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ABSTRACT

Efficient strategies for precise genome editing in
human-induced pluripotent cells (hiPSCs) will
enable sophisticated genome engineering for
research and clinical purposes. The development
of programmable sequence-specific nucleases
such as Transcription Activator-Like Effectors
Nucleases (TALENs) and Cas9-gRNA allows
genetic modifications to be made more efficiently
at targeted sites of interest. However, many
opportunities remain to optimize these tools and
to enlarge their spheres of application. We
present several improvements: First, we developed
functional re-coded TALEs (reTALEs), which not
only enable simple one-pot TALE synthesis but
also allow TALE-based applications to be per-
formed using lentiviral vectors. We then
compared genome-editing efficiencies in hiPSCs
mediated by 15 pairs of reTALENs and Cas9-
gRNA targeting CCR5 and optimized ssODN
design in conjunction with both methods for
introducing specific mutations. We found Cas9-
gRNA achieved 7–8� higher non-homologous end
joining efficiencies (3%) than reTALENs (0.4%) and
moderately superior homology-directed repair
efficiencies (1.0 versus 0.6%) when combined with
ssODN donors in hiPSCs. Using the optimal design,
we demonstrated a streamlined process to
generated seamlessly genome corrected hiPSCs
within 3 weeks.

INTRODUCTION

Precise genome editing in human-induced pluripotent cells
(hiPSCs) will enable functional studies of human genetic
variation and enhance the potential use of hiPSCs for re-
generative medicine. Currently, genome editing via
sequence-specific nucleases represents the most efficient
way to precisely edit human cell genomes (1–3). A
nuclease-mediated double-stranded DNA (dsDNA)
break in the genome can be repaired by two main mech-
anisms (4): non-homologous end joining (NHEJ), which
frequently results in the introduction of non-specific inser-
tions and deletions (indels), or homology-directed repair
(HDR), which incorporates a homologous strand as a
repair template. When a sequence-specific nuclease is de-
livered along with a homologous donor DNA construct
containing the desired mutations, gene targeting
efficiencies are increased by 1000-fold compared with
just the donor construct alone (5). Thus, the development
of programmable nucleases has greatly facilitated the
practice of targeted genome engineering.
Despite large advances in gene editing tools, many chal-

lenges and questions remain regarding the use of custom-
engineered nucleases in hiPSC engineering. First, despite
their design simplicity, Transcription Activator-Like
Effectors Nucleases (TALENs) target particular DNA se-
quences with tandem copies of Repeat Variable Diresidue
(RVD) domains (6). Although the modular nature of
RVDs simplifies TALEN design, their repetitive sequences
complicate methods for synthesizing their DNA constructs
(7–10) and also impair their use with lentiviral gene delivery
vehicles, most likely by causing sequence instabilities (11).
Next, we sought to improve the ease and sensitivity of

current detection methods for assessing genome editing. In
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current practice, NHEJ and HDR are frequently
evaluated using separate assays. Mismatch-sensitive endo-
nuclease assays (12) are often used for assessing NHEJ,
but the quantitative accuracy of this method is variable,
and the sensitivity is limited to NHEJ frequencies greater
than �3% (12). Meanwhile, HDR is frequently assessed
by cloning and sequencing, a completely different and
often cumbersome procedure. Sensitivity is still an issue
because, although high editing frequencies on the order of
50% are frequently reported for some cell types, such as
U2OS and K562 (10,13), frequencies are generally lower in
hiPSCs (14). Recently, high editing frequencies have been
reported in hiPSC and hESC using TALENs (15) and even
higher frequencies with the CRISPR Cas9-gRNA system
(16–19). However, editing rates at different sites appear to
vary widely (17), and editing is sometimes not detectable
at all at some sites (20). Moreover, although the recent
successes in editing hiPSC genomes with TALENs and
Cas9 are striking, genome editing using these tools has
not yet been systematically explored and compared. To
come to a fuller understanding of these issues and
optimize inefficiencies will require simple and efficient col-
lection and analysis of NHEJ and HDR rates at large
numbers of sites using tools that accurately capture low
as well as high rates. To this end, we developed a robust
and user-friendly package using next generation
sequencing to screen HR and NHEJ events in hiPSCs
together.
As a demonstration of how our improved synthesis

method for TALEs, and our genome editing assessment
tool, can expedite data gathering, analysis and optimiza-
tion, we used these tools to compare reTALEN and Cas9
efficiencies in hiPSCs at 15 sites near the CCR5 locus. As
with TALEN and Cas9 editing of hiPSCs, generally, use
of ssODNs as DNA donors has been reported (21,22), but
the optimal design and scope of ssODNs for this purpose
have not been systematically explored. We then used our
tools to optimize the design of ssODNs used as donors for
scarless genome engineering.
Another area for improvement in editing procedures for

hiPSC relates to the clonal isolation of the hiPSCs them-
selves, an operation that is difficult in part because hiPSC
are difficult to grow out from isolated single cells because
in the absence of appropriate cell-to-cell contacts with
other hiPSCs or feeder cells. However, procedures that
improve clonal hiPSC isolation have recently been
reported (23), and we adapted these to integrate with the
other procedures we report here. Taken all together, we
demonstrate that it is possible to obtain clonal, precisely
genome-edited hiPSCs within 3 weeks, including within
this the amount of time required to synthesize optimal
reagents and perform rapid prospective screening of
target events.

