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1. Introduction

Recent theoretical work on the behavior of aggregate stock market prices has tried

to account for several empirical regularities. These include the excess volatility puzzle of

LeRoy and Porter (1981) and Shiller (1981), the equity premium puzzle of Mehra and

Prescott (1985), the low correlation of stock returns and consumption growth noted by

Hansen and Singleton (1982, 1983), and, most importantly, the evidence on predictability

of stock market returns using the aggregate dividend-price ratio (Campbell and Shiller

1988, Fama and French 1988). Both traditional and behavioral models have tried to

account for this evidence.

Yet this research has largely neglected another set of relevant data, namely those

on actual investor expectations of stock market returns. As recently summarized by

Greenwood and Shleifer (2013) using data from multiple investor surveys, many

investors hold extrapolative expectations, believing that stock prices will continue rising

after they have previously risen, and falling after they have previously fallen.1 This

evidence is inconsistent with the predictions of many of the models used to account for

the other facts about aggregate stock market prices. Indeed, in most traditional models,

investors expect low returns, not high returns, if stock prices have been rising: in these

models, rising stock prices are a sign of lower investor risk aversion or lower perceptions

of risk. Cochrane (2011) finds the survey evidence uncomfortable, and recommends

discarding it.

In this paper, we present a new model of aggregate stock market prices which

attempts to both incorporate extrapolative expectations held by a significant subset of

investors, and address the evidence that other models have sought to explain. The model

includes both rational investors and price extrapolators, and examines security prices

when both types are active in the market. Moreover, it is a consumption-based asset

pricing model with infinitely lived consumers optimizing their decisions in light of their

beliefs and market prices. As such, it can be directly compared to some of the existing

1 Greenwood and Shleifer (2013) analyze data from six different surveys. Some of the surveys are of
individual investors, while others cover institutions. Most of the surveys ask about expectations for the next
year’s stock market performance, but some also include questions about the longer term. The average
investor expectations computed from each of the six surveys are highly correlated with one another and are
all extrapolative. Earlier studies of stock market investor expectations include Vissing-Jorgensen (2004),
Bacchetta, Mertens, and Wincoop (2009), and Amromin and Sharpe (2013).
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research.  We suggest that our model can reconcile the evidence on expectations with the

evidence on volatility and predictability that has animated recent work in this area.

Why is a new model needed? As Table 1 indicates, traditional models of financial

markets have been able to address pieces of the existing evidence, but not the data on

expectations. The same holds true for preference-based behavioral finance models, as

well as for the first generation belief-based behavioral models that focused on random

noise traders without imposing a specific structure on beliefs. Several papers listed in

Table 1 have studied extrapolation of fundamentals. However, these models also struggle

to match the survey evidence: after good stock market returns driven by strong cash

flows, the investors they describe expect higher cash flows, but, because these

expectations are reflected in the current price, they do not expect higher returns.2 Finally,

a small literature, starting with Cutler, Poterba, and Summers (1990) and DeLong et al.

(1990b), focuses on models in which some investors extrapolate prices. Our goal is to

write down a more “modern” model of price extrapolation that includes infinite horizon

investors, some of whom are fully rational, who make optimal consumption decisions

given their beliefs, so that the predictions can be directly compared to those of the more

traditional models.

Our infinite horizon continuous-time economy contains two assets: a risk-free

asset with a fixed return; and a risky asset, the stock market, which is a claim to a stream

of dividends and whose price is determined in equilibrium. There are two types of

traders. Both types maximize expected lifetime consumption utility. They differ only in

their expectations about the future. Traders of the first type, “extrapolators,” believe that

the expected price change of the stock market is a weighted average of past price

changes, where more recent price changes are weighted more heavily. Traders of the

second type, “rational traders,” are fully rational: they know how the extrapolators form

2 For example, in the cash-flow extrapolation model of Barberis, Shleifer, and Vishny (1998), investors’
expectations of returns remain constant over time, even though their expectations of cash flows vary
significantly. More elaborate models of cash-flow extrapolation – for example, models with both
extrapolators and rational traders – may, as a byproduct, come closer to matching the survey evidence;
here, we present an alternative approach that may be simpler and more direct. Models in which investors
try to learn an unknown cash-flow growth rate face similar challenges to models of cash-flow
extrapolation. Moreover, Greenwood and Shleifer (2013) find that survey expectations of returns are
negatively correlated with subsequent realized returns, a pattern that is hard to sustain in a model of rational
learning.
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their beliefs and trade accordingly. The model is simple enough to allow for a closed-

form solution.

We first use the model to understand how extrapolators and rational traders

interact. Suppose that, at time t, there is a positive shock to dividends. The stock market

goes up in response to this good cash-flow news. However, the extrapolators cause the

price jump to be amplified: since their expectations are based on past price changes, the

stock price increase generated by the good cash-flow news leads them to forecast a higher

future price change on the stock market; this, in turn, causes them to push the time t stock

price even higher.

More interesting is rational traders’ response to this development. We find that

the rational traders do not aggressively counteract the overvaluation caused by the

extrapolators. They reason as follows. The rise in the stock market caused by the good

cash-flow news -- and by extrapolators’ reaction to it -- means that, in the near future,

extrapolators will continue to have bullish expectations for the stock market: after all,

their expectations are based on past price changes, which, in our example, are high. As a

consequence, extrapolators will continue to exhibit strong demand for the stock market in

the near term. This means that, even though the stock market is overvalued at time t, its

returns in the near future will not be particularly low – they will be bolstered by the

ongoing demand from extrapolators. Recognizing this, the rational traders do not sharply

decrease their demand at time t; they only mildly reduce their demand. Put differently,

they only partially counteract the overpricing caused by the extrapolators.

Using a combination of formal propositions and numerical analysis, we then

examine our model’s predictions about prices and returns. We find that these predictions

are consistent with several key facts about the aggregate market and, in particular, with

the basic fact that when prices are high (low) relative to dividends, the stock market

subsequently performs poorly (well). When good cash-flow news is released, the stock

price in our model jumps up more than it would in an economy made up of rational

investors alone: as described above, the price jump caused by the good cash-flow news

feeds into extrapolators’ expectations, which, in turn, generates an additional price

increase. At this point, the stock market is overvalued and prices are high relative to

dividends. Since, subsequent to the overvaluation, the stock market performs poorly on
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average, the level of prices relative to dividends predicts subsequent price changes in our

model, just as it does in actual data. The same mechanism also generates excess volatility

-- stock market prices are more volatile than can be explained by rational forecasts of

future cash flows – as well as negative autocorrelations in price changes at all horizons,

capturing the negative autocorrelations we see at longer horizons in actual data.

The model also matches some empirical facts that, thus far, have been taken as

evidence for other models. For example, in actual data, surplus consumption, a measure

of consumption relative to past consumption, is correlated with the value of the stock

market and predicts the market’s subsequent performance. These facts have been taken as

support for habit-based models. However, they also emerge naturally in our framework.

Our numerical analysis allows us to quantify the effects described above.

Specifically, we use the survey data studied by Greenwood and Shleifer (2013) and

others to parameterize the functional form of extrapolation in our model. For this

parameterization, we find, for example, that if 50% of investors are extrapolators while

50% are rational traders, the standard deviation of annual price changes is 30% higher

than in an economy consisting of rational traders alone.

There are aspects of the data that our model does not address. For example, even

though some of the investors in the economy are price extrapolators, the model does not

predict the positive autocorrelation in price changes observed in the data at very short

horizons. Also, there is no mechanism in our model, other than high risk aversion, that

can generate a large equity premium. And while the presence of extrapolators reduces the

correlation of consumption changes and price changes, this correlation is still much

higher in our model than in actual data.

In summary, our analysis suggests that, simply by introducing some extrapolative

investors into an otherwise traditional consumption-based model of asset prices, we can

make sense not only of some important facts about prices and returns, but also, by

construction, of the available evidence on the expectations of real-world investors. This

suggests that the survey evidence need not be seen as a nuisance, or as an impediment to

understanding the facts about prices and returns. On the contrary, the extrapolation

observed in the survey data is consistent with the facts about prices and returns, and may

be the key to understanding them.
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In Section 2, we present our model and its solution, and discuss some of the basic

insights that emerge from it. In Section 3, we assign values to the model parameters. In

Section 4, we show analytically that the model reproduces several key features of stock

prices. Our focus here is on quantities defined in terms of differences – price changes, for

example; given the structure of the model, these are the natural objects of study. In

Section 5, we use simulations to document the model’s predictions for ratio-based

quantities, such as the price-dividend ratio, that are more commonly studied by

empiricists. Section 6 concludes. All proofs and some discussion of technical issues are

in the Appendix.

2. The Model

In this section, we propose a heterogeneous-agent, consumption-based model in

which some investors extrapolate past price changes when making forecasts about future

price changes. Constructing such a model presents significant challenges, both because of

the heterogeneity across agents, but also because it is the change in price, an endogenous

quantity, that is being extrapolated. By contrast, constructing a model based on

extrapolation of exogenous fundamentals is somewhat simpler. To prevent our model

from becoming too complex, we make some simplifying assumptions – about the

dividend process (a random walk in levels), about investor preferences (exponential

utility), and about the risk-free rate (an exogenous constant). We expect the intuitions of

the model to carry over to more complex formulations.3

We consider an economy with two assets: a risk-free asset in perfectly elastic

supply with a constant interest rate r; and a risky asset, which we think of as the

aggregate stock market, and which has a fixed per-capita supply of Q. The risky asset is a

claim to a continuous dividend stream whose level per unit time evolves as an arithmetic

Brownian motion

,t D DdD g dt d  (1)

3 Several other models of the aggregate stock market make similar assumptions; see, for example,
Campbell and Kyle (1993) and Wang (1993). We discuss the constant interest rate assumption at the end of
Section 2.
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where Dg and D are the expected value and standard deviation of dividend changes,

respectively, and where  is a standard one-dimensional Wiener process. Both Dg and D

are constant in our model. The value of the stock market at time t is denoted by Pt and is

determined endogenously in equilibrium.

There are two types of infinitely-lived traders in the economy: “extrapolators” and

“rational traders.” Both types maximize expected lifetime consumption utility. The only

difference between them is that one type has correct beliefs about the expected price

change of the risky asset, while the other type does not.

The modeling of extrapolators is motivated by the survey evidence analyzed by

Vissing-Jorgensen (2004), Bacchetta, Mertens, and Wincoop (2009), Amromin and

Sharpe (2013), and Greenwood and Shleifer (2013). These investors form beliefs about

the future price change of the stock market by extrapolating the market’s past price

changes. To formalize this, we introduce a measure of “sentiment,” defined as:

( ) 0 ,,
t t s

t s dteS dP 





    (2)

where s is the running variable for the integral. St is simply a weighted average of past

price changes on the stock market where the weights decrease exponentially the further

back we go into the past. The definition of St includes even the most recent price change,

dPtdt  Pt  Ptdt. The parameter  plays an important role in our model. When it is high,

sentiment is determined primarily by the most recent price changes; when it is low, even

price changes in the distant past have a significant effect on current sentiment. In Section

3, we use survey data to estimate .

