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Dynamics of infection, mutation, and eradication, in HIV and
other evolving populations

ABSTRACT

This work uses mathematical models of evolutionary dynamics to address
clinical questions about HIV treatment, public health questions about
vaccination, and theoretical questions about evolution of high mutation rates.

Chapters 2 and 3 explore HIV treatment. Despite the high inhibition of viral
replication achieved by anti-HIV drugs, many patients fail treatment, often with
emergence of drug resistance. The observed relationship between adherence and
likelihood of resistance differs across drug class. Chapter 2 presents a model that
explains these observations by considering drug properties, fitness of susceptible
and resistant strains, and adherence. Poor adherence to boosted protease
inhibitors, which have sharp dose-response curves and short half-lives, is shown
to cause failure via growth of susceptible strains, not resistant ones.

Current HIV treatment cannot eradicate the infection due to a reservoir of
latent virus in resting memory CD4™ T cells. Chapter 3 models infection
dynamics during treatment interruption, in order to assess investigational
therapies that reduce the size of the latent reservoir. Calculations suggest that
reducing the reservoir by 1,000- to 20,000-fold will let half of patients interrupt
treatment for one year without rebound, but that rebound may occur suddenly
after years of success.

Chapter 4 considers vaccination against seasonal infections. One’s decision to
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vaccinate affords indirect protection to non-vaccinators. Reliance on this
protection may prevent establishment of herd immunity. Here epidemiology is
integrated into a model of adaptive learning, in which individuals use anecdotes
from peers to estimate benefits of vaccination. Herd immunity is found to
establish in network-structured populations, but to break down if vaccination
costs exceed a critical threshold. This result suggests parallels to historical
“vaccine scares” following periods of high vaccination coverage.

The final two chapters examine evolution of mutation rates under
frequency-dependent competition. Cyclical “rock-paper-scissors” competition is
found to exert upward selective pressure on mutation rates. Competition
resulting in a stable equilibrium trait distribution exerts downward selective
pressure on mutation rates. Recombination lowers the evolutionarily stable
mutation rate but may permit stable coexistence of rates above and below this
level. Biological scenarios are discussed which may meet theoretical

requirements for the adaptive evolution of high mutation rates.
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Introduction

MATHEMATICAL MODELS OF EVOLVING POPULATIONS CAN BE USED TO
INVESTIGATE BIOLOGICAL MECHANISMS, explaining and predicting trends in
these populations. In this thesis, I explore a range of biological scenarios with
models of evolutionary dynamics. My work addresses clinical questions of HIV
treatment and evolution of resistance, public health questions regarding
vaccination and herd immunity, and theoretical questions regarding the
evolution of mutation rates.

In Chapters 2 and 3, I investigate two questions about current and

investigational HIV treatment efforts. Since the early days of HIV treatment,



dynamic modeling approaches have contributed to our understanding of viral
growth and evolution under various treatment regimes [33, 55, 239]. Highly
active antiretroviral therapy (HAART) inhibits HIV replication and can maintain
alow viral load indefinitely, but it cannot eradicate the infection due to a reservoir
of latent virus present in resting memory CD4™" T-cells. The treatment battle
against HIV is therefore a long one that may involve multiple rounds of treatment
modification following the development of resistance. Two recent trends in HIV
treatment research have emerged: development of highly potent drugs with
relatively few adverse effects that make it easier for patients to adhere to their
HAART regimen, and investigation of treatments that may deplete the latent
reservoir. I investigate two mathematical models that may be of service in the
design and testing of treatments that arise from these trends.

Adherence is typically measured as the fraction of a patient’s prescribed doses
that he or she takes, though measures such as the frequency of extended
treatment interruptions provide complementary information [233, 234]. In the
context of the first HIV research trend, it is important to understand the
relationship between adherence and treatment outcomes. Despite the high
inhibition of viral replication achieved by current anti-HIV drugs, many patients
fail treatment — suffering rebounding viral loads, often with emergence of
drug-resistant virus. The relationship between adherence and likelihood of
resistance differs dramatically across drug class, with boosted protease inhibitors
generally exhibiting least vulnerability to resistance, even at sub-par adherence

levels [ 15, 185]. In Chapter 2, I present a mathematical model that explains these



observations and makes novel predictions. This work extends the literature on
viral dynamics by incorporating empirical measurements of antiretroviral
pharmacokinetics and pharmacodynamics into a model considering adherence,
mutation, and fitness differences between susceptible and resistant strains. Drug
resistance may emerge either from mutations pre-existing in the latent reservoir
or from mutations arising de novo from reverse transcription during the viral
lifecycle. The model shows that antiviral activity falls quickly for drugs with sharp
dose-response curves and short half-lives, such as boosted protease inhibitors,
limiting the time between doses when resistance can be selected. Poor adherence
to such drugs therefore causes treatment failure via growth of susceptible virus.
This chapter also proposes the hypothesis that particular single-pill combination
therapies may prevent resistance at any patient adherence level, even though the
same drugs administered as separate pills could be vulnerable to resistance. This
hypothesis follows from a calculation that the mutant selection window for a
particular drug combination is small if the drug concentrations are forced to vary
in lockstep — as they would be in a coformulated pill.

The number of potential combination regimens grows rapidly with each
investigational compound, yet only a small fraction of these regimens can feasibly
be tested in randomized control trials. Moreover, a patient’s optimal regimen
depends on personal factors such as viral load history, CD4 count, pre-existing
resistant variants, and adverse effects of and adherence to treatment, meaning
that results of large trials may not generalize to all patients. As standards of care

change over time, these aspects of the overall patient population may change as



well, potentially destabilizing correlations observed in past clinical studies.
Against an evolving adversary, investment in drugs is like investment in the stock
market: Past performance does not guarantee future results. Since the modeling
approach proposed in this chapter incorporates patient characteristics and
underlying — presumably stable — mechanisms of viral growth, it has the
potential to predict patient outcomes in a broader range of circumstances than
previous approaches.

In the context of the second HIV research trend, great strides are being made
to develop reliable therapies for eradicating cells latently infected with proviral
HIV. While risky and costly stem cell transplantation remains the only verified
method for curing HIV by complete eradication of the latent reservoir [139],
both early treatment initiation [ 29, 243, 296] and use of drugs to induce targeted
activation of latently infected cells [8-10, 27, 197, 249, 285, 327, 328] may reduce
the size of the latent reservoir. It is not yet known how reservoir reduction, short
of complete eradication, will benefit patients. In Chapter 3, I address the specific
question of how much reduction of the reservoir is required to allow a patient to
maintain low viral loads during extended interruption of HAART. By
triangulating measurements of latent reservoir size, activation rate of latently
infected cells, and growth rate of virus issuing from actively infected cells, and
then by incorporating these measurements in a model of infection dynamics, I
offer an initial answer to this question, setting specific goals for investigational
therapies that have yet seen limited clinical testing. The model suggests that

reduction of 1,000- to 20,000-fold is required to let a majority of patients



interrupt HAART for one year without rebound and that viral rebound may yet
occur after multiple years of successful interruption. Investigational drugs thus
far have not been shown to reduce the reservoir even tenfold. Readers who are
daunted by this finding may wish to recall that AZT, the first antiretroviral drug
approved for HIV treatment, inhibits replication by drug-susceptible virus
roughly 20-fold as measured in vitro, while the first protease inhibitor, saquinavir,
approved nine years later, inhibits replication over one million-fold by the same
measurement [ 279 ], rendering virus undetectable by clinical assays. As
mathematical models designed in the early HAART era served to frame debates
about therapeutic goals and virological consequences of antiretroviral
therapy [ 122, 239], so too may models of latency reduction serve investigations
of this emerging therapy. As an important point of contrast with earlier viral
dynamics literature, the work presented in this chapter uses a stochastic model,
appropriate for understanding small populations of actively infected cells, the
time until first activation, and heterogeneity among patients receiving equally
effective therapy. As data from longer-term clinical trials of latency-reducing
drugs becomes available, the distribution of times until viral rebound generated
by the model may be tested against it, leading to a clearer understanding of the
viral dynamics of activation and small infections.

The work in Chapter 4 takes place in an epidemiological setting. I examine the
dynamics of the spread of an infection through a community of individuals who
make the recurring seasonal decision whether to vaccinate against the infection.

Successful vaccination campaigns have been known to seed their own demise, for



achievement of herd immunity through vaccination indirectly protects even
those who cannot or who choose not to vaccinate, allowing them to “free-ride”
on vaccination efforts of others [24]. As memories of the virulent consequences
of a pathogen wane, deniers of vaccination efficacy and safety may gain
prominence and credence [208]. In the context of a flu-like infection, against
which a new vaccination is required each season, individuals have the
opportunity to update their vaccination decision annually and may condition
their decision upon information about vaccination costs and benefits that they
gathered in previous seasons. In this chapter, I investigated the consequences of a
simple rule by which members of a population update their vaccination
decisions. Under this rule, an individual compares his or her outcome from last
season (sick or healthy) with that of a peer; the individual then switches his or
her strategy (vaccinate or not) to that of the peer with a probability depending on
whether the peer fared better last season. This rule provides a simple description
of learning, by which individuals seek to improve their own outcomes by
selectively imitating others. Similar learning rules have been investigated
theoretically and experimentally in the context of human cultural
evolution [312], have been shown to be optimal under certain conditions of
bounded rationality [267], and have been used to describe learned foraging
behavior adequately in at least one nonhuman species [245].

