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Using experiments and simulations, we investigate the clusters that form when colloidal spheres stick

irreversibly to—or ‘‘park’’ on—smaller spheres. We use either oppositely charged particles or particles

labeled with complementary DNA sequences, and we vary the ratio � of large to small sphere radii. Once

bound, the large spheres cannot rearrange, and thus the clusters do not form dense or symmetric packings.

Nevertheless, this stochastic aggregation process yields a remarkably narrow distribution of clusters with

nearly 90% tetrahedra at � ¼ 2:45. The high yield of tetrahedra, which reaches 100% in simulations at

� ¼ 2:41, arises not simply because of packing constraints, but also because of the existence of a

long-time lower bound that we call the ‘‘minimum parking’’ number. We derive this lower bound from

solutions to the classic mathematical problem of spherical covering, and we show that there is a critical

size ratio �c ¼ ð1þ ffiffiffi

2
p Þ � 2:41, close to the observed point of maximum yield, where the lower bound

equals the upper bound set by packing constraints. The emergence of a critical value in a random

aggregation process offers a robust method to assemble uniform clusters for a variety of applications,

including metamaterials.

DOI: 10.1103/PhysRevLett.110.148303 PACS numbers: 82.70.Dd, 05.65.+b, 64.75.Yz, 87.14.gk

Understanding the geometry of clusters formed from
small particles is a fundamental problem in condensed
matter physics, with implications for phenomena ranging
from nucleation [1] to self-assembly [2]. Colloidal parti-
cles are a useful experimental system for studying cluster
geometry and its relation to phase behavior [3] for several
reasons: they are large enough to be directly observed
using optical microscopy; their assembly can be under-
stood in terms of geometry [4,5]; and they can be driven to
cluster by a variety of controllable interactions, including
capillary forces [2], depletion [6], fluctuation-induced
forces [7], or DNA-mediated attraction [8]. Colloidal clus-
ters are also useful materials in their own right. They can be
used, for example, as building blocks for isotropic optical
metamaterials known as metafluids [9–11]. Tetrahedral
clusters are of particular interest for metafluids since the
tetrahedron is the simplest cluster with isotropic dipolar
symmetry [9]. An unsolved challenge for this application is
to determine the interactions and conditions that enable
assembly of bulk quantities of highly symmetric, uniform
clusters such as tetrahedra.

With this motivation in mind, we study experimentally
the geometry and size distribution of binary clusters
formed when small colloidal spheres are mixed with an
excess of large spheres that stick irreversibly and randomly
to their surfaces [Fig. 1(a)]. An obvious way to control the
cluster geometry in such binary systems is to vary the size
ratio. One might expect that at certain ratios the particles
could arrange into dense clusters or ‘‘spherical packings’’—
arrangements of spheres around a central sphere that

maximize surface density [12–14]. Such packings have
long been used in modeling the microstructure of dense,
disordered atomic systems [15,16]. But unlike atoms,
colloidal particles can stick irreversibly, such that two
particles bound to a third show no motion relative to one
another. This type of binding occurs frequently in strongly
interacting, monodisperse colloidal suspensions, which

FIG. 1. (a) Two colloidal sphere species are mixed together to
form clusters. (b) Oppositely charged polystyrene spheres cluster
due to electrostatic attraction. Optical micrograph shows a
tetramer (N ¼ 4). (c) Polystyrene spheres labeled with comple-
mentary DNA strands (not to scale) cluster due to DNA hybrid-
ization. Optical micrograph shows a trimer (N ¼ 3); the small,
central sphere is fluorescent.
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consequently form fractal aggregates instead of dense
glasses [17,18]. Similarly, in the binary systems we study,
the irreversible and stochastic process of sticking precludes
the formation of dense or symmetric packings. The large
spheres park, rather than pack, on the surfaces of the small
spheres.