We assume that extrapolators’ expectation of the change, per unit time, in the

value of the stock market, is

, 0 1[ ] / ,e e
P t t t tg dP dt S   (3)

where the superscript “e” is an abbreviation for “extrapolator,” and where, for now, the

only requirement we impose on the constant parameters 0 and 1 is that 1  0. Taken

together, equations (2) and (3) capture the essence of the survey results in Greenwood

and Shleifer (2013): if the stock market has been rising, extrapolators expect it to keep

rising; and if it has been falling, they expect it to keep falling. While we leave 0 and 1



8

unspecified for now, natural values are 0  0 and 1  1, and these are indeed the values

that we use later.4

We do not take a strong stand on the underlying source of the extrapolative

expectations in (3). One possible source is a judgment heuristic such as

representativeness, or the closely-related “belief in the law of small numbers” (Barberis,

Shleifer, and Vishny 1998; Rabin 2002). For example, people who believe in the law of

small numbers think that even short samples will resemble the parent population from

which they are drawn. As a consequence, when they see good recent returns in the stock

market, they infer that it must currently have a high average return and will therefore

continue to perform well.5

The second type of investor, the rational trader, has correct beliefs about the

evolution of future stock prices. By correctly conjecturing the equilibrium price process,

the rational investors take full account of extrapolators’ endogenous responses to price

movements at all future times.

There is a continuum of both rational traders and extrapolators in the economy.

Each investor, whether a rational trader or an extrapolator, takes the risky asset price as

given when making his trading decision, and has CARA preferences with absolute risk

aversion  and time discount factor .6 At time 0, each extrapolator maximizes

0
0

e
tt C

e e
dt

   
 

 


 (4)

subject to his budget constraint

( )(1 )

,

e e e
t t dt t t t t t t t t t dt t

e e e e e
t t t t t

e e e e

t t

e

t

edW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


(5)

where e
tN is the per-capita number of shares he invests in the risky asset at time t.

Similarly, at time 0, each rational trader maximizes

4 When 0 and 1 equal 0 and 1, respectively, extrapolators’ beliefs are correct on average: while these
investors overestimate the subsequent price change of the stock market after good past price changes and
underestimate it after poor past price changes, the errors in their forecasts average out to zero in the long
run.
5 Another possible source of extrapolative expectations is the experience effect analyzed by Malmendier
and Nagel (2011). One caveat is that, as we show later, the investor expectations documented in surveys
depend primarily on recent past returns, while in Malmendier and Nagel’s (2011) results, distant past
returns also play a significant role.
6 The model remains analytically tractable even if the two types of investors have different values of  or .
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0
0

r
tt C

r e
dt

   
 

 


 (6)

subject to his budget constraint

( )(1 )

,

r r r r r r
t t dt t t t t t t t t t dt t

t t t t t t

r r r

t
r r r r

t
r

dW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


(7)

where r
tN is the per-capita number of shares he invests in the risky asset at time t, and

where the superscript “r” is an abbreviation for “rational trader.” Since rational traders

correctly conjecture the price process Pt, their expectation is consistent with that of an

outside econometrician.

We assume that rational traders make up a fraction , and extrapolators 1  , of

the total investor population. The market clearing condition that must hold at each time

is:

(1 ) ,r e
t t QN N    (8)

where, as noted above, Q is the per-capita supply of the risky asset.

We assume that both extrapolators and rational traders observe Dt and Pt on a

continuous basis. Moreover, they know the values of μ and Q, and traders of one type

understand how traders of the other type form beliefs about the future.7

Using the stochastic dynamic programming approach developed in Merton

(1971), we obtain the following proposition.

Proposition 1 (Model solution). In the heterogeneous-agent model described above, the

equilibrium price of the risky asset is

.t
t t

D
A BS

r
P    (9)

The price of the risky asset Pt and the sentiment variable St evolve according to

,
1 (1 ) (1 )t t

D DgB
dP S dt d

B B r B r

  
        

(10)

7 As in any framework with less than fully rational traders, the extrapolators could, in principle, come to
learn that their beliefs about the future are inaccurate. We do not study this learning process; rather, we
study the behavior of asset prices when extrapolators are unaware of the bias in their beliefs.
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.
1 (1 )

D D
t t

g
dS S dt d

B r B r
  

    
  

 
(11)

At time t, the value functions for the extrapolators and the rational traders are

,

,

2

{ }

2

{ }

max( , , )

( , , )

exp ,

max exp .

s
e

e e
s s t

s s

s

r
s

r r
s t

N t

r r r r r r r

N

s C
e e e e e e e

t t t t t t
C

s C

t t t t t t
C t

e
J ds t r W

e
J ds

W S t a S b S c

W S t a S b S ct r W









  

  

 
             

  

  
 

            








(12)

The optimal per-capita share demands for the risky asset from the extrapolators and from

the rational traders are

0 1

1
, ,e e e r e

t t t t

Q
S NN N


  

 


   (13)

and the optimal consumption flows of the two types are

 

 

2

2

1 log(

1 log

)
,

,
( )

e e e e e
t t t t

t t
r r

t t
r r r

r
C rW a S b S c

r
C rW a S b S c


   

 


  
 


(14)

where the optimal wealth levels, e
tW and ,r

tW evolve as in (5) and (7), respectively. The

coefficients A, B, ,ea ,eb ,ec ,ra ,rb ,rc 0
e and 1

e are determined through a system of

simultaneous equations. 

To understand the role that extrapolators play in our model, we compare the

model’s predictions to those of a benchmark “rational” economy, in other words, an

economy where all traders are of the fully rational type, so that   1.8

Corollary 1 (Rational benchmark). If all traders in the economy are rational (  1), the

equilibrium price of the risky asset is

8 Another way of reducing our model to a fully rational economy is to set 0 and 1, the parameters in (3),
to gD /r and 0, respectively. In this case, both the rational traders and the extrapolators have the same,
correct beliefs about the expected price change of the risky asset per unit time.
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tP Q
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  (15)

and therefore evolves according to

.D D
t dt

g
dP

r
d

r



  (16)

The value function for the rational traders is

2 2 21 1
exp .

1
( , )

2
r r

t t
r

DJ t rW t
r

W Q
r

r
             




  
(17)

The optimal consumption flow is

2 2

2
,r D

t t

Qr
rW

r
C

r








 (18)

where the optimal wealth level, ,r
tW evolves as

2 2

2
.r D D

tdW dt
Q Q

r r
d

r

r

  
   


 (19)



2.1. Discussion

In Sections 4 and 5, we discuss the model’s implications in detail. However, the

closed-form solution in Proposition 1 already makes apparent its basic properties.

Comparing equations (9) and (15), we see that, up to a constant, the effect of

extrapolators on the risky asset price is given by the term BSt in equation (9), where, for

all of the basic parameter values we have considered, the coefficient B is positive.

Intuitively, if the sentiment level St is high, indicating that past price changes have been

high, extrapolators expect the stock market to continue to perform well and therefore

push its current price higher.

Equation (11) shows that, in equilibrium, the sentiment St follows a mean-

reverting process, one that reverts more rapidly to its mean as β increases. Put differently,

the mispricing BSt generated by extrapolators is eventually corrected, and more quickly

so for high values of β. To see this – in other words, to understand why, in our

framework, bubbles eventually burst – recall that an overpricing occurs when good cash-



12

flow news generates a price increase that then feeds into extrapolators’ beliefs, leading

them to push prices still higher. The form of extrapolation in equation (2), however,

means that as time passes, the price increase caused by the good cash-flow news plays a

smaller and smaller role in determining extrapolators’ beliefs. As a result, these investors

become less bullish over time, and the bubble deflates. This happens more rapidly when β

is high because, in this case, extrapolators quickly “forget” all but the most recent price

changes.

Comparing equations (10) and (16), we see that, as noted in the Introduction, the

presence of extrapolators amplifies the volatility of price changes – specifically, by a

factor of 1/(1  B) > 1. And while in an economy made up of rational investors alone,

price changes are not predictable -- see equation (16) -- equation (10) shows that they are

predictable in the presence of extrapolators. If the stock market has recently experienced

good returns, so that the sentiment variable St has a high value, the subsequent stock

market return is low on average: the coefficient on St in equation (10) is negative. In

short, high valuations in the stock market are followed by low returns, and low valuations

are followed by high returns. This anticipates some of our results on stock market

predictability in Sections 4 and 5.

Equation (13) shows that extrapolators’ share demand is a positive linear function

of the sentiment level St: for all values of the basic model parameters we have considered,

the derived parameter 1
e is positive. In other words, after a period of good stock market

performance, one that generates a high sentiment level St, extrapolators form more bullish

expectations of future price changes and increase the number of shares of the stock

market that they hold. With a fixed supply of these shares, this automatically means that

the share demand of rational traders varies negatively with the sentiment variable St:

rational traders absorb the shocks in extrapolators’ demand. While extrapolators’ beliefs

are, by definition, extrapolative, rational traders’ beliefs are contrarian: their beliefs are

based on the true price process (10) whose drift depends negatively on St.
9

9 Since the supply of the risky asset is fixed and there are only two groups of traders, the share demand of
rational traders must vary negatively with the sentiment level. In a stripped-down version of our
framework, we have also analyzed what happens when there are three types of traders: the two types we
examine here, but also a group of partially-rational investors who buy (sell) the risky asset when its price is
low (high) relative to fundamentals. We find that, in this economy, the share demand of the fully rational
traders is positively related to the sentiment level. In other words, consistent with the prediction of DeLong
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Equation (18) shows that, in the fully rational economy, optimal consumption is a

constant plus the product of wealth and the interest rate. Equation (14) shows that, when

extrapolators are present in the economy, the consumption policy of each type of agent

also depends on linear and quadratic terms in St. We find that the derived parameters ,ea

,ra ,eb and rb in equation (14) typically satisfy 0,ea  0,ra  and .e rb b The fact that

e rb b indicates that extrapolators increase their consumption more than rational traders

do after strong stock market returns. After strong returns, extrapolators expect the stock

market to continue to rise; an income effect therefore leads them to consume more.

Rational traders, on the other hand, correctly perceive low future returns and therefore do

not raise their consumption as much. The fact that ea and ra are both negative indicates

that, as sentiment increases in absolute magnitude, both types increase their consumption.

When St takes either a very high or a very low value, both types perceive the stock

market to be severely misvalued and therefore expect their respective investment

strategies to perform well in the future. This, in turn, leads them to raise their

consumption.

Since extrapolators have incorrect beliefs about future price changes, it is likely

that, in the long run, their wealth will decline relative to that of rational traders. However,

the price process in (10) is unaffected by the relative wealth of the two trader types: under

exponential utility, the share demand of each type, and hence also prices, are independent

of wealth. The exponential utility assumption allows us to abstract from the effect of

“survival” on prices, and to focus on what happens when both types of trader play a role

in setting prices.

At the heart of our model is an amplification mechanism: if good cash-flow news

pushes the stock market up, this price increase feeds into extrapolators’ expectations

about future price changes, which then leads them to push current prices up even higher.