The learning rule under investigation gives rise to dueling contagions: after the
seasonal epidemic spreads through the population, so too may the strategy of

vaccination spread via imitation learning, limiting the following season’s



epidemic. Paradoxically, as individuals become more adept at imitating
successful strategies, the equilibrium level of vaccination falls below the rational
individual optimum. Herd immunity is not established in this setting. In
network-structured populations where individuals may transmit the vaccination
strategy or infection only to close contacts, the picture is guardedly optimistic:
vaccination is widespread over a range of low vaccination costs, but coverage
plummets after cost exceeds a critical threshold. This result suggests parallels to
historical scenarios in which vaccination coverage provided herd immunity for
some time, but then rapidly dropped. The model is therefore capable of
representing both the establishment and fragility of herd immunity.

Chapters 5 and 6 explore theoretical issues in the evolution of mutation rates.
The adaptive potential of a population is both enabled and constrained by
random mutation, and numerous studies have investigated the causes and
consequences of mutation rate evolution [ 14, 295 ]. In the context of infections,
both the mutation rate and intra-host population size of a pathogen govern the
rate at which it may escape host defenses, a phenomenon that has been studied in
great detail in the context of HIV epitope evolution [94, 220]. In mammals, the
adaptive CD4" T cell response is a form of “domesticated evolution” that
exploits strong selective pressures for antigenic specificity in a large population
(= 10" cells in humans) to combat this shifting pathogen threat. In bacterial
species confronting phage parasites, hypermutation may play a similar protective
role [227], albeit with the attendant risks of increased mutational load.

Theoretical arguments suggest that host-pathogen coevolution may drive



increased mutation rates in both species [ 150, 201]. Stepping beyond
host-pathogen competition, I argue in these two chapters that numerous forms of
frequency-dependent competition may mediate both upward and downward
selective pressures on mutation rates. Chapter § uses numerical simulation to
investigate how a basic form of cyclical competition among three or more traits
within a population — such as “rock-paper-scissors” competition — favors
lineages with high mutation rates that are able to respond quickly to periodic
shifts in trait frequencies. Despite these never-ending shifts, the mutation rate in
this system generally converges to a unique high evolutionarily stable rate. It is
widely known that recombination weakens selection for high mutation by
decoupling the genetic determinants of mutation rate from the adaptive
consequences of mutation [295]. In agreement with this principle,
recombination lowers the evolutionarily stable mutation rate in the model
presented. This chapter adds a wrinkle to this principle by showing that
recombination also allows for stable coexistence between mutation rates above
and below the evolutionarily stable rate. Even considering strong mutational load
and ignoring the costs of faithful replication, evolution favors positive mutation
rates in the model if the selective advantage of prevailing in competition exceeds
the ratio of recombining to non-recombining offspring. In conclusion, I
hypothesize that local mutation rates may be relatively high on genes influencing
cyclical competition, and that global mutation rates in asexual species may be
higher in populations subject to strong cyclical competition.

Chapter 6 abstracts from the particular form of cyclical competition studied in



the previous chapter by analyzing a general mathematical framework of mutation
rate evolution under frequency-dependent selection. Using deterministic
population dynamics, the evolution of mutation rates can be studied under any
form of frequency-dependent competition using an adaptive dynamics approach,
whereby a resident mutation rate may be invaded by a small population with a
slightly different mutation rate. This framework adequately reflects the
evolutionary regime where (1) the mutation rate evolves gradually and slowly
relative to the dynamics of trait competition and (2 the population as a whole is
expected to produce at least one mutant offspring per generation. Two general
principles can be proven in this framework. First, if frequency-dependent
competition dynamics lead to a stable mutation-selection equilibrium
distribution of traits, then lower mutation rates outcompete higher ones. Second,
if competition leads to a particular type of cyclical trait dynamics (a heteroclinic
cycle), of which the rock-paper-scissors dynamic is a special case, then the zero
mutation rate can be invaded by a range of higher rates. These theoretical results
suggest that the previous chapter’s conclusions regarding mutation rates on genes
influencing cyclical competition or in asexual species under cyclical competition
are robust to the quantitative details of competition. The standard-bearer for
cyclical competition observed in nature has been the side-blotched lizard Uta
stansburiana, in which male morphotypes of three different colors engage in a
rock-paper-scissors mate competition [289, 290]. Cyclical competition should
be common where individuals face fitness tradeofts in multiple interacting

characters [288], suggesting that frequency dependence-modulated mutation



rate evolution may be of broad evolutionary importance.
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Antretroviral dynamics determines HIV
evolution and predicts treatment

outcomes

2.1 INTRODUCTION

THE PROGNOSIS OF HIV INFECTION has dramatically improved since the
introduction of highly active antiretroviral therapy (HAART ), which, when
successful, can bring viral loads below the detection limit, improve immune

function and prevent progression to AIDS [229]. Although a complete
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understanding of how virologic, pharmacologic and host factors interact to
determine therapeutic outcome is still lacking, it is clear that a major obstacle to
successful treatment is suboptimal drug adherence. Non-adherence can lead to
virologic failure and the emergence of drug resistance [100, 117, 185, 315].

Because of their high antiviral activity, protease inhibitors are crucial in HIV-1
treatment and are used in three of the five recommended initial regimens and
many salvage regimens [225]. Clinical trials have shown that for many drug
combinations involving protease inhibitors, treatment failure occurs without
resistance mutations in the viral gene encoding protease [ 12, 118, 247, 300],
though mutations conferring resistance to other drugs in the regimen are often
found. It is generally believed that combination therapy works because it is
unlikely that multiple mutations conferring resistance to all drugs in the
combination will appear in the same viral genome. Thus, failure without protease
inhibitor resistance is puzzling, because it seems to contradict this fundamental
explanation for the success of HAART. It is commonly believed that protease
inhibitors have a higher ‘barrier to resistance’ than other drugs, meaning that
clinically significant protease inhibitor resistance requires the accumulation of
multiple mutations in the protease gene [58]. Protease inhibitor resistance also
typically occurs at a narrower range of adherence levels than resistance to other
drug classes [ 100, 155]. Although these concepts are suggestive, no theory has
been developed to explain why patients fail protease inhibitor-based regimens
without protease inhibitor resistance.

A resistance mutation may exist before treatment in the latent or active viral

12



populations or may arise during treatment [210]. Drug resistance develops
clinically if the mutant strain is selected for over the wild-type strain. Selection
depends on the fitness costs and benefits of the mutation, as well as on drug
levels, which vary with the dosing interval, the drug half-life and the patient’s
adherence. Here we use a modeling approach to integrate these factors, enabling
us to determine when a resistance mutation will be selected and to predict the
outcome of therapy with different drugs. Our results explain the unique
adherence-resistance relationship for protease inhibitors and show why patients

fail protease inhibitor-based therapy without protease inhibitor resistance.

2.2 RESULTS

2.2.1 DEFINING THE MUTANT SELECTION WINDOW

Antiretroviral drugs reduce viral fitness in a dose-dependent manner (Fig.
2.2.1a). Viral fitness can be summarized as a single parameter, the basic
reproductive ratio R,, which encompasses all phases of the viral life-cycle [215]
(Supplementary Methods). The Hill dose-response curve describes the

relationship between drug concentration and R,:

Roo
-~ m (2.1)
(&)

Here D is drug concentration, IC,, is the concentration at which 50%

R, =

inhibition occurs, and m is a parameter determining steepness of the curve

13
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Figure 2.2.1: Drug concentrations determine the relative fitness of the wild-
type virus and a resistant mutant. (a) The fitness of the wild-type virus (R,,
blue line) decreases with increasing drug concentration (here shown normal-
ized by wild-type IC,,), following equation (1). A drug-resistant strain (R,
red line) is less fit than the wild type at low concentrations but more fit at
higher concentrations, owing to an increased IC,, or a reduced slope. The
MSW is the range of concentrations where a resistant mutant, if present, will
grow faster than the wild type and still has R, > 1. The WGW is the range
of low concentrations where the wild type has R, > 1, leading to treatment
failure without the need for resistance. For drug concentrations in the over-
lapping range of these windows, virologic failure can occur even without re-
sistance but will be hastened by the appearance of a faster-growing mutant.
(b) As drug concentrations decay after the last dose is taken, the viral fitness
passes through four different selection ranges. Depending on the drug, dose
level and mutation, not all of these ranges may exist. The time spent in each
selection window is also determined by the drug half-life. WT, wild type.
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[48, 279]. The numerator R, is baseline fitness in the absence of treatment.

A drug-resistant mutant is any viral variant that is less inhibited than the wild
type for some drug concentration, described by the altered dose-response curve
that determines viral fitness R :

R = Roo(1 = 5) (2.2)

° m(1+o)
D
1+ < pICs )

Mutations have a fitness cost, meaning that the drug-free fitness of the mutant

virus is reduced by a fraction s (o < s < 1). In the presence of the drug, the
mutation confers a benefit, multiplying the IC,, by a factor p (the fold change in
IC,, p > 1). Many mutations also reduce the slope (m) of the dose-response
curve by a fraction o < o (ref. [265]).

