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1. INTRODUCTION

The goal of what we call “state estimates” of the oceans

arose directly out of the plans for the World Ocean Circu-

lation Experiment (WOCE). That program, out of necessity,

employed in a pragmatic way observational tools of a very

wide diversity of type—including classical hydrography,

current meters, tracers, satellite altimeters, floats, and

drifters. The designers of WOCE realized that to obtain a

coherent picture of the global ocean circulation approaching

a timescale of a decade, they would require some form of

synthesis method: one capable of combining very disparate

observational types, but also having greatly differing

space–time sampling, and geographical coverage.

Numerical weather forecasting, in the form of what had

become labeled “data assimilation” (DA), was a known

analogue of what was required: a collection of tools for

combining the best available global numerical model

representation of the ocean with any and all data, suitably

weighted to account for both model and data errors

(e.g., Talagrand, 1997; Kalnay, 2003; Evensen, 2009).

Several major, and sometimes ignored, obstacles existed

in employing meteorological methods for the oceanic

problem. These included the large infrastructure used to

carry out DA within the national weather forecast

centers—organizations for which no oceanographic equiv-

alent existed or exists. DA had developed for the purposes

of forecasting over timescales of hours to a few days,

whereas the climate goals of WOCE were directed at time-

scales of years to decades, with a goal of understanding and

not forecasting. Another, more subtle, difficulty was the

WOCE need for state estimates capable of being used for

global-scale energy, heat, and water cycle budgets. Closed

global budgets are of little concern to a weather forecaster,

as their violation has no impact on short-range prediction

skill, but they are crucial to the understanding of climate

change. Construction of closed budgets is also rendered

physically impossible by the forecasting goal: solutions

“jump” toward the data at every analysis time, usually
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every 6 h, introducing spurious sources and sinks of basic

properties.

Because of these concerns, the widespread misunder-

standing of what DA usually does, and what oceanogra-

phers actually require, the first part of this essay is

devoted to a sketch of the basic principles of DA and the

contrast with methods required in practice for use for

climate-relevant state estimates. More elaborate accounts

can be found in Wunsch (2006) and Wunsch and

Heimbach (2007) among others. Within the atmospheric

sciences literature itself, numerous publications exist

(e.g., Trenberth et al., 1995, 2001; Bengtsson et al., 2004;

Bromwich and Fogt, 2004; Bromwich et al., 2004, 2007,

2011; Thorne, 2008; Nicolas and Bromwich, 2011),

warning against the use of DA and the associated “reana-

lyses” for the study of climate change. These warnings have

been widely disregarded.

A theme of this chapter is that both DA and state esti-

mation can be understood from elementary principles, ones

not going beyond beginning calculus. Those concepts must

be distinguished from the far more difficult numerical engi-

neering problem of finding practical methods capable of

coping with large volumes of data, large model state dimen-

sions, and a variety of computer architectures. But one can

understand and use an automobile without being an expert

in the manufacture of an internal combustion engine or of

the chemistry of tire production.

At the time of the writing of the first WOCE volume,

(Siedler et al., 2001), two types of large-scale synthesis

existed: (1) the time-mean global inverse results of

Macdonald (1998) based upon the pre-WOCE hydrography

and that of Ganachaud (2003b) using the WOCE hydro-

graphic sections. (2) Preliminary results from the first

ECCO (Estimating the Circulation and Climate of the

Ocean) synthesis (Stammer et al., 2002) were based upon

a few years data and comparatively coarse resolution

models. Talley et al. (2001) summarized these estimates,

but little time had been available for their digestion.

In the intervening years, Lumpkin and Speer (2007) pro-

duced a revision of the Ganachaud results using somewhat

different assumptions, but with similar results, and a

handful of other static global estimates (e.g., Schlitzer,

2007) appeared. The ECCO project greatly extended its

capabilities and duration for time-dependent estimates.

A number of regional, assumed steady-state, box inversions

also exist (e.g., Macdonald et al., 2009).

As part of his box inversions, Ganachaud (2003a) had

shown that the dominant errors in trans-oceanic property

transports of volume (mass), heat (enthalpy), salt, etc., arose

from the temporal variability. Direct confirmation of that

inference can be seen in the ECCO-based time-varying

solutions and from in situ measurements (Rayner et al.,

2011). So-called synoptic sections spanning ocean basins,

which had been the basis for most global circulation

pictures, at best produce “blurred” snapshots of transport

properties. We are now well past the time in which they

can be labeled and interpreted as being the time-average.

A major result of WOCE was to confirm the conviction that

the ocean must be observed and treated as a fundamentally
time-varying system, especially for any property involving

the flow field. Gross scalar properties such as the temper-

ature or nitrogen concentrations have long been known to

be stable on the largest scales: that their distributions are

nonetheless often dominated by intense temporal fluctua-

tions, sometimes involving very high wavenumbers, repre-

sents a major change in the understanding of classical ocean

properties. That understanding inevitably drives one toward

state estimation methods.

2. DEFINITION

Consider any model of a physical system satisfying known

equations, written generically in discrete time as,

x tð Þ¼ L x t�Dtð Þ,q t�Dtð Þ,u t�Dtð Þð Þ, 1� t� tf ¼MDt,

ð21:1Þ
where x(t) is the “state” at time t, discrete at intervals Dt,
and includes those prognostic or dependent variables

usually computed by a model, such as temperature or

salinity in an advection–diffusion equation or a stream

function in a flow problem. q(t) denotes known forcings,

sources, sinks, boundary and initial conditions, and internal

model parameters, and u(t) are any such elements that are

regarded as only partly or wholly unknown, hence subject

to adjustment and termed independent or control variables

(or simply “controls”). Model errors of many types are also

represented by u(t). L is an operator and can involve a large

range of calculations, including derivatives, or integrals, or

any other mathematically defined function. In practise, it is

usually a computer code working on arrays of numbers.

(Notation is approximately that of Wunsch, 2006.) Time,

t¼mDt, is assumed to be discrete, withm¼0, . . .,M, as that

is almost always true of models run on computers.1 Note

that the steady-state situation is a special case, in which

one writes an additional relationship, x(t)¼x(t�Dt) and

q, u are then time-independent. For computational effi-

ciency, steady models are normally rewritten so that time

does not appear at all, but that step is not necessary. Thus

the static box inverse methods and their relatives such as

the beta-spiral are special cases of the ocean estimation

problem (Wunsch, 2006).

1. An interesting mathematical literature surrounds state estimation

carried out in continuous time and space in formally infinite dimensional

spaces. Most of it proves irrelevant for calculations on computers, which

are always finite dimensional. Digression into functional analysis can be

needlessly distracting.
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Useful observations at time t are all functions of the state
and, in almost all practical situations, are a linear combi-

nation of one or more state vector elements,

y tð Þ¼E tð Þx tð Þþn tð Þ, 0� t� tf , ð21:2Þ
where n(t) is the inevitable noise in the observations. y(t) is
a vector of whatever observations of whatever diverse type

are available at t. (Uncertain initial conditions are included

here at t¼0, representing them as noisy observations.)

Standard matrix–vector notation is being used. In a

steady-state formulation, parameter t would be suppressed.

On rare occasions, data are a nonlinear combination of the

state vector: an example would be a speed measurement in

terms of two components of the velocity, or a frequency

spectrum for some variable. Methods exist (not discussed

here) for dealing with such observations. Observations

relating to the control vector may exist and one easy

approach to using them is to redefine elements of u(t) as
being part of the state vector. The “state estimation

problem”2 is defined as determining ex tð Þ, 0� t� tf, ũ(t),
0� t� tf�Dt, exactly satisfying both Equations (21.1)

and (21.2). Tildes here denote estimates to distinguish them

from the true values.

Important note: “exact” satisfaction of Equation (21.1)

must be understood as meaning the model after adjustment
by ũ(t). Because u(t) can represent, if necessary, very

complex, nonlinear, and large changes to the original model,

which is usually defined with u(t)¼0, the adjusted model

can be very different from the initial version.But the adjusted
model is known, fully specified, and exactly satisfied, and is

what is used for discussion of the physics or chemistry. It thus

differs in a fundamental way from other types of estimates

rendered discontinuous by “data injection,” or forcing to

data, during the final forward calculation.

Typically, one must also have some knowledge of the

statistics of the controls, u(t), and observation noise, n(t),
commonly as the first and second-order moments,

< u tð Þ>¼ 0,

u tð Þu t0ð ÞT
D E

¼Q tð Þdtt0 ,

)

0� t� tf �Dt¼ M�1ð ÞDt,

ð21:3aÞ
< n tð Þ>¼ 0,

n tð Þn t0ð ÞT
D E

¼R tð Þdtt0 ,

)

0� t� tf ¼MDt ð21:3bÞ

The brackets denote expected values and superscript T

is the vector or matrix transpose.

In generic terms, the problem is one of constrained
estimation/optimization, in which, usually, one seeks to

minimize both the normalized quadratic model-data

differences,

y tð Þ�E tð Þx tð Þð ÞTR�1 tð Þ y tð Þ�E tð Þx tð Þð Þ
D E

ð21:4Þ

and the normalized independent variables (controls),

u tð ÞTQ�1 tð Þu tð Þ
D E

ð21:5Þ

—subject to the exact satisfaction of the adjusted model in
Equation (21.1).

For data sets and controls that are Gaussian or nearly so,

the problem as stated is equivalent to weighted least-

squares minimization of the scalar,

J¼
X

M

m¼0

y tð Þ�E tð Þex tð Þð ÞTR�1 tð Þ y tð Þ�E tð Þex tð Þð Þ

þ
X

M�1

m¼0

eu tð ÞTQ�1 tð Þeu tð Þ, t¼mDt,

ð21:6Þ

subject to Equation (21.1). It is a least-squares problem con-
strained by partial differential equations, and nonlinear if

the model or its connection with observations are nonlinear.

The uncertain initial conditions, contained implicitly in

Equation (21.6), are readily written out separately if desired.

In comparing the solutions to DA, note that the latter
problem is different. It seeks to minimize,

diag ex tnowþ tð Þ�x tnowþ tð Þð Þ ex tnowþ tð Þ�x tnowþ tð Þð ÞT� �

,

ð21:7Þ
that is the variance of the state about the true value at some

time future to tnow. Brackets again denote the expected

value. The role of the model is to make the forecast, by

setting u(t)¼0, tnowþDt� t� tnowþt, because it is

unknown, and starting with the most recent estimate

ex tnowð Þ at tnow. Equation (21.7) is itself equivalent to a

requirement of minimum square deviation at tnowþt.
A bit more will be said about this relationship later.