MATERIALS AND METHODS

gRNA assembly

We incorporated 19 bp of the selected target sequence (i.e.
50-N19 of 50-N19-NGG-30) into two complementary 100
mer oligonucleotides (TTCTTGGCTTTATATATCTTG

TGGAAAGGACGAAACACCGN19GTTTTAGAGCT
AGAAATAGCAAGTTAAAATAAGGCTAGTCC).
Each 100 mer oligonucleotide was suspended at 100mM
in water, mixed with equal volume and annealed in
thermocycle machine (95�C, 5min; Ramp to 4�C, 0.1�C/
s). To prepare the destination vector, we linearized the
gRNA cloning vector (Addgene plasmid ID 41824,
Supplementary Sequence S3) using AfIII and purified
the vector through purification. We carried out the
(10 ml) gRNA assembly reaction with 10 ng annealed
100 bp fragment, 100 ng destination backbone, 1�
Gibson assembly reaction mix (New England Biolabs) at
50�C for 30min, and reaction can be processed directly for
bacterial transformation to colonize individual assemblies.

re-TALEs design and assembly

re-TALEs were optimized at different levels to facilitate
assembly and improve expression. re-TALE DNA se-
quences were first co-optimized for a human codon-
usage and low mRNA folding energy at the 50 end
(GeneGA, Bioconductor). The obtained sequence was
evolved through several cycles to eliminate repeats
(direct or inverted) longer than 11 bp (Supplementary
Figure S8). In each cycle, synonymous sequences for
each repeat are evaluated. Those with the largest
hamming distance to the evolving DNA are selected.
The sequence of one of re-TALE possessing 16.5
monomers is listed in Supplementary Sequence S1.

re-TALE dimer blocks encoding two RVDs
(Supplementary Figure S2A) were generated by two
rounds of PCR under standard Kapa HIFI (KPAP)
PCR conditions, in which the first round of PCR
introduced the RVD coding sequence and the second
round of PCR generated the entire dimer blocks with
36 bp overlaps with the adjacent blocks. PCR products
were purified using QIAquick 96 PCR Purification Kit
(QIAGEN), and the concentrations were measured by
Nano-drop. The primer and template sequences are
listed in Supplementary Tables S1 and S2.

re-TALENs and re-TALE-TF destination vectors were
constructed by modifying the TALE-TF and TALEN
cloning backbones (24). We re-coded the 0.5 RVD
regions on the vectors and also incorporated SapI
cutting site at the designated re-TALE cloning site. The
sequences of re-TALENs and re-TALE-TF backbones are
listed in Supplementary Sequence S2. Plasmids can be pre-
treated with SapI (New England Biolabs) with manufac-
turer recommended conditions and purified with
QIAquick PCR purification kit (QIAGEN).

We carried out the (10 ml) one-pot TALE Single-
incubation Assembly (TASA) assembly reaction with
200 ng of each block, 500 ng of destination backbone,
1� TASA enzyme mixture [2U SapI, 100U Ampligase
(Epicentre), 10mU T5 exonuclease (Epicentre), 2.5U
Phusion DNA polymerase (New England Biolabs)] and
1� isothermal assembly reaction buffer as described
before (25) [5% PEG-8000, 100mM Tris–HCl (pH 7.5),
10mM MgCl2, 10mM DTT, 0.2mM each of the four
dNTPs and 1mM NAD]. Incubations were performed at
37�C for 5min and 50�C for 30min. TASA assembly
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reaction can be processed directly for bacterial transform-
ation to colonize individual assemblies. The efficiency of
obtaining full-length construct is �20% with this
approach. Alternatively, >90% efficiency can be
achieved by three-steps assembly. First, 10 ml of re-
TALE assembly reactions were performed with 200 ng of
each block, 1� re-TALE enzyme mixture (100U
Ampligase, 12.5mU T5 exonuclease, 2.5U Phusion
DNA polymerase) and 1� isothermal assembly buffer at
50�C for 30min, followed by standardized Kapa HIFI
PCR reaction, agarose gel electrophoresis and QIAquick
Gel extraction (Qiagen) to enrich the full-length re-
TALEs. In all, 200 ng of re-TALE amplicons can then
be mixed with 500 ng of Sap1-pre-treated destination
backbone, 1� re-TALE assembly mixture and 1� isother-
mal assembly reaction buffer and incubated at 50�C for
30min. The re-TALE final assembly reaction can be pro-
cessed directly for bacterial transformation to colonize in-
dividual assemblies. Additional notes of the assembly
methods can be found in Supplementary Note S1.

Cell line and cell culture

PGP1 iPS cells were maintained on Matrigel (BD
Biosciences)-coated plates in mTeSR1 (Stemcell
Technologies). Cultures were passaged every 5–7 days
with TrypLE Express (Invitrogen). The 293T and 293FT
cells were grown and maintained in Dulbecco’s modified
Eagle’s medium (DMEM, Invitrogen) high glucose
supplemented with 10% fetal bovine serum (Invitrogen),
penicillin/streptomycin (pen/strep, Invitrogen) and non-
essential amino acids (Invitrogen). K562 cells were
grown and maintained in RPMI (Invitrogen) supple-
mented with 10% fetal bovine serum (Invitrogen 15%)
and penicillin/streptomycin (pen/strep, Invitrogen). All
cells were maintained at 37�C and 5% CO2 in a
humidified incubator.

We established a stable 293T cell line for detecting
HDR efficiency as described before (26). Specifically, the
reporter cell lines bear genomically integrated GFP-coding
sequences disrupted by the insertion of a stop codon and a
68 bp genomic fragment derived from the AAVS1 locus.

Test of reTALENs activity

We seeded 293T reporter cells at densities of 2� 105 cells
per well in 24-well plate and transfected them with 1 mg of
each re-TALENs plasmid and 2 mg DNA donor plasmid
using Lipofectamine 2000 following the manufacturer’s
protocols. Cells were harvested using TrypLE Express
(Invitrogen) �18 h after transfection and resuspended in
200 ml of media for flow cytometry analysis using an
LSRFortessa cell analyzer (BD Biosciences). The flow
cytometry data were analyzed using FlowJo (FlowJo).
At least 25 000 events were analyzed for each transfection
sample. For endogenous AAVS1 locus targeting experi-
ment in 293T, the transfection procedures were identical
as described earlier in the text, and we conducted puro-
mycin selection with drug concentration at 3 mg/ml 1 week
after transfection.

Functional lentivirus generation assessment

The lentiviral vectors were created by standard PCR and
cloning techniques. The lentiviral plasmids were trans-
fected by Lipofectamine 2000 with Lentiviral Packaging
Mix (Invitrogen) into cultured 293FT cells (Invitrogen) to
produce lentivirus. Supernatant was collected 48 and 72 h
post-transfection, sterile filtered and 100 ml of filtered
supernatant was added to 5� 105 fresh 293T cells with
polybrene. Lentivirus titration was calculated based on
the following formula: virus titration= (percentage of
GFP+ 293T cell� initial cell numbers under transduc-
tion)/(the volume of original virus collecting supernatant
used in the transduction experiment). To test the function-
ality of lentivirus, 3 days after transduction, we trans-
fected lentivirus transduced 293T cells with 30 ng of
plasmids carrying mCherry reporter and 500 ng of
pUC19 plasmids using Lipofectamine 2000 (Invitrogen).
Cell images were analyzed using Axio Observer Z.1 (Zeiss)
18 h after transfection and harvested using TrypLE
Express (Invitrogen) and resuspended in 200 ml of media
for flow cytometry analysis using LSRFortessa cell
analyzer (BD Biosciences). The flow cytometry data
were analyzed using BD FACSDiva (BD Biosciences).

