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Dissecting Olfactory Circuits in Drosophila 

Abstract 

Drosophila is a simple and genetically tractable model system for studying neural circuits. 

This dissertation consists of two studies, with the broad goal of understanding sensory processing 

in neural circuits using Drosophila as a model system. 

A key tool in the study of neural circuits is the ability to transiently inactivate specific 

neurons. In Drosophila, the current techniques for doing this are limited. The first study 

describes a novel technique for transient and specific inactivation of Drosophila neurons in vivo 

using a native histamine-gated chloride channel (Ort). Since many regions of the Drosophila 

brain are devoid of histaminergic neurons, Ort could be used to artificially inactivate specific 

neurons in these regions. We found that histamine effectively silenced neurons misexpressing 

Ort. Ort also performed favorably in comparison to the available alternative effector transgenes. 

Thus, Ort misexpression is a useful tool for probing functional connectivity among Drosophila 

neurons. 

Understanding the physiological effects of neurotransmitters is critical to deciphering 

neural circuit function. Although glutamatergic neurons are abundant in the Drosophila brain, 

the effects of glutamate are largely unknown. The second study investigated the role of 

glutamate in the olfactory system. We found that glutamate acts as an inhibitory neurotransmitter, 

broadly similar to the role of GABA in this circuit. The existence of two parallel inhibitory 

transmitter systems may increase the range and flexibility of synaptic inhibition. 
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Together these studies enhance our understanding of how sensory stimuli are represented 

and processed in the brain. 
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CHAPTER 1: General Introduction 

 

Drosophila as a model for studying neural circuits 

Ever since Thomas H. Morgan discovered the white eye pigment mutation at the turn of 

the twentieth century, Drosophila has been a choice model system for studying many facets of 

biology. While early research in Drosophila focused on heredity, genetic approaches were 

developed that enabled important discoveries in nervous system development and function, such 

as the identification of pathways involved in neurogenesis (Ho and Scott, 2002), neuronal 

migration (Gaiano, 2008), and growth cone guidance (Charron and Tessier-Lavigne, 2007), as 

well as the discovery of many ion channels (Montell et al., 1985; Salkoff et al., 1992; Tempel et 

al., 1987; Warmke and Ganetzky, 1994) and proteins involved in synaptic transmission (Littleton 

et al., 1994; Richmond and Broadie, 2002; van der Bliek and Meyerowitz, 1991). The field of 

behavioral neurogenetics started in the fifties and sixties when Seymour Benzer used forward 

genetic screens to isolate behavioral mutants, leading to the identification of genes that control 

complex behaviors such as circadian rhythms, courtship, and learning and memory (Benzer, 

1973). With the development of functional imaging and single-cell electrophysiology, neural 

activity in the Drosophila brain can be monitored in vivo (Cao et al., 2013; Ng et al., 2002; Tian 

et al., 2009; Wang et al., 2003; Wilson et al., 2004). This enables us to study how information is 

represented in neural circuits and what computations are being performed.  

There are several advantages of using the fruit fly to study neural circuits. One obvious 

advantage is the arsenal of genetic tools available. A key genetic technique is the use of binary 

expression systems, such as the GAL4/UAS system, to label and manipulate defined neuronal 

populations (Venken et al., 2011). Other practical advantages include having a short generation 

time, which allows large-scale genetic and behavioral experiments to be performed efficiently, 
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and having a fully sequenced and annotated genome. More fundamentally, the Drosophila brain 

offers a useful compromise between numerical simplicity and richness. There are around 

100,000 neurons in Drosophila, 1000-fold fewer than mice. This simplicity means that it may be 

feasible in some cases to comprehensively map all the elements of a neural circuit. 

Caenorhabditis elegans has an even simpler nervous system with 302 neurons, but its behavioral 

repertoire is more limited. Finally, many Drosophila circuits are genetically hard-wired (Berdnik 

et al., 2006; Hiesinger et al., 2006; Jefferis et al., 2001). Neural identity and connectivity are 

relatively stereotyped, allowing for meaningful comparisons across flies and experimental 

conditions.  

The work described in this dissertation uses Drosophila as a model for understanding 

how sensory circuits process information. Chapter 3 describes work on olfactory circuitry. 

Chapter 2 introduces a new technique that has potential applications in studying a variety of 

neural circuits in Drosophila, including sensory circuits. 

Tools for silencing neuronal activity in Drosophila 

Understanding information processing in neural circuits requires characterization of the 

neurons involved and their connections, as well as the ability to manipulate their activity. In 

particular, by silencing groups of neurons one can identify those that are necessary for certain 

behaviors, and reveal functional connectivity between neurons.  

One way of removing neurons from a circuit is to cause cell death. The GAL4/UAS 

system can be used to target expression of toxins or genes that initiate programmed cell death to 

specific neuron populations. Expression of Diphtheria toxin and Ricin kills cells by inhibiting 

protein synthesis (Bellen et al., 1992; Kunes and Steller, 1991; Moffat et al., 1992), while 

expression of the proapoptotic genes grim, reaper, or hid initiate programmed cell death (Zhou et 
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al., 1997). The efficiency of cell killing depends on neuron type and developmental stage. Hence, 

coexpression of a visible reporter is necessary to confirm that the target cells have been killed.  

In cases where cell death is undesirable, silencing of neurons can be achieved by 

blocking synaptic transmission. Expression of the light chain of tetanus toxin cleaves neural 

synaptobrevin and blocks neurotransmitter release (Sweeney et al., 1995). Since tetanus toxin 

targets a neuron-specific protein, it should only affect neurons. However, it is constitutively 

active, and chronic expression could lead to compensatory changes in the circuit. Alternatively, 

neurotransmission can be blocked acutely by expressing shibire
ts1

, a temperature-sensitive 

dominant-negative form of dynamin, which is required for synaptic vesicle endocytosis. At the 

restrictive temperature (30°C), vesicular release stops in neurons expressing shibire
ts1

 because 

the supply of vesicles is depleted (Kosaka and Ikeda, 1983). While acute temporal control is a 

virtue of this technique, the elevated restrictive temperature may affect neuronal physiology.  

Overexpression of shibire
ts1

 also causes a reduction of vesicular release and accumulation of 

microtubules in some cells at permissive temperatures (Gonzalez-Bellido et al., 2009).  

Blocking membrane depolarization is another way to silence neurons. This is commonly 

achieved by overexpressing a potassium channel, which would lower the resting membrane 

potential or increase shunt current. Potassium channels that have been used for this purpose 

include Kir2.1, a mammalian inward rectifying potassium channel, and dORK, a two-pore 

potassium leak channel (Nitabach et al., 2002; Paradis et al., 2001).  

More recently, halorhodopsin, a light-activated chloride pump, has been used in 

Drosophila to hyperpolarize neurons with high temporal and spatial precision (Inada et al., 2011). 

However, it has a low conductance, and requires high levels of expression to be effective (Fenno 

et al., 2011).  
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Other than shibire
ts1 

and halorhodopsin, all other methods for silencing Drosophila 

neurons work on longer timescales of hours to days. In many experiments, transient silencing is 

desirable, as chronic manipulations may cause developmental changes and homeostatic 

compensation. In Chapter 2, I will describe a novel method for transient and specific inactivation 

of Drosophila neurons in vivo using a native histamine-gated chloride channel.  

The Drosophila olfactory system 

Olfaction begins when odors bind to receptor proteins on the surface of olfactory receptor 

neurons (ORNs) in the antenna. ORNs project their axons to the antennal lobe, where they 

synapse onto second-order principal neurons called antennal lobe projection neurons (PNs). The 

antennal lobe is divided into ~50 glomeruli. All the ORNs that express the same odorant receptor 

project to the same glomerulus, and most individual PNs extend a dendrite into only a single 

glomerulus, and thus receive direct input from only one type of ORN (Vosshall and Stocker, 

2007). PNs then send axons to higher olfactory brain regions. Like most principal neurons in the 

Drosophila brain, ORNs and PNs release the neurotransmitter acetylcholine (Stocker, 1994). 

Whereas each PN is restricted to one glomerulus, the role of local neurons (LNs) in the antennal 

lobe is to mediate interactions between glomeruli. Some individual LNs innervate most or all 

glomeruli, while other LNs innervate just a few glomeruli (Chou et al., 2010b). LNs receive 

excitatory input from ORNs and/or PNs, and they inhibit ORN axons and/or PN dendrites (Olsen 

and Wilson, 2008a; Root et al., 2008; Wilson et al., 2004). LNs also synapse onto each other 

(Huang et al., 2010; Yaksi and Wilson, 2010).    

LNs in this circuit are highly diverse in their neurotransmitter profiles and connectivity 

(Chou et al., 2010b). Whereas about two-thirds of LNs release the inhibitory neurotransmitter 

GABA, the remaining one-third release glutamate. There is a large literature on GABAergic LNs 
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in this circuit (Chou et al., 2010b; Ng et al., 2002; Olsen and Wilson, 2008a; Wilson and Laurent, 

2005b). However, nothing is known about the role of glutamatergic LNs in this circuit, and 

indeed almost nothing is known about the action of glutamate in the Drosophila brain, although 

glutamatergic neurons are abundant (Daniels et al., 2008). In Chapter 3, I describe the effect of 

glutamate on antennal lobe neurons and the functional role of glutamatergic neurons in olfactory 

processing. 
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CHAPTER 2: 

 

Transient and specific inactivation of Drosophila neurons in vivo using a native ligand-

gated ion channel 

 

The work in this chapter has been published as: 

W.W. Liu & R.I. Wilson (2013) Transient and specific inactivation of Drosophila 

neurons in vivo using a native ligand-gated ion channel. Current Biology 23:1202-8. 

I performed the experiments and analyzed the data. Both I and R.I.W. designed the experiments 

and wrote the paper. 

Summary 

A key tool in neuroscience is the ability to transiently inactivate specific neurons on 

timescales of milliseconds to minutes. In Drosophila, there are two available techniques for 

doing this (shibire
ts
 and halorhodopsin (Berni et al., 2012; Inada et al., 2011; Kitamoto, 2001)), 

but both have shortcomings (Fenno et al., 2011; Gonzalez-Bellido et al., 2009; Kitamoto, 2002; 

Luo et al., 2008; Simpson, 2009; Venken et al., 2011). Here we describe a complementary 

technique using a native histamine-gated chloride channel (Ort). Ort is the receptor at the first 

synapse in the visual system. It forms large-conductance homomeric channels that desensitize 

only modestly in response to ligand (Pantazis et al., 2008). Many regions of the central nervous 

system are devoid of histaminergic neurons (Nassel, 1999; Pollack and Hofbauer, 1991), raising 

the possibility that Ort could be used to artificially inactivate specific neurons in these regions. 

To test this idea, we performed in vivo whole-cell recordings from antennal lobe neurons 

misexpressing Ort. In these neurons, histamine produced a rapid and reversible drop in input 

resistance, clamping the membrane potential below spike threshold, and virtually abolishing 
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spontaneous and odor-evoked activity. Every neuron type in this brain region could be 

inactivated in this manner. Neurons that did not misexpress Ort showed negligible responses to 

histamine. Ort also performed favorably in comparison to the available alternative effector 

transgenes. Thus, Ort misexpression is a useful tool for probing functional connectivity among 

Drosophila neurons. 

Results 

Many regions of the Drosophila central nervous system contain no histaminergic fibers, 

or else only sparse histaminergic innervation (Fig. 2.1). The antennal lobe is one region that 

contains no histaminergic innervation, and it is one of the best-studied regions of the Drosophila 

brain. For this reason, we chose antennal lobe neurons for testing the effect of histamine on Ort-

misexpressing neurons. 

  There are two major cell types in the antennal lobe: projection neurons (PNs) and local 

neurons (LNs). About two-thirds of antennal lobe LNs are GABAergic, and about one-third are 

glutamatergic (Chou et al., 2010a; Das et al., 2011a). We targeted expression of Ort to PNs and 

LNs with the Gal4/UAS system, using Gal4 lines that drive expression specifically in these cell 

types. We performed targeted in vivo patch clamp recordings from these cells. In order to target 

our electrodes to the Ort+ neurons, we co-expressed CD8:GFP along with Ort. 

