomorphisms, and similarly for the variant
for n-fold products of Ran space, we have canonical non-unital commutative algebra

structures on Rany in PreStk.,,., and Rany" in PreStk'e® | where the multiplication maps

corr)

are defined by the correspondences:
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[Rany x Rany]gs; [Rany" x Rany"]ais;
SN S\
Rany x Rany Rany Rany™ x Rany” Rany”
For Rany", this commutative algebra structure is unital, with the obvious unit.
We let addg;s; denote each of the right arrows in the correspondences above.
For emphasis, we will write Ran§’ and Ranjy™ “h for the resulting commutative algebras,
referring to the multiplication as the chiral product.
We will also denote by Rany. , the commutative monoid in PreStk given by Rany g
with the multiplication add, and similarly for Ran} € ComAlg,,,,_unia (PreStk) and
Ran}™* € ComAlg(PreStk'*").

Remark 11.28.1. For a more detailed approach on the construction of the chiral product,

see §14.7.

12. MULTIPLICATIVE SHEAVES AND CORRESPONDENCES

12.1. In this section, we provide a general language that we will apply in §13 to the

Ran space to obtain the theory of chiral categories.

12.2.  The material of this section is mostly a matter of organization of the type that
is not typically needed outside of homotopical algebra.

Therefore, we give an extended introduction to its contents in §12.3-12.8.

12.3. Algebras under correspondences. Our basic format is a (lax) prestack S with
a commutative algebra structure under correspondences.

Concretely, this means that we are given multiplication and unit correspondences:

mults unitg

y K and / \
SxS8 S * S
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satisfying various associativity and commutativity conditions. E.g., commutativity here
says that mults is given a Z/2Z-action with my being Z/2Z-equivariant with respect to
switching the two factors of the target, and ms being Z/2Z-equivariant with respect to

the trivial action on S.

Ezample 12.3.1. As in §10.9, Rany & and Rany" admit this structure using the loci of

disjoint pairs of s.

12.4. Multiplicative sheaves of categories. Given such a datum, we define in §12.21
the notion of multiplicative sheaf of categories on S.
Up to homotopic problems, this means that we give a sheaf of categories W on S along

with isomorphisms:

mi (V) ~ mjy (V) € ShvCat g

QCohyits = €5(W) € ShvCat) it

with these isomorphisms satisfying associativity and commutativity.

Remark 12.4.1. We also introduce a notion of weakly multiplicative sheaf of categories,

where e.g. we are only required to specify a morphism:

mi(V) — my(V)

12.5. Multiplicative sheaves. Given WV a multiplicative sheaf of categories on S, there
is a notion of multiplicative object 1 of W.

This is an object:

Y el(S,V)

with isomorphisms:
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my(¢) = m3(¢) € D(mults, mj(V)) ~ T'(mults, m3(V))

Ouits >~ €5(¢) € QCoh(units) ~ I'(mults, e5(V)).

Remark 12.5.1. As in Remark 12.4.1, there is a similar notion of weakly multiplicative

object of a weakly multiplicative sheaf of categories.

12.6. Modules. There are variants of the above notions for modules. Let S, W, and v
be as above.
A module space for S is a (lax) prestack M which is a module for S under correspon-

dences, so we are in particular given an action correspondence:

actpg
iy \aiz
SxM M
defining an associative and unital action of § in the sense of correspondences.
We can then speak about W-module categories on M: this is the datum of a sheaf of

categories @ being a module for W. This means that we are given isomorphisms:

act] (VX @) ~ act;(P) € ShvCat) e ,,

satisfying associativity and unitality.
In this case, we can also speak about modules for 1. Such a datum is an object

v € T'(M, @) equipped with associative and unital isomorphisms:

act] (Y X1 ¢) ~ acts(¢) € I'(actay, act] (W X1 P))) ~ ['(act pq, acts (P)).

Remark 12.6.1. The above is an indication that multiplicative sheaves can be defined

in much more generality: they can be defined for any colored operad. Then, e.g., taking
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the colored operad of choice to be the operad for a commutative algebra and a module

over it, one recovers the above.

12.7.  Finally, in §12.31-12.32 we mention that subcategories and quotients of multi-
plicative sheaves of categories inherit such structures when certain obvious conditions
are satisfied: for subcategories, the multiplicative isomorphisms should induce an iso-
morphism between the subcategories, and for quotient categories, there is an ideal-type
condition to be satisfied.

We refer to loc. cit., where these conditions are spelled out completely (and in a way

that should be easy to read given the above).

12.8. At this point, the reader may safely skip ahead to §13.

12.9. A Grothendieck construction among correspondences. The major techni-
cal tool we will use is the following construction:

Given a functor® F : JP — Catyes, we will define a certain category Groth,,.,(F'),
described below.

This construction will play a key role in setting up the theory of multiplicative sheaves
in the correspondence setting. With that said, the reader should be fine understanding
the heuristic description below and skipping ahead to §12.18 to see how it is actually
used (which we do not to explain presently).

Groth,,(F') has the following properties:

e Objects of Groth,,..(F') are pairs i € J and X; € F(7).
e Morphisms (7, X;) — (J, X;) in Groth.,(F) are given by the data of a correspon-

dence:

29The covariance of the functor F is for convenience: it is what occurs in practice for us, and the author
personally finds the notation easier to follow this way.
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VAN

in J, and a morphism:*°

e To compute compositions, we compose the correspondences in J in the usual way:

h x h'
J
»E/ \n
h n
NN
7 J k
and take the induced map:
e(pij (©jk)
ca(X) T2 B(X;) = me(X;) " na(X,)
in F'(hx;h').

Remark 12.9.1. In 12.15-12.16, we will explain that if J is equipped with a symmetric
monoidal structure and F' is lax symmetric monoidal, then Groth,,,..(F') inherits a natural

symmetric monoidal structure.

12.10. Suppose that J is a category equipped with a functor F' : J% — Cat,,.s, where
we recall that Cat,,.; denotes the category of cocomplete categories under functors com-

muting with all colimits.

300ur notation follows the convention of §2.10 here.
147



Lemma 12.10.1. IfJ admits fiber products, then the category Groth(F') admits pushouts.

The functor Groth(F) — J°° commutes with pushouts.

Proof. This follows from the results in [Lur09] §4.3.1.
For completeness, we note that pushouts can be computed in the following manner.

For a diagram:

Xy — Xi

|

X;

in Groth(F'), one forms the pushout of the diagram:

¥(Xg) — B(X))

|

a(X;)
in J;x,;, where o, 8 and ¥ are the maps @ X j — 4,1 X j — jand ¢ X, j — kin J.

O

Remark 12.10.2. The above can be generalized to any class of diagrams in place of
pushouts. Moreover, we only need to require that F' is a functor to the category of

categories admitting colimits for these diagrams under functors preserving such.

12.11. For a category C with pushouts, we let C,,_cor denote the category of corre-

spondences for €. We represent morphisms X — Y in C,,_.orr by diagrams:

X\H'/Y

148



Remark 12.11.1. The category C,p_corr, being a category of correspondences, admits a

canonical 2-category enhancement eg;fgr,,. For clarity the sake of clarity, we note that

this construction is normalized so that a 2-morphism:

(N )=\ )

is equivalent to a commutative diagram:

X Y
\Hl/
Hy
12.12. Suppose that J admits fiber products and F': I — Cat,,., is a functor.

By Lemma 12.10.1, we may form the category Groth(F)g,—corr-

12.13.  The category Groth(F")y,—corr may be described explicitly as follows.
The objects of Groth(F'),,—corr are pairs i € J, X; € F(i). Morphisms X; — X are

given by the data of a hat:

y h \i (12.13.1)
i J

in J, an object Hy € F(h), and a diagram:

a(X;) B(X;)

\ / (12.13.2)



in F'(h). Composition of two morphisms X; — X; — X}, is defined by forming the fiber

product:
h// h X h/
J
/ N
h Y (12.13.3)
7 \ / Y
7 Ji k

and then taking the induced diagram:

ea(X;) eB(X;) ms(X;) n0(Xk)
e(Hp) n(Hy)
\ . /

12.14. Define the 1-full subcategory Groth.,.,(F') S Groth(F)p_corr by allowing the
same objects, but only allowing morphisms (12.13.2) in which the map 8(X;) — Hj is
an equivalence in F'(h).

Note that Groth,..(F') is equipped with a functor to I, and the fiber of Groth,,.(F)
over the 1-full subcategory J°° of ... is equivalent to Groth(F'). Moreover, the fiber of

Groth,,..(F') over any object ¢ € J is equivalent to F'(7).

Variant 12.14.1. As in Remark 12.11.1, Groth(F"),p—cor admits a canonical 2-categorical

enhancement Groth(F);,“¢,.,.. We will define a similar 2-categorical structure Groth ., (F)27¢*

on Grothy,..(F).

In the explicit terms used above, 2-morphisms in Groth(F )(27;_0‘22” between morphisms

in Groth,,,.(F') are represented by pairs of commutative diagrams:
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and:

We will take the corresponding 2-categorical structure Groth,,,,.(F)* on Groth,,.(F)
where we also require that the corresponding morphism ¥(Hj/) — Hy, is an equivalence.
Note that the corresponding morphism Groth.y..(F) — I, upgrades to a functor

Groth g (F)* 76t — J2-cat of 2_categories, because Groth(F)sp—corr — Jeorr Obviously

does.

Remark 12.14.2. The reason for only allowing certain 2-morphisms in Variant 12.11.1 is

so that the fiber product:

GrOthcorr(F)Q_cat X jcorr

2—cat
Jeorr

identifies with Groth,,,.(F). Of course, here J.,., — I % is the embedding of the 2-full

corr

subcategory where we only allow invertible 2-morphisms.

12.15.  We digress to give a general construction from category theory.

Suppose that € is a category equipped with a functor:
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d: € — Cat.

Recall that objects of the base of the coCartesian fibration Groth(®) — € may be
described as pairs (Y, Z) consisting of Y € € and Z € (V).

Now suppose that € is equipped with a symmetric monoidal structure ® and ® is lax
symmetric monoidal. For Y}, Y5 € C we let ey, y, : FI(Y7) x ®(Y2) — ©(Y; ® Y2) denote
the corresponding functor.

In this case, Groth(®) is equipped with a canonical symmetric monoidal structure as
well so that Groth(®) — € is symmetric monoidal. E.g., the product is given pointwise

by the formula:

(Y1,21) ® (Ya, Z2) = (Y1 ® Ya, ey, v, (Z1, Z)).

Remark 12.15.1. This construction generalizes to any colored operad. In particular, the
above generalizes the the non-unital symmetric monoidal case and there is an obvious
variant in the presence of a module category for € with a (lax) compatible functor to

Cat.

Remark 12.15.2. In the above setting, let coGroth(®) — C° denote the correspond-
ing Cartesian fibration. By duality, in the above setting coGroth(®) carries a canonical
(resp. non-unital) symmetric monoidal structure such that coGroth(®) — € is symmetric

monoidal.

12.16. Suppose now that J is equipped with a symmetric monoidal structure and F' :
JP — Catyyes is lax symmetric monoidal for the Cartesian monoidal structure on Cat,es.

As in §12.15, Groth,,.(F’) carries a canonical symmetric monoidal structure such that
the forgetful functor Groth,y..(F') — Jeoprr is symmetric monoidal.

The same holds true with any operad replacing the commutative operad.
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12.17. Asin §19.3 and 11.19, we have a functor:

ShvCat_ : PreStk™“” — Cat,yys

that assigns to every lax prestack ) the category ShvCat/y of sheaves of categories on
V.

The functor ShvCat,_ is lax symmetric monoidal relative to the Cartesian product
monoidal structures, where for lax prestacks ) and Z the corresponding structure map

1s:

: ShvCat/y x ShvCat/z — ShvCat/y, z.

Remark 12.17.1. Note that for any lax prestacks Y; and ), we have:

QCOhy QCOhZ = QCOhsz.

The failure of I' to send [X] to ® accounts for the failure of the map QCoh())®QCoh(Z) —

QCoh(Y x Z) to be an isomorphism in general.

12.18.  We apply the above formalism to J = PreStk®® and F = ShvCat,_.

We obtain the symmetric monoidal category Groth,,(ShvCat,_) that we will denote
by the shorthand PreStk/“%:3™t We consider objects of PreStk!* >t a5 pairs of V a
lax prestack and C a sheaf of categories on ).

We let PreStk>"<at denote the subcategory of PreStk!®Shveat in which we only allow

corr corr

usual prestacks, not lax prestacks.

Remark 12.18.1. Note that PreStk,,., and its relatives are not locally small categories.

This fact will not cause any difficulties for us below.
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12.19. Digression: The 2-categorical structure on 2-categorical correspondences.
The following discussion will be used implicity in the text, but may be skipped by the
reader at first.

Let € be a 2-category and let C1=“* denote its underlying 1-category. We propose a
canonical 2-categorical enhancement C,,, of Gl cat .= (@l=cat) .

Note that there are two flavors of 2-morphism present: one coming from the corre-

spondence structure, and one coming from C.

elfcat

Exactly as in [GR14], one can construct a 2-category structure C.y.. on C. ¢

SO
that objects are X € €, I-morphisms X — Y in G, are given by correspondences

(X <« H —Y), and 2-morphisms:

()= \)

are given by diagrams:

H,
H, = (12.19.1)
X / \ Y.

Here the notation indicates that we specify a 2-morphism:

(HH —>Y)— (H — Hy,—>Y)

and that the left triangle of (12.19.1) is honestly commutative (i.e., there is an implicit

invertible 2-morphism).

Remark 12.19.1. The purpose of imposing this restriction on 2-morphisms is so that the

1-full subcategory €'~ of Gl ¢ inherits the 2-categorical structure C.
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klam

corr)

When discussing the 2-categorical structure of PreSt we will be implicitly referring

to the 2-categorical structure coming from the above.

Remark 12.19.2. This discussion can be integrated with the discussion of Variant 12.14.1

lax,ShvCat

in the obvious way. This is relevant for describing the 2-categorical structure on PreStk o

Note that in the framework above, there were two types of 2-morphisms; in this
setting, there are three. There are those of correspondence nature, those that reflect the
2-categorical structure of the base of the “fibration,” and those that reflect the fact that

the functor “F” takes values in 2-categories.

12.20. Let S be a commutative algebra in PreStk!®® = (PreStkl“x)corr.

corr

Definition 12.20.1. A weakly multiplicative sheaf of categories on S is a commutative

klaz,Sthat

orn mapping to § as a commutative algebra under the forgetful

algebra in PreSt

functor.

We let MultCat”(S) denote the category of weakly multiplicative sheaves of categories
on S, i.e., the appropriate category of commuative algebras.

Every weakly multiplicative sheaf of categories on § has an underlying sheaf of cate-
gories W € ShvCat/s. We sometimes abuse terminology in saying that W € ShvCat s itself

is a multiplicative sheaf of categories.

12.21. Let S be a commutative algebra in PreStk'®? with correspondences:
mults unitg
y Y and / \ (12.21.1)
SxS8 S * S

defining the multiplication and unit operations for S. Then a weakly multiplicative sheaf

of categories W € ShvCat/s has a “multiplication” map:

T : ME(WERIW) — mi (W) € ShvCat . (12.21.2)
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and a “unit” map:

e : QCohyyirs = €7 (Vect) — e5(V) € ShvCat i - (12.21.3)

We have similar maps for the n-ary multiplications for all n.

Definition 12.21.1. A weakly multiplicative sheaf of categories WV is multiplicative if, for

every n = 0, the corresponding structure map as above is an equivalence.

We let MultCat(S) < MultCat”(S) denote the category of multiplicative sheaves of

categories on S.

Example 12.21.2. QCohg carries a canonical structure of multiplicative sheaf on any S.

naive

Remark 12.21.3. We made a choice earlier by using ShvCat,_ in place of ShvCat
Had we used Sthat’]fwe instead of ShvCat,_, we would end up with different weakly
multiplicative sheaves, because e.g the morphism (12.21.2) would have to be a morphism
in ShvCat ;. However, we would have the same multiplicative sheaves of categories,
because the underlying groupoids of ShvCat,_ and Sthat’]‘_””e are the same.

However, while the objects would be the same, the morphisms allowed in MultCat(S)

are different by virtue of choosing ShvCat,_.

lax
corr)

12.22.  More generally, for any colored operad O and any ©-algebra S in PreStk
we have the category MultCatd(S), and the full subcategory MultCaty(S) where the
morphisms analogous to (12.21.2) corresponding to all operations are equivalences.

In particular, for S a non-unital commutative algebra in PreStk'®* | we have MultCat,on—unita (S )

corr)

the category of non-unital multiplicative sheaves of categories on S.

12.23. Let € be a symmetric monoidal 2-category and let X,Y € € be commutative

algebras.
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Recall that in this case we have a notion lax morphism of commutative algebras X —
Y, which gives rise in particular to a morphism X — Y and a natural transformation

between the compositions:

(X®X->YRY ->Y)
(X®X > X —>Y)
When C is the 2-category of categories, this gives rise to the usual notion of lax symmetric

monoidal functor between symmetric monoidal categories.

12.24. Note that PreStk'®S"CE carries a canonical structure of 2-category as in §12.19.
We see that the symmetric monoidal structure lifts to this enhancement as well.
Therefore, we obtain the category MultCat“’**(S) where we allow lax morphisms

(Iying over the identity for S). Then MultCat™"'"*(S) contains MultCat”(S) as a 1-full

subcategory with the same underlying groupoid.

Remark 12.24.1. We emphasize that the use of the term laz here is of different nature
from that of lax prestack, and rather reflect a general categorical notion applied in
two different circumstances. In particular, for a non-lax prestack S with commutative

algebra structure in PreStk.,.., there is a significant difference between the categories

MultCat""'**(S) and MultCat"(S).

Remark 12.24.2. Recall from Remark 12.19.2 that there are essentially three types of

klaz,Sthat
corr

2-morphisms in PreSt . Only the third from the list of loc. cit. plays a role in
the above discussion: the two coming from the discussion in the beginning of §12.19 are

irrelevant.

12.25.  Let W be a weakly multiplicative sheaf of categories on on a commutative algebra

S e PreStk!®®

corr*
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Definition 12.25.1. A weakly multiplicative object v in W is a morphism:

QCohg — W (12.25.1)

in the category MultCat/**(S).
We denote the category of weakly multiplicative objects in W by Mult” (V).

Notation 12.25.2. Any weakly multiplicative object ¥ in W has an underlying morphism
QCohs — WV in ShvCat/s, i.e., it defines an object of I'(S, V).
We denote this object also by 1/, and summarize the situation by saying that the object

1 is a weakly multiplicative object in W.

12.26. Here is a convenient reformulation of the definition of weakly multiplicative
object. The reader may skip this material and return to it where needed.
Recall that Groth(ShvCat,_) denotes the coCartesian fibration over PreStk'®* defined

by the functor ShvCat,_. We have the canonical functor:

I'(—, —) : Groth(ShvCat,_) — DGCatpn

(Y, Ce ShvCatyy) — I'(Y, C).
As in §12.14, a variant of the Grothendieck construction defines a category for this

section simply by G, whose objects are triples:

(y e PreStk'™®, C e ShvCat)y, T € T(V, C)) (12.26.1)

and where morphisms:

(yl € PreStk'“, C, e ShvCat )y, , F; € T(V, cl)) - (y2 € PreStk'“, C, e ShvCat )y, F» € T(h, cg))

are defined by the data of a correspondence:
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RN
» s

in PreStk™”, a morphism:

n: Oé*(cl) — ﬂ*<C2) € Sthat/H

and a morphism in I'(H, 5*(Cy)) from the image of F; to the image of F» under the two

morphisms:

TV, Cr) = T(H, a*(C1)) “8 T(H, 5*(C,))

and F(yg, C2) - F(H, B*(Cg))
The category G is canonically symmetric monoidal in the obvious way, and we have a

symmetric monoidal functor:

G — PreStklaz.shveat (12.26.2)

corr

given by forgetting the third term in (12.26.1).
Then, tautologically, a weakly multiplicative object in a weakly multiplicative sheaf
of categories W € MultCat"”(S) is equivalent to a commutative algebra in § mapping to

VW under the forgetful functor (12.26.2).

12.27. In the notation of §12.21, a weakly multiplicative object ¢ € W defines a mor-

phism:

N (M (Y K )) — m3(¢) € T'(mults, m3(V))

and similarly for the unit operation, and general n-ary multiplication operations.
159



Definition 12.27.1. The object v is a multiplicative object in W if these morphisms are

isomorphisms.

Remark 12.27.2. Tautologically, one can rephrase the definition by asking that the mor-
phism (12.25.1) be a morphism of commutative algebras and not a lax morphism, i.e.,

it should be a morphism in MultCat"(S).
We denote the resulting full subcategory of Mult” (W) by Mult(W¥).

Example 12.27.3. In the setting of Example 12.21.2, the object Og carries a canonical

multiplicative structure.

Remark 12.27.4. By Remark 12.21.3, the choice to use ShvCat,_ in place of Sthat?five
gives a different definition of multiplicative objects.

The key difference is explained in Example 11.17.1: we would not have “interesting”
multiplicative sheaves, i.e., they would be insensitive to the non-invertibility of mor-

phisms in the categories taken as values of S.
Remark 12.27.5. The category Mult(S) admits sifted colimits

12.28. In the setting of §12.22, for W € Multg we obtain the categories Multg (V) and
its full subcategory Multy (V).

For the sake of clarity: let us denote the category of colors underlying £ by DQ.
For an ©O-algebra in PreStk'®, we have in particular a rule assigning to & € DO a lax
prestack S¢. Then the role of QCoh /s from the symmetric monoidal case is played by the

rule assigning to each S¢ the sheaf of categories QCoh/s, .

12.29. Variant: Coalgebraic description. Let S be as above.
For any category € with fiber products, we have the canonical equivalence (C.op )% ~

Ceorr given by “fipping” the correspondence. This construction allows us to view S as a

lax
corr*

cocommutative coalgebra in PreStk
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We have the category MultCat® " (S) of op-weakly multiplicative sheaves of categories:
these are coalgebras in PreStk/4®:5"<at Jying over S.

corr

Any op-weakly multiplicative sheaf of categories has structure maps:

Nm : M5 (V) — mi (VX V) e ShvCat) s and
(12.29.1)
Ne : €5(V) — QCohypir, = €7 (Vect) € ShvCat i -

By general principles from [GR14], the subcategory of MultCat® " (S) where the maps
in (12.29.1) are equivalences is canonically equivalent to MultCat(S).

More generally, we have the following general result.

Proposition 12.29.1. Let MultCat“*¥(S) < MultCat”(S) denote the full subcate-
gory in which the arrows (12.21.2) and (12.21.3) admit left adjoint in the 2-category
ShvCat/ s and ShvCat) e, Tespectively (equivalently: the analogous result for all n-
ary operations in the commutative operad).

Similarly, define MultCat®~*“"¥%(S) to be the full subcategory of MultCat?~"(S) in
which the morphisms (12.29.1) admit right adjoints.

Then there is a canonical equivalence:

MultCat™"“¥(S) ~ MultCat®~*"¥(S)

commuting with forgetful functors to ShvCats, defined by passing to the appropriate

adjoints for all operations.

Remark 12.29.2. The roles of left and right could be interchanged in the statement of

this proposition, but we will apply it with the normalizations above.

12.30. Similarly, we have the notion of op-weakly multiplicative object of an op-multiplicative

sheaf of categories W € MultCat® " (S). We denote the resulting category by Mult” ™" (W),

In a multiplicative sheaf of categories W, considered as an op-weakly mutliplicative sheaf
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of categories as above, the corresponding notion of multiplicative object canonically
identifies with the category Mult(W) as defined in the “covariant” setting above.

The op-multiplicative setting has the following advantages:

Lemma 12.30.1. The categories MultCat” " (S) and Mult® " (V) are cocomplete (even

presentable) and the corresponding functors:

MultCat®”*(S) — ShvCat(S)

Mult* (W) — T(S, W)

commute with colimits.

12.31. Subcategories. Suppose that S is a commutative monoid in PreStk!®” =W is a
weakly multiplicative sheaf of categories on S, and ® — W is a fully-faithful functor in
ShvCat/g, in the sense of §11.26.

We say that ® is weakly compatible with the weakly multiplicative structure on W if
the morphism 7, from (12.21.2) maps mj(® X @) into m3(P) < mi(V), and 7, from
(12.21.3) factors through e} (®) < e5 (V).

In this case, ® inherits a unique weakly multiplicative structure such that the mor-
phism & — W upgrades to a morphism of weakly multiplicative sheaves of categories.

We say that ® is compatible if the induced weakly multiplicative structure is multi-

plicative.

A variant of this discussion holds for general colored operads.

lax
corr?

12.32. Localizations. Suppose that S is a commutative monoid in PreStk V is an
op-weakly multiplicative sheaf of categories on S, and ® < W is a full subcategory.
As in §19.6, we can form the quotient sheaf of categories W/® € ShvCats.

We say that ® is a weak ideal subcategory of W if the compositions:
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M (@) = mE (W) 5 (W W) — m? ((w/cb) (w/q>)) and

¢5(®) = 5 (W) > QCohung
are zero. Here the notations 7),, and 7. are taken from (12.29.1).
In this case, the quotient W/® inherits a canonical structure of op-weakly multiplica-
tive sheaf of categories on S.
If ¥ is a (non-weakly) multiplicative sheaf of categories on S, we say that ® is an
ideal subcategory if induced op-weakly multiplicative structure on the quotient W/® is
multiplicative.

Again, this material generalizes in the appropriate way to an arbitrary colored operad.

12.33. Functoriality. Before discussing functoriality of multiplicative sheaves, we re-
turn to the general framework of §12.16, so Z is a symmetric monoidal category that

admits fiber products and F': Z°% — Cat,s is a lax symmetric monoidal functor.

Lemma 12.33.1. Let O be a colored operad, and denote also by D0 the underlying
category in which we only allow 1-ary operations.

Then the functor:

Ago (Grothe,r,(F)) Hom(©%,Z%) - Algo (o) x  Hom(°,T%)

Hom(DO ZLeorr) Hom(DQ ZLeorr)

1s a coCartesian fibration.
This result follows from the following more general categorical lemma.

Lemma 12.33.2. Suppose that C and J are symmetric monoidal categories and F : C —
d is a symmetric monoidal functor.
Suppose that §° is a symmetric monoidal 1-full subcategory of § such that € x33° — J°

is a coCartesian fibration, and arrows in € coCartesian over J° are coCartesian over all
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J. Suppose moreover that arrows in € coCartesian over §° are preserved under tensor
products in C.

Suppose that we are given a symmetric monoidal category D, symmetric monoidal
functors G; : D — §, v+ = 1,2 and morphism n : G — Gy of symmetric monoidal
functors, such that for every X € D the morphism G1(X) — Go(X) is a morphism in
3%

Then the functor:

Hom®(D,C) x Al - Al

Hom®(D,7)
is coCartesian, where the fiber is taken over n. Here Hom® denotes the category of
symmetric monoidal functors. An arrow in Hom®(D, C) X pome(p gy A is coCartesian if

and only if, for every X € D, the induced arrow in C is coCartesian over J°.

Remark 12.33.3. That we can reduce Lemma 12.33.1 to the symmetric monoidal case
follows from the theory of monoidal envelopes in [Lurl2]. However, this is not a serious

point.

Proof (sketch). Using the description of symmetric monoidal categories in terms of co-
Cartesian fibrations, reduce to the case where we deal with with non-symmetric monoidal
categories and functors, where it follows by an appropriate generalization of [Lur09]

Proposition 3.1.2.1.

Remark 12.33.4. The above material is stated in a somewhat abstract way. It amounts
to the following. Suppose we are in the setting of Lemma 12.33.2, but let us omit the
words “symmetric monoidal” everywhere. The lemma then says that, given G; — G5 as
in loc. cit., and a él a lift of G to a functor D — €, then we obtain a functor 62 lifting

G5 and equipped with a morphism G~'1 — C~¥2.
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Naively: for X € D, define G5(X) as the tip of the coCartesian arrow in € with source
G41(X), and lying over the morphism Gy(X) — G(X) (which, by assumption, is an

arrow in J°). Then, for a morphism X — Y in D, we have the square:

The dotted arrow comes from the fact that G;(X) — Go(X) is a coCartesian arrow in
€, and from the morphism G4(X) — Go(Y) given by tracing out the lower edge of the

diagram.

Variant 12.33.5. In the setting of Lemma 12.33.2, suppose that C and J are taken to be
symmetric monoidal 2-categories instead, and J° is again a 1-full subcategory with the
same compatibility. Then the conclusion of Lemma 12.33.2 again holds, but in the 2-
categorical sense. In fact, there are two formulations: we can allow lax or strict morphisms
of symmetric monoidal functors, and the result holds in either setting.

Therefore, by Remark 12.14.2, we have a variant of Lemma 12.33.1 in which we use

the 2-categorical enhancements Groth,,..(F)? and J% .

12.34. Suppose that f : S — T is a morphism of commutative algebras (or D-algebras)

lax

cor. 18 a morphism in the 1-full

in PreStk” such that the underlying morphism in PreStk

corr

subcategory PreStk!®.

By Lemma 12.33.1 we obtain pullback functors:

f* : MultCat”(T) — MultCat”(S)
(12.34.1)
Mult” (W) — Mult“(f*(V))

where W e MultCat” (7). These functors preserve the full subcategories MultCat and

Mult respectively.
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Moreover, the 2-categorical version of Lemma 12.33.1, applied to account for the 2-
categorical struture on PreStk™”. implies that if  : f — ¢ is a 2-morphism of maps
fyg: S — T of commutative algebras as above, then we obtain natural transformations

of the corresponding functors (12.34.1).

12.35. A variant. We have the following variant of these definitions as well. Let S be

lax

cory &S above.

a commutative algebra in PreStk
Suppose that § : PreStk'®* — Cat (or valued in Cat,.,) is a lax symmetric monoidal
functor. Then, exactly as in the definition of multiplicative sheaf of categories, we have

a notion of multiplicative sheaf on S with values in §.

Example 12.35.1. If § = ShvCat,_, then we recover the notion of multiplicative sheaf of
categories on S.

If § = QCoh(—) with the exterior product defining the lax symmetric monoidal struc-
ture, then we recover the notion of multiplicative object in the multiplicative sheaf of

categories QCoh/s.

Example 12.35.2. If € is a symmetric monoidal category, then we may view € as a lax
symmetric monoidal functor = — Cat and therefore we obtain a lax symmetric monoidal

functor:

PreStk”? — » — Cat.

Taking this composition as the functor §, we recover a notion of multiplicative sheaf

with values in the symmetric monoidal category C.

Ezxample 12.35.3. One can use this framework to make sense of a factorizable monoidal

category.