Test of re-TALENs and Cas9-gRNA genome editing
efficiency

PGP1 iPSCs were cultured in Rho kinase (ROCK) inhibi-
tor Y-27632 (Calbiochem) 2 h before nucleofection.
Transfections were done using P3 Primary Cell 4D-
Nucleofector X Kit (Lonza). Specifically, cells were har-
vested using TrypLE Express (Invitrogen), and 2� 106

cells were resuspended in 20 ml of nucleofection mixture
containing 16.4ml of P3 Nucleofector solution, 3.6 ml of
supplement, 1 mg of each re-TALENs plasmid or 1 mg of
Cas9 and 1 mg of gRNA construct, 2 ml of 100 mM ssODN.
Subsequently, we transferred the mixtures to 20 ml of
Nucleocuvette strips and conducted nucleofection using
CB150 program. Cells were plated on Matrigel-coated
plates in mTeSR1 medium supplemented with ROCK in-
hibitor for the first 24 h. For endogenous AAVS1 locus-
targeting experiment with dsDNA donor, we used the
identical procedure except we used 2 mg of dsDNA
donor, and we supplement the mTeSR1 media with puro-
mycin at the concentration of 0.5 mg/ml 1 week after
transfection.
The information of reTALENs, gRNA and ssODNs

used in this study are listed in Supplementary Tables S3
and S6.

Amplicon library preparation of the targeting regions

Cells were harvested 6 days after nucleofection and 0.1ml
of prepGEM tissue protease enzyme (ZyGEM) and 1 ml of
prepGEM gold buffer (ZyGEM) were added to 8.9ml of
the 2–5� 105 cells in the medium. In all, 1 ml of the reac-
tions were then added to 9 ml of PCR mix containing 5 ml
2�KAPA Hifi Hotstart Readymix (KAPA Biosystems)
and 100 nM corresponding amplification primer pairs.
Reactions were incubated at 95�C for 5min followed by
15 cycles of 98�C, 20 s; 65�C, 20 s and 72�C, 20 s. To add
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the Illumina sequence adaptor, 5 ml of reaction products
were then added to 20 ml of PCR mix containing 12.5ml of
2�KAPA HIFI Hotstart Readymix (KAPA Biosystems)
and 200 nM primers carrying Illumina sequence adaptors.
Reactions were incubated at 95�C for 5min followed by 25
cycles of 98�C, 20 s; 65�C, 20 s and 72�C, 20 s. PCR
products were purified by QIAquick PCR purification
kit, mixed at roughly the same concentration and
sequenced with MiSeq Personal Sequencer. All the PCR
primers can be found in the Supplementary Table S5.

Genome editing assessment system

We wrote a pipeline to analyze the genome engineering
data. This pipeline is integrated in one single Unix
module, which uses different tools such as R, BLAT and
FASTX Toolkit.
Barcode splitting: Groups of samples were pooled

together and sequenced using MiSeq 150 bp paired end
(PE150) (Illumina Next Gen Sequencing) and later
separated based on DNA barcodes using FASTX Toolkit.
Quality filtering: We trimmed nucleotides with lower

sequence quality (phred score <20). After trimming,
reads shorter than 80 nt were discarded.
Mapping: We used BLAT to map the paired reads in-

dependently to the reference genome and we generated .psl
files as output.
Indel calling: We defined indels as the full-length reads

containing two blocks of matches in the alignment. Only
reads following this pattern in both paired end reads were
considered. As a quality control, we required the indel reads
to possess minimal 70nt matching with the reference
genome and both blocks to be at least 20 nt long. Size and
position of indels were calculated by the positions of each
block to the reference genome. Non-homologous end
joining (NHEJ) has been estimated as the percentage of
reads containing indels [see Equation (1)]. The majority of
NHEJ event have been detected at the targeting site vicinity.
Homology-directed recombination (HDR) efficiency:

Pattern matching (grep) within a 12 bp window centering
over DSB was used to count specific signatures corres-
ponding to reads containing the reference sequence, modi-
fications of the reference sequence (2 bp intended
mismatches) and reads containing only 1 bp mutation
within the 2 bp intended mismatches [see Equation (1)].

Equation 1. Estimation of NHEJ and HDR

A=reads identical to the reference: XXXXXABX
XXXX

B=reads containing 2 bp mismatch programed by
ssODN: XXXXXabXXXXX

C = reads containing only 1 bp mutation in the target
site: such as XXXXXaBXXXXX or XXXXXAbXXXXX

D = reads containing indels as described above

NHEJ efficiency =

�
100�

D

A+B+C+D

�
%

HDR efficiency =

�
100�

B

A+B+C+D

�
%

The statistic analysis of the GEAS can be found in
Supplementary Note S2.

Genotype screening of colonized hiPSCs

Human iPS cells on feeder-free cultures were pre-treated
with mTesr-1 media supplemented with SMC4 (5 uM
thiazovivin, 1 uM CHIR99021, 0.4 uM PD0325901, 2 uM
SB431542) (23) for at least 2 h before fluorescence-activated
cell sorting (FACS) sorting. Cultures were dissociated using
Accutase (Millipore) and resuspended in mTesr-1 media
supplemented with SMC4 and the viability dye ToPro-3
(Invitrogen) at concentration of 1–2� 107 /ml. Live hiPS
cells were single-cell sorted using a BD FACSAria II SORP
UV (BD Biosciences) with 100mm nozzle under sterile con-
ditions into 96-well plates coated with irradiated CF-1
mouse embryonic fibroblasts (Global Stem). Each well con-
tained hES cell medium (27) with 100 ng/ml recombinant
human basic Fibroblast Growth Factor (Millipore) supple-
mented with SMC4 and 5mg/ml fibronectin (Sigma). After
sorting, plates were centrifuged at 70g for 3min. Colony
formation was seen 4 days post sorting, and the culture
media was replaced with hES cell medium with SMC4.
SMC4 can be removed from hES cell medium 8 days
after sorting.

