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Abstract

Regulatory T cells represent a specialized subpopulation of T lymphocytes that may modulate spontaneous HIV-1 disease
progression by suppressing immune activation or inhibiting antiviral T cell immune responses. While the effects of classical
CD25hi FoxP3+ Treg during HIV-1 infection have been analyzed in a series of recent investigations, very little is known about
the role of non-classical regulatory T cells that can be phenotypically identified by surface expression of HLA-G or the TGF-b
latency-associated peptide (LAP). Here, we show that non-classical HLA-G-expressing CD4 Treg are highly susceptible to
HIV-1 infection and significantly reduced in persons with progressive HIV-1 disease courses. Moreover, the proportion of
HLA-G+ CD4 and CD8 T cells was inversely correlated to markers of HIV-1 associated immune activation. Mechanistically, this
corresponded to an increased ability of HLA-G+ Treg to reduce bystander immune activation, while only minimally inhibiting
the functional properties of HIV-1-specific T cells. Frequencies of LAP+ CD4 Treg were not significantly reduced in HIV-1
infection, and unrelated to immune activation. These data indicate an important role of HLA-G+ Treg for balancing
bystander immune activation and anti-viral immune activity in HIV-1 infection and suggest that the loss of these cells during
advanced HIV-1 infection may contribute to immune dysregulation and HIV-1 disease progression.
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Introduction

The hallmark of HIV-1 infection is a progressive reduction of

CD4 T cells. The main function of these cells is to provide antigen-

specific helper cell activity against a wide panel of microbial

antigens, however, some of these cells also have regulatory

immunosuppressive activities. Classical regulatory T cells (Treg)

are immunophenotypically defined as being CD25hi and CD127lo,

and they intracellularly express the Forkhead Box P3 protein

(FoxP3) [1]. The importance of classical Treg for maintaining

immune homeostasis has been highlighted by signs of autoimmune

pathology that occur in the setting of deficient Treg activity [2,3].

During progressive HIV-1 infection, the relative frequency of

classical Treg is increased, while their absolute counts are reduced

as a consequence of lower total CD4 T cell counts [4]. This

indicates that classical Treg decline at a slower rate than

conventional CD4 T cells during progressive HIV-1 infection,

and suggests that these cells may play an important role in the

immune pathogenesis of HIV-1 infection. Functional data from

previous studies indeed demonstrated that classical Treg can

potently suppress HIV-1-specific T cell responses [5,6], and in this

way may contribute to the failure of achieving T cell-mediated

immune control of HIV-1 replication. However, classical Treg

may also have beneficial effects on HIV-1 disease progression by

reducing the deleterious consequences of HIV-1 associated

immune activation [7,8].

Recently, several alternative Treg populations have been

identified that differ from classical Treg by the lack of intracellular

FoxP3 expression. One group of such non-classical Tregs is

defined by surface expression of HLA-G [9], an HLA class Ib

molecule that is mainly expressed on placental trophoblasts.

However, ectopic expression of HLA-G can also be observed on

small populations of peripheral blood CD4 and CD8 T cells,

which seem to be enriched at sites of inflammation [9]. These cells

have the ability to suppress proliferation of T lymphocytes in a

cell-contact independent manner, and their regulatory effects are

reversible following neutralization with HLA-G blocking antibod-

ies [10]. Previous reports suggested that the proportion of HLA-G-

expressing CD8 T lymphocytes is increased during HIV-1

infection [11], however, such investigations were conducted in

unselected populations of HIV-1 positive persons, and did not

address the functional role of HLA-G+ T cells during different

stages of HIV-1 disease progression.

A second group of non-classical Tregs is characterized by

surface expression of the latency-associated peptide (LAP), a

membrane bound form of TGF-b [12]. These LAP+ CD4 T cells
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lack FoxP3 expression but can inhibit proliferative activities of T

lymphocytes in vitro and in vivo. Under physiologic conditions, a

small proportion of LAP-expressing CD4 T cells can be detected

in human peripheral blood [12]. The numeric distribution and

functional role of LAP+ CD4 Treg during HIV-1 infection is not

known.

In the present study, we systematically analyzed the expression

and function of HLA-G-and LAP-expressing Tregs in patients with

different stages of HIV-1 disease infection. Our results indicate a

profound reduction of HLA-G+ CD4 Treg in individuals with

progressive HIV-1 disease that may stem from a higher suscepti-

bility of these cells to HIV-1 infection, and functionally contribute to

HIV-1-associated immune overactivation.

Methods

Study participants
HIV-infected patients and HIV-1 seronegative control persons

were recruited according to protocols approved by the Institu-

tional Review Board of the Massachusetts General Hospital in

Boston. Samples of mononuclear cells extracted from lymph nodes

and peripheral blood were obtained from HIV-1 infected study

patients recruited at the University of Hamburg (Germany)

according to a protocol approved by the local Ethics Committee.

Ethics statement
All subjects gave written informed consent and the study was

approved by the Institutional Review Board of Massachusetts

General Hospital/Partners Healthcare.