Surprisingly, this random and nonequilibrium process
can produce clusters of uniform size. Our experiments
show that at a size ratio � ¼ Rbig=Rsmall ¼ 2:45, where

Rbig and Rsmall are the sphere radii, nearly all of the clusters

contain four large spheres stuck to a smaller sphere
(Table I). In these experiments we use a 100:1 stoichio-
metric ratio of the two sphere species, statistically ensuring
that each cluster contains only one small sphere sur-
rounded by two or more larger spheres. After waiting
several days for the average cluster size to saturate, we
measure the distribution of N, the number of large spheres
bound to each small sphere [19]. We do not count single
large spheres, nonspecifically aggregated clusters of large
spheres, or clusters with multiple small spheres. While
there are many isolated large spheres due to the high
stoichiometric ratio, the latter two types of cluster are rare.

The N ¼ 4 tetramers that we observe are not dense
packings or, in general, symmetric arrangements. As can
be seen from the images in Fig. 1, there is space between
the large particles, and the resulting tetrahedra are irregu-
lar. Moreover, the ratio � ¼ 2:45 is well below the value
� ¼ 4:44 found by Miracle et al. [20] for efficient tetrahe-
dral packing in binary atomic clusters. In fact, at � ¼ 4:29,
closer to this bound, we see much smaller clusters and few
tetrahedra. The sparsity of large spheres in the clusters is a
result of the irreversible, nonequilibrium, random binding:
once the big particles stick to the smaller ones, we do
not see them detach or move relative to one another. We
expected such a stochastic process to lead to a much
broader distribution of clusters. At other values of � it
does (Table I), but at � ¼ 2:45 we obtain 90% tetramers.

The high yield of tetramers occurs in two experimental
systems with different types of interactions. In both sys-
tems the interactions are specific, strong, and short-ranged,
and the particles do not rearrange once bound. In the first
system the clustering is driven by electrostatic interactions.

We mix large, positively-charged particles with small,
negatively-charged particles, as shown in Fig. 1(b). To
adjust �, we use several different particle sizes [19]. We
add salt to reduce the Debye length to approximately 3 nm,
small enough to ensure that the interaction range does not
significantly influence the effective particle size. In the
second system the clustering is driven by hybridization
of grafted DNA strands [19]. As shown in Fig. 1(c), we
mix small and large spheres labeled with complementary
DNA oligonucleotides [21]. We work well below the DNA
melting temperature so that the attractive interaction is
many times the thermal energy [22].
To better understand why the distribution is sharply

peaked at N ¼ 4 for � ¼ 2:45, we use simulations and
analytical techniques that account for the irreversibility of
the aggregation process. Our simulations use a ‘‘random
parking’’ algorithm [23–26] to model the formation of
clusters. The algorithm involves attaching large spheres
to randomly selected positions on the surface of a small
sphere, subject to a no-overlap constraint [19]. We do not
model the finite range of the interactions, which in both
experimental systems is small compared to the particle
size, or the diffusion of the particles prior to binding. In
accord with experimental observations, the particles are
not allowed to rearrange once bound.We repeat the process
numerically to obtain distributions of cluster sizes as a
function of a single parameter, �.
The simulations find a 100% yield of tetramers at the size

ratio � � 2:41. As in the experiments, the large particles in
these tetramers are not densely packed, and the clusters are
therefore distorted tetrahedra. We also find that while the
yieldof any particular cluster can bemaximizedby varying�
[Fig. 2(a)], the yield approaches 100% only for dimers
(N ¼ 2) and tetramers (N ¼ 4). Interestingly, the yield
curve for tetramers has a cusp at its peak, showing that the
size ratio�c at themaximum is amathematical critical point.
The simulated distributions agree well with those found

experimentally [Figs. 2(b) and 2(c)] for both electrostatic
and DNA-mediated interactions. For instance, at � ¼ 2:45
with electrostatic interactions, we find a sharply peaked
distribution consisting almost entirely of tetramers. This
value of � is close to but not precisely at the critical value,
so a small yield of trimers is predicted and observed
experimentally. In contrast, at � ¼ 1:90 we find a mixture
of mostly N ¼ 4 and N ¼ 5 clusters in both the DNA
system and simulations. Some discrepancy arises between
the simulated and experimental histograms because the
yield curves in Fig. 2(a) are steep; a slight error in the
effective size ratio can shift the cluster distribution.
Nevertheless, the random sphere parking model successfully
reproduces both the large yield of tetrahedra near�c and the
details of the measured histograms at various other �.
That we can reproduce the same phenomenon in two

different experimental systems and in a one-parameter
model suggests that the critical size ratio �c has a universal,