Virologic failure occurs when treatment fails to prevent the growth of virus to
high levels. A viral strain grows when R, > 1. The strain with highest R,
outcompetes others [215]. The range of drug concentrations where a resistant
mutant can cause virologic failure is called the mutant selection window (MSW)
[79, 80]. Above the MSW, even replication of the mutant is suppressed
(R.(D) < 1), although toxicity may prevent these drug concentrations from
being achieved clinically. We here define the wild-type growth window (WGW),
where drug concentrations are so low that wild-type virus is not adequately

suppressed and failure can occur even without resistance (R, (D) > 1).
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2.2.2 THE MSW EXPLAINS THERAPY OUTCOME PATTERNS

To predict how well each drug suppresses growth of resistant and susceptible
strains, we computed the time during a treatment interruption that a patient
spends in the MSW and WGW. During treatment interruption, both R, and R,
increase. Up to four selection ranges can be identified (Fig. 2.2.1b). Using
pharmacokinetic and pharmacodynamic data [265, 279](Supplementary

Table 7.1.1), we determined the time spent in these ranges for 66 drug-mutation
pairs (Fig. 2.2.2a) on the basis of their specific dose-response curves (Fig.
2.2.2b-e). For each pair, we determined how soon after the most recent dose the
mutant or wild-type virus starts to grow. This quantity is shorter than the
expected time until virologic failure, which requires plasma HIV RNA to reach
detectable levels and may also depend on the time until mutant virus appears. We
examined here only single-point mutations that are fully characterized by their
effect on the dose-response curve (Eq. (2.2), Supplementary Tables 7.1.2, 7.1.3).
For this reason, we caution that our results may be over-optimistic, as virus with
multiple resistance mutations often appears during infection. Use of our results
for clinical recommendations is therefore premature. Below, we discuss

extending the model to multiple mutations.

Successful treatment must both minimize the time spent in the MSW and
delay entry into the WGW. These two goals are in tension, as shortening the time

spent in the MSW (for example, by decreasing drug half-life) can also hasten
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Figure 2.2.2: Selection windows can be calculated for particular drug-
mutation pairs. (a) The distance to the right along each horizontal bar is the
time since the last dose, and the color corresponds to the selection window
during that time interval (described in Fig. 2.2.1b). (b-e) Examples of dose-
response curves (showing drug concentration normalized by wild-type IC,,) for
drug-mutation combinations indicated in a. Shading indicates the MSW. If
the cost of a mutation is too high or its benefit (p or o) too low, it is possible
that the MSW does not exist. (f) Rank of each drug for relative risk of wild-
type versus mutant virus growth, independent of the overall risk of therapy
failure. For each drug, we show a ‘synthetic’, worst-case, single-nucleotide mu-
tation (Supplementary Methods and Supplementary Fig. 7.2.12). PI, protease
inhibitors; FI, fusion inhibitors; I, integrase inhibitors; ABC, abacavir; FTC,
emtricitabine; ATV, atazanavir; TPV, tipranavir; EVG, elvitegravir; ENF, en-
fuvirtide. Protease inhibitors are often boosted (co-formulated) with ritonovir
(/r), which interferes with breakdown in the liver and increases half-life.
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entry into the WGW (Fig. 2.2.1b). Results from our model (Fig. 2.2.2a) suggest
that non-nucleoside reverse-transcriptase inhibitors (NNRTIs) are protected
against failure via wild-type virus due to their long half-lives but are vulnerable to
mutation due to the time spent in the MSW. Protease inhibitors are at the
opposite end of the spectrum, with little time spent in the MSW but rapid entry
into the WGW. This behavior is caused by high slope parameters (extreme
sensitivity to changes in concentration) and short half-lives. These results explain
the unique trade-off presented by protease inhibitor therapy: greater protection
against the evolution of resistance but vulnerability to wild-type-based virologic
failure after short treatment interruptions. This feature is depicted schematically
by plotting the drugs along a single axis, which measures the relative risk of
mutant growth versus wild-type growth, independent of the overall risk of

virologic failure (Fig. 2.2.2f and Supplementary Methods).

2.2.3 SIMULATION OF CLINICAL OUTCOMES

Whereas the MSW and WGW concepts describe instantaneous growth of
mutant and wild-type virus for a given drug concentration, virologic failure
depends on sustained growth and, therefore, drug concentrations over time. To
explain clinical observations across drug classes and adherence levels, we
developed a stochastic model of viral evolution (Fig. 2.2.3 and Methods). Our
model builds on the large body of previous work modeling HIV therapy
(215,259,293, 318, 325] by integrating new data on class-specific drug

properties [279] and realistic costs and benefits of mutations [265]. We also
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modified past approaches by allowing drug concentrations, and hence R, to
fluctuate, rather than taking time-averages.

We first simulated 48-week trials of single agents in a cohort of patients. The
results are presented in two ways: as outcome versus patient adherence at the
trial endpoint (Fig. 2.2.4a) and as outcome versus time for a distribution of
patient adherence levels (Fig. 2.2.4b,c).

Consistent with a previous meta-analysis of combination therapy clinical trials
[15], our model predicts that the level of adherence necessary for mutant
virologic failure differs by drug class (Fig. 2.2.5). Specifically, for the NNRTIs
efavirenz (EFV) and etravirine (ETV), the risk of mutant virologic failure is
greatest at low adherence levels; for unboosted protease inhibitors, the risk peaks
at a higher adherence level and remains substantial up to 100% adherence; for
boosted protease inhibitors (paired with ritonavir to increase half-life), resistance
occurs infrequently and at intermediate adherence levels. Researchers have
previously argued that drug half-life and fitness costs of mutations are key factors
explaining these general trends [ 100, 155]. By incorporating these factors as
parameters, our model formalizes this argument.

In examining simulations of each drug individually (Supplementary
Figs. 7.2.1~7.2.7), we found four qualitative patterns of outcome, which
correspond closely-but not exactly-to drug class (Fig. 2.2.4).

For most nucleoside reverse-transcriptase inhibitors (NRTIs), the integrase

inhibitors, the fusion inhibitor, and the NNRTI nevirapine (NVP), even perfect
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Figure 2.2.3: Schematic of algorithm for simulating viral dynamics in a pa-
tient undergoing treatment. (a) A single simulated patient takes a particular
drug (or drug combination) with a designated adherence level, starting with
an initial viral load (VL). Over a 48-week clinical trial, drug levels fluctuate
and viral load levels are simulated according to a viral dynamics model. (b)
Drug levels fluctuate according to patient’s dosing pattern and pharmacoki-
netics (dose size, half-life, bioavailability); gaps show missed doses (figure
shows single drug). (c) Wild-type viral fitness (R,) fluctuates in response to
drug concentration depending on the dose-response curve. (d) Fitness of drug-
resistant strain (R}) depends on an altered dose-response curve; at high drug
concentrations, mutant fitness exceeds that of the wild type. (e) Wild-type
viral load depends on viral dynamics equations, which account for active repli-
cation, exit from the latent reservoir and competition between strains. (f) A
mutant virus may appear (red star) but be below the threshold for detection
(dotted red line) before eventually leading to virologic failure.
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Figure 2.2.4: Outcomes for simulated patients in a clinical trial. (a-c) The
height of the area shaded indicates probability of the corresponding outcome
at a given adherence level (a) or time point (b,c). (a) Adherence is defined
as the fraction of scheduled doses taken. These are maintenance trials (see
Methods). (b,c) Measurements are taken every 2 weeks for simulated patients
with a distribution of adherence levels (Supplementary Methods and Sup-
plementary Fig. 7.2.13b). (b) Suppression trials (see Methods). (c) Mainte-
nance trials. (1) 3TC therapy (pattern includes AZT, ABC, d4T, ENF, EVG,
FTC, NVP, RAL, TDF). (2) EFV and ETV therapy. (3) NFV therapy (pat-
tern includes ddl). (4) DRV/r and ATV/r therapy (pattern includes ATV,
TPV/r; variation on this pattern described in the Results includes LPV//r,
SQV, SQV/r IDV, IDV/r).
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adherence led to mutant virologic failure in all simulated patients. As adherence
declined, some wild-type virologic failure occurred. Virologic failure and
resistance occurred soon after the trials started. These results are consistent with
the notion that monotherapy often leads to rapid evolution of resistance.

For most protease inhibitors and the NNRT1Is EFV and ETV, however, perfect
adherence resulted in treatment success in simulations. Control of viral
replication has been observed in a substantial fraction of patients in protease
inhibitor monotherapy trials [241], but similar trials with EFV and ETV have not
been carried out. In simulations, declining adherence affected performance of
these two drug classes differently.

For the NNRTIs EFV and ET'V, there was a large range of low-to-intermediate
adherence for which mutant virologic failure was likely. Below this range,
wild-type virologic failure became increasingly likely, whereas above this range
the simulated patients succeeded. The size of this range is explained by the low
fitness costs of drug-resistant mutations and long half-lives of NNRTs, which
allowed the patient to remain within the MSW for a substantial duration
(suggested in ref. [17]).