Immunophenotypic analysis
Peripheral blood mononuclear cells (PBMC) were isolated from

whole blood using Ficoll density centrifugation. Lymph node

mononuclear cells (LNMC) were extracted from freshly-excised

lymph node samples according to routine procedures. PBMC or

LNMC were stained with LIVE/DEAD cell viability dye

(Invitrogen, Carlsbad, CA) and monoclonal antibodies directed

against CD4, CD25, CD127, CD45RA, CCR7 (BD Biosciences,

San Jose, CA), CD57 and PD-1 (Biolegend, San Diego, CA), CD8

(Invitrogen), HLA-G (clone MEM-G/9, Abcam, Cambridge,

MA), LAP (clone 27232, R&D systems, Minneapolis, MN) and,

when indicated, LILRB1 (clone HP-F1, ebioscience, San Diego,

CA). After incubation for 20 minutes at room temperature, cells

were fixed with PBS containing 0.5% fetal calf serum and 1%

formaldehyde. Anti-FoxP3 antibodies (ebioscience) were used with

a dedicated staining buffer (ebioscience) per the manufacturer’s

instruction. Subsequently, cells were acquired on an LSR II flow

cytometer (BD Biosciences, San Jose, CA) using FACSDiva

software. Data were analyzed using FlowJo software (Tree Star,

Ashland, OR).

Cell isolation and sorting
Indicated total CD4 or CD8 T cell populations were isolated

using a negative cell purification kit (StemCell Technologies, BC,

Canada), according to the manufacturer’s instructions. Cell purity

was .90% in all cases. Classical LAP2 HLA-G2 CD25hi CD4 T

cells, HLA-G+ CD4 T cells, LAP+ CD4 T cells and a control cell

population of LAP2 HLA-G2 CD252 CD4 T cells were sorted on

a FACSAria instrument (BD Biosciences) at 70 pounds per square

inch. For isolation of CD8 Treg subsets, purified bulk CD8 T cells

were sorted into three T cell subsets: HLA-G+ CD8 T cells,

CD25hi CD282 CD8 T cells and a control cell population of

HLA-G2 CD252 CD8 T cells, using similar sorting conditions.

Proliferation assay
PBMC from HIV-1 infected individuals were stained with

0.25 mM carboxyfluorescein succinimidyl ester (CFSE; Invitrogen)

and mixed with sorted autologous Treg populations or control T

cells without regulatory activity at a ratio of 4:1. Afterwards, cells

were stimulated with a pool of overlapping peptides spanning the

clade B consensus sequence of HIV-1 gag, a pool of overlapping

peptides spanning the entire sequence of human CMV pp65

(concentration of 2 mg/ml per peptide), or PHA. After incubation

for 6 days, cells were washed, stained with viability dye and surface

antibodies, fixed and acquired on an LSR II flow cytometer.

Suppression of T cell proliferation by Tregs was calculated as: (T

cell proliferation (%) in the non-Treg co-culture – T cell

proliferation (%) in the Treg co-culture)/T cell proliferation (%)

in the non-Treg co-culture.

Intracellular cytokine staining
CFSE-stained responder T cells from HIV-1-infected patients

were mixed with sorted autologous Treg populations or control

CD4 T cells at a ratio of 2:1. Cells were then stimulated with a

pool of overlapping peptides spanning HIV-1 gag (concentration

of 2 mg/ml per peptide) in the presence of antibodies directed

against CD28 and CD49d (2 mg/ml). Cells were incubated for 6 h

at 37uC, and Brefeldin A was added at 5 mg/ml after the first hour

of incubation. Afterwards, cells were stained with viability dye and

surface antibodies, fixed, permeabilized using a commercial kit

(Caltag, Burlingame, CA), and subjected to intracellular cytokine

staining with monoclonal antibodies against interferon-c and IL-2

(BD Biosciences). Following final washes, cells were acquired on an

LSR II instrument.

Assessment of bystander activation
Responder T cells from healthy individuals were mixed with

sorted autologous Treg populations or autologous control T cells

without regulatory activities at a ratio of 2:1. Following stimulation

of cells with Staphylococcal Enterotoxin B (SEB, 5 mg/ml, kindly

provided by Dr. Eric J. Sundberg, University of Maryland), cells

were incubated at 37uC for 4 days. Afterwards, cells were stained

with antibodies against CD4, CD8, CD38, HLA-DR, CD69 and

Vb13.1 and viability dye before being subjected to flow cytometric

acquisition on an LSR II instrument. The surface expression of

Author Summary

HIV-1 causes disease by inducing a chronic inflammatory
state that leads to progressive CD4 T cell losses and clinical
signs of immune deficiency. Regulatory T cells (Treg)
represent a subgroup of T lymphocytes with immunosup-
pressive activities that can reduce HIV-1 associated
immune activation, but may also worsen HIV-1 disease
progression by inhibiting T cell responses directed against
HIV-1 itself. Here, we describe a non-classical population of
regulatory T cells that differ from conventional Treg by the
expression of HLA-G, a molecule that contributes to
maternal tolerance against semiallogeneic fetal tissue
during pregnancy. We show that HLA-G-expressing Treg
have a unique functional ability to reduce harmful
bystander immune activation, while minimally inhibiting
potentially beneficial T cell-mediated immune responses
against HIV-1. In this way, HLA-G-expressing Treg may
represent a previously unrecognized barrier against HIV-1
associated immune activation and a possible target for
future immunotherapeutic interventions in HIV-1 infection.