TABLE I. Experimentally observed cluster size distributions
for charged colloids. Percentages of total are listed. The distri-
bution for � ¼ 2:45 (bold) is sharply peaked at N ¼ 4.

Size ratio � 1.94 2.45 3.06 4.29

N ¼ 6 6.3 0.0 0.0 0.0

N ¼ 5 39.2 0.8 0.0 0.0

N ¼ 4 54.4 90.2 18.6 0.7

N ¼ 3 0.0 6.6 69.9 35.9

N ¼ 2 0.0 0.8 10.9 51.0

N ¼ 1 0.0 0.8 0.6 11.1

N ¼ 0 0.0 0.8 0.0 1.3
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geometrical origin. Intuitively, one might expect that it is
related to packing constraints on the large spheres. Other
theoretical studies of random sphere parking [23,24] have
calculated the maximum number of large spheresNmax that
can fit around a small sphere at a given �. However, this
bound cannot by itself explain why the yield of tetramers
can reach 100% while that of other clusters, such as trimers
or hexamers, cannot. At a given �, it tells us only why no
clusters larger than Nmaxð�Þ can form, but it says nothing
about the probability of forming smaller clusters with
different arrangements.

Therefore we also examine a different bound, one not
previously discussed in the context of random sphere park-
ing: the ‘‘minimum parking’’ curve Nminð�Þ. Nmin is the
smallest number of hard spheres that can be positioned on a
smaller sphere such that another sphere cannot fit. To
understand this bound, consider a simple, one-dimensional
analogy to car parking on a busy city street, where if a
space opens up that is large enough to fit a car, it is filled.
The minimum parking number occurs when all drivers
have been equally inconsiderate, leaving spaces between
their parked cars that are all slightly too small for another

car to fit. This lower bound is meaningful only at long
times, when all available parking spaces have been filled.
The long-time limit holds also for our experiments and
simulations, which we carry out until the average cluster
size has saturated.
Whereas the upper bound Nmaxð�Þ is straightforwardly

related to solutions of the well-known spherical packing
problem [13,27], the calculation of the lower boundNminð�Þ
requires a different approach. In our clusters, the distance
between the centers of any two big spheres must be at least
2Rbig. Consider then a sphere of radius (RsmallþRbig) that

circumscribes the centers of the parked spheres. If this
sphere is completely covered with N circles of radius
2Rbig, it will be impossible to add an (N þ 1)th large

sphere. We are led naturally to the spherical covering
problem, a problem with a rich history in mathematics.
Like spherical packings, spherical coverings are solutions
to an extremum problem: they are arrangements of N
points on a sphere that minimize the largest distance
between any location on the sphere surface and the closest
point [13]. But unlike spherical packings, spherical cover-
ings need not correspond to arrangements of nonoverlap-
ping spheres. We therefore solve for the minimum parking
curve by examining the solutions to the spherical covering
problem [27] at each N and manually verifying that they
correspond to nonoverlapping configurations [19].
Our analytical results for the bounds reveal why �c is a

special point: it is the only nontrivial point where the
calculated maximum and minimum parking curves come
together (Fig. 3). Analytically we find the location of the