Model error deserves an extended discussion by itself.

A consequence of exact satisfaction of the model equations

is that we assume the discretized version of Equation (21.1)

to be error-free, but only after determination of u(t). Model

errors come in roughly three flavors: (a) the equations are

incomplete or an approximated form of the real system;

(b) errors are incurred in their discretization (e.g., numerical

diffusion); and (c) sub-grid scale parameterizations are

incomplete, and/or their parameter choices sub-optimal.

Methods exist to quantify these errors in an estimation

framework. As in any multi-parameter optimization

problem, data sets are commonly inadequate to distinguish

completely between errors in the model structure, including

resolution, and in other components such as the initial and

boundary conditions. Errors in one element can show up (be

compensated) by incorrect adjustments made to other ele-

ments. The current approach in ECCO is to introduce

explicit adjustments to the most important interior param-

eters such as mixing coefficients (e.g., Ferreira et al.,2. A terminology borrowed from control theory (e.g., Gelb, 1974).
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2005; Stammer, 2005) as likely representing the dominant

model inadequacies. Other errors, including those arising

from inadequate resolution in regions of higher order

dynamics, nonetheless inevitably distort some elements

of the best-estimate solution.

Most of the fundamental principles of practical state

estimation and of DA can be understood from the common

school problem of the least-squares fitting of lines and

curves to data in one dimension. The central point is that

the concepts of state estimation and DA are very simple;

but it is equally simple to surround them with an aura of

mystery and complexity that is needless for anyone who

wishes primarily to understand the meaning of the results.

3. DATA ASSIMILATION AND THE
REANALYSES

Despite the technical complexities of the numerical engi-

neering practice, DA and what are called “reanalyses”

should be understood as approximate methods for obtaining

a solution of a least-squares problem. Using the same

notation as in Equation (21.7), consider again an analysis

time, tnow¼ tanaþt, when data have become available,

and where tana is the previous analysis time, t>0, typically

6 h earlier. The weather forecaster’s model has been run

forward to make a prediction, ex tnow,�ð Þ, with the minus

sign denoting that newer observations have not yet
been used. The new observations are E(tnow) x(tnow)þ
n(tnow)¼y(tnow). With some understanding of the quality

of the forecast, expressed in the form of an uncertainty

matrix (2nd moments about the truth) called P(tnow, �),

and of the covariance matrix of the observational noise,

R(tnow), the best combination in the L2-norm of the infor-

mation of the model and the data is the minimum of,

J1 ¼ ex tnowð Þ�ex tnow,�ð Þð ÞTP tnow,�ð Þ�1

ex tnowð Þ�ex tnow,�ð Þð Þ
þ y tnowð Þ�E tnowð Þx tnowð Þð ÞTR tnowð Þ�1

y tnowð Þ�E tnowð Þx tnowð Þð Þ,
ð21:8Þ

and whose least-squaresminimum for a linear model is given

rigorously by the Kalman (1960) filter. In DA practise, only

some very rough approximation of that minimum is sought

and obtained. True Kalman filters are never used for pre-

diction in real geophysical fluid flow problems as they are

computationally overwhelming (for more detail, see e.g.,

Wunsch, 2006). Notice that J1 assumes that a summation
of errors is appropriate, even in the presence of strong
nonlinearities.

A brief excursion into meteorological “reanalyses” is

worthwhile here for several reasons: (1) they are often used

as an atmospheric “truth” to drive ocean, ice, chemical, and

biological models. (2) A number of ocean circulation esti-

mates have followed their numerical engineering

methodology. (3) With the long history of the atmospheric

DA effort, many have been unwilling to believe that any

alternatives exist.

Note that the “analysis” consists of an operational

weather model run in conventional prediction mode, anal-

ogous to the simple form described in the previous section,

adjusted, and thus displaying discontinuities at the analysis

times, by attempts to approximately minimize J1. Because
of the operational/real-time requirements, only a fraction of

the global operational meteorological observations are

relayed and quality-controlled in time to be available at

the time of analysis. Furthermore, because models have

changed so much over the years, the stored analyses are

inhomogeneous in the underlying physics3 and model

codes. Oceanographers have no such products at this time;

global “analyses” in the meteorological sense do not exist,
and thus the term “reanalysis” for ocean state estimates is

inappropriate.

Meteorological reanalysis is the recomputation, using

the same prediction methodology as previously used in

the analysis, but with the differences that (1) the model code

and combination methodology are held fixed over the com-

plete time duration of the calculation (e.g., over 50 years)

thus eliminating artificial changes in the state from model

or method improvements and, (2) including many data that

arrived too late to be incorporated into the real-time

analysis (see Kalnay, 2003; Evensen, 2009).

Estimated states still have the same discontinuities at the

analysis times when the model is forced toward the data. Of

even greater significance for oceanographic and climatic

studies are the temporal shifts induced in the estimates by

the major changes that have taken place in the observational

system over several decades—most notably, but not solely,

the appearance of meteorological satellites. Finally, no use

is made of the information content in the observations of the

future evolution of the state.

Although as already noted above, clear warnings have

appeared in the literature—that spurious trends and values

are artifacts of changing observation systems (see, e.g.,

Elliott and Gaffen, 1991; Marshall et al., 2002; Thompson

et al., 2008)—the reanalyses are rarely used appropriately,

meaning with the recognition that they are subject to large

errors. In Figure 21.1, for example, the jump in precipitation

minus evaporation (P�E) with the advent of the polar

orbiting satellites implies either that the unspecified error

estimates prior to that time must, at a minimum, encompass

the jump, and/or that computation has been erroneous, or

that a remarkable coincidence has occurred. But even the

smaller transitions in P�E, for example, over the more

recent period of 1992 onward, are likely too large to be

physical; see Table 21.1.

3. We employ “physics” in its conventional meaning as encompassing all

of dynamics and thermodynamics.
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Figure 21.2 and other, similar ones, are further disqui-

eting, showing that reanalyses using essentially the same

data, and models that have been intercompared over

decades, have significant qualitative disagreements on

climate timescales. Differences in the reanalyses in the

northern hemisphere are not so large and are generally

agreed to be the result of a much greater data density. They

remain, nevertheless, significant, as evidenced in the dis-

cussion of analysis increments over the Arctic by

Cullather and Bosilovich (2012). Evidently, considerations
of data density and types and their handling dominate the
reanalyses,with the models being of secondary importance.

For climate studies, another major concern is the

failure of the reanalyses to satisfy basic global

conservation requirements. So, for example, Table 21.1

shows the global imbalances on a per year basis of several

reanalysis products in apparent heating of the oceans and

in the net freshwater flux from the atmosphere. Such

imbalances can arise either because global constraints

are not implied by the model equations, and/or because

biased data have not been properly handled, or most likely,

some combination of these effects is present. Trenberth

and Solomon (1994), for example, note that the NCEP/

NCAR reanalysis implies a meridional heat transport

within continental land masses. “User beware” is the best

advice we can give.

State estimation as defined in the ECCO context is a

much more robust and tractable problem than is, for

FIGURE 21.1 Mean annual precipitation minus evaporation over the Antarctic as a function of time in the ECMWF reanalysis ERA-40 showing the

impact of new observations, in this case, the arrival of the polar orbiting satellites. Different curves are for different elevations. The only simple inference is

that the uncertainties must exceed the size of the rapid transition seen in the late 1970s. L and R identify whether the left or right axis is to be used for that

curve. From Bromwich et al. (2007).

TABLE 21.1 Negative Heat Fluxes refer to Oceanic Heating, Positive Freshwater Imbalances to Evaporation

Reanalysis Product

Net Freshwater Imbalance (mm/year) Net Heat Flux Imbalance (W/m2)

Ocean-Only Global Ocean-Only Global

NCEP/NCAR-I (1992–2010) 159 62 �0.7 �2.2

NCEP/DOE-II (1992–2004) 740 – �10 –

ERA-Interim (1992–2010) 199 53 �8.5 �6.4

JRA-25 (1992–2009) 202 70 15.3 10.1

CORE-II (1992–2007) 143 58
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example, prediction of future climate states. As is well

known even to beginning scientists, extrapolation of very

simple models can be extremely unstable, with interpo-

lation4, or curve-fitting, remaining robust. (A classical

example is the use of a cubic polynomial to fit some noisy

data, and which can be very effective. But one is advised

never to use such a fit to extrapolate the curve; see

Figure 21.3). The ECCO process is effectively a temporal

curve-fit of the WOCE-era data sets by a model and which,

with some care to avoid data blunders, produces a robust

result. It is the interpolating (smoothing) character, coupled

with the expectation of thermal wind balance over most of

the domain, that produces confidence in the basic system

products. As is well-known, least-squares methods tend

to generate meaningless structures in unconstrained parts

of the domain. Some regions of spatial extrapolation do

exist here, depending upon the time-varying distribution

of observations, and although they tend to be limited in both

space and time, detailed values there should be regarded

skeptically.

Terminological note: the observational community has

lost control of the word “data,” which has come to be used,

confusingly, for the output of models, rather than having

any direct relationship to instrumental values. In the context

of reanalyses and state estimates involving both measure-

ments and computer codes, the word generally no longer

conveys any information. For the purposes of this essay,

“data” always represents instrumental values of some sort,

and anything coming out of a general circulation model

(GCM) is a “model-value” or “model-datum,” or has a

similar label. We recognize that models are involved in

all real observations, even in such familiar values as those

coming from, for example, a mercury thermometer, in

which a measured length is converted to a temperature.

FIGURE 21.2 Calculated trends (meters/second/year) in the 10-m zonal wind fields at high southern latitudes from four different atmospheric reanalyses

(D. Bromwich and J. P. Nicolas, of Ohio State University, private communication, 2010). Note particularly the different patterns in the Indian Ocean and

the generally discrepant amplitudes. Because of the commonality of data sets, forecast models, and methodologies, the differences here must be lower

bounds on the true uncertainties of trends. See Bromwich et al. (2011) for a description of the four different estimates. Acronyms denote National Center for

Environmental Prediction; Japanese Reanalysis; European Centre for Medium Range Forecasts Reanalysis; Modern Era-Retrospective Analysis for

Research and Applications (NASA).

4. The commonplace term “interpolation” is used in numerical analysis to

imply that fitted curves pass exactly through data points—an inappropriate

requirement here.
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Even so, most readers can recognize the qualitative dif-

ference between conventional observations and the output

of a 100,000þline computer code.