HLA-G+ Regulatory T Cells in HIV-1 Infection
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activation markers in responder T cells was analyzed after gating

on T cells. Treg-dependent suppression of bystander activation

was calculated as: (CD38/HLA-DR/CD69-expressing T cells (%)

in the non-Treg co-culture – CD38/HLA-DR/CD69-expressing

T cells (%) in the Treg co-culture)/CD38/HLA-DR/CD69-

expressing T cells (%) in the non-Treg co-culture.

Detection of HLA-G by western blot
HLA-G+ and HLA-G2 CD3 T cells were isolated by

immunomagnetic enrichment and cultured in IL-2 supplemented

medium for 4 days. Equal amounts of culture supernatants and

cell lysates were then subjected to SDS-PAGE (8 to 16% Tris-

glycine gels, Invitrogen), electroblotted and incubated with HLA-

G antibodies (clone 4H84, Abcam), followed by visualization with

horseradish peroxidase (HRP)-labeled secondary antibodies and

enhanced chemiluminescence (ECL) detection reactions (GE

Healthcare, Little Chalfont, UK) according to standard protocols

[13].

Ex-vivo infection assays
CD4 T cells were activated with recombinant IL-2 (50 U/ml)

and an anti-CD3/CD8 bi-specific antibody (0.5 mg/ml). On day

5, cells were infected with GFP-encoding X4- (NL4-3,

MOI = 0.02) or R5- (Ba-L, MOI = 0.07) tropic viral strains [14]

(kindly provided by Dr. Dan Littman, New York University) for

4 h, or with a YFP-encoding VSV-G-pseudotyped HIV-1 vector

(MOI = 0.02) (kindly provided by Dr. Abraham Brass, University

of Massachusetts) for 2 h at 37uC. After two washes, cells were

plated at 56105 cells per well in a 24-well plate. On day 2 (VSV-

G-pseudotyped virus) or day 4 (X4-/R5-tropic viruses), cells were

stained with surface antibodies and viability dye and analyzed on

an LSR II instrument. For infection of quiescent cells, negatively-

selected CD4 T cells with a purity of .95% were directly infected

with the described HIV-1 constructs. After in vitro culture for 96 h

in the absence of exogenous IL-2, cells were analyzed by flow

cytometry.

Statistical analysis
Data are expressed as mean and standard deviation/standard

error, or as box and whisker plots indicating the median, the 25%

and 75% percentile and the minimum and maximum of all data.

Differences between different cohorts or different experimental

conditions were tested for statistical significance using Mann-

Whitney U test, paired T test or one-way ANOVA, followed by

post-hoc analysis using Tukey’s multiple comparison test, as

appropriate. Spearman correlation was used to assess the

association between two variables. A p-value of 0.05 was

considered significant. The level of significance was labeled as:

*:p,0.05; **:p,0.01; ***:p,0.001.

Results

Reduced frequency of HLA-G+ Treg in progressive HIV-1
infection

Investigations of T cells with regulatory properties in HIV-1

infection have so far been mostly limited to classical, CD25hi and/

or FoxP3 expressing Treg. To analyze the role of alternative, non-

classical Treg populations in patients infected with HIV-1, we

initially focused on the recently described population of Treg

defined by surface expression of HLA-G [9]. These cells do not

express FoxP3 or CD25 (Figure S1), and are phenotypically and

functionally distinct from classical Treg [9,10]. To analyze these

cells in HIV-1 infection, we used flow cytometry to determine the

relative and absolute numbers of HLA-G+ CD4 and CD8 T cells

in treatment-naı̈ve HIV-1 infected individuals with chronic

progressive infection (n = 28, median viral load: 48,215 copies/

ml [IQR 20,187–685,000]; median CD4 cell count: 396/ml [IQR

204–652]), spontaneous control of HIV-1 replication (n = 24, viral

load ,1000 copies/ml; median CD4 cell count: 924/ml [IQR

347–1879]), or patients with primary HIV-1 infection and

seroconversion within 3 months prior to recruitment (n = 22,

median viral load: 99,900 copies/ml [IQR 36,600–2,790,000];

median CD4 cell count: 475/ml [IQR 265–1047]). HIV-1 infected

persons successfully treated with Highly Active Antiretroviral

Therapy (HAART) (n = 26, viral load ,50 copies/ml; median

CD4 cell count: 402/ml [IQR 242–1493]), as well as a cohort of

HIV-1 negative persons (n = 21), were recruited for control

purposes.

Consistent with prior reports [15], we observed that relative

proportions of classical CD25hi CD127lo CD4 Treg were

increased in progressive HIV-1 infection, while absolute Treg

numbers were decreased (Figure S2); no correlation was found

between relative proportions of classical Treg and levels of

immune activation (Figure S2). In contrast, we observed that the

relative and absolute numbers of HLA-G-expressing CD4 T cells

were lowest in HIV-1 progressors, while no significant difference

was found between the numbers of HLA-G+ CD4 T cells in any of

the other HIV-1 patient cohorts and HIV-1 negative persons

(Figure 1 A/B). The relative frequencies of HLA-G+ CD8 T cells

were lower in all HIV-1 infected patient populations compared to

HIV-1 negative persons; this reduction was again most pro-

nounced in persons with untreated progressive disease. Notably,

the numbers of HLA-G-expressing CD4 and CD8 T cells were

positively correlated to total CD4 T cell counts (Figure 1C), and

proportions of HLA-G+ T cells were inversely associated with

corresponding levels of immune activation on T cells, as

determined by surface expression of HLA-DR and CD38

(Figure 1D). These data indicate a selective numerical decrease

of HLA-G-expressing T cells in chronic progressive HIV-1

infection, and suggest that a reduction of HLA-G+ Treg may

contribute to higher levels of immune activation during progres-

sive HIV-1 infection.