However, this then further increases extrapolators’ expectations about future price

changes, leading them to push the current price still higher, and so on. Given this infinite

feedback loop, it is important to ask whether the heterogeneous agent equilibrium we

et al. (1990b) and the findings of Brunnermeier and Nagel (2004), these traders “ride the bubble” generated
by extrapolators.
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described above exists. The following corollary provides a condition for existence of

equilibrium.

Corollary 2 (Existence of equilibrium). The equilibrium described in Proposition 1

exists if and only if 1  |B|  0. When   0 (all investors are extrapolators), the

equilibrium described in Proposition 1 exists if and only if

1 ,r   (20)

assuming that 1  2. 

Corollary 2 shows that, when all investors in the economy are extrapolators, there

may be no equilibrium even for reasonable parameter values; loosely put, the feedback

loop described above may fail to converge. For example, if 1 = 1 and  = 0.5, there is no

equilibrium in the case of   0 if the interest rate is less than 50%. However, if even a

small fraction of investors are rational traders, the equilibrium is very likely to exist.

Indeed, for   0.05, we have found an equilibrium for all the parameter values we have

tried.

One of the assumptions of our model is that the risk-free rate is constant. To

evaluate this assumption, we compute the aggregate demand for the risk-free asset across

the two types of trader. We find that this aggregate demand is very stable over time and,

in particular, that it is uncorrelated with the sentiment level St. This is because the

demand for the risk-free asset from one type of trader is largely offset by the demand

from the other type: when sentiment St is high, rational traders increase their demand for

the risk-free asset (and move out of the stock market), while extrapolators reduce their

demand for the risk-free asset (and move into the stock market). When sentiment is low,

the reverse occurs. This suggests that, even if the risk-free rate were endogenously

determined, it would not fluctuate wildly, nor would its fluctuations significantly

attenuate the effects we describe here.

Our model is similar in some ways to that of Campbell and Kyle (1993) – a model

in which, as in our framework, the risk-free rate is constant, the level of the dividend on

the risky asset follows an arithmetic Brownian motion, and infinitely-lived rational
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investors with exponential utility interact with less rational investors. The difference

between the two models – and it is an important difference – is that, in Campbell and

Kyle (1993), the share demand of the less rational investors is exogenously assumed to

follow a mean-reverting process, while, in our model, extrapolators’ share demand is

derived from their beliefs.

3. Parameter Values

In this section, we assign benchmark values to the basic model parameters. We

use these values in the numerical simulations of Section 5. However, we also use them in

Section 4. While the core of that section consists of analytical propositions, we can get

more out of the propositions by evaluating the expressions they contain for specific

parameter values.

For easy reference, we list the model parameters in Table 2. The asset-level

parameters are the risk-free rate r; the initial level of the dividend 0 ;D the mean Dg and

standard deviation D of dividend changes; and the risky asset supply Q. The investor-

level parameters are the initial wealth levels for the two types of agents, 0
eW and 0 ;rW

absolute risk aversion  and the time discount rate ; 0 and 1, which link the sentiment

variable to extrapolators’ beliefs; , which governs the relative weighting of recent and

distant past price changes in the definition of sentiment; and finally, μ, the proportion of

rational traders in the economy.10

We set r = 2.5%, consistent with the low historical risk-free rate. We set the initial

dividend level 0D to 10, and given this, we choose 0.25;D  in other words, we choose

a volatility of dividend changes small enough to ensure that we only rarely encounter

negative dividends and prices in the simulations we conduct in Section 5. We set

0.05Dg  to match, approximately, the empirical ratio of /D Dg  in the data. Finally, we

set the risky asset supply to Q  5.

We now turn to the investor-level parameters. We set the initial wealth levels to

0 0
e rW W  5000; these values imply that, at time 0, the value of the stock market

10 For much of the analysis, we do not need to assign specific values to 0 ,D 0 ,eW and 0 ;rW the values of these
variables are required only for the simulations in Section 5.
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constitutes approximately half of aggregate wealth. We set risk aversion  equal to 0.1 so

that relative risk aversion, computed from the value function as ,WW

W

WJ
RRA

J
r W   is

12.5 at the initial wealth levels. And we choose a low time discount rate of  = 1.5%,

consistent with most other asset pricing frameworks.

This leaves four parameters: 0, 1, , and μ. As shown in equation (3), 0 and 1

determine the link between the sentiment variable St and extrapolators’ beliefs. We use 0

 0 and 1  1 as our benchmark values. The integral sum of the weights on past price

changes in the definition of sentiment in (2) is equal to one; informally, St represents “one

unit” of price change. It is therefore natural for extrapolators to scale St by 1  1 when

forecasting a unit price change in the future. Given this value of 1, we set 0  0 because

this ensures that extrapolators’ beliefs are correct “on average”: while extrapolators

overestimate the subsequent price change of the stock market after good past price

changes and underestimate it after poor past price changes, the errors in their forecasts of

future price changes over any finite horizon will, in the long run, average out to zero.11

The parameter  determines the relative weight extrapolators put on recent as

opposed to distant past price changes when forming expectations about the future; a high

value of  means a higher relative weight on recent price changes. To estimate , we use

the time-series of investor expectations from the Gallup surveys studied by Greenwood

and Shleifer (2013). We describe the estimation procedure in detail in the Appendix. In

brief, we run a regression of the average investor expectation of the price change in the

stock market over the next year, as recorded in the surveys, on what our model says

extrapolators’ expectation of this quantity should be at that time as a function of the

sentiment level and the model parameters. If the average investor expectation of the

future price change that we observe in the surveys depends primarily on recent past price

changes, the estimated  will be high. Conversely, if it depends to a significant extent on

price changes in the distant past, the estimated  will be low. The estimation makes use

11 We have also used the survey evidence to estimate 0 and 1 and find the estimated values to be close to
zero and one; see the Appendix for more details. The results we present in Sections 4 and 5 are similar
whether we use the estimated values or zero and one.
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of Proposition 2 below, and specifically, equation (22), which describes the price change

expected by extrapolators over any future horizon.

Proposition 2 (Price change expectations of rational traders and extrapolators).

Conditional on an initial sentiment level S0  s, rational traders’ expectation of the price

change in the stock market over the finite time horizon (0, t1) is:

 1

1

1
0 0 0 1 e ,ktr D D

t

g g t
B sP s

r r
SP           

   (21)

while extrapolators’ expectation of the same quantity is:
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where
1

k
B





and m  (1  1). When 0  0 and 1  1, (22) reduces to

10 0 0 1 .t
e P P S ss t     (23)



Equations (21) and (22) confirm that the expectations of extrapolators load positively on

the sentiment level, while the expectations of rational traders load negatively.

When we use the procedure described in the Appendix to estimate  from the

survey data, we obtain a value of approximately 0.5. For this value of , extrapolators’

expectations depend primarily on recent past price changes; specifically, when forming

their expectations, extrapolators weight the realized annual price change in the stock

market starting four years ago only 22% as much as the most recent annual price change.

While we pay most attention to the case of   0.5, we also present results for   0.05

and   0.75. When   0.05, the annual price change four years ago is weighted 86% as

much as the most recent annual price change, and when   0.75, only 11% as much.12

12 When we estimate , we assume that the surveyed investors correspond to the extrapolators in our model:
after all, the presence of extrapolators in our economy is motivated precisely by the survey evidence. If we
instead assumed that the surveyed investors correspond to all investors in our model, we would likely
obtain a similar value of . Since rational traders’ beliefs are the “mirror image” of extrapolators’ beliefs,
they weight past price changes in a similar way when forming their expectations.
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The final parameter is μ, the fraction of rational investors in the economy. We do

not take a strong stand on its value. While the average investor expectation in the survey

data is robustly extrapolative, it is hard to know how representative the surveyed

investors are of the full investor population. In our analysis, we therefore consider a range

of values of μ: 1 (an economy where all investors are fully rational), 0.75, 0.5, and 0.25.

We do not consider the case of   0 because Corollary 2 indicates that, when all

investors are extrapolators, the equilibrium does not exist for reasonable values of  and

1. While we consider four different values of μ, we focus on the lower two values,

namely 0.5 and 0.25. The fact that the average investor in the surveys studied by

Greenwood and Shleifer (2013) – surveys that include both sophisticated and less

sophisticated respondents – exhibits extrapolative expectations suggests that many

investors in actual financial markets are extrapolators.

For a given set of values of the basic parameters in Table 2, we solve a system of

simultaneous equations, as outlined in the Appendix, to compute the “derived”

parameters: 0
e and 1 ,e which determine extrapolators’, and hence rational traders’, optimal

share demand (see equation (13)); ,ea ,eb ,ec ,ra rb and ,rc which determine investors’

optimal consumption policies (see equation (14)); A and B, which specify how the price

level P depends on the level of the sentiment S and the level of the dividend D (see

equation (9)); and finally ,P the volatility of price changes in the stock market (see

equation (10)). For example, if   0.25,   0.5, and the other basic parameters have the

values shown in Table 2, the values of the derived parameters are:

0 1

3 3 3

1.54, 0.51, 19.75, 117.04, 0.99,

1.22 , 1.28 , 7.31 , 0.042,

1.63, 3.47.

10 10 10

e e
P

e r e r

e r

A B

a a b b

c c
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Before we turn to the empirical implications of our model, we make one more

observation about investor expectations. Proposition 2 confirms that extrapolators’

expectations about future price changes depend positively on the level of sentiment,

while rational traders’ expectations are negatively related to sentiment. A natural question

is: Is the expectation of future price changes, averaged across all investors, extrapolative

or contrarian? Interestingly, we find that this average expectation – specifically, the
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population-weighted average of the expressions in equations (21) and (22) – depends

positively on the sentiment level for any   1; in other words, if there are any

extrapolators at all in the economy, the average investor expectation is extrapolative. The

reason for this is that, while extrapolators hold extrapolative beliefs and rational traders

hold contrarian beliefs, rational traders are always less contrarian than extrapolators are

extrapolative. One implication of this result is that the extrapolation observed in the

survey data does not necessarily mean that most investors in the economy hold incorrect,

extrapolative beliefs; it is in principle consistent with the presence of relatively few

extrapolators in the economy. However, the economic magnitude and robustness of the

extrapolation in all six surveys studied by Greenwood and Shleifer (2013) leads us to

focus on lower values of  in the results we present in Sections 4 and 5.

4. Empirical Implications

In this section, we present a detailed analysis of the empirical predictions of the

model. Under the assumptions that the dividend level follows an arithmetic Brownian

motion and that investors have exponential utility, it is more natural, in our analysis, to

work with quantities defined in terms of differences rather than ratios – for example, to

work with price changes Pt  P0 rather than returns; and with the “price-dividend

difference” P  D/r rather than the price-dividend ratio. For example, Corollary 1 shows

that, in the benchmark rational economy, it is P  D/r that is constant over time, not P/D.

In this section, then, we study the predictions of price extrapolation for these difference-

based quantities. In Section 5, we also consider the ratio-based quantities.