Again, this discussion carries over to a general colored operad.
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13. CHIRAL CATEGORIES AND FACTORIZATION ALGEBRAS

13.1. In this section, we give the formalism of chiral categories and factorization alge-
bras in them by applying the material of §12 to Ran space.

We fix a prestack X throughout this section.

13.2. Chiral categories and factorization algebras. Here are the main definitions

of this section.

Definition 13.2.1. A chiral category or factorization category C on X is a non-unital
multiplicative category on the non-unital commutative algebra Ran&h € PreStk.,,» <
PreStk'es .
A factorization algebra A in a factorization category C is a multiplicative object of C.
A unital chiral category or unital factorization category C on X is a multiplicative
category on Ran" e PreStk/e® .

A wunital factorization algebra A in a unital factorization category is a multiplicative

object of C.

We denote the respective categories by:

Cat(X) Cat®" (X)
Algfact(c) Algfact(c)

un

for C a (resp. unital) chiral category. We have forgetful functors:

Cat®" (X) — Cat“*(X)
Algfact(c) N A|gfaCt(C).

un

for C a unital factorization category.

Remark 13.2.2. We refer to §10 for more concrete descriptions of factorization categories.
167



Remark 13.2.3. One immediately sees that e.g. factorization categories on X are equiv-

alent to unital multiplicative categories on Rany .

Terminology 13.2.4. We will frequently abuse language by saying that C € ShvCatgran,

is a chiral category, or A € I'(Rany, C) is a factorization algebra in C, and so on.

Notation 13.2.5. For C = QCohgan,, we write Alg™*(X) and Alg®*(X) in place of the

notation above, and refer to objects of these categories merely as (unital) factorization

algebras on X.

Terminology 13.2.6. We refer to morphisms in Cat™(X) and Cat® (X) as factorization

functors and unital factorization functors respectively.

Remark 13.2.7. The comparison with the theory of [FG12] is indirect, and therefore

postponed to Remark 13.19.5.

Remark 13.2.8. By definition of multiplicative sheaf, given a factorization functor C — D

we obtain a canonical morphism:

Algfact(c> _ Algfact(D)

compatible with forgetful functors. The same holds in the unital setting.

Variant 13.2.9. A weak chiral category is a weakly multiplicative sheaf of categories on
Ran$". We let Cat”“"(X) denote the category of weak chiral categories on X. Similarly, we
have the unital variant Cat*“"(X). Recall that Cat(X) (resp. Cat® (X)) is tautologically

a full subcategory of Cat”*"(X) (resp. Cat“"(X)).

un

13.3. The unit. Therefore, we may apply the discussion of §11.24, and we will use the
terminology of loc. cit. freely.

We will show that unitc admits a canonical unital factorization algebra structure.
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The chiral product on Rany™ induces commutative algebra structures on Rany" x Rany"
and [Rany" x Rany"|s;-
Moreover, one sees first that the maps:

p2

un un un
[Rany" x Rany"|gis; Ran

add

lax
corr)

are morphisms of commutative algebras in PreStk and that the obvious 2-morphism:

p2
un un - un
[Rany" x Rany"Jais; § Rany". (13.3.1)
add
is compatible with the commutative algebra structures.
Restricting to Rany" x{} and applying the discussion from §12.34 we see that unitc

inherits the canonical structure of unital factorization algebra.

fact

oet(C) admits a canonical map:

Furthermore, we see that any A € Alg

unitc — A (13.3.2)

of unital factorization algebras. We refer to this map as the unit map for A.

Remark 13.3.1. Given a unital factorization functor F': C — D, there is not necessarily

an identification F'(unitc) ~ unitp, but rather there is only a morphism:

unitp — F'(unitc) (13.3.3)

of unital factorization algebras in D.

Definition 13.3.2. A unital factorization functor is strictly unital if (13.3.3) is an equiv-
alence.

We let Cat®®

un,str

(X) denote the 1-full subcategory of Cat® (X) consisting of unital chiral

categories on X under strictly unital morphisms.
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Remark 13.3.3. We will sometimes say a general unital factorization functor is lax unital
to emphasize that it may not be (or is not) strictly unital, but the word “lax” should

be taken as redundant here.

Recalling that unital factorization algebras in C are by definition unital factoriza-
tion functors QCohy — C, we see that this construction generalizes the construction of

(13.3.2) presented above.

Remark 13.3.4. Remark 13.3.1 is a manifestation of the following general philosophy:
under the analogy between chiral categories and monoidal categories, chiral functors
correspond to laz monoidal functors (recall that in the setting of (unital) monoidal

categories, it is natural to assume that lax monoidal functors are merely lax unital).

13.4.  We now discuss a construction of unital factorization structures useful in §6.
Suppose that C is a unital factorization category and D — C is a fully-faithful functor
in ShvCat;Ranun.
Suppose that D is compatible with the factorization structure in the sense that we

have a (necessarily unique) factorization:

®
(D D) |[Ran5‘5” x Ran§™]ais; > add (D) |[Ran7§c” x Ran§™]gis;

| |

(C C> ’[Ran&" x Ranf™]ais; — add* (C) ’[Ran&" x Rany"]ais;

that is an equivalence, and moreover, the map:

D@ — C@ ~ Vect

is an equivalence as well.
In this case, the discussion of §12.31 implies that D inherits a canonical unital factor-

1zation structure.
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Remark 13.4.1. Note that there is an analogous version of this discussion for non-unital

factorization categories.

Moreover, in the unital setting, we observe that for factorization category C and
D < C e ShvCat/rany» as above, it suffices to check the compatibility with the unital fac-
torization structure by checking compatibility with the non-unital factorization structure
by restriction to Rany g (viewing non-unital factorization categories via 13.2.3).

Combining this discussion with Proposition-Construction 11.26.1, we obtain the fol-

lowing result:

Proposition 13.4.2. Suppose that C is a unital factorization category on X that is adj-
unital (as a mere unital sheaf of categories, i.e., ignoring the factorization structure).
Suppose that D is a factorization category on X equipped with a factorization functor
G : D — C such that the underlying morphism in ShvCat;gan, 15 fully-faithful.
Let D also denote the corresponding sheaf of categories on Rany & = Rany [ [ Spec(k)
where Dg = Vect.
Now suppose that the hypotheses of Proposition-Construction 11.26.1 are satisfied.
Then D with its unital structure from Proposition-Construction 11.26.1 inherits a
unique unital factorization structure such that the functor D — C € ShvCat/ganur up-

grades to a functor of unital factorization categories.

13.5. Localizations. We now render the material of §12.32 to the setting of factoriza-
tion categories.
Suppose that C is a unital factorization category on X and D < C € ShvCatgapu» is a

unital subcategory with Dg = 0 and such that the composition:

~

add*(D)|[Ranggn x Ran¥gis; add*(C) ![Ranggl x Rany™gis; —

(C C) |[Ran&” x Ran¥™]a;s; — <C/D C/D> |[Ran&” x Ran{™]gis;

is zero, and the induced map:
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add*(C/D)“Ran’j‘C” x Ran¥™]ais; — (C/D C/D> |[Ran&" x Ran}™]4;s;

is an equivalence.

Then C/D inherits a canonical structure of unital factorization category. Moreover,
the structure morphism C — C/D is a morphism of unital factorization categories. Note
that C/D satisfies a universal property: to give a unital factorization functor C/D — C’
is equivalent to give a functor C — C’ sending D to 0.

This material renders to the non-unital setting with the appropriate changes in nota-

tion.

13.6. Module spaces. Next, we discuss factorization modules. We begin with the non-

unital setting.

Definition 13.6.1. A factorization module space Z for Rany is a (by necessity: non-unital)
Ran&h—module in PreStk.,.. An augmented factorization module space (over Rany) is a

factorization module space equipped with a morphism:

w : Z — Rany

of prestacks (not merely a correspondence), with @ equipped with a structure of mor-

phism of Rangch—modules in PreStk.,,., where Rangch acts on itself by the chiral action.

Remark 13.6.2. To unwind this definition somewhat: a factorization module space Z is,

in particular, equipped with an action correspondence:

Hz

N

Rany xZ Z.

For an augmented factorization module space Z, the morphism w induces a map:
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Hz

|

Rany xZ [Rany x Rany]ais;
id x o L / \ L
Rany x Rany Rany

with the left square Cartesian.
Note that this means that if we are trying to define the structure of augmented
factorization module space on Z — Rany over Rany, we already know what Hz must

be, and the content lies in defining the map:

Hz = (Ranx XZ) x [Rany x Ranx|gis; — 2

Rany x Rany

and its higher compatibilities.

Ezample 13.6.3. Suppose that Z € PreStk admits an action (in PreStk) by Rany =

(Rany, add), and a Rany-equivariant morphism:

Z — Rany.

Then we claim that Z admits a canonical structure of augmented factorization module

space. Indeed, this follows in the same way that Rany inherits its chiral multiplication.

13.7. Examples of factorization module spaces. We have two key examples of
factorization module spaces: Rany ; introduced below for I a finite set, and Rany .
Let fSet; denote the category whose objects are arbitrary maps I — J and where

morphisms are commutative diagrams:
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s
\J’.

We define the X!-marked Ran space Rany ; as the colimit:

Rany;:= colim X’ € PreStk.
(I—J)efSet??

There is a canonical map Rany ; — XL,

Remark 13.7.1. The reader should think of Rany; as the parameter space of a map

[ WX,

— X and an embedding {z;} < J < X of finite subsets.

Then Rany; admits an obvious structure of Rany-module space, and therefore, by
Example 13.6.3, Rany ; obtains a canonical structure of augmented factorization module
space.

Similarly, Rany” admits a canonical Rany-module space structure.

Here we introduce the category fSet™ whose objects are arbitrary maps I — J of
non-empty finite sets, and where morphisms are commutative diagrams with termwise
surjective maps. We remark that fSet™ was introduced in 11.8 under the notation fSet).

Recall that we have:

Rany =  colim X’ e PreStk.
(I—J)efSet ™o

The action of Rany on Rany’ is then defined using the maps:

fSet x fSet™” — fSet

(K,(x:]—>J)> - (I - J] [ K).

174



Notation 13.7.2. We use the notation:

oyr 1 X — Rany

ORan, : Rany — Rany’

for the obvious sections.
13.8. Factorization modules. Let Z be a factorization Rany-module space.

Definition 13.8.1. As in §12.6, for C a chiral category on X, we have a notion of chiral
C-module category M over Z. We denote the resulting category by ModCatf}fz(C).
Moreover, for A a factorization algebra in C and M € ModCatfg(C), §12.6 gives a notion

of factorization A-module in M. We denote the resulting category by A—modfaCt(l\/I).

Remark 13.8.2. Our notation will frequently identify M e ModCat?Z(C) with its under-
lying sheaf of categories on Z, and M € A-mod™*(M) with the underlying object of
(2, M).

Remark 13.8.3. Using the general stability results in [Lur09], one readily sees that

A-mod™*(M) is a cocomplete DG category.

Remark 13.8.4. Let Z be a factorization Rany-module space. Suppose that we have
C and D chiral categories on X with chiral module categories M e ModCath(C), N e
ModCatfg(D). Suppose that we have a morphism of factorization module data®! from

(C,M) to (D,N) with underlying functors:

v:C—D
¢: M — N.

By Remark 13.2.8, there is an induced functor ¢ : Alg™*(C) — Alg™*(D), and as in

loc. cit., for A € Alg™"(C) we obtain a canonical functor:

31Really, we mean a morphism of multiplicative sheaves of categories with respect to the colored operad
controlling non-unital algebras with a left module.
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A-mod™* (M) — (A)-mod™*(N). (13.8.1)

Notation 13.8.5. When Z = Rany;, we use the notation ModCat%”g(C) in place of
ModCatfiﬁanxJ(C), and A-mod™“*(c%,(M)) in place of A-mod™*(M) when there is no risk
for confusion. We refer to e.g. such chiral module categories as chiral module categories
on X! (for C). Note that in this setting, A-mod™*(M) is a QCoh(X!)-module category.

We remark that these notions were defined previously in the I = = case in [BD04],

and for higher order I in [Roz10] and [FG12].

Ezxample 13.8.6. The restriction Cyr of C to X! can be regarded as a factorization module

category over C on X',

13.9. Unital modules. Next, we discuss the unital setting. The definitions are largely

parallel to those in the non-unital setting, and therefore we indicate them only briefly.

13.10. A wunital factorization module space for Rany is a lax prestack Z"" with an action

of Ran&"":h in PreStk'®® . Similarly, we have the notion of augmented unital factorization

corr*

un,c

module space: we ask in addition for a Ran, "_equivariant map @ : 2" — Rany™ that

is a morphism in the 1-full subcategory PreStk'®* of PreStk'**

corr*

Remark 13.10.1. Understanding these conditions explicitly works exactly as in the non-

unital setting of Remark 13.6.2.

For Z*" a unital factorization module space, we define Z := ZuPreStk ¢ PreStk to be
the underlying prestack. Clearly Z carries a canonical structure of factorization module

space for Rany.

Remark 13.10.2. We alert the reader to a potential source of confusion in this notation:

Z is constructed from Z"", and not the other way around.
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Terminology 13.10.3. We will sometimes abbreviate the situation by simply saying that
Z is a unital factorization module space for Rany, with the structure of Z“" being
implicit.

As in Example 13.6.3, we can produce augmented unital factorization module spaces

uUn,*

from augmented Ran,""-modules in PreStk'®®,

Ezample 13.10.4. From this construction, one obtains lax prestacks Rany™ and Rany';
with unital factorization module space structures, and with underlying prestacks Ran,’

and Rany ; respectively.

13.11. For Z"" a unital factorization module space for Rany, we define unital chiral
module category M for a unital chiral category C as in the non-unital case.*?
Similarly, we define unital factorization modules for a unital factorization algebra A

in a specified unital factorization module category.

We denote the resulting categories by:

ModCat? ,,,(C) and A-mod;s*(M).

The latter is a cocomplete DG category.

Notation 13.11.1. We will allow notations parallel to those from Notation 13.8.5 when
Z = RaHxJ.

Remark 13.11.2. The obvious counterpart to Remark 13.8.4 holds in the unital setting

just as well.

13.12. External fusion. Next, we discuss the external fusion construction. For defi-
niteness, we take X = Xyr. Let C be a chiral category on X and let A be a factorization

algebra in C.

32However, we emphasize that the colored operad we use is that controlling unital commutative algebras
equipped with a unital module.
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We give a description of what is expected from external fusion in this section, post-
poning its construction to 13.22.

For I a finite set, let C xI denote the corresponding sheaf of categories on X1, As
in Example 13.8.6, CXiR is a chiral module category for C. Therefore, we obtain the
category A-mod™*(C x1.) of chiral modules for A on X I

For I and J two finite sets, we form [X; x XJz]ais; and let:

CI,J,disj € Sthat/[XéRxx&]R]disj

denote the restriction of C 11, considered as a C-chiral module category in the natural
dR
way.

The external fusion construction is a canonical functor:

AfmodfaCt(CxéR) ® AfmodfaCt(CX&fR) — A-mod™*(C; ;4is;)- (13.12.1)

of D(XT)® D(X”)-module categories.
At the level of global sections on XJp, X7, and [ X1, x XJp]usj, this construction is

given by external product. We describe it completely at the module level in §13.22.

Remark 13.12.1. We do not expect (13.12.1) to be an equivalence in general: rather, we
expect this only after an appropriate renormalization, and this depends on the specific
factorization algebra under consideration. For the Kac-Moody factorization algebra, the

appropriate notion of renormalization is explained over a point in [FG09].
Remark 13.12.2. The functoriality of this construction will be enhanced in §14.14.

13.13. Modules for the unit factorization algebra. A key slogan in the unital
setting is that a unital module structure for the unit is no extra data. We make this
precise below.

Let C be a unital factorization category on X and let I be a finite set.
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Construction 13.13.1. Form the diagram:

p2
Rany ; s — Rany

gy

xl

As in §13.3, the map Fusc induces a functor:

Py (Cyr) — p5(C).

As in loc. cit., the material of §12.34 shows that the functor upgrades to give:

[(X!, Cyr) — unite -mod™*(Cyr).
This functor is easily seen to be left adjoint to the obvious restriction functor.

Theorem 13.13.2. For X = X g with X a finite type scheme, the restriction functor:

. f I
unitc fmodua?ft(CXéR) — I'(Xgp, Cx1 )
1s an equivalence with inverse given by Construction 13.13.1.

Proof. The composition:

D(Xgs Cx1,) = unitc -modyi®(Cxr ) — T(Xig, Cx1 )

is obviously the identity functor.

One easily constructs (for general X) a canonical natural transformation:

unitc -mod;*(Cyr ) — D(Xjp, Cy1 ) — unitc -modyit(Cys )

un un
unitc —modf2ct (Cyr )
dR

id
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using fusion.
But this natural transformation is immediately seen to be an equivalence over strata
in Ranx,, ; by exploiting factorization, and then the fact that we are dealing with D-

modules means that this map is an equivalence.

O

13.14. In §13.14-13.20, we compare our definition of factorization algebra with that of
[FG12] in the case X = Xyg.

This material is a bit digressive, and the reader may safely skip it and refer back to
it as necessary.

We fix X a separated scheme of finite type through §13.20.
Remark 13.14.1. We follow [FG12] closely in our definitions here.
Remark 13.14.2. What follows is, by necessity, entirely in the non-unital setting.

13.15.  We begin with a construction in the general framework as in §12: let S be a
commutative algebra in PreStk,,... We use the notation (12.21.1) for the correspondences
defining the multiplication and unit operations.

Under this hypothesis, Corollary 19.11.1 implies that ShvCat/s carries a canonical

symmetric monoidal structure with monoidal product the composition:

ShvCat s x ShvCat/s =5 ShvCat/sys — ShvCat)murs —= ShvCats.

We will denote the tensor product for this symmetric monoidal structure by:

V& = mo mj (VX ).

Remark 13.15.1. Observe that the functor:

I'(S, —) : ShvCat/s — DGCat o
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is lax symmetric monoidal relative to the symmetric monoidal structure % and the tensor
product of cocomplete DG categories, respectively. The structure maps are given by the

tautological map:
LS, V)RQI(S,0) > T'(S xS, VX $) — F(mults,m’l"(\ll CD)) =
[(S,momi(VEP)) = T(S,V % ).

Recall that we have defined MultCat” " (S) in §12.29. The following result follows

from the theory of correspondences.

Proposition 13.15.2. There is a canonical equivalence of categories:

MultCat”™"(S) ~ ComCoaIgla‘T((Sthat/& *))

Here the right hand side of the equality is the category of commutative coalgebras under

lax morphisms, as in §12.25.

13.16.  We will need the following material about the equivalence of Proposition 13.15.2.
Let:

ComCoaIgT'“dj<(Sthat/3, %)) c ComCoaIg((Sthat/S, %))

denote the full subcategory consisting of commutative coalgebras C for which the maps:

¥V - VU x ¥V and ¥V — QCohg

admit right adjoints in the category ShvCat,s (equivalently: we can ask this for all n-ary

operations). Define the full subcategory:

ComAlg!e ((Sthat/S, *)) c ComAIg((Sthat/g, *))

similarly, with left adjoints replacing the role of right adjoints.
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By the theory [GR14] of 2-categories, we obtain an equivalence:

ComAlg"*¥ ((ShVCat/s, *)) ~ ComCoalg”*%¥ ((Sthat/g, %)) (13.16.1)

given by passing to adjoints in our operations.
Observe that, by Proposition 19.9.1 (3), if my and ey are quasi-compact quasi-separated

schematic morphisms, then the category ComCoalg™*¥ ((Sthat/g, %)) contains

MuItCat"p_w’T'adj(S) < MultCat” " (S)
under the equivalence of Proposition 13.15.2. In particular, it contains MultCat(S).

13.17.  We now give a version of Proposition 13.15.2 for multiplicative sheaves.

Given V € ComAIg((Sthat/S, s}e)), the category I'(S, W) inherits a canonical symmet-
ric monoidal structure, coming from the lax symmetric monoidal structure of Remark
13.15.1.

Suppose that mo and ey are quasi-compact quasi-separated schematic morphisms.
Proposition 13.15.2, the conclusion of §13.16, and (13.16.1) imply that for ¥ € MultCat® "% (S),
['(S, V) inherits a canonical symmetric monoidal structure. We will denote the symmet-
ric monoidal product here by * as well.

Using the perspective of §12.26, we obtain the following counterpart to Proposition

13.15.2.

Proposition 13.17.1. For ¥ € MultCat® "V there is a canonical equivalence of

categories:

Mult? = (W) ~ ComAlg (F(s, V), *)

13.18.  'We now specialize to the case of Ran space.

We have the following lemma.
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Lemma 13.18.1. The morphism:

add : [Rany,, x Rany,,|ss; — Ranx,,

1s schematic and a quasi-compact étale morphism.

Proof. First, note that tautologically we have Ranx,, = (Ranx)qg.
Let S be an affine test scheme. As in Example 11.3.2, a morphism ¢ : S — [Ranx,, x Rany,, |ais;

is equivalent to giving two finite sets:

{1, o} and {¢1,.. op}

/
sm,

where each cpg is a map S — X, and such that, for every 1 <i <mnand 1 <1
the map o} x @2 : S — X x X factors through the open X x X\A(X).
Moreover, a map ¢ : S — Rany,, is equivalent to giving a finite collection of maps

Ur, ..., 0 Sred s X Therefore, we see that the fiber over such a map is the coproduct

of spaces:

S x [Xgr x Xgplais;

iR
with the coproduct taken over positive integers with n +m = r. This evidently gives the

result.

13.19. By Lemma 13.18.1, § := Rany,, & satisfies the requirements of the discussion
in §13.15-13.17. Therefore, for C € Cat®(X,p), the category:

I'(Rany,, g, C) = Vect @ I'(Rany,,,, C)
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inherits a symmetric monoidal structure. More precisely, I'(Rany,,, C) carries a non-
unital commutative algebra structure in DGCat,,,;, and this unital symmetric monoidal
structure arises by formally adding a unit (in DGCateyp)-

We refer to this (resp. non-unital) symmetric monoidal structure as the chiral tensor
product on I'(Ranx,,, o, C) (resp. I'(Rany,,,, C)). We denote the resulting binary product
by — &]3 —.

Definition 13.19.1. A chiral coalgebra in C is a non-unital commutative coalgebra in

ch
(F(RanXdR, C),®). We denote the resulting category by Coalg"(C).

Remark 13.19.2. The category Coalg®"(C) is cocomplete.

Remark 13.19.3. We can identify Coalg®"(C) with the full subcategory of unital coal-
ch
gebras in <F(Ran Xyn &> C),®) consisting of those coalgebras such that the counit map

becomes an isomorphism after applying the projection:

ch
<F(RanXdR,@, Q), ®> = Vect @ I'(Rany,,,, C) — Vect.
The following results from Proposition 13.17.1.

Proposition 13.19.4. There is a canonical equivalence:

Mult?”~*  (C) ~ Coalg™(C).

non—unital

Here, as in §13.2, the subscript “non-unital” indicates that we take the operad controlling

non-unital commutative algebras.

Remark 13.19.5. This proposition implies that, for X a separated scheme of finite type,
the category AIgfaCt(XdR) coincides with the category of factorization algebras as defined
in [FG12]. A variant of the above material with general colored operads allows us to put

the theory of chiral modules from [FG12] into our framework as well.
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13.20. Let C be a factorization category on Xyg.

Definition 13.20.1. We define the category LieAlg(C) of chiral Lie algebras in C as the
ch
category of Lie algebras in (F(RanXdR, Q), ®>.
We define the full subcategory AIgCh(C) c LieAlg(C) of chiral algebras in C to consist

of those chiral Lie algebras whose underlying object lies in the full subcategory:

F(XdR, C|XdR) c F(RanXdR, C)

13.21. Fix C e Cat”(X,p), and let C = I'(Rany,,, C) be considered a non-unital algebra
in DGCat,,,; through the chiral tensor product.

As in [FG12], we have the following result:

Theorem 13.21.1. The Koszul duality functor:

LieAlg™ (C) = LieAlg(C) — ComCoalg(€) =: Coalg™(C)

18 an equivalence.

This equivalence identifies the full subcategories Alg™(C) and Alg™*(C).

Warning 13.21.2. We remind that this functor does not commute with forgetful functors
to C: rather, the composition LieAlg(€) — ComCoalg(C) O @ is given by the (reduced)

homological Chevalley complex.

13.22. Construction of external fusion. As promised in §13.12, we now carefully

describe the external fusion construction.

Remark 13.22.1. The construction imitates the construction of the tensor product of

modules as the geometric realization of the bar construction.

Recall the prestack Rany,, ; (resp. Rany,, s) from Example 13.7. Let o; (resp. o)
denote the structure map to Ranx,,. Let Ranx,, 1 s 4is; denote the variant of Ranx,, 7117

. . . . add
where we require our points in XJp x X5 to lie [X1p x XJp]ais; —> Ranx,,,.
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Let M € A-mod®*(Cys ) and N € A-mod™*(Cyy ). Let M e D(Rany,, s, 0%(C))
be the object defining the factorization module structure for M, and let N be defined
similarly.

We form the augmented simplicial object:

—_
. —= [Ranx,,r x Ranx,, o x Ranx,, slaisj == [Ranx,,r x Ranx,, slaisj — Ranx,, 1.7disj

where e.g. [Ranx,, ; X Ranx,, s]s; denotes the locus where the corresponding points of
Rany,r x Rany,, are disjoint, and [Ranx,, ; x Rany,, x Ranx,, s]as; denotes the locus
where the triple of points of Rany,, are pairwise disjoint, etc. The two horizontal maps
in the above simplicial object are given by the action maps for Rany,, ; and Ranx,, s
respectively.

We form a compatible sheaf of categories on this simplicial diagram by pullback of C
from Ranx,,. Indeed, the factorization of C allows us to form this construction.

Then the structure of module on M and N allows us to form a compatible system of
global sections here, where on the first term we take Mx N (i.e., its restriction to the
disjoint locus), and on the second term we take ]\7.%[ N, ]\7A XA N, etc.

Observe that our augmented simplicial object above is an étale hypercovering of
Rany,, 1745 (c.f. Lemma 13.18.1). Therefore, by étale hyperdescent, this defines an
object on Ranx,, 1,7.4s;- One easily verifies that it carries a canonical structure

of A-module as desired.

Remark 13.22.2. The above works in the unital setting as well, showing that the external

fusion of unital modules is naturally a unital module as well.

14. CHIRAL CATEGORIES VIA PARTITIONS

14.1. 1In this section, we give an alternative approach to the theory of chiral categories

and factorization algebras using categories of partitions.
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This approach is a much more faithful realization of the heuristic of §1.13. In par-
ticular, it gives a theory of chiral categories on a finite type scheme that uses only
finite-dimensional geometry, i.e., the Ran space is not explicitly mentioned.

After developing this material, the author found that the main idea of this approach
independently appears already in a preprint of [Reil2].

We fix a prestack X throughout this section.

Remark 14.1.1. In this section, we prove a result that says that giving a factorization

category is equivalent to giving data:

Cyr € Sthat/xz

and equivalences:

Cor Cx]|[x1xxJ] ~ Cx]]_[J|[x1xxJ]disj € Shvcat/[xIXxJ]

disj disj
satisfying further compatibilities.
The reader willing to take such statements on faith, or who believes this to be a

tautology given our earlier material, is advised to skip this section entirely.

Remark 14.1.2. For the reader who has continued reader past Remark 14.1.1, we note
what technical issues occur.

By definition, a multiplicative sheaf on a prestack with a multiplicative structure in the
correspondence category (say, associative but not assumed commutative, for simplicity
of terminology) is an algebra in a certain correspondence category.

Roughly, in higher algebra, an algebra somewhere is something like a simplicial object.
A priori, if one thinks out what a simplicial object in a correspondence category is in

terms of the original category, it appears to be a very large quantity of data.
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This is exactly what we are trying to do here: to give a definition of chiral category
that does not mention Ran space or correspondences, we need to give an alternative
description of algebras in correspondence categories.

This is exactly what is done in the appendix §20: we give a workable perspective on
simplicial objects in correspondence categories, or more generally, on any functor into a
correspondence category.

This is the main technique that is exploited in this section; the remainder consists of

details.

14.2.  We begin by defining certain combinatorial categories of partitions.
Define the (1,1)-category Part of partitions as the category with objects surjections
(p: I - J) of non-empty finite sets and with morphisms from (p; : Iy = J1) to (ps :

I, — Jy) defined by commutative diagrams:

L ——= I,
t P i P2 (14.2.1)
Jp =<— )
under the obvious compositions.
Similarly, define Part,,, as the category whose objects are (arbitrary) maps p: I — J
of (possibly empty) finite sets and in which morphisms (p; : Iy — J1) — (pa : Iy — Jo)

are commutative diagrams:

[1—>[2

|n|»

J1<—J2

Remark 14.2.1. One can think of such a map p: I — J as a partition of I indexed by

I;, I; == p~'(j). Allowing non-surjective

J, where the associated partition is I = ]_[je 1

maps in Part,, then translates into allowing partitions into possibly empty sets.
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Remark 14.2.2. Note that Part contains fSet as the full subcategory of partitions indexed
by a singleton set. The functor fSet”” — Part® is cofinal. There is a canonical splitting
Part — fSet of this functor sending (p : [ — J) € Part to I.

The same remarks hold with Part,, replacing Part and Set.., replacing fSet.

We have a non-unital symmetric monoidal structure on Part given by disjoint union
of (pairs of) sets. We denote the corresponding product by [, although it is not the

coproduct on this category.

Remark 14.2.3. In the notation of §20, we have Part = Tw(fSet) and Part,,, = Tw(Set_,),

compatibly with (non-unital for Part) symmetric monoidal structures.

14.3.  Define the prestack [X x X]4s; as in (11.13.1). That is, it is the open subprestack
of X? defined by the condition that a pair of maps ¢ = (1, p2) : S — X? factors through
[X x X]ais; if the diagram:

_—

S=<—=uU
S

1)
s -
is Cartesian.

For (p: I — J) € Part,,, define U(p) € PreStk as the open subprestack of X! defined

for an affine test scheme S by:

for every iy, iy € I with p(iy) # p(i2) the map
U(p)(S) = {@ = (@i)ier : S — X! | }
(¢ir, i) + S — X? factors through [X x X] s,

(14.3.1)
Ezample 14.3.1. For p the identity map {1,2} — {1,2} we have U(p) = [X x X]ais;-
Given a map € : (py : 1 - J1) — (p2 : Iy - J) in Part,,, we obtain a map

U(e) : U(py) — U(p1) induced by the diagram:
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This gives a functor:

U : Part;? — PreStk (14.3.2)

sending p to U(p). It is naturally colax symmetric monoidal relative to the Cartesian

product on the target, i.e., we have natural maps:

Ulp] [a) = Ulp) x U(g). (14.3.3)

Remark 14.3.2. We will also denote the restriction of the functor (14.3.2) to Part®” by
U.