The protease inhibitor nelfinavir (NFV) and the NRTI didanosine (ddI)
showed a large range of intermediate adherence leading to mutant virologic
failure. Near-perfect adherence was required for treatment success. Under most
clinical settings (adherence < 95%), our model predicts that these drugs perform
similarly to monotherapy with other NRT1s, typically leading to mutant virologic

failure.
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Figure 2.2.5: Our calculated adherence-resistance relations are in agreement
with those observed in clinical trials. (a) Adherence versus simulated prob-
ability of resistance in a 48-week suppression trial for a protease inhibitor, a
boosted protease inhibitor and an NNRTI. The inset shows a qualitative sum-
mary of results from a meta-analysis of clinical trials [15], which agrees with
our simulations. (b) Adherence versus fraction of time spent in the MSW for
the same drugs. Adherence-resistance trends demonstrate that time in MSW
is a good proxy for the risk of mutant-based virologic failure. For both plots,
curves were generated by averaging over all boosted protease inhibitors, all
unboosted protease inhibitors, and the NNRTIs EFV and ETV. Protease in-
hibitor curves in a were fitted to skewed-T distributions to smooth step-like
behavior. NVP, which was excluded from this figure, shows a different pattern
from the other two NNRTIs; specifically, mutant virologic failure can occur
even for perfect adherence (Supplementary Figs. 7.2.1, 7.2.2).
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For many protease inhibitors, a decline from perfect adherence led abruptly
from success to wild-type virologic failure, with little or no intermediate range for
mutant virologic failure. This result explains the outcomes of clinical studies,
which have shown that virologic failure in many boosted protease inhibitor-based
regimens (including monotherapy) does not require the evolution of resistance
[12, 118, 300]. Variations on this pattern exist for some protease inhibitors:
simulations of lopinavir (LPV/r), saquinavir (SQV, SQV/r), and indinavir (IDV,
IDV/r) showed mutant virologic failure at low and moderate adherence levels,
mainly for trials where initial viral load was high. Still, like all the protease
inhibitors simulated except NFV; as adherence declined from the successful
range, the first failing outcome observed was wild-type virologic failure
(Supplementary Figs. 7.2.1, 7.2.2).

We also examined the sensitivity of our results to changes in the baseline viral
fitness, R,, (Supplementary Figs. 7.2.8, 7.2.9). As the intracellular half-lives of
several NRTTs are not definitively established, we tested a range of half-lives for
lamivudine (3TC), azidothymidine (AZT), stavudine (d4T), ddI and tenofovir
disoproxil fumarate (TDF) (Supplementary Fig. 7.2.10). Against a strain with
higher R,,, higher adherence levels were required for treatment success, and
there was a wider range of adherence levels for which mutant virologic failure
occurred. The effect of increasing half-life was drug-dependent, but for most

NRTIs simulated, it increased the likelihood of mutant virologic failure.
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2.2.4 EXPLAINING OUTCOMES OF COMBINATION THERAPY

Equipped with a model of drug interaction, we were able to extend the
simulations to combination therapy (Supplementary Methods and
Supplementary Fig. 7.2.11). For proof of concept, we use a two-drug
combination of the boosted protease inhibitor darunavir (DRV/r) with the
integrase inhibitor raltegravir (RAL). The combined effect of these two drugs is
given by a Bliss-independent [30] interaction pattern [ 144], which describes
drugs acting on different targets, therefore reducing viral replication
multiplicatively. In a recent DRV/r-RAL clinical trial [ 300], patients
experiencing virologic failure had their plasma viral population genotyped.
Although 17% of patients tested positive for RAL-resistance mutations in the
gene encoding integrase, no patients tested positive for DRV resistance in the
gene encoding protease [300]. Our simulation is consistent with this study:
treatment failure occurred without DRV resistance (Fig. 2.2.6a).

RAL -resistant mutants were selected for only when the concentration of
DRV/r was low and the concentration of RAL was moderate to high
(Supplementary Fig. 7.2.11). This state of “effective monotherapy” (ref. [17])
can occur if the drugs are administered as separate pills. If, however, dual therapy
were administered as a combination pill, then the two concentrations would rise
and fall roughly together, reducing the chance that they reach the discordant
levels that select for resistance. Simulation of dual therapy as a single

combination pill verified this hypothesis. However, this protection from
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Figure 2.2.6 (following page): Outcomes of DRV/r plus RAL dual suppres-
sion therapy simulations, considering resistant mutants for both drugs. (a)
Each drug is taken independently, and adherence may differ between them.
The brightness of each color at a particular point indicates the probability

of the corresponding outcome, with the black contours showing where each
outcome occurs 95% of the time. Success depends largely on adherence to
DRV/r (success is almost certain if adherence is >50%), whereas the type

of failure is determined by adherence to RAL (resistance is almost certain if
adherence is >30%). All failure via resistance is due to RAL mutant-based vi-
rologic failure. DRV mutant-based virologic failure (virologic failure) never oc-
curs in the simulations. (b,c) Drugs are taken with equal average adherence.
The height of the area shaded indicates probability of the corresponding out-
come at that adherence level. (b) Drugs are taken as separate pills. Average
adherence is the same, but pills are taken independently. (c) Drugs are pack-
aged as a combination pill and are always taken together. Mutant virologic
failure occurs only when the two drugs are given in separate pills; combination
pills eliminate mutant virologic failure but increase the adherence required for
near-certain success.
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resistance came at a cost: higher adherence was required to prevent wild-type
virologic failure. For example, to ensure a 95% chance of success in the
simulation, a patient taking separate pills must be 25% adherent to each pill (Fig.
2.2.6b), but 35% adherent to a combination pill (Fig. 2.2.6c). We expect this

trend to apply to other drug combinations.

2.3 DiscussioN

Recent efforts to quantify pharmacodynamics [265, 279, 280], combined with
insights into patients’ drug-taking behavior [ 16], have enabled us to develop what
is to our knowledge the first explanatory model of virologic failure in agreement
with clinical trials. All parameters in our model have direct physical
interpretations, and their values were taken directly, or derived from, previous
literature. The model was not fit or trained to match clinical data. Despite our
model’s simplicity, it can explain the clinically observed drug-class-specific
relationship between adherence and outcome [ 15] (Fig. 2.2.5). Even without full
viral dynamic simulations, a straightforward analysis of the mutant selection
window can explain why certain drugs are more likely to select for resistance
(Figs. 2.2.2fand 2.2.5b).

In addition, we address a long-standing mystery of antiretroviral therapy. Even
when failure of protease inhibitor-based regimens is documented, mutations that
confer resistance to the protease inhibitor appear infrequently

[12, 118,247, 300]. Although it is possible that mutations may occur outside the
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protease-encoding gene [62, 112, 209, 235] and escape routine detection, our
model provides a more straightforward explanation: due to the sharp slope of
protease inhibitor dose-response curves [279], even relatively strong protease
inhibitor resistance mutations are selected only in a narrow range of drug
concentrations. Moreover, as protease inhibitor concentrations decay rapidly
compared to other drugs, they traverse this narrow range quickly, leaving little
time for a resistant strain to grow before wild-type-based virologic failure. We
predict that patients who fail protease inhibitor therapy with wild-type virus
should be able to re-suppress the virus if the same drug is taken with improved
adherence. A previous study [155] observed this outcome in patients who failed
LPV/r without detectable resistance. Even with protease inhibitors that are more
susceptible to resistance, only wild-type virus is detectable when adherence dips
below the level guaranteeing success, providing an antiresistance ‘buffer’ that
may warn clinicians of resistance risk. NFV is the sole exception to this pattern,
owing to its having the lowest slope and second-highest IC,, of the protease
inhibitors and consistent with its documented vulnerability to resistance [155].
The tradeoff between protection from resistant and susceptible strains occurs
not only between drug classes but also between different formulations of the
same drugs. We predict that a new combination pill containing DRV/r and RAL
would not lead to resistance, even though the current separate-pill formulation
does. This result suggests that some combination pills may be ‘resistance proof’,
but their known benefit of increasing patient adherence must be weighed against

the fact that they require higher adherence to prevent wild-type-based virologic
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failure. This tradeoff results from the possibility that a patient who is prescribed
multiple pills may at times take only some of them [99], providing partial
protection from the virus but allowing entry into a ‘zone of monotherapy’ [ 17]
that can select for resistance.

We can extend our model to a broader range of combination therapies once
interactions between drugs [ 144] are characterized; these interactions affect the
evolution of resistance [202]. Our monotherapy results are a first step for
examining how pharmacokinetics and pharmacodynamics determine treatment
outcomes. These results can inform innovations in lower-cost maintenance
therapy among highly adherent patients, for whom monotherapy shows promise
but also poses resistance risks [241]. Specifically, on the basis of our simulations,
we propose that EFV and ETV monotherapy may be promising avenues for
further study, despite the disheartening performance of monotherapy with the
first approved NNRTT, NVP [44], and the ambiguous performance of
ETV-based HAART for patients with resistance to the NRTI backbone [264].