Since HLA-G+ Treg express multiple tissue homing factors [16],

a redistribution of these cells to lymphoid tissues may be

responsible for the apparent reduction of HLA-G-expressing Treg

in the peripheral blood during progressive HIV-1 infection. To

investigate this, we analyzed the proportion of HLA-G+ T cells in

lymph node and peripheral blood samples collected from patients

treated with antiretroviral therapy (HIV-1 viral load,75 copies/

ml, median CD4 count: 762/ml [IQR 528–1,152]) or with

untreated progressive HIV-1 infection (median HIV-1 viral load:

73,500 copies/ml [IQR 1,300–252,000], median CD4 count:

430/ml [IQR 254–1,267]). Within these patients, proportions of

HLA-G+ CD4 and CD8 Treg in lymph nodes and peripheral

blood were not significantly different, suggesting that compart-

mentalization of HLA-G+ Treg to lymph nodes does not represent

the major reason explaining the decreased number of circulating

HLA-G+ Treg in progressive HIV-1 infection (Figure 2A). In

contrast, classical CD25hi CD127lo Treg were significantly

enriched in lymph nodes compared to peripheral blood in patients

on and off HAART, consistent with previous results [17]

(Figure 2B).

We next investigated whether the reduced frequencies of

circulating HLA-G+ Treg during progressive HIV-1 infection

are associated with an altered phenotypic differentiation or

maturation status. We found that in all study cohorts, the T cell

subset distribution of HLA-G+ CD4 T cells into naı̈ve, central-

memory, effector-memory and terminally-differentiated CD4 T

HLA-G+ Regulatory T Cells in HIV-1 Infection
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Figure 1. Diminished proportions of HLA-G+ CD4 and CD8 T cells in progressive HIV-1 infection. (A): Representative flow cytometry dot plots
reflecting the proportions of HLA-G+ CD4 and CD8 T cells in indicated study subjects. FMO control reflects ‘‘fluorescence minus one’’ control condition
without addition of HLA-G antibodies. (B): Box and Whisker plots summarizing the relative proportions and absolute numbers of HLA-G+ CD4 and CD8 T
cells in indicated study cohorts. ANOVA followed by post-hoc analysis with Tukey’s Multiple Comparison Test was used to determine significance. (C):
Correlations between frequencies of HLA-G+ T cells and total CD4 T cell counts in controllers (n = 23), progressors (n = 27) and HIV seronegative individuals
(n = 15). (D): Correlations between proportions of HLA-G+ Treg and CD8 T cell immune activation determined by surface expression of CD38 and HLA-DR in
controllers (n = 19), progressors (n = 20), and HIV seronegative individuals (n = 15). (C/D): Spearman’s correlation coefficient is shown.
doi:10.1371/journal.ppat.1003140.g001

HLA-G+ Regulatory T Cells in HIV-1 Infection
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cells was not substantially different from corresponding bulk CD4

T cells (Figure S3). Moreover, the expression of CD57 and PD-1,

two surface markers associated with senescence and exhaustion of

T cells, was not markedly different between HLA-G+ CD4 T cells

and the respective bulk CD4 T cells (Figure S4). In contrast, we

noted that in all study cohorts, HLA-G+ CD8 T cells tended to

have a more immature naı̈ve or central-memory phenotype when

compared to reference bulk CD8 cell populations (Figure S3).

There was also a trend for reduced surface expression of CD57

surface expression on HLA-G+ CD8 T cells in comparison to

corresponding bulk CD8 T cells (Figure S4). Overall, these data

indicate that during HIV-1 infection, HLA-G-expressing CD8,

but not CD4 T cells, are skewed to a more immature

differentiation status, but this difference is not correlated to the

rates of spontaneous HIV-1 disease progression.

Frequencies of LAP+ Treg in HIV-1 infection
T cells expressing LAP, a membrane-bound form of TGF-b,

have recently been characterized as an alternative, FoxP3-negative

population of lymphocytes with immunosuppressive properties

[12] [18]. To determine whether this non-classical population of

regulatory cells is involved in HIV-1 disease pathogenesis, we

analyzed the frequency of LAP+ T cells in our study cohorts. We

did not observe significant differences in the proportions of LAP+

T cells between our study groups (Figure S5). Absolute numbers of

LAP+ CD4 Treg were positively associated with total CD4 T cell

counts (Figure S5), and were lowest in progressors, likely reflecting

the decline of total CD4 T cells in this patient population (Figure

S5). Proportions of neither LAP+ CD4 nor LAP+ CD8 T cells were

significantly associated with corresponding levels of immune

activation (Figure S5). LAP+ T cells did not substantially differ

from bulk T cells in terms of T cell subset distribution, although

LAP+ CD8 T cells appeared to be slightly overrepresented in

central-memory cells during HIV-1 infection (Figure S6). No

difference was found between the surface expression of PD-1 and

CD57 on LAP+ T cells and bulk T cells (Figure S4). Taken

together, these results do not suggest that LAP+ T cells play a

major role in HIV-1 immune protection or restriction of HIV-1

associated immune activation.