14.4. Main result. We imitate the earlier constructions to obtain the lax symmetric

monoidal functor:

ShvCat/y : Part,, — Cates

(p I — J) — Sthat/U(p).
and thereby (c.f. §12.15) the symmetric monoidal functor of symmetric monoidal cate-

gories:

Groth(ShvCat/;;) — Party,.

The main construction of this section is given by the following.
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Proposition-Construction 14.4.1. (1) The category Cat(X) is equivalent to the

category of symmetric monoidal’® sections:

Groth(ShvCat /)
7 l (14.4.1)
Part % Part,,,,
sending all arrows in Part to coCartesian arrows.

(2) The category Cat" ., (X) (see Remark 13.3.1 for the notation) is canonically

un,str

equivalent to the category of symmetric monoidal sections:

p— Cu,.p) € ShvCat/ir, () (14.4.2)

of Groth(ShvCat ;) — Part,,, such that:
(a) Arrows in Part map to coCartesian arrows.

(b) Arrows in:

Set? = {p:J — I} < Party,

map to coCartesian arrows.

Remark 14.4.2. Tt will follow from the construction that Proposition-Construction 14.4.1

satisfies the following compatibilities.

e The non-unital symmetric monoidal functor Part — Part,,, induces the restriction

functor:

Cat®”

un,str

() — Cat™(X).

e Restricting a functor (14.4.1) to:

33Necessarily understood in the sense of non-unital symmetric monoidal categories and functors.
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fSet = {I — *} < Part

(necessarily forgetting the symmetric monoidal structure), we obtain a compati-
ble system of sheaves of categories on the X! for I € fSet, i.e., a sheaf of categories

on Rany. This corresponds to the restriction:

Cat™(X) — ShvCat,Ran, -

e Restricting a functor (14.4.2) to:

Set_oo = {I — =} < Party,

we obtain a lax compatible system of sheaves of categories on the X! for I €
Set_,,, and that is strictly compatible with respect to morphisms in fSet. By
Corollary 11.6.2, this amounts to a sheaf of categories on Rany".

This construction then corresponds to the restriction:

Cat®”

un,str

(X) — ShvCat; gans.

Remark 14.4.3. The reader who runs through the definitions should be convinced that
Proposition-Construction 14.4.1 is essentially tautological. The only difficulties arising
below are of the usual sort in higher category theory: we just provide the necessary

categorical language for the obvious constructions.

Remark 14.4.4. The technical perspective on chiral categories provided by Proposition-
Construction 14.4.1 differs from the one provided in §13 in that Ran space is not explicitly
mentioned. This is somewhat convenient for constructing chiral categories from geome-
try, but is somewhat complicates developing the theory of §13. Moreover, working with

non-strict unital chiral functors is not technically convenient in the partition framework.
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One can readily develop much of the language of (unital and non-unital) chiral algebras

and their modules in this framework.

14.5. We will develop a minimal working theory of operadic right Kan extensions,
similar to the theory of operadic left Kan extensions in [Lurl2] §2. This material can be
significantly generalized, but we take a more pedestrian approach.

The main result here is the following.

Proposition 14.5.1. Suppose that we are given a symmetric monoidal functor ¥ : €; —
Cy of symmetric monoidal categories such that for every X,Y € @y the tensor product

functor:

G1,X/ X 6'1,Y/ — 61,X®Y/

is op-cofinal. Here, e.g., Cy x, is the associated undercategory.
Suppose that D is a symmetric monoidal category that is complete as a category.

Then the functor:

Hom®'*(Cy, D) — Hom®"™*(€;, D)

admits a right adjoint. At the level of mere functors, this right adjoint is computed as

the right Kan extension.

Proof. Suppose that F' is a lax symmetric monoidal functor €; — D. Let F® : ¥ — D®
denote the corresponding functor of categories coCartesian over Segal’s category I, in
the notation of [Lurl2].

Standard arguments show that our hypotheses imply that the relative right Kan ex-
tension of F'®, taken relative to I', exists, and preserves the appropriate coCartesian
arrows to define a lax symmetric monoidal functor. This functor obviously computes the
desired right adjoint. Moreover, by [Lur09] Corollary 4.3.1.16, we see that this relative

right Kan extension restricts to the usual right Kan extension over {x} € I", as desired.
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Remark 14.5.2. As the proof shows, we do not need to assume that D is complete: for
a fixed lax symmetric monoidal functor F': €; — D we only need to assume that the

relevant limits exist for the right adjoint to be defined on F.

Remark 14.5.3. In more down-to-earth terms, let F: Gy — D be the right Kan extension

of a lax symmetric monoidal functor F': €; — D. For XY € €y, we have a diagram:

~

f’(X) RFY)= lm FX)® lm FY') — lim FX")® F(Y")
X'eC, Y'e€; X'e€1, X > (X')
XU (X) Y UW(Y7) Y€€y, Y > U (Y')

-

lim F(Z)=F(XQ®Y).
Ze@l
XQY —>U(Z)

Moreover, the left arrow at the end is an equivalence by the cofinality assumption.

Therefore, we obtain a canonical map:

~ ~

FX)®F(Y) - F(XQY)

as desired.

14.6. Let € be a symmetric monoidal category. Then a unital commutative algebra in €
is equivalent to a symmetric monoidal functor Set_,, — €, and a non-unital commutative
algebra is equivalent to a non-unital symmetric monoidal functor fSet — € (see [Lurl2]
§2.2.4).

Therefore, a unital commutative algebra in C.,,., is equivalent to a symmetric monoidal
functor Set_., — C.orr- By §20, this data is equivalent to a symmetric monoidal functor

Part,, = Tw(Set_,,) — € such that, for I > J % K in Set_,, the diagram:
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(145 K) — (] - K)
L l (14.6.1)
(I J) — (] =)
maps to a Cartesian diagram.
Similarly, a non-unital commutative algebra in C.,, is equivalent to a non-unital
symmetric monoidal functor Part — € sending the appropriate squares to Cartesian
squares.

More explicitly: suppose we are given a non-unital symmetric monoidal functor F' :

Part — C. We have the following correspondence in Part:

({1,2} — =)

— N

({12} — {1,2}) (x = #)

and its image under F' defines a correspondence:

F({1,2} — «)
AR A A
for A := F(» — =), and this correspondence defines the multiplication for A in C.y..

The condition on fiber squares is relevant for considering associativity.

14.7.  As in the framework of §11, let § be a groupoid.
For (p : I — J) € Part, define the full subgroupoid Ranépfdisj c Rané by only allowing

objects in my(Ran?t) = Ran’ corresponding to I-tuples:
J g m0(9) g

(S; € m(G) non-empty and finite);c;
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such that, for every iy # iy € I with p(i1) = p(iz), the point (S;,, S;,) € Rang x Rang lies

in [Rang X Rang]disj.

Example 14.7.1. For I = {1,2} and J = =, we have:

I
Rang , .. = [Rang x Rang]as;.

On the other hand, for p a bijection we have Ranévp_disj = Rané.
In general, one writes I as the disjoint union of the sets I; = p~'(j) and then
Rané,pfdisj is the product over J of the loci [Ranéj Jais; in Ranéj where all collections

of points in G are pairwise disjoint.

We claim that this construction extends to a symmetric monoidal functor:

Part — Gpd
(14.7.1)

I
(p:I—J)— Rang, 4. -

Indeed, first note that we have a canonical symmetric monoidal functor Part — Gpd

sending [ — Rané factoring through the projection Part — fSet and encoding the non-

unital commutative algebra structure from §11.3. One immediately verifies that this

induces the functor (14.7.1) in the obvious way.

Remark 14.7.2. The functor (14.7.1) has the following special property: given morphisms
1% 73 Kin fSet, the square (14.6.1) maps to a Cartesian square of groupoids.
Therefore, our functor defines the structure of non-unital commutative algebra on Rang
in Gpd and this is exactly the chiral product.

corr)

By functoriality of the above construction in G, it applies just as well in the setting

in which prestacks replace groupoids.

14.8.  We will need the following combinatorial digression.

Define the category Trip (of “triples”) to consist of diagrams:
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I —»J—- K

of non-empty finite sets. For morphisms, we take surjective morphisms that are con-
travariant in the I and K-variables and covariant in J. That is, morphisms are given by

commutative diagrams:

p1 q1

Tam i,@ } Tx (14.8.1)

Note that Trip is a non-unital symmetric monoidal category under disjoint unions.

Notation 14.8.1. For (I 5T5 K) € Trip and k € K, we define:

I, == (qo p)_l(k)

(pr = Iy = Ji) == plu,-

Similarly, for j € J we let I; == p~'(j).

Suppose that we are given a morphism (14.8.1) in Trip. Fix ¥’ € K3 and let k = v(k') €

K;. We will construct a canonical map:

U(Pl,x(k’)) = U(pir) = U(paw)- (14.8.2)

First, note that we can write py;, : [, — J1 as a disjoint union of terms p; ,, : [; , —
J1 . over k € Y~ 1(k), where e.g. I, is the fiber over x of the map I; — K, defined by
the diagram (14.8.2).

Therefore, by the colax symmetric monoidal structure on (14.3.2), we obtain a canon-

ical morphism:
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U(p1k) H U(pix) = Ulpiw)

rex—1(k)

where this second morphism is the projection.

Now the commutative diagram:

Il,k’ —> Jlak/
IQ,k’ —> J2,k’

gives a morphism:

U(ka') - U(pz,k/)

inducing (14.8.2) as desired.

This defines a symmetric monoidal functor:

¥TP . Trip — PreStk

14.8.3
(I J —K)— []Ulp). S

keK

where for (14.8.1), the functoriality is defined by the morphism:

H Upir) — H U(pax)

ke Ky k’EKQ

given on a coordinate k' € K3 by:

4.
H Uprr) — U(Pl,x(k' ) L U(paw)-

k‘EKl
Remark 14.8.2. Trip® is the non-unital monoidal envelope of Part in the sense of [Lurl2],

and the functor ¥ is induced by the functor U : Part®” — PreStk in this way.

14.9. We have a symmetric monoidal functor:
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Trip — Part
(14.9.1)
(I —»J—>K)—(J]—>K).

Therefore, we obtain a second symmetric functor:

®TP : Trip — PreStk

by composing (14.7.1) with (14.9.1).

We have a canonical natural transformation of symmetric monoidal functors:

77Tnp . \IjTr'p N (I)Trlp

evaluated termwise at (I — J — K) € Trip as:

WP = J > K) = [ Up) = Ty [Rand lasg —— ®7(1 = ] — K)
erK xlk HjeJ Ran;)]Ck
HjeJ X HjeJ Rany .

Remark 14.9.1. We will revisit the construction of 5™ is §14.11 below.

14.10. We will need the following technical observation in what follows.

Fix (J. — K.) € Part, ¢ = 1, 2. Form the overcategory:

Trip/(Jl [[J2—~K1]]K2)

with respect to (14.9.1).

We claim that the functor of disjoint union:
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Trip/(Kl_»Jl) X Trip/(K2_»J2) — Trip/(JIHJQ_"KlLIK2)

is an equivalence.

By definition, Trip, s, 11k, []75) 18 the category of diagrams:

JlL[JQ —> KlL[KQ
(I" - J' — K') € Trip, plus $ T

J' K’

under appropriate functoriality. Given such a datum, for ¢ = 1,2 we define 1., J/, K. as

the inverse images of K. under the map to Kj ][ K». This functor defines the desired

inverse.

14.11. Given §14.10, we can apply the dual version of Proposition 14.5.1 to see that
the left Kan extension of WP along Trip 9D, part s a colax symmetric monoidal
functor. Moreover, one immediately verifies that this left Kan extension is actually a
symmetric monoidal functor and that it is computed as the functor (14.7.1).

Moreover, the natural transformation 7P now arises via the universal property from

Proposition 14.5.1.

14.12. We can now give Proposition-Construction 14.4.1 (1), i.e., the non-unital case
of loc. cit.
By definition, a chiral category on X is a multiplicative sheaf of categories on Rangch.

Therefore, we will prove the following variant of loc. cit.

(*): There is a canonical equivalence of categories between MultCat”(Rany) and
the category of lax symmetric monoidal functors (14.4.1) sending all arrows in

Part to coCartesian arrows.
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It will follow from the construction that this equivalence identifies the subcategory
of chiral categories with the subcategory of usual (i.e., non-lax) symmetric monoidal

functors.

Step 1. First, recall from Variant 13.2.9 that weak chiral categories (alias: weakly multi-

kSthat

plicative sheaves of categories on Rang") are defined as commutative algebras in PreStk>m"s

lifting Ran§" € PreStkeo,,. Here the notation PreStk>M"“at was defined in §12.18. We recall

corr

that it is defined as a certain 1-full subcategory of:

((Groth(shvcat, ))”) . (14.12.1)

corr

By §14.6, such a datum is equivalent to a symmetric monoidal functor:

Part — (Groth(ShvCat,_))™ (14.12.2)

lifting the functor (14.7.1), sending squares (14.6.1) to Cartesian squares, and satisfying

a certain property encoding that the corresponding functor to (14.12.1) should map into

PreStk>hveat

corr

Precisely, this last property is readily checked to say that every arrow in Part inducing
isomorphisms on the J-terms (i.e., in (14.2.1), Jo — Ji; in §20, such arrows were called
horizontal) should map to a coCartesian arrow (that is, when considered as an arrow in
Groth(ShvCat,_)).

We then see that the condition that squares (14.6.1) map to to Cartesian squares
is actually redundant: it is subsumed by the condition that horizontal arrows map to

coCartesian arrows by applying Remark 14.7.2 and (the proof of) Lemma 12.10.1.

Step 2. We will make implicit use of the following observation below:

We have a tautological Cartesian square:
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Groth(ShvCat/;) —— Groth(ShvCat,_)

L.

op

Part PreStk.

Step 3. Suppose we are given a lax symmetric monoidal section (14.4.1) sending all
arrows to coCartesian arrows.

As in Remark 14.8.2, we obtain a symmetric monoidal functor:

F : Trip — Groth(ShvCat,_)”

lifting W TiPop,

The fact that (14.4.1) sends all arrows to coCartesian arrows implies that the left Kan
extension of F' along Trip — Part exists, and by Proposition 14.5.1, it carries a canonical
structure of colax symmetric monoidal functor.

One readily verifies that it is actually symmetric monoidal, lifts (14.7.1) and satisfies
the conditions articulated in Step 1. Therefore, this functor defines a weakly multiplica-

tive sheaf of categories as desired.

Step 4. Suppose we have a functor (14.12.2) defining a weakly multiplicative sheaf of
categories. Restricting along Trip — Part, we obtain a similar functor with source Trip.

Applying the coCartesian condition and the symmetric monoidal natural transfor-
mation 1P, we obtain a symmetric monoidal functor Trip — Groth(ShvCat,_) lift-
ing WP, Applying Remark 14.8.2 again, we obtain a lax symmetric monoidal functor

Part” — Groth(ShvCat,_) of the desired type.

14.13. This completes the treatment of the non-unital case. The unital case is treated
in exactly the same way, though the category Trip should of course be replaced with a

category Trip,,, with arbitrary maps of finite sets replacing surjections.
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One may describe chiral module categories and factorization modules in similar terms.

The formulation and the details of the comparison are left to the interested reader.

14.14. External fusion redux. Suppose that X = X g for X a scheme of finite type,
as in §13.12. Let C be a chiral category on Xgz and let A € Alg®*(C). As in loc. cit., let
CXéR e ShvCat(X ;) denote the sheaf of categories underlying C.

Enhancing®* the external fusion construction of §13.22, one can upgrade the construc-
tion I — A—modfaCt(CXéR) to a functor (14.12.2) satisfying the hypotheses spelled out
in Step 1 (found in §14.12 above).

Therefore, by loc. cit., we obtain a weak chiral category A-mod™*(C) on X5, where
the morphisms (12.21.2) and (13.12.1) identify (upon passing to the limit for the latter).

Similarly, if A and C are unital, then A-mod™"*(C) is a weak unital chiral category.

We can formulate this more precisely in the following proposition.

Proposition 14.14.1. (1) External fusion defines functors:

{C e Cat™(Xyg), A € Alg™*(C)} — Cat™"

<C,A e AIgfaCt(C)> — A-mod™*(C)

and:

{Ce Cat™ (X4r), A € AlgP*(C)} — Cats

un un

un

(C,A e AIgfaCt(C)) — A-modft(C).

(2) The induced functor:

Catf;fh (XdR) — Catf;fh(XdR)

C > unitc ~mod™*(C)

34We note an analogy to some constructions involved in [Lurl2] Lemma 4.3.6.9.
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is (canonically identified with) the canonical embedding of unital chiral categories
into weak unital chiral categories, and in a manner compatible with Theorem

153.13.2.

Remark 14.14.2. In the above, for example the somewhat ambiguous notation {C €
Cat (X4g), A € Alg™*(C)} is properly understood using the formalism of §12. We note

un

that the category is designed so that morphisms:

(C17‘A1) - (C2>‘A2)

are given by pairs of a morphism ¢ : C; — C, of chiral categories and a morphism
n: (A1) — Ay of factorization algebras, where ¢(A;) is understood as a factorization

algebra in C, using the discussion of §12.34.

15. COMMUTATIVE CHIRAL CATEGORIES

15.1. In this section, we develop a theory of commutative chiral categories and com-

mutative factorization algebras, following [BD04].

15.2. Let X be a fixed prestack.
Recall that Rany denotes the prestack Rany considered with the non-unital commu-

tative monoid structure of addition.

Definition 15.2.1. A commutative weak chiral category is a multiplicative sheaf of cate-

: *
gories on Rany.

The identity morphism for Rany obviously upgrades to a lax morphism:

ch *
Ranjy" — Rany

of non-unital commutative algebras in the 2-category PreStk.,.. (see §12.23 for the notion

of lax morphism of monoids in a 2-category). Using this structure, one constructs a
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canonical restriction functor from commutative weak chiral categories to weak chiral

categories.

Definition 15.2.2. A commutative chiral category is a commutative weak chiral category
whose underlying weak chiral category is a chiral category.

Similarly, a commutative factorization algebra in a commutative chiral category C is
a weakly multiplicative sheaf over Rany whose underlying weakly multiplicative sheaf

over Ran§" is a multiplicative sheaf.

Remark 15.2.3. Roughly, a commutative chiral category is a sheaf of categories C on

Rany with a morphism:

ke : CX C — add*(C) € ShvCat(Rany x Rany)

that is an isomorphism over the disjoint locus (and satisfying higher compatibilities).

A commutative factorization algebra in C is an object A € I'(Rany, C) with morphisms:

kc(AXA) — add*(A) € T'(Rany x Rany, add*(C))

that is an isomorphism over the disjoint locus.

Remark 15.2.4. Tt is obvious that QCohy is a commutative chiral category. In this case,
our notion of commutative factorization algebra contains as a special case the same-

named notion from [BD04], and provides a derived version of the latter.

15.3. We now explain the combinatorial approach to commutative chiral categories, in
the spirit of §14. We use the notation of loc. cit. freely.
We let P denote the symmetric functor fSet” — PreStk given by I ~ X!. The

Grothendieck construction produces a symmetric monoidal functor:
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Groth(ShvCat/p(_))
l (15.3.1)

fSet.

The next result follows in the same was as Proposition-Construction 14.4.1.

Proposition-Construction 15.3.1. A commutative weak chiral category is equivalent to a

commutative diagram of colaz symmetric monoidal sections to (15.3.1):

Groth (ShVCat/(p(_))

']

Set
sending all arrows to coCartesian arrows.

The induced lax symmetric monoidal functor:

Part — Groth(ShvCat/y)

obtained by using the coCartesian structure and the 2-commutative diagram:

Part°?

U
(I=J)—T L N
P

fSet”? — = PreStk

corresponds (via §14.12 Step 1) to the underlying weak chiral category.

Remark 15.3.2. We leave to the reader the problem of finding a unital version of Proposition-

Construction 15.3.1, imitating Proposition-Construction 14.4.1.

15.4. Suppose that D is a non-unital (resp. unital) commutative monoid in DGCat .y,
and let X be either a scheme of finite type or the de Rham space of such a scheme. We
will associate to this data a commutative (resp. unital) factorization category Locy (D)

over X. For convenience, we work in the non-unital setting.
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The reader may be advised to skip ahead to Remark 15.4.1, where the constructions

given below are spelled out in simple cases.

Step 1. For convenience, we will construct Locy(D) using Proposition-Construction
15.3.1.

We will use the notation Trip and its associates from §14.

Step 2. For any prestack Y, let Dy denote D ®vect QCohy, € ShvCat)y.

The assignment:

(I 5 J = K) = Bhiex Dy € ShvCat([ [ U(pr)) = ShvCat(¥T(1 5 J = K))

keK

defines a symmetric monoidal section:

Groth(ShvCat grir(_))
fl (15.4.1)
;I'rip"p
Indeed, one can easily produce this structure by viewing the non-unital symmetric

monoidal structure on D as a symmetric monoidal functor fSet — DGCat y-

Step 3. Define the colax symmetric monoidal functor:

=P . Trip — PreStk
(I 575 K) - Up).
We have a natural transformation:
ETrip _ \IITrip

of colax symmetric monoidal functors evaluated termwise as:
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=15 TS K)=Up) — [ [Up) = 9™ 5 T 5 K).

keK

Combining this structure, the pullback structure on sheaves of categories, and (15.4.1),

we obtain a symmetric monoidal section:

Groth (Sthat/Emp(,))
fl (15.4.2)
Trip?”

given by:

P q
(I — J —» K) = Xrex Do) lup) € ShvCat ).

Step 4. Next, define the symmetric monoidal functor:

PP . Trip — PreStk
(I 575 K)—X.
The assumption on X from §15.4 and the material of §19 imply that we have a well-

behaved theory of pushforwards of sheaves of categories. Therefore, using the natural

transformation of colax symmetric monoidal functors:

—Trip N :])Trip

given termwise by the obvious maps 7, : U(p) — X!, we obtain from (15.4.2) the lax

symmetric monoidal functor:

Groth(ShvCat pip(_))
?L (15.4.3)
Trip?

given by:
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(_[ —p» J —q>'> K) — ,]p,*(keK DU(pk)|U(p)) € Sthatxf.

Step 5. We now apply Proposition 14.5.1 to the map:

Trip”” — fSet
(I5J5K)—1

to obtain a lax symmetric monoidal structure on the right Kan extension:

fSet — Groth(ShvCat/p(_)).

One immediately verifies that it satisfies the required hypotheses to define a commutative

chiral category.

Remark 15.4.1. The above construction may appear somewhat inexplicit, so let us
explain in concretely in some cases. It follows explicitly from the construction that

Locy (D) xr is given by a limit:

—»J—>>KE rlp"

For I a singleton set, the indexing category is a singleton as well, and therefore

LOCx(@)X = ‘DX =D ®QCohx

For I = {1,2}, we find that the indexing category is:

([—»*—»*)

|

TS T5 1) — (15 1)

and therefore Locy (D)2 fits into a Cartesian diagram:
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Locy (D)2 D x2
2:0"(Dx ®MDx) — 3:7"(Dx2)

where the lower arrow is induced by the tensor product in D.

Variant 15.4.2. Given a commutative algebra A € D, the above procedure produces a

factorization algebra Locy(A) € Locy(D), and similarly in the unital setting.

15.5.  Next, we discuss the material from §13.14 in the case of a commutative chiral

category.

15.6. We need some general material about crystalline sheaves of categories on pseudo-
indschemes.

We follow [Gaill] in using the following (somewhat clunky) terminology:

Definition 15.6.1. A pseudo-indscheme Y is a pair of an indexing category J and a J-
diagram ¢ — Y; of schemes of finite type such that all structure maps ¥; — Y, are
proper.

The prestack underlying Y is the colimit of this diagram ¢ — Y; in PreStk. Where

there is no risk for confusion, we denote this colimit also by Y.

Remark 15.6.2. The implicit notion of morphism:

Y =0,i—Y))—Z=(3,j— Z) (15.6.1)

of pseudo-indschemes is that of a functor F' : J — J and compatible morphisms Y; —

ZF(i)-

Remark 15.6.3. Our notion differs slightly from that of [Gaill]: in loc. cit., pseudo-

indschemes are defined as a full subcategory of PreStk obtained as colimits of diagrams
210



of the above type. However, in many constructions in loc. cit., pseudo-indschemes are

assumed to be given by such a diagram and morphisms are assumed to be of the above

type.

Definition 15.6.4. We say a morphism (15.6.1) of pseudo-indschemes is pseudo-indproper

if each morphism Y; — Zp(; is proper.

For a pseudo-indscheme Y, we let Y;zr € PreStk denote the de Rham space of the

prestack underlying Y.

Proposition-Construction 15.6.5. Let f : Y — Z be a map of pseudo-indschemes and let

C be a sheaf of categories on Zyg. There is a canonical morphism:

Jedr.C: ['(Yar, f*(C)) - F(ZdRa C)

of de Rham pushforward, and that is canonically left adjoint to the pullback map if f is
pseudo-indproper, and functorial for morphisms of pseudo-indschemes over Z.

admits a left adjoint

Proof. For Z = colim; Z;, let 1; denote the structure map Z; — Z. Then we tautologi-

cally have:

F(ZdRa C) = jleignopr(zj,dRa @Z};(C))

However, because the structure maps Z; — Z; are proper, and because each Z; 4r is 1-
affine, we see that the structure maps in this limit admit left adjoints (given by tensoring
with the de Rham pushforward functors D(Z;) — D(Zj). Therefore, we obtain an

expression:

colim I'(Z; 4, 15 (C))

J€d

for I'(Zygr, C), the colimit taking place in DGCat,pp;-
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We have a similar expression for I'(Yyg, f*(C)), and the de Rham pushforward functor

is then constructed using the compatible maps:

P Yiar, ¢i (C)) = T(Zr@,ar: ¥ (C))

(with ¢; : Y; = Y the structure map). This obviously satisfies the desired properties.
O

15.7. Now observe that Rany is canonically a pseudo-indscheme, since Rany = colimegseror X 7.

Moreover, the map:

add : Rany x Rany — Ranx

is canonically a morphism of pseudo-indschemes (considering the left hand side with the

product pseudo-ind structure), using the maps:

fSet”? x fSet” — fSet”

(I,.)—~I]]7
X! x x7 9 xTH7,
We immediately see that add is pseudo-indproper.
Of course, this discussion holds for higher products of Ranyx with itself and for higher

operations in the non-unital commutative operad.

15.8. We fix C a commutative chiral category on X,r in what follows, and let C =
F(RanX,dR, C)
Observe that € carries a canonical non-unital symmetric monoidal structure in DGCat..,¢

called the =-tensor product, and denoted — (;) —. It is computed termwise as:

I'(Rany,,,C) ® I'(Ranx,,, C) — I'(Rany,, x Rany,,,Cx C) —

I'(Rany,, x Rany,,,add*(C)) — I'(Rany,,,, C)
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where the last arrow is the de Rham pushforward functor from Proposition-Construction
15.6.5. We note that this functor is left adjoint to the obvious map by loc. cit.
We leave the remaining details of this construction to the reader.

Note that the identity functor for € upgrades to a lax symmetric monoidal functor:

* ch
(€®) —(€)
Remark 15.8.1. One easily sees that I'(X4g, C) carries a canonical

Ezxample 15.8.2. Suppose that D is a non-unital symmetric monoidal category, and let
Locx,, (D) denote the corresponding factorization category over Xyp.
Then the pushforward functor along X < Ranx defines a colax symmetric monoidal

functor:

D X D ® D(X) — ['(Xar, Locx,,(D)x,n) — T(Ranx,,, Locy,, (D))

F
where the latter is considered with its ® symmetric monoidal structure.

15.9.  We now observe that the theory of Lie-* algebras from [FG12] generalizes to this

general setting.

Definition 15.9.1. A generalized Lie-= algebra in C is a Lie algebra object in ((:’,(;)). A
Lie-+ algebra in C is a generalized Lie-* algebra supported on X, i.e., that lives in the

subcategory:

F(XdR, C|XdR) < F(RanXdR, C) = C.

There is an obvious forgetful functor from chiral Lie algebras to generalized Lie-x=
algebras. As in [FG12] §6.4, it admits a left adjoint, and this left adjoint sends Lie-x

algebras to chiral algebras in C. This functor is called chiral enveloping algebra.
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Part 3. Appendices
16. D-MODULES IN INFINITE DIMENSIONS

16.1. In this section, we develop the D-module formalism on indschemes of ind-infinite

type.

16.2. The basic feature that we struggle against is that there are two types of infinite-
dimensionality at play: pro-infinite dimensionality and ind-infinite dimensionality. That
is, we could have an infinite-dimensional variety S that is the union S = uU;S; = colim;S;
of finite-dimensional varieties, or I" that is the projective limit 7" = lim; 7} of finite-
dimensional varieties, e.g., a scheme of infinite type.

Any reasonable theory of D-modules will produce produce some kinds of de Rham
homology and cohomology groups. We postulate as a basic principle that these groups
should take values in discrete vector spaces, that is, we wish to avoid projective limits.

Then, in the ind-infinite dimensional case, the natural theory is the cohomology of S:

H,(S) := colim H,(S;)

while in the pro-infinite dimensional case, the natural theory is the cohomology of T

H*(T) = colim H*(Tj).

J

For varieties that are infinite-dimensional in both the ind and the pro directions,
one requires a semi-infinite homology theory that is homology in the ind direction and
cohomology in the pro direction.

Of course, such a theory requires some extra choices, as is immediately seen by con-
sidering the finite-dimensional case. For example, for a smooth variety, we have a choice

of normalization for the cohomological shifts.
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16.3. Theories of semi-infinite homology have appeared in many places in the literature.
We do not pretend to survey the literature on the subject here, but note that in the case
of the loop group, it is well-known that semi-infinite cohomology, in the sense above,
may be defined using the semi-infinite cohomology of Lie algebras.

We provide such a theory in large generality below. In fact, in great generality, we
develop two theories D' and D* of derived categories of D-modules on indschemes of ind-
infinite type. The theory D' is contravariant, and therefore carries a natural dualizing
complex, and the theory D* is covariant, and therefore is the place where cohomology
is defined.

For placid indschemes, the two categories are identified after a choice of dimension
theory, and therefore allows us to define the renormalized or semi-infinite cohomology
of the scheme. The extra choice of dimension theory here precisely reflects the numerical

choice of cohomological shifts discussed above.

16.4. The material in this section has been strongly influenced by [BD] §7, [Dri06]
and [KV04]. We also thank Dennis Gaitsgory for many helpful discussions about this
material; in particular, the idea of systematically distinguishing between D' and D*, our
very starting point, is due to him.