Simulations that start with a high viral load (suppression phase) and
simulations that start with an undetectable viral load (maintenance phase)
generally showed similar outcomes; however, for several drugs, failure with
resistance was more likely during the suppression phase. Such differences are
often attributed to the presence of preexisting mutants when viral load is high
[33, 149, 232, 287]. However, in our model, frequent reactivation from the latent
reservoir provides a sufficient source of mutants during both phases

(Supplementary Tables 7.1.4, 7.1.5), and ongoing replication is an additional
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common cause of resistance (Supplementary Figs. 7.2.6, 7.2.7). The key
difference between the two phases is in how virologic failure is defined. As
patients remained in suppression simulations until the predefined endpoint,
wild-type growth sometimes preceded (and contributed to) growth of the
mutant. More frequent measurement of viral load in maintenance simulations
improved the chance that virologic failure was diagnosed before resistance
reached detectable levels, consistent with clinical meta-analysis [111]. Also
consistent with clinical observations [ 137], continuation of maintenance trials
after rebound allowed the possibility of re-suppression, but it sometimes led to
emergence of resistance (Supplementary Fig. 7.2.5).

It is difficult to quantitatively compare our simulations to clinical trials, as
adherence is rarely precisely known. We suspect that our results are biased
toward success for several reasons. First, we considered only single-point
mutations, but strains with multiple mutations may lead to failure at higher
adherence levels. Second, we considered neither correlations between
consecutive missed doses nor variations in the time of day when a dose is taken,
both factors that lead to longer treatment interruptions and increase the chance
of virologic failure [ 153, 182, 233, 234, 318]. Third, as is common in models of
viral dynamics, we assumed that the virus population is homogeneous and well
mixed. Actual infections may include subpopulations that grow faster (higher R,,
for example, owing to cell-to-cell transmission [281]) or that reside in tissues that
drugs do not fully penetrate [ 156, 189, 269]. For example, the concentration of

EFV in the cerebrospinal fluid is only 0.5% of plasma concentrations [26]. As our
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predictions rely on plasma drug concentrations, they may be optimistic in the
case of EFV (see ref. [123] for further discussion). In the absence of strong
evidence for these effects, suboptimal adherence is the most likely cause of
treatment failure. Given the above limitations, our modeling results should not
be taken as clinical recommendations at this stage.

Patients experiencing virologic failure may not respond to a similar regimen in
the future [124, 180, 233 ], but the precise reasons for this are not clear. The
simplest explanation is that growth of a resistant strain during prior treatment
makes it more likely this strain will exist in the future [32]. This explanation
assumes that, in the absence of prior growth, most resistant mutants are relatively
rare. If the diversity (effective population size) of the latent reservoir is not
severely depleted over time, then our calculations contradict this assumption for
single mutations: even in the absence of prior treatment, a majority of mutations
exit the reservoir every few weeks. Resistance is then available to be selected
regardless of prior growth. The occurrence of multiple mutations within the same
viral genome is unlikely, however, without prior growth. To explain generally
how prior virologic failure undermines future treatment, we need to model the
long-term accumulation of multistep mutations in the viral population
[219, 277]. To build such models, it will be important to understand interactions
between mutations (including compensatory mutations [123]) and account for
recombination [206].

We have emphasized here the variable nature of anti-HIV drug resistance.

Common practice classifies a genotype as resistant if it is associated with
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virologic failure in a meta-analysis of clinical outcomes; otherwise it is sensitive.
This categorization is misleading: a mutation’s ability to promote viral growth
depends on all of the drugs in a regimen, adherence and the other mutations
present. As standards of care evolve and study populations change, a mutation
may gain or lose resistant status as a result of shifts in these confounding
variables. Our model provides a rigorous alternative for evaluating resistance, by
using mechanistic parameters to predict clinical outcomes. Our framework can
help researchers prioritize drugs for clinical trials and select regimens for

personalized HIV treatment.

2.4 METHODS

2.4.1 PHARMACOKINETICS, PHARMACODYNAMICS AND THE MUTANT SELEC-

TION WINDOW

Viral fitness followed equation (2.1) with parameters R,,, IC,, and m. Fitness of
resistant mutants followed equation (2.2) with parameters s, p and o.
(Supplementary Tables 7.1.1~7.1.3). Relative wild-type and mutant viral fitness
values R,(D)/R,, and R, (D) /R,,, were measured using in vitro assays and were
fit to Hill curves to determine the parameters IC,,, m, 7, p and s; these values
were reported previously [265, 279]. We estimated absolute in vivo viral fitness in
the absence of drugs (R, ) using measurements from previous studies
(Supplementary Methods). We modeled drug concentration as instantaneously

increasing after a dose to the steady-state peak concentration (C,,,,) and then
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decaying exponentially (with half-life T, /2) to the trough concentration (C,,,)
before the subsequent dose. When doses were missed (representing suboptimal
adherence), the concentration continued to decay, and a subsequent dose
increased the concentration by AC = C,5 — Cypin-

We determined the bounds of the MSW by solving for D in R,(D) = R'o(D)
and R'o(D) = 1. We determined the upper bound of the WGW by solving R, (D)
= 1. We computed the time after a single dose when a particular concentration D
was reached by solving for tin D = Coran2” /T2,

The MSW concept as applied here to antiretroviral therapy was adapted from
the extensive literature on antibiotic resistance. Both in vitro and in vivo, drug
concentrations that fluctuate within the MSW lead to the development of
resistance, but those outside it do not (reviewed in ref. [80]). Although some
studies of antibiotic-resistant Escherichia coli have found no upper limit to the
MSW [329], no such results are known for antiretroviral resistance. The
definition of the MSW most commonly used in antibiotic work is slightly
different from the one we use, with the lower limit defined as R, (D) = 1 because
of experimental constraints [79]. We have chosen to modify this definition, as
selection for the mutant can occur even at lower drug concentrations where
R,(D) > 1 (ref. [110]). The MSW and WGW can be described for each drug

during combination therapy (Supplementary Methods).
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2.4.2 SIMULATION OF THE VIRAL DYNAMICS MODEL.

Our model for HIV dynamics during antiretroviral drug treatment uses
equations common in the literature [215]. These equations track the number of
uninfected CD4 ™" cells, amount of free virus and number of infected CD4 ™" cells.
A constant number of uninfected cells are produced each day, and they die at a
constant rate. Cells are infected at a rate proportional to the number of
uninfected cells, the amount of virus, and the viral fitness. Virion production
from infected cells is described by the burst rate, and virions are cleared at a
constant rate. Infected cells have a higher death rate than uninfected cells.
Additionally, we include a population of long-lived infected cells in the latent
reservoir, which activate at a constant daily rate regardless of viral fitness. Because
we are interested only in viral dynamics during treatment and at the initial stages
of failure, we have ignored the effects of the immune response. Viral fitness, and
hence the rate of infection of new CD4 ™ cells, is determined by the baseline R,
and the drug concentration. All equations and parameters are given in the
Supplementary Methods and Supplementary Table 7.1.6. In the Supplementary
Methods, we also derive a simplified form of HIV dynamics that requires fewer
parameters and only one state variable per viral strain; we used this simplified
model to design our simulations. More detailed models that explicitly track
multiple stages of the viral life cycle may more accurately reflect some short-term
dynamics, such as lags in viral growth during acute infection or lags in viral decay
during the early days of treatment [256, 273 ]. Summarizing viral fitness by a

single parameter (R, ) smoothes out these dynamics.
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There may be multiple strains of virus (wild-type and mutants) and
consequently multiple types of infected cells. Even in the absence of drug,
mutations will arise due to random errors in replication, though they will be
selected against due to their fitness cost (s). Each mutation appears at a rate u that
depends on the particular nucleotide changes required to effect the desired amino
acid substitution (Supplementary Tables 7.1.2, 7.1.3, 7.1.7). The balance between
these two processes results in all mutations being present in the population at an
expected low level u/s, called mutation-selection equilibrium [215, 255]. We
assume that the plasma virus population reaches this equilibrium in each patient
before treatment (that is, that sufficient time has passed between initial infection
and treatment initiation and that no prior treatment has selected for resistance to
the particular drug being studied) and that the population in the latent reservoir
is representative of the plasma population (Supplementary Tables 7.1.4, 7.1.5).
De novo mutations occur with a probability u during replication.

We used stochastic simulations to study the dynamics of the system described.
Many mutations have been characterized for each drug, and to model a realistic
worst-case scenario we considered a single synthetic mutant defined as having
the highest benefits (p, negative o), lowest cost (s), highest mutation rate and
highest equilibrium frequency (due to mutation-selection balance) of all the
single-nucleotide mutants known for that drug. Each monotherapy simulation
therefore tracked only two strains, wild-type and mutant. For dual therapy, we
considered three strains: wild-type, resistant to drug 1, and resistant to drug 2.

Simulations modeled 48-week trials, using discrete time-steps of At = 30 min. All
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simulations were done in Matlab R2010b. The full details of the algorithm for
simulating a single patient are given in the Supplementary Methods.

In maintenance trials, patients began with full viral suppression (2 RNA copies
per ml, c ml™*) and underwent monotherapy for 48 weeks or until virologic
failure, whichever occurs first. virologic failure is defined as ‘confirmed rebound’:
two consecutive weekly measurements (starting at week s ) with viral load above
200 ¢ ml™". In suppression trials, patients began with a realistic distribution of
treatment-naive viral loads (between 3,000 and 10° ¢ ml™*) (Supplementary
Fig. 7.2.13a) and underwent monotherapy for a full 48 weeks. We tracked
measurements every 2 weeks. Virologic failure is defined as a viral load above 5o
c ml'at week 48. In both types of trials, virologic failure is classified as ‘with
resistance’ if at least 20% of the viral population at the time of detection is mutant.