We study the implications of the model for the difference-based quantities with

the help of formal propositions. For example, if we are interested in the autocorrelation of

price changes, we first compute this autocorrelation analytically, and then report its value

for the parameter values in Table 2. For two crucial parameters, μ and β, we consider a

range of possible values. Recall that μ is the fraction of rational traders in the overall

investor population, while β controls the relative weighting of near-past and distant-past

price changes in extrapolators’ forecast of future price changes.

We are interested in how the presence of extrapolators in the economy affects the

behavior of the stock market. To understand this more clearly, in the results that we
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present below, we always include, as a benchmark, the case of   1, in other words, the

case where the economy consists entirely of rational traders.

4.1. Predictive power of D/r  P for future price changes

A basic fact about the stock market is that the dividend-price ratio of the stock

market predicts subsequent returns with a positive sign; moreover, the ratio’s predictive

power is greater at longer horizons. In the context of our model, the natural analogs of the

dividend-price ratio and of returns are the dividend-price difference D/r  P and price

changes, respectively. We therefore examine whether, in our economy, the dividend-price

difference predicts subsequent price changes with a positive sign, and whether this

predictive power is greater at longer horizons.

It is helpful to express the long-horizon evidence in the more structured way

suggested by Cochrane (2011), among others. If we run three univariate regressions – a

regression of future returns on the current dividend-price ratio; a regression of future

dividend growth on the current dividend-price ratio; and a regression of the future

dividend-price ratio on the current dividend-price ratio – then, as a matter of accounting,

the three regression coefficients must (approximately) sum to one. Empirically, the three

regression coefficients are roughly 1, 0, and 0, respectively, at long horizons. In other

words, at long horizons, the dividend-price ratio forecasts future returns – not future cash

flows, and not its own future value.

We can restate this point in a way that fits more naturally with our model, using

quantities defined as differences, rather than ratios. Given the accounting identity

 0
0 0

0 ,t
t t

tD D D D
P P

r r
P P

r r
           
   

(25)

it is immediate that if we run three regressions – of the future price change, the (negative)

future dividend change, and the future dividend-price difference, on the current dividend-

price difference – the population values of the three coefficients will sum to one in our

economy, at any horizon. To match the empirical facts, our model needs to predict a
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regression coefficient in the first regression that, at long horizons, is approximately equal

to one.13 The next proposition shows that this is exactly the case.

Proposition 3 (The predictive power of D/r  P). Consider a regression of the price

change in the stock market over some time horizon (0, t1) on the level of D/r  P at the

start of the horizon. In population, the coefficient on the independent variable in the

regression is14
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Proposition 3 shows that, in our model, and consistent with the empirical facts,

the coefficient in a regression of price changes on the dividend-price difference is

positive and increases at longer horizons, rising in value asymptotically toward one.

These patterns are clearly visible in Table 3, which reports the value of the regression

coefficient in Proposition 3 for various values of μ and β, and for five different time

horizons: a quarter, a year, two years, three years, and four years. In the benchmark

rational economy (  1), the quantity D/r  P is constant; the regression coefficient in

Proposition 3 is therefore undefined.

The intuition for why D/r  P predicts subsequent price changes is

straightforward. A sequence of good cash flow news pushes up stock prices, which then

raises extrapolators’ expectations about the future price change of the stock market and

causes them to push stock prices even higher, lowering the value of D/r  P. Since the

13 If the coefficient in the first regression is approximately one, this immediately implies that the
coefficients in the second and third regressions are approximately zero, consistent with the evidence. The
coefficient in the second regression is exactly zero because dividend changes are unpredictable in our
economy. The coefficient in the third regression is then one minus the coefficient in the first regression; if
the latter is approximately one, the former is approximately zero.
14 The expectations that we compute in the propositions in Section 4 are taken over the steady-state
distribution of the sentiment level S. Ergodicity of the stochastic process St guarantees that sample statistics
will converge to our analytical results for very large samples.



22

stock market is now overvalued, the subsequent price change is low, on average. The

quantity D/r  P therefore forecasts price changes with a positive sign.

The table shows that, for a fixed horizon, the predictive power of D/r  P is

stronger for low : since the predictability of price changes is driven by the presence of

extrapolators, it is natural that this predictability is stronger when there are more

extrapolators in the economy. The predictive power of D/r  P is also weaker for low :

when  is low, extrapolators’ beliefs are more persistent; as a result, it takes longer for an

overvaluation to correct, reducing the predictive power of D/r  P for price changes at

any fixed horizon.

4.2. Autocorrelations of P  D/r

In the data, price-dividend ratios are highly autocorrelated at short lags. We would

like to know if our model can capture this. The natural analog of the price-dividend ratio

in our model is the difference-based quantity P  D/r. We therefore examine the

autocorrelation structure of this quantity.

In our discussion of the accounting identity in equation (25), we noted that, if we

run regressions of the future change in the stock price, the future change in dividends,

and the future dividend-price difference on the current dividend-price difference, then the

three regression coefficients we obtain must sum to one. Since dividends follow a random

walk in our model, we know that the coefficient in the second regression is zero. We also

know, from Proposition 3, that the coefficient in the first regression is 11 .kte The

coefficient in the third regression, which is also the autocorrelation of the price-dividend

difference P  D/r, must therefore equal 1 .kte The next proposition confirms this.

Proposition 4 (Autocorrelations of P  D/r). In population, the autocorrelation of P 

D/r at a time lag of t1 is
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In Table 4, we compute the autocorrelations in Proposition 4 for several pairs of

values of  and , and for lags of one quarter, one year, two years, three years, and four

years. The table shows that, in our model, and consistent with the empirical facts, the

price-dividend difference is highly persistent at short horizons, while at long horizons, the

autocorrelation drops to zero. The table shows that the autocorrelations are higher for low

values of : when  is low, extrapolators’ beliefs are very persistent, which, in turn,

imparts persistence to the price-dividend difference.

4.3. Volatility of price changes and of P  D/r

Empirically observed stock market returns and price-dividend ratios are thought

to exhibit “excess volatility,” in other words, to be more volatile than can be explained

purely by fluctuations in rational expectations about future cash flows. We now show

that, in our model, price changes and the price-dividend difference – the natural analogs

of returns and of the price-dividend ratio in our framework – also exhibit such excess

volatility. In particular, they are more volatile than in the benchmark rational economy

described in Corollary 1, an economy where prices changes are due only to changes in

rational forecasts of future cash flows.

Proposition 5 (Excess volatility). In the economy of Section 2, the standard deviation of

price changes over a finite time horizon (0, t1) is
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while the standard deviation of P  D/r over (0, t1) is
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Table 5 reports the standard deviation of annual price changes and of the annual

price-dividend difference P  D/r for several (, ) pairs. Panel A shows that, in the fully

rational economy (  1), the standard deviation of annual price changes is 10, in other
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words, D /r. When extrapolators are present, however, the standard deviation is

considerably higher: 30% higher when there are an equal number of extrapolators and

rational traders in the economy, a figure that, as we explain below, depends little on the

parameter . Similarly, Panel B shows that while the price-dividend difference is constant

in the fully rational economy, it varies significantly in the presence of extrapolators.

The results in Proposition 5 and in Table 5 confirm the intuition we described in

the Introduction, namely that the presence of extrapolators amplifies the volatility of

stock prices. A good cash flow shock pushes stock prices up and immediately leads

extrapolators to expect higher future stock price changes, which, in turn, leads them to

push current stock prices up even further. Rational investors counteract this

overvaluation, but only mildly so: since they understand how extrapolators form beliefs,

they know that extrapolators will continue to have optimistic beliefs about the stock

market in the near future, which, in turn, means that subsequent price changes, while

lower than average, will not be very low. As a consequence, rational investors do not

push back strongly against the overvaluation caused by the extrapolators. Put differently,

even if the fraction of extrapolators in the overall population is low, this can be sufficient

to significantly amplify the volatility of the stock market.

In Table 5, as expected, the greater the fraction of extrapolators in the economy,

the more “excess volatility” there is in price changes and in the price-dividend difference.

More interesting, the amount of excess volatility is largely insensitive to the parameter .

This may seem surprising at first: since extrapolators’ beliefs are more variable when  is

high, one might have thought that a higher  would correspond to higher price volatility.

However, another force pushes in the opposite direction: rational traders know that,

precisely because extrapolators change their beliefs more quickly when  is high, any

mispricing caused by the extrapolators will correct more quickly in this case. As a

consequence, when  is high, rational traders trade more aggressively against the

extrapolators, dampening volatility. Overall,  has little effect on volatility.

Does the higher price volatility generated by extrapolators leave the rational

traders worse off? It does not. Specifically, we find that, if we start with an economy

consisting of only rational traders and then gradually add more extrapolators while

keeping the per-capita supply of the risky asset constant, the value function of the rational
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traders increases in value. In other words, while the higher price volatility lowers rational

traders’ utility, this is more than compensated for by the higher profits the rational traders

expect to make by exploiting the extrapolators.

4.4. Autocorrelations of price changes

Empirically, returns on the stock market are positively autocorrelated at short

lags; at longer lags, they are negatively autocorrelated (Cutler, Poterba, and Summers

1991). We now examine what our model predicts about the autocorrelation structure of

the analogous quantity to returns in our framework, namely price changes.

Proposition 6 (Autocorrelations of price changes). In population, the autocorrelation of

price changes between (0, t1) and (t2, t3), where t2  t1, is
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In Table 6, we use Proposition 6 to compute the autocorrelation of price changes

for several pairs of values of  and , and at lags of one, two, three, four, eight, and

twelve quarters. The table shows that price changes are negatively autocorrelated at all

lags, with the autocorrelation tending to zero at long lags.

It is easy to see why, in our model, price changes are negatively autocorrelated at

longer lags. Suppose that there is good cash flow news at time t. The stock market goes

up in response to this news; but since this price rise causes extrapolators to expect higher

future price changes, they push the stock market even further up. Now that the stock
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market is overvalued, the long-term future price change is lower, on average. In other

words, past price changes clearly have negative predictive power for price changes that

are some way into the future.

Negative autocorrelations are indeed observed in the data, at longer lags; to some

extent, then, our model matches the data. However, there is also a way in which our

model does not match the data: actual returns are positively autocorrelated at the first

quarterly lag, while the price changes generated by our model are not.

It may initially be surprising that our model generates negative autocorrelations in

price changes even at the shortest lags. The reason for this prediction is that, as laid out in

equations (2) and (3), the weights extrapolators put on past price changes when they form

expectations decline the further back we go into the past. Consider again a good cash-

flow shock at time t that, as described above, feeds into extrapolators’ expectations and

amplifies the contemporaneous price change. The weighting scheme in equation (2)

means that, even an instant later, the positive time t price change that caused

extrapolators to become more bullish plays a smaller role in determining their

expectations; extrapolators therefore become a little less bullish, and there is a price

reversal.