This section is lazy in certain notable respects. We work (essentially) in the setting of
classical algebraic geometry throughout, in particular ignoring the relationship between

D-modules and quasi-coherent sheaves.

16.5. Throughout, we impose the assumption that we are working with classical (i.e.,
non-derived) schemes. However, in some arguments we will explicitly move into the

setting of derived algebraic geometry.
16.6. Due to the length of this section, let us describe in some detail the basic structure.

16.7. We give a review of the theory of Noetherian approximation in §16.11. This

material will serve to bootstrap from the finite type setting to the infinite type setting.
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Note that this idea is already essentially present in [KV04]; the authors of loc. cit. credit
it to Drinfeld.
In §16.12-16.36 (the bulk of this section) we develop the theory of D-modules for

quasi-compact quasi-separated schemes.

16.8. We begin in §16.12-16.19 with the basic theory of D'-modules; functoriality prop-
erties and descent are the principal concerns. We then give the parallel theory of D*-
modules in §16.20-16.27. Recall from above that the crucial distinction between the two
theories is that D' is contravariant and D* is covariant.

We also note here that for a quasi-compact quasi-separated scheme S the DG category
D'(S) admits a tensor product (>'§ and acts on D*(S) in a canonical way satisfying a

version of the projection formula.

16.9. In §16.29 we will introduce the notion of placidity. One can understand this
condition as saying that the singularities of a scheme are of finite type in a precise sense.

The key point of placid schemes is that they admit a “renormalized dualizing com-
plex” that lies in D*(.S): this is notable because, as we recall, D* is covariant: its natural
functoriality (with respect to infinite type morphisms) is through pushforwards. More-
over, the functor of action on the renormalized dualizing complex gives an equivalence
D'(S) ~ D*(S). In particular, one obtains a covariant structure on D' and a contravari-
ant structure on D* is the placid setting. This material is developed in §16.30-16.36.
For a morphism f : S — T of placid schemes, we let fi, ., : D'(S) — D'(T) and
fhrer . DNT) — D'(S) denote the corresponding functors.

In general, these renormalized functors are very badly behaved, e.g., the pairs (f', fy ren)
and (f""°", f. ar) do not satisfy base-change.

In §16.37, we introduce a notion of placid morphism, which is something like a
pro-smooth morphism. Proposition 16.38.1 (generalized to the indschematic setting by

Proposition 16.59.1) says that for placid morphism, f' is left adjoint to fi e, and
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similarly, 7" is left adjoint f,qz. Here the dimension shifts implicit in the infinite-
dimensional setting work out to eliminate the usual cohomological shifts needed to make
such statements in the finite-dimensional setting.

Moreover, Proposition 16.38.1 implies that there are good base-changed properties for

placid morphisms.

16.10. In §16.41 we transition to the setting of indschemes. In §16.42-16.47 we define
D' and D*-modules for indschemes. We develop their basic functoriality properties and
give descent theorems here as well. In §16.45-16.46, we recall the notion of reasonable
indscheme from [BD] and examine how this condition interacts with the theories of
D-modules.

Finally, in §16.49-16.57 we give a theory of placid indschemes with similar properties
to the setting of placid schemes described above. It is here that dimension theories enter

the story, and we discuss them in some detail in these sections as well.

16.11. Noetherian approximation. For the reader’s convenience, we begin with a
brief review of the theory of Noetherian approximation (alias: Noetherian descent). This
theory is due to [Gro67] §8 and [TT90] Appendix C.

Let S be a quasi-compact quasi-separated base scheme. Let Schfgo " denote the category
of schemes finitely presentated (in particular: quasi-separated) over S. If S is Noetherian
we will also use the notation Sch% " because in this case finite type is equivalent to finite
presentation.

We say an S-scheme T is almost affine if for every S — S of finite presentation every
map 1T — S’ factors as T — T" — S’ where T' — T’ is affine and 17" — S’ is finitely
presented. Let Sch?}g‘aff denote the category of almost affine S-schemes.

Let ProaH(Schf'Sp‘) denote the full subcategory of Pro(Sch%") consisting of objects T

that arise as filtered limits T' = lim 7; of finitely presented S-schemes under affine

structural morphisms 7; — T;. We recall that projective limits of such systems exist
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and that if each 7T; is affine over S then T is as well. Clearly such limits commute with

base-change.

Theorem 16.11.1. (1) The right Kan extension:

Proaﬁ(Sch%') — Schyg

of the embedding Sch%y' < Schyg is defined and is fully-faithful. This right Kan
extension maps into Sch%’aff. If S is Noetherian and affine, then the essen-
tial image of this functor is all schemes over S that are quasi-compact and
quasi-separated (in particular, quasi-compact quasi-separated k-schemes are al-
most affine).

(2) Suppose T' = lim T; is a filtered limit with each T; finitely presented over S and
T; — T; affine. Then if T is a finitely presented T-scheme there exists an index
i and a T;-scheme T of finite presentation such that T = T! xp. T (as a T-
scheme). If the map T' — T has any (finite) subset of the properties of being
(e.g.) smooth, flat, proper, or surjective, then T — T; may be taken to have the
same properties.

(8) Suppose T = limegop T; as in (2). Then if T — S is an affine morphism, then
there exists ig € J such that for every i € J;,, T; — S is affine.

(4) Suppose that T = lim T; as in (2) and U < T is a quasi-compact open subscheme.

Then for some indexi € J and open U; < T; we have U = U;x 1, T (as T-schemes).

Remark 16.11.2. We note that (3) appears in [TT90] as Proposition C.6, where it is
stated only in the case that S is affine. However, this immediately generalizes, since S
is assumed quasi-compact and therefore admits a finite cover by affines.

We will also use the following result.
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Proposition 16.11.3. Suppose that T' = lim;eg T; is a filtered limit of schemes under affine
structure maps. Let «; : T — T; denote the structure maps. Then passing to cotangent

complexes, the canonical map:

colim o (Q7,) — Qf € QCoh(T)="

€]

18 an equivalence.

Proof. Let DGSch denote the category of DG schemes. Note that filtered limits of derived
schemes under affine structural maps exists as well, and satisfy the same properties as
in the non-derived case: namely, if T = lim T} in DGSch is a filtered limit under affine
structural maps of affine S-schemes, then T' is affine over S as well. In particular, we
deduce that Sch € DGSch is closed under such limits.

Now the result follows immediately from the description of the cotangent complex in

terms of square-zero extensions in derived algebraic geometry.

U

16.12. D'-modules. Let Sch,.,s denote the category of quasi-compact quasi-separated
k-schemes. By Theorem 16.11.1, Schy.s is a full subcategory of Pro(Sch’*). We define the
functor D' : Schytys — DGCatepnt as the left Kan extension of the functor D : Sch/tor —

DGCat,o¢ which attaches to a scheme S of finite type its DG category D-modules D(.5)
and to a morphism f : T — S attaches the functor D(.S) i D(T).

Remark 16.12.1. Suppose that C° is an (essentially small) category and € < Ind(C?) is a
full subcategory containing C°. Suppose that we are given I : € — D a functor that is the
left Kan extension of its restriction to C°. Then for any filtered colimit X = colim; X; € €

in Ind(€%), we have F(X) = colim F'(X;). Indeed, by definition:

F(X)= colim F(X").
X'—X,X'eC0
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But this also computes the left Kan extension from €° to Ind(€%). Therefore, this claim
reduces to the case C = Ind(C?), where it is well-known.
Applying this in our setting, we see that for any realization T" = lim;egop T; with J

filtered, T; finite type and 7; — T} affine we have:

DN(T) = colim D(Ty) (16.12.1)

1€d

where the structure maps are !-pullback functors.

Ezample 16.12.2. If T is finite type then we canonically have D'(T) = D(T).

For any morphism f : T' — S of quasi-compact quasi-separated schemes, we denote
the induced pullback functor by f' : D(S) — D(T). Note that there is no risk for
confusion in this notation because in the finite type case the -pullback functors identify
under the canonical identification D = D'|g ,s.t..o0-

For T and S two quasi-compact schemes, we have a canonical equivalence:

DT)® D'(S) = DT x S) (16.12.2)

that immediately arises from the finite type case.

Remark 16.12.3. For S a quasi-compact quasi-separated scheme and 1" = lim 7; a filtered

limit under affine morphisms of finitely presented S-schemes, we have:

DY(T) = colim D'(T;)

1€
generalizing (16.12.1). Indeed, it follows immediately from Noetherian descent that the
limit 7" = lim 7; is preserved under the embedding in Schyq,s < Pro(Schf ") and therefore

this follows general properties of Kan extensions, as in Remark 16.12.1.
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16.13.  For any T' € Schy,s the category D'(T) carries a canonical symmetric monoidal
structure §|<) with unit wy == ph(k) for pr : T — Spec(k) the structure map. For any
f:T — S in Schys, the functor f'is symmetric monoidal relative to these structures.

The symmetric monoidal structure (>'§ can be viewed as arising from the equalities

D[], T) = @, D'(T) and the diagonal maps for 7.

16.14. Correspondences. Next, we extend the functoriality of D'.

Let Sch/*  be the (1,1)-category of finite type schemes under correspondences. By

corr

[GR14], we have the functor D : Sch/*:

2. — DGCat.y that attaches to a finite type
scheme T its category D(T') of D-modules and to a correspondence 7' -~ H—=5
(i.e., amap T'— S in Sch,,,,) attaches the functor ﬁ*,dRa!.

Let Schyegs,corrait,fp. denote the category of quasi-compact quasi-separated schemes

under correspondences of the form:

H
N
T S
where H € Schyeys, B is finitely presented and « is arbitrary. Note that Schycgs corrait, f.p

contains Sch/?:

2P as a full subcategory. It also contains Sch;? . as a non-full subcategory

qcqs

where morphisms are correspondences where the right arrow is an isomorphism.

We define the functor:

lenh .
D : SChchs,corr;all,f.p. — DGCat,opy

fit.

corr*

by left Kan extension from Sch

Proposition 16.14.1. The restriction of D" to Sch®  canonically identifies with the

qcqs
functor D' : Sch®? — DGCateops.

qcgs

The proof will be given in §16.17.
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16.15.  We assume Proposition 16.14.1 until §16.16 so that we can discuss its conse-
quences.

For f: T — S a map of quasi-compact quasi-separated schemes, the induced functor
Dherh(S) = DY(S) — D"*""(T) = DY(T) coincides with f'. If f is finitely presented we
will denote the corresponding functor D'(T) — D'(S) by fix1_ar (to avoid confusion with
the functor f, g : D*(T) — D*(S) defined in §16.20 below). We refer to the functor
fw1—ar as the “I-dR #-pushforward functor.”

Note that the formalism of correspondences implies that we have base-change between

«-pushforward and !-pullback for Cartesian squares.

Remark 16.15.1. Suppose that f : T — S is finitely presented. One can compute the
functor f.i_4r “algorithmically” as follows. Let f be obtained by base-change from
f':T" — 5" a map of schemes of finite type via a map S — S’. Write S = lim S; where
structure maps are affine and each S; is a finite type S’-scheme. Then T" = lim T; for
T,:=8; xgT'. Let ; : S — S;, B : T — T; and f; : T; — S; be the tautological maps.

Then for F € D(T;) we have fu1 ar(B8H(F)) = o fiar(F), which completely deter-

mines the functor f,_4r.
One readily deduces the following result from [GR14].

Proposition 16.15.2. If f : S — T is a proper (in particular, finitely presented) morphism
of quasi-compact quasi-separated schemes, then f' is canonically the right adjoint to
fw1—ar- This identification is compatible with the correspondence structure: e.g., given a

Cartesian diagram:

S —— S
Bt
77— T

with f proper, the identification:
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TN
fedre — U fir_ar

arising from the correspondence formalism is given by the adjunction morphism.
Similarly, we have the following.

Proposition 16.15.3. If f : S — T s a smooth map of quasi-compact quasi-separated
schemes, then f'[—2 - ds/r) is left adjoint to f.)_qr. Here dg/p is the rank of Q}S‘/T re-

garded as a locally constant function on S.

Remark 16.15.4. By a locally constant function T — 7 on a scheme T, we mean a
morphism of 7" — Z with Z considered as the indscheme [ [ _, Spec(k).

If T is quasi-compact quasi-separated and therefore a pro-finite type scheme T =
lim 7; (under affine structure maps), then, by Noetherian approximation, any locally
constant function on 7T arises by pullback from one on some 7;. In other words, if we
define my(7) as the profinite set lim; 7y(7;), then locally constant functions on 7" are

equivalent to continuous functions on (7).

Remark 16.15.5. Recall that there is an automatic projection formula given the corre-
spondence framework. Indeed, for f : S — T a finitely presented map of quasi-compact

quasi-separated schemes, F € D'(T) and G € D'(S), we have a canonical isomorphisms:

fer—ar(f(F) §'<) ) ~ fTQ!@ fe—ar(9)

coming base-change for Fx] G € D'(T x S) and the Cartesian diagram:

Ty
S —= T xS

lf lidTXf
Ar
T —TxT

where I'; is the graph of f and Ay is the diagonal.
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By the finite type case, these isomorphisms are given by the adjunctions of Proposition

16.15.2 and 16.15.3 when f is proper or smooth.

16.16. In the proof of Proposition 16.14.1 we will need the following technical result.
Let T be a quasi-compact quasi-separated scheme. Consider the category Cr of corre-

spondences:

a B
Cr={ S <~— H —— T | $ finitely presented, S € Sch’* and H € Sch,}

Here, as usual, compositions are given by fiber products.
Note that Cr contains as a non-full subcategory Schﬂ};"(’p of maps ¥ : T — S with

id
S € Sch'*, where given such a map we attach the correspondence S S r 7.

Lemma 16.16.1. The embedding Sché‘f' — Cr is cofinal.

Proof. Fix a correspondence ( S -~ H—>T ) € Cr. Translating Lurie’s oo-categorical
Quillen Theorem A to this setting, we need to show the contractibility of the category

C of commutative diagrams:

5
H — H
L 5 l BX
¥
T — 1T S
such that the square on the left is Cartesian, H',T" € Sch’* and ¢ 0 § = «. Here a
morphism from one such diagram (denoted with subscripts “1”) to another such diagram
(denoted with subscripts “27) is given by maps f : 7] — T3 and g : H; — HJ such that

the following diagram commutes and all squares are Cartesian:
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i il H,

61

€2

L ’ l g l Bé\

¥1 f
T T! T S

v
Y2

First, we observe that the category € is non-empty. Indeed, because [ is finitely
presented we can find T — T” € Sch’ and ' : H' — T’ so that H is obtained from H’
by base-change. Noting that H can be written as a limit under affine transition maps
of H' obtained in this way and S is finite type, we see that H — S must factor though
some H' obtained in this way.

To see that € is contractible, note that € admits non-empty finite limits (because Sch

admits finite limits) and therefore C% is filtered.

16.17.  We now prove Proposition 16.14.1.

Proof of Proposition 16.14.1. We have an obvious natural transformation D' — D"*"|gop .
Schycgs

It suffices to see that this natural transformation is an equivalence when evaluated on

any fixed 7" € Schyegs.

a B
With the notation of §16.16, D" is by definition the colimit over ( S <— H —— T )€

Cr of the category D(S). By Lemma 16.16.1, this coincides with the colimit over dia-

grams where (3 is an isomorphism, as desired.

O

Remark 16.17.1. Neither Lemma 16.16.1 nor Proposition 16.14.1 is particular to schemes,
but rather a general interaction between pro-objects in a category with finite limits and

correspondences.

16.18. Descent. Next, we discuss descent for D"
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For a map f : S — T of schemes and [n]| € A let Cech”(S/T') be defined as:

Cech"(S/T) = S X .o X S.
S

n times

Of course, [n] — Cech”"(S/T) forms a simplicial scheme in the usual way.
We use the terminology of Voevodsky’s h-topology, developed in the infinite type
setting in [Ryd10]. We simply recall that h-coverings are finitely presented® and include

both the classes of fppf coverings and proper® coverings.

Proposition 16.18.1. Let f : S — T be an h-covering of quasi-compact quasi-separated

schemes. Then the canonical functor (induced by pullback):

DNT) — [,13]2% D'(Cech™(S/T)) (16.18.1)

s an equivalence.

Recall from [Ryd10] Theorem 8.4 that the h-topology of Schy,s is generated by finitely
presented Zariski coverings®” and proper coverings. Therefore, it suffices to verify Lem-

mas 16.18.2 and 16.18.3 below.

Lemma 16.18.2. D' satisfies proper descent, i.e., for every f : T — S a proper (in partic-
ular, finitely presented) surjective morphism of quasi-compact quasi-separated schemes

the morphism (16.18.1) is an equivalence.

35More honestly: it seems there is a bit of disagreement in the literature whether h-coverings are
required to be finitely presented or merely finite type. We are using the convention that they are finitely
presented.

36We include “finitely presented” in the definition of proper.

3TWe explicitly note that these are necessarily finitely presented because we work only with quasi-
compact quasi-separated schemes. That is, any open embedding of quasi-compact quasi-separated
schemes is necessarily of finite presentation: the only condition to check is that it is a quasi-compact
morphism, and any morphism of quasi-compact schemes is itself quasi-compact.
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Proof. We can find f' : 8" — T’ a proper covering between schemes of finite type and
T — T’ so that f is obtained by base-change. Let T' = lim T; where each T; is a T"-scheme
of finite type and structure maps are affine. Let S; := T; xS
We now decompose the map (16.18.1) as:
D'(T) = colim D(T}) —> colim lim D(Cech™(S;/T})) —
i€J i€l [n]eA

lim colim D(Cech™(S;/T;)) = lim D(Cech™(S/T)).
iy coli D(Cecl"(8,/T,) = lim D(Cecl"(5/T))

Here the isomorphism is by A-descent in the finite type setting.

Therefore, it suffices to see that the map:

colim lim D(Cech™(S;/T;)) — lim colim D(Cech"(S;/T;))

€] [nleA [n]leA i€l
is an isomorphism. It suffices to verify the Beck-Chevalley conditions in this case (c.f.

[Lur12] Proposition 6.2.3.19). For each i € J and each map [n] — [m] in J, the functor:

D(Cech™ (S,/T,)) — D(Cech™(S;/T;))

admits a left adjoint given by the !-dR =-pushforward as in Proposition 16.15.2. By
base change between upper-! and !-dR #-pushfoward (Proposition 16.14.1), the Beck-
Chevalley conditions are satisfied since for every j — ¢ in J and [n] — [m] in A the

diagram:
Cech™(S;/T;) — Cech™(S;/Tj)

Cech"(S;/T;) — Cech™(S;/T})

is Cartesian.

Lemma 16.18.3. D' : Schytys — DGCateont satisfies Zariski descent.
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Proof. Tt suffices to show for every S a quasi-compact quasi-separated scheme and S =
U uV a Zariski open covering of S by quasi-compact open subschemes that the canonical

map:

D'(S) — D'(U) D!&m DY(V)

is an equivalence.

Let juy : U = S, jv : V — S and jy~v : UV — S be the corresponding (finitely
presented) open embeddings.

Note that e.g. jusi_ar : D'(U) — D'(S) is fully-faithful. Indeed, by Proposition

16.15.3 we have an adjunction between j!U and jy«1—qr. The counit:

i dusi—ar — idp

is an equivalence by Remark 16.15.1 and the corresponding statement in the finite pre-
sentation setting.

Now we have a canonical map:

idpisy — Ker (juui—ar ji @ jviet—dr v — JUavsi—dr juoy)

and it suffices to see that this map is an equivalence. But this again follows by reduction

to the finite presentation case via Remark 16.15.1.

O

16.19. Equivariant setting. Suppose that S is a quasi-compact quasi-separated base
scheme and G — S is a quasi-separated quasi-compact group scheme over S.
Suppose that P is a quasi-compact quasi-separated S-scheme with an action of G. In

this case, the semisimplicial bar complex:

,:;gég;gp:;g?P_;P (16.19.1)
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induces the diagram:

D'(P) :;D’(ggp) §D’(g§g>S<P) — ....

and we define the G-equivariant derived category D'(P)Y of P to be the limit of this

diagram.

FExample 16.19.1. Suppose that G is constant, i.e., G = S x Gy for some quasi-compact
quasi- separated group scheme Gy over Spec(k). Then, by (16.12.2), D'(Gy) obtains a
comonoidal structure in DGCat,,,; in the usual way (e.g. the comulitplication is !-pullback
along the multiplication for Gy). As such, D*(Gy) coacts on D'(P) and D'(P)¥ is the usual

(strongly) Gp-equivariant category, i.e., the limit of the diagram:

DY(P) —= D'(Gy) ® D'(P) —= D'(Go) ® D'(Go) ® D'(P) —= ....

Let Pg — S be a G-torsor, i.e., G acts on Pg and after an appropriate fppf base-change

S’ — S we have a G-equivariant identification:

We obtain a canonical functor:

Y D!(S) — D!(Pg)g.
Proposition 16.19.2. In the above setting the functor ¢ is an equivalence.

Proof. By fppf descent (Proposition 16.18.1), we reduce to the case there Py is a trivial
G-bundle over 7', i.e., Pg = G xgT'. Then the bar complex extends to a split simplicial

object in the usual way from which we deduce the result.
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Remark 16.19.3. If Pg — S is a G-torsor, we will sometimes summarize the situation in

writing S = Pg/G.

16.20. D*-modules. Next, we discuss the =theory of D-modules.

We also let D denote the functor Sch’ — DGCat,,,; that attaches to any scheme its
category of D-modules, and attaches to a morphism of schemes the corresponding de
Rham pushforward functor.

We then define D* : Schye,s — DGCatcops as the right Kan extension of this functor.

For any realization T' = limegor T; as above we have D*(T) = lim;egor D(T;) where
the structure maps are !-pullback functors. If T is finite type, then we canonically have
D*(T) = D(T).

For any morphism f : T — S of quasi-compact quasi-separated schemes, we denote
the induced pushforward functor by f. g : D(T)) — D(S). As above, there is no risk for

confusion here with the finite type case.

Remark 16.20.1. In the setting of Remark 16.12.3, similarly have:

D*(T) = lim D*(T;).

16.21. By the projection formula, for T' quasi-compact quasi-separated there is a unique
! !

action ® of (D'(T),®) on D*(T) such that for every f : T — S with S finite type and

every F € D(S) = D'(S) and G € D*(T) we have:

fear(9'(F) ég) = Fé fedr(G). (16.21.1)

!
Here on the left ® denotes the action of D'(T) on D*(T) and on the right it denotes the

usual tensor product of D-modules in D(S) = D*(S).

16.22.  We now give a construction that encodes the projection formula in a more

functorial way.
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We claim that there is a canonical category we denote temporarily by € whose ob-
jects are pairs A € ComAlg(DGCat,y,¢) and M a module for A in DGCat,yys, and where
morphisms (A, M) — (B, N) are pairs of a symmetric monoidal and continuous func-
tor A — B plus N — M a continuous morphism of A-module categories (where the
A-module category structure on N is induced by A — B).*®

One can compute filtered colimits in ComAlg(DGCat,yy;) as a colimit in the first vari-
able and a limit in the second variable.

We claim that the of D' and D* then upgrades to a functor Schyt,s — € sending S to
(D'(S), D*(S)), upgrading the constructions of D' and D*.

Indeed, first note that there is a functor D : Sch/**? — € sending S to (D(S), D(S))
equipped with upper-! functoriality in the first variable and lower-* functoriality in the

second variable. Indeed, this follows from the formalism of correspondences from [GR14].

Then we obtain the functor Schi” . — C as the left Kan extension of this functor.

16.23. Recall that for S a finite type scheme the category D(S) is self-dual under
Verdier duality and for a map f : T'— S between finite type schemes the functor dual

to f'is fiar. Therefore, for S a quasi-compact quasi-separated scheme we obtain:

Proposition 16.23.1. If D'(S) is a dualizable category, then its dual is canonically iden-
tified with D*(S).

!
Note that in this case this is an identification of (D'(S),®)-module categories. More-

over, the functor dual to f' continues to be fy 4r.

16.24. Constant sheaf. For T quasi-compact quasi-separated, there is a canonical
“constant sheaf” kr € D*(T') constructed as follows.
For any S € Sch’* and o : T — S, we define an object of D(S) = D*(S) that we

denote formally as “ay qr(kr)” by the formula:

38A precise construction of this is given by combining the construction LMod, Remark 2.4.27 and
Corollary 4.2.3.2 from [Lurl2].
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“Oé*,dR(kT)” = colim X*,dR(kT’)~
VAR RIS
T'eSchft yofB=q

For any triangle:

Y

| /7

S

with S and S’ € Sch’*", we have a canonical isomorphism:

“ofy qp(kbr)” — frar(“anar(kr)”)

and therefore we obtain the object kr € D*(T') (with each au gr(kr) = “auar(kr)”) as
desired.
The continuous functor p;’dR : Vect — D*(T') sending k to kr is readily seen to be the

left adjoint to pr . 4r (Where pr : T'— Spec(k) is the structure map).

16.25. Correspondences. Next, we extend the functoriality of D* as in §16.14.
Let Schycgs,corrif.p..au denote the category of quasi-compact quasi-separated schemes

under correspondences of the form:

H
N
T S
where H € Schyeys, o is finitely presented and 3 is arbitrary. Note that Schyegs corr: f.p.,al
contains Sch’: as a full subcategory. It also contains Schyegs as a non-full subcategory

where morphisms are correspondences where the left arrow is an isomorphism.

We define the functor:
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x,enh
D . SChchs,corr;f.p.,all - DGcatcont

fit.

corr’

by right Kan extension from Sch

Like Proposition 16.14.1, the following is immediate from Lemma 16.16.1.

Proposition 16.25.1. The restriction of D**™ to Schye,s canonically identifies with the

Junctor D* : Schyeqs — DGCateopy-

16.26. For f : T — S a map of quasi-compact quasi-separated schemes, the induced

functor:

D*,enh<T) _ D*(T) N D*,enh(S) _ D*<S>

coincides with f, 4r. If f is finitely presented we will denote the corresponding functor
D*(S) — D*(T) by fl to avoid confusion with the functor f': D'(T) — D'(S). Note
that the formalism of correspondences implies that we have base-change between -

pushforward and j-pullback for Cartesian squares.

Remark 16.26.1. Suppose that f : T — S is finitely presented. One can compute the

functor fi “algorithmically” as follows. In the notation of Remark 16.15.1, for F e

D(S) we have 041-7*7de5(]—") = f;ﬁi7*7dR(]-") by base-change, computing f](}") in D(T) =

lim D(7}) as promised.
One deduces from Remark 16.26.1 the following result.

Proposition 16.26.2. If f : S — T s a finitely presented proper morphism of quasi-

compact quasi-separated schemes, then fi is canonically the right adjoint to fedr-
Similarly, we have:

Proposition 16.26.3. If f : S — T s a smooth map of quasi-compact quasi-separated

schemes, then f/'[—QdS/T] is left adjoint to f.qr, with dg/p as in Proposition 16.15.5.
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16.27. Descent. Next, we discuss descent for D*.

Proposition 16.27.1. For f : S — T an h-covering of quasi-compact quasi-separated

schemes the functor:

D*(T) — lim D*(Cech’($/T))

induced by the functors f,{ with f, : Cech™(S/T) — T the canonical map is an equiva-

lence.

Proof. Because f is finite presentation we can apply Noetherian approximation to find
f'+S" — T’ an h-covering between schemes of finite type and T" — T” so that f is
obtained by base-change. Let T' = lim T; where each T; is a T’-scheme of finite type
(and structure maps are affine) and let S; .= T; xp 5"

Then each S; — Tj is an h-covering between finite type schemes. Note that Cech™(S/T") =
lim Cech"(S;/T5).

Now we have:

D*(T) = lim D(T;) — lim lim D(Cech™(S;/T;)) = lim lim D(Cech”(S;/T;)) = [li]rrlAD(Cech"(S/T)).

i€Jop i€JoP[n]e A [n]e AieIop

Here the indicated isomorphism is by usual h-descent for finite type schemes and Propo-

sition 16.25.1.

Variant 16.27.2. One can similarly show that the functor:

colimD*(Cech"(S/T)) — D*(T)

[n]leA
defined by de Rham pushforwards is an equivalence for S — T an h-covering. Indeed: it
is easy to verify for Zariski coverings (the argument is basically the same as for Lemma

16.18.3), and for proper coverings, it follows automatically from Proposition 16.27.1.
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This is the statement that should properly be thought of as dual to Proposition 16.18.1.

16.28. Equivariant setting. Suppose that we are in the setting of §16.19, i.e., G is a
group scheme over S that acts on an S-scheme P.

In this case, (16.19.1) defines the coequivariant derived category:

D*(P)g = colim ( .... == D*(g X G x P) == D*(G X P) —= D*(P) )

(16.28.1)
with the colimit computed in DGCat,y,;.
The analogue of Proposition 16.19.2 holds in this setting: if P — S is an G-torsor, we

obtain a functor:

D*(P)g — D*(5)

that is an equivalence by essentially the same argument as in loc. cit, but using Variant

16.27.2 of Proposition 16.27.1.

16.29. Placidity. We now discuss an additional convenient hypothesis for quasi-compact

quasi-separated schemes.

Definition 16.29.1. For T € Sch we say an expression T = lim;egor T; is a placid presen-
tation of T if:

(1) The indexing category J is filtered.

(2) Each T; is finite type over k.

(3) For every i — j in J the corresponding map T; — T is an affine smooth covering.

We say that T € Sch is placid if it admits a placid presentation.

Example 16.29.2. As is well known from the theory of group schemes, any affine group

scheme is placid (we need the characteristic zero assumption on k here).
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Example 16.29.3. Suppose that S is a finite type scheme and G — S is a projective limit
under smooth surjective affine maps of smooth S-group schemes. Suppose that Pg — S

is a G-torsor in the sense of §16.19. Then Pg is placid.

Example 16.29.4. For a Cartesian square:

SQ e T2
Sl —— T1
with T} finite type, S1 and T5 placid, the scheme S5 is necessarily placid.
Indeed, for Sy = lim;egor S1; and Th = limjegor T ; placid presentations by T3-schemes,

we have:

SQ = lim Sl,i X TQJ‘.
(3,5)€dop x gor Ty

Obviously all structure maps are smooth affine covers, so this is a placid presentation of

Ss.

Remark 16.29.5. By Noetherian descent, if S is placid and T' — S is finite presentation,
then T is placid as well. Moreover, there always exist placid presentations S = lim;egor S;,
T = lim;egor T; and compatible morphisms 7; — .5; inducing T' — S, and such that, for

every ¢ — j € J, the diagram:

is Cartesian.