4. OCEAN STATE ESTIMATES

The rest of this chapter is primarily devoted to a summary

description and discussion of some results of the ECCO

groups which, beginning with Stammer et al. (2002), were

directed at decadal and longer state estimates satisfying

known equations and using as much of the WOCE-era-

and-beyond data as possible. No claim is made that these

estimates are definitive, nor that the discussion is compre-

hensive. A number of other, superficially similar, estimates

exist (Carton et al., 2000; Martin et al., 2007; Hurlburt et al.,

2009), but these generally have had different goals, for

example, a fast approximate estimate primarily of the upper

ocean, or prediction of the mesoscales over ocean basins.

Some weather forecasting centers have undertaken “opera-

tional oceanography” products closely resembling atmo-

spheric weather forecasts. To our knowledge, however,

the ECCO estimates are today the only ones specifically

directed at physically continuous, dynamically consistent,

top-to-bottom estimates from a comprehensive data set.

A number of review papers exist that attempt to compare

various such solutions (e.g., Carton and Santorelli, 2008;

Lee et al., 2010) as though they were equivalent. But as

the above discussion tries to make clear, estimates are not

equally reliable for all purposes and comparisons make

no sense unless their individual purposes are well under-

stood. Although one could compare a crop-dusting airplane

to a jet fighter, and both have their uses, few would regard

that effort as helpful, except as a vehicle for discussion of

the highly diverse applications of aero-physics. Thus a

numerical scheme directed primarily at mesoscale

prediction, and using a model not conserving energy,

may well be a useful tool for forecasting the trajectory of

the Gulf Stream over a few weeks, but it would be unsuited

to a discussion of global ocean heat transports—a useful

model of which is, in turn, unsuitable for mesoscale

interests. These other applications are discussed in this

volume by Schiller et al. (2013).

Originally, ECCO was meant primarily to be a demon-

stration of the practicality of its approach to finding the

oceanic state. When the first ECCO estimates did become

available (Stammer et al., 2002) they proved sufficiently

useful even with that short duration and coarse resolution,

that a decision was made to continue with a gradually

improving data set and computer power. This review sum-

marizes mainly what has been published thus far, but as

optimization is an asymptotic process, the reader should

be aware that newer, and likely better, solutions are being

prepared continuously and the specific results here will

have been refined in the intervals between writing, pub-

lishing, and reading.

4.1. Basic Notions

As described above, most state estimation problems in

practice are generically those of constrained least-squares,

in which one seeks to minimize objective or cost or misfit

functions similar to Equation (21.6) subject to the solution

(including both the estimated state x(t), and the controls,

u(t) ) of the model-time stepping equations.5 One approach,
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FIGURE 21.3 A textbook example of the robust interpolation of noisy data by a cubic polynomial and its gross instability when used to extrapolate. This

analogue is a very simplified representation of the problem of extrapolating a GCM state into unobserved time-spans.

5. Advantages exist to using norms other than L2 including those such as

one and infinity norms commonly regarded as robust. These norms are not

normally used in ocean and atmosphere state estimation or data assimi-

lation systems because software development for parallel computers per-

mitting computation at super-large dimensions has not yet occurred.
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among many, to solving such problems is the method of

Lagrange multipliers dating back 200 years. This method

is discussed at length in Wunsch (2006) and the references

there. In a very brief summary, one “adjoins” the model

equations using vectors of Lagrange multipliers, m(t), to
produce a new objective function,

J0 ¼
X

M

m¼0

y tð Þ�E tð Þx tð Þð ÞTR tð Þ�1
y tð Þ�E tð Þx tð Þð Þ

þ
X

M�1

m¼0

u tð ÞTQ tð Þ�1
u tð Þ

�2
X

M�1

m¼1

m tð ÞT x tð Þ�Lx t�Dtð Þ,Bq t�Dtð Þ,Gu t�Dtð Þ½ �,

t¼mDt, m¼ 0, . . . ,M ð21:9Þ
Textbooks explain that the problem can now be treated as a

conventional, unconstrained least-squares problem in

which the m(t) are part of the solution. In principle, one

simply does vector differentiation with respect to all of

x(t), u(t), m(t), sets the results to zero, and solves the

resulting “normal equations” (they are written out in

Wunsch, 2006). J and J0 are very general, and one easily

adds, for example, internal model parameters such as

mixing coefficients, water depths, etc., as further param-

eters to be calculated, thus rendering the problem one of

combined state and parameter estimation.

The entire problem of state estimation thus reduces to
finding the stationary values of J0. The large literature on

what is commonly called the “adjoint method” (“4DVAR”

in weather forecasting, where it is used only incrementally

over short time-spans) reduces to coping with a very large

set of simultaneous equations (and some are nonlinear). But

as an even larger literature deals with solving linear and

nonlinear simultaneous equations by many methods,

ranging from direct solution, to downhill search, to Monte

Carlo, etc., most of the discussion of adjoint methods

reduces to technical details, many of which are complex,

but which are primarily of interest to computer-code con-

structors (Heimbach et al., 2005). Within the normal equa-

tions, the time-evolution of the Lagrange multipliers is

readily shown to satisfy a set of equations usually known

as the “adjoint” or “dual” model. This dual model can be

manipulated into a form having time run “backward,”

although that interpretation is unnecessary; see the

references.

A very interesting complication is worth noting: the

description in the last two paragraphs assumes one can

actually differentiate J and J0. In oceanographic practise,

that implies differentiating the computer code which does

everything. The “trick” that has made this method practical

for GCMs is the so-called automatic differentiation (or

AD), in which a software tool can be used to produce the

partial derivatives and their transposed values—in the form

of another software code (see, e.g., Giering and Kaminski,

1998; Griewank and Walther, 2008; Utke et al., 2008). This

somewhat bland statement hides a complex set of practical

issues; see, for example, Heimbach et al. (2005) for

discussion in the context of the MIT general circulation

model (MITgcm). Most of the difficult problems are of

no particular concern to someone mainly interested in the

results.6

As discussed in more detail by Wunsch and Heimbach

(2007), the central ECCO estimates are based upon this

Lagrange multiplier method, with the state estimates

obtained from the adjusted, but then freely running, MIT-

gcm, as is required in our definition of state estimation.

At the time of this writing, most of the estimates have

restricted the control variables (the adjustable parameters)

to the initial conditions and the meteorological forcing,

although following exploratory studies by Ferreira et al.

(2005), Stammer (2005), and Liu et al. (2012), state esti-

mates are becoming available that also adjust internal

model parameters, such as isopycnal, thickness, or vertical

diffusion.

A full modern oceanic general circulation model (GCM

or OGCM) such as that of Marshall et al. (1997) as modified

over subsequent years (e.g., Adcroft et al., 2004; Campin

et al., 2004), is a complex machine consisting of hundreds

of thousands of lines of code encompassing the Navier–

Stokes equations, the relevant thermodynamics, sea ice

and mixed-layer sub-codes, various schemes to represent

motions below the model resolution (whatever it may

be), and further subsidiary codes for overflow entrainment,

etc. Understanding such a model is a difficult proposition,

in part because different elements were written by different

people over many years, sometimes without full under-

standing of the potential interactions of the existing or

future subcomponents. Further, various studies have shown

the inevitability of coding errors (e.g., Basili et al., 1992)

and unlike the situation with the real ocean, one is faced

with determining if some interesting or unusual behavior

is real or an artifact of interacting, possibly very subtle,

errors. (Nature presumably never solves the incorrect equa-

tions; but observational systems do have their own mys-

teries that must be understood: recent examples include

the discovery of systematic errors in fall rates to infer the

depth of XBT data, e.g., by Wijffels et al., 2008, and cali-

bration errors of pressure sensors onboard some of the Argo

floats Barker et al., 2011).

By recognizing that most algorithms can be regarded as

directed at the approximate solution of a least-squares

6. The situation is little different from that in ordinary ocean GCM studies.

Technical details of time-stepping, storage versus recomputation, re-starts,

etc., are very important and sometimes very difficult, but not often of con-

sequence to most readers, except where the author necessarily calls

attention to them.
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problem, one can exploit the 200-year history of methodol-

ogies that have emerged (e.g., Björck, 1996), substituting

differing numerical algorithms where necessary. For

example, Köhl and Willebrand (2002) and Lea et al.

(2002) suggested that the Lagrange multiplier method

would fail when applied at high resolution to oceanic

systems that had become chaotic. Although such behavior

has been avoided in oceanographic practice (Gebbie

et al., 2006; Hoteit et al., 2006; Mazloff et al., 2010), one

needs to separate the possible failure of a particular

numerical algorithm to find a constrained minimum from

the inference that no minimum exists. If local gradient

descent methods are not feasible in truly chaotic systems,

one can fall back on variations of Monte Carlo or other

more global methods. Obvious failure of search methods

using local derivatives has had limited importance in ocean-

ographic practice. This immunity is likely a consequence of

the observed finite time interval in the state estimation

problem, in which structures such as bifurcations are

tracked adequately by the formally future data, providing

adequate estimates of the algorithmic descent directions.

Systematic failure to achieve an acceptable fit to the obser-

vations can lead to accepting the hypothesis that the model

should be rejected as an inadequate representation.

Potential model falsification is part of the estimation

problem, and is the pathway to model improvement.

Modern physical oceanography is largely based upon

inferences from the thermal wind, or geostrophic–

hydrostatic, equations. Scale analyses of the primitive equa-

tions (e.g., Pedlosky, 1987; Vallis, 2006; Huang, 2010) all

demonstrate that apart from some very exceptional regions

of small area and volume, deviations from geostrophic

balance are slight. This feature is simultaneously an

advantage and a liability. It is an advantage because any

model, be it analytical or numerical must, to a first approx-

imation, satisfy the linear thermal wind equations. It is a lia-

bility because it is only the deviations which define the

governing physics of the flow maintenance and evolution,

and which are both difficult to observe and compute with

adequate accuracy. In the present context, one anticipates

that over the majority of the oceanic volume, any plausible

model fit to the data sets must be, to a good approximation,

a rendering of the ocean circulation in geostrophic, hydro-

static, balance, with Ekman forcing, and volume or mass

conservation imposed regionally and globally as an auto-

matic consequence of the model configuration. The most

visible ageostrophic physics are the variability, seen as slow

accumulating deviations from an initial state.

4.2. The Observations

Data sets used for many (not all) of the ECCO family of

solutions are displayed in Table 21.2. As noted in

Section 1, they are of very diverse types, geographical

and temporal distribution, and with very different accu-

racies and precisions.