A few thousand cells were harvested 8 days after FACS
and 0.1ml of prepGEM tissue protease enzyme (ZyGEM)
and 1ml of prepGEM gold buffer (ZyGEM) were added to
8.9ml of cells in the medium. The reactions were then added
to 40ml of PCR mix containing 35.5ml of platinum 1.1�
Supermix (Invitrogen), 250 nM of each dNTP and 400nM
primers. Reactions were incubated at 95�C for 3min
followed by 30 cycles of 95�C, 20 s; 65�C, 30 s and 72�C,
20 s. Products were Sanger sequenced using either one of
the PCR primers (Supplementary Table S5), and sequences
were analyzed using DNASTAR (DNASTAR).

Immunostaining and teratoma assays of hiPSCs

Cells were incubated in the KnockOut DMEM/F-12
medium at 37�C for 60min using the following
antibody: Anti-SSEA-4 PE (Millipore) (1: 500 diluted);
Tra-1-60 (BD Pharmingen) (1:100 diluted). After the in-
cubation, cells were washed three times with KnockOut
DMEM/F-12 and imaged on the Axio Observer Z.1
(ZIESS).

To conduct teratoma formation analysis, we harvested
human iPSCs using collagenase type IV (Invitrogen) and
resuspended the cells into 200 ml of Matrigel and injected
intramuscularly into the hind limbs of Rag2gamma
knockout mice. Teratomas were isolated and fixed in
formalin between 4 and 8 weeks after the injection. The
teratomas were subsequently analyzed by hematoxylin
and eosin staining.

RESULTS

ReTALENs target genomic loci effectively in human
somatic and stem cells

TALEs have proven to be a powerful and easy-to-design
tool for targeted genome manipulation in multiple cell
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lines and organisms (2,13–15, 28–30). Several strategies
have been developed to assemble the repetitive TALE
RVD array sequences (7–10). However, once assembled,
the TALE sequence repeats remain unstable, which limits
the wide utility of this tool, especially for viral gene
delivery vehicles (11,31). We thus thought that complete
elimination of repeats would not only enable faster and
simple synthesis of extended TALE RVD arrays but also
address this important post-synthesis problem.

To eliminate repeats, we computationally evolved the
nucleotides sequence of TALE RVD arrays to minimize
the number of sequence repeats while maintaining the
amino acid composition. Re-coded TALE (Re-TALEs)
encoding 16 tandem RVD DNA recognition monomers,
plus the final half RVD repeat, are devoid of any 12 bp
repeats (Supplementary Figure S1a). Notably, this level of
recoding is sufficient to allow PCR amplification of any
specific monomer or sub-section from a full-length re-
TALE construct (Supplementary Figure S1b). The
improved design of re-TALEs makes it possible to order
them directly from gene synthesis companies using
standard DNA synthesis technology (32), without
incurring the additional costs or procedures associated
with repeat-heavy sequences. Furthermore, the recoded
sequence design also enabled us to efficiently assemble
re-TALE constructs using a modified isothermal
assembly reaction (‘Materials and Methods’ section,
Supplementary Note S1, Supplementary Figure S2).

We next sought to test the function of reTALEN in
comparison with the corresponding non-recoded
TALEN in human cells. To this end, we used a HEK
293 cell line containing a GFP reporter cassette carrying
a frame-shifting insertion as previously described (33)
(Figure 1a). Delivery of TALENs or reTALENs targeting
the insertion sequence, together with a promoter-less GFP
donor construct, leads to DSB-induced HDR repair of the
GFP cassette so that GFP repair efficiency can be used to
evaluate the nuclease cutting efficiency (34). We found
that reTALENs induced GFP repair in 1.4% of the trans-
fected cells, similar to that achieved by TALENs (1.2%)
(Figure 1b). We further tested the activity of reTALENs at
the AAVS1 locus in PGP1 hiPSCs (Figure 1c) and suc-
cessfully recovered cell clones containing specific inser-
tions (Figure 1d and e), confirming that reTALENs are
active in both somatic and pluripotent human cells.

We then confirmed that the elimination of repeats
would enable us to generate functional lentivirus with a
re-TALE cargo. Specifically, we packaged lentiviral par-
ticles encoding re-TALE-2A-GFP and obtained lentiviral
particles with tittering of 1.3� 106 We then tested the
activity of the re-TALE-TF encoded by viral particles by
transfecting a mCherry reporter into a pool of lenti-
reTALE-2A-GFP-infected 293T cells. The 293T cells
transduced by lenti-re-TALE-TF showed 36� reporter ex-
pression activation compared with the reporter only
negative (Supplementary Figure S3a–c). We further
checked the sequence integrity of the re-TALE-TF in
the lentiviral infected cells and detected full-length
reTALEs in all 10 of the clones tested (Supplementary
Figure S3d).

Comparison of ReTALEs and Cas9-gRNA efficiency in
hiPSCs with GEAS

To compare the editing efficiencies of re-TALENs versus
Cas9-gRNA in hiPSCs, we developed a next-generation
sequencing platform to precisely pinpoint and quantify
both NHEJ and HDR gene-editing events, which we
refer to as Genome Editing Assessment System (GEAS).
First, we designed and constructed a re-TALEN pair and
a Cas9-gRNA, both targeting the upstream region of
CCR5 (re-TALEN, Cas9-gRNA pair #3 in
Supplementary Table S3), along with a 90 nt ssODN
donor identical to the target site except for a 2 bp
mismatch (Figure 2a). We then transfected the nuclease
constructs and donor ssODN into hiPSCs. To precisely
quantitate the gene-editing efficiency, we conducted
paired-end deep sequencing on the target genomic region
3 days after transfection. HDR efficiency was measured by
the percentage of reads containing the precise 2 bp
mismatch. NHEJ efficiency was measured by the percent-
age of reads carrying indels.
Delivery of the ssODN alone into hiPSCs resulted in