Remark 16.29.6. By [Gro67] Corollary 8.3.7, given a placid presentation 7' = lim; T},

each structure morphism 7" — T; is surjective on schematic points.
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Remark 16.29.7. A placid scheme is tautologically quasi-compact and quasi-separated.

16.30. If T is a placid scheme with placid presentation T" = lim;egor T; then we have:

D*(T') = colim D(T;) (16.30.1)

ie]
where the structure functors are the =pullback functors (defined because the maps
T; — T; are smooth). For ¢ € 3 and f; : T' — T; the corresponding structure map, we
let f*%" denote the functor D*(T}) — D*(T) left adjoint to f; . 4z.

In particular, we see that D*(T) is compactly generated and therefore canonically
dual to D'(T), which is also compactly generated. (Note that in the D'-case, compact
objects are !-pullbacks of compact objects from finite type schemes, where for D* they
are =-pullbacks).

Similarly, we obtain:

DNT) = lim D(Ty) (16.30.2)

where the structure functors are the right adjoints to the f; functors, i.e., shifted de

Rham cohomology functors (again, these are adjoint by smoothness).

Remark 16.30.1. It follows from the identification of D* as a colimit that for placid

T = lim;egor T; as above and F € D*(T'), the canonical map:

colim e ar(F) = F (16.30.3)
1€,

is an equivalence.

16.31. Let T be a quasi-compact quasi-separated scheme.
Let Pres(T') denote the 1-category whose objects are placid presentations (J,{T;}icq)

of T" and where morphisms (J, {T}' }ics) — (3, {T}};es) are given by a datum:
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F:J—Jand {f;: T} — T}%(i)}ieg compatible morphisms of schemes under 7.

)

One easily shows that Pres(7") is filtered.

16.32.  Fix two placid presentations (J, {T} }ics) and (J, {T}} ) of a scheme T'. We will

make use of the following observation.

Lemma 16.32.1. For every j € J and every factorization T — T} — Tj2 for i €3, the

morphism T;' — T7 is smooth.

Proof. Suppose z is a geometric point of T'. For each i’ € J, let x;; denote the correspond-
ing geometric point of T}.

Applying Proposition 16.11.3, we obtain:

Coker (x;k(Q;;/Tg) — x*(Q%p/Tz)> = colim Coker (x;"(Q;;/Tg) — xZ‘/(Q%p;//TZ)) = colim z}, (9

iIEji/ Z'IEJ.L'/

Because the structure maps T; — T; are smooth the right hand side is a filtered limit of
vector spaces concentrated in degree 0 and therefore is concentrated in degree 0 as well.

On cohomology we obtain a long exact sequence with segments:

. — H! <colim xfx(QlT;,/T;)) — H' (xf(QlT.l/TZ)) - ' (x*(QlT/T-2)> IR

i’eji/

The left term is zero for ¢ # 1 and the right term is zero for ¢ # 0. But xf(Q%F_l/T_g) is
i/t

tautologically concentrated in degrees < 0, so it is concentrated in degree 0 as desired.

O

16.33. Dimensions. We digress briefly to fix some terminology regarding dimensions.
Let T be a finite type scheme. We define the dimension function dimy : T — Z>° to

be the locally constant function that on a connected component is constant with value
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the Krull dimension of that connected component (i.e., the maximal dimension of an
irreducible component of this connected component).
For f : T — S a map between finite type schemes, we let dimy,g : T" — Z be the

locally constant function dimg — f*(dimg).

Ezxample 16.33.1. If f : T' — S'is a smooth dominant morphism, then dimy/g is the rank

of the vector bundle QL. /s

Therefore, for a Cartesian diagram of finite type schemes:

®

S — S
with ¢ and ¢ both dominant smooth morphisms, dimg/s = ¥*(dimy/g). In particular,

this identity holds whenever ¢ is a smooth covering map.

Counterezample 16.33.2. We need not have dimy/s = dg/p = rank(Q;/s) it f:T -9
is smooth but not dominant.
For example, let S = A?[[,A! be a line and a plane glued along a point, and let

T = G,, x A! mapping to S via the composition:

GmxAlaGm%AlwAQHAl.
0

Then dg/r the constant function 1, while dimg,7 is the constant function dimy — dimg =

2-2=0.

Remark 16.33.3. By Remark 16.29.5, we see from Example 16.33.1 that dimy/s can be
defined as a locally constant function 7" — Z for any finitely presented morphism 7" — S
of placid schemes by Noetherian descent.

Given a pair of finitely presented morphisms 7' I8 Vof placid schemes, this

construction satisfies the basic compatibility:
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16.34. Renormalized dualizing sheaf. Suppose that 7" is placid scheme. We will now
define the renormalized dualizing sheaf wi™ € D*(T).
Fix a placid presentation T" = lim;egor T; of T'. Because each structure map ¢;; : 15 — T;

is a smooth covering, we have canonical identifications:

ey (wr,[-2 - dimg,]) = wr,[-2 - (dimg, )]

Therefore we have a uniquely defined sheaf wi™ characterized by the fact that it is the
«-pullback of wr,[—2 - dimy,| from any 7; to T
We claim that wj™" canonically does not depend on the choice of placid presentation.

Indeed, this follows from Lemma 16.32.1 and by filteredness of Pres(7T').

FEzample 16.34.1. Let T be finite type. Then wi € D*(T) = D(T) identifies with

wT[—Z : dlmT] .

Ezxample 16.34.2. Suppose T admits a placid presentation T' = lim T; with each T;

smooth. Then wi™ = k.
16.35. Suppose that T is a placid scheme. We define the functor:

nr: D(T) — D*(T)

TEeEN

by action on wi™.
Proposition 16.35.1. The functor nr is an equivalence.

Proof. Choose T' = lim;eg0r T;; a placid presentation. We claim that the functor:

e i D(T) = colim D(T3) — D*(T) "2 colim D(T;).
S S
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is the colimit of the shifted identity functors idp(r,)[—2 - dimg,]. Indeed, the colimit
of these functors is a morphism of D'(T)-module categories and sends wr € D'(T) to
wit™ e D*(T).

Now the result obviously follows from this identification.

O

Ezample 16.35.2. If T is finite type then ny is the composite equivalence D'(T) =
D(T) =: D*(T) shifted by —2dimy.

16.36. Renormalized functors. Let f : T — S a map of placid schemes.

We let fy,en : D'(T) — D'(S) denote the induced functor so that we have the com-

mutative diagram:

f*,re'n

D{T) — D'(S)

=~ nr =~ ns

fx,dr

D*(T) = D*(S).

In the same way we obtain the functor <" : D*(S) — D*(T) fitting into a commu-

tative diagram:

f!,ren

Note that we have a canonical isomorphism

f!,ren<wgen) _ wgen (16361)

because:

! !
f!ﬂ'en(wgen) _ f!<wS> ®w§_‘en = wr ®w;en _ wg_'en.
241



Example 16.36.1. Suppose f : T — S is a map between finite type schemes. We identify
D'(S) and D'(T) with D(S) and D(T) in the canonical way.

Then the functor fy yen : D(T') — D(S) identifies with f, 4p[—2-dimy/s]. In particular,
if f is smooth and dominant, then (f', fi re,) form an adjoint pair of functors.

Note that in this setting the functor f.,_4r coincides with the (non-renormalized)

functor fy ar.

Warning 16.36.2. If f : S — T is a closed embedding of placid schemes, then fi e, is
not left adjoint to f' (c.f. Example 16.36.1). In fact, if f is a closed embedding of infinite
codimension, then f, ,., does not preserve compact objects and therefore does not admit

a continuous right adjoint at all.

Warning 16.36.3. Given a Cartesian diagram:

Y
T — 5

o, b

Ty —— 5

of finite type schemes, we find that:

f!g*;ren = f!g*,dR[_Q ' ding/Sg] = ¢*,dR<P![—2 : ding/Sg]

while w*,mn(p! = w*,ngo![—Q - dimp, /S1]~ Since dimensions do not always behave well
under base-change, we see that base-change does not always hold between renormalized

pushforward and upper-!.

Ezxample 16.36.4. Suppose f : T — S is a map between finite type schemes. We identify
D*(S) and D*(T) with D(S) and D(T') in the canonical way.

Then the functor f'7*" : D(S) — D(T') identifies with f'(—)[—2dimz/s]. Note that if
f is smooth and dominant, then """ identifies canonically with f*<¢f.

The functor fi coincides with the (non-renormalized) functor f*.
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Remark 16.36.5. We emphasize explicitly that the “renormalization” here has nothing
to do with the renormalized de Rham cohomology functor from [DG12]. Rather, the

terminology is taken from [Dri06] §6.8.

16.37. Placid morphisms. We will now further analyze the renormalized functors un-
der certain very favorable circumstances.

We say a morphism f :.S — T of placid schemes is placid if, for any placid presenta-
tions S = limyegor S;, T = limjegor T, for every j € g there exists ¢ € J with the morphism
S — T — T} factoring as S — 5; — T} and with S; — T} a smooth covering.

Obviously, if this holds for one pair of placid presentations then it holds for any.

Ezrample 16.37.1. By Noetherian descent and Remark 16.29.6, smooth morphisms that

are surjective on geometric points are placid.

Erample 16.37.2. Suppose that S = lim;ecgor S; and T = lim;egor T are placid presenta-
tions, and suppose that we are given compatible smooth coverings f; : S; — T; inducing
f S — T (by compatible, we do not assume that the relevant squares are Cartesian,

only that they commute). Then f is a placid morphism.

Remark 16.37.3. For categorical arguments, it is convenient to use the following formu-
lation of this definition.

Let Sch’

SM—Cov

denote the category of finite type schemes where we only allow smooth

coverings as morphisms. Let:

Pro*(Sch’: ) < Pro(Schlt

Sm—cov S$M—Cov

denote the full subcategory where we only allow objects obtained as projective limits
under morphisms that are affine (in addition to being a priori smooth coverings).

Then the functor:

Pro®®(Sch/t ) — Pro™(Sch’*) = Schyeys

sm—cov
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is a (non-full) embedding of categories. Indeed, this is a general feature: (non-full) em-
beddings of (1, 1)-categories induce embeddings on Ind or Pro categories, since filtered
limits and colimits of injections in Set are still injections. Moreover, its essential image
are placid schemes, and a morphism lies in this non-full subcategory if and only if it is
placid.

Observe that Pro™®(Sch/t Y — Schy,, commutes with filtered projective limits with
affine structure maps, i.e., this functor is the right Kan extension of its restriction to
Schiin cov-

and Pro™(Sch/% 'y < Pro(Sch’ ) does too. Moreover, Pro(Sch’: 'y — Pro(Sch’*)

SM—Ccov SM—Ccov SM—Ccov

Indeed, Schyes < Pro(Schf ") commutes with such filtered projective limits,

tautologically commutes with filtered limits, proving the claim.

Warning 16.37.4. Against the usual conventions for terminology in algebraic geometry,
placid morphisms are not intended as a relative form of placidity.

Indeed, we can only speak about placid morphisms between between schemes already
known to be placid. Moreover, for a placid scheme S, the structure map S — Spec(k)
may not be placid.

The terminology is rather taken by analogy with the definition of placid schemes, as

in Remark 16.37.3.

Counterexample 16.37.5. It may be tempting to think of placid morphisms as being
analogous to being a smooth covering morphisms, since this condition is equivalent for
finite type schemes. The following example is meant to show the geometric limitations
of this line of thought. We also note that this example models the geometry of Lemma
6.30.1.

Let Al x A" — Al x A1 by:

()\,(xl,...,xn)> — ()\,(xl—)\~x2,...,xn,1—)\-xn)>.
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Each of these morphisms is a smooth covering. Moreover, these morphisms are compat-

ible as n varies, and therefore induce a placid morphism (of infinite type):

Al x A® — Al x A®

(N, z1,29,...) = (A, 21 — A 9,29 — N 23,...).
where we use the notation A = lim,, A", the limit taken under structure maps A”™ — A"
(m = n) of projection onto the first n-coordinates.
Then for 0 # A € k, the fiber of this map at (},0,0,...,0) is a copy of A, realized as

the loci of points:

(/\,1'1, )\_1 Xy, )\_2 L1,y .. )

with x; € Al arbitrary.

However, the fiber at (0,0,0,...) is just the point scheme Spec(k), realized as the
locus (0,0,0,...).

In particular, we see that fibers of placid morphisms can be finite type dimensional

schemes that vary non-smoothly.

Lemma 16.37.6. Given a Cartesian diagram:

©
SQ e T2
A
f
Sl e T1
of placid schemes with g finite presentation and f a placid morphism, the morphism ¢

1s placid as well.

Proof. Let S1 = lim; S1; and T7 = lim; T ; be placid presentations. We take a compatible
placid presentation 75 = lim; 75 ; as in Remark 16.29.5.

Note that:
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SQ = hIIl hm Sl,i X TQJ‘
J ot Ty,;

where we really only take the limit under ¢ such that the map S; — T} ; factors (neces-
sarily uniquely) through S ;.

For a pair of morphisms (i; — i3) and (j; — ja), we claim that the induced map:

Stiy X Tojy — Sy x Ty,
1,59 1,51

is an affine smooth covering. Indeed, we have Ty j, = T' j, X1, ; T3 j, so that the left hand
side of the above is Sy ;, x7, j, Tb;,. Because Sy, — Si,, is an affine smooth covering,
we obtain the claim.

Therefore, the terms Sy ; x7, ; To; define a placid presentation of Sy. But each map:

S1i % Ty =Ty,

1,5

is a smooth covering because each S;; — T} ; is assumed to be, completing the proof.

O

The following results from the argument above.

Corollary 16.37.7. Suppose that we have a Cartesian square:

©
SQ e T2
L
f
Sl —— Tl
of placid schemes with g finite presentation and f a placid morphism. Then dimg,;s, =

90* (dimTE/Tl)'

Proof. Let S; = lim; Sy, Ty = lim; T ; and T = lim; T5 ; be as in the proof of Lemma

16.37.6. As in loc. cit., we have a placid presentation of Sy with terms:
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Sl,i X TQJ‘.

1

Fixing and index jy, as in loc. cit., we have:

S x Toj=51; x Toy.
T, T

1,30

for every morphism j, — j. Therefore, the morphisms Sy ; x T, ; — 5 ; are obtained one
T17j
from another by base-change, so that dimg, /g, is defined as the pullback of the function:

dlmsu x T2 /51,
11,5

for any choice of indices. But because our maps are smooth coverings, this function is

the pullback of dimg, /7, ;, giving the result.

16.38. For our purposes, the key feature of placid morphisms is given by the following

proposition.

Proposition 16.38.1. (1) For a placid morphism f : S — T of placid schemes, the
left adjoint f* to f,ar: D*(S) — D*(T) is defined.
(2) For a placid morphism f : S — T of placid schemes, there is a canonical identi-
fication f'ren ~ fdR . D¥(T) — D*(S).
More precisely, with Schy, denoting the category of placid schemes under placid

morphisms, there is a canonical identification of functors:

(D*, =) = (D*, f7") : Sch?? — DGCat oy

inducing the identity over the mazimal subgroupoid of Schﬁ’.
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(3) For a placid morphism f : S — T of placid schemes, the functor f': D'(T) —
DY(S) admits a right adjoint, and this right adjoint is functorially identified with
faren in the sense above.

(4) For a Cartesian square of placid schemes:

©

Sg e T2

jw Lg (16.38.1)
f

Sl I T1

with f placid and g finitely presented, the canonical morphisms:

lren

|
f.’reng*,dR - w*,dR(p.’

| |
f.g*,ren - w*,'rengp‘

arising from the adjunctions above are equivalences.

We begin with the following general remarks.
Let DGCat'¥, denote the category of cocomplete DG categories under k-linear functors

that admit continuous right adjoints. Let DGCatZﬁfﬁ denote the category of cocomplete

DG categories under k-linear functors that admit left adjoints.

We have an obvious equivalence DGCat™*¥ ~ DGCat’*% given by passing to the

adjoint functor.

One easily verifies:

Lemma 16.38.2. The category DGCat'¥, admits colimits, and the functor DGCat'*¥, _,

cont cont

radj
cont

DGCatpn: preserves these colimits. Similarly, DGCat admits limits, and the functor

DGCat’®¥ — DGCateon; commutes with limits.
Proof. The content is that given a diagram ¢ — C; of cocomplete DG categories under

structure functors admitting continuous right adjoints, a functor € := colim; ¢; — D
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admits a continuous right adjoint if and only if each C; — D does. But this is obvious,

since € is then also the limit of the C; under the right adjoint functors.

U

Proof of Proposition 16.38.1. Recall from Remark 16.37.3 that Schy; is the full subcat-

egory:

Pro®®(Sch/* ) < Pro(Sch’

SM—Cov Sm*CO’U) :

Moreover, because Sch,; — Schy.,s is the right Kan extension of its restriction to

Schl:

sm—cov?

we see that D*|sc, , is the right Kan extension of D*|g s+ = Dlg st

sm—cov sm—cov

factors through DGCat™¥ by smoothness.

Moreover, note that D* cont

|SCh£htL;cov

As in Example 16.36.4, the corresponding functor:

Dlgysi  — DGCat/sl ~ DGCatle%

L cow cont cont

identifies with (D, f'ren) i.e., the functor attaching to a scheme of finite type

[SehLst o
its category of D-modules, and to a smooth surjective morphism of schemes the corre-
sponding renormalized pullback functor.®

By Lemma 16.38.2, the right Kan extension of this functor also factors through
DGCat"™¥ | proving (1). Moreover, it follows that the corresponding functor to Schyj —

cont)

DGCat'? encoding the left adjoints is the left Kan extension of (D, f'"")[c . s.t.op -

sm—cov

We have an equivalence:

(D, F7) senttoor = (D, f1)|scht-toom

computed termwise on a finite type scheme S as ng'. Moreover, (D', f') is the left Kan
extension of the left hand side.

For a placid scheme S with placid presentation S = lim S;, we have:

39This identification is treated formally in the homotopical setting in [GR14].
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ns = colimng, : D'(S) = colim D'(S;) — colim D*(S;) = D(S)

the colimit on the right taken under renormalized pullback functors (equivalently: =-dR
pullback). Indeed, this was already observed in the proof of Proposition 16.35.1.

Therefore, we see that (D', f*7*) is the left Kan extension of (D, f"e") as

IScht con
desired. This completes the proof of (2).
Note that (3) is a formal consequence of (2). Therefore, it remains to show (4).
Suppose we are given a Cartesian square (16.38.1). It obviously suffices to show either

of the base-change morphisms is an equivalence, so we treat the map f"""

9x,dr —
U dr "

First, suppose that 77 and T5 are finite type.

We take a placid presentation S; = lim; S;,. We can assume each S, is a 7j-scheme
by Noetherian approximation.

Because S; — T} is placid, each S;; — T} is a smooth covering. Define Sy; = Si; X7,
Ts.

We use the notation:

Bi ®i
Sy —— Sy — 1

j b l i L g (16.38.2)

a; fi
Sl —— Sl,i —— Tl-

We now have:

1 . | . !
f*,de”reng*,dR = COIZ,HH fi,*,dei Teng*,dR = COlilm fi,*,dei,*,dR% =

- !7 2 — 5
coli1m 9%, dRPi,%,dRP; = g*,dRSO*,dRQOI e = f*,dR¢*,dR@' ren
Here the first and fourth equalities follows from filteredness of our index category and
the adjunctions. The base-change in our second equality follows from the usual smooth

base-change theorem in the finite type setting.
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Applying the above argument to the left square of (16.38.2) and applying (finite-

dimensional) smooth base-change to the right square, we see that the map:

Qi drf " Gxdr — Qi drPsar® "
is always an equivalence. But this suffices to see our base-change by definition of D*.
We now treat the case of general g of finite presentation. Suppose that we have a
diagram:

® 0
Sy —= Ty —= T

L v l g l y (16.38.3)
A T/
with both squares Cartesian, the schemes 77 of finite type, and the maps 6 and ¢ placid.
Then we have base-change maps:

f!,ren lLren 1

lren lren
€ 9% dr — / g*,dpﬂ - 1/1*,dR90

!,rene!,ren

By our earlier analysis, the first map is an equivalence by considering the right square
of (16.38.3), and the composite map is also an equivalence by considering the outer

square of (16.38.3). Therefore, we see that the map:

Iren Lren Iren Iren
f’ g*,dRe ’ - f7 g>l<,7"ene7

is an equivalence. Varying 7] over some placid presentation of 77, the corresponding

functors 67" generate D*(T3), so this suffices.

16.39. As a consequence of Proposition 16.38.1, we show that some features from Ex-

amples 16.36.1 and 16.36.4 survive to greater generality.
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Proposition 16.39.1. For f : T — S a finitely presented morphism of placid schemes, we

have canonical identifications:

fI[=2 - dimg/s] = £ : D*(S) — D*(T)

f*,!de[_Q . dlmT/S] = f*,ren : D'<T) — D'(S)
where dimy/g is defined as in §16.33.

Proof. Let S = lim S; be a placid presentation, and by Remark 16.29.5, we may assume
we have a placid presentation T" = lim T; so that we have maps f; : T; — S; with each
1 — j inducing a Cartesian diagram, and with f obtained by base-change from each of
the f;. Note that dimz/g is then obtained by pullback from each dimg;/g,.

We use the notation:

For the first part, note that by (16.30.3) and Example 16.36.4, we have:

i . dR ; . AR ri . JdR ¢!, .
fl= COlilm 1/): ¢i,*,de' = COlilm ¢;k fil PixdR = COlilm 1/1; fi Ten@i,*,dRp : dlmT/S]-

By Proposition 16.38.1, ¢ = Y™™ Therefore, we compute the above as:

i .

Ire

coliim w;’m"f;’re"gpi,*,dR[Q-dimT/S] = coliim f!’m"goi "ixar|2-dimys] = f!’r€”[2.dimT/S]
n *,dR

by again applying (16.30.3) and the identification @i’m = ;"

For the second part, note that we have functorial base change isomorphisms:

| |
@%fi,*,ren =~ f*,ren,ll)z-‘
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by Proposition 16.38.1. By Example 16.36.1, f; «1—qr[—2 - dimz/s| = fixren. Moreover,
these cohomological shifts are compatible with varying 7, so we obtain the result by

definition of f. 1 4r.

Corollary 16.39.2. Suppose we are given a Cartesian square:

Sy — T
el
f
Sl e T1
with S1 and Ty placid schemes, f and g placid morphisms, and Ty finite type. Then the

canonical morphisms:

lren

|
" g ar — Vwdrp

| !
f.g*,ren - ¢*,ren90'

are equivalences.

Proof. Note that we have already seen in Example 16.29.4 that Ss is actually a placid
scheme.
It tautologically suffices to prove that the first base-change morphism is an equivalence.
We form the diagram:

i P2
SQ—>51XT2_>T2

o e |
Ay

Sl —_— Sl X T1 ﬁpQ Tl.

Here Ay is the graph of f. Note that each of these squares is Cartesian. In particular, ¢
is a finitely presented morphism. We are reduced to proving the base-change result for

each of these squares separately.
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For the right square, the result is essentially obvious: it follows from the compatibility
of push-forward with products of schemes.

For the left square, note that the base-change result holds with the upper-j functor in
place of the renormalized upper-! functor by the correspondence formalism. Therefore,

the result follows from Proposition 16.39.1.

16.40. Holonomic D-modules. Let S be a scheme of finite type. Let Deonpoi(\S)
denote the full subcategory of D (S) (the compact objects in D(S)) composed of
those coherent complexes with holonomic cohomologies, defined in the usual way. Let

Dyt (S) < D(S) denote the full subcategory:

Dhol(S) = |nd(Dcoh,h01(S)) - D(S)

We refer to objects of Dj(S) simply as holonomic objects.*”
For f : S — T a map of finite type schemes, the usual theory of D-modules implies
that the functors f,4r and f' preserve the subcategories of holonomic objects.

For S a quasi-compact quasi-separated scheme, we obtain the categories:

D;ZOI(S) and DZOZ(S)

defined by a Kan extension, as in the case of D' and D*. We have obvious functors
D; ,(S) — D'(S) and D;,(S) — D*(S), the latter being fully-faithful. For S placid, we
can express Dj ,(S) as a limit as for D*(.S), and therefore we see that Dj ,(S) — D*(S)
is fully-faithful in this case as well. We refer to subobjects of D*(S) lying in Dj,(S) as

holonomic objects, and similarly for D' when S is placid.

40We note that, of course, this condition completely ruins all the nice finiteness conditions that “usual”
(coherent) holonomic complexes satisfy, e.g., finiteness of de Rham cohomology. This is necessary for
obvious reasons in the infinite-dimensional setting.
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We have upper-! and lower-* functors for D}, ,(S) and Dj ,(S) respectively, compatible

with the forgetful functors.

Proposition 16.40.1. For f : S — T a morphism of quasi-compact quasi-separated
schemes, the morphism fyar : Dj,(S) — D (T) admits a left adjoint f**5.

If T is placid and f is finitely presented, then the morphism f': D} ,(T) — D; ,(95)
admits a left adjoint f;.

Moreover, in each of the above settings, these left adjoints are well-behaved with respect
to maps to non-holonomic objects as well, i.e., the partially-defined left adjoints to fy ar :
D*(S) — D*(T) and f' : D'(T) — D'(S) are defined on holonomic objects, and these left
adjoints preserve the holonomic subcategories (and therefore are computed by the above

functors). Of course, we are assuming f finitely presented and T placid when discussing

i

We begin with the following lemma.

Lemma 16.40.2. Let J be an indexing category with I filtered. Let (i — ©;) and (i —
D;) are two I-shaped diagrams of cocomplete categories under continuous functors, with
structure functors:
¢a:8i—>€j ¢Z€=11m€j—>ez
g€l
Soa:®i_)®j gOl‘D:hm‘D]—)‘Dl
jed
fora:i— 7 inJ and forie .

Suppose G; : C; — D; are compatible functors with induced functor:

G:C—D.

If each functor G; admits a left adjoint F;, then G admits a left adjoint F' : D — €

such that, for every j € J, we have:
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77[)]‘ F = colim I/Ja.FiQOZ' .

(azi—g)e(dy;)eP

Proof. For j € J fixed, note that for any diagram:

. - .
11—

we have the natural map:

v — oGy Fy — GiglFy.

By adjunction, this gives rise to a map:

FiSO,B - w,BFi'-

Composing on the left with ¢, and on the right with ¢;, we obtain the map:

Yo Fioppi = Vo Fipi = YaopFrpy = VabsFups.

Expressing this in the obvious homotopy-compatible way, we obtain a diagram of

functors:

(@i —j)e (J)* = bakips

Define the functor:

“iF7 = colim Yo Fip;.

(azi—j)e(Iy5)op
As j varies, we see by filteredness that these functors are homotopy compatible, and

therefore we obtain a functor F' : D — € with the property that we have functorial

identifications:
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@Z)jF _ ccz/}an

with “¢»; F” as above.

For every j € J, we have the map:

Y FG = colim Yo Fip;G = Yo F;Gihy — a1 = ;.

(azi—g)e(d/5)eP
As j € J varies, these maps are homotopy compatible and therefore we obtain the counit

map:

FG —ide.

Similarly, for every j € J, we have the map:
;= colim ;= colim oPi —  colim JGiFip; =
P i (aiepee T (i LT

colim Gj@Z)an‘SOz‘ = Gj’gbjF = QDJGF

(azi—g)e(dy;)eP

As j varies, these maps are homotopy compatible and therefore give the unit map:

idp — GF.

One readily checks that the unit and counit maps constructed above actually define

an adjunction.

Proof of Proposition 16.40.1. For any map f : S — T, it is easy to see that we can
arrange to have S = lim;cgop S;, T = lim;eg0p filtered systems of finite type schemes under
affine maps and with compatible maps f; : S; — T; inducing f in the limit (note that we
do not assume any diagrams are Cartesian). Therefore, the existence of the left adjoint

4% follows immediately from Lemma 16.40.2.
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Let us see that these objects map in the obvious way to non-holonomic objects. For
a:i— g, let @, 0 S =S, 0o S; — S, ¥ T — T, 1, : T; — T; denote the structure
maps.

Note that e.g. D} ,(T) — D*(T) is continuous. Therefore, for F € D; ,(T) and G €
D*(5), we have:

Hom ps 7y (f**(F), §) = lim hm,HOHID(Ti)(wa,*,de;’dRSDj,*,dR(?), Viar(9)) =

i aii—g
h{ﬂ HOHID(TZ-)(fi*’dR%,*,dR(?%%,*,dR(g)) = Homp (1) (@i x,ar(F); fix.arisxar(SG)) =
Homp 1) (@i5,ar(F), @ixarfear(G)) = Homps ) (F, fr.ar(9))

For f finite presentation, we can take placid presentations S = lim S; and T = lim T;
as in Remark 16.29.5: by base-change, the upper-! functors are compatible with the
shifted lower-* functors expressing D* as a limit (using placidity), so Lemma 16.40.2

again applies. The same argument as above treats maps to non-holonomic objects.

We also have the following observation.

Proposition 16.40.3. If S is placid, then ns identifies the subcategories D; ,(S) and
Dji(S).

Proof. Suppose F € D'(S). We will show that F € D} _,(S) if and only if ns(F) € D} ,(F).
Let S = lim; S; be a placid presentation of S and let «; : S — S; denote the structure
maps.
By definition, ns(F) is in Dj,,(F) if and only if o 4 ren(F) € Dpa(S;) for every i. By
(16.30.3) and Proposition 16.38.1, we have:

F = colim aéai,*,rm(?)
7

giving the result.
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To see that for F = D;} _,(S) we have a4 ren(F) € Dpoi(S;), note that D;,(S) is tauto-
logically generated under colimits by objects a}(fr’"j), for F; € Dy (S;). By filteredness of
our indexing category, we can compute ai7*7r6na;(?j) as a colimit of objects obtained by
pushing and pulling along correspondences S; < S — S; (coming from correspondences
i — k < j in the indexing category).

O

Corollary 16.40.4. For f : S — T a morphism of placid schemes, the functors fi e, and

fhren preserve holonomic objects in D' and D* respectively.

16.41. Indschemes. We now move to the setting of indschemes.
We say that T' € PreStk is a (classical) indscheme if T' = colim;ez T; in PreStk where 7
is filtered, T; € Schyqqs < PreStk and each structure map 7; — T is a closed embedding

(recall that in this case T € Stk < PreStk).

16.42. We define the functor D' : IndSch” — DGCat,,;: as the right Kan extension
of the functor D' : Schy?.. — DGCatcoy. Therefore, for 7' = colim 7; we have DYT) =
lim D'(T;) where the structure functors are !-pullback functors.

For f : T — S a map of indschemes, we let f' : D'(S) — D'(T) denote the corre-
sponding pullback functor.