As is true of any least-squares solution, no matter how it

is obtained, the results are directly dependent upon the

weights or error variances assigned to the data sets. An

over-estimate of the error corresponds to the suppression

of useful information; an under-estimate to imposing erro-

neous values and structures. Although an unglamorous and

not well-rewarded activity, a quantitative description of the

errors is essential and is often where oceanographic

expertise is most central. Partial discussions are provided

by Stammer et al. (2007), Ponte et al. (2007), Forget and

Wunsch (2007), and Ablain et al. (2009). Little is known

about the space–time covariances of these errors, infor-

mation, which if it were known, could improve the solutions

(see Weaver and Courtier, 2001, for a useful direction now

being used in representing spatial covariances). Model

errors, which dictate how well estimates should fit to hypo-

thetical perfect data, are extremely poorly known and are

generally added to the true data error—as in linear problems

the two types of error are algebraically indistinguishable.

5. GLOBAL-SCALE SOLUTIONS

Solutions of this type were first described by Stammer et al.

(2001, 2002, 2003) and were computed on a 2� �2� grid

with 22 vertical levels. As the computing power increased,

a shift was made to a 1� �1�, 23-level solution and that,

until very recently, has remained the central vehicle for

the global ECCO calculations. Although some discrep-

ancies continue to exist in the ability to fit certain data

types, these solutions (Wunsch and Heimbach, 2007) based

as they are on geostrophic, hydrostatic balance over most of

the domain, were and are judged adequate for the calcu-

lation of large-scale transport and variability properties.

The limited resolution does mean that systematic misfits

were expected, and are observed, in special regions such

as the western boundary currents. Often the assumed error

structures of the data are themselves of doubtful accuracy.

As noted above, Ganachaud (2003a) inferred that the

dominant error in trans-oceanic transport calculations of

properties arose from the temporal variability. Perhaps the

most important lesson of the past decade has been the

growing recognition of the extent towhich temporal aliasing

is a serious problem in calculating the oceanic state. For

example, Figures 21.4 and 21.5 display the global merid-

ional heat and freshwater transport as a function of latitude

along with their standard errors computed from the monthly

fluctuations. The figures suggest that errors inferred from

hydrography are under-estimated and error estimates of

the non-eddy resolving ECCO estimates are themselves

lower bounds of the noise encountered in the real ocean.

The classical oceanographic notion that semi-synoptic sec-

tions are accurate renderings of the time-average properties,
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TABLE 21.2 Data Used in the ECCO Global 1� Resolution State Estimates Until About 2011

Observation Instrument Product/Source Area Period dT

Mean dynamic
topography (MDT)

� GRACE SM004-GRACE3 CLS/GFZ (A.M. Rio) Global Time-mean Mean

� EGM2008/DNSC07 N. Pavlis/Andersen &
Knudsen

Global

Sea level anomaly
(SLA)

� TOPEX/POSEIDON NOAA/RADS & PO.DAAC 65�N/S 1993–2005 Daily

� Jason NOAA/RADS & PO.DAAC 82�N/S 2001–2011 Daily

� ERS, ENVISAT NOAA/RADS & PO.DAAC 65�N/S 1992–2011 Daily

� GFO NOAA/RADS & PO.DAAC 65�N/S 2001–2008 Daily

SST � Blended, AVHRR (O/I) Reynolds & Smith Global 1992–2011 Monthly

� TRMM/TMI GHRSST 40�N/S 1998–2004 Daily

� AMSR-E (MODIS/Aqua) GHRSST Global 2001–2011 Daily

SSS Various in situ WOA09 surface Global Climatology Monthly

In situ T, S � Argo, P-Alace Ifremer “Global” 1992–2011 Daily

� XBT D. Behringer (NCEP) “Global” 1992–2011 Daily

� CTD Various Sections 1992–2011 Daily

� SEaOS SMRU & BAS (UK) SO 2004–2010 Daily

� TOGA/TAO, Pirata PMEL/NOAA Tropics 1992–2011 Daily

Mooring velocities � TOGA/TAO, Pirata PMEL/NOAA Tropics 1992–2006 Daily

� Florida Straits NOAA/AOML North
Atlantic

1992–2011 Daily

Average T, S � WOA09 WOA09 “Global” 1950–2000 Mean

� OCCA Forget (2010) “Global” 2004–2006 Mean

Sea ice cover � Satellite passive microwave
radiometry

NSIDC (bootstrap) Arctic, SO 1992–2011 Daily

Wind stress QuickScat � NASA (Bourassa) Global 1999–2009 Daily

� SCOW (Risien &
Chelton)

Climatology Monthly

Tide gauge SSH Tide gauges NBDC/NOAA Sparse 1992–2006 Monthly

Flux constraints From ERA-Interim, JRA-25, NCEP, CORE-2
variances

Various Global 1992–2011 2-day to
14-day

Balance constraints Global 1992–2011 Mean

Bathymetry Smith & Sandwell,
ETOPO5

Global – –

An estimated 22�108 individual values have been used in Equation (21.6), of which about 4�108 are assigned to the control terms.
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while having some qualitative utility, has now to be pain-

fully abandoned—an essential step if the subject is to be a

quantitative one. Temporal effects are most conspicuous

at low latitudes, but in many ways, the difficulty is greatest

at high latitudes: the long timescales governing behavior

there mean that the hydrographic structure is very slowly

changing, requiring far longer times to produce an accurate

time-mean. In other words, a 10-year average at 10� N will

be amore accurate estimate of the longer termmean than one

at 50� N. Even this comment begs the question of whether a

stable long-term mean exists, or whether the system drifts

over hundreds and thousands of years. This latter is a

question concerning the frequency spectrum of oceanic var-

iability and which is very poorly known at periods beyond a

few years.

For the 19þ years now available in the global state esti-

mates, most of the large-scale properties, including the time

variations, are stable from one particular set of assumptions
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FIGURE 21.4 Global meridional heat transport

in the ocean from ECCO-Production version 4

(G. Forget, private communication, 2011). Upper

panel shows the standard error including the annual

cycle and the lower one, with the annual cycle

removed—as being largely predictable. Possible

systematic errors are not included. Red dots with

error bars are estimates from Ganachaud and

Wunsch (2002). Note that the WOCE-era hydro-

graphic survey failed to capture the southern hemi-

sphere extreme near 10�S, thus giving an

exaggerated picture of the oceanic heat transport

asymmetry about the equator.

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2

Latitude

S
v

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

2

Latitude

S
v

FIGURE 21.5 Same as Figure 21.4 except for the

freshwater transport (G. Forget, private communi-

cation, 2011). Upper panel shows standard errors

that include the seasonal cycle, and the lower

without the seasonal cycle. Red dots are again from

Ganachaud and Wunsch (2002).
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to others, probably as a consequence of the dominance of

overall geostrophic balance and the comparatively well-

sampled hydrography and altimetric slopes. They are thus

worth analyzing in detail. The intricacies of the global,

time-varying ocean circulation are a serious challenge to

the summarizing capabilities of authors. A full description

of the global state estimates becomes a discussion of the

complete three-dimensional time-varying ocean circu-

lation, a subject requiring a book, if not an entire library,

encompassing distinctions among time and space scales,

geographical position, depth, season, trends, and the forcing

functions (controls). No such synthesis is attempted here!

Instead we can only give a bit of the flavor of what can

and has been done with the estimates along with enough ref-

erences for the reader to penetrate the wider literature.

Note too, as discussed, for example, by Heimbach et al.

(2011) and other, earlier efforts, theLagrangemultipliers are

the solution to the dual model. As such, they are complete

solutions in three spatial dimensions and time, and convey

the sensitivity of the forward model to essentially any

parameter or boundary or initial condition in the system.

The information content of the dual solutions is very

large—representing not only the sensitivities of the solution

to the data and model parameters and boundary and initial

conditions, but also the flow of information through the

system. Analyzing the dual solution does, however, require

the same three-dimensional time-dependent representations

of any full GCM, and these elements of the state estimates

remain greatly under-exploited at the present time.

5.1. Summary of Major, Large-Scale Results

None of the results obtained so far can be regarded as the

final state estimate: obtaining fully consistent misfits by

the model to the observations has never been achieved

(see the residual misfit figures in the references). Misfits

linger for a variety of reasons, including the sometimes pre-

mature termination of the descent algorithms before full

optimization, mis-representation of the true model or data

errors, or selection of a local rather than a global minimum

in the major nonlinear components of the model. As with all

very large nonlinear optimization problems, approach to the

“best” solution is asymptotic. With these caveats, we

describe some of the more salient oceanographic features

of the recent solutions, with no claim to being compre-

hensive. Note that results from a variety of ECCO-family

estimates are used, largely dictated by the particular

problem that was the focus of the calculation.

5.1.1. Volume, Enthalpy, Freshwater Transports
and their Variability

The most basic elements describing the ocean circulation

and its large-scale variability are usually the mass

(or volume, which is nearly identical) transports. Stammer

et al. (2001, 2002, 2003) depicted the basic global-scale ele-

ments of the mass transport as averaged over the duration of

their estimates. A longer duration estimate (v3.73) has been

used (Figure 21.6) to compute the vertically integrated

volume stream function. We reiterate that diagrams such

as this one are finite duration averages whose relationship

to hypothetical hundred year or longer climatologies

remains uncertain.

Figure 21.7 shows the zonally integrated and vertically

accumulated meridional transport as a function of depth and

ocean. The very large degree of temporal variability can be

seen in Figure 21.4 from a new, fully global solution, which

is about to become available online at the time of writing

(ECCO-Production version 4; see Table 21.3) with error

bars derived from the temporal variances. These time

averages have been a historically important goal of physical

oceanography, albeit estimates derived from unaveraged

data were commonly assumed without basis to accurately
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FIGURE 21.6 The top-to-bottom transport

stream function from ECCO v3.73 (Wunsch,

2011). Qualitatively, the wind-driven gyres dom-

inate the result, with the intense transports in the

Southern Ocean particularly conspicuous.
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depict the true time-average. Perhaps the most important

utility of the existing state estimates has been the ability, at

last, to estimate the extent of the time-variability taking place

in the oceans (Wunsch and Heimbach, 2007, 2009, 2013).

Withheld, direct in situ observations in a few isolated regions

(Kanzow et al., 2009; Baehr, 2010) are consistent with the

inference that even volume transports integrated across entire

ocean basins have a large and qualitative temporal variability.

More generally, mooring data and the now almost 20-year

high-resolution high-accuracy altimetric records all show

the intense variations that exist everywhere.With ECCO-like

systems, syntheses of these data sets are now possible.