minimal HDR and NHEJ rates, whereas delivery of the
re-TALENs and the ssODN led to efficiencies of 1.7%
HDR and 1.2% NHEJ (Figure 2b). The introduction of
the Cas9-gRNA with the ssODN led to 1.2% HDR and
3.4% NHEJ efficiencies. Notably, the rate of genomic de-
letions and insertions peaked in the middle of the spacer
region between the two reTALENs binding site, but
peaked 3–4 bp upstream of the protospacer associated
motif (PAM) sequence of Cas9-gRNA-targeting site
(Figure 2b) as would be expected from the fact that
DSBs take place in these regions. We observed a median
genomic deletion size of 6 bp and insertion size of 3 bp
generated by the re-TALENs and a median deletion size
of 7 bp and insertion of 1 bp by the Cas9-gRNA (Figure
2b), consistent with DNA lesion patterns usually
generated by NHEJ (4). Several analyses of our next-gen-
eration sequencing platform revealed that GEAS can
detect HDR detection rates as low as 0.007%, which is
both highly reproducible (coefficient of variation between
replicates=±15%�measured efficiency) and 400�
more sensitive than most commonly used mismatch sensi-
tive endonuclease assays (Supplementary Figure S4).
After confirming the reliability of GEAS, we next

sought to test the scalability of our tools by building
and assessing re-TALEN pairs and Cas9-gRNAs
targeted to 15 sites at the CCR5 genomic locus
(Figure 2c, Supplementary Table S3). Anticipating that
editing efficiency might depend on chromatin state, these
sites were selected to represent a wide range of DNaseI
sensitivities (35). The nuclease constructs were transfected
with the corresponding ssODNs donors (Supplementary
Table S3) into PGP1 hiPSCs. Six days after transfection,
we profiled the genome-editing efficiencies at these sites
(Supplementary Table S4). For 13 of 15 re-TALEN
pairs with ssODN donors, we detected NHEJ and HDR
at levels above our statistical detection thresholds, with an
average NHEJ efficiency of 0.4% and an average HDR
efficiency of 0.6% (Figure 2c). In addition, a statistically
significant positive correlation (r2=0.81) was found
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between HR and NHEJ efficiency at the same targeting
loci (P< 1� 10�4) (Supplementary Figure S5a), suggest-
ing that DSB generation, the common upstream step of
both HDR and NHEJ, is a rate-limiting step for
reTALEN-mediated genome editing.
In contrast, all 15 Cas9-gRNA pairs showed significant

levels of NHEJ and HR, with an average NHEJ efficiency
of 3% and an average HDR efficiency of 1.0%
(Figure 2c). In addition, a positive correlation was also
detected between the NHEJ and HDR efficiency
introduced by Cas9-gRNA (Supplementary Figure S5b)
(r2=0.52, P=0.003), consistent with what we had
observed with our reTALENs. The NHEJ efficiency
achieved by Cas9-gRNA was significantly higher than
that achieved by reTALENs (t-test, paired-end,

P=0.02). Interestingly, we observed a moderate but stat-
istically significant correlation between NHEJ efficiency
and the melting temperature of the gRNA targeting
sequence (Supplementary Figure S5c) (r2=0.28,
P=0.04), suggesting that the strength of base pairing
between the gRNA and its genomic target could explain
as much as 28% of the variation in the efficiency of Cas9-
gRNA-mediated DSB generation. Even though Cas9-
gRNA produced NHEJ levels at an average of seven
times higher than the corresponding reTALEN, Cas9-
gRNA only achieved HDR levels (average=1.0%)
similar to that of the corresponding reTALENs (aver-
age=0.6%), suggesting either that the ssODN concentra-
tion at the DSB is the limiting factor for HDR or that the
genomic break structure created by the Cas9-gRNA is not
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Figure 1. Functional tests of re-TALENs in human somatic and stem cells. (a) Schematic representation of experimental design for testing genome
targeting efficiency. A genomically integrated GFP-coding sequence is disrupted by the insertion of a stop codon and a 68 bp genomic fragment
derived from the AAVS1 locus (bottom). Restoration of the GFP sequence by nuclease-mediated homologous recombination with tGFP donor (top)
results in GFP+ cells that can be quantitated by FACS. Re-TALENs and TALENs target identical sequences within AAVS1 fragments. (b) Bar
graph depicting GFP+cell percentage introduced by tGFP donor alone, TALENs with tGFP donor and re-TALENs with tGFP donor at the target
locus, as measured by FACS (N=3, error bar=SD). Representative FACS plots are shown later in the text. (c) Schematic overview depicting the
targeting strategy for the native AAVS1 locus. The donor plasmid, containing splicing acceptor (SA)- 2A (self-cleaving peptides), puromycin resistant
gene (PURO) and GFP were described before (14). The locations of PCR primers used to detect successful editing events are depicted as blue arrows.
(d) Successfully targeted clones of PGP1 hiPSCs were selected with puromycin (0.5 mg/ml) for 2 weeks. Microscopy images of three representative
GFP+clones are shown. Cells were also stained for the pluripotency markers TRA-1-60. Scale bar: 200mm. (e) PCR assays performed on these the
monoclonal GFP+hiPSC clones demonstrated successful insertions of the donor cassettes at the AAVS1 site (lanes 1–3), whereas plain hiPSCs show
no evidence of successful insertion (lane C). (f) Sanger sequencing of the PCR amplicon from the three targeted hiPSC colonies confirmed that the
expected DNA bases at the genome-insertion boundary is present.
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Figure 2. Comparison of reTALENs and Cas9-gRNAs genome targeting efficiency on CCR5 in iPSCs. (a) Schematic representation of genome
engineering experimental design. At the re-TALEN pair or Cas9-gRNA targeting site, a 90 mer ssODN carrying a 2 bp mismatch against the genomic
DNA was delivered along with the reTALEN or Cas9-gRNA constructs into PGP1 hiPSCs. The cutting sites of the nucleases are depicted as red
arrows in the figure. (b) Deep-sequencing analysis of HDR and NHEJ efficiencies for re-TALEN pairs (CCR5 #3) and ssODN, or the Cas9-gRNA
and ssODN. Alterations in the genome of hiPSCs were analyzed from high-throughput sequence data by GEAS. Top: HDR was quantified from the
fraction of reads that contained a 2 bp point mutation built into the center of the ssODN (blue), and NHEJ activity was quantified from the fraction
of deletions (gray)/Insertions (red) at each specific position in the genome. For the reTALEN and ssODN graphs, we plot green dashed lines to mark
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favorable for effective HDR (see ‘Discussion’ section). Of
note, within our data, we did not observe any correlation
between DNaseI HS and the genome targeting efficiencies
achieved by either method (Supplementary Figure S6).