In the absence of histamine, the electrophysiological properties of Ort+ neurons were no 

different from those of Ort- neurons (i.e., cells recorded in flies that lacked the UAS-ort 

transgene). The resting membrane potential of these cells (-64±1 mV) was not significantly 

different from controls (-64±2 mV, p=0.52, n=8 and 5, t-test). Similarly, the input resistance of 

these cells (920±130 MΩ) was not significantly different from normal (1040±150 MΩ, p=0.58, 

n=8 and 5, t-test)
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Figure 2.1: Histamine immunoreactivity in selected regions of the Drosophila central 

nervous system. 

 

(A) As expected, photoreceptors are histamine immunopositive; this image shows photoreceptor 

terminals in the medulla (MED) and lamina (LAM) of the optic lobe. 

(B) The antennal lobe (AL) is devoid of histaminergic fibers, while the ventrolateral 

protocerebrum (VLP) is densely innervated. 

(C) The antennal mechanosensory and motor center (AMMC, outlined by dashed line) is devoid 

of histamine immunoreactivity. 

(D) Most of the subesophageal ganglion (SOG) contains no histamine immunoreactivity, except 

for the ventral edge, which is densely labeled. 

(E) Histaminergic fibers sparsely innervate the three pairs of neuromeres in the thoracic ganglion, 

but are absent from the abdominal ganglion (AG). 

 

In addition, we observed that the mushroom body and central complex were also devoid of 

histamine immunoreactivity. All images are z-projections through depths of several microns. 

Histamine immunoreactivity is in green, with neuropil (nc82 immunoreactivity) in magenta. See 

Experimental Procedures for details. Scale bars = 20 µm.
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 Upon bath application of histamine, Ort+ neurons were potently inhibited. Odor-evoked 

activity was almost completely suppressed, and this was true of both Ort+ PNs and Ort+ LNs 

(Fig. 2.2A-C). The effects of histamine on Ort+ neurons were dose-dependent and consistent 

with the known sensitivity of Ort to histamine (Gengs et al., 2002; Pantazis et al., 2008; 

Skingsley et al., 1995; Zheng et al., 2002). At the highest dose (100 µM), histamine completely 

eliminated all spiking, and substantially reduced odor-evoked depolarization (Fig. 2.2B,C). 

Importantly, histamine had essentially no effect on the odor responses of PNs and LNs recorded 

in flies that lacked the UAS-ort transgene, even at the highest histamine concentration (Fig. 

2.2D,E). 

The effects of histamine are consistent with the opening of a massive chloride 

conductance in Ort+ neurons. First, histamine dramatically reduced the input resistance of these 

cells (Fig. 2.3). Moreover, histamine abolished all spontaneous activity, as would be expected 

from a large decrease in input resistance. Histamine had no effect on the input resistance of 

control PNs or LNs (Fig. 2.3).  

Histamine also affected the membrane potential of Ort+ neurons. The initial resting 

potential of Ort+ GABA-LNs was -53 ± 1 mV, and these cells were consistently hyperpolarized 

by histamine, to a new value of -71 ± 2 mV (Fig. 2.4A). PNs had an initial resting potential 

which was more hyperpolarized than that of GABA-LNs (-64 ± 1 mV), and accordingly the 

effects of histamine on membrane potential were more modest and varied, with some cells 

becoming slightly hyperpolarized by histamine, and others becoming slightly depolarized (Fig. 

2.4B; see Discussion). On average, histamine caused Ort+ PNs to rest at -65 ± 3 mV (Fig. 2.4B). 

There was again no significant effect on the membrane potential of control PNs or GABA-LNs 

(Fig. 2.4A,B). 
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Figure 2.2: Histamine suppresses stimulus-evoked activity in Ort-expressing neurons. 

 

(A) A cell-attached recording showing spikes in an Ort-expressing antennal lobe PN (left) in a 

regular saline bath. Subsequent bath application of histamine (100 µM) abolishes both 

spontaneous and odor-evoked spikes (right). Horizontal bars indicate the period (500 msec) of 

the odor stimulus. For all sample traces in this figure, the odor was pentyl acetate (10
-2

 dilution). 

(B)  A whole-cell recording of an Ort-expressing PN. Increasing concentrations of histamine 

produce greater suppression of activity, and suppression is reversed by wash-out. Note that this 

particular PN is depolarized by histamine, which we observed in several PNs; others were 

hyperpolarized or showed no change in resting membrane potential (see Discussion). 

(C) Same as above, but in an Ort-expressing antennal lobe GABA-LN. 

(D) Odor responses in saline, 100 µM histamine, and after wash-out (measured as the odor-

evoked change in membrane potential). Each connected set of circles represents a different PN 

recording, and bars represent means (n = 8 Ort+ and 5 control). Histamine significantly reduces 

the odor response in Ort+ flies (p < 0.001, paired t-test). In control flies that lack the UAS-ort 

transgene, the odor response before and during histamine application is not significantly different 

(p = 0.69, paired t-test). 

(E) Whole-cell recordings from a PN and a GABA-LN that did not express Ort. Histamine had 

no effect on these cells.   
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Figure 2.2: Histamine suppresses stimulus-evoked activity in Ort-expressing neurons 

(continued). 
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Figure 2.3: Histamine reduces input resistance and suppresses spontaneous activity in Ort-

expressing neurons. 

 

(A) A whole-cell recording from an antennal lobe PN showing that histamine (100 µM) reduces 

input resistance, quantified as the membrane potential change elicited by hyperpolarizing current 

injection, divided by the magnitude of the current step (500 msec duration). Spontaneous EPSPs 

are also suppressed by histamine. These effects are reversed upon histamine washout. The plot at 

right shows the input resistance in histamine, for all PN experiments (n = 8 Ort+ and 5 control).  

(B) Same as above, but for a GABA-LNs (n = 10 Ort+ and 5 control). 

(C) Same as above, but for a glutamatergic LN (Glu-LN; n = 7 Ort+ and 7 control). In this set of 

experiments, we used a lower concentration of histamine (25 µM) because this concentration 

produced near-maximal effects in Glu-LNs. This may reflect a higher level of Gal4 expression in 

these cells.    
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Figure 2.4: Histamine changes the membrane potential of Ort-expressing neurons.  

 

(A) Ort+ GABA-LNs are consistently hyperpolarized by histamine (100 µM). There is no effect 

on control GABA-LNs (n = 10 Ort+ and 5 control). (B) Some Ort+ PNs are hyperpolarized by 

histamine (100 µM), whereas others are depolarized (n = 8 Ort+ and 5 control). Note that the 

initial resting potential of PNs is more hyperpolarized than that of GABA-LNs.
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As one would expect from a small and hydrophilic ligand, the effects of histamine were 

rapid and reversible. The onset and offset of histamine’s effects occurred within the several 

minutes required for the bath solution to completely equilibrate with the incoming perfusate (Fig. 

2.5A-C). The histamine-induced changes in input resistance, membrane potential, and odor 

responses had similar kinetics, as expected. Prolonged applications of histamine (up to 15 

minutes) produced constant effects on all these metrics, without appreciable decay in potency 

(data not shown). 

Finally, we directly compared Ort with the two published alternative techniques designed 

to transiently silence Drosophila neurons, shibire
ts
 and halorhodopsin. The shibire

ts
 transgene 

encodes a form of dynamin which misfolds at restrictive temperatures, thereby preventing 

synaptic vesicle formation (Kitamoto, 2001). Halorhodopsin is a light-activated chloride pump 

which hyperpolarizes cells (Berni et al., 2012; Inada et al., 2011). The ideal technique for 

silencing neurons would be both potent (i.e., it would completely silence activity) and selective 

(it would directly affect only the neurons expressing the effector molecule). To compare the 

potency and selectivity of Ort with shibire
ts
 and halorhodopsin, we employed all three techniques 

at silencing olfactory receptor neurons (ORNs). We chose ORNs as our targets in these 

experiments because shibire
ts
 affects neurotransmitter release rather than spike initiation, and so 

its effects are only visible in neurons postsynaptic to the neurons expressing Gal4. In other words, 

in order to assess the ability of shibire
ts
 to silence activity in the antennal lobe, we needed to 

express Gal4 in neurons presynaptic to the antennal lobe.   

We crossed flies expressing each UAS transgene with flies expressing Gal4 in a broad 

population of ORNs (Sweeney et al., 2007). In each genotype, we recorded from postsynaptic 

PNs while silencing ORNs. If ORNs were silenced completely, we would expect essentially all 
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Figure 2.5: Time course of the effect of histamine. 

 

(A) Time course of the effect of histamine (100 µM) on the membrane potential for all recorded 

Ort+ and control PNs. The bar indicates the period when histamine began to enter and exit the 

bath. Each trace represents a different PN recording. Broken traces indicate that a period of time 

is omitted from the display, so that all traces could be aligned at their wash-on and wash-out 

times. The time base is the same for all panels. 

(B) Same as above, but for input resistances. 

(C) Same as above, but for odor responses.
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spontaneous and odor-evoked activity in PNs to disappear. This is because ORNs are the only 

major source of excitatory input to PNs, and ORNs normally spike spontaneously, producing 

excitatory postsynaptic potentials in PNs (Kazama and Wilson, 2008; Kazama and Wilson, 2009). 

Note that all these techniques likely affect only the ORN axons in the brain, as the ORN somata 

and dendrites are housed in the antennae and so are likely inaccessible to any of these 

manipulations. Neurotransmitter release from ORNs should be inhibited by either 

hyperpolarizing their axons (using Ort or halorhodopsin) or preventing synaptic vesicle 

formation in axons (with shibire
ts
). 

We found that Ort proved effective in silencing ORNs. As one would expect if ORN 

terminals were clamped at a hyperpolarized potential, we observed that odor-evoked activity in 

PNs was severely reduced by histamine. On average, the magnitude of PN odor response 

dropped by 84% (Fig. 2.6A,B). Histamine also eliminated the barrage of spontaneous excitatory 

postsynaptic potentials in PNs that arises from normal spontaneous ORN spiking (Kazama and 

Wilson, 2008; Kazama and Wilson, 2009), and as a consequence, PNs were hyperpolarized. 

Importantly, histamine had little effect in recordings from PNs in control flies (Fig. 2.6B). 

By comparison, shibire
ts
 was less consistent and specific. In flies where ORNs expressed 

shibire
ts
, raising the bath to a restrictive temperature (29-30 °C) to inactivate ORNs produced 

variable effects. On average, the temperature shift reduced PN odor responses by 52% (Fig. 

2.6C,D). Spontaneous activity was also reduced. The membrane potential was depolarized by the 

temperature shift (generally by > 10 mV), and in several experiments the recording was lost. 

Shifting the bath temperature also depolarized control cells, indicating that this effect was 

unrelated to shibire
ts
. Moreover, in control cells, the temperature shift reduced PN odor 

responses by 28% (Fig. 2.6D). Overall, the effect of the temperature shift was still significantly 
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Figure 2.6: Comparison between Ort, shibire
ts
, and halorhodopsin in silencing ORN input 

to PNs. 

 

(A) A recording from a PN in a fly where Ort is selectively expressed in ORNs. Horizontal bar 

indicates the period (500 ms) of odor application. Histamine dramatically reduces odor-evoked 

activity in the PN, indicating that it is effective in silencing ORNs. Histamine also eliminates 

spontaneous EPSPs. In this example, the odor is pentyl acetate.  

(B) Odor response in regular saline, 100 µM histamine, and wash (measured as the odor-evoked 

change in membrane potential, n = 7 Ort and 9 control genotype). Histamine significantly 

reduces the odor response in flies where ORNs express Ort (p < 0.005, paired t-test). In control 

flies, histamine has little effect, although the small amount of potentiation is in this case 

statistically significant (p = 0.02, paired t-test).  

(C) A recording from a PN in a fly where shibire
ts
 is selectively expressed in ORNs. Shifting the 

bath to the restrictive temperature inhibits odor-evoked activity in this recording, albeit partially, 

and eliminates most of the spontaneous activity. The membrane potential also depolarizes. In this 

example, the odor is a blend of fenchone, pentyl acetate, benzaldehyde, ethyl acetate and ethyl 

butyrate. 