HLA-G+ Treg minimally inhibit functional properties of
HIV-1-specific T cells

A functional hallmark of classical Treg is their ability to inhibit

antigen-specific T cell responses [19]. Prior work has shown that

non-classical Tregs can also inhibit proliferative properties of T

cells, but their functional effects on HIV-1-specific T cells remain

unclear [9]. To investigate this, CFSE-labeled PBMC from HIV-1

controllers were stimulated with viral peptides or PHA and

individually mixed with sorted autologous HLA-G+ CD4 Treg,

HLA-G+ CD8 Treg or classical CD25hi CD4 Treg; HLA-G2

CD252 CD4 or CD8 T cells were added as negative controls.

Subsequently, proliferation of HIV- and CMV-specific T cells was

monitored after six days of culture. These experiments demon-

strated suppressive effects of classical CD25hi Treg on the

proliferative activities of HIV-1- and CMV-specific CD4 and

CD8 T cells, consistent with prior reports showing potent Treg-

mediated inhibition of T cell proliferation [5]. In contrast, HLA-

G+ Treg did not effectively suppress the proliferative activity of

autologous virus-specific CD4 (Figure 3A/C) or CD8 (Figure 3B/

D) T cells in these study patients. LAP-expressing CD4 Treg had a

moderate suppressive effect on proliferative activities of HIV-1-

specific T cells (Figure S7). None of the tested classical or non-

classical Treg populations had a measurable impact on interferon-

c or IL-2 secretion in HIV-1-specific CD8 T cells (Figure S8).

Taken together, these data show that HLA-G+ Treg have minimal

effects on the functional activities of virus-specific T cell responses

in controllers.

HLA-G-expressing Treg selectively reduce bystander
activation

To further explore the role of non-classical Tregs in HIV-1

disease pathogenesis, we focused on how these cells influence T

cell activation. Activation of T lymphocytes can either occur

through direct antigenic triggering of the TCR, or by mechanisms

involving a TCR-independent mode of T cell stimulation,

commonly referred to as ‘‘bystander activation’’ [20,21]. Both of

these pathways seem to contribute to the pathological immune

activation observed during progressive HIV-1 infection [22,23],

and may be influenced by the non-classical Treg populations

described in this manuscript. As a functional assay to investigate

and quantify the effects of non-classical Tregs on TCR-dependent

and bystander immune activation, we stimulated T cells with

Staphylococcal Enterotoxin B (SEB), an antigen that elicits T cell

responses by a broad panel of different TCR clonotypes, but

cannot be recognized by T cells using TCR Vb13.1 [24,25].

Immune activation in Vb13.1-expressing T cells following

exposure to SEB can therefore only be attributed to bystander

activation, while immune activation in Vb13.1-negative T cells

after SEB exposure reflects classical TCR-dependent activation.

To analyze the effects of non-classical Tregs on immune

activation, SEB-stimulated responder T cells were individually co-

cultured with autologous populations of sorted LAP+ CD4 Treg,

HLA-G+ CD4 Treg, or classical LAP2 HLA-G2 CD25hi CD4

Treg; LAP2 HLA-G2 CD252 CD4 T cells were added for control

purposes. Alternatively, HLA-G+ CD8 T cells, CD25hi CD282 CD8

T cells or HLA-G2 CD252 CD8 control cells were added to

autologous SEB-stimulated responder T cells. On day 4 of culture,

immune activation was measured by flow cytometric analysis of

CD38, HLA-DR and CD69 surface expression in Vb13.1-

Figure 2. Analysis of HLA-G+ Treg in lymph nodes and peripheral blood during HIV-1 infection. (A) Proportions of HLA-G+ CD4 and CD8
Treg in lymph node and peripheral blood samples. (B) Corresponding analysis of the frequencies of classical CD25hi CD127lo CD4 Treg in lymph node
and peripheral blood samples. Box and Whisker plots represent cumulative data from n = 5 PBMC/n = 9 LNMC from HAART-treated HIV-1 patients and
n = 5 PBMC/n = 12 LNMC from untreated HIV-1 patients. Significance between groups was tested by Mann Whitney U test.
doi:10.1371/journal.ppat.1003140.g002

HLA-G+ Regulatory T Cells in HIV-1 Infection
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expressing and Vb13.1-negative T cells. As demonstrated in Figure 4,

we observed that classical CD25hi Treg potently suppressed CD38/

HLA-DR expression in Vb13.1-negative T cells, consistent with

prior reports about the immunosuppressive properties these cells [5].