Optimization of ssODN donor design for HDR

Although ssODNs have been found to be effective as
donor DNA in genome editing [see earlier in the text,
(21,22)], many questions remain regarding how to
optimize their design. Having compared the efficiencies
of reTALEN and Cas9-gRNA nucleases, we next de-
veloped strategies for the design of highly performing
ssODNs in hiPSCs.
We first designed a set of ssODNs donors of different

lengths (50–170 nt), all carrying the same 2 bp mismatch in
the middle of the spacer region of the CCR5 re-TALEN
pair #3 target sites. HDR efficiency was observed to vary
with ssODN length, and an optimal HDR efficiency of
�1.8% was observed with a 90 nt ssODN, whereas
longer ssODNs decreased HDR efficiency (Figure 3a).
As longer homology regions improve HDR rates when
dsDNA donors are used with nucleases (36), possible
reasons for this result may be that ssODNs are used in
an alternative genome repair process; longer ssODNs are
less available to the genome repair apparatus or that
longer ssODNs incur negative effects that offset any im-
provements gained by longer homology, compared with
dsDNA donors (37). Yet, if either of the first two reasons
were the case, then NHEJ rates should either be un-
affected or would increase with longer ssODNs because
NHEJ repair does not involve the ssODN donor.
However, NHEJ rates were observed to decline along
with HDR (Figure 3a), suggesting that the longer
ssODNs present offsetting effects. Possible hypotheses
would be that longer ssODNs are toxic to the cell (38)
or that transfection of longer ssODNs saturates the
DNA processing machinery, thereby causing decreased
molar DNA uptake and reducing the capacity of the
cells to take up or express re-TALEN plasmids.
Next, we examined how rate of incorporation of a

mismatch carried by the ssODN donor varies with its
distance to the DSB. To this end, we designed a series of
90 nt ssODNs all possessing the same 2 bp mismatch (A) in
the center of the spacer region of re-TALEN pair #3. Each
ssODN also contained a second 2 bp mismatch (B) at
varying distances from the center (Figure 3b). An

ssODN possessing only the center 2 bp mismatch was
used as a control. Each of these ssODNs was introduced
individually with re-TALEN pair #3, and the outcomes
were analyzed with GEAS. We found that overall
HDR—as measured by the rate at which the A
mismatch was incorporated (A only or A+B)—decreased
as the B mismatches became farther from the center
(Figure 3b, Supplementary Figure S7a). The higher
overall HDR rate observed when B is only 10 bp away
from A may reflect a lesser need for annealing of the
ssODN against genomic DNA immediately proximal to
the dsDNA break.

For each distance of B from A, a fraction of HDR
events only incorporated the A mismatch, whereas
another fraction incorporated both A and B mismatches
[Figure 3b (A only and A+B)], These two outcomes may
be due to gene conversion tracts (39) along the length of
the ssDNA oligo, whereby incoporation of A+B
mismatches resulted from long conversion tracts that
extended beyond the B mismatch, and incorporation of
the A-only mismatch resulted from shorter tracts that
did not reach B. Under this interpretation, we estimated
a distribution of gene conversion lengths in both direc-
tions along the ssODN (Supplementary Figure S7b). The
estimated distribution implies that gene conversion tracts
progressively become less frequent as their lengths
increase, a result similar to gene conversion tract distribu-
tions seen with dsDNA donors (39), but on a highly com-
pressed distance scale of tens of bases for the ssDNA
donor versus hundreds of bases for dsDNA donors.
Consistent with this result, an experiment with a ssODN
containing three pairs of 2 bp mismatches spaced at inter-
vals of 10 nt on either side of the central 2 bp mismatch
‘A’s gave rise to a pattern in which A alone was
incorporated 86% of the time, with multiple B mismatches
incorporated at other times (Supplementary Figure S7c).
Although the numbers of B only incorporation events
were too low to estimate a distribution of tract lengths
<10 bp, it is clear that the short tract region within
10 bp of the nuclease site predominates (Supplementary
Figure S7b). Finally, in all of our experiments with
single B mismatches, we see a small fraction of B-only
incorporation events (0.04–0.12%) that is roughly
constant across all B distances from A. The nature of
these events is unclear.

Furthermore, we tested how far the ssODN donor can
be placed from the re-TALEN-induced dsDNA break and

Figure 2. Continued
the outer boundary of the re-TALEN pair’s binding sites, which are at positions �26 bp and+26bp relative to the center of the two re-TALEN-
binding sites. For Cas9-gRNA and ssODN graphs, the green dashed lines mark the outer boundary of the gRNA targeting site, which are at
positions �20 and �1 bp relative to the Protospacer Associated Motif sequence. Bottom: Deletion/Insertion size distribution in hiPSCs analyzed from
the entire NHEJ population with treatments indicated earlier in the text. (c) The genome-editing efficiency of re-TALENs and Cas9-gRNAs targeting
CCR5 in PGP1 hiPSCs. Top: schematic representation of the targeted genome-editing sites in CCR5. The 15 targeting sites are illustrated by blue
arrows later in the text. For each site, cells were co-transfected with a pair of re-TALENs and their corresponding ssODN donor carrying 2 bp
mismatches against the genomic DNA. Genome-editing efficiencies were assayed 6 days after transfection. Similarly, we transfected 15 Cas9-gRNAs
with their corresponding ssODNs individually into PGP1-hiPSCs to target the same 15 sites and analyzed the efficiency 6 days after transfection.
Bottom: the genome-editing efficiency of re-TALENs and Cas9-gRNAs targeting CCR5 in PGP1 hiPSCs. Panels 1 and 2 indicate NHEJ and HDR
efficiencies mediated by reTALENs. Panels 3 and 4 indicate NHEJ and HDR efficiencies mediated by Cas9-gRNAs. NHEJ rates were calculated by
the frequency of genomic alleles carrying deletions or insertions at the targeting region; HDR rates were calculated by the frequency of genomic
alleles carrying 2 bp mismatches. Panel 5, the DNaseI HS profile of a hiPSC cell line from ENCODE database (Duke DNase HS, iPS NIHi7 DS). Of
note, the scales of different panels are different.