(D) Odor response at the restrictive and permissive temperature (n = 10 shibire
ts
 and 7 control 

genotype). Raising the temperature significantly reduces the odor response in shibire
ts
 flies (p < 

0.001, paired t-test). Shifting the bath temperature also modestly reduces the odor response of 

control flies (p < 0.05, paired t-test).  

(E) A recording from a PN in a fly where halorhodopsin is selectively expressed in ORNs. 

Illuminating the preparation with green light had little effect. Here the odor is trans-2-hexenal. 

(F) Odor response in interleaved trials with light versus no light (n = 9 halorhodopsin and 6 

control genotype). Light does not have a significant effect in either halorhodopsin flies or control 

flies (p = 0.26 and 0.22, paired t-tests). 

(G) At higher light intensities than those used above (E,F), we saw that light produced a 

nonspecific suppression of activity. This example PN was recorded in a fly where the Gal4 

transgene was omitted, so no halorhodopsin should be expressed. The magnitude of this effect 

was similar in flies with and without the transgene. The light intensity here was four times that 

used in (E,F); see Experimental Procedures.     
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Figure 2.6: Comparison between Ort, shibirets, and halorhodopsin in silencing ORN input 

to PNs (continued). 
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different in control and shibire
ts 

flies, indicating that shibire
ts
 was acting as intended, but the 

nonspecific effects of the temperature shift were sizeable.  

Halorhodopsin was the least effective technique in this experimental context. In flies 

where ORNs expressed halorhodopsin, illuminating the brain produced no significant change at 

light intensities that were low enough to avoid nonspecific effects (Fig. 2.6E,F). In our pilot 

experiments, we found that higher light intensities strongly hyperpolarized PNs in control flies 

(i.e., flies that lacked the UAS-halorhodopsin transgene; Fig. 2.6G).  

Discussion 

In mammalian systems, several techniques have been developed in recent years for 

transiently inactivating neurons using non-native neurotransmitter receptor (Lechner et al., 2002; 

Lerchner et al., 2007; Magnus et al., 2011; Slimko et al., 2002; Wulff et al., 2007). The goal in 

using a non-native receptor is to avoid activation by endogenous ligands. Here, we took a 

different approach: we exploited the fact that histamine is present only sparsely in the nervous 

system outside of the eye, where it is the native neurotransmitter of photoreceptors (Hardie, 

1989). Indeed, there are only about 20 histaminergic neurons outside of the optic lobes, and 

many brain regions are devoid of histaminergic processes. These areas include the antennal lobe, 

mushroom bodies, and the central complex ((Nassel, 1999; Pollack and Hofbauer, 1991) and Fig. 

2.1). In these brain regions, histamine can potentially be used as an artificial neurotransmitter, 

because it is not normally used as a neurotransmitter. Using a receptor which is native to 

Drosophila is convenient for achieving high levels of surface expression without further 

transgene optimization. Moreover, Ort is an excellent candidate for a transgenic effector 

molecule because it forms homomeric channels – thereby avoiding the need for multiple 

transgenes – and because the Ort channel has a large conductance and shows little desensitization 
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(Pantazis et al., 2008). Importantly, Ort channels are highly selective for histamine over GABA 

(Zheng et al., 2002). These properties motivated our investigation of Ort as a candidate effector 

molecule. 

We found that the histamine/Ort system can be a potent and selective method for neural 

inactivation. It can produce essentially complete inactivation, and its effects are similar in 

diverse cell types, under the control of various Gal4 drivers. This is important because it shows 

that the technique is robust to the properties of the Gal4 driver used to control transgene 

expression. Moreover, the effects of histamine are completely reversible.  

How does the histamine/Ort system actually work? Ort is a chloride channel, and the 

nominal chloride reversal potential in these experiments was -121 mV, given the compositions of 

the external and pipette solutions. One might therefore expect histamine to dramatically 

hyperpolarize Ort+ neurons. This is not what we observed. Histamine did clearly open a massive 

conductance – more than doubling the resting conductance –but it generally produced a modest 

hyperpolarization, and some cells were even modestly depolarized. In a typical cell, histamine 

clamped the membrane potential between -60 and -75 mV. This suggests that opening Ort 

channels causes a large amount of chloride to enter the cell, thereby depolarizing the chloride 

reversal potential. In other words, the chloride gradient partially collapses. Strong activation of 

ligand-gated chloride channels is known to be capable of partially collapsing chloride gradients 

in mammalian neurons (Staley et al., 1995). When a ligand-gated invertebrate chloride channel is 

misexpressed in mammalian neurons, application of its ligand produces effects on the membrane 

potential which are similar to what we observe here (Slimko et al., 2002). In sum, these 

techniques appear to work largely by shunting inhibition, rather than hyperpolarizing inhibition.  
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The motivation for these experiments arose from the limitations of currently available 

techniques intended to produce transient neural inactivation in Drosophila. The shibire
ts
 

technique has been very widely used, but its limitations are also well-known (Luo et al., 2008; 

Simpson, 2009). First, temperature changes alter virtually every aspect of a fly’s physiology, 

which can make it difficult to interpret negative controls. Second, in order to verify that this 

technique has inactivated a neuron, one cannot record from that neuron itself; rather, one would 

need to record postsynaptic to that neuron. Third, the mis-folded dynamin will only inhibit 

synaptic vesicle recycling if it is present in high copy number, and so this technique relies on 

achieving high transgene expression levels (Kitamoto, 2002). Fourth, this technique should not 

affect release of peptidergic vesicles, which do not depend on rapid endocytotic recycling. 

Finally, because dynamin has multiple functions within cells, overexpressing this transgene can 

cause necrosis, even at permissive temperatures (Gonzalez-Bellido et al., 2009). 

Similarly, there are also limitations associated with the current generation of optogenetic 

reagents for hyperpolarizing neurons. These reagents are light-activated microbial chloride or 

proton pumps which should generate an outward pump current which hyperpolarizes neurons 

(Fenno et al., 2011). However, these pumps have a relatively low single-molecule conductance, 

meaning that they must be expressed at high levels, and they must also be trafficked efficiently 

to the cell membrane, which has been difficult to achieve (Fenno et al., 2011), particularly in 

Drosophila (Venken et al., 2011). Recently, halorhodopsin has been found to be effective at 

inactivating neurons in the Drosophila larva in vivo (Berni et al., 2012; Inada et al., 2011), 

demonstrating that it can be useful in experimental contexts different from those of our study. 

The differential efficacy of halorhodopsin in those cases and in our case may reflect differences 

in the cell types, Gal4 drivers, or other methodological differences.   
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The immediate application for which we developed this technique is to inactivate specific 

neurons with histamine, while simultaneously recording from other neurons in vivo. In this way, 

one can study how circuit physiology is affected by silencing specific neurons within the circuit. 

Several studies have transiently activated specific neurons in this experimental configuration 

(Huang et al., 2010; Pulver et al., 2009; Yaksi and Wilson, 2010; Yao et al., 2012); what has 

been lacking is a robust and highly-selective method of transient inactivation. 

This technique does have limitations. First, it cannot be used in a Drosophila brain region 

where histamine has major endogenous effects, such as the visual system. Several regions of the 

central nervous system receive sparse histaminergic innervation, including much of the lateral 

and dorsal protocerebrum (Fig. 2.1), but it is not known whether histamine has major 

endogenous effects in these regions. A necessary and sufficient control for endogenous effects 

will be to compare flies with and without Ort misexpression. 

Second, this technique requires delivery of exogenous histamine, and so cannot be used 

in intact flies. In principle, this might be circumvented by injecting caged histamine, and then 

illuminating the intact fly to photo-uncage the ligand. A similar approach has been used 

previously to transiently activate specific neurons in vivo, in that case using caged ATP and 

transgenic expression of purinergic receptors (Lima and Miesenbock, 2005).  

Ultimately, the desired properties of a genetic effector system depend on the 

experimental setting (Luo et al., 2008; Simpson, 2009; Thum et al., 2006). For this reason, it is 

useful to develop multiple complementary systems. Recent years have seen new techniques to 

monitor neural activity in vivo in Drosophila, as well new reagents for selectively expressing 

transgenes in specific neurons (Simpson, 2009; Venken et al., 2011). The Ort/histamine system 
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is a promising component of this toolkit for probing functional connectivity between identified 

neurons in vivo.   

Experimental Procedures 

Fly stocks 

Flies were raised on standard cornmeal agar medium supplemented with rehydrated potato 

flakes on a 12 h light/dark cycle at 25°C. The two exceptions were flies expressing UAS-shibire
ts
, 

which were raised at 18°C, and flies expressing halorhodopsin, which were raised in the dark on 

food supplemented with all-trans retinal. All-trans retinal was prepared as a 35mM stock solution 

in ethanol and diluted 10-fold in water before mixing with rehydrated potato flakes; this mix was 

layered on top of conventional food. All experiments were performed on adult female flies 1-3 

days post eclosion, except for the experiments with shibire
ts
, where some flies were male. The 

genotypes used were as follows: 

Fig. 2.2A,B –      GH146-Gal4,UAS-CD8:GFP/UAS-ort  

Figs. 2.2C,2.4C – UAS-ort/UAS-CD8:GFP;NP3056-Gal4/+  

Fig. 2.2D,2.3A,2.4B,2.5 – GH146-Gal4,UAS-CD8:GFP/+ (control) and  

       GH146-Gal4,UAS-CD8:GFP/UAS-ort (Ort)  

Fig. 2.2E –      GH146-Gal4,UAS-CD8:GFP/ + (PN) and  

       UAS-CD8:GFP/+;NP3056-Gal4/+ (LN)  

Figs. 2.3B,2.4A –  UAS-CD8:GFP/+;NP3056-Gal4/+ (control) and  

      UAS-ort/UAS-CD8:GFP;NP3056-Gal4/+ (Ort)  

Fig. 2.3C –      OK371-Gal4,UAS-CD8:GFP/+ (control) and  

      OK371-Gal4,UAS-CD8:GFP/UAS-ort (Ort)  

Fig. 2.6A –     pebbled-Gal4/+;UAS-ort/+  

Fig. 2.6B –      pebbled-Gal4/+ and UAS-ort/+ (control) and  

    pebbled-Gal4/+;UAS-ort/+ (Ort)  

Fig. 2.6C –   pebbled-Gal4/+;;UAS-UAS-shibire
ts
/+  

Fig. 2.6D –    pebbled-Gal4 (control) and  

    pebbled-Gal4/+;;UAS-shibire
ts
/+ (shi

ts
)  

Fig. 2.6E –    pebbled-Gal4/+;UAS-eNpHR-50C/+;UAS-eNpHR-19C,UAS-eNpHR- 

34B/+;  

Fig. 2.6F –  UAS-eNpHR-50C;UAS-eNpHR-19C,UAS-eNpHR-34B (control) and  

  pebbled-Gal4/+;UAS-eNpHR-50C/+;UAS-eNpHR-19C,UAS-eNpHR-  

34B/+ (halo)  
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Fig. 2.6G –    UAS-eNpHR-50C;UAS-eNpHR-19C,UAS-eNpHR-34B 

Fly stocks were previously published as follows: GH146-Gal4 (chromosome II) (Stocker et al., 

1997), NP3056-Gal4 (chromosome III) (Chou et al., 2010a), OK371-Gal4 (chromosome II) 

(Mahr and Aberle, 2006), UAS-CD8:GFP (chromosome II or III) (Lee and Luo, 1999), UAS-ort 

(chromosome II) (Rister et al., 2007), UAS-eNpHR-50C;UAS-eNpHR-19C,UAS-eNpHR-34B 

(chromosomes II and III) (Inada et al., 2011), UAS-shibire
ts 

(chromosome III) (Kitamoto, 2001), 

pebbled-Gal4 (X chromosome) (Sweeney et al., 2007). Stocks of OK371-Gal4 and UAS-

CD8:GFP were obtained from the Bloomington Drosophila Stock Center. 