5.1.2. The Annual Cycle

The annual cycle of oceanic response is of interest in part

because the ultimate forcing function (movement of the

sun through the year) is very large and with very accurately

known structure. In practice, that forcing is mediated

through the very complex atmospheric annual changes,

and understanding how and why the ocean shifts seasonally

on a global basis is a difficult problem. Using the ECCO

state estimates, Vinogradov et al. (2008) mapped the

amplitude and relative contributions for salt and heat of

the annual cycle in sea level (Figure 21.8). The importance

of the annual cycle, more generally, is visible in Figures 21.4

and 21.5 as the large contribution to the standard errors.

5.1.3. Sea-Level Change

The sea surface height is simultaneously a boundary con-

dition on the oceanic general circulation and a consequence

of that circulation. Because of the intense interest in pos-

sible large-scale changes in its height, the potential shifts

in vulnerability to storm surges, and associated issues such

as ecosystem and freshwater reservoir declines, the ECCO

state estimation system has been used to estimate the shifts

taking place in the era since 1992 (Wunsch et al., 2007).

A summary of a complex subject is that sea level change

is dominated by regional variations more than an order
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FIGURE 21.7 Mean (1992–2010) of the meridional volume transport stream function in Sverdrups (Sv-106m3/s) from ECCO-Production version 4

(Wunsch and Heimbach, 2013; Forget et al., in preparation, 2013). Panel (a) is the global result; panels (b and c) are the Atlantic, and the combined

Indo-Pacific, respectively. Note the complex equatorial structure, and that this representation integrates out a myriad of radically different dynamical

sub-regimes. In the Southern Ocean, interpretation of zonally integrated Eulerian means requires particular care owing to the complex topography

and relatively important eddy transport field.
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of magnitude larger than the putative global average, and

arising primarily from wind field shifts. Varying spatial

contributions from competing exchanges of freshwater

and heat with the atmosphere and the extremely inhomoge-

neous (space and time) in situ data sets render the global

mean and its underlying causes far more uncertain than

some authors have claimed.

At the levels of accuracy appearing to be required, very

careful attention must now be paid to modeling issues such

as water self-attraction and load (Kuhlmann et al., 2011;

Vinogradova et al., 2011) not normally accounted for in

OGCMs. Conventional approximations to the moving free-

surface boundary conditions generate systematic errors no

longer tolerable (e.g., Huang, 1993;Wunsch et al., 2007). Use-

fully accurate sea level estimation over multiple decades may

be the most demanding requirement on both models and data

sets now facing oceanographers (Griffies and Greatbatch,

2012). The global means are claimed by some to have

TABLE 21.3 Published ECCO Family State Estimates, Divided Roughly into Categories

Label and Version

Hor./Ver.

Grid Domain Duration Scope References

ECCO-Production Sustained production of decadal climate state estimates (former ECCO-GODAE)

ver.0 (ECCO-MIT) 2�/22 80�N/S 1992–1997 First ECCO product—proof of
feasibility

Stammer et al.
(2002, 2004)

ver.1 (ECCO-SIO) 1�/23 80�N/S 1992–2002 Begin of 1� sustained production Köhl et al. (2007)

ver.2 (ECCO-
GODAE)

1�/23 80�N/S 1992–2004 Air–sea flux constraints for sea level
studies

Wunsch and Heimbach
(2006, 2007)

(OCCA) 1�/50 80�N/S 2004/2005/
2006/2007

Atlas from 1-year “synoptic
snapshots”

Forget (2010)

(GECCO) 1�/23 80�N/S 1951–2000 50-year solution covering
NCEP/NCAR period

Köhl and Stammer
(2008a,b)

ver.3 (ECCO-
GODAE)

1�/23 80�N/S 1992–2007 Switch to atmospheric state
controls and sea ice

Wunsch and Heimbach
(2009)

ver. 4 (ECCO-
Production)

1�/50 Global 1992–2010 First full-global estimate including
Arctic

Forget et al.
(in preparation, 2013)

ECCO-ICES Ocean–ice interactions in Earth system models (former ECCO2)

ver.1 (CS510 GF) 18 km/50 Global 1992–2002/
2010

Green’s function optimization, of
eddying model

Menemenlis et al.
(2005a,b)

ECCO-JPL near real-time filter and reduced-space smoother

ver.1 (KF) 1�/46 80�N/S 1992–present Near-real-time Kalman Filter (KF)
assimilation

Fukumori et al. (1999)

ver.2 (RTS) 1�/46 80�N/S 1992–present Smoother update of KF solution Fukumori (2002)

Regional efforts

Southern Ocean
(SOSE)a

1/6�/42 25�–80�S 2005–2009 Eddy-permitting SO state estimate Mazloff et al. (2010)

ECCO2 Arctic and
ASTEa

18 and
4 km/50

Arctic and
SPG

1992–2009 Arctic/subpolar gyre ocean–sea ice
estimate

Nguyen et al. (2011, 2012)

North Atlantic 1�/23 25�–80�N 1993 Experimental 2� versus 1� nesting Ayoub (2006)

Subtropical Atlantic 1/6�/42 – 1992/1993 Experimental 1� versus 1/6� nesting Gebbie et al. (2006)

Tropical Pacific – – Experimental 1� versus 1/3� nesting Hoteit et al. (2006, 2010)

Labrador Sea and
Baffin Bay

– – 1996/1997 First full coupled ocean–sea ice
estimate

Fenty and Heimbach
(2013a,b)

The global decadeþestimates are labeled as “ECCO-Production,” while others are either regional or experimental.
aDenotes ongoing efforts.
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accuracies approaching a few tenths of amillimeter per year—

ahistoricallyextraordinary requirementonanyoceanestimate.

Despite widely publicized claims to the contrary (e.g.,

Cazenave andRemy, 2011; Church et al., 2011), state estimate

results suggest that at the present time, the global observing

system is insufficient to provide robust partitioning amongst

heat content changes, land and ice sheet runoff, and large-scale

shifts in circulation patterns (the recent paper by King et al.,

2013 discusses an example of the remaining uncertainty in

current ice sheet mass loss estimates, with implications for

sea level budgets). A particular difficulty pertains to the deep

ocean,belowdepthsmeasuredbytheArgoarray,where thedis-

tinction between apparent changes occurring (Kouketsu et al.,

2011; Purkey and Johnson, 2010) and the significant deep

eddy variability (Ponte, 2012) remains obscure due to poor

observational coverage. Claims for closed budget elements

involve accuracies much coarser than are stated for the total
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FIGURE 21.8 Showing the annual cycle in sea level from ECCO Climate State v2.177. Left column is the amplitude in cm and the right column the

phase. From top-to-bottom, they are the surface elevation (a and b), the thermosteric component (c and d), the halosteric component (e and f), and at bottom,

the bottom pressure (g and h). Phases, f are in degrees relative to a January time origin as cos(otþf). From Vinogradov et al. (2008).

7. We have omitted here the distinction between absolute sea level with

respect to the geoid, and relative sea level measured by tide gauges, and

ignored processes associated with the unloading of the solid Earth from

ice sheet shrinkage (e.g., Munk, 2002; Milne et al., 2009; Mitrovica et al.,

2011). Only recently have these phenomena begun to appear in climate

models: Kopp et al. (2010) and Slangen et al. (2012).
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5.1.4. Biogeochemical Balances

From the adjoint of the tracer concentration sub-model of

the ECCO system, Dutkiewicz et al. (2006) calculated the

sensitivity of the nutrient production in the system to iron

enrichment. This work is representative of the use of dual

solutions to probe large complex models in any scientific

field. They found a strong dependence upon the available

light, and that the tropical ocean had the greatest sensitivity

to iron limitation. Among other considerations, these infer-

ences are important in the erstwhile debate over whether

iron fertilization makes any sense for control of atmo-

spheric CO2.

Woloszyn et al. (2011) used the ECCO higher resolution

Southern Ocean State Estimates (SOSE) of Mazloff et al.

(2010) to demonstrate the great importance of adequate res-

olution in calculating carbon exchange between the atmo-

sphere and ocean. The same configuration was adopted

by Ito et al. (2010) to describe the Ekman layer contribution

to the movement of carbon dioxide.

The emerging field of microbial oceanography seeks a

zeroth-order understanding of the biogeography and

diversity of marine microbes. Coupling between ocean

physics and ecology is being explored through the use of

ECCO state estimates, which drive models of marine

ecology (e.g., Follows et al., 2007; Follows and

Dutkiewicz, 2011). Crucial requirements of the estimates

are (1) to be in sufficiently close agreement with the

observed physical ocean state such as to reduce uncer-

tainties in the coupled models from the physical com-

ponent, and (2) to furnish an evolution of the physical

state in agreement with conservation laws.

5.1.5. Sea Ice

The importance of sea ice to both the ocean circulation and

climate more generally has become much more con-

spicuous in recent years. Sea ice models have been

developed within the state estimation framework as fully

coupled sub-systems influenced by and influencing the

ocean circulation (Menemenlis et al., 2005a,b; Losch

et al., 2010). By way of example, Figure 21.9, taken from

Losch et al. (2010) depicts 1992–2002 mean March and

September effective ice thickness distributions representing

the months of maximum and minimum ice cover in both

FIGURE 21.9 1992–2002 mean March (left) and September (right) effective ice thickness distributions (in meters) for Northern (top) and Southern

(bottom) hemispheres. Obtained from a global eddy-permitting ECCO2 simulation, for which a set of global parameters has been adjusted. Also indicated

are the ice edge (15% ice concentration isoline) inferred from the model (dashed line) and from satellite-retrieved passive microwave radiometry (solid

line). From Losch et al. (2010).
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hemispheres. Also shown are the modeled and observed ice

edges, represented as 15% isolines of the fractional sea ice

concentrations (0–100%). The results were obtained from

an early version of the alternative ECCO2

eddy-permitting optimization using Green functions

(Menemenlis et al., 2005a,b) on the cubed-sphere grid at

18 km horizontal resolution (see Table 21.3). More detailed

studies focusing on the Arctic were carried out with similar

and higher resolution (4 km) configurations (Nguyen et al.,

2011, 2012), but with a very limited control space available

for parameter adjustment via the Green function approach.

A comprehensive step toward full coupled ocean–sea

ice estimation, in which both ocean and sea ice observation

were synthesized, was made by Fenty and Heimbach

(2013a,b) for the limited region of the Labrador Sea and

Baffin Bay. Figure 21.10a shows an annual cycle of total

sea ice area in the domain from observations, the state

estimate, and the unconstrainedmodel solution. Also shown

are the remaining misfits, as evidence of the random nature

of the residuals, as required by theory, Equations (21.2) and

(21.3b). An important result of that study is the demon-

stration that adjustment well within their prior uncertainties

in the high-dimensional space of uncertain surface atmo-

spheric forcing, patterns can achieve an acceptable fit

between model and observation, placing stringent require-

ments on process studies that aim to discriminate between

model errors and forcing deficiencies.