9056 Nucleic Acids Research, 2013, Vol. 41, No. 19

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt555/-/DC1


HDR
Deletion
Insertion

50 70 90 110 130 150 170

(NT)

E
ffi

ci
en

cy

Oligo length

50
70
90

110
130
150
170

0.5%

1.0%

1.5%

2.0%

0.0%

reTALENs cutting site
100bp

CCR5 genomic region

ssODN targeting position

E
ffi

ci
en

cy

2bp mismtach

2bp MM2bp MM

-600 -400 -200 0 200

(bp)

400

Distance

-30 -20 -10 0 10 20 30

A only
A+B
B only

Distance between A and B (bp)

1.0%

2.0%

0.0%

E
ffi

ci
en

cy

AB

20
10

0
-10
-20
-30

30

B
 to

 A
 D

is
ta

nc
e 

(b
p)

ss
O

D
N

 le
ng

th
 (

N
T

)

20 40 60 80 100 120

(NT)

E
ffi

ci
en

cy

Oligo length

50
70
90

110
130
150
170

1.0%

2.0%

0.0%

2bp miismatch

ss
O

D
N

 le
ng

th
 (

N
T

)

C2 + On
C2 + Oc

C2: Cas9-Nuclease

1.0%

2.0%

0.0%

(a) (b)

(c) (d)

Figure 3. Study of functional parameters governing ssODN-mediated HDR with re-TALENs or Cas9-gRNAs in PGP1 hiPSCs. (a) PGP1 hiPSCs
were co-transfected with re-TALENs pair (#3) and ssODNs of different lengths (50, 70, 90, 110, 130, 150 and 170 nt). All ssODNs possessed an
identical 2 bp mismatch against the genomic DNA in the middle of their sequence. A 90 mer ssODN achieved optimal HDR in the targeted genome.
The assessment of HDR, NHEJ-incurred deletion and insertion efficiency is described in the ‘Materials and Methods’ section. (b) 90 mer ssODNs
corresponding to re-TALEN pair #3 each containing a 2 bp mismatch (A) in the center and an additional 2 bp mismatch (B) at different positions
offset from A (where offsets varied from �30 to 30 bp) were used to test the effects of deviations from homology along the ssODN. Genome-editing
efficiency of each ssODN was assessed in PGP1 hiPSCs. The bottom bar graph shows the incorporation frequency of A only, B only and A+B in
the targeted genome. HDR rates decrease as the distance of homology deviations from the center increase (see text and Supplementary Figure S7a
and b). (c) ssODNs targeted to sites with varying distances (�620�480 bp) away from the target site of re-TALEN pair #3 were tested to assess the
maximum distance within which we can place ssODNs to introduce mutations. All ssODNs carried a 2 bp mismatch in the middle of their sequences.
We observed minimal HDR efficiency (�0.06%) when the ssODN mismatch was positioned 40 bp away from the middle of re-TALEN pair’s binding
site. (d) PGP1 hiPSCs were co-transfected with Cas9-gRNA (AAVS1) and ssODNs of different orientation (Oc: complement to gRNA; On: non-
complement to gRNA) and different lengths (30, 50, 70, 90 and 110 nt). All ssODNs possessed an identical 2 bp mismatch against the genomic DNA
in the middle of their sequence. A 70 mer Oc achieved optimal HDR in the targeted genome.
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still observe incorporation. A set of 90 nt ssODNs with
central 2 bp mismatches targeting a range of larger dis-
tances (�600 to +400 bp) away from the re-TALEN-
induced dsDNA break site were tested. When the
ssODNs matched �40 bp away, we observed >30�
lower HDR efficiencies compared with the control
ssODN positioned centrally over the cut region
(Figure 3c). The low level of incorporation that was
observed may be due to processes unrelated to the
dsDNA cut, as seen in experiments in which genomes
are altered by a ssDNA donor alone (38). Meanwhile,
the low level of HDR present when the ssODN is
�40 bp away may be due to a combination of weakened
homology on the mismatch-containing side of the dsDNA
cut along with insufficient ssODN oligo length on the
other side of the dsDNA break.
We similarly tested the ssODNs DNA donor design for

Cas9-gRNA-mediated targeting. First, we constructed
Cas9-gRNA (C2) targeting the AAVS1 locus and
designed ssODN donors of variable orientations (Oc: com-
plementary to the gRNA and On: non-complementary to
the gRNA) and lengths (30, 50, 70, 90 and 110 nt). We
found Oc achieved better efficiency than On, with a 70 mer
Oc achieving an optimal HDR rate of 1.5%. (Figure 3d)
The same ssODN strand bias was detected using a Cas9-
derived nickase (Cc: Cas9_D10A), despite the fact that the
HDR efficiencies mediated by Cc with ssODN were sig-
nificantly less than C2 (t-test, paired-end, P=0.02)
(Supplementary Figure S8). Future investigation will
further elucidate the factors that may contribute to this
bias, including sequence bias, direction of transcription
and replication.

hiPSC clonal isolation of corrected cells

GEAS revealed that re-TALEN pair #3 achieved precise
genome editing with an efficiency of �1% in hiPSCs, a
level at which correctly edited cells can usually be isolated
by screening clones. HiPSCs have poor viability as single
cells, but recent advances in culture conditions have
facilitated outgrowth of hiPSCs from single cells (23).
We optimized these protocols along with a single-cell
FACS sorting procedure to establish a robust platform
for single hiPSCs sorting and maintenance, where hiPSC
clones can be recovered with survival rates of >25% (see
‘Materials and Methods’ section). We combined this
method with a rapid and efficient genotyping system
where we can conduct chromosomal DNA extraction
and targeted genome amplification in 1-h single tube re-
actions, enabling large-scale genotyping of edited hiPSCs.
Together, these methods comprise a pipeline for robustly
obtaining genome-edited hiPSCs without selection.
To demonstrate this system (Figure 4a), we first trans-