Electrophysiological Recordings 

In vivo whole-cell patch clamp recordings were performed as previously described 

(Wilson and Laurent, 2005a; Wilson et al., 2004). In this preparation, the antennae and maxillary 

palps of the fly remained dry and accessible to odors, while the brain was bathed in saline and 

was accessible to patch-clamp electrodes. The saline contained (in mM): 103 NaCl, 3 KCl, 5 N-

tris(hydroxymethyl) methyl-2-aminoethane-sulfonic acid, 8 trehalose, 10 glucose, 26 NaHCO3, 1 

NaH2PO4, 1.5 CaCl2, and 4 MgCl2 (osmolarity adjusted to 270-275 mOsm). The saline was 

bubbled with 95% O2/ 5% CO2 to a pH of 7.3, and was flowed continuously over the preparation 

at a rate of 2 mL/min. Patch pipettes were filled with a solution containing the following (in mM): 

140 potassium aspartate, 10 HEPES, 1 EGTA, 4 MgATP, 0.5 Na3GTP, 1 KCl, and 13 biocytin 

hydrazide. The pH of the internal solution was adjusted to 7.2 and the osmolarity was adjusted to 

~265 mOsm. Recordings were performed with an Axopatch 200B amplifier (Axon Instruments). 

Voltages were low-pass filtered at 5 kHz and digitized at 10 kHz. Voltages were corrected for 

the measured liquid junction potential of +13 mV, which was subtracted from recorded voltages 

post hoc (Gouwens and Wilson, 2009). Series resistance was uncompensated. To record from 

PNs, GABA-LNs and Glu-LNs (in Fig. 2.2-5), we targeted our electrodes to cells labeled with 
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GFP. To record from unlabeled PNs (in Fig. 2.6), we targeted our electrodes to the cluster of PN 

cell bodies immediately anterodorsal to the antennal lobe neuropil, and we confirmed that all 

these cells had small-amplitude action potentials (<12 mV), which is characteristic of PNs 

(Wilson et al., 2004). In these types of whole-cell recordings, the seal conductance is large 

enough (relative to the high input resistance of these cells) to produce a discernible 

depolarization in the resting potential; for this reason, we injected a small amount of constant 

hyperpolarizing current in order to bring the cell back down to its native resting potential 

(Gouwens and Wilson, 2009). The native resting potential of PNs and GABA-LNs was estimated 

by measuring spontaneous spiking in cell-attached mode prior to rupturing the seal, and then 

injecting enough constant hyperpolarizing current to match the spontaneous spike rate in whole-

cell mode. Both Ort+ PNs and control PNs had seal resistances of >1GΩ prior to rupturing the 

seal. Because spontaneous spikes are typically not visible in cell-attached recordings from Glu-

LNs, we are less confident about the native resting potential of these cells, and we did not inject 

any holding current into these cells. Cell-attached recordings were performed in voltage-clamp 

mode, and the command potential was adjusted so that no current was passed through the 

electrode. In these recordings, the patch pipettes were filled with external saline, and data was 

low-passed filtered at 1kHz. Histamine or histamine dihydrochloride was prepared as a 100 mM 

stock solution in water, and the stock was added to the reservoir feeding the bath flowing over 

the brain to achieve the desired final concentration. The stock solution was prepared fresh every 

week. For experiments using shibire
ts
, the saline perfusate was heated from room temperature 

(~21 °C) to 29-30° C over a period of ~5 min using a TC-324B temperature controller equipped 

with an in-line solution heater (Warner Instruments). The temperature of the bath was monitored 

continuously with a submerged thermistor. 
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Odor stimulation 

Odors used were diluted 100-fold in paraffin oil (except for pentanoic acid, which was 

diluted 10,000-fold, and pentyl acetate, which was diluted 1,000-fold in some experiments) and 

delivered via a custom-built olfactometer, which further dilutes the headspace of the odor vial 

10-fold in air (Olsen et al., 2007). Odorized air was delivered to the head of the fly at a flow rate 

of 2.2 mL/min. Odor stimuli were applied for 500-msec every 30 sec, with 5-10 trials per 

stimulus. Because we did not know in advance of obtaining a recording what odor(s) a cell might 

respond to, we prepared a small panel of odors that collectively are effective at stimulating many 

antennal lobe neurons (pentyl acetate, methyl salicylate, trans-2-hexenal, pentanoic acid, and 

also a blend of fenchone, pentyl acetate, benzaldehyde, ethyl acetate and ethyl butyrate). Once 

we obtained a recording, we tried odors from this set until we found an effective stimulus. If no 

response could be obtained with any of these stimuli, we discarded the cell. 

Optogenetic stimulation  

Light was delivered via a 100-W Hg arc lamp (Olympus) attenuated with a ND-25 

neutral-density filter, band-pass filtered at 540–580 nm, and delivered to the specimen through 

the 40× water-immersion objective used to visualize the preparation for patch-clamp recording. 

The light intensity at the specimen was measured as 8.5 mW/mm
2
 using an optical power meter 

(Newport 1916-C) with a photodetector (818P-015-19, intensity reported at 560 nm) positioned 

behind a pinhole aperture. We chose this light intensity because it was the highest intensity that 

did not produce a nonspecific effect of light (see Fig. 2.6G for an example of a nonspecific effect 

at 37 mW/mm
2
). Pulses of light (2 sec in duration, beginning 1 sec before odor onset) were 

controlled with a shutter (Uniblitz) controlled by a TTL pulse. Odor presentations with and 

without light were interleaved, with a total of 12-20 presentations per odor per experiment.   
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Histochemistry 

Histamine immunostaining (Fig. 2.1) we followed a modified version of previously 

published procedures (Panula et al., 1988; Pollack and Hofbauer, 1991). Briefly, the brain and 

ventral nerve cord were dissected out and fixed in 4% 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide in PBS for 5 hours at 4° C. Samples were rinsed with PBS, and incubated in 

blocking solution (5% normal goat serum [Vector Laboratories] in PBST [0.2% Triton X-100 in 

PBS]) for 30 min, and then incubated in 1:500 rabbit anti-histamine antibody (Abcam ab43870) 

and 1:50 mouse nc82 antibody (Developmental Studies Hybridoma Bank) in blocking solution at 

4°C for 2 d. After washing for 20 min in PBST, samples were incubated with 1:250 goat anti-

rabbit:Alexa Fluor 488 and 1:250 goat anti-mouse:Alexa Fluor 633 (Invitrogen) in blocking 

solution at room temperature for 1 d. Samples were then mounted in Vectashield (Vector 

Laboratories) and imaged with a laser-scanning confocal microscope (Zeiss LSM 510).  

Data analysis 

The odor-evoked membrane potential response was computed by low-pass filtering the 

membrane potential at 10 Hz (to remove spikes), and then taking the mean across trials over the 

500-msec odor stimulus period, minus the mean in the period just before the odor stimulus. Input 

resistance was computed as the membrane potential change elicited by a step of negative current 

injected into the soma, divided by the magnitude of the current step. Group data in the text is 

reported as mean ± SEM, computed across experiments. 
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CHAPTER 3: 

 

Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system 

 

The work in this chapter has been published as: 

W.W. Liu & R.I. Wilson (2013) Glutamate is an inhibitory neurotransmitter in the 

Drosophila olfactory system. Proceedings of the National Academy of Sciences 

110:10294-9. 

I performed the experiments and analyzed the data. Both I and R.I.W. designed the experiments 

and wrote the paper. 

Summary 

Glutamatergic neurons are abundant in the Drosophila central nervous system, but their 

physiological effects are largely unknown. In this study, we investigated the effects of glutamate 

in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for 

understanding olfactory processing. In the antennal lobe, one third of local neurons are 

glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many 

glutamatergic local neurons (Glu-LNs) are broadly tuned to odors. Iontophoresed glutamate 

hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin 

or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-

gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of 

Glu-LNs using a non-native genetically-encoded cation channel. Finally, transgenic knockdown 

of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate 

acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA 

in this circuit. However, because glutamate release is concentrated between glomeruli, whereas 
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GABA release is concentrated within glomeruli, these neurotransmitters may act on different 

spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems 

may increase the range and flexibility of synaptic inhibition. 

Introduction 

Identifying the physiological effects of neurotransmitters is critical to deciphering neural 

circuit function. In the vertebrate central nervous system (CNS), glutamate serves as the major 

excitatory neurotransmitter, while GABA and glycine serve as the major inhibitory 

neurotransmitters. Like the vertebrate CNS, the Drosophila CNS uses several major 

neurotransmitters. Among these, acetylcholine is the major fast excitatory neurotransmitter, and 

GABA is the major fast inhibitory neurotransmitter. Recent studies have demonstrated that 

glutamatergic neurons are widespread in the Drosophila CNS (Daniels et al., 2008; Raghu and 

Borst, 2011), but its effects in the CNS are poorly understood. Much attention has been focused 

on the idea that the effects of glutamate in the Drosophila CNS are excitatory (Das et al., 2011a; 

Das et al., 2011b; Miyashita et al., 2012; Sudhakaran et al., 2012; Wu et al., 2007; Xia et al., 

2005). However, this idea has remained largely untested. There are 30 putative ionotropic 

glutamate receptor subunits in the Drosophila genome. Most are homologous to mammalian 

AMPA/kainate and NMDA receptors (Littleton and Ganetzky, 2000), but the genome also 

contains a metabotropic glutamate receptor (Parmentier et al., 1996) and a glutamate-gated 

chloride channel (Cully et al., 1996). This means that glutamate can have a variety of possible 

physiological effects. 

Much of what we know about synaptic physiology in the Drosophila CNS comes from 

studies of the antennal lobe. The antennal lobe is one of the most well-studied regions of the fly 

brain, and because it bears some homology to the vertebrate olfactory bulb, it has been a model 
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for understanding olfactory processing (Masse et al., 2009; Wilson, 2011). Roughly one-third of 

antennal lobe local neurons (LNs) are immunopositive for the vesicular glutamate transporter 

(60-70 out of ~200 total LNs); these cells are also immunonegative for GABA, unlike most LNs 

(Chou et al., 2010a; Das et al., 2011a). This implies a major role for glutamate in this neural 

circuit. There is evidence for several glutamate receptors in the antennal lobe, including NMDA 

receptors (Das et al., 2011b; Sudhakaran et al., 2012; Xia et al., 2005) and metabotropic 

glutamate receptors (Devaud et al., 2008; Ramaekers et al., 2001). Knocking down NMDA 

receptor expression specifically in antennal lobe projection neurons interferes with olfactory 

habituation (Das et al., 2011b; Sudhakaran et al., 2012). However, the effects of glutamate have 

not been characterized in this circuit. In this study, we investigated the effect of glutamate on 

antennal lobe neurons, and also the functional role of glutamatergic neurons in olfactory 

processing. 

Results 

Glutamate release is concentrated in the inter-glomerular space 

The antennal lobe is divided into ~50 glomeruli (Fig. 3.1A), with each glomerulus 

corresponding to a different type of olfactory receptor neuron (ORN). Antennal lobe LNs 

interconnect glomeruli via dendro-dendritic synapses onto projection neurons (PNs), and/or 

dendro-axonic synapses onto ORNs. Previous studies have shown that some antennal lobe LNs 

are immunopositive for the vesicular glutamate transporter (VGlut) and immunonegative for 

GABA (Chou et al., 2010a; Das et al., 2011a). These neurons have somata that are ventral to the 

antennal lobe, and are labeled by the OK371-Gal4 line (Fig. 3.1B,C).
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Figure 3.1: Glutamatergic LNs in the antennal lobe. 

 

(A) Schematic of the antennal lobe circuit. Excitatory neurons are in white, and LNs are in gray. 

Dashed lines encircle glomeruli. Some cell types and connections are omitted for clarity. 

(B) Confocal immunofluorescence image of the Drosophila brain. Neuropil is labeled with nc82 

antibody (white), and cells that express Gal4 under the control of OK371-Gal4 are labeled with 

CD8:GFP (green). The somata of Glu-LNs are clustered ventral to the antennal lobes (arrows). 

Image is a z-projection of coronal optical slices through a 27-µm depth. 