In contrast, HLA-G-expressing Treg led to a significantly reduced

surface expression of CD38 on Vb13.1-expressing T cells, but had

Figure 3. HLA-G+ Treg minimally inhibit proliferative activities of antigen-specific T cells. (A–B): Representative dot plots reflecting
proliferative activities of HIV-1-, CMV-, or PHA-stimulated CD4 (A) or CD8 (B) T cells from HIV controllers following incubation with indicated
autologous Treg subsets or HLA-G2 CD252 control cells. (C–D): Cumulative data reflecting the Treg-mediated suppression of HIV-1-specific CD4 (C) or
CD8 (D) T cell proliferation from n = 3 HIV-1 controllers. Significance was tested by paired T test.
doi:10.1371/journal.ppat.1003140.g003
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limited effects on immune activation of Vb13.1-negative cells. This

selective inhibitory effect on bystander activation was seen both for

HLA-G+ CD4 (Figure 4A/C) and CD8 (Figure 4B/D) T cells and

substantially exceeded regulatory effects on bystander activation of

classical CD25hi Treg or LAP+ Treg. None of the tested Treg

populations significantly affected CD69 expression on responder

cells over the 4-day incubation period, likely because in comparison

to CD38, CD69 is only transiently upregulated for a short period

after immune activation [26], and therefore could not be properly

evaluated in our 4-day co-culture experiment.

Figure 4. HLA-G+ Treg reduce bystander activation of T cells. (A–B): Representative flow cytometry dot plots reflecting the surface expression
of CD38 on Vb13.1+ and Vb13.12 responder T cells following exposure to indicated CD4 (A) or CD8 (B) Treg cell populations or negative control CD4
or CD8 T cells from HIV-seronegative donors. (C–D): Cumulative data representing relative suppression of CD38, HLA-DR and CD69 on Vb13.1+ and
Vb13.12 responder T cells following exposure to indicated CD4 (C) or CD8 (D) Treg cell populations. Mean and standard deviation from n = 8 HIV-1
negative study subjects are shown. Significance was tested by paired T test.
doi:10.1371/journal.ppat.1003140.g004
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To explore reasons for the differential susceptibility of Vb13.1-

positive and Vb13.1-negative responder T cells to classical and

non-classical Tregs, we analyzed the dynamics of LILRB1 surface

expression on responder T cells over a 4-day incubation period.

LILRB1 can effectively inhibit functional properties of T cells [27]

and represents one of the highest-affinity receptors for HLA-G

[28], which is secreted by HLA-G+ Treg (Figure S9) and

responsible for the immunomodulatory effects of HLA-G+ Treg

[9,10]. Interestingly, we observed that following TCR-dependent

T cell activation, LILRB1 surface expression on responder T cells

declined, while stable or slightly increased LILRB1 surface

expression was observed on Vb13.1-negative T cell after

‘‘bystander activation’’ (Figure 5). Overall, these data indicate

that HLA-G+ Treg differ from alternative Treg populations by

their ability to reduce bystander activation of T cells, and suggest

that TCR-dependent and TCR-independent mechanisms of

immune activation are associated with altered susceptibilities to

inhibitory effects of classical and non-classical Tregs.

HLA-G-expressing CD4 T cells are highly susceptible to
HIV-1 infection

Conventional CD25hi CD4 Treg express HIV-1 co-receptors

and are targets for HIV-1 infection [29,30]. Direct HIV-1

infection of HLA-G+ CD4 Treg may contribute to the reduction

of these cells in progressive HIV-1 infection. To investigate this,

we analyzed the susceptibility of HLA-G+ CD4 Treg to X4- or

R5-tropic HIV-1 viruses, or to a VSV-G-pseudotyped HIV-1

construct causing single-round HIV-1 infection. We observed that

HLA-G+ CD4 Treg were significantly more susceptible to HIV-1

infection than autologous HLA-G2 CD4 T cells; this was true

both for in vitro activated cells and for cells directly infected ex-vivo

(Figure 6A–C, E). This enhanced susceptibility was in line with

higher expression of the HIV-1 co-receptors, CXCR4 and CCR5,

on HLA-G+ CD4 Treg, in comparison to HLA-G2 CD4 T cells

(Figure 6D/F). These data suggest that reduction of circulating

HLA-G+ CD4 Treg in progressive HIV-1 infection may, at least in

part, be due to their enhanced susceptibility to HIV-1 infection.

Discussion

Regulatory T lymphocytes can influence immune homeostasis

by suppressing innate and adaptive effector cell activity, and in this

way may importantly modulate immune defense mechanisms

against HIV-1 [31]. The majority of currently available data

indicate that classical CD25hi CD127lo Treg are expanded during

chronic progressive HIV-1 infection [32,33,34,35,36,37] and may

worsen spontaneous HIV-1 disease progression by potently

suppressing functional activities of HIV-1-specific T cell responses

[5,17,38]. Here, we demonstrate several numerical and functional

aspects of non-classical HLA-G-expressing Treg in HIV-1

infection that clearly distinguish them from these recognized

characteristics of classical Treg. We found that absolute numbers

and relative proportions of HLA-G-expressing Treg are dimin-

ished in progressive HIV-1 infection, that they are inversely

correlated to phenotypic markers of immune activation, and that

they may have a functional role for reducing bystander immune

activation, while only minimally suppressing proliferative activities

of HIV-1-specific T cells. In contrast, an alternative population of

non-classical Treg expressing the TGF-b latency-associated

antigen (LAP) was not correlated to immune activation during

HIV-1 infection and weakly affected immune activation in

functional assays. Overall, these data suggest that HLA-G-

expressing Treg may contribute to balancing and fine-tuning

anti-viral immune activity and bystander immune activation

during HIV-1 infection.