fected PGP1 hiPSCs with a pair of re-TALENs and an
ssODN targeting CCR5 at site #3 (Supplementary Table
S3), and we performed GEAS with a portion of the trans-
fected cells, finding an HDR frequency of 1.7%
(Figure 4b). This information, along with the 25%
recovery of sorted single-cell clones, allowed us to
estimate that we could obtain at least one correctly
edited clone from five 96-well plates with Poisson

probability 98% (assuming m=0.017� 0.25� 96� 5� 2).
Six days after transfection, hiPSCs were FACS sorted and
8 days after sorting, 100 hiPSC clones were screened.
Sanger sequencing revealed that 2 of 100 of these un-
selected hiPSC colonies contained a heterozygous
genotype possessing the 2 bp mutation introduced by the
ssODN donor (Figure 4c). The targeting efficiency of 1%
(1%=2/2� 100, 2 mono-allelic corrected clones out of
100 cell screened) was consistent with the next-generation
sequencing analysis (1.7%) (Figure 4b). The pluripotency
of the resulting hiPSCs was confirmed with
immunostaining for SSEA4 and TRA-1-60 (Figure 4d).
The successfully targeted hiPSCs clones were able to
generate mature teratomas with features of all three
germ layers (Figure 4e).

DISCUSSION

Here, we developed and demonstrated several improve-
ments to the design and assessment of genome-editing
reagents and demonstrated a streamlined method for effi-
cient human stem cell editing. We first developed
reTALENs, which simplify TALEN construction and
enables the generation of functional lenti-viruses, which
are important tools for delivering the reagents into many
cell types and animals (33).

We then built a highly sensitive GEAS assay system to
easily and precisely pinpoint and quantify HDR and
NHEJ events in hiPSCs. In comparison with other
methods of assessing design parameters for genome-
editing, our genome-editing assessment tool provides sim-
ultaneous information on rates of HDR, NHEJ and other
mutagenic processes through a single experimental and
statistical analysis method versus performing different ex-
periments and applying separate statistical methods for
each individually. In the course of this study, we routinely
pooled �50 barcoded samples together and used the
Illumina MiSeq system to obtain the sequence data,
which was analyzed with our genome-editing assessment
software. Currently, MiSeq can deliver �20 Million
paired-end 150 bp reads within 27 h so that up to 200
sample-barcoded targeting regions can be covered with
�100K reads each at a cost of approximately $5 per
sample. If desired, sample throughput can be traded off
for higher sensitivity by allotting more reads per sample
and processing fewer samples. Software and documenta-
tion for our genome-editing assessment system is available
to provide researchers with the means to improve and
standardize their genome-editing methods and extend
them to additional cell lines and types.

Using our developed reTALENs, Cas9-gRNAs and
GEAS method, we compared HDR and NHEJ efficiencies
across 15 pairs of reTALENs and Cas9-gRNA
(Supplementary Table S3 and S4) on the CCR5 locus.
We found 13/15 of reTALEN pairs and all 15 Cas9-
gRNAs exhibited detectable activities in hiPSCs, suggest-
ing that both nuclease platforms serve as robust tools for
genome editing. We confirmed the activity of the two
failed reTALEN pairs in K562 cells and found 4 and
3% cutting efficiency, respectively, suggesting some
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Figure 4. Using re-TALENs and ssODNs to obtain monoclonal genome-edited hiPSC without selection. (a) Timeline of the experiment. (b) Genome
engineering efficiency of re-TALENs pair and ssODN (#3) assessed by the NGS platform described in Figure 2b. (c) Sanger sequencing results
of monoclonal hiPSC colonies after genome editing. Of note, the 2 bp heterogeneous genotype (CT/CT!TA/CT) was successfully introduced
into the genome of PGP1-iPS-3-11, PGP1-iPS-3-13 colonies. (d) Immunofluorescence staining of targeted PGP1-iPS-3-11. Cells were stained for
the pluripotency markers Tra-1-60 and SSEA4. (e) Hematoxylin and eosin staining of teratoma sections generated from monoclonal PGP1-iPS-3-11
cells.
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pertinent factors in hiPSCs, such as heterochromatin of
methylation at the targeting regions make them resistant
to reTALEN activity. In addition, we found that Cas9-
gRNA induced on average 7–8� greater NHEJ rates than
reTALEN, similar to recent reports (15). The effective
concentration of Cas9-gRNA complexes or the intrinsic
enzyme kinetics may contribute to this difference.
Surprisingly, we did not see an equivalent increase of
HDR with Cas9-gRNA and ssODN. Although ssODN
concentration may reach saturating levels during con-
struct delivery, ssODN availability at the DSB might be
the limiting factor for HDR. Future studies using Cas9-
gRNA nickases to generate defined DSB resections more
favorable for HDR (36) can be conducted to test this hy-
pothesis and further increase HDR efficiencies. Although
we have compared the genome-targeting efficiencies
achieved by reTALENs and Cas9-gRNA, a critical issue
will also be to determine the generation of off-target mu-
tations. It will be imperative to address the specificity of
both targeting tools to improve the potential of hiPSCs
genome engineering.
Finally, we demonstrated a streamlined pipeline for ob-

taining scarlessly edited human stem cells using our
reagents. The pipeline comprises of the following: (i)
reTALEN or Cas9-gRNA synthesis; (ii) prospective
screening of reagents using GEAS; and (iii) high-through-
put isolation of hiPSC clones. We note that with 1% HDR
efficiency, it is feasible to generate isogeneic hiPSCs with
mono-allelic mutations, which will facilitate hiPSC-based
modeling of dominant alleles, allele-specific expression or
X-linked mutations. However, targeting efficiencies must
be improved to generate of homozygous mutations in
hiPSCs. Other strategies such as transfection enrichment
(15,17), or transient hypothermia (40), can be used
together with our tools to achieve this goal. Last, we
emphasize the versatility of our tools in that re-TALEs/
Cas-gRNA can be engineered and used for other genomic-
targeting technologies such as customized transcrip-
tional factors and epigenetic modifiers, whereas GEAS
can be applied to other gene-editing techniques, such
as ZFNs, targeted nickases and meganucleases. We
envision that our pipeline of efficiently generating
scarlessly engineered human stem cells will allow the
research community to resolve the causal underpinnings
of numerous important biological problems, as well as to
precisely engineer hiPSCs and other cell lines for autolo-
gous cell therapy.
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