The above discussion clarifies why some earlier models of return extrapolation –

for example, Cutler, Poterba, and Summers (1990), DeLong et al. (1990b), Hong and

Stein (1999), and Barberis and Shleifer (2003) – do generate positive short-term

autocorrelation. In these models, the weights extrapolators put on past price changes

when deciding on their share demand typically do not decline monotonically, the further

back we go into the past. In particular, in these models, extrapolators’ share demand at

time t depends on the lagged price change from time t  2 to time t  1; the lagged price

change therefore matters more than the more recent price change from t  1 to t in

determining share demand. This assumption generates positive short-term

autocorrelation: a price increase at time t  1 feeds into extrapolators’ share demand only

at time t, generating another price increase at that time. This suggests that an extension of

our model in which extrapolators react to past price changes with some delay when

forming their expectations may generate both negative long-term and positive short-term

autocorrelations in price changes. We do not pursue this approach here, however: doing
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so would greatly complicate the analysis while improving the model’s explanatory power

in only a minor way.

4.5. Correlation of consumption changes and price changes

Another quantity of interest is the correlation of consumption growth and returns.

In the data, this correlation is low. We now look at what our model predicts about the

analogous quantity: the correlation of consumption changes and price changes.

Proposition 7 (Correlation between consumption changes and price changes). In

population, the correlation between the change in consumption and the change in price

over a finite time horizon 1(0, )t is
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Panels A and B of Table 7 use Proposition 7 to compute the correlation of

consumption changes and price changes at a quarterly and annual frequency,

respectively, and for several (, ) pairs. The two panels show that, while the presence of

extrapolators slightly reduces this correlation relative to its value in the fully rational

economy, the correlation is nonetheless high. As is the case for virtually all consumption-

based asset pricing models, then, our model fails to match the low correlation of

consumption growth and returns in the data.

4.6. Predictive power of the surplus consumption ratio

Prior empirical research has shown that a variable called the “surplus

consumption ratio” – a measure of consumption relative to past consumption levels, is

contemporaneously correlated with the price-dividend ratio on the overall stock market;

and furthermore, that it predicts subsequent returns with a negative sign (Campbell and

Cochrane 1999, Cochrane 2011). These findings have been taken as support for habit-

based models of the aggregate stock market. We show, however, that these patterns also

emerge from our model.
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As we have done throughout this section, we study difference-based quantities:

the surplus consumption difference rather than the surplus consumption ratio. Moreover,

we focus on the simplest possible surplus consumption difference, namely the current

level of aggregate consumption minus the level of aggregate consumption at some point

in the past. Proposition 8 computes the correlation between this variable and the current

price-dividend difference P  D/r.

Proposition 8: (Correlation between consumption change and P  D/r). In population,

the correlation between the change in consumption over a finite time horizon 1(0, )t and P

 D/r measured at time 1t is
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Proposition 9 examines whether the surplus consumption difference can predict

future price changes.

Proposition 9 (The predictive power of changes in consumption). Consider a

regression of the price change in the stock market from t1 to t2 on the change in

consumption over the finite time horizon (0, t1). In population, the coefficient on the

independent variable is
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Panel C of Table 7 uses Proposition 8 to compute, for several (, ) pairs, the

correlation between the surplus consumption difference and the price-dividend

difference. Here, the surplus consumption difference is the current level of aggregate

consumption minus the level of aggregate consumption a quarter ago. The panel shows

that the two quantities are significantly correlated. Table 8 uses Proposition 9 to compute

the coefficient on the independent variable in a regression of the price change in the stock

market over some interval – one quarter, one year, two years, three years, or four years –

on the surplus consumption difference measured at the beginning of the interval. It shows

that the surplus consumption difference has significant negative predictive power for

price changes, and that the predictive power is particularly strong for low μ and high β.

Taken together, then, Panel C of Table 7 and Table 8 show that the surplus consumption

difference can be correlated with the valuation level of the stock market and with the

subsequent stock price change even in a framework that does not involve habit-type

preferences in any way.

What is the intuition for these results? After a sequence of good cash flow news,

extrapolators cause the stock market to become overvalued and hence the price-dividend

difference to be high. However, at the same time, extrapolators’ optimistic beliefs about

the future lead them to raise their consumption; while the rational traders do not raise

their consumption as much, aggregate consumption nonetheless increases overall,

pushing the surplus consumption difference up. This generates a positive correlation
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between the price-dividend difference and the surplus consumption difference. Since the

stock market is overvalued at this point, the subsequent price change in the stock market

is low, on average. As a consequence, the surplus consumption difference predicts future

price changes with a negative sign.

4.7. Equity premia and Sharpe ratios

Proposition 10 below computes the equity premium and Sharpe ratio of the stock

market.

Proposition 10 (Equity premium and Sharpe ratio). In the economy of Section 2, the

equity premium, defined as the per unit time expectation of the excess price change and

dividend, can be written as

  1 .
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Panel A of Table 9 uses the proposition to compute the equity premium at an

annual horizon for several (, ) pairs. The panel shows that the equity premium rises as

the fraction of extrapolators in the economy goes up: the more extrapolators there are, the

more volatile the stock market is; the equity premium therefore needs to be higher to

compensate for the higher risk. Panel B of the table shows that it is not just the equity

premium that goes up as  falls, but also the Sharpe ratio.

5. Ratio-based Quantities
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In Section 4, we focused on quantities defined in terms of differences: on price

changes, and on the price-dividend difference P  D/r. Given the additive structure of our

model, these are the natural quantities to study. However, most empirical research works

with ratio-based quantities such as returns and price-dividend ratios. While these are not

the most natural quantities to look at in the context of our model, we can nonetheless

examine what our model predicts about them. We do this in this section.

Since analytical results are not available for ratio-based quantities, we use

numerical simulations to study their properties. In Section 5.1, we explain the

methodology behind these simulations. In Section 5.2, we present our results. In brief, the

results for the ratio-based quantities are broadly consistent with those for the difference-

based quantities in Section 4. However, we also interpret these results cautiously:

precisely because they are not the natural objects of study in our model, the ratio-based

quantities are not as well-behaved as the difference-based quantities examined in Section

4.

5.1. Simulation methodology

To conduct the simulations, we first discretize the model. In this discretized

version, we use a time-step of t  ¼, in other words, of one quarter. As indicated in

Section 3, the initial level of the dividend is 0 10D  and the initial wealth levels are

0 0 5000.e rW W  We further set the initial sentiment level, 0 ,S to the steady-state mean of

.Dg

r

We know from Proposition 1 that, at time 0,

 

0
0 0 1 0 0

2
0 0 0

0

0

,

1

,

log( ), { , }.
1i

e e e

i ii i

D
N S P A B

C r i e

S
r

rW a S b rS c

    

   

 

  
 

(42)

The proposition also tells us that, from time nt to (n+1)t, we have:
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with i {e, r}, and where ( 1){ , 1}n t n   are i.i.d. standard normal random variables with

mean 0 and a standard deviation of 1. We make the conventional assumptions that the

level of the consumption stream for the period between (nt, (n+1)t) is determined at

the beginning of the period; and that the level of the dividend paid over this period is

determined at the end of the period.

For a given set of values of the basic model parameters in Table 2, we use the

procedure described in the proof of Proposition 1 to compute the parameters that

determine the optimal portfolio holdings and consumption choice – variables such as 1 ,e

for example.15 We then use the above equations to simulate a sample path for our

economy that is 200 periods long, in other words, 50 years long. We compute quantities

of interest from this 200-period time series – the autocorrelation of stock market returns,

say. We then repeat this process 10,000 times. In the next section, we report the average

return autocorrelation that we obtain across these 10,000 simulated paths.16

5.2. Results

15 Here, we are assuming that the values of the derived parameters, such as 1 ,e that determine investors’
optimal policies in the continuous-time framework are a good approximation to the values of these
parameters in the discrete-time analog of our model. One indication that this is a reasonable assumption is
that our numerical results are robust to changing t from 1/4 to 1/48, say.
16 If any of dividends, prices, aggregate consumption, or aggregate wealth turns negative somewhere along
a path, we discard that path. Since the standard deviation of dividend changes D = 0.25 is very low relative
to the initial dividend level D0, this is a rare occurrence: we discard only about 1% of simulated paths.
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Table 10 presents the model’s predictions for ratio-based quantities for  

0.25 and for three different values of . For each (, ) pair, we simulate 10,000

paths, each of which is 200 periods long. For each of the 10,000 paths, we compute

various quantities of interest – specifically, the quantities listed in the left column of

Table 10. The table reports the average value of each quantity across the 10,000

paths. The last column of the table reports the empirical value of each quantity

computed using U.S. stock market data over the post-war period from 1947 to

2011.17

We now discuss each of these quantities in turn. Most of them are simply the

ratio-based analogs of the quantities we studied in Section 4: for example, instead of

computing the standard deviation of price changes, we compute the standard

deviation of returns. However, we are also able to address some questions that we

did not discuss in any form in Section 4, such as whether the consumption-wealth

ratio or more complex formulations of the surplus consumption ratio have predictive

power for future returns.

Row 1: We report the coefficient on the independent variable in a regression

of total log excess returns measured over a one-year horizon on the log dividend-

price ratio at the start of the year. To be clear, as described above, we run this

regression in each of the 10,000 paths we simulate; the table reports the average

coefficient across all paths, as well as the average R-squared, in parentheses.

Consistent with the findings of Section 4.1, the table shows that the dividend-price

ratio predicts subsequent returns with a positive sign.

Row 2: We report the autocorrelation of the price-dividend ratio at a one-

year lag. Consistent with the results of Section 4.2, the ratio is highly persistent.

Row 3: We compute the excess volatility of returns -- specifically, the

standard deviation of stock returns in the heterogeneous-agent economy relative to

the standard deviation of returns in the rational benchmark economy. Consistent

with the findings of Section 4.3, we see that stock returns exhibit excess volatility.

17 For the nondurable consumption data, the sample period starts in 1952. Returns are based on the CRSP
value-weighted index. For the consumption-wealth ratio, wealth is computed in two different ways: the first
uses the market capitalization of the CRSP stock market, and the second uses aggregate household wealth
from the Flow of Funds accounts, following Lettau and Ludvigson (2001).
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Row 4: We compute the excess volatility of price-dividend ratios: the

standard deviation of the price-dividend ratio in the heterogeneous-agent economy

relative to its standard deviation in the rational benchmark economy. Consistent with

Section 4.3, the standard deviation of the price-dividend ratio goes up in the

presence of extrapolators.

Row 5: We compute the autocorrelation of quarterly log excess stock returns

at lags of one quarter and two years. As in Section 4.4, returns are negatively

autocorrelated.

Row 6: We report the correlation of annual log excess stock returns with

annual changes in quarterly log consumption. As in Section 4.5, this correlation is

higher than the correlation observed in the data.

Row 7: We compute the correlation between the surplus consumption ratio and

the price-dividend ratio, where both quantities are measured at a quarterly frequency.