The functor D' lifts to a functor D' : Sch? . — ComAlg(DGCateon), i.c., each DY(T)
has a symmetric monoidal structure C>'§ and every map f : T — S induces a symmetric

monoidal functor f': D'(T) — D'(S). The unit of the symmetric monoidal structure is

wr = pip(k) € DY(T) for T — Spec(k).

16.43. Similarly, we define the functor D* : IndSch — DGCat,,,; as the left Kan ex-
tension of the functor D* : Schy.,s — DGCateypne. For T' = colim 7T}, we have D*(T) =
colim D*(T;) where the structure functors are =-pushforward functors.

For f : T — S a map of indschemes, we let f,q4r : D*(T) — D*(S) denote the

corresponding pushforward functor.
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For every indscheme T and quasi-compact quasi-separated closed subscheme T < T,
we have the symmetric monoidal functor D'(T) — D'(T"), so that D*(T") is a module
category for D'(T). By the projection formula (16.21.1), for every T' < T" < T with 1"
and T" quasi-compact quasi-separated closed subschemes, the =-pushforward D*(7") —
D*(T") is a morphism of D'(T)-module categories. Passing to the colimit, we obtain
that D*(T) is a module category for D'(T) canonically.

We again have a projection formula, i.e., for f : T — S a map of indschemes the
functor f.4r : D*(T) — D*(S) is a morphism of D'(S)-module categories.

If D'(T) is dualizable and D*(T") is dualizable for every T" < T a quasi-compact quasi-
separated closed subscheme, then D'(T) is canonically dual to D*(T'). This identification

is compatible with D'(T)-module category structures.

Notation 16.43.1. If T is an indscheme of ind-finite type then D'(T) and D*(T) are
canonically identified. Indeed, the former is the colimit under left adjoints and the latter
is the limit under right adjoints.

As in the finite type case, we denote this category simply by D(T), as there is no risk

for confusion.

16.44. Correspondences. We say a morphism f : T — S of indschemes is finitely
presented if f is schematic and its base-change by any scheme is a finitely presented
morphism.

Exactly parallel to Propositions 16.14.1 and 16.25.1 one shows that D' and D* upgrade
(via Kan extensions) to functors D"*"" and D**"" from the categories of indschemes
under correspondences where the “right” (resp. “left”) map is finitely presented.

For f : S — T finitely presented we have the corresponding functors fy1_4r : D'(S) —
DY(T) and fi: D*(T) — D*(S). The analogue of Proposition 16.15.2 holds as well.

Remark 16.44.1. We emphasize that by schematic, we mean schematic in the sense of

classical (i.e., non-derived) algebraic geometry, which is a more forgiving notion than
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that of derived algebraic geometry. This is relevant, say, for considering the embedding
of 0 inside of the indscheme associated with an infinite-dimensional k-vector space, which

is a classically schematic embedding but not a DG schematic embedding.
16.45. Reasonable indschemes. The following definition is taken from [BD] §7.

Definition 16.45.1. A subscheme S < T is a reasonable subscheme of T if S is a quasi-
compact quasi-separated closed subscheme such that, for every closed subscheme S’ of
T containing S, the closed embedding S < S’ is finitely presented.

T is a reasonable indscheme if T is the colimit of its reasonable subschemes.

FExample 16.45.2. Every quasi-compact quasi-separated scheme is reasonable when re-

garded as an indscheme.
Example 16.45.3. Every indscheme of ind-finite type is reasonable.

Example 16.45.4. For an ind-pro finite set 7', considered as an indscheme in the obvious
way, a subset S < T is reasonable if and only if it is compact and open in the ind-pro

topology.

Terminology 16.45.5. Because of Example 16.45.4, we sometimes refer to reasonable
subschemes as compact open subschemes. We especially use this terminology in the
group setting, where we speak of compact open subgroups, meaning group subschemes

that are reasonable as subschemes.

Lemma 16.45.6. Suppose T' is a reasonable indscheme and f : S — T a finitely presented
morphism of indschemes. Then S is a reasonable indscheme, and for every reasonable

subscheme T' = T, f~1(T") = S is a reasonable subscheme.

Proof. Fix a reasonable subscheme T" < T. It suffices to show that f~'(7") < S is a

reasonable subscheme.
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First, suppose that 7" < T” < T is a reasonable subscheme of T. We will show that
fYT") — f~YT") is a finitely presented closed embedding.

Note that f~1(T") — T is finitely presented because f is, and similarly for 7”. More-
over, f~Y(T") — T" is finitely presented, since it factors as f~1(T") — T’ — T" with the
latter morphism being finitely presented because 7" is reasonable.

Therefore, since f~1(T") — f~1(T") sits in the diagram:

f—l(T/> N f—l(T//) N T//

with the composite morphism and the right morphism finitely presented, the morphism
YTy — f~Y(T") is finitely presented as well (the relevant “two out of three” principle
appears in [Gro67] Proposition 1.6.2).

To see that this suffices: suppose that f~}(7") = S’ < T is closed subscheme. We can

take T" as above we S’ — T factoring through T7”. Therefore, we have:

YTy cs <.

That f~Y(T") — f~1(T") is finite presentation means that the ideal sheaf of f~1(7")
is finitely generated over the structure sheaf of f~!(T”). Therefore, we see that it is
finitely generated over the structure sheaf of S’ as well, so that our closed embedding

f7UT") < S is itself finitely presented.

16.46. The key feature of reasonable indschemes is the following. Suppose T' = colim;cz T;
as in the definition.

Then every « : T; — Ty is a finitely presented closed embedding and therefore o' :
D'(T;) — DY(T;) admits the left adjoint cus)_qr and a, qr : D*(T;) — D*(T};) admits the
right adjoint al.

Therefore, we have:
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DNT) = colim D\(T;)
* (16.46.1)

D*(T) = lim D*(T))
i€ZopP

where on the left we use functors o )_4r and on the right we use functors al.

We deduce that for 7" and S reasonable indschemes we have canonical equivalences:

DT x S) = DT)® D'(S). (16.46.2)

16.47. Descent. We say a morphism f : T" — S of indschemes is an h-covering if its

base-change by any affine scheme is an h-covering.

Proposition 16.47.1. Let f : S — T be an h-covering of indschemes. Then the canonical

functor:

DNT) — lim D'(Cech™(S/T))

[nleA

given by '-pullback is an equivalence.

Proof. This is obvious from Proposition 16.18.1: it just amounts to commuting limits

with limits.

Similarly, we have the following result under more restrictive hypotheses.

Proposition 16.47.2. Let f : S — T be an h-covering of reasonable indschemes. Then

the canonical functor:

D*(T) — lim D*(Cec"(5/T))

gwen by j-pullback is an equivalence.

Proof. As above, this follows from Proposition 16.27.1 by commuting limits with limits,

using the presentation (16.46.1) of D*.
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16.48. Equivariant setting. We now render the material of §16.19 and §16.28 to the
indscheme setting.

Suppose that S is an indscheme and G — S is a group indscheme over S.

Suppose P is an indscheme with a morphism P — S and an action of G. We define the

equivariant derived category D'(P)Y as the limit of the diagram formed using (16.19.1):

D'(P)Y = hm< D'(P) —= D'(G x P) —= D'(g x g x P) = .... )

Similarly, we define the coequivariant derived category by (16.28.1).

Now suppose that Pg — S is an indscheme with a G-action as above and that Pg is a
G-torsor in the sense that, for every closed subscheme S’ of S| the fiber product Pg x ¢ 5’
is a G x g S’-torsor in the sense of §16.19: after an fppf base-change in 5", Pg x5 5" — 5’

is G-equivariantly isomorphic to G.
Proposition 16.48.1. The pullback functor:

D'(S) — D'(Pg)?

18 an equivalence.

The pushforward functor:

D*(Pg)g — D*(9)

18 an equivalence if S is reasonable, and G is a union G = UG; where the G; are closed
group indschemes in G with the property that G;x sS" — Gx S’ is a reasonable subscheme

for every reasonable subscheme S" < S.
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Proof. For the first functor, we commute limits with limits to dévissage to the case where
S is a quasi-compact quasi-separated scheme. Then the result follows as in Proposition
16.19.2: by Proposition 16.47.1 we reduce to the case of a trivial G-bundle where it
follows by using split simplicial objects.

The second functor is analyzed similarly: commuting colimits with colimits, we reduce
to the case where S is a quasi-compact quasi-separated scheme.

Note that Pg must be induced as a torsor from some G;-torsor for some 7y. Therefore,
Pg is reasonable: it is a union of the induced G;-torsors for i — iy, and these are obviously
reasonable subschemes. Therefore, we can apply Proposition 16.47.2 to again reduce to

the case of a trivial torsor.

O

Remark 16.48.2. When our indschemes are reasonable, Example 16.19.1 translates ver-

batim to the present setting by using (16.46.2).

Remark 16.48.3. We will sometimes use the notational convention of Remark 16.19.3 in

the above setting as well.
16.49. Placidity. We now give an indscheme analogue of the notion of placidity.

Definition 16.49.1. We say that T € IndSch is a placid indscheme if T is reasonable and

every reasonable subscheme of T is placid.

Remark 16.49.2. By Remark 16.29.5, we see that T' is placid if and only if we can write
T = colim;ez T; as in the definition of indscheme so that each T} is placid and a reasonable

subscheme of T'.

Remark 16.49.3. By (16.46.1) and §16.30, for T placid the categories D'(T) and D*(T)

are compactly generated and canonically dual.

The following is the indscheme analogue of Example 16.29.3.
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Example 16.49.4. Suppose that S is a placid indscheme and G — S is a group indscheme
over S. Suppose moreover that for every closed subscheme S’ of S the fiber product
GxgS" — S’ is a group scheme that can be written as a projective limit under smooth
maps of group schemes G; smooth and affine over S’. Then G is a placid indscheme.
More generally, if Pg — S is a G-torsor over S in the sense of §16.48 then Pg is a
placid indscheme. Indeed, we reduce to showing that if S as above is actually a placid
scheme, then Pg — S is a placid morphism. But Pg is the projective limit of the induced

G;-torsors, giving the result.

16.50. Fiber products. We digress somewhat to give the following technical result

that we will need in the body of the text.

Proposition 16.50.1. Let Sy — Sy and T' — Sy be morphisms of indschemes.

(1) If Sy and Sy are finite type schemes, then the canonical morphisms:
DNT) ® D(S,) — DT x S))
D(S2) Sa

D'(T) ® D(S)—D'(T x 5)

of I and j-pullback respectively are equivalences.
(2) If Sy is a placid indscheme and Sy is a finite type scheme and T is an arbitrary

mdscheme, then:

18 an equivalence.

We will deduce Proposition 16.50.1 from the following two lemmas from the finite-

dimensional setting.

Lemma 16.50.2. Let S; — So and T — Sy morphisms of finite type schemes, the canon-

ical morphism:
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18 an equivalence.

This is well-known, though we do not know a reference in the literature for this fact.

However, it follows from Corollary 19.9.3 and Theorem 19.8.1.

Lemma 16.50.3. For f : S — T a morphism of finite type schemes, D(S) is dualizable

as a D(T)-module category.

This result follows immediately from Theorem 19.18.1, but we give a more direct proof

below.

Proof. We will show that D(S) is self-dual as a D(T")-module category.
Let Ay denote the diagonal embedding S — S x¢ S.

We have the evaluation:

and coevaluation:

D(T) L+ D(S) 24 DS 5) ~ D(S) @ D(S)

One readily checks by base-change that these define a duality datum as required.
OJ

Proof of Proposition 16.50.1. For (1): the category D(S;) is dualizable as a D(S5)-
module category. Therefore, tensoring over D(Sz) with D(S;) commutes with limits
of categories. Applying the definition of D', the result then immediately follows from

the finite type case.
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Similarly, to prove (2) it suffices to show that D'(S}) is dualizable as a D(S;)-module
category. This follows from the finite type case combined with Proposition 19.12.4 (3)
and (16.46.1).

U

16.51. Dimension theories. Let 7" be a placid indscheme. We use the notation of

§16.33 here.

Definition 16.51.1. A dimension theory 7 = 71 on T is a rule that assigns to every

reasonable subscheme S of T" a locally constant function:

T9: S > Z

such that for any pair of reasonable subschemes S’ < S < T we have:

Ty = Ts|5/ + dimsl/s. (16511)

Ezxample 16.51.2. By Remark 16.33.3, every placid scheme T carries a canonical dimen-

sion theory normalized by the condition that dimy be identically zero.

Example 16.51.3. Let T' be an indscheme of ind-finite type. Then a reasonable subscheme
of T is just a closed finite type subscheme S, and the rule 75 := dimg is a dimension

theory on T

Remark 16.51.4. If T' = u,;S; is written as a union of reasonable subschemes, it suffices
to define the 7, satisfying the compatibility (16.51.1). Indeed, this again follows from
Remark 16.33.3.

Fxample 16.51.5. By Remark 16.51.4, the product T} x T of indschemes T; equipped
with dimension theories 77¢ inherits a canonical dimension theory 771*72 such that, for

every pair S; € T;, i = 1,2 of reasonable subschemes, we have:
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TE 8 = pi(rdh) + pi(7E2)

with p! denoting the restriction of a function along the projection.

Remark 16.51.6. Dimension theories are étale local.

Remark 16.51.7. For T a group indscheme, the choice of dimension theory may be seen

as analogous to the choice of a Haar measure in the p-adic setting.

Remark 16.51.8. See [Dri06] for relevant material on dimension theories. In particular,

questions of existence (and non-existence) are treated in some detail.
16.52.  We now give something of a classification of the set of dimension theories.

Definition 16.52.1. A locally constant function T' — 7Z on an indscheme T is a morphism

of indschemes ' — Z = [ [,,., Spec(k).

Remark 16.52.2. For T' = colim T}, a locally constant function on 7' is equivalent to a
compatible system of locally constant functions on the 7;. As in Remark 16.15.4, we
can make sense of m(7T") as an ind-profinite set, and a locally constant function on T
is equivalent to a continuous function my(7") — Z, with 7y equipped with its natural

topology as an ind-profinite set.

Clearly locally constant functions form an abelian group under addition. Moreover,
they obviously act on the set of dimension theories on T given d : T' — Z and 7T a
dimension theory on 7', we obtain a new dimension theory d+ 7 with (d+7)gs = d|s + 75

for every reasonable subscheme S of T'.

Proposition 16.52.3. Suppose that S is a placid indscheme that admits a dimension the-
ory. Then the set of dimension theories for S is a torsor for the set of locally constant
functions S — Z, i.e., the above action of locally constant functions on dimension theo-

ries is a simply transitive action.
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Proof. The difference between two dimension theories obviously defines a locally constant

function on S.

16.53.  We will repeatedly use the following construction of dimension theories.

Definition 16.53.1. A morphism f : T — S of placid indschemes is healthy if there exists

a reasonable subscheme S’ < S such that:

(1) The inverse image of any closed subscheme S" < §” < S is a reasonable sub-
scheme of T'.

(2) For every closed subscheme S < S” < S, we have:

dimT//T// = f/’* (dimS//su)
with f': T" — S’ the fiber product of f along S’ and T” the fiber along S”.

We say a subscheme S’ € S is f-healthy if it is reasonable and satisfies the above

conditions (so f is healthy if and only if there exists an f-healthy subscheme of S).

Example 16.53.2. Every morphism f : T' — S of placid schemes is healthy: S itself is
f-healthy.

Counterexample 16.53.3. For n = 0, let S,, be the union of a line, a plane, up to an affine
n-space all glued together along 0. Let S = colim S,,. Let T}, be the union of n (ordered)
lines glued along 0, mapping to S,, by embedding the rth irreducible component into A"
as a line into a vector space. Let T" = colim,, T},. Then the resulting map 7" — S is not

healthy.

Example 16.53.4. In §16.58, we will give a definition of placid morphism of placid ind-

schemes such that every placid morphism is healthy.

Remark 16.53.5. Any reasonable subscheme containing an f-healthy subscheme is itself

f-healthy.
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In particular, we see that given two choices 57, S5 of f-healthy subschemes of S, there

is always a third S} containing both.
Our key use of this definition is the following construction.

Construction 16.53.6. For f : T — S a healthy morphism of placid indschemes, any
dimension theory 7° on S induces a unique dimension theory 77 on 7" such that for any
f-healthy reasonable subscheme S’ < S, we have 77, = f"*(75) for f' : T' — S’ the
base-change of f along S — S.

Indeed, that this construction can be performed follows immediately from Remarks

16.51.4 and 16.53.5.

Remark 16.53.7. Healthy morphisms are obviously preserved under compositions, and

Construction 16.53.6 is obviously compatible with compositions.

16.54.  As §16.53 generalizes Example 16.51.2, we now generalize Example 16.51.3.

We say a morphism f : T" — S of reasonable indschemes is ind-finitely presented if
T = colim T; with each T; — T a reasonable subscheme such that T; — S factors through
a reasonable subscheme S; of S with T; — S; finite presentation.

We claim under this hypothesis that T inherits a canonical dimension theory 77 from
a dimension theory 7° of S.

Indeed, for 77 < T a reasonable subscheme, the morphism 7" — S factors through
some reasonable subscheme S” < S, and f': 7" — S’ is finite presentation by assumption.

We take:

7'7,1—:/ = dimT//S/ +f/’* (TSS’)

To simultaneously show that 77 is well-defined and actually defines a dimension the-
ory, take T’ & T" < T reasonable subschemes mapping via f" and f” to reasonable

subschemes ' <% S§” < S respectively, and compute:
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7'77:/ — ZT(T%;,) = dimT//S/ —’LT (dimT///S//) + f/’* (Tg,) — f/’*l; (Tg,,) =

= *f/’*(dimsl/gl/) + dimT//T// +f/’* (dimS//s//) = dimT//Tu

as desired, where we have used the expansions:

dimT//S/ = dimT//S// —f/’*(dimsl/sw)

ZT (dimT/l/S//) = dimT//S// — dimT’/T”

of (16.33.1).

Ezxample 16.54.1. If T is a reasonable subscheme of a placid indscheme S, then the
embedding 7' < S satisfies the hypotheses of this section. If 7° is a dimension theory
on S, the induced dimension theory 77 on T constructed above is the “obvious” one,

which to a reasonable subscheme 7" < T assigns the function 7, := 7.2

Warning 16.54.2. If f : T'— S is a finitely presented morphism of placid schemes, the
pullback constructed above of the dimension theory 7° given in Example 16.51.2 is not
(generally) the dimension theory on 7' constructed in Example 16.51.2: they differ by

dimT/S.
16.55. Renormalization. Let 7" be a placid indscheme and let 7 be a dimension theory
on T. We will define the “r-renormalized dualizing sheaf” w}. € D*(T') below.

Let ¢ : S < T be a reasonable subscheme. We formally define:

“Hwp)” = wg™[21s] € D*(9).

Suppose that for S as above ¢ : S — S is a reasonable subscheme (equivalently: of
S or of T, or equivalently ¢ is a finitely presented closed embedding). Then we have

canonical isomorphisms:

(il (wp)”) = dwg™)[27s] = L!’Te”(wge")[Q-(Tg+dimS//S)] = (wg")[2:(1g+dimg/g)] =: “(iOL)i(w
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where the second equality is Proposition 16.39.1 and the third equality is (16.36.1).
These identifications are readily made homotopy compatible and therefore define w7,

in D*(T) so that ¢i(w}) = “i(wF)” for all ¢ : S < T as above.

16.56. Let T and 7 be as in §16.55.
Let 0% : D'(T) — D*(T) denote the functor of action on w%.. We immediately deduce

from Proposition 16.35.1 that n7. is an equivalence.

16.57. Let f : T — S a morphism of placid indschemes equipped with dimension
theories 77 and 7°.
Then as in §16.36 we obtain functors f,, : D'(T) — D'(S) and f*" : D'(S) — D'(T)

so that we have the commuting diagram:

f*,‘r f‘T
DNT) — D'(S) D*(S) — D*(T)
~ T ~ S ~ l S - L iy
| "r | s ~— | s |
fx,dr \ 1! \
D*(T) === D*(S) D'(S) — DM(T).

Example 16.57.1. If f : T — S is a map of placid schemes, each equipped with their
canonical dimension theories (see Example 16.51.2), then the functors constructed above

are the renormalized functors of §16.36.

Notation 16.57.2. In light of Example 16.57.1, when the relative dimension theory 7 is

implicit we denote the functors f; ., and f“"*" above simply by fi ren and f5rem.

Fixing a map f : T'— S of placid indschemes, we obtain a pullback map for locally
constant functions and therefore an induced diagonal action of locally constant functions

on S on the set of pairs (77, 77) of dimension theories for 7" and S:

(d:SHZ,(TT,TS)> — (1T +do f,75 +d).
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Definition 16.57.3. A relative dimension theory for T and S is an equivalence class of
pairs (77, 79) of dimension theories for T" and for S modulo the above action of locally

constant functions on S.

Clearly the functors f " and fi e, only depend on the relative dimension theory

defined by the pair (77, 79).

Example 16.57.4. Let f : T' — S be an ind-finitely presented morphism of placid ind-
schemes with S equipped with dimension theory. By §16.54, we obtain a dimension
theory on T" and therefore a relative dimension theory for f.

As in Examples 16.36.1 and 16.36.4, the functors fy e, and f4" canonically identify

with fi1_4r and fi respectively.!!

16.58. Next, we extend the notion of placid morphism from §16.37 to the indscheme

framework.

Definition 16.58.1. A morphism f : T — S of placid indschemes is placid if there exists

a reasonable subscheme S’ < S such that:

(1) The inverse image of any closed subscheme S” < S” < S is a reasonable sub-
scheme of T'.
(2) For every closed subscheme S" < S” < S, the morphism 7" := " xgT — S" is

placid.

Remark 16.58.2. By Corollary 16.37.7, we immediately see that any placid morphism is
healthy.

Ezample 16.58.3. If f is smooth and surjective on geometric points (in particular schematic

and finitely presented), then f is placid.

41Unlike Example 16.36.1, there are no cohomological shifts in this formula. There is no real discrepancy
because of Warning 16.54.2.
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Example 16.58.4. Suppose that S is a placid indscheme and G — S is a group indscheme
satisfying the hypotheses of Example 16.49.4. Suppose Pg — S is a G-torsor on S. Then

Pg — S is placid. In particular, this morphism is healthy. Indeed, this follows by Example
16.49.4.

16.59.  We have the following indschematic version of Proposition 16.38.1.

Proposition 16.59.1. Let f : T — S be placid and suppose that S is equipped with a

dimension theory. By Construction 16.53.6, this choice induces a dimension theory on

T.

(1) The functors:

fear : D*(T) — D*(5)

Jaren D!(T) - D'(S)
admit left adjoints. Moreover, these left adjoints are canonically identified with
fhren and f' respectively.

(2) Suppose that we are given a Cartesian diagram:

Tl L S/
KL
f
T —— S
of placid indschemes with f placid and g finitely presented. Then ¢ is also placid,

and the natural transformations:

lren

|
f"reng*,dR - iﬁ*,dRSO"

f!g*,ren - ¢*,ren901
are equivalences. Here we have equipped S’ and T with the dimension theories

of §16.54 using the finitely presented maps g and .
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Proof. Tt suffices to prove each of these statements in the D'-setting.

Then (1) then follows immediately Proposition 16.38.1 (say, by applying a simplified
version of Lemma 16.40.2). So it remains to show (2).

Let Sy be a reasonable subscheme of S satisfying the hypotheses of the definition of
placid morphism for f. Then combining Lemmas 16.37.6 and 16.45.6., we find that its
pullback to S’ satisfies the same conditions for ¢. In particular, we see that ¢ is placid.

We form the commutative cube:

T3 56
\ go\«
"/)0 T/ \ S !
fo
T So
T S

where all faces are taken to be Cartesian squares. We equip these new schemes with the
dimension theories obtained using Example 16.54.1.

Note that the dimension theories on the back square are not (necessarily) the canonical
ones on placid schemes from Example 16.51.2.

Still, the relative dimension theories of Ty/Sy and T /S|, are the same, so renormalized
functors for these dimension theories coincide with those of §16.36.

Moreover, the dimension theories for (/S differs from the “canonical” one by dim S5 /S0
and similarly for 77 /Tp. Note that this error term dimg, 5, pulls back to 7j as dimgy
by Corollary 16.37.7.

We will use the notation e.g. go « ren here for the renormalized functor corresponding
to our given dimension theory, therefore differing by cohomological shifts from the so-

named functor in §16.36.
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In this notation, we see from the above discussion that we can apply Proposition

16.38.1 to deduce:

| ~ |
f(.)go,*,ren—)wO,*,renSO-Q-

Because D'(S’) is generated under colimits by D-modules of the form @, ,_;5(F) =

i ren(F) as we increase S, it suffices to show that the natural transformation:

! -/ 5%
—
f Gxrenls ren ¢*,ren§0 Ly ren

is an equivalence.
Similarly, since T" is a union of the schemes Ty as Sy varies, it suffices to show that
the natural transformation:

I el -/ ! 59
L f g*,renll*,ren — L w*,rengo Il*’ren

is an equivalence.

Now we compute:

el -/ (R ! >~ ! ! !
2 f g*,renl*J@n = f()Z x rend0,%,ren = fogO,*,Ten ? ¢0,*,Ten§00 =1 L*,ren¢0,*,ren@0 =

! / ITRNY} ! / /AP ! 5]
L w*ﬂ"@nb*,renwOZ Z>l<,7"en =1 ¢*7T8nb*,renb ¥ Z*,ren =1 ¢*7ren¢ Z*,ren

as desired.

16.60. Holonomic D-modules. For T an indscheme, we define D; ,(S) and Dj ,(95)
by Kan extension, as in the definition of D' and D*.

We have canonical forgetful functors:

Djoi(8) — D'(S) and Dj,(S) — D*(S)
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and compatible upper-! and lower-* functoriality, respectively. For S reasonable (resp.

placid), D ,(S) — D*(S) (resp. D} ,(S) — D ,(S)) is fully-faithful.

Definition 16.60.1. A morphism f : S — T of reasonable indschemes is a reasonable
morphism if there exists cofinal system T" = UT; of reasonable subschemes such that

f7U(T;) is a reasonable subscheme in S (in particular: f is schematic).

Proposition 16.60.2. If f : S — T is a reasonable morphism of reasonable indschemes,
then the partially-defined left adjoint f*% to f.ar is defined on holonomic objects in
D*(T).

Similarly, if f is a morphism of ind-finite presentation of placid indschemes, then the

partially-defined left adjoint f to f': D(T) — D'(S) is defined on holonomic objects.

Proof. Follows from the combination of Proposition 16.40.1 and Lemma 16.40.2 by the

same argument as in Proposition 16.40.1.

O

We have the following counterparts to Proposition 16.40.3 and its Corollary 16.40.4,

proved by the same arguments.

Proposition 16.60.3. For S a placid indscheme with a dimension theory T, ng identifies

D;LOI(S) with DZO[(S)'

Corollary 16.60.4. For S and T placid indschemes with a dimension theories and f : S —

T a morphism, furen and f'7" preserve holonomic objects in D' and D* respectively.

17. IWAHORI VS. SEMI-INFINITE BOREL

17.1.  Define Whit? as the N (K)T(O)-coinvariants of the Whittaker invariants of D'(G(K)),

these notions being introduced in §16 and §6: we emphasize that we work over a single
point here.
The purpose of §17-18 is to show that this category coincides with the category

D(Flgﬁ?)[—’w?* considered in [AB09].
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There are two comparisons to be made: in the present section, we treat the N(K)T'(O)

side, and in §18, we treat the Whittaker side.

17.2.  The main result of this section is the following.

Theorem 17.2.1. Let € be a category acted on by G(K).** Then the functor:

Nm
Cr — Cro) — Cnx)r(0)
1s an equivalence. Here Nm is the norm map, which by definition corresponds to Oblv

under the equivalences C; ~ Cf and Cp(o) ~ €BLO).

Remark 17.2.2. Note that this result is borrowed from the theory of reductive p-adic

groups: c.f. [Cas80] Proposition 2.4.

Corollary 17.2.3. For € as above, the functor GNUF)TO) Obly eB(0) A% @I s gp equiva-

lence.

Proof that Theorem 17.2.1 implies Corollary 17.2.3. We have:

Hom e (g(x)) mod (D*(G(K)) n(xyr(0), €) ~ €N

and similarly for Iwahori invariants. Therefore, we deduce the result from Theorem 17.2.1

applied to the regular representation.

17.3. For every A € A, we use the notation:

I = Ad_5 (1) € G(K)

B(0)* = Ad_5,(B(0)) = G(K)
where t € K is a uniformizer.

2 e., a D'(G(K))-comodule category in DGCat,ony, or equivalently, a D*(G(K))-module category.
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Remark 17.3.1. The normalization with —A(t) is so we can work with A € A* instead of

—AT,
17.4. The key fact we will use is the following one.

Lemma 17.4.1. For C acted on by G(K) and N\, 7 coweights, the functor:

~ 5\ ~
Avlh el — e”
(properly defined by forgetting to I A I% and then averaging) is an equivalence.

Proof. Up to translations, this follows from the invertibility of Mirkovic-Wakimoto sheaves
in the Iwahori-Hecke algebra (see [AB09] Lemma 8).
O

Remark 17.4.2. We denote the inverse functor by Av/ X, since it is evidently given by

(forgetting down to [ A~ TP and then) applying such a !-averaging.

17.5. Before preceding, we record a technical general lemma we will need. The reader
may prefer to skip this section and refer back to it as necessary.

Suppose that J is a filtered category, and suppose we are given diagrams:

1 — G,L S DGCatcont

i — D; € DGCateypy-
Let € (resp. D) denote the colimit category in DGCat,y,;. For a : i — j € I, let ), (resp.
¢,) denote the structure functor C; — C; (resp. D; — D;). We let ¢; : €; — € and
v; : Di = D denote the structure functors.
Suppose we are given compatible functors F; : C; — D;, and suppose that each
functor F; admits a continuous right adjoint G;. We do not assume that the functors G;

are compatible with the structure maps (though they are automatically lax compatible).

Let F' denote the induced functor F : € — sD.
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Construction 17.5.1. For every 1, define the continuous functor “Gyp;” : D; — € by the

formula:*

‘G = colim¥;Gp,.
oi—)

For 8 : k — i, observe that we have:

“Gpi” o pg = (;Ozhj? V;Gjatpp = (;O’}LH} ViGipy = “Goy”
where we use filteredness to deduce the second equality. There, we have a functor G :
D — € characterized by the identities Gy; ~ “Gy;.”

Lemma 17.5.2. The functor G is the right adjoint to the functor F.

Proof. We construct the unit and counit of the adjunction explicitly.