critical value to be �c ¼ ð1þ ffiffiffi

2
p Þ � 2:41, very close to

the values where the experimental distributions are peaked.
At � slightly larger than this value, the minimum parking
configuration corresponds to two spheres placed at oppo-
site poles (Nmin ¼ 2), and the maximum N is obtained by
first parking three large spheres next to one another, so that
there is room for one more sphere to park (Nmax ¼ 4). At �
slightly smaller than �c, the big spheres can park along
orthogonal axes about the small sphere to make an octa-
hedron (Nmax ¼ 6). The minimumN is obtained by placing
four spheres as far from each other as possible, so as to
make the addition of a fifth impossible (Nmin ¼ 4). Thus,
as we increase � through �c, Nmax goes from 6 to 4 and
Nmin from 4 to 2, and the two curves become infinitesi-
mally close.
The parking process is therefore geometrically con-

strained to yield clusters with exactly N ¼ 4 particles in
the limit � ! �c. A simple geometric argument sheds
some light on this result. At �c there is always room for
four large spheres to park. Parking more spheres requires
that at least three park precisely along a great circle of the
smaller particle, but the probability of this happening
randomly is zero. Thus irreversible binary aggregation, a
stochastic process, has a deterministic feature at the critical
size ratio: although the space between the large spheres

FIG. 2 (color online). (a) Yield curves, as determined by
simulations, for N-particle clusters, 2 � N � 8, where the criti-
cal size ratio �c is marked with a black line. Below are histo-
grams for (b) DNA-labeled particles (left) at � ¼ 1:90 and
(c) charged particles (right) at � ¼ 2:45, as observed in experi-
ments (colored bars) and as predicted from simulations (gray
bars). Error bars are 95% confidence intervals (Wilson score
interval method).
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can vary, all clusters must be tetramers. Our numerical
approach confirms that the statistical dispersion in the
cluster size distribution vanishes at �c, as shown in Fig. 3.

The experimental and simulated distributions differ
slightly due to two effects. First, the measured sizes tend
to be smaller than the simulated ones because a few park-
ing spaces remain unfilled even at long times. This effect is
more pronounced for larger spheres, which diffuse more
slowly and encounter the small spheres less frequently.
The systems most affected are the electrostatic ones at
� ¼ 3:06 and 4.29. Second, the experimental size ratios
can vary by 5% due to polydispersity. Both of these factors
increase the width in the experimental distributions and
diminish the achievable yield of tetramers near �c. The
random parking model also assumes the interactions are
infinitesimally short-ranged and isotropic. It would not
be valid if, for example, there were surface inhomogene-
ities on length scales comparable to the particle radii.
Nevertheless, the experimental data indicate that near �c

a tetramer yield of at least 90% is possible, and the model is
useful for predicting cluster size distributions in two very
different colloidal systems.

These results have both fundamental and practical con-
sequences. On the fundamental side, the particle size ratio
could affect the jamming threshold in bulk packings of
bidisperse spheres. Previous simulations of these systems
have shown that the distribution of coordination numbers
also depends on the size ratio [28] and may be modeled
using random parking [25]. This contrasts with dense
atomic systems like metallic glasses [15,16] in which the
atoms have some freedom to rearrange locally. In these

systems packing constraints may explain structure and
coordination better than parking arguments.
On the practical side, this random aggregation process

is a simple way to mass produce tetrahedral clusters in
theoretically 100% yield. Although the tetrahedra we pro-
duce are irregular in that the distance between the large
spheres can vary, it may well be possible to form large
quantities of symmetric tetrahedra simply by shrinking the
small spheres after the tetramers have formed [29]. An
additional step, such as density gradient centrifugation
[2], will also be required to separate the assembled clusters
from the many unbound large particles. Furthermore,
although the yield will approach 100% only for dimers
and tetramers, the yield of any N-particle cluster can be
maximized by choosing the appropriate size ratio. For
instance, the yield of octahedral clusters, also promising
candidates for building metamaterials [10], may surpass
70% at � ¼ 1:42.
The size ratio in binary colloidal systems thus emerges

as a valuable control parameter for directed self-assembly.
Moreover, because it does not require precise control over
the interactions, random parking offers a robust and simple
way to make colloidal clusters that are more monodisperse
than those prepared through other methods [2].
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