We simulated imperfect adherence by allowing each dose to be missed with a
constant probability given by the expected adherence level parameter. In
reporting outcomes versus time, we simulated patients with a distribution of
adherence levels taken from a study using unannounced pill counts3o. For
simulations with two drugs, the value of adherence may be different for each
drug, allowing for “differential adherence,” which has been observed in many
studies [99]. Even when adherence to the two drugs has the same average value,
the drugs can be simulated as two separate pills (allowing each pill to be taken or
forgotten independently) or as a single combination pill (causing the two drug

concentrations to rise and fall in lockstep).

37



2.5 SUPPLEMENTARY METHODS

2.5.1 VIRAL DYNAMICS MODEL

The following system of equations models the dynamics of multiple strains

(i=1,2,...,n) of HIV in a patient:

dc:l—zn:ﬁixv,-—dxx

y; = Bavi + A — dyy, (2:3)

v; = ki}’i —dy;

where state variables x, y,, and v; are the number of infectable CD4™ T-cells,
the number of actively infected cells of strain i, and the number of free virus
particles of strain i, respectively. The number of latently infected cells is
considered to be constant, as it doesn’t decay significantly over the course of a
clinical trial, and so latently infected cells of strain i activate at a constant rate A;.
Active cells produce virus at rate k; and die at rate d,, and virus is cleared at rate
d,. The infectivity parameter B, determines the rate at which virus of strain i
infects susceptible host cells. Host cell dynamics are determined by production
rate A and death rate d,.

When A; = o for a strain i, this model reduces to the traditional viral dynamics
model [215]. For that model we can describe the basic reproductive ratio, which is

defined as the number of new infections generated by a lone infected cell before it
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dies. Strain i will only have a positive growth rate and be capable of sustaining an
infection if its basic reproductive ratio, R,; := Ap k; / (dxdyd,,) , is greater than 1.
In the model we present here the latent reservoir provides a constant source of
virus (A;), which removes the threshold criteria for R,, although this value still
describes viral fitness and the amount of ongoing viral replication.

For a single strain, the unique non-negative steady-state solution to our model

is

A A, A, ’ A
y, = % R, (7—1-1) —1+4 /R, (74-1) + 2R, (7—1) +1
(2.4)
In our model, for R,; > 1, strain i grows to a high steady state that depends on

availability of host cells and the abundance of other strains. There are several
limiting cases that can be derived from equation (2.4). In the absence of other
strains (or if Ry < 1forallj # i), and for small reactivation A; < A, strain i
grows to the steady state y, ~ Y, ;=1 (Roi —1)/ (dyRo,-). The value Y; is the
setpoint viral load that is maintained by replication alone, without additional
contribution from the latent reservoir. The residual active infection maintained
by the latent reservoir in complete absence of viral replication (R,; = o) is
Vo = Ai/ d,. For positive R,; < 1, strain i reaches a low steady state
y, =y, =3,/ (1 = R;). Since anti-HIV drugs act by decreasing p, and k;, the
value of R; is understood to depend on the current drug concentration(s).

To eliminate some of the model parameters and smooth the high-frequency
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fluctuations that may have little clinical impact over the course of a drug trial, we
study a simplified version of the model in equation (2.3). We assume that v; and x
are at equilibrium relative to y,. This allows us to derive a reduced n-dimensional

model:

)‘Roi
, = —1
flA Zj:l ROjdyyj

¥, =A; +d, (25)

When the total infection is small, the summation term vanishes, and
y; = A; +d,y, (Roi — 1). For Ry; < 1, nearly all of strain i is produced by exit
from the reservoir; y, therefore approaches a value near y_,. As the total infection
grows (assuming R,; > 1 for one or more i), the fractional term approaches 1,
describing saturation of the limiting resource, at which point new infection events
are balanced precisely by death of infected cells and y, approaches a value near Y.
This reduced model has identical steady state values of virus and CD4™ cells as
the full model, but smooths out fluctuations in infection size caused by the
dynamics of total CD4™ cells. Because we focus on initial virologic failure, which
occurs at relatively low viral loads, the fluctuations in CD4 ™" cell levels are minor,
and the approximation captures the full dynamics (equation (2.3)) well.

We can account for mutation by including the mutation rate matrix Q, where
Q;; describes the probability that an infected cell of type j gives rise to one of type

i:
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ldy Z;:x y]ROJ Ql]
l + Z?:l Rojdyyj

)}i = A; + - d}’yi (2-6)

2.5.2 MODEL PARAMETERS

The value of R,; at each point in time depends on the baseline basic reproductive
ratio (R,, = 10, see below), the current drug concentration(s), and parameters
describing resistance of the strain, as described by equations (2.1) and (2.2) in
the main text. The death rate of actively infected cells, d,, is 1 per day [188].

Supplementary Table 7.1.6 summarizes the parameters used in the model.

BASIC REPRODUCTIVE RATIO

The basic reproductive ratio (R,) combines various components of viral fitness
into a single number. R, > 1is required for the virus to have a positive growth
rate and sustain an infection. The baseline R, which we denote R, is defined in
the absence of drug and has been estimated in past studies by measuring the
increase in viral load during the early days of acute infection or during planned
treatment interruption. During the acute phase, before the CTL response
develops, typical values for R,, are 10-20(ref. 64;67). After this initial phase, Ry,
declines to 2-5, with some outliers as high as 6-11 (ref. 68-72) . Based on these
findings, we chose a value of R,,=10 to present our results. We also checked
sensitivity to this parameter by using larger and smaller R, values

(Supplementary Figures 7.2.8 -7.2.9).
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We can also double-check that our value of R, from the literature is consistent
with an independent set of measurements. The growth rate of a mutant strain in
the absence of drug is R,, * (1 — s) (see equation (2.1) in the main text), where s
is the reduction in the replication capacity of the mutant virus. If
Ry, * (1 — s) > 1, then a mutant strain will expand in the absence of drug. If this
condition fails, then the mutant strain would never be detected at high abundance
(ignoring secondary or compensatory mutations). Since all the resistance
mutations that we study do occur clinically, we expect that Ry, > 1/(1 — s)
should almost always hold. 95% of the mutations studied have s < 0.9, for which
the positive growth condition is satisfied for the value R,, = 10.

To maintain consistency with the chosen value R,, = 10, we capped the cost
of mutations used in the viral dynamics simulation at s = 0.9, guaranteeing that
no mutant’s baseline R, would be less than 1. Values of s that are negative are also
inappropriate for our model, as they imply that the resistant mutant is more fit
than the wild type even in the absence of the drug, causing the mutant to be
prevalent at baseline. Measurements of s that were close to o or negative were
assumed to be caused by experimental error, and so we set these values to

s = 0.0§ to represent a small cost to these mutations.

LATENT RESERVOIR EXIT RATE

Based on the following argument, we estimate the total reservoir exit rate ) _. A;
to be 3000 cells per day. The exit rate for a particular mutant strain is determined

by multiplying by the equilibrium frequency of pre-existing mutants, u/s. (Our
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simulation treats each exit as an independent event; use of this modeling
approach implicitly assumes that the reservoir was seeded by a large, diverse
population, and that its diversity, or effective population size, is maintained over
time.) Viral loads of around 2 RNA copies per mL are maintained in patients on
maximally suppressive HAART [74]. The rate of exit from the reservoir must be
enough to account for this residual viral load, since ongoing replication is
negligible. This viral load corresponds to &~ 3 X 10* plasma virions (for a 70 kg
person with 3L plasma). It has been shown, for a wide range of viral loads, that
the total number of infected cells in a patient is roughly equal to the number of
plasma virions [126]. The infection size ) |y, = (D A;) /d, is therefore 3 X 10?,
implying a total reservoir exit rate of 3000 cells per day.

Alternately, we can estimate the number of infected cells by noting that total
viral production (burst from infected cells) must balance total viral clearance
(breakdown of free virus in lymphatic tissue). Using parameters previously
established [64], free virus in lymph tissues is 100 times as abundant as virus in
the extracellular fluid, and so would be about 1.5 X 10° virions (based on 15L
ECF) for this example. This paper also determined that the ratio of viral burst
size to viral clearance rate is typically soo virions per cell (e.g., k; = 10,000
virions per day per cell; d, = 20 per day). These figures again imply an infection
size of 3000 cells.

Our calculations also agree with the results of a model which examined the
many years-long decay of the latent reservoir in HAART patients [272].

Although this model used different sources for parameter values, it is consistent
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with an exit rate of 3000 cells per day, as long as the reservoir is not significantly

depleted.

HoST CELL PRODUCTION RATE

For a single wild-type strain in the absence of drug, the model (equation (2.5))
provides A = i/dyRoo / (Roo — 1), where Y is the total number of infected cells at
infection setpoint. As established above, this value is approximately equal to the
number of plasma virions at setpoint. We considered setpoint viral loads from
3000 to 10° RNA copies per ml plasma, or 4.5 X 10° to 1.5 X 10° total plasma

virions. These values give a range of 5 X 10° to 1.7 X 10° cells per day for A.