Given the greater flexibility afforded by numerical simulations, we use a more

sophisticated definition of surplus consumption than in Section 4.6. While this definition

is still simpler than that used by Campbell and Cochrane (1999), it preserves the spirit of

their calculation. Specifically, we define the surplus consumption ratio as:

,
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where the superscript “a” stands for “aggregate,” and where the habit level Xt adjusts

slowly to changes in consumption:
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In simple terms, Xt is a weighted sum of past consumption levels, where recent

consumption levels are weighted more heavily. For a given , we choose n so that
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that is, we choose n so that even consumption
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changes in the distant past receive at least some weight in the computation of the

habit level. In our calculations, we set   0.95 and n  12.18

Row 7 of Table 10 shows that, as in Section 4.6, the surplus consumption

ratio and price-dividend ratio are positively correlated, consistent with the actual

data.

Row 8: We report the coefficient on the independent variable in a regression

of total log excess returns over a one-year horizon on the surplus consumption ratio

at the start of the year. Consistent with our results in Section 4.6 using a simpler

measure of surplus consumption, the surplus consumption ratio predicts subsequent

returns with a negative sign, as it does in actual data.

Row 9: Empirically, the consumption-wealth ratio has predictive power for

subsequent returns. Here, we examine whether our model can generate this pattern.

We compute the coefficient on the independent variable in a regression of total log

excess returns over a year on the log consumption-wealth ratio at the start of the

year. The table shows that the ratio does indeed have some predictive power.

What is the intuition for this predictive power? After a sequence of good cash

flow news, extrapolators cause the stock market to become overvalued. This, in turn,

increases aggregate wealth in the economy; it also increases aggregate consumption, but

not to the same extent: rational traders, in particular, do not increase their consumption

very much because they realize that future returns on the stock market are likely to be

low. Overall, the consumption-wealth ratio falls. Since the stock market is overvalued, its

subsequent return is lower than average. The consumption-wealth ratio therefore predicts

subsequent returns with a positive sign.

Row 10: We compute the annual equity premium and Sharpe ratio in our

economy.

In summary, while it is natural, in our framework, to study difference-based

quantities rather than ratio-based quantities, Table 10 shows that the ratio-based

18 When  = 0.95, quarterly consumption one year ago is weighted about 40% as much as current
consumption.
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quantities exhibit patterns that are broadly similar to those that we obtained in

Section 4 for the difference-based quantities.

6. Conclusion

Survey evidence suggests that many investors form beliefs about future stock

market returns by extrapolating past returns: they expect the stock market to perform well

(poorly) in the near future if it has recently performed well (poorly). Such beliefs are hard

to reconcile with existing models of the aggregate stock market. We study a

heterogeneous-agent model in which some investors form beliefs about future stock

market price changes by extrapolating past price changes, while other investors have

fully rational beliefs. We find that the model captures many features of actual returns and

prices. Importantly, however, it is also consistent with the survey evidence on investor

expectations. This suggests that the survey evidence does not need to be seen as a

nuisance; on the contrary, it is consistent with the facts about prices and returns and may

be the key to understanding them.
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Appendices

A. Proof of Proposition 1

In order to solve the stochastic dynamic programming problem, we need the
differential forms for the evolution of the state variables. From the definition of the

sentiment variable, ( ) ,
t t s

t s dtdPS e  


  its differential form is

.t t tdS dS dt P    (A1)

The term Stdt captures the fact that, when we move from time t to time t  dt,
all the earlier price changes that contribute to St become associated with smaller weights
since they are further away from time t  dt than they were from time t; the term dPt

captures the fact that the latest price change contributes positively to St; and the
parameter  captures the stickiness of this belief updating rule. Also, the wealth of each
type of trader evolves as

( )(1 )

{ ,, } ,

t dt t t t t t t t t dt

t t t t t

i i i i i i

i i
t

i
t

i
t

i i
t

W W C dt N P rdt N D dt N P

dW rW dt C dt rN Pdt N dP N D dt i e r

     

 



    
(A2)

consistent with the budget constraints in (5) and (7).
As noted in the main text, the derived value functions for the extrapolators and the

rational traders are
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The assumptions that traders have CARA preferences, that Dt follows an
arithmetic Brownian motion, that St evolves in a Markovian fashion as in (A1), and that
extrapolators’ biased beliefs in (3) are linearly related to St jointly guarantee that the
derived value functions are only functions of time, of the level of wealth, and of the level
of sentiment, but of nothing else (such as Dt or Pt). We verify this and discuss it further
after solving the model.

If we define
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then, from the theory of stochastic control, we have that19
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By Ito’s lemma, (A5) leads to the stochastic Bellman equations which state that, along
the optimal path of consumption and asset allocation,
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19 See Kushner (1967) for a detailed discussion of this topic.
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where e
Pg and r

Pg are the per unit time price change of the stock market expected by

extrapolators and rational traders, respectively, and where P is the per unit time

volatility of the stock price. Note that, as stated in (3), 0 1
e
Pg S   , and that r

Pg comes

from rational traders’ conjecture about the stock price process, which is yet to be
determined. Note also that, in continuous time, the volatility P is essentially observable

by computing the quadratic variation; as a result, the two types of traders agree on its
value. We assume, and later verify, that P is an endogenously determined constant that

does not depend on S or t. Finally, from the evolution of S in (A1), we know that idW and
S are locally perfectly correlated for both types of trader.

Since the infinite-horizon model is perpetual, and since, as verified later, the
evolutions of eW and rW do not depend explicitly on the level of the dividend or the stock
price, we know that the passage of time only affects the value functions through time
discounting. We can therefore write, for i  {e, r},
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Substituting (A7) into (A6) gives the reduced Bellman equations
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The first-order conditions of (A8) with respect to iC and iN are
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The first term on the right-hand side of (A10) is the share demand due to mean-variance
considerations; the second term is the hedging demand due to sentiment-related risk.

We now conjecture, and later verify, that the true equilibrium stock price satisfies

.t
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D
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The coefficients A and B are yet to be determined. Assuming that the rational traders
know this price equation and the true process for Dt, they can obtain the true evolution of
the stock price as
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by combining (1), (A1), and (A11). Substituting (A12) into (A1) yields
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From (A12) and (A13) it is clear that when B  1, the sentiment variable St follows an
Ornstein-Uhlenbeck process with a steady-state distribution that is Normal with mean

Dg

r
and variance

2

22 (1
,

)
D

Br 
 


and that the expected price change per unit time,
]
,

[r
t tdP

dt



also fluctuates around its long-run mean of Dg

r
with long-run variance of

2 3 2

2 32 (1
.

)
D B

Br

 


In addition,

1
,

)1 1
.

( ()
r D D
P t P

gB
S

B B r r
g

B
   
 







  
(A14)

That is, rational traders’ future expected price change is negatively and linearly related to
the sentiment level, and P is a constant if the conjecture in (A11) is valid.

Given the imposed belief structure that 0 1 ,e
Pg S   the extrapolators

subjectively believe that the stock price evolves as
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where ed is extrapolators’ perceived innovation term from the dividend process, which
itself follows

,e e
t D Dg dt ddD   (A16)

where e
Dg is extrapolators’ perceived expected dividend change per unit time.20

Differentiating (A11) and substituting in (A1) and (A16), extrapolators obtain
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in contrast with the price process (A12) obtained by the rational traders. Comparing
(A15) and (A17) suggests that

 0 1( (1 (1 .) ) )e
D t tS r rg B B r B S       (A18)

That is, extrapolators’ perceived expected dividend change per unit time depends
explicitly on St. (We note that this is quite different from directly extrapolating past
dividend changes.)

Price-agreement across the two types of traders, in other words,
r e e
P P P PdP dt d dt dg g     (A19)

prevents extrapolators from seeing, through retrospection, that their belief structure is
biased, and provides a direct relation between d and de. Equations (A12), (A17), and
(A19) jointly confirm dividend-agreement across traders:

.D D
e

D D
edD dt d dg tg d     (A20)

We guess that the solutions of ( , )e eI W S and ( , )r rI W S are

20 If, instead, the extrapolators know the true process for Dt, they will believe that dPt  (0  1St)dt +
Pd, a price process that, given that B/(1  B)  0  1, clearly deviates from the true process in (A12)
. In other words, even after a time interval of length dt, extrapolators will, in principle, be able to learn that
their beliefs are wrong.
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2( , ) ex , { , }.pi i i i i iI W S r a S b rS ecW i         (A21)

Substituting (A21) into the optimal consumption rule in (A9) and the optimal share
demand of the stock in (A10) yields
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For the extrapolators, substituting 0 1
e
Pg S   and the price equation (A11) into

(A23) gives
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0 1 0 12 2

2
, wh andere .

e e
e e e e eP P

P P

rA b rB a
N S

r r

   
  

  
  

 


  (A24)

Substituting the price equation (A11), the form of eI in (A21), the optimal consumption
eC in (A22), and the optimal share demand eN in (A24) into the reduced Bellman

equation (A8) for the extrapolators, we obtain the following quadratic equation in S:
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which is equivalent to three simultaneous equations:
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(A27)
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(A28)

These three equations determine the coefficients ,ea ,eb ,ec 0
e , and 1

e as

functions of the coefficients A and B. If, as we assume, extrapolators know the belief
structure of the rational traders as well as the parameters  and Q, it follows that they can
go through the intertemporal maximization problem for the rational investors (specified
below) and figure out the price equation (A11). As a result, extrapolators know the
coefficients A and B, and through equations (A26), (A27), and (A28), they can solve for
their optimal share demand ,eN as well as for their value function .iJ
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We now turn to the rational traders. Using r
Pg and P from (A14), the form of rI

in (A21), rN from (A23), the optimal share demand of the stock from extrapolators in
(A24), and the market clearing condition (1 ) ,r eN QN    we obtain ra and rb as
functions of A and B,
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(A29)

Substituting the price equation (A11), r
Pg from (A14), the form of eI in (A21), the optimal

consumption rC in (A22), and the optimal share demand 1
0 1( )r Q e eN S

    into the

reduced Bellman equation (A8) for the rational traders, we obtain another quadratic
equation in S
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which is equivalent to three simultaneous equations:
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(A33)

These three equations determine the coefficients A, B, and .rc Equations (A26)-
(A28) and (A31)-(A33) are the mathematical characterization of the endogenous
interaction between rational traders and the extrapolators. The procedure for solving these
simultaneous equations is left to the next section of the Appendix.

The fact that the conjectured forms of Pt, ,eI and rI in (A11) and (A21) satisfy the
Bellman equations in (A8) for all Wt and St verifies these conjectures, conditional on the
validity of the assumption that Wt and St are the only two stochastic state variables. To
verify the latter, note that the price equation in (A11), the optimal consumption rules in
(A22), and the fact that the solutions of e

tN and r
tN are linearly related to St jointly

guarantee that the evolutions of e
tW and r

tW in (A2) depend explicitly only on St. Lastly,

the derived evolution of the stock price in (A12) verifies the assumption that P is an

endogenously determined constant. This completes the verification procedure.
Equations (A11), (A12) and (A13), (A24), and (A22) confirm equations (9), (10),

(11), (13), and (14) in the main text, respectively, and equations (A7) and (A21) together
confirm (12). This completes the proof of Proposition 1. 