(C) GFP+ neurons are immunopositive for VGluT (see also Das et al., 2011a). Image is a single 

1-µm confocal slice through one of the clusters of Glu-LN somata shown in B. Note that some 

VGluT+ somata are not GFP+ (arrowhead). 

(D) Coronal optical section through one antennal lobe, with glomerular compartments indicated 

by a presynaptic marker (nsyb:GFP) expressed specifically in ORNs. Note that VGlut is 

concentrated in the spaces between glomeruli. One glomerulus (VM4, dashed lines) is outlined 

as a landmark. 

(E) Same as D but with staining for the vesicular GABA transporter (VGAT). Note that VGAT 

immunofluorescence present within each glomerular volume.
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In the neuropil, we noticed that VGlut is concentrated primarily in the spaces between 

glomeruli, and is only sparsely present inside glomeruli (Fig. 3.1D). This contrasts with the 

vesicular GABA transporter, which is densely and fairly uniformly expressed throughout the 

antennal lobe neuropil (Fig. 3.1E). This suggests that glutamate and GABA act differently within 

the antennal lobe.   

Glutamatergic LNs have diverse morphologies and odor responses 

Next, we performed in vivo whole-cell recordings to characterize the physiology of 

glutamatergic LNs (Glu-LNs), and to examine their morphology. We used GFP to target our 

electrodes to Glu-LNs, and we filled cells with biocytin via the patch pipette. We observed that 

these neurons have diverse morphologies, consistent with previous reports (Chou et al., 2010a; 

Das et al., 2011a), and also diverse physiological properties.  

One morphological class of Glu-LNs innervated many glomeruli (Fig. 3.2A). As 

expected from their morphology, these neurons were broadly tuned to odors (Fig. 3.2B,C). A 

second class of Glu-LNs had more selective innervation patterns, generally projecting to one 

ventral glomerulus (Fig. 3.2D). Some of the ORNs innervating this region are narrowly tuned to 

organic acids (Silbering et al., 2011). Accordingly, some Glu-LNs with this innervation pattern 

responded preferentially to the organic acid in our test set (butyric acid), although most were 

broadly tuned (Fig. 3.2E,F). A third class of Glu-LNs sent only sparse projections to olfactory 

glomeruli, and instead densely innervated the region just posterior to olfactory glomeruli (Fig. 

3.2G). This region contains several glomeruli (termed VP1-3) which receive input from 

hygrosensitive and thermosensitive neurons in the arista (Stocker et al., 1990b). These Glu-LNs 

typically responded more strongly to water vapor than to odors (Fig. 3.2H,I).  
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Figure 3.2: Morphology and physiology of Glu-LNs. 

 

(A) Morphology of a Glu-LN, shown as a z-projection of a traced biocytin fill. This neuron 

innervated many olfactory glomeruli, and this pattern was seen in 11 of 29 filled cells. Note 

innervation of both antennal lobes (black circles), which is typical of Glu-LNs.  

(B) A whole-cell current clamp recording from a Glu-LN with this innervation pattern. The 

spikes fired by this cell (arrow) are small. 

(C) Mean stimulus responses of all the Glu-LNs with this innervation pattern (± SEM across 

experiments), quantified as the change in membrane potential averaged over the stimulus period. 

Odors are 1: butyric acid, 2: pentyl acetate (high concentration), 3: pentyl acetate (low 

concentration), 4: water, 5: methyl benzoate, 6: 1-butanol, 7: ethyl acetate.  

(D) This neuron innervated mainly a single ventral olfactory glomerulus on both sides of the 

brain. A similar type of pattern was seen in 8 of 29 fills. 

(E) A recording from a neuron with this innervation pattern. Spikes (arrow) are particularly small. 

(F) Mean stimulus responses for all the Glu-LNs that mainly innervated one ventral glomerulus. 

(G) This neuron innervated the putative hygrosensitive/thermosensitive glomeruli just posterior 

to the antennal lobe. A similar pattern was seen in 10 of 29 fills. 

(H) A recording from a neuron with this innervation pattern. Note prominent spikes (arrow) and 

large excitatory postsynaptic potentials (arrowhead). 

(I) Mean stimulus responses for all the Glu-LNs with this morphology. 
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Figure 3.2: Morphology and physiology of Glu-LNs (continued).
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These data indicate that Glu-LNs constitute a diverse population of neurons. Nonetheless, 

most Glu-LNs are broadly tuned, and so most volatile stimuli will recruit many Glu-LNs. This 

raises the issue of how glutamate affects other neurons in the antennal lobe. 

Glutamate hyperpolarizes PNs and GABAergic LNs via a glutamate-gated chloride channel 

Next, we asked how exogenous glutamate affects antennal lobe neurons. We performed 

in vivo whole cell recordings from the somata of PNs and GABAergic local neurons (GABA-

LNs), using microiontophoresis to apply brief pulses of glutamate into the antennal lobe neuropil. 

Glutamate consistently hyperpolarized both PNs and GABA-LNs (Fig. 3.3A).  

Most of the glutamate response was blocked by bath-applied picrotoxin (100 µM), and 

the effect of picrotoxin was similar in PNs and GABA-LNs (Fig. 3.3A,C). Picrotoxin is a broad-

spectrum chloride channel pore blocker, and although it is most commonly used as a GABAA 

antagonist, it can also block GluCl homomers (Cleland, 1996). In some experiments, we 

observed that picrotoxin’s effect was incomplete, which is consistent with the properties of 

glutamate-gated chloride conductances in other species (Barbara et al., 2005; Raymond et al., 

2000). The concentration of picrotoxin we needed to achieve this level of blockade was higher 

than that needed to block GABA-gated chloride conductances in the same neurons (Wilson and 

Laurent, 2005a), but we were not able to find a picrotoxin concentration that would completely 

block GABA-gated conductances without affecting glutamate-gated conductances.  

To test whether the glutamate-gated conductance in antennal lobe neurons requires the 

GluClα gene, we used Gal4/UAS to express an RNAi hairpin targeting GluClα specifically in 

antennal lobe PNs, and we co-expressed GFP in these neurons to mark them for recording. In 

control experiments, the RNAi hairpin transgene was omitted. We found that GluClα knockdown
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Figure 3.3: GluClα mediates a glutamate-gated chloride conductance in PNs and 

GABAergic LNs.  

 

(A) Whole-cell current-clamp recording from the soma of an antennal lobe PN (left) and a 

GABA-LN (right). A pulse of glutamate in the antennal lobe neuropil (arrow, 10 – 20 ms) 

hyperpolarizes both cells. Picrotoxin (100 µM) either abolishes or attenuates the response, 

depending on the recording. 

(B) Time course of the effect of picrotoxin on glutamate responses in in PNs, normalized to 

baseline in each cell. Each line represents a different PN recording.  

(C) Effect of picrotoxin in reducing responses to glutamate. Each symbol is a different recording, 

with means in blue. Overall, the effects of picrotoxin were similar in PNs (n = 12) and 

GABAergic LNs (n = 7). 

(D) Responses to glutamate before and after applying 100µM picrotoxin in a wild type PN (left) 

and a PN expressing GluClα RNAi (right). Arrow indicates iontophoretic pulses. The residual 

deflection is a stimulus artifact. 

(E) Hyperpolarizing responses to iontophoresis in both genotypes, before picrotoxin (black) and 

after picrotoxin (blue). The response to glutamate is significantly smaller in RNAi flies versus 

wild type (P < 0.05, t-test, n = 6 wild type and 9 RNAi). The percent inhibition by picrotoxin is 

also significantly smaller (P < 0.0001, t-test). 
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 virtually abolished the response to iontophoresed glutamate (Fig. 3.3D,E). As a control, we 

verified that GluClα knockdown did not reduce responses to GABA-gated currents in PNs(Fig. 

3.4) 

We never observed a depolarizing response to glutamate in these recordings. This was 

true even when picrotoxin was present, and when GluClα expression was knocked down. 

Moreover, ionotropic glutamate receptor antagonists CNQX (10 µM) and MK801 (100 µM) had 

no effect on the response to iontophoresed glutamate. The metabotropic glutamate receptor 

antagonist LY341495 (1 µM) also had no effect.  

Glutamatergic LNs inhibit PNs 

We next investigated the effects of endogenous glutamate on antennal lobe PNs. To 

selectively stimulate glutamatergic LNs, we misexpressed an ATP-gated cation channel (P2X2) 

under the control of OK371-Gal4. Because there are no native Drosophila channels gated by 

ATP (Littleton and Ganetzky, 2000), applying ATP should selectively depolarize the neurons 

that express Gal4 (Lima and Miesenbock, 2005). In these experiments, we also co-expressed 

GFP with P2X2 in order to mark these neurons. As expected, Glu-LNs were depolarized by brief 

ATP pressure ejection (Fig. 3.5A), but only when the Gal4 transgene was present (see 

Experimental Procedures). Based on the number of neurons in the vicinity of the ejection pipette 

that express Gal4, we estimate that several dozen Glu-LNs are being depolarized simultaneously. 

We found that PNs were inhibited by selectively stimulating Glu-LNs. Specifically, in 

whole-cell recordings from PNs, the membrane potential was hyperpolarized and spontaneous 

spiking paused (Fig. 3.5B-D). These effects were blocked by picrotoxin (Fig. 3.5B,E). As a 

control, we verified that these effects were absent when the Gal4 transgene was omitted (see 

Experimental Procedures).
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Figure 3.4: GluCl knockdown does not affect PN responses to GABA. 

 

(A) Whole-cell recordings from an antennal lobe PN in a wild type fly (left) and a fly where the 

GluCl RNAi construct is expressed specifically in PNs (right). A pulse of GABA in the 

antennal lobe neuropil (arrow) hyperpolarizes the PN in both cases. CGP54626 (50 µM) blocks 

the GABAB component of these responses, and what remains is the GABAA component (Wilson 

and Laurent, 2005a). Note that the responses to GABA are similar in the two cells, as is the 

fractional block by CGP54626. 

(B) Group data showing responses to GABA iontophoresis in all experiments, before and after 

adding CGP54626. The percent inhibition by CGP54626 is not significantly different in the 

control and RNAi genotype (P = 0.97, t-test). This demonstrates that the RNAi construct is 

specific for GluCl and does not affect GABA receptors. 
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Figure 3.5: PNs are inhibited by stimulation of either Glu-LNs or GABA-LNs.  

 

(A) A recording from a P2X2-expressing Glu-LN, showing that ATP ejection (arrow) 

depolarized the cell and elicited a train of short spikes.  

(B) A recording from a PN showing that, when Glu-LNs were stimulated with ATP (arrow), 

spontaneous spiking paused and the membrane was slightly hyperpolarized (top).  

(C) Mean membrane potential of PNs in response to Glu-LN stimulation, averaged across 

experiments, ± SEM (n = 13). 

(D) Mean firing rate of PNs in response to Glu-LN stimulation, averaged across experiments, ± 

SEM (n = 9; some cells were excluded because they did not spike during the analysis window). 

(E) Mean membrane potential change of PNs in response to Glu-LN stimulation, averaged across 

experiments, ± SEM. Picrotoxin significantly reduced the response to Glu-LN stimulation (P < 

0.05, paired t-test, n = 4).    

(F-J) Same as above, but this time stimulating GABA-LNs rather than Glu-LNs (n = 13 for H 

and J, and n = 9 for I). Picrotoxin (5 µM) and CGP54626 (50 µM) significantly reduced the 

membrane potential change in response to GABA-LN stimulation (P = 0.01, paired t-test, n = 8).
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For comparison, we used the same technique to selectively stimulate GABA-LNs. We 

expressed P2X2 in a large population of GABA-LNs under the control of NP3056-Gal4, and we 

verified that ATP depolarizes these neurons (Fig. 3.5F). We found that GABA-LNs and Glu-LNs 

had similar effects on PNs; specifically, the membrane potential was hyperpolarized and spiking 

paused (Fig. 3.5-I). As expected, inhibition by GABA-LNs was blocked by the GABAA 

antagonist picrotoxin and the GABAB antagonist CGP54626 (Fig. 3.5J).  