HLA-G+ Treg represent a relatively recently discovered group

of suppressive T cells that can inhibit the activation and

proliferation of T cells after TCR triggering with CD3/CD28

antibodies. However, how HLA-G+ Treg functionally compare to

classical Treg in terms of their ability to suppress virus-specific T

cells or TCR-independent bystander activation of lymphocytes

remained unclear. Our data show that HLA-G+ Treg do not

effectively inhibit proliferation of HIV-1- and CMV-specific T

cells, compared to the effects of classical Treg in HIV controllers.

In contrast, we observed a seemingly stronger ability of HLA-G+

Treg to reduce TCR-independent bystander activation of T cells,

using an assay that excludes TCR cross-reactivity as a possible

source of activation in heterologous T cells. Yet, due to the

numeric reduction of HLA-G+ Treg in progressive HIV-1

infection, all functional effects of these cells could not be evaluated

using cells from this particular patient population. Whether

functional properties of HLA-G+ Treg from HIV-1 progressors

or HAART-treated patients resemble those of HIV-1 negative

persons, or exhibit an altered or dysfunctional profile, remains to

Figure 5. Stable LILRB1 expression on T cells after ‘‘bystander activation’’. (A) Representative dot plots demonstrating proportions of
LILRB1-expressing Vb13.1+ and Vb13.12 T cells after activation with SEB over indicated time course. (B): Fold change of LILRB1 expression on Vb13.1+

or Vb13.12 T cells at indicated time points. Mean and standard error from 7 different HIV-1 negative donors are shown. Significance was tested by
paired T test.
doi:10.1371/journal.ppat.1003140.g005
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be investigated. Nevertheless, our results suggest that HLA-G+

Treg differ from alternative Treg populations by a unique profile

of suppressive functions that may allow for reducing bystander

immune activation while simultaneously minimizing inhibitory

effects on virus-specific T cell immune responses. The preservation

of this HLA-G-expressing Treg population in HIV-1 controllers

may represent an additional immunological feature of this specific

patient population.

This work demonstrates that in contrast to classical Treg, HLA-

G-expressing Treg progressively decline during advanced HIV-1

infection. This selective loss of HLA-G+ Treg during advanced

HIV-1 infection may, in conjunction with other mechanisms,

contribute to immune overactivation during progressive HIV-1

infection. The reduction of HLA-G+ CD4 Treg during progressive

HIV-1 infection may be related to their increased susceptibility to

HIV-1 infection, which is likely due to enhanced expression of the

viral co-receptors CCR5 and CXCR4 demonstrated in this study.

An upregulation of these chemokine receptors may also lead to

elevated sequestration of HLA-G+ Treg into inflamed tissues,

where these cells were indeed preferentially observed in previous

investigations [9,39]. However, in our study, we did not find any

positive evidence for a selective enrichment of HLA-G+ CD4 and

CD8 Treg in lymphoid tissues, either in HAART-treated or in

untreated HIV-1 patients; but this observation in a limited number

of patients does not exclude the possibility of tissue compartmen-

talization of HLA-G+ Treg in HIV-1 infection. In addition, the

Figure 6. Susceptibility of HLA-G+ Treg to HIV-1 infection. (A–B) Representative flow cytometry dot plots reflecting the proportions of GFP-
expressing HLA-G+ or HLA-G2 CD4 T cells after infection with GFP-encoding X4- or R5-tropic HIV-1 viruses, or a VSV-G-pseudotyped HIV-1 vector. Cells
from HIV-1 seronegative donors were infected after in vitro activation (A) or directly after ex-vivo isolation (B). (C/E) Box and Whisker plots reflecting
the proportions of GFP-positive CD4 T cells after infection with indicated viral strains, with (C) or without prior in vitro activation (E). (D/F): Expression
of HIV-1 co-receptors CXCR4 and CCR5 on HLA-G+ or HLA-G2 cells, with (D) or without prior ex-vivo activation (F). (C–F): Data from n = 10 CD4 T cell
populations with prior in vitro activation and n = 9 CD4 T cell populations with direct ex-vivo infection are shown. Significance was tested by paired T
test.
doi:10.1371/journal.ppat.1003140.g006
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specific reason for the loss of HLA-G+ CD8 Treg in untreated

progressive HIV-1 infection remains unclear and warrants further

investigation.

Over the recent years, HIV-1 infection has increasingly been

recognized as a chronic inflammatory condition characterized by

elevated T cell immune activation [40]. The mechanisms leading

to this abnormal immune activation are most likely multifactorial

and include direct stimulation of T cells by HIV-1 antigens, as well

as direct TCR-mediated activation of T cells by alternative viral

and bacterial antigens that challenge the host during conditions of

HIV-1 associated immune deficiency. TCR-independent bystand-

er immune activation does not seem to play a significant role

under physiologic conditions, however, increasing data suggest

that bystander activation represents a major driving factor for

pathological immune activation during progressive HIV-1 infec-

tion. For instance, bystander activation occurs mainly through

cytokines, including interferon-a/b, IL-2 and IL-15 [41], which

are all increased in HIV-1 infection and represent independent

and accurate predictors of disease progression [42]. Moreover, the

majority of activated T cells in HIV-1 infected patients typically do

not exhibit phenotypic markers of recent TCR stimulation [43],

suggesting that their activation occurred by TCR-independent

processes. In addition, activation of T cells specific for Influenza

virus has been documented during HIV-1 infection in the absence

of serological evidence of Influenza co-infection, or detectable

TCR cross-reactivity between HIV-1 and Influenza antigens [44].