B. Solving the Simultaneous Equations

To solve equations (A26), (A27), (A28), (A31), (A32), and (A33), we group them
into three pairs of equations and solve each pair in sequence. First, we use (A26) and
(A31) to determine ea and B, where, in turn, we use (A14), (A24), and (A29) to express

,P 1
e , and ra as functions of ea and B. Second, we use (A27) and (A32) to determine

eb and A, where, in turn, we use (A24) and (A29) to express 0
e and rb as functions of

,eb A, and B. Lastly, we solve each of (A28) and (A33) to obtain ec and ,rc respectively.

The fact that the value function ( , , )iJ W S t is multiplicatively separable in W, S, and t
simplifies the model and ensures tractability. For instance, our model has the feature that
the discount factor  only affects optimal consumption and optimal wealth, but not the
equilibrium price: for both types of investor, optimal share demand is unrelated to .

C. Proof of Corollary 1

When all traders in the economy are fully rational, (A21) reduces to

( ) ,
rr r WrI W e K  (A34)

where K is a constant to be determined. Substituting (A34) into (A10) and using ,rN Q
we know that the equilibrium stock price is
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  (A35)

This third term on the right-hand side of this equation shows that Pt is pegged to the
current level of the dividend; the other two terms capture dividend growth and
compensation for risk. Substituting (A34) and (A35) into the Bellman equation (A8)
determines the coefficient K as

2 2 2
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1 DQr

r r
K

r

  
 




 

(A36)

From (A9), optimal consumption is
2 2

log( ) .
1

2
DC rW r K rW
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r r


     





(A37)

From (A2), (A35), and (A37), optimal wealth evolves according to
2 2

2
.r D D

tdW dt
Q Q

r r
d

r

r

  
   


 (A38)

This completes the proof of Corollary 1. 

D. Proof of Corollary 2
Differentiating both sides of (A11) gives

( .) D D
t t

g
dP B

dt d

r
Sdt dP

 



   (A39)

If there is positive cash-flow news that increases the stock price by , then, from (A39),
the presence of sentiment in the equilibrium price will push the price up by a further
amount B, and then by a further amount 2B2, and so on. The total price increase due
to a shock of size  is therefore

2 2 2 2(1 )
1

.
1

B B B
B

B         


 


  (A40)

This geometric series converges if and only if 1  |B|  0. That is, the price equation
(A11) is an “equilibrium” price equation if and only if 1  |B|  0.

When all investors are extrapolators (  0), the market clearing condition implies
2

0
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,
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P
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r

 








 (A41)
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Substituting (A42) into (A26), we obtain
2 2

1 10 [ 2 1 ]( ) 2 ) (2[ (1 )].e e e
Pa Ba r a r              (A43)

Under the condition that 1  2, (A43) implies 0.ea  Given this, (A42) then implies that

1 / .B r  (A44)

Since the necessary and sufficient condition for existence of the conjectured equilibrium
is 1  |B|  0, (A44) now means that a necessary condition for existence is
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1 .r  (A45)

We have not yet shown the sufficiency of this condition; to do so, we need to check
(A27) and (A28) to see whether we can determine A, ,eb and .ec Substituting 0ea  and
(A44) into (A27), we obtain

1unless0 ( 1) .eb r    (A46)

With 0,eb  we then obtain, from (A41), that
2 2 1 1 2

0 0 1(
.

1 )P DQr Q r r
A

r r

        
 (A47)

Now substituting 0, 0,e ea b  (A41), (A44), and
(1 )

D
P B r







into (A28) gives

2 22
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log( ) .De Qr
c r

r r r

 






   (A48)

Quite generally, then, we can solve for A, ,eb and ec if condition (A45) holds. Therefore,
we can claim that (A45) is both a necessary and sufficient condition.

We note that this proof does not rule out any nonlinear equilibria. 

E. Proofs of Propositions 2 to 10
The statistical properties of the sentiment process St can be derived by studying a

related process, ,k
t

t
teZ S which evolves according to

.
kt

ktD
t SdZ d

ke
de

g

r
t    (A49)

Unlike the sentiment process, the Zt process has a non-stochastic drift term, and is
therefore easier to analyze. We use this process repeatedly in our proofs of Propositions 2
to 6.

E.1. Proof of Proposition 2
It is straightforward to calculate the price change expectations of rational traders.

Combining extrapolators’ belief about the instantaneous price change, (A15), and the
differential definition of the sentiment variable, (A1), we find that extrapolators’
subjective belief about the evolution of St is

0 1( 1)[ .] e
t t SS ddS dt       (A50)

Extrapolators believe that e is a standard Wiener process. This means that, from the
perspective of extrapolators, the evolution of ,me

t
t

teZ S where m  (1  1), is

0 .mt me e
t S

te d dZ ed t    (A51)

Using the statistical properties of the e
tZ process, as perceived by extrapolators, we obtain

(22). When m  0, applying L'Hôpital's rule to (22) gives (23). 
E.2. Proof of Proposition 3

From (A11), we know that
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1 1 1
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It is obvious that  
10 0v ., 0co tS D D  Using the properties of the Z process, we can

show
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We also obtain
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2
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2
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  (A54)

Equations (A52), (A53), and (A54) then jointly give (26). 

E.3. Proof of Proposition 4
For the autocorrelation structure of P  D/r, we know from (A11) that
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(A56)

It is straightforward to show that
1

2
0var( ) va /( 2 .r )t SS S k   Putting these results

together, we obtain equation (27) in the main text. 

E.4. Proof of Proposition 5
From the price equation (A11), we know that the variance of price changes is

given by

       
1 1 1 1 1

2 1 2
0 0 0 0 0var cov v ,ar 2 .vart t t t tP P S S S S DB Br rD D D       (A57)

The quantity  
1 0var tS S can be expressed as
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where the subscript s means that we are conditioning on S0  s. We can show
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Using the properties of the Z process, we also find that
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 (A60)

and
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Substituting (A59) and (A60) into (A58) gives
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Substituting (A61), (A62), and
1

2
0 1var( )t DD D t  into (A57) gives equation (28) in the

main text. Combining the price equation (A11) with (A62) leads to (29). 

E.5. Proof of Proposition 6
From (A11), we know that
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(A63)

Using the properties of the Z process, we obtain
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and

    3 2 1
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t t tD D S S e e e
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In addition, since the increments in future dividends are independent of any random
variable that is measurable with respect to the information set at the current time,

   
1 3 2 1 3 20 0cov , cov , 0 .t t t t t tD D D D S S D D    (A66)

Substituting (A64), (A65), and (A66) into (A63) yields the first equation in (31). The
second equation in (31) is derived in Proposition 5, and the third equation can be derived
in a similar way. 

E.6. Proof of Propositions 7 to 9
From the budget constraints (A2), the price equation (A11), and the optimal

consumptions (A22), we know that aggregate wealth evolves as
2 .)( W t W t W WS b S c dt ddW a    (A67)

Substituting this into (A22) yields
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To compute
1 10 0cov ,( )t tC C P P  and

1 0var( ),tC C we first need to compute the

covariance of every combination of two terms in the last line of (A68). For example, one
of these covariances is21
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(A69)

The other covariance terms can be computed in a similar way. Rearranging and
simplifying terms, we obtain (33), (35), (37), and (39). Equation (34) has been derived in
Proposition 5. 

E.7. Proof of Proposition 10
Substituting the equilibrium price equation (A11) and its evolution (A12) into our

definition of the equity premium,  1
t t tdP D dt rPdt

dt
  , gives (40) in the main text. For

the Sharpe ratio, by the law of total variance,
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  (A70)

Combining (40) with (A70) gives (41). 

F. Estimating 

Estimating equations
Our objective is to estimate the model parameters , 0, and 1 using the survey

data.
Suppose that we have a time-series of aggregate stock market prices with sample

frequency t (we use t  ¼ for quarterly data). Then, at time t, the proper discretization
of (A1) is

1
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   (A71)
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Here, the weighting functions are parameterized by  and

by n, which measures how far back investors look when forming their beliefs. These
weights must sum to 1.

21 The derivation of (A69) makes use of Fubini’s theorem. We have checked that the conditions that allow
the use of Fubini’s theorem hold in our context. For more on these conditions, see Theorem 1.9 in Liptser
and Shiryaev (2001).
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The key assumption of our model is that extrapolators’ expected price change (not
expected return) is

0 1[ ] / ).(e
t t tdP dt S   (A72)

The expectation in (A72) is computed over the next instant of time, from t to t  dt, not
over a finite time horizon. In the surveys, however, investors are typically asked to state
their beliefs about stock market performance over the next year. It is therefore not fully
correct to estimate (, 0, 1) using (A72). We must instead compute what the model
implies for the price change extrapolators expect over a finite horizon. We do this in
Proposition 2 of the paper, and find:

1

1

1
0 1 1 1 0 2

( )( ) 1
[ | ] ( )( ,) ( )

m t t
e
t t t t

m t t e
P P S s s t t ms

m

 

  
  

       (A73)

where 1).(1m  

The first term on the right-hand side of (A73) is extrapolators’ expected price
change at time t, 0 1 ,s   multiplied by the time horizon, 1 .t t (For example, t1  t  0.5

for a six-month horizon). The second term captures extrapolators’ subjective beliefs
about how the sentiment level will evolve over the time horizon, 1 ,t t The parameters (,

0, 1) enter here in a non-linear fashion.
To determine (, 0, 1), we therefore estimate both

1 110 1 ) ,ˆ ˆ ˆ )]([ ] [ (e
t t t t tttP P S       (A74)

and
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             (A75)

with 1 1( ) )ˆ ˆ ˆ ˆ, (1m     and ˆ)(tS  constructed as described above. We also estimate

equation (A75) for the special case where 1 is fixed at 1. In this case, equation (A75)
becomes:
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Survey data
We estimate equations (A74), (A75), and (A76) using the Gallup survey data

studied by Greenwood and Shleifer (2013) and others. We start with the “rescaled”
version of the series described in that paper. After the rescaling, the reported expectations
are in units of percentage expected returns on the aggregate stock market over the
following 12 months. We then convert this series into expected price changes by
multiplying by the level of the S&P 500 price index at the end of the month in which
participants have been surveyed. That is,
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(A77)

The resulting Gallup series comprises 135 datapoints between October 1996 and
November 2011. The data are monthly but there are also some gaps.

We estimate equations (A74), (A75), and (A76) using nonlinear least squares
regression. We use 60 quarters of lagged price changes in the S&P 500 price index when
constructing S above. We report coefficients and t-statistics based on Newey West
standard errors with a lag length of 6 months.