Let 7 be a fixed index. We have:

FGp; = colim F;Gjp, = colim p; F;Gjp, — colim p;p, = ;.
at—7J ot—]j a:i—j

These functors are compatible as we vary i, and therefore define a natural transformation:

FG —idyp .

Fixing ¢ again, we similarly obtain:

¥; = colim b, — colim ;G Fjhy = colim ;G pa F; = G Iy = GF;
at—] =]

ai—j

and then by passing to the limit, we obtain the natural transformation:

ide — G'F.

43Note that for maps i — j Pk of indices, we have the map ¥;G;p0 = Vr¥sG 00 — ViGrosa =
YiGrg © pq given by the base-change map 13G; — Gjpg, meaning that the arrows go in the correct
direction in our colimit diagram.
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One easily finds that these natural transformations define the counit and unit of an

adjunction.

U

Corollary 17.5.3. Suppose that J is a filtered as above and i — D; € DGCateyns @S @
diagram with structure maps denoted by ¢ as above.

Suppose iy is a fized index in I and we are given X,;, € D, such that, for every
a iy — j, the functor D;; — D, sends X, to a compact object po(X;,) in D;.

Then ;,(X) is compact in D = colim; D;. Moreover, for every « : ig — j, the
resulting continuous functor:

Homyp (pig (X),—)

D, —-D — Vect

J

s computed explicitly by the formula:

Y~ colim Homy, (pga(Xio), 95(Y))-

Proof. First, replacing J by J;,, by filteredness, we may assume i is initial in J. Then for
any j € J, let X, € D; obtained from functoriality from X, using the structure functor
D;, — D;. Let X € D denote the object ¢;, (X, ).

Then we apply Lemma 17.5.2 with C; = Vect for every j, with the compatible functors
Vect — D; given by k — ¢, (Xj,). Note that the corresponding functor Vect — D sends
the trivial vector space k to X.

The lemma applies because each of these functors admits the continuous right adjoint
Homyp, (X;, —) (or rather: we should take the Vect-enriched Hom here).

Then Lemma 17.5.2 ensures that the functor Vect — D, k — X, admits a continuous
right adjoint Homq (X, —), and therefore X is compact. Then the explicit formula for the

right adjoint given in Lemma 17.5.2 translates to the stated formula for Homqp (X, —).

U
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17.6. We now give the proof of Theorem 17.2.1.

Proof of Theorem 17.2.1. For every A € A, let p;\ denote the projection functor CBOP ~

GB(O); — Cn(r)1(0)- For A = 0, we use the notation p instead.

Step 1. First, we show that ¢/ — Cy (g K)T(0) generates the target under colimits.
Certainly Cy(x)r(0) is generated under colimits by the image of the functor p.
Note that:

colim 9 X ~ 530
v el (0)

Therefore, for X € @) we have:

X ~ colim AVI ~(X)
AeA+

and therefore Cn(x)r(0) is generated under colimits by the images of the functors €’ Al
@BO) _E, Cn(x)r(0) as \ ranges over AT

Now observe that for any X € €2 we have:

~

PAVEO’ (X)) =5 p(X)

by definition of the coinvariants. For X € €I we then see that Av? (O)X(X ) is I*-

equivariant, so that, by Lemma 17.4.1, we have:

AV*B(O)X(X) — AVB(O Av] AvE( (X)

and therefore:

P(AV] AVEOP (X)) = pAAVEO® Av] AvBO (X)) ~ pM(AVEO (X)) = p(X).
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Therefore, since the former term is p applied to an Iwahori-equivariant object, we obtain

the claim.

Step 2. Next, suppose that X € € is compact.

From Lemma 17.4.1, we find that Avf (X) is compact in €7 * and therefore compact in
CBO” For A e A*, we have Avf (X) = Avf(o)X (X), so, we conclude that AVE(O)X(X)
is compact for every A e AT,

Now observe that for any Y € €/, the map:

Home: (X,Y) — Hom_, s (AvZ©O" (X), AvEO (v))

eB(O)

. . . . A
is an isomorphism, since we can compute these averages as Avi .

Therefore, Corollary 17.5.3 implies that:

Homer (X7 Y) - HomeN(K)T(o) (p (X)7 p(Y))

is an equivalence for every Y.

Step 3. Combining Steps 1 and 2, we obtain that our functor is an equivalence whenever
C! is compactly generated.

In particular, this applies to € = D*(G(K)), since D*(G(K)); ~ D(FI2) is compactly
generated.

To treat the case of general C, we use the same method as Corollary 17.2.3:

C;~C D*(G(K)); ~C D*(G(K ~ C )
I D*((G@(K)) (G(K)); D*(%?(K)) (G(K))nk)yr©o) N(K)T(0)
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18. COMPARISON OF BABY AND BIG WHITTAKER CATEGORIES

18.1. To complete the task set in §17.1, this section will compare the baby Whittaker
category D(Flgﬂ)r’%— (see §1.8) considered in [AB09] to Whit(D(FIZT)), which by The-
orem 17.2.1 is equivalent to Whit(D'(FI?)), the main category considered in this thesis.

Our main result is Theorem 18.3.1, showing that these two categories are equivalent.

18.2. Shifted Whittaker objects. For convenience, we take Whittaker objects with
respect to a character of non-zero conductor.

For € a category acted on by G(K), we use the notation Whit' to denote the shifted
Whittaker category of objects equivariant with respect to the character sheaf on N~ (K)

corresponding to the character - (k) : n7(K) — k of its Lie algebra defined by:

Y- (T) = Un-(x) (t'x)

where we recall that ¢y (k) was defined in (1.20.1).

We use the notation )" for the corresponding character sheaf on N~ (K).

Remark 18.2.1. We have an obvious equivalence Whit(€) ~ Whit'(€), so this change does
not make much difference. It is just for convenience in comparing Whittaker and baby

Whittaker categories.

Remark 18.2.2. The convenience of the shifted Whittaker character is that

¢;, ’n*(O) = va(K) \n*(O)-

Here we recall that Yﬁ;, was defined in §1.7.

18.3.  We have a functor Whit'(D(FI2T)) — D(Flgﬁ)r’w?— given by forgetting the Whit-
o

o b
taker condition and then *-averaging against [, 2/1?_. We denote this functor by Av, .
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It is easy to see that this functor admits a left adjoint, since every object in the right
o
hand side is (ind-)holonomic and because I~ < N~ (K) is a compact open subgroup:

one applies Proposition 16.60.2. We denote this left adjoint by Av}Nhit/.

Theorem 18.3.1. The adjoint functors:

o AV}Nhit/

D(FEN" ¥t ————= Whit'(D(FI2))
I 4o
o

Av,

are mutually inverse equivalences.

18.4. Let lppsr denote the canonical point of Flgan.

18.5. Relevant orbits. We begin by analyzing which orbits admit baby and shifted
Whittaker sheaves on FI2.

Let Waext denote the extended affine Weyl group W x A. Let W?F be the non-
extended affine Weyl group given as the semidirect product of W and the Z-span of the

coroots.

Remark 18.5.1. After a choice of Borel in G, one knows that W2 picks up a canonical
structure of Coxeter group, i.e., the corresponding simple reflections are determined.
We use the Borel B~ in making these conventions. This choice reflects the fact that we
are using T~ and N~ (K) for our characters. (But we continue to reference positive and
dominant co/weights for G using B to define positivity).

We alert the reader that the same convention is implicitly used in [AB09].

Remark 18.5.2. Recall that the length function on W% extends in a canonical way to

one on Wahext (This is recalled explicitly in the proof of Proposition 18.5.9).

Notation 18.5.3. In the affine Weyl group, we use the notation w to denote the product
of the elements w and . This should not be confused with w(\), the result of letting

the Weyl group act on A.
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The map Wahext — FIAT given by Aw — X(t)wlmgﬂ (we choose representatives in G
for elements of the Weyl group) gives a set of points indexing both the I~ orbits and
the N~ (K) orbits on FIAT,

Remark 18.5.4. The closure relations among the former are given by the Bruhat ordering
on the extended affine Weyl group, while closure relations among the latter are given
by the semi-infinite Bruhat ordering, c.f. [FFKM99] §5. However, we will not explicitly

need either of these facts in what follows.

For g € G(K) with g the induced point g - 1pps in FI2T note that the orbit N~ (K)g

supports a shifted Whittaker sheaf* if and only if:

n”(K) n Ady(Lie(1)) < Ker(¢y- ) (18.5.1)

and similarly, the orbit supports a baby Whittaker sheaf if and only if:

o

Lie(I7) n Ad, Lie(1) < Ker(d’;,)- (18.5.2)

For our explicit orbit representatives, we easily find:

Proposition 18.5.5. For Aw € W< the corresponding N~ (K)-orbit (resp. I~-orbit)

supports a Whittaker sheaf if and only if:

(A ai) <0 ifwt(a;) >0
(18.5.3)
(N ai) <0 ifwa;) <0

for every i € Ig.

Definition 18.5.6. We say that Aw € W2t (or the corresponding N~ (K) or I~ orbit)

is relevant if (18.5.3) is satisfied.

447 . Whit' of the corresponding orbit is non-zero.
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Remark 18.5.7. As we will see in the proof of Proposition 18.5.9, the inequalities (18.5.3)
force the generalization where we allow general positive roots « in place of the simple

roots ;.

Remark 18.5.8. If Mw e W2t is relevant, then B(O) - \w = Aw € FIT Tt follows that:

I dw < N (K) - \w.
To compare with [AB09], we include the following computation, well-known and im-
plicit in loc. cit., but for which we are not sure of a good reference and therefore include

for the reader’s convenience. The reader may safely skip this material.

Proposition 18.5.9. Aw € Watext js relevant if and only if \w is the unique element of

minimal length in W - i for some fi € A.

Proof. The existence of a unique minimal length element in this coset follows from the
fact that W is a parabolic subgroup (in the sense of Coxeter groups) in the affine Weyl
group WA,

Recall that we can compute the length of an element Aw € Watext Ly the formula:*®

(Gw)y = > Ixa)l+ D [(ha)+1].
a>0 a root a>0 a root

w1(a)>0 w1 (a)<0

For A\ = w(j1), so that AMw = wji, we find:

lwi)= Y, lw@a)l+ Y [(w(@),a) +1] =

a>0 a root a>0 a root
w1 (a)>0 w1 (a)<0
(18.5.4)
> @)+ Y e @) + 1l
a>0 a root a>0 a root
w1(a)>0 w1 (a)<0

45T his formula relies on the convention of Remark 18.5.1. One usually finds this formula written relative
to the positive Borel, in which case the formula would have last term |(A, &) — 1|, but switching o with
—a everywhere, we obviously recover the formula in its given form.
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Let wj be the minimal length element of W such that w;(—f) lies in the dominant
chamber: the uniqueness of a minimal length such element is again guaranteed by the
fact that the appropriate stabilizer group is a parabolic subgroup of W.

We claim that wy is characterized in W by the identities:

(wp(fi), @) <0 for v > 0 with w;" () > 0
(18.5.5)

(wp(fi), @) <0 for v > 0 with wy " () < 0.
Indeed, we have (w;(f1), o) <0 for all @ > 0 by dominance of —wj(jz). Then recall that
for a > 0, w™(a) < 0 is equivalent to {(sqw) < £(w).*® Therefore, if we had w; "' (@) < 0

and (wp(f1), a) = 0, this would force:

Sawp(f1) = wp(ft) — (W), a)or = w(fi)
contradicting the minimality of w,.

We see from this argument that it is enough to verify (18.5.5) in the case that « is a
simple root.

Next, we claim that wj; minimizes (18.5.4).

Indeed, let w € W other than w;. Since we noted that wj is characterized by the
identities (18.5.5) for o a simple root, we see that w # w,; implies that either there
exists a simple root o; with w™!(a;) > 0 and w(ji, ;) > 0, or else there exists a; with
w (o) < 0 and (w(f1), a;) = 0.

In the former case, using the fact that s; permutes the non-a; positive roots, one finds:

46T his fact is certainly standard for o a simple root, but perhaps warrants a proof for general o > 0
since e.g. it does not appear in [Hum90] Chapter 1. We prove the claim by induction on ¢(w), the case
¢(w) = 0 being obvious. Choose i € Zg with w(«;) < 0; let s; denote the corresponding simple reflection.
If w(ey) # —a, then £(ws;) < £(w) and ws;(a) < 0, so by induction, {(sqws;) < £(ws;) = £(w) — 1, but
{(sqws;) = {(sqw) — 1, giving the claim in this case. Otherwise, ws;(a;) = a, so (ws;) " ts,ws; = s;, 50
Sqw = ws;, but w(e;) < 0 implies that £(s,w) = l(ws;) < L(w).
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U(siwfr) = L(wi) = |(siw(i), ai) + 1 = |(w(i), ai)| = | = (w(ip), @) + 1| = [(w(ir), )| = =1

and in the latter case, one similarly finds:

U(siwfr) = Lwp) = [(siw (), ai)| = [(w(fr), x) + 1] = [(w(@), eq)| = |(w(p), a;) + 1] = =1,

Either way, ¢(s;wfi) < ¢(wfi), meaning that wfi was not of minimal length.

Finally, one immediately sees that in terms of A = wj(j), (18.5.5) exactly translates
into (18.5.3), as desired (appealing to the fact that it is enough to verify (18.5.5) for
simple roots.)

O

18.6. Minimal orbits. We introduce two parallel pictures for I~ and N ~(K) orbits on
F12T,
We define the minimal N~ (K)-orbit (resp. I ") orbit to be the orbit through 1ps-.
We define j!mm’Whit/ e Whit'(D(FIT)) and 5™ e D(Flgﬂ);i’w?— be the !-extensions

of the relevant character sheaves supported on these orbits.*7

18.7. Cleanness. The main point in proving Theorem 18.3.1 are the following two

cleanness results.

Remark 18.7.1. Suppose that j : U — Z is a locally closed embedding of schemes of

finite type. Recall that F € D(Z) is said to be cleanly extended from U if the maps

=, dR

317 (F) > F — Juari®(F) are isomorphisms. This definition extends to the setting of

ind-schemes of ind-finite type in the obvious way.

. o
Proposition 18.7.2. The object ;™™™ is cleanly extended from the orbit I~ - Lpjast-
47To see that j,min’Whit/ actually lies in the shifted Whittaker subcategory, exhaust N~ (K) by compact
open subgroups and exploit placidity of these subgroups.
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-min,Whit’

Proposition 18.7.3. The object j, is cleanly extended from the orbit N~ (K) - 1F%ﬁ.

Each of these results follows easily from the closure relations noted above, but we give

complete proofs below.

Proof of Proposition 18.7.2. We have:

o ope closed

On N7, our sheaf is a non-degenerate character sheaf, and this obviously extends cleanly

to G/B.

Proof of Proposition 18.7.3. We use the techniques of §7 freely here.

Let Z < FIA be the pullback of Gry- < Grg. Then Z is ind-closed in FIA' and
contains the orbit N~ (K) - 1pas as an ind-open subscheme.

Clearly the only N~ (K )-orbits in Z pass through points Aw with A € AP

We claim that the only such Aw supporting a Whittaker sheaf is A = 0, w = 1. Indeed,
as in the proof of Proposition 18.5.9, the inequalities (18.5.3) force the same inequalities

for a general positive root, not merely a simple root. Then we see A € AP® forces:

0< (x,m(xéza) :%2@,(1) <0

a>0 a>0

so we must have equality, forcing A = 0, and then we further see from (18.5.3) that we
must have w = 1 as well.

This now gives the cleanness result.

Corollary 18.7.4. The unit and counit maps:
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are 1somorphisms.

Proof. By Remark 18.5.8, we obtain that:

Whit’ / -min,baby -min, Whit
Avi ™ () ) =~ J :

Note that Remark 18.5.8 implies that the only relevant /~-orbit intersecting N~ (K) -
1Flz(1;ff IS [_ : 1Flzéff.

o

. s/ 1_7% B Y
Therefore, applying cleanness of the ™" we obtain that Av, ~* (5™™"") is

the =-extension of our character sheaf from 7~ - IF%H. Moreover, applying cleanness of

the latter, we obtain:
Avi T¥e_ (jrnin,Whit’) N j!min,Whit’

as desired.

18.8. Compatibility with the affine Hecke algebra. Both categories D(FIZH)I_’MI’*

and Whit'(D(FIZT)) are acted on by the geometric affine Hecke algebra H,g := D(FI3T)!

by the convolution action of H,g on D(FIA).

1771#0
Moreover, the functor Av, ' is given by a convolution, and therefore commutes
with H,g-actions.
One can further see that AV}Nhit/ commutes with the H.g-actions by exploiting the

ind-properness of FlaGH. Alternatively: we don’t actually need this fact; we will only

need that Av}'™ commutes with convolution with Mirkovie-Wakimoto sheaves, and
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o

I~ o
this follows formally from their invertibility and the fact that Av, ‘~ commutes with

such convolutions.

18.9.  We now prove Theorem 18.3.1.

Proof of Theorem 18.3.1. The category D(Fl‘gﬁ)r’d}?— is compactly generated by objects

l-extended from relevant orbits, and similarly for Whit'(D(FIZT)). For Aw e Wafext
relevant, let j,’\ w:baby and j(\ wWhit” Janote the corresponding objects.

As in [AB09] Lemma 4, the object j,’\ wbaby is obtained from GmbabY by convolving
with an appropriate invertible object of H.g.

Therefore, by Corollary 18.7.4 and §18.8, the unit map of the adjunction applied to
],’\ wbaby i an equivalence.

Moreover, we claim that:

AV}Nhit’ (jfxw,baby) =, jlj\w,Whit’.

Indeed, this is immediate from Remark 18.5.8. Therefore, j,)\ w,Whit! o similarly obtained

from j"™"* by convolving with the appropriate invertible object of H,ss. Therefore,
as for the baby Whittaker category, we see that the counit for j,’\ wWhit” i an equivalence.

By compact generation, we now obtain the result.

19. SHEAVES OF CATEGORIES

19.1. The purpose of this section is to recall the rudiments of the theory of sheaves of
categories on prestacks, and the theory of 1-affineness from [Gail2b].
Incidentally, we prove Theorem 19.18.1 on the relationship between local and global

duality for de Rham prestacks; this result is not needed elsewhere in the text.

19.2. Linear categories. We begin with a quick review of the theory of sheaves of

categories from [Gail2b] and [Lurllb].
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Recall that DGCat,,,; denotes the category of cocomplete DG categories under con-
tinuous functors, and that DGCat,,,; is equipped with a symmetric monoidal structure
® with unit Vect, and whose tensor product commutes with colimits in each variable.

Let A be a commutative algebra. An A-linear category is an A—-mod-module category
in DGCat,..,;. A functor of A-linear categories is A-linear if it is a continuous functor
of A-mod-module categories. When A is connective, we denote the category of A-linear

categories under A-linear functors by ShvCat;gpec(a)-

Remark 19.2.1. Note that ShvCat/gpec(4) is a symmetric monoidal category with tensor

product (C,D) — C ® D. This symmetric monoidal structure has unit A-mod.
A-mod

For A — B a map of commutative rings, we have the symmetric monoidal functor:

A-mod — B-mod (19.2.1)

sending M — M ®4 B and therefore we obtain the adjoint functors:

C—-C ® B-mod

A-mod
—————— (B-mod)-mod(DGCat,y) (19.2.2)

(A-mod)—mod(DGCat,opt)

where the right adjoint is restriction along (19.2.1). Each of these functors commutes

with arbitrary colimits.

Remark 19.2.2. According to [Gail2a), rigidity of A-mod implies that B-mod is dual-
izable as an A-mod-module category. Therefore, the left adjoint in (19.2.2) commutes

with limits as well.

Lemma 19.2.3. For a morphism A — B of commutative algebras and for an A-linear

category C, the tautological functor:

C ® B-mod—C
A-mod
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is conservative and admits an A-linear left adjoint.

Notation 19.2.4. In the setting of Lemma 19.2.3, we denote this left adjoint by:

X—X®B.
A

Proof of Lemma 19.2.3. The existence of a left adjoint follows from the existence of the

adjoint A-linear functors:

A-mod ——= B-mod

It suffices to see that this left adjoint generates the category C ® B-mod under
A-mod

colimits. Because B generates B—mod under colimits and shifts, it suffices to see that

the essential image of the (non-exact) functor:

Cx Bmod -C ® B-mod

A-mod
generates under colimits. But this is immediate from the universal property of the tensor

product of categories.

O

19.3. Sheaves of categories. We consider ShvCat/gyec—) as a functor AffSch” —
DGCat,op via the left adjoint functor in (19.2.1). We let ShvCat,_ : PreStk” — DGCat. s
denote the right Kan extension of this functor.

For any prestack ), ShvCat)y is a symmetric monoidal category with tensor product

computed “locally” using Remark 19.2.1. We denote the tensor product by:

(C,D)—~C ® D.
QCOhy

For a prestack ) we refer to objects of ShvCat/y as sheaves of categories on Y. For a

sheaf of categories C on ) we let
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(Y, C) € DGCat oy

denote the global sections of the category. We let QCohy, € ShvCat) denote the canon-
ical object with global sections QCoh()). For C € ShvCat/y the category I'(Y,C) is
canonically a QCoh())-module caetgory.

For C € ShvCat/y and f : )’ — ) we use both notations Cy and f*(C) for the
pullback of C to )'. Note that if f is an affine (schematic) morphism then the functor
f* : ShvCat;, — ShvCat/y» admits a continuous right adjoint f, computed “locally”

using (19.2.2).

Remark 19.3.1. By Remark 19.2.2, limits in ShvCat/y are computed locally, i.e., pullbacks

of sheaves of categories commute with limits.

19.4. Fully-faithful functors. For ) a prestack, we say that a morphism D — C €
ShvCaty is locally fully-faithful, or simply fully-faithful,”® if, for every affine scheme S

with a morphism f : S — ), the induced functor:
I'(S,D) —» I'(S, Q)
is fully-faithful.

Ezample 19.4.1. If D — C admits a right (resp. left) adjoint in the 2-category ShvCaty

with unit (resp. counit) an equivalence, then this functor is locally fully-faithful.

Terminology 19.4.2. We sometimes simply summarize the situation in saying that D is

a full subcategory of C, and write D < C.

The following result helps to identify locally fully-faithful functors.

48T his terminology is justified by Proposition 19.4.3.
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Proposition 19.4.3. For Y = Spec(A), a functor F' : D — C of A-linear categories is
locally fully-faithful of and only if it is fully-faithful as a mere functor.

Proof. Tt suffices to show that for every morphism A — B of commutative algebras, the

induced functor:

Fp:D ® B-mod—>C ® B-mod

A-mod A-mod
is fully-faithful.

Let Oblvy denote the forgetful functor:

D ® B-mod—D
A-mod

and similarly for C.

By Lemma 19.2.3, it suffices to show that, for X e D and Y e D ® B-mod, the
A-mod

morphism:

Homp g B,mod(Xg)B,Y) — Hom¢ g B,mod(FB(Xg)B),FB(Y)) (19.4.1)

A-mod A-mod

is an equivalence.
Note that both operations Oblv? and —®4 B commute with A-linear functors. More-

over, under the identifications:

Homp & B-mod(X @? B,Y) = Homp(X, OblvE (Y))

A-—mod

and:

HOIIIC ® dBfmod(FB(X @ B), FB(Y)) = HOIIIC ® dB,mOd(F(X) %B,FB(Y» =

A—mo A—mo

Homc (F(X), Oblvg (Fp(Y))) = Homc(F(X), F o Oblvi (Y))
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the morphism (19.4.1) is given by the canonical map:

Homp (X, Oblvs(Y)) — Homc(F(X), F o Oblvy (Y))

so that the result follows from the hypothesis that I is fully-faithful.

We also note the following basic stability.

Proposition 19.4.4. Given an J-shaped diagram of fully-faithful functors C; — D; €

ShvCaty, the induced functor:

lim C; — lim D,
i€ €]

18 fully-faithful as well.
This follows immediately from the corresponding statement for DG categories.

Corollary 19.4.5. Given a system of subcategories i — C; < C indexed by a contractible
category J (i.e., the groupoid obtained by inverting all arrows is contractible), the induced

functor lim;eg C; — C s fully-faithful as well.

Proof. Apply Proposition 19.4.4 to the functors:

and note that contractibility of J implies that limeg C — C.
O

19.5. Let F' : C — D be a morphism of A-linear categories. We define F(C) as the
subcategory of D generated under colimits by objects F(X), X € C. Note that F(C) is

an A-linear subcategory since A-mod is generated under colimits by A.
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Lemma 19.5.1. A — B be a morphism of commutative algebras and let F': C — D be an

A-linear morphism of A-linear categories. Let F'® denote the induced functor:

FP.:C ® B-mod—>D ® B-mod.

A-mod A-mod
Then the canonical functor:
F(Q) © B-mod — FB(C KN B-mod) (19.5.1)

18 an equivalence.

Proof. The morphism F(C) — D is fully-faithful, so by Proposition 19.4.3 the morphism:

F(C) ® B-mod—>D ® B-mod
A-mod A-mod

is as well. Therefore, it remains to show essential surjectivity of (19.5.1).
By Lemma 19.2.3, C ®4-moq B—mod is generated under colimits by objects induced

from C, giving the result.

O

By the lemma, for F : C — D a morphism of sheaves of categories on ) € PreStk,
we can make sense of F'(C) so that its formation commutes with base-change. Note that

F(C) — D is locally fully-faithful.

19.6. Localizations. Let A be a fixed commutative algebra. Let C be a A-linear cate-
gory, and let D < C be a subcategory closed under colimits. As above, since A—mod is
generated under colimits by A, D is an (A-mod)-submodule category.

In this case, we can form the quotient category C/D, that is computed as a pushout:

I

— > C

l (19.6.1)
/

— C/D
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in the category of A-linear categories.

Lemma 19.6.1. Given B — A a map of commutative algebras, the induced restriction

functor:

{A-linear categories} — {B-linear categories}

commutes with formation of quotients.

Proof. Indeed, this functor commutes with arbitrary colimits, since it is the a restriction
functor for modules in DGCat,p,; from A-mod to B-mod (c.f. [Lurl2] 4.2.3.5).
O

Remark 19.6.2. Applying the lemma for B = k, we obtain an explicit description of the
quotient in the category of A-linear categories: it is the usual quotient of DG categories,

which may be computed by applying the usual localization procedure from [Lur09] §5.5.4.

More generally, one can form quotients for locally fully-faithful functors of sheaves
of categories on an arbitrary prestack, defined also as a pushout. This operation tauto-
logically commutes with pullback of sheaves of categories, and then can be computed

“locally” using Lemma 19.6.1.

19.7. For Y a prestack and F' a morphism F': C — D € ShvCaty, the kernel Ker(F)
of F'is by definition the fiber product C xp 0. By Remark 19.3.1, formation of kernels
commutes with base-change.

Note that the natural morphism Ker(F') — C is always locally fully-faithful. Indeed,

this tautologically reduces to the case where ) is an affine scheme, where it is obvious.

Definition 19.7.1. A morphism F' : C — D e ShvCat,y is a localization functor in

ShvCat/y if the natural morphism:

C/Ker(F) - D
300



is an equivalence.
We have the following equivalence between subcategories and localization functors.

Proposition 19.7.2. Let C be a sheaf of categories on a prestack Y, and let C° < C be a

full subcategory.

(1) The kernel of the functor C — C/C® is C°.

(2) The functor C — C/CY is a localization functor.

Proof. The first statement immediately reduces to the affine case, where it is well-known,

and the second statement follows tautologically from the first.

O

Proposition 19.7.3. Suppose that C = colim,e; C; € ShvCat)y, and suppose that J is filtered
and each structure map C; — C; is a localization functor.

Then for every ig € I, the functor C;; — C is a localization functor.

We first need the following lemma, which is obvious in the affine case and therefore

in general.

Lemma 19.7.4. Let F : D — C be a (not necessarily fully-faithful) morphism of sheaves
of categories and let C/D denote the corresponding pushout. Then C/D = C/F (D). In

particular, C — C/D is a localization functor.

Proof of Proposition 19.7.3. We can assume ig is initial in J by filteredness. A functor
C — D is equivalent to compatible functors C; — D, which in turn are equivalent to
functors C;;, — D mapping Ker(C;, — C;) to 0. But this is obviously equivalent to giving
a functor C;;, — D mapping colim; Ker(C;, — C;) to 0, so the result follows from Lemma

19.7.4.
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19.8. 1-affineness. We follow [Gail2b] in saying a prestack ) is I-affine if the mor-

phism:

I' : ShvCat/y — QCoh(Y)-mod(DGCat,on¢)

is an equivalence.

The following useful results are proved in [Gail2b].

Theorem 19.8.1. (1) Any quasi-compact quasi-separated scheme is 1-affine.
(2) If T is a quasi-compact quasi-separated scheme, S is a closed subscheme with
quasi-compact complement, and T¢ is the (indscheme) formal completion, then
T¢ is I-affine.

(8) For S an almost finite type scheme, Sqg is 1-affine.

We also need a relative version: we say that a morphism f : )Y — Z of prestacks is
1-affine if for every affine scheme S and map S — Z, the prestack ) x S is 1-affine.
z

We immediately deduce from Theorem 19.8.1 the following:
Proposition 19.8.2. Any quasi-compact quasi-separated morphism is 1-affine.

Remark 19.8.3. It is not tautological that a 1-affine prestack ) has 1-affine structure

map ) — Spec(k). However, we will prove this in Corollary 19.10.5 below.

19.9. Pushforwards. Next, we discuss the pushforward construction for sheaves of cat-

egories.

Proposition 19.9.1. Let f : Y — Z be a morphism of prestacks.

(1) The functor:

f* : ShvCat/z — ShvCat)y

admits a right adjoint f, compatible with arbitrary base-change.
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(2) If f is 1-affine, then f, : ShvCat/y — ShvCat/z commutes with arbitrary colimits
and satisfies the projection formula in the sense that it is a morphism of ShvCat )z -
module categories.

1S quasit-compact quasi-separatea, en jor every S v(Cat =z € unit map:
39) If f i ' t quasi ted, then f C e ShvCat z the unit

C— fuf*(C)

admits a right adjoint in the 2-category ShvCat,z. This right adjoint commutes

with base-change in the natural sense.

Corollary 19.9.2. Let f : Y — Z be a quasi-compact quasi-separated schematic morphism

of prestacks. Then for every C € ShvCat,z the morphism:

fe:T(2,C) =T, f7(C) =I(Z, £ f*(C))

admits a continuous right adjoint fc .
This right adjoint commutes with base-change in the sense that for every Cartesian

diagram:

fi
VW — Z

AL

Vo — 2
with fo quasi-compact quasi-separated and schematic and every C € ShvCat/z the natural

morphism:

¢é © f2,C,>k - fl,CyZ,* © SOéyQ

s an equivalence.

Proof of Proposition 19.9.1. We begin with (1).