RESISTANCE MUTATION RATES

The mutation rate matrix entry Q;; describes the probability that strain j
reproduces to create strain i. We include only single step mutations from the wild
type (j = 1) to another strain i (at rate 4;) and ignore back-mutation. Therefore
Q, = uifori>1,Q, =1—)  w,Q; =1fori>1and Q; = oforall other
entries.

The overall mutation rate for HIV is 3 X 107 % per base per replication cycle
[187], and recent work has shown that the rate varies considerably depending on
the specific base changes involved. The nucleotide mutation matrix used in this
study was derived by normalizing mutation accumulation data from a study of
HIV replication of lacZa reporter sequence [2]. The normalized data was then

rescaled to convert from the lacZa base composition to the HIV consensus
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sequence base composition [ 170]. Specifically:
1. Define the variables:

o u =3 X 10 °is the average per-site mutation rate of HIV.

* Sy is the total number of single-nucleotide substitutions from base x
to base y, combining data from both the forward and reverse

orientations of lacZa in Table 3A of Abram et al. [2].

* Sy is the total number of single-nucleotide substitutions from base x

to any other base.
« Sis the total number of single-nucleotide substitutions overall.

« n,and n}, are the abundance of base x in the reporter sequence and in
the HIV consensus sequence, respectively. N and N’ are the lengths

of the two sequences, respectively.
- T = 37,c = 56,14 = 36, = 45, N = 174
- np = 2163, g = 1772, 1)y = 3411, ng = 2373; N’ = 9719
2. Calculate the relative mutability of each base x in the reporter sequence,

e = (Sxx/n) / (S/N). Avalue r, > 1indicates that base x is more

mutable than the average, while r,, < 1indicates the opposite.

3. The per-site mutation rates from all bases x, denoted u,, are assumed to be
proportional to the relative mutabilities r,. To compute the values u,.,
scale the relative mutabilities so that the sum

n'TuT* + n’cuC* + nguA* + n’GuG* equals N'u, the genomic mutation rate
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of HIV (about 0.3 substitutions per replication). The correct scaling factor
is i /1, = N'u/ (D renl).

4. To determine the individual rates u,,, partition each value u,, proportional

to the substitutions counted in the reported sequence; that is,
Uy = Upx (Sxy/sx*) .

Supplementary Table 7.1.7 gives the resulting per-site probability (u,) for
each nucleotide substitution in a single round of viral replication.

Mutation rates were calculated only for those amino acid substitutions which
could be achieved via a single nucleotide change. All drugs studied had at least
one such substitution that conferred resistance. For each possible starting codon,
the rate of substitution equals the sum of all rates of nucleotide substitutions that
achieve the desired amino acid change. The mutation rate u then equals the
average of rates for all possible starting codons, weighted by the probability of
finding that codon (based on the HIV consensus sequence base composition)

(used in Supplementary Tables 7.1.4, 7.1.5).

2.5.3 SIMULATION ALGORITHM

We used stochastic simulations to study the dynamics of the system described in
equation (2.5) with mutation. Multiple mutations have been characterized for
each drug, and to model a realistic worst-case scenario, we considered a single
“synthetic” mutant defined as having the highest benefits (p, negative ), lowest
cost (s), and highest mutation rate of all the single-nucleotide mutants known for

that drug. Each monotherapy simulation therefore tracked only two strains, wild
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type y, and mutant y_. Simulations modeled 48-week trials, using discrete
timesteps of At = 30 minutes. All simulations were done in Matlab R2o10b. The
following steps describe the simulation for a single patient on monotherapy, with

expected adherence value a:

1. Draw from the viral load setpoint distribution in Supplementary
Figure 7.2.13a. This setpoint is used to determine the value of the A

parameter, assuming that the patient has 3 L plasma.

« In the suppression phase of therapy, the initial infection size is the

setpoint, rounded to the nearest integer number of cells.

« In the maintenance phase of therapy, the initial infection size is the
fully-suppressed infection size ) |y, = (> A;) /d, = 2 c.ml " (RNA

copies per ml).

2. Assign each infected cell to the mutant population (y, ) with probability

u/s; otherwise the cell is in the wild-type population (y, ).

3. Identify all scheduled doses for the entire trial. All scheduled doses are
evenly spaced, with the first dose occurring at the beginning of the trial.

The patient takes each scheduled dose with probability a.

« Exception: in the maintenance phase, the patient is always assumed

to take the first scheduled dose.

4. Calculate the drug concentration every timestep, as described in Methods.
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« In the suppression phase, the initial drug concentration is zero.

« In the maintenance phase, the initial drug concentration is Cy, 4.

5. Calculate the basic reproductive ratios for the wild type and the mutant
every timestep, as described in equations (2.1) and (2.2) of the main text

and the Methods.

6. For each timestep:

(a) The number of infected cells of strain i to exit the reservoir is drawn

from a Poisson distribution with mean value A;At.

(b) The number of newly infected cells generated by strain i is drawn

. I . ARo;
from a Poisson distribution with mean value dyyl.At [m} .

(c) Each cell newly infected by the wild type enters the mutant
population with probability u; otherwise it remains wild type. Cells

infected by the mutant do not back-mutate.

(d) Each infected cell dies with probability 1 — exp(—d,At).

7. Determining outcome at 48 weeks:

« In the suppression phase, the patient’s status is observed at the end of
the 48-week trial. If viral load is below 50 c.ml™, the trial is declared

successful; otherwise virologic failure occurs.

« In the maintenance phase, the patient’s status is observed each week

for 48 weeks, beginning at Week 5. If any two consecutive
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observations show a viral load of at least 200 c.ml ™, virologic failure

occurs; otherwise the trial succeeds.

« A failed trial is considered a mutant-based failure if at least 20% of
the viral population is mutant; otherwise it is considered a wild

type-based failure.
8. Determining outcome over time:

« Patient’s status was evaluated every 2 weeks, for 48 weeks.

« In the suppression phase, if viral load is below so c.ml™ at the
evaluation, the patient is classified as having “suppressed viral load;”

otherwise the patient has “detectable viral load”

« In the maintenance phase, the patient’s viral load is measured each
week for 48 weeks, beginning at Week 5. If any two consecutive
measurements at or before the evaluation show a viral load of at least
200 c.ml ™}, the patient is declared to have “detectable viral load,” and
is then removed from the trial, retaining this classification for all
future time-points. Otherwise, the patient is declared to have

“suppressed viral load.”

« In the maintenance phase allowing recovery, the patient’s viral load is
measured as in the maintenance phase above. If viral load is at least
200 c.ml™* both at the evaluation and at the immediately preceding
measurement, the patient is declared to have “detectable viral load.”

Patients who were previously “detectable” remain in the trial and
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may re-suppress.

« A measurement of “detectable viral load” is considered “via
resistance” if at least 20% of the viral population is mutant; otherwise

it is considered to be “via wild type.”

By using a well-mixed population and by assuming that the processes of
reservoir exit, replication, and death are Poisson, this method implicitly sets the
effective population size of the infection equal to the census size of infected cells.
Population structure, selection on linked loci, and variations in burst size among
infected cells are all mechanisms that could increase variance in viral offspring
number, decreasing the effective population size [3, 93]. Estimating the relevant
population size to use for a model of drug resistance is difficult, as most
approaches define an effective population size only for neutral loci. Simply
“plugging in” a population size derived from a model without selection would be
misleading in this context [ 167], and in lieu of a more informed value, we simply
use the census size. This approach likely overestimates probabilities of mutant
emergence and underestimates variability among patients [123, 238].

For dual therapy, we consider three strains: wild type, resistant to Drug 1,
resistant to Drug 2. The two drugs can be simulated as two separate pills
(allowing each pill to be taken or forgotten independently) or as a single
combination pill (forcing the two drug concentrations to rise and fall in
lockstep). In the case of two separate pills, the value of a may be different for each
drug, allowing for “differential adherence” — which has been observed in some

studies [99].
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2.5.4 GRAPHING OUTCOME VERSUS ADHERENCE

For each monotherapy, 25,250 patients were simulated, with expected adherence
a ranging from o to 1 (roughly equal numbers of patients were simulated for each
1% increment, including so patients with @ = o and 50 patients with a = 1). The
x-axis measures the ex post adherence for patients — that is, the actual percentage
of doses taken, which may difter from the expectation a. Results were plotted for
overlapping 2% windows, centered every 1% between o and 1, as well as for the
points o and 1 themselves.

Analysis of dual therapy with a combination pill was similar to that of
monotherapy, but with 126,250 patients (including 250 patients with @ = o and
250 patients with a = 1).

For dual therapy with separate pills, 169,000 patients were simulated, with
expected adherences a,, a, ranging from o to 1 (roughly equal numbers of
patients were simulated for each 4% X 4% increment, including 25,000 patients
on the border of the distribution where at least one a; is equal to o or 1.) As with
monotherapy, the axes measure ex post adherence. Results were plotted for
overlapping 4% X 4% windows, centered every 2% between o and 1; points
plotted on the border of the distribution show patients with at least one a; exactly
equal to o or 1.