Interestingly, our data suggest that T cells activated by bystander

mechanisms may have a higher susceptibility to inhibitory effects

of HLA-G+ Treg, likely because they do not downregulate the

HLA-G receptor LILRB1 in a similar way as T cells activated by

TCR triggering. These observations indicate that TCR-dependent

and TCR-independent mechanisms of immune activation are

associated with altered susceptibilities to classical and non-classical

Tregs, and shed new light on target cell characteristics that

influence inhibitory effects of Tregs. By selectively reducing the

deleterious effects of TCR-independent bystander activation,

HLA-G+ Treg may provide a previously unrecognized form of

immune protection against HIV-1 associated disease manifesta-

tions.

Supporting Information

Figure S1 Analysis of classical and non-classical Tregs
in HIV-infected patients. Representative dot plots reflect co-

expression of HLA-G, CD25 and FoxP3 in patients with different

rates of HIV-1 disease progression and in a healthy individual.

(TIFF)

Figure S2 Characterization of classical Treg in HIV-1-
infected persons with different rates of HIV-1 disease
progression. (A) Box and Whisker plots summarizing the

proportions and absolute counts of CD25hi CD127lo CD4 Treg

in indicated study cohorts. Significance was determined by

ANOVA, followed by post-hoc analysis with Tukey’s Multiple

Comparison Test. (B) Correlation between proportions of CD25hi

CD127lo CD4 Treg and levels of immune activation. Spearman’s

correlation coefficient is shown.

(TIFF)

Figure S3 T cell subset distribution of HLA-G-express-
ing and bulk CD4 (A) and CD8 (B) T cells in indicated
study cohorts. Significance was tested by Mann Whitney U test

between cohorts within HLA-G+ or bulk T cells, and by paired T

test between HLA-G+ and corresponding bulk T cells.

(TIFF)

Figure S4 Phenotypic analysis of HLA-G- and LAP-
expressing Tregs in HIV-1 infected persons. Surface

expression of CD57 and PD-1 in HLA-G- (A) or LAP- (B)

expressing CD4 and CD8 T cells in indicated study cohorts. Data

from corresponding bulk T cell populations are indicated for

reference purposes. Mann Whitney U test was used to analyze

differences between study cohorts, and paired T test was used to

compare paired HLA-G+ and corresponding bulk T cells.

(TIFF)

Figure S5 Analysis of LAP+ Treg in HIV-1 patients. (A):

Representative dot plots reflecting the proportions of LAP+ CD4

and CD8 T cells in indicated study cohorts. FMO control reflects

‘‘fluorescence minus one’’ control without addition of LAP

antibodies. (B): Box and Whisker plots summarizing the relative

proportions and absolute numbers of LAP+ CD4 and CD8 T cells

in indicated study cohorts. ANOVA followed by post-hoc analysis

with Tukey’s Multiple Comparison Test was used to determined

significance. (C): Correlations between frequencies of LAP+ CD4

and CD8 T cells and total CD4 T cell counts in controllers

(n = 16), progressors (n = 14) and HIV seronegative individuals

(n = 7). (D): Correlations between proportions of LAP+ Treg and

CD8 T cell immune activation determined by surface expression

of CD38 and HLA-DR in controllers (n = 13), progressors (n = 7)

and HIV seronegative individuals (n = 6) (D). (C/D): Spearman’s

correlation coefficient is shown.

(TIFF)

Figure S6 T cell subset distribution of LAP-expressing
and bulk CD4 (A) and CD8 (B) T cells in indicated study
cohorts. Mann Whitney U test was used to analyze differences

between study cohorts, and paired T test was used to compare

paired HLA-G+ and corresponding bulk T cells.

(TIFF)

Figure S7 LAP+ Treg weakly inhibit proliferative activ-
ities of HIV-1-specific cytotoxic T cells. (A): Representative

dot plots reflecting proliferative activities of HIV-1-specific CD8 T

cells from HIV controllers following incubation with indicated

autologous Treg subsets or LAP2 CD252 control cells. (B):

Cumulative data from n = 6 study subjects reflecting the Treg-

mediated suppression of HIV-1-specific CD8 T cell proliferation.

Significance was tested by paired T test.

(TIFF)

Figure S8 Non-classical Treg do not affect cytokine
secretion properties of HIV-1-specific T cells. Cumulative

data indicating the proportion of IFN-c+ (A) or IL-2+ (B) CD4 and

CD8 T cells following exposure to indicated autologous Treg

populations, or LAP2 HLA-G2 CD252 control CD4 T cells in

n = 5 HIV-1 controllers. Significance was tested by paired T test.

(TIFF)

Figure S9 HLA-G-expression in cells and in the culture
supernatant. (A) Western blots reflecting cell-associated HLA-G

in isolated HLA-G+ and HLA-G2 T cell subsets, and in culture

supernatants from these two different cell populations. (B):

Quantitative assessment of cell-associated and soluble HLA-G

protein from HLA-G+ and HLA-G2 T cells from n = 4 HIV-1

negative subjects. Significance was tested by paired T test.

(TIFF)
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