As in the discussion of biogeochemical balances above,

the adjoint or dual solution of the coupled ocean–sea ice

model can provide detailed sensitivity analyses.

Heimbach et al. (2010) used the dual solution to study sen-

sitivities of sea ice export through the Canadian Arctic

Archipelago to changes in atmospheric forcing patterns in

the domain. Kauker et al. (2009) investigated the causes

of the 2007 September minimum in Arctic sea ice cover

in terms of sensitivities to atmospheric forcing over the pre-

ceding months. A similar sensitivity study on longer time-

scales is shown in Figure 21.11 of solid (sea ice and snow)

freshwater export through Fram Strait for two study

periods, January 1989 to September 1993, and January

2003 to September 2007 (unpublished work). The objective

function was chosen to be the annual sea ice export between

October 1992 and September 1993, and October 2006 and

September 2007. Export sensitivities to changes in effective

sea ice thickness, 24 months prior to September 1993 and

2007, respectively, are shown. The dominant patterns are

positive sensitivities upstream of Fram Strait, for which

an increase in ice thickness will increase ice export at Fram

Strait 24 months later. (Spurious patterns south of Svalbard

have been attributed to masking errors in the sea ice adjoint

model and were corrected in Fenty and Heimbach, 2013a.)

Sensitivities are linearized around their respective states,

and depend on the state trajectory. The extended domain

of influence for the 2007 case compared to 1993 suggests

FIGURE21.10 (Top): Annual cycle fromAugust 1996 to July 1997 of daily mean total sea ice area in the Labrador Sea and Baffin Bay from observations

(dotted), a regional state estimate (black), and the unconstrained model solution (dashed). (Bottom): Residual misfits between estimated and observed sea

ice area and its frequency of occurrence histogram (right panel). Taken from Fenty and Heimbach (2013a).
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more swift transport conditions in the central Arctic, pos-

sibly due to favorable atmospheric conditions, or to weaker

sea ice, or both.

5.1.6. Ice Sheet–Ocean Interactions

The intense interest in sea level change and the observed

acceleration of outlet glaciers spilling into narrow deep

fjords in Greenland and ice streams feeding vast ice shelves

in Antarctica (e.g., Payne et al., 2004; Alley et al., 2005;

Shepherd and Wingham, 2007; Pritchard et al., 2009;

Rignot et al., 2011; Straneo et al., 2013) has led to inferences

that much of the ice responsemay be due to regional oceanic

warming at the glacial grounding lines, an area termed by

Munk (2011) “this last piece of unknown ocean.” One such
region is the Amundsen Sea Embayment inWest Antarctica

(Figure 21.12, taken from Schodlok et al., 2012), where the

ocean is in contact with several large shelves, among which

Pine Island Ice Shelf (PIIS) and Pine Island Glacier exhibit

one of the largest changes in terms of ice sheet acceleration,

thinning, and mass loss. Recent, and as yet incomplete,

model developments have been directed at determining

the interactions of changing ocean temperatures and ice

sheet response, and for the purpose of inclusion into the

coupled state estimation system (Losch, 2008). Simulated

melt rates under PIIS are depicted inFigure 21.13, but cannot

be easily measured directly (Dansereau et al., 2013). A first

step toward their estimation in terms of measured hydrog-

raphy has been undertaken by Heimbach and Losch (2012)

who developed an adjoint model complementing the sub-

ice shelf melt rate parameterization. By way of example,

Figure 21.14 depicts transient sensitivities of integratedmelt

rates (Figure 21.13) to changes in ocean temperatures. The

spatial inhomogeneous patterns have implications for the

interpretation of isolated measurements and optimal

observing design.

The critical dependence of sub-ice shelf cavity circu-

lation and melt rates to details of the bathymetry and

grounding line position noted by Schodlok et al. (2012)

revives the issue of bottom topography as a dominant

control on ocean circulation and the necessity for its

inclusion into formal estimation systems (Losch and

Wunsch, 2003; Losch and Heimbach, 2007).

5.1.7. Air–Sea Transfers and Property Budgets

By definition, state estimates permit calculations up to

numerical accuracies of global budgets of energy, enthalpy,

etc. Many of these budgets are of interest for the insight they

provide into the forces powering the ocean circulation.

Josey et al. (2013) discuss estimates of the air–sea property

transfers using the ECCO estimates. As an example,

Figure 21.15 is an estimate by Stammer et al. (2004) of

the net air–sea transfers of freshwater. That paper compares

this estimate to other more ad hoc calculations and eval-

uates its relative accuracy.

As examples of more specific studies using the state

estimates, we note only Piecuch and Ponte (2011, 2012),

who examined the role of transport fluctuations on the

regional sea level and oceanic heat content distribution,

and Roquet et al. (2011), who used them to depict the

regions in which mechanical forcing by the atmosphere

enters into the interior geostrophic circulation. Many more

such studies are expected in the future.

FIGURE 21.11 Sensitivity of sea ice export through Fram Strait to changes in effective sea ice thickness 24months back in time. Two integration periods

were considered, January 1989 to September 1993 (left) and January 2003 to September 2007 (right). The objective function is annual sea ice export

between October 1992 and September 1993 (left), and October 2006 and September 2007 (right).
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5.2. Longer Duration Estimates

Although the original ECCO estimates were confined to the

period beginning in the early 1990s with the improved

observational coverage that became available in association

with WOCE, the intense interest in decadal scale climate

change has led to some estimates of the ocean state emu-

lating the meteorological reanalyses, extending 50 years

and longer into the past. Some of these estimates are based

essentially on the reanalysis methods already described

(e.g., Rosati et al., 1995; Hurlburt et al., 2009), and having

all of their known limitations.

Köhl and Stammer (2008) and Wang et al. (2010) have

pioneered the application of the ECCO least-squares

methods to an oceanic state estimate extending back to

1960. Their estimates have the same virtue as the wider

ECCO family of solutions, in satisfying knownmodel equa-

tions of motion and dynamics and with known misfits to all

data types. Themajor problem is the extreme paucity of data

in the ocean preceding the WOCE-era; see, for example,

figures 1 and 2 of Forget andWunsch (2007), and the accom-

panying very limitedmeteorological forcing observations in

the early days. Note that polar orbiting meteorological sat-

ellites did not exist prior to 1979—see Figure 21.2 and

Bromwich and Fogt (2004). Useful altimetry appears only

at the end of 1992. “Whole domain” methods such as

smoothers or Lagrange multipliers do carry information

backward in time, and in the estimates for the undercon-

strained decades prior to about 1992, the gross properties

of the ocean circulation are better determined because of

FIGURE 21.13 Simulated melt rates (colors, in meters/year) under Pine Island Ice Shelf (PIIS) derived from variants of the Holland and Jenkins (1999)

melt rate parameterization, using either velocity-independent (a) or velocity-dependent transfer coefficients. Largemelt rates correspond to either locations

deep inside the cavity where the ice shelf is in contact with the warmest Circumpolar Deep Waters, or to locations of highest flow at the ice shelf-ocean

interface. Direct measurement of melt rates is challenging, making robust inferences difficult. From Dansereau et al. (2013).

FIGURE 21.12 Bottom topography (in meters) of the Amundsen

Sea Embayment, West Antarctica, with thick black lines delineating

the edge of several large ice shelves which buttress the following gla-

ciers grounded deep below sea level: Abbot (AB), Cosgrove (CG),

Pine Island Glacier (PIG), Thwaites (TH), Crosson (CR), Dotson

(DT), and Getz (GZ). Also indicated are prominent topographic fea-

tures, such as Sherman Island (SI), Burke Island (BI), Eastern

Channel (EC), Central Channel (CC), and Western Channel (WC).

From Schodlok et al. (2012).
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the later, denser, data sets. But the memory of the upper

ocean, which is most prominent, for example, in climate

forecasting attempts, appears to be restricted to a few years,

and one expects considerable near-surface uncertainty to

occur even as recently as the 1980s.

A preliminary step of assessing the impact of observa-

tional assets in constraining the ECCO solutions has been

taken through observing system experiments in the context

of short-duration optimizations during theArgo array period

(Heimbach et al., 2009; Zhang et al., 2010). Results suggest

that the impact of altimetry and Argo floats in constraining,

for example, theMOCisdrastic, compared to thepre-WOCE

period when only hydrographic sections were available.

The published solutions for the interval prior to about

1992 are best regarded as physically possible, but whose

uncertainty estimates, were they known, would surely be

very much greater than they are in the later times, but dimin-

ishing as the WOCE-era is approached. These long-duration

estimates, decades into the past, thus present a paradox: if

they are quantitatively useful—other than as examples of

possible solutions—then the relatively large investment in

observation systems the community has made since the early

1990s was unnecessary. If that investment has been nec-

essary, then one cannot readily quantitatively interpret the

early estimates. We leave the subject here as one awaiting

the necessary time-dependent uncertainty estimates.

5.3. Short-Duration Estimates

Finding a least-squares fit over 19þ years is computa-

tionally very demanding and for some purposes, estimates

over shorter time intervals can be useful. In particular,

Forget (2010) used the samemodel andmethodology as that

of the ECCO Climate State 1� system (Wunsch and

Heimbach, 2007), but limited the calculation to three over-

lapping 18-month periods in the years 2004–2006. In his

estimate, the model-data misfit is considerably reduced

compared to that in the 19þyear solution. The reasons

for that better fit are easy to understand from the underlying

least-squares methodology: the number of adjustable

parameters (the control vector) has the same number of

degrees-of-freedom in the initial condition elements as does

the decadeþcalculations, but with many fewer data to fit,

and with little time to evolve away from the opening state.

(Meteorological elements change over the same timescales

in both calculations.) It is muchmore demanding of a model

and its initial condition controls to produce fits to a 19-year

evolution than to an 18-month one. Although both calcula-

tions have short timescales compared to oceanic equi-

librium times of hundreds to thousands of years, in an

18-month interval little coupling exists between the meteo-

rological controls and the deep data sets—which are then

easily fit by the estimated initial state.
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FIGURE 21.14 Transient sensitivities, d*T¼ (@J/@T)T, of integrated melt rates J under PIIS (from Figure 21.11b) to changes in temperature T at times

t¼tf�30 days (upper row) and �60 days (lower row) prior to computing J. Left panels are horizontal slices at 640 m depth, right panels are two vertical

slices taken across the domain. Units are in m3 s�1 K�1, where 0.1 m3 s�1 K�1�3 Mt a�1 K�1�3 mm a�1 K�1.
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Solutions of this type are very useful, particularly for

upper ocean and regional oceanographic estimates (see

the water mass formation rate application in Maze et al.,

2009). An important caveat, however, is that one must resist

the temptation to regard them as climatologies. They do
bring us much closer to the ancient oceanographic goal of

obtaining a synoptic “snapshot.”