Together, these results indicate that Glu-LNs can inhibit PNs, similar to the effects of 

GABA-LNs on PNs. Although glutamate release is not concentrated within glomeruli, co-

activation of multiple Glu-LNs is sufficient to produce robust effects on PNs, possibly due to 

pooling of glutamate from multiple LNs.  

Glutamatergic LNs inhibit GABAergic LNs 

We next asked whether Glu-LNs can inhibit GABA-LNs. This experiment was motivated 

by our observation that iontophoresed glutamate hyperpolarizes GABA-LNs (Fig. 3.3). As 

before, we drove P2X2 expression specifically in Glu-LNs, and we stimulated Glu-LNs with 

ATP. Recordings from GABA-LNs showed that they were hyperpolarized and spontaneous 

firing was suppressed (Fig. 3.6A-C). These effects were abolished by picrotoxin (Fig. 3.6D). 

We then repeated this experiment, but this time stimulating GABA-LNs rather than Glu-

LNs. As in all these experiments, we co-expressed GFP with P2X2, and so could identify non-

P2X2-expressing cells by their lack of GFP expression. We could therefore stimulate some 

GABA-LNs while recording from other GABA-LNs that were not directly stimulated. These 

recordings showed robust inhibition (Fig. 3.6E-G) which was blocked by picrotoxin and 

CGP54626 (Fig. 3.6H). 
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Figure 3.6: GABA-LNs are inhibited by stimulation of either Glu-LNs or GABA-LNs. 

 

(A) A GABA-LN recording. When Glu-LNs were stimulated with ATP (arrow), spontaneous 

spiking paused and the membrane potential hyperpolarized.  

(B) Mean membrane potential of GABA-LNs in response to Glu-LN stimulation, averaged 

across experiments, +/- SEM (n = 6). 

(C) Mean firing rate of GABA-LNs in response to Glu-LN stimulation, averaged across 

experiments, ± SEM (n = 6). 

(D) Mean membrane potential change of GABA-LNs in response to Glu-LN stimulation, 

averaged across experiments, ± SEM. Picrotoxin significantly reduced the response to Glu-LN 

stimulation (P < 0.001, paired t-test, n = 4).        

(E-H) Same as above, but this time stimulating GABA-LNs rather than Glu-LNs. Picrotoxin 

(100 µM) and CGP54626 (50 µM) significantly reduced the response to GABA-LN stimulation 

(P =0.001, paired t-test, n = 5). Although GABA-LNs lack GABAB conductances (Wilson and 

Laurent, 2005a), CGP54626 was needed to produce complete block; GABA-LN stimulation may 

inhibit tonically active ORNs and PNs via both GABAA and GABAB receptors, thereby reducing 

tonic excitation to GABA-LNs. 
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Thus, GABA-LNs receive inhibition from both Glu-LNs and other GABA-LNs. This is 

further evidence that glutamate and GABA function in parallel as inhibitory neurotransmitters. 

Paired recordings reveal connections made by individual glutamatergic and GABAergic neurons 

We next used paired whole-cell recordings to investigate the connectivity of individual 

LNs. In every paired recording, we injected depolarizing current into one cell while monitoring 

the response of the non-stimulated cell. LNs do not have axons, and PNs do not make axonal 

synapses in the antennal lobe, and so connections between these neurons must represent dendro-

dendritic interactions. 

In these recordings, the highest rate of connectivity was observed between GABA-LNs 

and PNs. In most cases, depolarizing the GABA-LN hyperpolarized the PN (Fig. 3.7A), and 

these responses were abolished by CGP54626. This confirms previous findings that GABA-LNs 

inhibit PNs in paired recordings (Yaksi and Wilson, 2010). In most cases, these connections 

were reciprocal: depolarizing the PN depolarized the GABA-LN (Fig. 3.7B). These connections 

were blocked by the nicotinic antagonist mecamylamine, consistent with the fact that PNs are 

cholinergic (Yaksi and Wilson, 2010). 

Next, we performed paired recordings from Glu-LNs and PNs (Fig. 3.7C,D). We did not 

detect any connections from Glu-LNs onto PNs in 65 pairs. This is significantly different from 

the connection rate in paired recordings with GABA-LNs and PNs (P < 0.001, two-sample 

binomial test). Our failure to detect these connections is difficult to explain by postulating a low 

rate of connectivity: even if each PN received input from only 5 out of the ~70 Glu-LNs, 

obtaining zero hits in 65 attempts is improbable (P < 0.01, binomial test). This suggests that 

multiple Glu-LNs must be co-activated in order to inhibit a PN, which could indicate that 

glutamate must diffuse some distance before activating receptors on PNs. 
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Figure 3.7: Paired recordings reveal the connectivity of individual LNs. 

 

(A) An example of an inhibitory connection from a GABA-LN onto a PN. Depolarizing current 

was injected into the GABA-LN through the patch electrode (pre, single trial). CGP54626 (50 

µM) blocked the response in the PN (post, mean of 50-60 trials).  

(B) An example of an excitatory connection from a PN onto a GABA-LN. Mecamylamine (50 

µM) blocked the response. Scale bars apply to all panels in this figure. 

(C) In a typical paired recording, there was no effect of stimulating a Glu-LN on a PN. 

(D) Similarly, in the same pair, there was no effect of stimulating the PN on the Glu-LN. The 

total number of pairs tested is not identical to C because a few recordings were lost before both 

directions of connectivity could be tested. 

(E) An example of an inhibitory connection from a Glu-LN onto a GABA-LN. Note that the 

presynaptic spikes are very small, which is typical of many Glu-LNs. Picrotoxin (100 µM) 

blocked the response. 

(F) An example of an inhibitory connection from a GABA-LN onto a Glu-LN. Picrotoxin (5 µM) 

blocked the response. 
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Our results were similar when we probed for connections in the other direction, from PNs 

onto Glu-LNs. Consistent with the idea that PNs and Glu-LNs are generally not in direct contact, 

we observed no connections except in two isolated cases. In one case, depolarizing the PN 

produced a depolarization in the Glu-LN, and this was blocked by the nicotinic antagonist 

mecamylamine. In the other case, the Glu-LN was hyperpolarized, and this was blocked by the 

muscarinic antagonist atropine.  

Finally, we performed paired recordings from Glu-LNs and GABA-LNs. In several of 

these pairs, depolarizing the Glu-LN elicited a hyperpolarization in the GABA-LN (Fig. 3.7E) 

which was blocked by picrotoxin. Conversely, depolarizing the GABA-LN elicited a 

hyperpolarization in the Glu-LN in several of the pairs we recorded from (Fig. 3.7F), and this 

was also blocked by picrotoxin. These data show that individual Glu-LNs and GABAergic LNs 

can mutually inhibit each other. 

Glutamate inhibits ORN-to-PN synapses  

GABA can inhibit neurotransmitter release from the axons of olfactory receptor neurons 

(ORNs) in the antennal lobe (Olsen and Wilson, 2008b; Root et al., 2008). We therefore 

investigated whether glutamate can play the same role. We made voltage-clamp recordings from 

PNs while electrically stimulating the ipsilateral antennal nerve to evoke excitatory postsynaptic 

currents (EPSCs). We then iontophoresed glutamate into the antennal lobe neuropil, and found 

that glutamate inhibited evoked EPSCs (Fig. 3.8A,B). The inhibition of EPSCs was reduced by 

picrotoxin (Fig. 3.8B), implying that glutamate-gated chloride channels contribute to the 

inhibition. 

To ask whether there is a presynaptic contribution to this effect, we used paired-pulse 

stimulation of the antennal nerve. We delivered a pair of pulses in quick succession, and
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Figure 3.8: Glutamate inhibits ORN-to-PN synapses. 

 

(A) A voltage-clamp recording from a PN shows EPSCs evoked by stimulation of ORN axons in 

the antennal nerve with a pair of electrical pulses (arrows). Glutamate iontophoresis inhibits the 

amplitude of the evoked EPSCs. Glutamate also increases the paired-pulse ratio (EPSC2/EPSC1). 

Traces are averages of 14 trials. 

(B) Summary of the effects of glutamate on EPSC1, where each symbol is a different experiment. 

Glutamate significantly inhibits EPSC1 amplitude (P < 0.005, 2-way repeated measures 

ANOVA, n = 6). The magnitude of inhibition by glutamate is significantly reduced by 100 μM 

picrotoxin (blue symbols, P < 0.01, 2-way repeated measures ANOVA). Lines connect symbols 

corresponding to the same experiment. 

(C) Summary of the effects of glutamate on paired-pulse ratios. Glutamate significantly increases 

PPR (P < 0.05, n = 6), Picrotoxin does not significantly change the effect of glutamate on PPR 

(P = 0.19, 2-way repeated measures ANOVA).
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computed the paired pulse ratio (PPR, defined as EPSC2/EPSC1). Manipulations that decrease 

presynaptic vesicular release probability generally increase PPR (Zucker and Regehr, 2002). We 

observed that glutamate increased PPR (Fig. 3.8A,C), indicating that the inhibition of EPSCs is 

at least partly presynaptic. However, picrotoxin did not significantly alter the effect of glutamate 

on the PPR (Fig. 3.8C). This may reflect incomplete blockade of glutamate-gated chloride 

channels by picrotoxin (Fig. 3.3D), or an additional contribution to presynaptic inhibition from 

other glutamate receptors (e.g., a metabotropic glutamate receptor). 

These data demonstrate that glutamate can inhibit neurotransmitter release from ORN 

axons, similar to the action of GABA. This effect appears to be at least partly mediated by 

glutamate-gated chloride conductances, although metabotropic glutamate receptors may also 

contribute to presynaptic inhibition. 

Eliminating glutamatergic inhibition in PNs disinhibits odor responses 

Finally, we asked whether glutamatergic inhibition makes a functional contribution to PN 

odor responses. To investigate this, we knocked down GluClα expression in PNs. Gal4/UAS was 

used to express an RNAi hairpin against GluClα specifically in antennal lobe PNs, and GFP was 

co-expressed in these neurons to mark them for recording. In control experiments, the RNAi 

hairpin transgene was omitted. We filled each recorded PN with biocytin and used post hoc 

confocal microscopy to identify the glomerulus it innervated.  

We recorded from 29 PNs in total in these experiments. PNs from four different 

glomeruli appeared in both the control data set and the RNAi data set. Because PNs in different 

glomeruli have diverse odor responses, meaningful between-experiment comparisons can only 

be made by comparing results for identified PNs. Therefore, we analyzed only the four PN types 

corresponding to the four glomeruli that appeared in both data sets: DL1, VM2, VM5 and VA1v. 
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Figure 3.9: Odor responses are disinhibited by knockdown of GluClα in PNs. 

 

(A) Odor responses of PNs in four different glomeruli. The membrane potential is low-pass 

filtered to remove spikes. Each trace represents a different recording, with 10 PNs total. In half 

of these experiments (blue traces), we used transgenic RNAi to knock down GluClα expression 

specifically in PNs. Black traces are wild type. Some panels show two traces in the same color 

because we recorded from two PNs in that glomerulus for that genotype. Responses are averaged 

across 5-6 trials. Odor stimuli are pentyl acetate 10
-2

 (VM2, VM5, VA1v) and methyl salicylate 

10
-2

 (DL1). For simplicity, we analyzed only the stimulus that produced the largest response in 

each PN type, although all odor responses were affected similarly. 

(B) Peristimulus time histograms showing spiking responses of the same PNs.  

(C) Mean odor-evoked changes in membrane potential (averaged over the 2-s stimulus period) in 

all cells. Each symbol represents a different recording (n = 5 control, n = 5 RNAi). Responses in 

wild type (black) and RNAi flies (blue) are significantly different (P < 0.001, 2-way ANOVA). 

The values for the two wild type VM5 recordings are so similar that their symbols lie on top of 

one another. 

(D) Mean odor-evoked firing rates for the same cells. Responses in wild type and RNAi flies are 

significantly different (P < 0.005, 2-way ANOVA). 

(E) Schematic showing interactions between PNs, and LNs in the two genotypes. Some 

connections are omitted for clarity.  
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Figure 3.9: Odor responses are disinhibited by knockdown of GluClα in PNs (continued). 
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Knocking down GluClα in these PNs systematically disinhibited all odor responses (Fig. 