Suppose first that Z = S is an affine scheme. Now the functor:
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QCoh(S)-mod(DGCat,,,:) — QCoh(Y)-mod(DGCat,ont)

(19.9.1)
M—>M ® QCoh())

QCoh(S)

obviously admits a right adjoint given by restriction along QCoh(S) — QCoh())). This
functor commutes with colimits by [Lurl2] 4.2.3.5 and tautologically satisfies the pro-
jection formula.

We then see that the right adjoint f, : ShvCat; — QCoh(S)-mod(DGCatepne) is

computed as the composition:

ShvCat)y 25 QCoh(Y)-mod(DGCat ) “HU% QCoh(S)-mod(DGCatypns) = ShvCatys.

We now verify the base-change property of this functor. Suppose first that we are

given a Cartesian diagram:

Y
lf/ g lf (19.9.2)

S — 5

with S’ and S affine schemes. Then for C € ShvCat/y, we compute:

DS, ¢* f.(C) =T(V,C) ® QCoh(S’):< lim F(T,a*(C))) ® QCoh(S') =

QCoh(S) aT—Y QCoh(S)
TeAffSch
lim <F(T, a*(C) ® QCoh(S’)) = I(colim T x S, p*a*(C)) = T()', *(C)).
aT—Y QCoh(S) alT->Yy 8
TeAffSch TeAffSch

This verifies base-change for the Cartesian diagram (19.9.2), when S’ is assumed affine;
the case when S’ is allowed to be an arbitrary prestack immediately reduces to this one.
We obtain the existence of a right adjoint in (1) compatible with base-change by an

immediate reduction to the case when Z is affine.
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The claims of (2) follow from the observations we have already made about (19.9.1).
Using the same dévissage we obtain (3), using that in the quasi-compact quasi-
separated case with affine target S we have the continuous right adjoint f, : QCoh()) —

QCoh(9) satisfying the projection formula.
O

Corollary 19.9.3. Suppose that X, Y, and Z are 1-affine prestacks and we are given a

diagram:

:X:Xy;y
zZ
Rt

!
X Z

with f 1-affine. Then the natural functor:

QCoh(X) ® )QCoh()/) — QCoh(X x V)

QCoh(Z

18 an equivalence.

Proof. By Proposition 19.9.1, we have:

g* f+(QCohy) — ¢.(QCohx,y) € ShvCaty. (19.9.3)
zZ

Applying global sections on Y, the left hand side of (19.9.3) becomes:

QCoh(X) ® )QCoh(y)

QCoh(Z

by our assumptions of 1-affinity, and the right hand side obviously becomes QCoh(X x )).
Z
O

19.10. We will prove the following technical result.

Proposition 19.10.1. The composition of 1-affine morphisms is 1-affine.
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We will prove the following more precise form of Proposition 19.10.1.

Lemma 19.10.2. If f : Y — Z is a 1-affine morphism of prestacks with Z a 1-affine

prestack, then Y is 1-affine.

Proof of Proposition 19.10.1 given Lemma 19.10.2. Suppose Y — Z — & are l-affine
morphisms. To show that the composition is 1-affine, we reduce to showing that in the
case when § is an affine scheme, ) is 1-affine. But in this case, Z is a 1-affine prestack,

so the result follows from Lemma 19.10.2.

We need the following result first.

Lemma 19.10.3. For f : Y — Z a I1-affine morphism, the pushforward f, : ShvCat;y —

ShvCat/z is conservative.

Proof. Suppose that C and D are two sheaves of categories on ) and ¢ : C — D is a map
such that f,(¢) is an equivalence. We will show that ¢ is an equivalence.

Let S be an affine scheme with a map g : S — ). It suffices to show that for every
such datum, ¢g*(¢) is an equivalence.

We form the commutative diagram:

S —)Y
|

Z.

X
Z
s\ |

S

fog

Note that pushforward along ) x S — S is conservative because:
z
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is conservative by 1-affineness of f. But now base-change and this conservativity imply
that the pullback of p to Y ; S is an equivalence, giving the result after further restriction
to S.

O

Proof of Lemma 19.10.2. Because f, commutes with arbitrary colimits by Proposition

19.9.1 and is conservative by Lemma 19.10.3, Barr-Beck implies that we have:

f«f*-mod(ShvCat,z) ~ ShvCaty.

Therefore, we deduce:

ShvCat/y = f,(QCoh/y)-mod(ShvCat/z) ~ QCoh(Y)-mod(QCoh(Z)-mod(DGCat o)) =
QCoh(Y)-mod

as desired.

O

Corollary 19.10.4. For any pair of 1-affine prestacks Y and Z, the product Y x Z is
1-affine.

Proof. 1t suffices to show that the projection ) x Z — Y is 1-affine. By the definition,
we reduce showing that in the case where S is an affine scheme, S x Z is a l-affine
prestack.

Note that the morphism S x Z — Z is affine and therefore 1-affine, so the result
follows from Lemma 19.10.2.

U

Corollary 19.10.5. A prestack Y is 1-affine if and only if the structure map Y — Spec(k)
1s 1-affine.
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Proposition 19.10.6. Given a commutative diagram of prestacks:

with f and f o g 1-affine, and such that the diagonal Ay : Y — Y xz Y is I-affine, the

morphism g is 1-affine.

Proof. Applying base-change by any map to Z from an affine scheme, we reduce to
showing in the case Z = S € AffSch that g : W — ) is 1-affine.

The graph morphism W — W x g Y is obtained by base-change along VW — ) from
the diagonal ) — Y xg ), and therefore by assumption is 1-affine. But the morphism g

factors as:

W—>W>S<37—>J)

and the second morphism is 1-affine since it is obtained by base-change from W — S.

O

19.11. Correspondences. Let PreStk o .qu,1-of denote the category of prestacks under

correspondences of the form:

H
Z/ \i (19.11.1)
Y Y

where [ is a 1-affine morphism.

We consider PreStkeorrai, 1-off @5 @ symmetric monoidal category using the Cartesian
monoidal structure on PreStk.

From the Gaitsgory-Rozenblyum theory [GR14] of correspondences, we obtain the

following result from Proposition 19.9.1 (1)
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Corollary 19.11.1. There is a canonical lax symmetric monoidal functor:

Sthatjﬁh : PreStkeorria1-ar — Cat

sending a prestack Y to ShvCaty and sending:

H
( j/ \i ) — (Bya* : ShvCat/y, — ShvCat)y).
Yy V'

The lax symmetric monoidal structure is given by exterior products.

19.12. Dualizability for sheaves of categories. Let ) be a fixed prestack. As in
§19.3, ShvCat/y is a symmetric monoidal category with unit QCohy,.

We will say that a sheaf of categories C on Y is dualizable if it is dualizable as an object
of the symmetric monoidal category ShvCat,y. For C dualizable, we let C¥ € ShvCat)y

denote its dual.

Proposition 19.12.1. The sheaf of categories C € ShvCaty is dualizable if and only if for
every f S — Y a map from an affine scheme S, the category I'(S, Cg) is dualizable as

a DG category.

Proof. Let S be an affine scheme. By [Gail2a] a sheaf of categories:

D e ShvCat/g = QCoh(.S)-mod(DGCat,pns)

is dualizable if and only if I'(S, D) is dualizable as an object of DGCat.yy-

Restriction functors for sheaves of categories are symmetric monoidal and therefore
preserve dualizability and canonically commute with passage to the dual. Therefore, we
see that dualizability for C € ShvCat/y can be tested after pullback to any affine scheme,

and now the result follows from the above.
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Lemma 19.12.2. For any dualizable C € ShvCaty the functor:

C — : ShvCat/y, — ShvCat
Q(j@())hy Va/y Va/y

commutes with limits.

Proof. Combining Remark 19.3.1 with Proposition 19.12.1, we immediately reduce to

the affine case, which is contained in [Gail2a].

O

Construction 19.12.3. Let ¢ — C; be an Z-shaped diagram of dualizable sheaves of
categories on ) with each C; is dualizable. Let C := colim;cz C; and let C := lim;ezor C.
where the limit is taken over the duals to the structure functors.

Then there is a canonical pairing:

C C — QCoh 19.12.1
QCC?hy QCohy ( )

constructed as:

(lim sz> ® (colim Cj> = colim ((lim ) ® Cj> — C(j)(lEiIm (C]v ® Cj> — QCohy.

i€ZoP QCohy, jeT JET i€ZoP QCohy QCohy,

Here the latter map is defined by compatible family of evaluation maps for each C;.
The following result is taken from [Gail2a].

Proposition 19.12.4. Let i — C;, C and C be as in Construction 19.12.3.

(1) If C is dualizable, then (19.12.1) realizes C as the dual of C.

(2) C is dualizable if and only if, for every D € ShvCat)y, the tautological map:

D ® C-— lim (D ® c;) (19.12.2)

QCohy ieZop QCohy

18 an equivalence.
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(3) If each functor C; — C; admits a right adjoint in ShvCaty, then C is dualizable.

Proof. Suppose first that C is dualizable.

For every i € Z the coevaluation for C; gives the canonical map:

QCohy - C! ® C—C’ ® C.

QCOhy QCOhy

These maps are compatible as ¢ varies, and therefore we obtain the map:

QCohy — lim (C; ® C). (19.12.3)

1€L°P QCohy

Because C is dualizable, Lemma 19.12.2 gives:

(m CY) ® C-> lim (c; ® c) (19.12.4)

1€Z°p QCohy, i€Lep QCohy,
so (19.12.3) gives a coevaluation map, which one easily sees defines a duality datum
alongside the evaluation pairing above. This completes the proof of (1).
For (2), suppose first that C is dualizable. By (1), we have C = C¥. Therefore, we see

that for any D,, D, € ShvCat/y, we have:

Hom(D,,D; ® C)=Hom(D, ® C,D;)=Hom (colim(D, ® C;),D;) =
QCohy, QCohy, (= QCohy,

lim Hom(D2 (039) Ci7 Dl) = 11%11 HOIII(DQ, D1 & C,LV)
1€LOP

i€Zep QCohy, QCohy,
as desired.
For (3), note that each C;' — C} then admits a left adjoint, and the limit defining C
can be computed as the colimit of these categories. Now the hypothesis (2) is obviously

satisfied.

19.13.  We will need the following notion in what follows:

A pushforward structure on a l-affine morphism f : )Y — Z is a morphism:
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Ef: f*(QCOhy) — QCOhZ € Sthat/Z.

We have a corresponding category PreStkP’ of prestacks under 1-affine morphisms
equipped with pushforward structures. That is, objects are prestacks, morphisms ) — Z
are pairs (f,es) of a l-affine morphism Y — Z with a pushforward structure ¢, and
compositions W (9:59) Yy (es) Z are computed by the map f o g with the pushforward

structure:

Fogx (QCohyy) =59 £,(QCohy) —L> QCohyy.

We have the obvious forgetful functor PreStkP’ — PreStk.

Remark 19.13.1. Suppose that f : Y — Z is a 1-affine morphism with a pushforward
structure €¢. Let W — Z be an arbitrary map. Then the base-change V) xz W — W
inherits a canonical pushforward structure from the base-change property of Proposition

19.9.1 (2).

19.14. Next, we wish to discuss the preservation of dualizability under pushforwards of

sheaves of categories.

Definition 19.14.1. A pushforward structure €; on a l-affine map f : Y — Z is dual-
passing if for every dualizable C € ShvCat/y, the upper horizontal arrow in the commu-

tative diagram:

f+(C) ® fi(CV) —— QCohz

QCoh =
l ° (19.14.1)
f«(C Qg?hy CY) —— [f«(QCohy)

realizes f,(C) as dual to f,(CV).
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We say that a map f is dual-passing if f is 1-affine and equipped with a dual-passing

pushforward structure.

Remark 19.14.2. If f is dual-passing, then in particular f, preserves dualizable sheaves

of categories, and we have functorial identifications f,(C)¥ ~ f.(CY).

Remark 19.14.3. Suppose W > Y . Z are dual-passing morphisms of prestacks,
then the composition of these morphisms in PreStk?’ is readily seen to be dual-passing
as well.

Therefore, we obtain the nonfull subcategory PreStk? < PreStkP/ of prestacks under

dual-passing morphisms (but 2-morphisms, etc. are the same in PreStk? as in PreStk?P/ ).
19.15. We now discuss the existence of dual-passing morphisms.

Proposition 19.15.1. Suppose Y is a 1-affine prestack with QCoh(Y) rigid monoidal.

Then the map:

['(Y,—) : QCoh()) — Vect

(necessarily continuous by rigidity) is a dual-passing pushforward structure on the struc-

ture map Y — Spec(k).

Proof. This is a general result about modules for rigid monoidal categories and is ex-
plained in [Gail2a].
O

Remark 19.15.2. In particular, the hypotheses of Proposition 19.15.1 are satisfied if X

is a quasi-compact quasi-separated scheme.
Similarly, we have the following result.

Proposition 19.15.3. For f : Y — Z a quasi-compact quasi-separated schematic mor-

phism, the pushforward functor (c.f. Proposition 19.9.1 (3)):
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f* (QCOhy) — QCOhZ

1 a dual-passing structure on f.

Proof. We immediately reduce to the case where Z is an affine scheme, where it again

follows from [Gail2a].

O

Corollary 19.15.4. Let PreStk,.,s denote the category of prestacks under quasi-compact
quasi-separated schematic morphisms. Then we obtain a canonical map PreStkye,s —

PreStk that is a (partially-defined) section of the map PreStk® — PreStk.

This follows because the pushforward structures f,(QCohy) — QCohz are right ad-

joints to the tautological maps QCohz — f,(QCohy).

19.16. Let¢:S5 < T be a closed embedding of quasi-compact quasi-separated schemes
with quasi-compact complement. Let 7§ be the formal completion of 7" along S. Recall
from Theorem 19.8.1 that T¢ is 1-affine.

Let 7 denote the canonical map of prestacks 74 — T'. Note that 7is a l-affine morphism
(this follows either directly from Theorem 19.8.1 or from Proposition 19.10.6).

According to [GR14], the restriction functor:

7* : QCoh(T) — QCoh(T%)

admits a fully-faithful left adjoint. We follow loc. cit. in denoting this functor by .
By rigidity of QCoh(T), the functor i; is a morphism of QCoh(7')-module categories.

Therefore, we obtain a pushforward structure:

ey + 1:(QCohyy ) — QCohy

given on global sections by .
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Proposition 19.16.1. The pushforward structure er; is dual-passing.

Proof. Recall that QCoh(7¢) is compactly generated in this case. Therefore, we have:

QCoh(TZ) ® QCoh(T%) > QCoh(T% x T%) = QCoh(T%).
QCoh(T) T

For any pair €, D of QCoh(T§ )-module categories in DGCat,yns, we claim that the

canonical functor:

C ® D€ ® D
QCoh(T) QCoh(T%)

is an equivalence. Indeed, we immediately reduce to the case where € = D = QCoh(T¢),
where it follows from the above.

From here it is easy to see that for € dualizable the map:

QCoh(T) 25 QCoh(TS) € ® €' =€ ® €
QCoh(T) QCoh(T)

is the desired coevaluation map to the proposed evaluation map:

C ® € ¢ ® € QCoh(TS) % QCoh(T).
QCoh(T) QCoh(T¢)

19.17.  'We will use the following somewhat technical lemma in what follows.

Lemma 19.17.1. Let Y; be an Z-shaped diagram of prestacks with Y = colim Y;. Suppose
that the structure maps YV; — Y; and @; : V; — Y have been given compatible dual-passing
structures, i.e., we have a lift of the corresponding I% -shaped diagram to PreStk? .

Let f : Y — Z be a map in PreStk with a pushforward structure €5 such that the
induced pushforward structure €¢or on the map fom:U — Z is dual-passing.

Then ¢ is dual-passing.

Proof. Let E € ShvCat )y be arbitrary. Then we have an obvious identification:
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E— 'li%n 0ixpi(E) = lmE ® ;.(QCohy,). (19.17.1)
1€L°P

i€Zop QCohy
Applying (19.17.1) repeatedly, for C,D e ShvCat/y arbitrary, we obtain:

€8, 0= (lmeusi(0) 8 D

QCOhy QCOhy

C ® D= hmc,pz*gpZ (C ® D)= lim (gpl*gol Q) ® D)
QCohy, QCohy, ieZop QCohy

with last equality the projection formula. Therefore, we deduce:

(hmapl*gp (C)> ® D lim <90i,*g0f(c) ® D>.

icZop QCohy 1€LP QCohy
Suppose that C is dualizable with dual C¥. Because each ¢; is assumed dual-passing,
each C; == ;.7 (C) is dualizable with natural identifications C = ¢; ¢} (C). We see

from Proposition 19.12.4 that we have a canonical identification:

colim C = CV
i€l

where the structure maps are the dual functors to C — C;.

Now let D € ShvCat,z be fixed. Applying the projection formula repeatedly, we obtain:

lim (fr00sC) (© D=1 (lmeeC) ® D=L((lmeinC) 8 S'(D) =

iezZop QCohg QCohy
fs (hm (ixC (?hyf (D ))) = hm (f*(%*c C(?yf (D ))) = Zlel%n()p((f*%*cz) QCC?hZ D))

Therefore, we see from Proposition 19.12.4 that f,(C) is dualizable, and it is immediate
to see from Construction 19.12.3 that the evaluation pairing is computed using the

pushforward structure €, as desired.

19.18. Next, we discuss pushforward structures in the de Rham setting.
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Theorem 19.18.1. Let S and T be two schemes of almost finite type and let f : Sqr — Tyr
be a map. The corresponding pushforward structure € s 4r defined by de Rham cohomology

18 dual-passing.
Proof.

Step 1. First, we treat the case that f = i4g for ¢ : S — T a closed embedding.
Applying base-change by any map ¢ : T" — Tyg from an almost finite type affine

scheme, we land in the situation of Proposition 19.16.1. Le., if S = T"“"¢4 x . S we have

the Cartesian diagram:

Ty —— 1T

w Lw (19.18.1)

1dR
Sar — Tur.

It suffices to show that the induced pushforward structure obtained by basechange co-
incides with the one from Proposition 19.16.1. We will check this below, though it is
surely well-known.

We will use “quasi-coherent” notation everywhere, recalling that e.g. %, : QCoh(Tyr) ~
D(T) — D(S) ~ QCoh(Syr) is the upper-! functor in the D-module setting. We still use
the notation i4p . for its left adjoint.

The Cartesian square (19.18.1) gives a base-change morphism:

Tt — OrigR (19.18.2)

of functors QCoh(S;r) — QCoh(T"), which we need to show is an equivalence.
Let j : U < T’ denote the (open) complement to S’, let F € QCoh(Syr) and let
G € QCoh(U). We see that:

Homqcon(r7) (9™ 1ar,+(F), j+(G)) = Homqconw) (7* ¢ iar«(F), 9).
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We have j*p*i4r«(F) = 0, since it is obtained by forgetting D(U) = QCoh(Usr) —
QCoh(U) of an object that is obviously zero.

Therefore, we see that ¢*izr » maps into the left orthogonal to QCoh(U) < QCoh(1”).
This is well-known (c.f. [GR14]) to coincide with ,z'\i.,(QCoh(Tg,A)). Therefore, by fully-
faithfulness of Zf,, it suffices to show that the map (19.18.2) is an equivalence after

applying ?f,, but this is obvious.

Step 2. Next, we prove the result in the case where T" = Spec(k).

By Lemma 19.17.1 and Toen’s descent theorem for sheaves of categories, we reduce
to the case where S is affine (by taking a Zariski covering of S by affine schemes).

We can then take a closed embedding of S into a smooth scheme (specifically, into
affine space) and then by Step 1 we reduce to the case where S is smooth.

For an integer n, let DR"(S) denote the formal completion of S inside of the (n + 1)-
fold product S™*!, so [n] — DR™(S) is the de Rham groupoid of S (i.e., it is the Cech
groupoid associated with the map S — Syg). Let ¢, : DR"(S) — Syr denote the
canonical maps.

Then for C € ShvCat/g, ., we have:

['(S4r, C) ~ lim I'(DR™(S),(C)) = lim I'(DR"(S),¢:(C)) (19.18.3)

[nlea " [n]eAin "

with A the semisimplicial category.

By smoothness of S, we have the equivalence of augmented cosimplicial categories:

. ——= QCoh(DR?*(S)) ——= QCoh(DR'(S)) ——= QCoh(S) — QCoh(S4r)
Tor2(s) L =~ Tories) L =~ Ts L =~ Tsup j =

. —= IndCoh(DR?*(S)) == IndCoh(DR'(S)) —= IndCoh(S) — IndCoh(S;z)

(19.18.4)
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where on the bottom we use upper-! functors. This is an equivalence of QCoh(DR*(SS))-
module categories.

Moreover, each of the bottom arrows (in the corresponding cosemisimplicial diagram)
on the bottom row of (19.18.4) admits a left adjoint given by IndCoh-pushforward by
indproperness.

Recall from [GR14] that the functors Y intertwine the self-duality of QCoh(DR"(S5))
from Proposition 19.16.1 with Serre duality on IndCoh.

For C as above, we see that (19.18.3) is given by tensoring with the upper row, so each
of the maps in the semisimplicial limit in (19.18.3) admits a left adjoint. Therefore, by
[Gail2a] Lemma 2.2.2., I'(Syg, C) is dualizable with dual given by the de Rham groupoid
and Construction 19.12.3.

From here we immediately check that the duality is given by the pushforward struc-

ture, as desired.

Step 3. In the general case, factor f : Syr — Tyr through its graph:

Sar — Sar X Tar — Tur.

The former map is treated in Step 1, and the latter by base-change from Step 2.

20. THE TWISTED ARROW CONSTRUCTION AND CORRESPONDENCES

20.1. This appendix explains how to map into a category €., of correspondences in
C. The desired answer is that giving a functor D — C,,,., is the same as giving a functor
from the twisted arrow category Tw(D) of D to € with a certain property (formulated

in §20.9 below).
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However, there is a slight annoyance here: such a result should be formulated as an
adjunction, and the domain and codomain of these functors needs to be treated care-
fully: correspondences are defined only for categories with fiber products, while Tw(C)
generally does not have fiber products, even if € does (it needs to have pushouts as well).

Fortunately, this problem is essentially solved in [GR14]. We describe their solution
and construct this adjunction in what follows.

Presumably this material is well-known to specialists, but we are unaware of a ref-
erence. The main construction of this section was found independently by Nick Rozen-

blyum.

Remark 20.1.1. This material plays a purely technical role; it is only used in the main

construction of §14.

20.2. Twisted arrows. Let C be a category.
We define a simplicial groupoid [n] — Twp,)(C) by taking n-simplices the groupoid of

diagrams:

Xo X1 Xn
Yo Y, \ Y,

in €, as equipped with its obvious simplicial structure.
More precisely: for a finite totally ordered set I, let I°? denote the same set with the

opposite ordering. We have a functor:

AP 5 AP

I—IxI%
with the operation * being the join (alias: concatenation) of two ordered sets.
The twisted arrow construction is more often given as composition with this endo-

functor. This construction defines a complete Segal space Tw(C).
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Remark 20.2.1. One can show that Tw(C) coincides with the twisted arrow category of
C as defined in [Lurlla).

Remark 20.2.2. Note that the groupoid Twp,)(C) is canonically equivalent to the groupoid

of composable morphisms:

Xo—>X1—-»..-X,»Y,->Y, —>...0)
in C.

20.3. Categories with directions. We will need the following notion from [GR14].
A category with directions is a category € equipped with two classes (hor,vert) of

morphisms in C, called horizontal and vertical respectively, such that:

(1) Equivalences are both horizontal and vertical.

(2) Any morphism equivalent to a horizontal (resp. vertical) morphism is horizontal
(resp. vertical).*

(3) Horizontal and vertical morphisms are closed under compositions.

(4) Given X — Y horizontal and Z — Y vertical, their Cartesian product X xy Z

exists, with the map X xy Z — Z (resp. X xy Z — X)) horizontal (resp. vertical).

Categories with directions form a category Caty;, with morphisms functors preserving
horizontal and vertical arrows and preserving Cartesian products of diagrams X — Z «

Y with X — Y horizontal and Z — Y vertical.

Example 20.3.1. Any category can be regarded as a category with directions in which
horizontal arrows are allowed to be arbitrary and vertical arrows are required to be

equivalences. This construction defines a fully-faithful functor Cat < Caty;,.

Example 20.3.2. If € admits fiber products, we can take horizontal and vertical maps to

both be arbitrary morphisms in €.

49We include this condition for clarity, but due to the conventions of §2.6, this condition is forced by
our framework.
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20.4. Let € be a category. We will construct on Tw(C€) a canonical structure of category
with directions.

We say that a morphism:

Xo — X4
|
Yo <—Y
in Tw(@) is horizontal if Y1 — Y; is an equivalence, and wvertical if Xo — X; is an
equivalence.
We claim that such a choice of horizontal and vertical maps in Tw(C) define the
structure of category with directions on C.
The only non-trivial condition is the base-change one, so let us verify that one. Suppose

that we are given a diagram:

idx

X — X ~—W
.
Z Y Y
in € (equivalently: morphisms W — X — Y — Z), which we regard as a diagram:

(X—>Z>£"€<X—>Y)Jﬂ(w—>y)

in Tw(C). Then one immediately verifies that W — Z is the resulting fiber product.
Indeed, giving compatible maps (A — B) to (X — Z) and (W — Y) translates to

giving a diagram:
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A
./

idy

N~

N

/
AN

B
which is obviously the same as giving compatible maps A — W and Z — B.

We therefore see that Tw upgrades to a functor:

Tw : Cat — Caty;,.

20.5. Grids. We now recall the construction of correspondences following [GR14].

Define the (1, 1)-category Gridp,) to be the category associated with the partially or-
dered set of convex subsets of [n].

Explicitly: objects of Grid,) are indexed by pairs of integers (7,7) with 0 <14 < j <n,
where i is the infimum of the corresponding subset of [n] and j is its supremum. There
is a (unique) morphism (7, 5) — (¢, j') if and only if i’ < i and j < j'.

An inclusion S € T < [n] is said to be horizontal if inf(S) = inf(7T) and vertical if

sup(S) = sup(T") (see (20.6.1) for the reason).

20.6. Fix a category with directions (C, hor,vert).

Define the groupoid Grid}},j .,y et (C) 0f weak n-grids in € as the groupoid of functors
Grid'[)f: | — € sending horizontal arrows in Gridp,) to horizontal arrows in €, and similarly
for vertical arrows.

Weak n-grids can be identified with diagrams:
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(20.6.1)

Xog — X1

XOO

)

in € with the graphically horizontal arrows horizontal in € and similarly for vertical
arrows.
We say that a weak n-grid is an n-grid if each of the (1 +...+(n— 1))—Commutative
squares in (20.6.1) is Cartesian. We denote the groupoid of n-grids by Gridp.);hor,vert(€).
As in [GR14], [n] — Grid[;)(€) is a complete Segal space: the Segal condition is clear,
and completeness translates to the statement that a correspondence is an equivalence if
and only if each of its horizontal and vertical components are equivalences in €. We will

denote this category by Ceorrhorvert-

Example 20.6.1. In Example 20.3.1, we obtain the category C again. In Example 20.3.2,

we obtain the category C.y.

20.7. Let C be a category with directions. We will construct a canonical functor:

TW<ecorr;hor,vert) — C (2071)

of categories with directions.
We will do this at the level of Segal groupoids. As in Remark 20.2.2, the n-simplices

of TW(Ceorrihorvert) are given by diagrams:
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Xo2nt1 — Xion+1 - o Xont1,2n+1

XO,27L > X1,2n s X2n 2n

(20.7.2)

with all graphically horizontal arrows horizontal, similarly for vertical arrows, and all

squares Cartesian. We then map this diagram to the n-composable arrows in C:

X0,2n+1 - X1,2n > ... > Apntl-
One easily sees that this is compatible with simplicial structures as desired and therefore

defines the desired functor (20.7.1).

Let us check that this functor is actually a functor of categories with directions.

An arrow:

hor hor
H, —= Y, Hy —= Y,
< l vert ) - ( L vert )
X X

in Tw(Ceorrihorvert) 1S the datum of a diagram:
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vert hor

Xy =—H — Y

T vert T hor

W A (20.7.3)

L hor l vert

vert hor
Xo =— Hy — Y5

plus an isomorphism:

H1 ~W X X, HQ Xy, Z (2074)

as objects over both X and Y.

We draw the diagram (20.7.3) as in (20.7.2):

H —— Hyx 7/ — 7 — Y.

Y
W x H, H, Ya
X2
w X
Xy

We see that this diagram maps to the map H; — H, in €. Note that the map H; — H»
is defined by (20.7.4).

Now, the diagram (20.7.3) is horizontal if the correspondence Z is an equivalence, i.e.,
if both maps Z — Y] and Z — Y, are equivalences.

Then we have an isomorphism H; ~ W x x, Hy. Therefore, we see that the morphism
H, — H, is horizontal in this case, since W — X is horizontal and we are base-changing

along the vertical map Hy, — Xo.
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20.8. Next, we will construct a canonical map:

C— Tw(e)corr;hor,vert (2081)

with hor and vert defined as in §20.4, i.e., for any twisted arrow category.

We map n-composable arrows:

X0—>X1—>...—>Xn

in € to the diagram (20.6.1) with X;; the induced morphism (X; — X;) € Tw(€), i.e.,

the diagram:

(X0—>Xn) - <X1—>Xn> <Xni—d>Xn>

(Xo - anl) — (X1 - XH) . (XM d, anl)

(Xo - Xl) - <X1 2, Xl)

(%0 %)

in Tw(C). Note that all the graphically horizontal maps here are actually horizontal in
Tw(C), and similarly for vertical maps.
This construction is compatible with simplicial structures and therefore defines the

desired functor (20.8.1).

327



20.9. Note that the morphisms (20.7.1) and (20.8.1) are functorial in €. One readily
verifies that they define the unit and counit of an adjunction:
Tw(—)

Cat —————= Caty;,.

(_)corr;hor,vem
In particular, we see that for a category € with fiber products and a category D, we
have canonical identifications of the category of functors D — €. and the category of

functors Tw(D) — € such that, for every sequence X Sy 4 Zin D, the square:

(X 2L 7) —= (v % 2)

| |

X -Ly)— v &%y
in Tw(D) maps to a Cartesian square in C. Indeed, unwinding the definitions, we find
that this condition is equivalent to the requirement that those Cartesian squares in
Tw(D) that are the base-change of a horizontal map by a vertical map should map to

Cartesian squares in C.

Remark 20.9.1. The functors obviously commute with products of categories (where the
product of categories with directions is a category with directions in the obvious way),
and therefore we have similar endofunctors e.g. of the category of symmetric monoidal

categories, and a similar adjunction.
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