Coefficient Equation (A74) Equation (A75) Equation (A76)

β 0.49 0.44 0.68
[t-stat] [6.50] [5.77] [10.73]

λ0 0.09 0.07 0.07
[t-stat] [30.24] [35.41] [36.18]

λ1 1.35 1.32
[t-stat] [8.70] [9.48]

R-squared 0.77 0.74 0.75
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Table 1: Selected Models of the Aggregate Stock Market

Model
allows for
intermediate
consumption

D/P
predicts
returns

Accounts
for
volatility

Accounts
for
equity
premium

Accounts
for
survey
evidence

TRADITIONAL

Habit Campbell and Cochrane (1999) Yes Yes Yes Yes No

Long-run risk
Bansal and Yaron (2004) Yes No Yes Yes No

Bansal, Kiku, and Yaron (2012) Yes Yes Yes Yes No

Rare disasters
Rietz (1988), Barro (2006) Yes No No Yes No

Gabaix (2012), Wachter (2013) Yes Yes Yes Yes No

LEARNING
Timmerman (1993) Yes Yes Yes No No

Wang (1993) Yes Yes Yes No No

BEHAVIORAL

Preference-based

Prospect theory Barberis, Huang, and Santos (2001) Yes Yes Yes Yes No

Ambiguity
aversion Ju and Miao (2012)

Yes Yes Yes Yes No

Belief-based

Noise trader risk
DeLong et al. (1990a) Yes Yes Yes No No

Campbell and Kyle (1993) Yes Yes Yes No No

Extrapolation of
fundamentals

Barberis, Shleifer, and Vishny (1998) No Yes Yes No No

Choi (2006) Yes Yes Yes Yes No

Fuster, Hebert, and Laibson (2011) Yes Yes Yes No No

Alti and Tetlock (2013) No Yes Yes No No

Hirshleifer and Yu (2013) Yes Yes Yes Yes No

Extrapolation of
returns

Cutler, Poterba, and Summers (1990) No Yes Yes No Yes

DeLong et al. (1990b) No Yes Yes No Yes

Hong and Stein (1999) No Yes Yes No Yes

Barberis and Shleifer (2003) No Yes Yes No Yes
Barberis, Greenwood, Jin, and Shleifer
(2013)

Yes Yes Yes No Yes
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Table 2: Parameter Values

The table reports the values we assign to the risk-free rate r; the initial level of the dividend 0 ;D the per unit time
mean gD and standard deviation D of dividend changes; the risky asset per-capita supply Q; the initial wealth levels,

0
eW and 0 ,rW of extrapolators and rational traders, respectively; absolute risk aversion ; the discount rate ; the

parameters 0, 1, and  which govern the beliefs of extrapolators; and the proportion  of rational traders in the
economy.

Parameter Value

r 2.50%

D0 10

gD 0.05

σD 0.25

Q 5

0
eW 5000

0
rW 5000

 0.1

 1.50%

λ0 0

λ1 1

 {0.05, 0.5, 0.75}

 {0.25, 0.5, 0.75, 1}
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Table 3: Predictive Power of D/r  P for Future Stock Price Changes

The table reports the population estimate of the regression coefficient when regressing the price change from time t
to time t  k (in quarters) on the time t level of D/r  P for k =1, 4, 8, 12, and 16, and for various pairs of values of
the parameters μ and β:

( )/ εt k t t t t ka b DP P r P     .
The calculations make use of Proposition 3 in the main text.



 k 1 0.75 0.5 0.25

0.05

1 - 0.014 0.016 0.022

4 - 0.055 0.064 0.085

8 - 0.106 0.124 0.162

12 - 0.155 0.180 0.233

16 - 0.201 0.233 0.298

0.5

1 - 0.134 0.161 0.219

4 - 0.438 0.504 0.628

8 - 0.684 0.754 0.861

12 - 0.822 0.878 0.948

16 - 0.900 0.940 0.981

0.75

1 - 0.194 0.232 0.311

4 - 0.579 0.652 0.774

8 - 0.822 0.879 0.949

12 - 0.925 0.958 0.988

16 - 0.968 0.985 0.997
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Table 4: Autocorrelations of P  D/r

The table reports the autocorrelation of P  D/r at various lags k (in quarters) and for various pairs of values of the
parameters  and . The calculations make use of Proposition 4 in the main text.



β k 1 0.75 0.5 0.25

0.05

1 - 0.986 0.984 0.978

4 - 0.945 0.936 0.915

8 - 0.894 0.876 0.838

12 - 0.845 0.820 0.767

16 - 0.799 0.767 0.702

0.5

1 - 0.866 0.839 0.781

4 - 0.562 0.496 0.372

8 - 0.316 0.246 0.139

12 - 0.178 0.122 0.052

16 - 0.100 0.060 0.019

0.75

1 - 0.806 0.768 0.689

4 - 0.421 0.348 0.226

8 - 0.178 0.121 0.051

12 - 0.075 0.042 0.012

16 - 0.032 0.015 0.003
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Table 5: Volatility of Price Changes and Volatility of P  D/r

Panel A reports the standard deviation of annual price changes for various pairs of values of the parameters μ and β;
Panel B reports the standard deviation of P  D/r, measured at an annual frequency, for various pairs of μ and β. The
calculations make use of Proposition 5 in the main text.

Panel A: Standard deviation of annual price changes



 1 0.75 0.5 0.25

0.05 10 11.20 13.15 17.43

0.5 10 11.17 13.03 16.86

0.75 10 11.04 12.67 15.90

Panel B: Standard deviation of annual P  D/r



 1 0.75 0.5 0.25

0.05 0 1.21 3.19 7.53

0.5 0 1.32 3.42 7.77

0.75 0 1.25 3.20 7.09
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Table 6: Autocorrelations of Price Changes

The table reports the autocorrelations of quarterly stock price changes at various lags k (in quarters) and for various
pairs of values of the parameters μ and β. The calculations make use of Proposition 6 in the main text.

Autocorrelations at horizon k



 k 1 0.75 0.5 0.25

0.05

1 0 -0.001 -0.003 -0.007

2 0 -0.001 -0.003 -0.007

3 0 -0.001 -0.003 -0.007

4 0 -0.001 -0.003 -0.007

8 0 -0.001 -0.003 -0.006

12 0 -0.001 -0.003 -0.006

0.5

1 0 -0.016 -0.038 -0.079

2 0 -0.013 -0.032 -0.062

3 0 -0.012 -0.027 -0.048

4 0 -0.010 -0.022 -0.038

8 0 -0.006 -0.011 -0.014

12 0 -0.003 -0.006 -0.005

0.75

1 0 -0.022 -0.054 -0.110

2 0 -0.018 -0.041 -0.076

3 0 -0.014 -0.032 -0.053

4 0 -0.012 -0.024 -0.036

8 0 -0.005 -0.008 -0.008

12 0 -0.002 -0.003 -0.002
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Table 7: Consumption, P  D/r, and Price Changes

Panel A shows the correlation between quarterly changes in consumption and quarterly changes in price; Panel B
shows the correlation between annual changes in consumption and annual changes in price; Panel C shows the
correlation between P  D/r and quarterly changes in consumption. The calculations make use of Propositions 7 and
8 in the main text.

Panel A: Correlation between quarterly consumption changes and quarterly price changes



 1 0.75 0.5 0.25

0.05 1 0.994 0.985 0.984

0.5 1 0.929 0.842 0.840

0.75 1 0.903 0.794 0.792

Panel B: Correlation between annual consumption changes and annual price changes



 1 0.75 0.5 0.25

0.05 1 0.994 0.985 0.984

0.5 1 0.947 0.878 0.876

0.75 1 0.935 0.853 0.849

Panel C: Correlation between quarterly consumption changes and P  D/r



 1 0.75 0.5 0.25

0.05 - 0.152 0.148 0.148

0.5 - 0.436 0.398 0.409

0.75 - 0.504 0.446 0.456
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Table 8: Predictive Power of Changes in Consumption for Future Price Changes

The table reports the population estimate of the regression coefficient when regressing the price change from time t
to time t  k (in quarters) on the most recent quarterly consumption change for k  1, 4, 8, 12, 16, and for various
pairs of values of the parameters  and :

1) ε(t k t t t t kP P a b C C       .
The calculations make use of Proposition 9 in the main text.



 k 1 0.75 0.5 0.25

0.05

1 0 -0.011 -0.026 -0.053

4 0 -0.043 -0.101 -0.205

8 0 -0.084 -0.195 -0.393

12 0 -0.123 -0.284 -0.565
16 0 -0.159 -0.366 -0.722

0.5

1 0 -0.107 -0.214 -0.442

4 0 -0.350 -0.671 -1.266

8 0 -0.547 -1.003 -1.738

12 0 -0.658 -1.168 -1.914

16 0 -0.720 -1.250 -1.979

0.75

1 0 -0.144 -0.270 -0.552

4 0 -0.429 -0.759 -1.375

8 0 -0.609 -1.023 -1.686

12 0 -0.686 -1.115 -1.756

16 0 -0.718 -1.147 -1.772



62

Table 9: Equity Premia and Sharpe Ratios

Panel A reports annual equity premia for various pairs of values of the parameters  and ; Panel B reports annual
Sharpe ratios for various pairs of  and . The calculations make use of Proposition 10 in the main text.

Panel A: Equity premia



 1 0.75 0.5 0.25

0.05 1.25 1.58 2.19 3.91

0.5 1.25 1.65 2.46 4.88

0.75 1.25 1.66 2.48 4.92

Panel B: Sharpe ratios



 1 0.75 0.5 0.25

0.05 0.125 0.140 0.165 0.220

0.5 0.125 0.143 0.173 0.233

0.75 0.125 0.143 0.172 0.227
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Table 10: Model Predictions for Ratio-based Quantities

The table summarizes the model’s predictions for ratio-based quantities. A full description of these quantities can be
found in Section 5.2 of the main text. The values of the basic model parameters are given in Table 2, and  (the
fraction of rational traders) is 0.25. For   0.05, 0.5, and 0.75, we report estimates of each quantity averaged over
10,000 simulated paths. In rows (1), (8), and (9), we report both a regression coefficient and, in parentheses, an R-
squared. The right-most column shows the empirical estimates for the post-war period from 1947-2011 (1952-2011
for consumption-related quantities because nondurable consumption data are available only from 1952).

Quantity of interest
 Post-war U.S. stock

market data0.05 0.5 0.75

(1) predictive power of
log(D/P)

0.29
(0.20)

0.46
(0.22)

0.45
(0.21)

0.11
(0.08)

(2) autocorrelation of P/D 0.93 0.84 0.85 0.94

(3) excess volatility of returns 2.32 2.91 2.97 -

(4) excess volatility of P/D 7.21 4.85 4.55 -

(5) autocorrelation of log excess return (k = 1) -0.01 -0.09 -0.14 0.11

autocorrelation of log excess return (k = 8) -0.01 -0.01 -0.01 -0.02

(6) correlation between Δ4c and x
tr 0.72 0.54 0.47 0.32

(7) correlation between surplus consumption and
P/D

0.26 0.33 0.27 0.10

(8) predictive power of
the surplus consumption ratio

-0.27
(0.15)

-0.89
(0.18)

-0.77
(0.17)

-0.77
(0.09)

(9) predictive power of
log(C/W)

0.51
(0.15)

0.12
(0.15)

0.01
(0.15)

0.02
(0.03)

0.33
(0.05)

(10) equity premium 1.16% 1.62% 1.64% 7.97%

Sharpe ratio 0.12 0.14 0.13 0.44