3.9A,B). Odor-evoked excitatory responses were increased, and in one PN type (VA1v), odor-

evoked inhibition was converted to odor-evoked excitation (Fig. 3.9C,D). These results 

demonstrate that glutamatergic inhibition makes a measurable contribution to the output of the 

antennal lobe, and that its direct effect on PNs is inhibitory. 

Discussion 

Glutamate as an inhibitory neurotransmitter acting via GluClα 

Although glutamatergic neurons are abundant in the Drosophila brain (Daniels et al., 

2008), the role of glutamate as a neurotransmitter in the Drosophila CNS has received little study. 

In the antennal lobe, where about one-third of LNs are glutamatergic (Chou et al., 2010a; Das et 

al., 2011a), the physiological effects of glutamate have never been characterized. In this study, 

we show that glutamate is an inhibitory transmitter in the antennal lobe, and that glutamate 

shapes the responses of PNs to olfactory stimuli.  

In the past, glutamate has been proposed to mediate lateral excitation between olfactory 

glomeruli (Das et al., 2011a). Our results demonstrate that the main effect of glutamate is 

inhibition, not excitation. We cannot rule out the possibility that glutamate has small excitatory 

effects in the antennal lobe which are masked by its inhibitory effects, but we could not find 

evidence of excitation even when GluClα was knocked down genetically or inhibited 

pharmacologically. We note that there is in fact lateral excitation in the antennal lobe, which 

exists in parallel with lateral inhibition (Olsen et al., 2007; Shang et al., 2007). However, lateral 

excitation is mediated not by glutamate, but by electrical coupling between LNs and PNs (Huang 

et al., 2010; Yaksi and Wilson, 2010). 
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We found that all the effects of glutamate on PNs were eliminated by knocking down 

GluClα. The dominant role for GluClα is notable, given how many other glutamate receptors are 

encoded in the genome. Our results are particularly surprising in light of two recent studies that 

have reported behavioral effects of knocking down an NMDA receptor subunit (NR1) in antennal 

lobe PNs (Das et al., 2011b; Sudhakaran et al., 2012). Further experiments will be needed to 

clarify how NR1 might affect PN function. 

There is a precedent for the idea that glutamate can be an inhibitory neurotransmitter in 

the Drosophila brain. Specifically, several studies have reported that bath-applied glutamate 

inhibits the large ventrolateral neurons of the Drosophila circadian clock circuit (Collins et al., 

2012; Hamasaka et al., 2007; McCarthy et al., 2011). Collectively, these studies suggest roles for 

both ionotropic and metabotropic glutamate receptors in glutamatergic inhibition. Regardless of 

which glutamate receptors are involved, these studies are consistent with the conclusion that 

glutamate is an important mediator of synaptic inhibition. 

The idea that glutamate can be inhibitory has important implications for neural coding. 

One particularly interesting case is the motion vision circuit of the Drosophila optic lobe. Two 

neuron types, L1 and L2, both receive strong synaptic inputs from photoreceptors, and they 

respond equally to contrast increments ("on") and decrements ("off") (Clark et al., 2011).  

However, based on conditional silencing experiments, L1 is thought to provide input to an "on" 

pathway, and L2 to an "off" pathway (Joesch et al., 2010). Therefore, opponency must arise 

downstream from L1 and L2 (Clark et al., 2011; Joesch et al., 2010). According to recent 

evidence, L1 is glutamatergic, while L2 is cholinergic (Takemura et al., 2011). In light of our 

data, that result suggests that L1 may actually be inhibitory, which would be sufficient to create 

opponency in the “on” and “off” pathways.  
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Glutamate can act as an inhibitory neurotransmitter in the C. elegans olfactory circuit, 

and this too has implications for neural coding of odors in this organism. In the worm, a specific 

type of glutamatergic olfactory neuron inhibits one postsynaptic neuron via GluCl, while also 

exciting another postsynaptic neuron via an AMPA-like receptor. This creates a pair of opponent 

neural channels which respond in an anti-correlated fashion to odor presentation or odor removal 

(Chalasani et al., 2007), analogous to opponent channels in the visual system. 

Comparisons between glutamatergic and GABAergic inhibition 

We have shown that the cellular actions of Glu-LNs are broadly similar to the actions of 

GABA-LNs. Specifically, both types of LNs inhibit PNs, as well as other LNs. In addition, we 

found that both GABA and glutamate inhibit neurotransmitter release from ORNs (Fig. 3.8). 

Thus, both neurotransmitters inhibit all the major cell types in the antennal lobe circuit. 

However, Glu-LNs and GABA-LNs are not functionally identical. In particular, we found 

that the vesicular glutamate transporter is mainly confined to the spaces between glomeruli, 

whereas the vesicular GABA transporter is abundant within glomeruli. This implies that 

glutamate and GABA are released in largely distinct spatial locations. Consistent with this, we 

observed no individual synaptic connections from Glu-LNs onto PNs, whereas we observed a 

substantial rate of connections from GABA-LNs onto PNs. Nevertheless, our data clearly 

indicate that endogenous glutamate can inhibit PNs directly via GluCl: we found that PNs are 

hyperpolarized by co-activation of multiple Glu-LNs, and PNs are disinhibited by knockdown of 

GluCl specifically in PNs. 

These results can be reconciled by a model where the sites of glutamate release are 

distant from PN glutamate receptors. As a result, glutamate would need to diffuse some distance 

to inhibit PNs. Co-activation of multiple Glu-LNs would increase extracellular glutamate 
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concentrations, overwheming uptake mechanisms and allowing glutamate to diffuse further. In 

this scenario, glutamatergic inhibition should be most important when LN activity is intense and 

synchronous. By comparison, GABAergic inhibition of PNs does not require LN co-activation, 

implying a comparatively short distance between pre- and postsynaptic sites. There is a 

precedent in the literature for the idea that different forms of inhibition can be differentially 

sensitive to LN co-activation, due to the spatial relationship between pre- and postsynaptic sites. 

In the hippocampus, GABAA receptors are closer than GABAB receptors to sites of GABA 

release, and so activation of individual interneurons produces GABAA but not GABAB currents, 

whereas co-activation of many interneurons produces both GABAA and GABAB currents 

(Scanziani, 2000). 

The pharmacology of glutamate-gated conductances in antennal lobe neurons is similar to 

the pharmacology of GABAA conductances in these neurons. This should prompt a reevaluation 

of studies that used picrotoxin to block inhibition in the antennal lobe (Olsen et al., 2010; Olsen 

and Wilson, 2008b; Root et al., 2008; Silbering and Galizia, 2007; Wilson and Laurent, 2005a; 

Wilson et al., 2004). Given our results, it seems likely that these studies were reducing both 

glutamatergic and GABAergic inhibition.  

Interactions between glutamatergic and GABAergic inhibition 

It is perhaps surprising that knocking down GluClα in PNs had such a substantial effect 

on PN odor responses, given that picrotoxin alone has comparatively modest effects (Olsen and 

Wilson, 2008b; Root et al., 2008; Silbering and Galizia, 2007; Wilson and Laurent, 2005a; 

Wilson et al., 2004). The solution to this puzzle may lie in our finding that glutamate regulates 

not only PNs but also GABA-LNs. Importantly, GABA-LNs are spontaneously active and 

provide tonic inhibition to PNs (Chou et al., 2010a; Wilson and Laurent, 2005a). Hence, in the 
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intact circuit, glutamatergic inhibition of GABA-LNs should tend to disinhibit PNs (Fig. 3.9E). 

Picrotoxin prevents Glu-LNs from inhibiting GABA-LNs, and so should tend to potentiate 

GABAergic inhibition. The effects of GABA are mediated in part by GABAB receptors, which 

are not sensitive to picrotoxin. Thus, picrotoxin likely has bidirectional effects on the total level 

of inhibition in the circuit. By contrast, knockdown of GluClα specifically in PNs should not 

directly affect GABA-LNs, and so should not produce these complex effects (Fig. 3.9E). These 

results illustrate how a cell-specific genetic blockade of a neurotransmitter system can have more 

dramatic effects than a global pharmacological blockade of the same system. 

Our study reveals that an LN can have push-pull effects on a single population of target 

cells. For example, Glu-LNs directly inhibit PNs, but they should also tend to disinhibit PNs, via 

the inhibition of GABA-LNs. This may allow for more robust gain control, and rapid transitions 

between network states. This arrangement is similar to the wiring of many cortical circuits, 

where co-recruitment of excitation and inhibition is a common motif (Isaacson and Scanziani, 

2011). 

Why might the existence of two parallel inhibitory transmitters be useful? Our data argue 

that GABA and glutamate may act on different spatial and temporal scales. Because these two 

inhibitory systems comprise different cells, receptors, and transporters, they can be modulated 

independently. And, because their properties are encoded by different genes, they can also 

evolve independently. This should confer increased flexibility in adapting synaptic inhibition to a 

changing environment. 

Experimental Procedures 

Fly stocks  
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Flies were raised on standard cornmeal agar medium supplemented with potato food on a 

12 h light/dark cycle at 25°C. All experiments were performed on adult female flies 1-4 days 

post eclosion. The only exceptions were the experiments examining the effect of GluCl  

knockdown, where both control and RNAi flies were male. The genotypes used were as follows: 

Figures 3.1B-C - OK371-Gal4/UAS-CD8:GFP; Figure 3.1D-E - pebbled-Gal4/+;UAS-

nsyb:GFP/+;  Figure 3.2 - OK371-Gal4/UAS-CD8:GFP; Figure 3.3A-D - GH146-Gal4,UAS-

CD8:GFP; Figures 3.3D-E and 3.4- UAS-dicer2/Y;GH146-Gal4,UAS-CD8:GFP/+ (wild type) 

and UAS-dicer2/Y;GH146-Gal4,UAS-CD8:GFP/ UAS-GluCl RNAi (RNAi); Figures 3.5 and 

3.6 - OK371-Gal4,UAS-CD8:GFP/UAS-CD8:GFP;UAS-P2X2/+ (Glu-LN stimulation) and 

UAS-CD8:GFP; UAS-P2X2/NP3056-Gal4 (GABA-LN stimulation); Figure 3.7 - OK371-

Gal4,UAS-CD8:GFP; Figure 3.8 - GH146-Gal4,UAS-CD8:GFP; Figure 3.9 - UAS-

dicer2/Y;GH146-Gal4,UAS-CD8:GFP/+ (wild type) and UAS-dicer2/Y;GH146-Gal4,UAS-

CD8:GFP/UAS-GluCl RNAi (RNAi). Fly stocks were previously published as follows: OK371-

Gal4 (II) (Mahr and Aberle, 2006), UAS-CD8:GFP (II and III) (Lee and Luo, 1999), pebbled-

Gal4 (X) (Sweeney et al., 2007), UAS-nsyb:GFP (Zhang et al., 2002), GH146-Gal4 (II) (Stocker 

et al., 1997), UAS-P2X2 (III) (Lima and Miesenbock, 2005), NP3056-Gal4 (III) (Chou et al., 

2010a), UAS-GluClα RNAi (II) (Collins et al., 2012; Dietzl et al., 2007), UAS-dicer2 (X) (Dietzl 

et al., 2007). Stocks of OK371-Gal4, UAS-CD8:GFP (II and III), UAS-nsyb:GFP, and UAS-

dicer2 were obtained from the Bloomington Drosophila Stock Center. The UAS-GluCl RNAi 

insertion that we used in this study has been previously shown to substantially reduce GluCl 

RNAi levels in adult brain tissue (Collins et al., 2012),  and we verified that it does not affect 

responses to iontophoresed GABA in these neurons (Fig. 3.4). However, it is difficult to 

completely exclude the possibility of off-target effects, given the lack of available alternative 
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reagents for cross-validation. The UAS-GluCl RNAi insertion was obtained from the Vienna 

Drosophila RNAi Center (transformant ID 105754, sequence details available at 

http://stockcenter.vdrc.at). 