5.4. Global High-Resolution Solutions

Ocean modelers have been pursuing ever-higher resolution

from the very beginning of ocean modeling and the effort

continues. In classical computational fluid dynamics, one

sought “numerical convergence”: the demonstration that

further improvements in resolution did not qualitatively

change the solutions, and preferably that they reproduced

known analytical values. Such demonstrations with GCMs

are almost non-existent, and thus a very large literature has

emerged attempting to demonstrate the utility of “parame-

terizations”—constructs intended to mimic the behavior of

motions smaller than the resolution capability of any par-

ticular model. A recent review is by Ringler and Gent

(2011). Absent fully resolved solutions with which to

compare the newer parameterizations, the question of their

quantitative utility remains open. They do represent clear

improvements on older schemes.

Despite the parameterization efforts, considerable evi-

dence exists (e.g., Hecht and Smith, 2008; Lévy et al.,

2010) that qualitative changes take place in GCM solutions

when the first baroclinic deformation radius, at least, is fully

resolved. From the state estimation point of view, one seeks

as much skill as possible in the model—which is meant to

represent the fullest possible statement of physical under-

standing. On the other hand, state estimation, as a curve-

fitting procedure, is relatively immune to many of the

problems of prediction. In particular, because of the dom-

inant geostrophic balance, its mass transport properties

are insensitive to unresolved spatial scales—bottom topo-

graphic interference being an exception. In data dense

regions, away from boundary currents, one anticipates

robust results even at modest resolution.

Ultimately, however, the boundary current regions par-

ticularly must be resolved (no parameterizations exist for

unresolved boundary currents) so as to accurately compute

transport properties for quantities such as heat or carbon

that depend upon the rendering of the second moments,

hCvi, where C is any scalar property, and v is the velocity.

Thus a major effort has been devoted to producing global or

near-global state estimates from higher resolution models

(Menemenlis et al., 2005a,b). The same methodologies

used at coarser resolution are also appropriate at high

resolution—as has been demonstrated in the regional esti-

mates taken up next, but the computational load rapidly

escalates with the state and control vector dimensions. Thus

available globally constrained models have used reduced

data sets, and have been calculated only over comparatively

short time intervals (see Table 21.3).

Because of the short-duration, much of the interest in

these high-resolution models lies with the behavior of the

eddy field rather than in the large-scale circulation (e.g.,

Wortham, 2012). As with ordinary forward modeling, how

best to adjust the eddy flux parameterizations when parts

of the eddy field have been resolved, is a major unknown.

5.5. Regional Solutions

Because the computational load of high-resolution global

models is so great, efforts have been made to produce

regional estimates, typically embedded in a coarser resolution

global system. Embedding, with appropriate open boundary

FIGURE 21.15 From Stammer et al. (2004) showing an estimate of the multi-year average heat (left, in W/m2) and freshwater (right, in m/y) transfers

between ocean and atmosphere.
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conditions, is essential because so much of the ocean state in

any finite region is directly dependent upon the boundary

values. Implementing open boundary conditions is techni-

cally challenging, particularly where the velocity field is

directly involved—with slight barotropic imbalances pro-

ducing large volume imbalances (Ayoub, 2006).

Gebbie et al. (2006) discussed estimates in a small region

of the North Atlantic, and their results were used to calculate

(Gebbie, 2007) the eddy contribution to near-surface sub-

duction processes. In a much-larger region, the Mazloff

et al. (2010) SOSE, was computed initially over the restricted

time interval 2005–2006 (now being extended) at 1/6� hori-
zontal and 42 vertical-level resolution.

6. THE UNCERTAINTY PROBLEM

From the earliest days of least-squares as used by Gauss and

Lagrange, it was recognized that an important advantage of

the methods is their ability to produce uncertainty estimates

for the solutions, generally as covariances about the

expected solution or the underlying true solution. The art

of calculating those errors in historically large systems

(especially in geodesy and orbit estimation—the fields

where the method originated) is highly refined. Unhappily,

large as those systems are, their dimensions pale in

comparison to the state and control vector sizes encountered

in the oceanographic problem. This dimensionality issue

renders impractical any of the conventional means that

are useful at small and medium sizes. Numerous methods

have been proposed, including direct calculation of the

coefficients of the normal equations (the matrix A, defining

any system of simultaneous equations) and inversion or

pseudo inversion, of AT A (the Hessian); the indirect calcu-

lation of the lowest eigenvalues and eigenvectors of the

inverse Hessian from algorithmic differentiation (AD)

tools; to solutions for the probability density through the

Fokker–Planck equation; to the generation of ensembles

of solutions. Mostly they have been applied to “toy”

problems—somewhat similar to designing a bridge to span

the Strait of Gibraltar, and then pointing at a local highway

bridge as a demonstration of its practicality. Serious efforts,

more generally, to calculate the uncertainties of any large

model solution are continuing, but when a useful outcome

will emerge is unknown at this time.

In the interim, we generally have only so-called

standard errors, representing the temporal variances about

the mean of the estimate (Figures 21.4 and 21.5). These are

useful and helpful. Sensitivities, derived from the adjoint

solutions (e.g., Heimbach et al., 2011; and see Figures 21.11

and 21.16), are computationally feasible and need to be

FIGURE 21.16 Sensitivities of the meridional heat transport across 26�N in the North Atlantic from temperature perturbations at two depths, 15 years

earlier. Top panel is for 1875 m, and lower panel is for 2960 m. From Heimbach et al. (2011).
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more widely used. In the meantime, the quest of ocean and

climate modelers and for the state estimation community

more specifically, for useful understanding of reliability,

remains a central, essential, goal. One should note that con-

ventional ocean GCMs or coupled climate models, run

without state estimation, are almost never accompanied

by uncertainty estimates—a serious lack—particularly in

an era in which “prediction skill” is being claimed.

Some authors compare their solutions to those inferred

from more conventional methods, for example, transport

calculations from box inversions of hydrographic sections.

These comparisons are worthwhile but it is a major error to

treat the hydrographic solutions as if they were true time-

averages or climatologies. It is now possible to compare

a state estimate from data obtained over a short interval

(e.g., March 2003) with a state estimate for that time,

sampled in the same way. Differences will appear in

the objective function, J. Inevitable discrepancies raise all

the fundamental questions of allocating errors amongst the

data, the model, and external controls. In the decadalþ
prediction problem (not discussed here), by definition there

are no data, and measures of error and skill are far more dif-

ficult to obtain. Divergence of IPCC (2007) models over

time (e.g., Schmittner et al., 2005; Stroeve et al., 2007),

even where fitted to the historical observations, is a strong

indicator of the fundamental difficulties involved in extrap-

olating even systems that appear to give an apparently good

fit to historical data, and they are reminiscent of the parable

above of fitting cubic polynomials to data.

7. DISCUSSION

The history of fluid dynamics generally, and of complex

model use in many fields, supports the inference that

models unconstrained by data can and do often go wildly

wrong (in the wider sense, see, e.g., May, 2004; Post and

Votta, 2005). Readers will recognize the strong point of

view taken by the present authors: that models unaccom-

panied by detailed, direct, comparisons with and constraints

by data are best regarded as a kind of science novel with a

mixture of truth and fiction.

As we go forward collectively, the need to develop

methods describing GCM and state estimate uncertainties

is compelling: how else can one combine the quantitative

understanding of oceanographic, meteorological and cryo-

spheric physics with the diverse sets of system observa-

tions? Such syntheses are the overarching goal of any

truly scientific field. Existing state estimates have many

known limitations, some of which will be overcome by

waiting for the outcome of Moore’s Law over the coming

years. Other problems, including the perennial and difficult

problem of oceanic mixing and dissipation (Munk and

Wunsch, 1998; Wunsch and Ferrari, 2004) are unlikely to

simply vanish with any forseeable improvement in com-

puter power. Further insight is required.

Lack of long-duration, large-scale, observations gen-

erates a fundamental knowledge gap. Without the estab-

lishment and maintenance of a comprehensive global

ocean observing system, which satisfies the stringent

requirements for climate research and monitoring, progress

over the coming decades will remain limited (Baker et al.,

2007; Wunsch et al., 2013).

Oceanographers now also directly confront the limits of

knowledge of atmospheric processes. Until about 20 years

ago, meteorological understanding so greatly exceeded that

of the ocean circulation that estimated state errors for the

atmosphere were of little concern. The situation has

changed emphatically with the global observations starting

inWOCE, along with the development of oceanic state esti-

mates.8 These estimation systems are better suited for the

purposes of climate research than those developed for

numerical weather prediction.

For climate change purposes, what is needed are useful

state estimates for the coupled Earth system such that

property evolution within and exchanges across its compo-

nents are fully accounted for by closed cycles including

heat, freshwater, energy and momentum. The coupled

system must ultimately include oceanic, atmospheric, ter-

restrial, and cryospheric physics, as well as associated

property transports (e.g., representing the carbon cycle),

and the entirety of the properly understood relevant obser-

vations in those fields. Thus, atmospheric precipitation and

evaporation pattern changes can be constrained tightly by

changes in the oceanic state. ECCO and related programs

have demonstrated how to carry out such recipes. Conven-

tional weather forecast methods are not appropriate, and

implementation of a fully coupled state estimation system

that will be ongoing is a challenge to governments, univer-

sities, and research organizations alike. Bengtsson et al.

(2007) proposed a limited step in this direction. Sugiura

et al. (2008) and Mochizuki et al. (2009) have made some

tentative starts. Surely we must have the capability.

ACKNOWLEDGMENTS

Support was provided by the US National Ocean Partnership Program

with contributions from the National Aeronautics and Space Admin-

istration, the National Science Foundation, and the National Oceano-

graphic and Atmospheric Administration. The collaboration of our

many ECCO partners is gratefully acknowledged. G. Forget was par-

ticularly helpful with the calculations involving version 4. CW also

thanks AOPP and Balliol College, Oxford, for support and hospitality

through the George Eastman Visiting Professorship. Detailed com-

ments by R. Ponte and the anonymous reviewers were very helpful.

8. The authors have been asked repeatedly at meetings “Why don’t ocean-

ographers adopt the sophisticated methods used by meteorologists?” The

shoe, however, is now firmly on the other foot.