Electrophysiological recordings 

In vivo whole-cell patch clamp recordings were performed essentially as previously 

described (Wilson and Laurent, 2005a; Wilson et al., 2004). In order to perform recordings from 

Glu-LNs, the head was rotated 180º around the thin neck connective, so that the ventral side of 

the brain was facing upwards and therefore accessible to visualization via the water-immersion 

objective above the preparation. The fly remained alive even when the head was rotated in this 

manner. The brain was perfused in external saline containing (in mM): 103 NaCl, 3 KCl, 5 N-

tris(hydroxymethyl) methyl-2-aminoethane-sulfonic acid, 8 trehalose, 10 glucose, 26 NaHCO3, 1 

NaH2PO4, 1.5 CaCl2, and 4 MgCl2 (osmolarity adjusted to 270-275 mOsm). The saline was 

bubbled with 95% O2/ 5% CO2 to a pH of 7.3. The internal solution for patch-clamp pipettes 

were contained the following (in mM): 140 potassium aspartate, 10 HEPES, 1EGTA, 4 MgATP, 

0.5 Na3GTP, 1 KCl, and 13 biocytin hydrazide. The pH of the internal solution was adjusted to 

7.2 and the osmolarity was adjusted to ~265 mOsm. In cases where antennal lobe PNs and 

GABA-LNs were not labeled with GFP, they were identified based on the location and size of 

their somata, along with their distinctive intrinsic electrophysiological properties (Wilson et al., 

2004). Specifically, in order to record from PNs, we targeted our electrodes to the cluster of cell 

bodies immediately anterodorsal to the antennal lobe neuropil, which contains a pure population 

of uniglomerular PNs (Jefferis et al., 2001; Lai et al., 2008). We confirmed that all these cells 

had small-amplitude action potentials (<12 mV), which is diagnostic of PNs (Wilson et al., 2004). 

We also filled a subset of these cells with biocytin and verified that they were PNs based on their 
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morphology. To record from GABA-LNs, we targeted our electrodes to the cluster of cell bodies 

lateral to the antennal lobe neuropil. This cluster contains both PNs and GABA-LNs (Jefferis et 

al., 2001; Lai et al., 2008), but GABA-LNs are easily identifiable on the basis of their large 

action potentials (>24 mV), again as confirmed by biocytin fills (Wilson and Laurent, 2005a; 

Wilson et al., 2004; Yaksi and Wilson, 2010). Glu-LN somata are located ventral to the antennal 

lobe, and so are in a distinctly different location from PN and GABA-LN somata. Glu-LN 

somata were always targeted for recording based on GFP expression (in OK371-Gal4,UAS-

CD8:GFP flies), and in a subset of recordings we used biocytin fills to verify that the GFP+ cells 

we recorded from in this cluster were always antennal lobe LNs. Recordings were performed 

with an Axopatch 200B amplifier (Axon Instruments). Recorded voltages were low-pass filtered 

at 5 kHz and digitized at 10 kHz.  

Odor stimulation 

Odors used were diluted 100-fold in paraffin oil and delivered via a custom-built 

olfactometer, which further dilutes the headspace of the odor vial 10-fold in air (Olsen et al., 

2007). Odor was delivered at a flow rate of 2.2 mL/min. Odor stimuli were applied for 2 s every 

30 s, with 5 or 6 trials per stimulus. In one experiment, we observed odor-evoked firing rates that 

varied >2 fold over the course of the experiment, and we excluded this experiment from further 

analysis. 

Histochemistry 

In some experiments, the morphology of the recorded neurons was visualized after 

recording by incubating the brain with a fluorescent conjugate of streptavidin, as published 

previously (Wilson et al., 2004). Immunohistochemistry was performed as described previously 

(Wilson and Laurent, 2005a; Wilson et al., 2004). Primary antibodies were obtained from the 
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following sources (with dilutions in parentheses): mouse nc82 from the Developmental Studies 

Hybridoma Bank (1:20) rat anti-CD8 from Invitrogen (1:200), rabbit anti-VGluT from A. 

DiAntonio (1:500; ref. Daniels et al., 2008), rabbit anti-VGAT from D.E. Krantz (1:200; ref. Fei 

et al., 2010). Secondary antibodies (Invitrogen) were used at 1:250. To reconstruct neuronal 

morphology from biocytin fills, we hand-traced the skeletonized morphology using the Simple 

Neurite Tracer plugin in Fiji, using the Fill Out command to automatically generate a 3D volume, 

which we subsequently converted to a z-projection.   

Glutamate and GABA iontophoresis  

For glutamate iontophoresis, a high-resistance sharp pulled glass pipette was filled with a 

solution of 1M monosodium glutamate in water (pH=8). The pipette was placed in the antennal 

lobe neuropil, and glutamate was ejected using a 10-20 ms negative current pulse applied with an 

iontophoresis current generator gated by a voltage pulse (Model 260, World Precision 

Instruments). A constant positive backing current was applied to retain glutamate in the pipette 

between ejections. The magnitude of the iontophoresis response depends on the placement of the 

pipette as well as the ejection current magnitude and duration, and these variables were adjusted 

in each experiment to ensure that the ejection artifact was small. (The artifact is visible as a 

downward deflection, and flips symmetrically to become an upward deflection when the ejection 

pulse is inverted.). Because these adjustments are necessarily subjective, in the experiments 

comparing two genotypes (Fig. 3.3E,F), the experimenter was blinded to genotype. For GABA 

iontophoresis, the glass pipette was filled with 250 mM GABA in water (pH=4.3). GABA was 

ejected using a 20 ms positive pulse, and a negative backing current was applied to retain GABA 

in the pipette between ejections. Tetrodotoxin (1 µM) was added to the bath in all iontophoresis 

experiments to block network activity. 
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Stimulation of LNs with ATP/P2X2 

We used ATP/P2X2 to stimulate glutamatergic neurons because we found that expression 

of channelrhodopsin-2 under control of the OK371-Gal4 driver produced lethality, likely due to 

basal activity of channelrhodopsin-2 in motorneurons. In our experiments using the ATP/P2X2 

system (Lima and Miesenbock, 2005), the ATP ejection pipette was filled with 10 mM MgATP 

in water and placed near the edge of the antennal lobe neuropil at the base of the ipsilateral 

antennal nerve (for Glu-LN activation), or at the dorsolateral edge of the antennal lobe neuropil 

(for GABA-LN activation). The ATP solution was pressure-ejected for 10 ms at 6 psi using a 

pneumatic device gated by a voltage pulse (PV820, World Precision Instruments). As a negative 

control, we recorded from Glu-LNs that lacked P2X2 expression (genotype OK371-Gal4,UAS-

CD8:GFP) and confirmed that they were not depolarized by ATP. As an additional negative 

control, we also recorded from PNs and GABA-LNs in flies lacking the Gal4 driver (genotype 

UAS-CD8:GFP;UAS-P2X2) and confirmed that ATP ejection elicited a negligible response in 

these cells, which demonstrates that there is no expression of P2X2 in the absence of Gal4. 

However, if the ejection duration was prolonged beyond 10 ms, or if the pipette was buried in the 

antennal lobe neuropil, we observed a depolarization evoked by ATP pressure ejection in these 

control recordings.  

Paired recordings  

Paired recordings were performed in an ex vivo preparation where the brain was removed 

from the head and immobilized on a coverslip. In order to target Glu-LNs in the paired 

recordings, we expressed GFP under the control of the OK371-Gal4 driver. PNs and GABA-LNs 

were unlabeled, but could be identified based on their soma location, soma size, and spike shape. 

The presynaptic cell was stimulated by injecting a 500-ms step of depolarizing current. The size 
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of the step was adjusted to achieve depolarizations > 30 mV in the stimulated cell. Current 

injections were repeated every 6 s for 30-60 trials. The response of the unstimulated cell was 

low-pass filtered at 50 Hz and averaged across trials. A pair was defined as connected if the 

response of the unstimulated cell was > 0.3 mV. In a few cases, we defined a pair as connected 

even though the response was <0.3 mV, because the response was abolished by a 

neurotransmitter receptor antagonist (picrotoxin, CGP54626, or mecamylamine). In some pairs, 

we saw evidence of weak ephaptic coupling. These responses were small (typically <0.2 mV in 

the unstimulated cell) and had a latency and shape that was very similar to the voltage deflection 

in the stimulated cell, but in the opposite direction. They were not abolished by tetrodotoxin (1 

µM). 

Electrical stimulation of ORN axons 

Electrical stimulation of the antennal nerve (in Fig. 3.8) was performed essentially as 

previously described (Kazama and Wilson, 2008). The ipsilateral antennal nerve was severed and 

drawn into a saline-filled suction electrode. A pair of 50-µs current pulses, 25 ms apart, was 

delivered to the nerve using a current isolator (A.M.P.I). We discarded trials in which there were 

unclamped spikes. We also discarded trials in which there were failures in either EPSC1 or 

EPSC2 (defined as events with an amplitude < 20% of the trial-averaged amplitude for that 

EPSC). Unitary EPSCs at this synapse are generally highly reliable in their trial-to-trial 

amplitudes, and so we interpret these failures as failures of axon recruitment, not failures of 

synaptic vesicle release. Consistent with this interpretation, we could sometimes obtain a more 

reliable recording by releasing and then re-inserting the nerve into the suction electrode. Because 

of occasional large fluctuations in EPSC amplitude (likely due to fluctuating recruitment of 

axons), we only analyzed paired-pulse ratios over a run of trials where recruitment was stable. 
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Specifically, paired-pulse ratios were measured over the maximum window of consecutive trials 

where the trial-to-trial coefficient of variation in EPSC1 amplitude was less than 30%, where the 

minimum number of consecutive trials must be at least six. In these experiments, the 

iontophoretic ejection current began 400 ms prior to EPSC1 and lasted 50 ms. This protocol 

ensured that the evoked EPSCs fell within the steady-state of the postsynaptic outward current 

evoked by glutamate. The postsynaptic outward current evoked by glutamate iontophoresis was 

on average 6 pA, which was 22% of the average magnitude of EPSC1 (27 pA). Current traces 

were low pass filtered at 1 kHz prior to digitization at 10 kHz. 
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CHAPTER 4: Conclusion 

 

Drosophila has emerged as an important experimental system for understanding how 

specific neurons, circuits, and computations give rise to behavior. The growing use of 

electrophysiological techniques has enabled us to correlate neural activity with sensory stimuli 

and probe the mechanisms that give rise to these patterns of neural activity. This is, in large part, 

due to the development of new genetic tools to label specific neurons and to manipulate and 

monitor neural activity. While the repertoire of tools for manipulating neural activity is large, 

techniques for transient inactivation of neurons have been limited. In Chapter 2, I described a 

novel technique for rapidly silencing Drosophila neurons in vivo using a native histamine-gated 

chloride channel (Ort). Taking advantage of the fact that histamine is present only sparsely in the 

nervous system outside of the eye, and selectively gates a high-conductance chloride channel, we 

showed that ectopically expressing Ort can effectively block neural activity in several different 

cell types in the olfactory system. The Ort/histamine system is a promising addition to the 

Drosophila genetic toolkit for probing functional connectivity between identified neurons in vivo.   

Once key tools are in place, an important next step in understanding neural circuit 

computations is to identify the physiological effects of neurotransmitters. Among the major 

neurotransmitters, glutamate has been most extensively studied in contexts where it is excitatory. 

In Drosophila, glutamate is well-known to act as an excitatory neurotransmitter at the 

neuromuscular junction, but its effects in the central brain are poorly understood. In Chapter 3, I 

showed that glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system, 

acting through a glutamate-gated chloride channel. The role of glutamate is broadly similar to 

that of GABA in this circuit, although these neurotransmitters may act on different spatial and 
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temporal scales. The existence of two parallel inhibitory transmitter systems may increase the 

range and flexibility of synaptic inhibition. 

Together, these studies contribute to a more thorough understanding of how neural 

circuits encode and process sensory information in the Drosophila brain. More broadly, they 

demonstrate that Drosophila can be a useful model for investigating the principles underlying 

neural circuit function. As we gain a more complete understanding of simpler circuits like that of 

the fly, it will be exciting to see if similar principles also govern the workings of larger brains.  
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