Chapter 21 Ocean Circulation and Ice State Estimate 575



REFERENCES

Ablain, M., Cazenave, A., Valladeau, G., Guinehut, S., 2009. A new

assessment of the error budget of global mean sea level rate estimated

by satellite altimetry over 1993-2008. Ocean Sci. 5, 193–201.

Adcroft, A., Hill, C., Campin, J.-M., Marshall, J., Heimbach, P., 2004.

Overview of the formulation and numerics of the MIT GCM. In:

Proceedings of the ECMWF Seminar on Recent Developments in

Numerical Methods for Atmospheric and Ocean Modelling, 6–10

September 2004, Shinfield Park, Reading, UK, pp. 139–150.

Alley, R.B., Clark, P.U., Huybrechts, P., Joughin, I., 2005. Ice-sheet and

sea-level changes. Science 310, 456–460.

Ayoub, N., 2006. Estimation of boundary values in a North Atlantic circu-

lation model using an adjoint method. Ocean Model. 12 (3–4),

319–347.

Baehr, J., 2010. Influence of the RAPID-MOCHA array and Florida

current cable observations on the ECCO-GODAE state estimate. J.

Phys. Oceanogr. 40, 865–879.

Baker, D.J., Schmitt, R.W., Wunsch, C., 2007. Endowments and new

institutions for long term observations. Oceanography 20 (4), 10–14.

Barker, P.M., Dunn, J.R., Domingues, C.M., Wijffels, S.E., 2011.

Pressure sensor drifts in Argo and their impacts. J. Atmos. Oceanic

Technol. 28, 1036–1049.

Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.,

1992. The software engineering laboratory: an operational software

experience factory. In: Proceedings of the 14th International

Conference on Software Engineering, pp. 370–381.

Bengtsson, L., Hagemann, S., Hodges, K.I., 2004. Can climate trends be

calculated from reanalysis data? J. Geophys. Res. 109, D11111.

Bengtsson, L., et al., 2007. The need for a dynamical climate reanalysis.

Bull. Am. Meteorol. Soc. 88, 495–501.

Björck, A., 1996. Numerical Methods for Least Squares Problems. Society

for Industrial Mathematics, Philadelphia, 408 pp.

Bromwich, D.H., Fogt, R.L., 2004. Strong trends in the skill of the

ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes

of the southern hemisphere, 1958-2001. J. Clim. 17, 4603–4619.

Bromwich, D.H., Guo, Z.C., Bai, L.S., Chen, Q.S., 2004. Modeled Ant-

arctic precipitation. Part I: spatial and temporal variability. J. Clim.

17, 427–447.

Bromwich, D.H., Fogt, R.L., Hodges, K.I., Walsh, J.E., 2007. A tropo-

spheric assessment of the ERA-40, NCEP, and JRA-25 global reana-

lyses in the polar regions. J. Geophys. Res. 112, D10.

Bromwich, D.H., Nicolas, J.P., Monaghan, A.J., 2011. An assessment of

precipitation changes over Antarctica and the southern ocean since

1989 in contemporary global reanalyses. J. Clim. 24, 4189–4209.

Campin, J.-M., Adcroft, A., Hill, C., Marshall, J., 2004. Conservation of

properties in a free surface model. Ocean Model. 6, 221–244.

Carton, J.A., Santorelli, A., 2008. Global decadal upper-ocean heat

content as viewed in nine analyses. J. Clim. 21, 6015–6035.

Carton, J.A., Chepurin, G., Cao, X.H., Giese, B., 2000. A simple ocean

data assimilation analysis of the global upper ocean 1950-95. Part I:

methodology. J. Phys. Oceanogr. 30, 294–309.

Cazenave, A., Remy, F., 2011. Sea level and climate: measurements and

causes of changes. Wiley Interdiscip. Rev. Clim. Change 2, 647–662.

Church, J.A.,White, N.J., Konikow, L.F., Domingues, C.M., Cogley, J.G.,

Rignot, E., Gregory, J.M., van den Broeke, M.R., Monaghan, A.J.,

Velicogna, I., 2011. Revisiting the Earth’s sea-level and energy budgets

from 1961 to 2008. Geophys. Res. Lett. 38, L18601.

Cullather, R.I., Bosilovich, M., 2012. The energy budget of the polar

atmosphere in MERRA. J. Clim. 25, 5–24.

Dansereau, V.,Heimbach, P., Losch,M., 2013. Simulation of sub-ice shelf

melt rates in a general circulation model: velocity-dependent transfer

and the role of friction. J. Geophys. Res.

Dutkiewicz, S., Follows, M., Heimbach, P., Marshall, J., 2006. Controls on

ocean productivity and air-sea carbon flux: an adjoint model sensi-

tivity study. Geophys. Res. Lett. 33, L02603. http://dx.doi.org/

10.1029/2005GL024987.

Elliott, W.P., Gaffen, D.J., 1991. On the utility of radiosonde humidity

archives for climate studies. Bull. Am. Meteorol. Soc. 72, 1507–1520.

Evensen, G., 2009. Data Assimilation: The Ensemble Kalman Filter.

Springer Verlag, Berlin.

Fenty, I.G.,Heimbach, P., 2013a. Coupled Sea Ice-Ocean State estimation

in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr. 43 (6),

884–904. http://dx.doi.org/10.1175/JPO-D-12-065.1.

Fenty, I.G., Heimbach, P., 2013b. Hydrographic preconditioning for sea-

sonal sea ice anomalies in the Labrador Sea. J. Phys. Oceanogr. 43 (6),

863–883. http://dx.doi.org/10.1175/JPO-D-12-064.1.

Ferreira, D.,Marshall, J., Heimbach, P., 2005. Estimating eddy stresses by

fitting dynamics to observations using a residual-mean ocean circu-

lation model and its adjoint. J. Phys. Oceanogr. 35, 1891–1910.

Follows, M.J., Dutkiewicz, S., 2011. Modeling diverse communities of

marine microbes. Ann. Rev. Mar. Sci. 3, 427–451.

Follows, M.J.,Dutkiewicz, S., Grant, S., Chisholm, S.W., 2007. Emergent

biogeography of microbial communities in a model ocean. Science

315, 1843–1846.

Forget, G., 2010. Mapping ocean observations in a dynamical framework:

a 2004-06 ocean atlas. J. Phys. Oceanogr. 40, 1201–1221.

Forget, G., Wunsch, C., 2007. Estimated global hydrographic variability.

J. Phys. Oceanogr. 37, 1997–2008.

Forget, G., Heimbach, P., Ponte, R., Wunsch, C., Campin, J.M., Hill, C.,

2013. A new-generation global ocean state estimate, ECCO version 4:

System formulation and basic characteristics. Unpublished Report.

Fukumori, I., Raghunath, R., Fu, L., Chao, Y., 1999. Assimilation of

TOPEX/POSEIDON data into a global ocean circulation model:

how good are the results? J. Geophys. Res. 104, 25647–25665.

Fukumori, I., 2002. A partitioned Kalman filter and smoother. Mon.

Weather Rev. 130, 1370–1383.

Ganachaud, A., 2003a. Error budget of inverse box models: the North

Atlantic. J. Atmos. Oceanic Technol. 20, 1641–1655.

Ganachaud, A., 2003b. Large-scale mass transports, water mass for-

mation, and diffusivities estimated from World Ocean Circulation

Experiment (WOCE) hydrographic data. J. Geophys. Res. 108, 3213.

Ganachaud, A.,Wunsch, C., 2002. Large-scale ocean heat and freshwater

transports during the World Ocean Circulation Experiment. J. Clim.

16, 696–705.

Gebbie, G., 2007. Does eddy subduction matter in the Northeast Atlantic

Ocean? J. Geophys. Res. 112, C06007.

Gebbie, G., Heimbach, P., Wunsch, C., 2006. Strategies for nested and

eddy-permitting state estimation. J. Geophys. Res. Oceans 111, C10073.

Gelb, A. (Ed.), 1974. Applied Optimal Estimation. MIT Press, Cambridge,

MA, 382 pp.

Giering, R., Kaminski, T., 1998. Recipes for adjoint code construction.

ACM Trans. Math. Softw. 24, 437–474.

Griewank, A., Walther, A., 2008. Evaluating Derivatives. Principles and

Techniques of Algorithmic Differentiation. SIAM, Philadelphia,

442 pp.

PART V Modeling the Ocean Climate System576



Griffies, S.M., Greatbatch, R.J., 2012. Physical processes that impact the

evolution of global mean sea level in ocean climate models. Ocean

Model. 51(C), 37–72. http://dx.doi.org/10.1016/j.ocemod.2012.04.003.

Hecht, M.W., Smith, R.D., 2008. Towards a physical understanding of the

North Atlantic: a review of model studies. In: Hecht, M.W.,

Hasumi, H. (Eds.), Ocean Modeling in an Eddying Regime. AGU

Geophysical Monograph, vol. 177. American Geophysical Union,

Washington, DC, pp. 213–240.

Heimbach, P., Losch,M., 2012.Adjoint sensitivitiesof sub-ice shelfmelt rates

to ocean circulation under Pine Island Ice Shelf, West Antarctica. Ann.

Glaciol. 53 (60), 59–69. http://dx.doi.org/10.3189/2012/AoG60A025.

Heimbach, P., Hill, C., Giering, R., 2005. An efficient exact adjoint of the

parallel MIT General Circulation Model, generated via automatic dif-

ferentiation. Future Gener. Comput. Syst. 21, 1356–1371.

Heimbach, P., Forget, G., Ponte, R., Wunsch, C., 2009. Observational

requirements for global-scale ocean climate analysis: lessons from

ocean state estimation. CommunityWhite Paper. In: Hall, J., Harrison,

D.E., Stammer, D. (Eds.), 2010: Proceedings of OceanObs’09: Sus-

tained Ocean Observations and Information for Society, Venice, Italy,

21-25 September 2009, vol. 2. ESA Publication WPP-306. ESA,

Frascati, Italy. http://dx.doi:10.5270/OceanObs09.cwp.42.

Heimbach, P., Menemenlis, D., Losch, M., Campin, J.M., Hill, C., 2010.

On the formulation of sea-ice models. Part 2: lessons from multi-year

adjoint sea ice export sensitivities through the Canadian Arctic Archi-

pelago. Ocean Model. 33 (1–2), 145–158.

Heimbach, P., Wunsch, C., Ponte, R.M., Forget, G., Hill, C., Utke, J.,

2011. Timescales and regions of the sensitivity of Atlantic meridional

volume and heat transport magnitudes: toward observing system

design. Deep Sea Res. Part II 58, 1858–1879.
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