Note that, for maintenance therapy, the axes do not include zero, as each

patient is guaranteed to take the first dose (adherence is never zero).
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2.5.5 GRAPHING OUTCOME OVER TIME

Analysis was performed separately for each overlapping 2% adherence window,
centered every 1% between o and 1, as well as for the points 0 and 1 themselves.
The resulting graph shows a weighted average of these results, using the
adherence distribution in Supplementary Figure 7.2.13. Measurements were
taken every two weeks, and the graphs show the proportion of the population
with each outcome. As there is no censoring of data, the analysis is equivalent to

the Kaplan-Meier method [151].

2.5.6 MSW FOR COMBINATION THERAPY

For calculations involving combination therapy (limited to two drugs in this
paper), viral fitness is influenced by the dose-response curves of all drugs. DRV
and RAL belong to different classes and have been shown to reduce fitness in a
multiplicative (Bliss-independent) fashion, which is often expected for drugs
acting on different targets [ 30, 144 ]. The equation describing viral fitness with

two Bliss-independent drugs is given by:

ROO

(i (2)") O+ (25)7)

where D,, D, are the concentrations of each drug in the relevant compartment,

R, (D,,D,) = (2.7)

ICq, 1, IC,, , are the concentrations at which 50% inhibition occurs, and m,, m,
are the slope parameters. The numerator R, is the baseline basic reproductive

ratio in the absence of drug treatment. Mutations that confer resistance to a given
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drug change the IC,,, slope and drug-free fitness similarly to the way described in
equation (2.2) (main text).

For a two-drug combination where we assume that a viral strain may only be
resistant to a single drug, there are now eight potential selection windows. Drug
levels may be high enough for guaranteed treatment success; in the MSW for one
or both drugs; in the overlapping region for one or both of the MSWs and the
WGW, or strictly in the WGW. Supplementary Figure 7.2.11 shows the possible

windows for the RAL+DRV/r combination.

2.5.7 DERIVATION OF FIG. 2.2.2F: COMPARING RISK OF WILD TYPE-BASED AND

MUTANT-BASED VF FROM SELECTION WINDOW DATA

Fig 2.2.2f ranks drugs by the relative risk of mutant versus wild-type failure,
regardless of the total risk of failure, based on the time spent in each selection
window. The ranks are plotted along a line with values ranging from -1 (DRV/r
and d4T, highest relative risk of wild-type failure) to 1 (FTC, the highest relative

risk of mutant failure). This plot was constructed based on the data in Fig. 2.2.2a.
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To devise this scale, we let

x = time until entry into MSW (days) / time until entry into WGW (days)

= length of green bar / length of green + dark red bars,

y = time spent in MSW (days)
= length of both red bars.
(2.8)

If the drug immediately enters the WGW at day o, or if it skips the MSW
completely, then x is defined to be 1.

Then the scale value to be plotted, 4, is calculated as

a= L X, (29)

ymux

wherey =~ 16.5days, the maximum time that a drug spends in the MSW
(obtained for FTC). Since both x and y/y, __ range between o and 1, the scale
ranges between —1 (failure via wild type only) and 1 (largest relative risk of
resistance).

In this formula, x is a proxy for the rapidity of wild type-caused virologic
failure (“wild-type risk”) relative to mutant-caused virologic failure (“mutant
risk”). When « is small, the MSW window is reached long before the WGW,

meaning that “mutant risk” is high and “wild-type risk” is low. When «x is high, the
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WGW is reached soon after the MSW, or without ever entering the MSW, and so
“wild-type risk” is high and “mutant risk” is low. While x considers how quickly
the infection can start to grow, it does not consider the length of time in the
MSW. Even if the MSW begins as soon as a dose is taken (so that x = 0), one still
needs to consider for how long the mutant strain is selected over the wild-type to
determine whether mutant-based or wild type-based virologic failure is more

likely to occur. Figure 7.2.12 shows a scatter plot of y versus x.
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Predicting outcomes of treatments to

eradicate the HIV latent reservoir

3.1 INTRODUCTION

THE LATENT RESERVOIR (LR) FOR HIV-1 1s A POPULATION of long-lived resting
memory CD4 ™" T cells with HIV-1 DNA integrated into their genomes [50, 51].
After the reservoir is established during acute infection [ 53], it increases to

10° — 107 cells and then remains stable. As only actively replicating virus is

targeted by current anti-HIV drugs, latently infected cells persist even after years
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of effective treatment [ 52, 92, 284, 323 ]. Cellular activation leads to virus
production and, if treatment is interrupted, a rapid increase in viremia is
observed within weeks of discontinuation of therapy. This dynamic prevents cure
of HIV-1 by HAART alone and thus necessitates lifelong adherence to HAART.
Drugs that specifically target LR cells for rapid activation may reduce the size of
the LR [49, 81]. Collectively called latency reversing agents (LRA), this class
includes the histone deacetylase inhibitors such as vorinostat [ 8, 10] and valproic
acid [9, 285], the alcoholism drug disulfiram [327], protein kinase C activators
prostratin [27] and bryostatin [ 197, 249], and quinoline derivatives [328]. The
hope is that following treatment with these drugs, patients might be able to
discontinue HAART with minimal risk of viral rebound. While the discovery of
LRAs is now the subject of an intense research effort, it is unclear how much the
LR must be reduced to enable patients to discontinue HAART safely.
Mathematical models of treatment dynamics are urgently needed to inform
clinical trial design, interpret outcomes, and guide further drug discovery.
Mathematical models have been instrumental in understanding the dynamics
of HIV-1 infection, including the LR. Multi-compartment models of HIV-1
infection have successfully been used to describe the phases of viral decay after
initiation of HAART [161, 215, 240], the role of ongoing replication in slowing
the rate of LR decay [272], and the appearance of viral “blips” during
treatment [ 59, 257, 258]. Recent studies have considered the role of the LR in
the development of drug resistance to HAART[261 ]. However, no model has

been developed to study the effect of treatment with LRAs. Here we build and
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analyze such a model to predict how in vitro drug efficacy translates to patient
outcomes, measured as the length of time following discontinuation of HAART

before viral rebound occurs.

3.2 MODEL AND RESULTS

We consider proposed therapy protocols for latency reversing agents (LRAs) that
administer the treatment while a patient is on fully suppressive HAART [81]. It
is believed that LRA therapy will reactivate transcription at the HIV-1 LTR,
leading to production of cytotoxic viral products and cell death. While plasma
HIV-1 levels may increase during this phase, strict adherence to HAART is
expected to prevent new cellular infections. After a period of treatment with both
LRAs and HAART, both therapies would be interrupted. Here we provide a
model of the viral infection immediately after this therapy ends (Fig. 3.1.1(A)).
Our goal is to estimate the probability of cure, or, barring that best-case outcome,
to estimate the distribution of times until virologic rebound, in terms of
parameters describing the underlying infection dynamic and the LRA therapy.

The model tracks two cell types: productively infected active CD4™ T cells,
and latently infected resting CD4 " T cells. Cells carrying nonviable HIV-1
provirus (which may vastly outnumber cells carrying replication-competent
proviruses) are excluded from these two quantities. The level of plasma virus is
not tracked explicitly, but is assumed to be proportional to the productively

infected cells. Four types of events can occur in this model, which is described
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Figure 3.1.1: Schematic of LRA therapy and stochastic model of rebound
following therapy. A) Proposed treatment protocol, illustrating possible viral
load and size of latent reservoir before and after LRA therapy. When HAART
is started, viral load decreases rapidly and may fall below the limit of detec-
tion. The latent reservoir is established early in infection (not shown) and
decays very slowly over time. When LRA is adminstered (either continuously,
as shown, or in intervals), the latent reservoir declines. Depending on the effi-
cacy of LRA therapy, the infection may be cleared, or viremia may eventually
rebound. B) LRA efficacy is defined by the parameter Q, the number of log,-
reductions in LR size. C) Stochastic model of viral dynamics following LRA
therapy, tracking both latently (rectangles) and actively (ovals) infected cells.
Each arrow represents a type of event that occurs in the model and its rate,
described in the text. D) The expected number of “offspring” for each pro-
ductively infected cell is the basic reproductive ratio R, = 2. The “infectivity
variance” parameter A determines variance of the offspring distribution. The
offspring distribution conditional on event b occurring is given by a Poisson:

P(c) = A%/l
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formally as a two-type branching process (Fig. 3.1.1(C)). A latently infected cell
can either activate at rate g, or die at rate d,. An actively infected cell can either
produce a burst of virions at rate b, resulting in the infection of ¢ other cells, after
which it dies, or it can die without producing virions (at rate d). The number of
cells infected after each burst event is a Poisson random variable with mean and
variance A (Fig. 3.1.1(D)), see Sec 3.4.3.

The total death rate of productively infected cells (d, = b + d) has been well
characterized to be 1 day™* from treatment initiation studies. The rate of
reactivation of cells from the latent reservoir can be estimated based on the size
and composition of the LR (Fig. 3.2.1) and the level of residual plasma virus for
patients on fully suppressive HAART (= 2 copies HIV-1 RNA per milliliter
plasma, c ml™"). We estimate a to be 7 X 10~% day " and consider values in the
range 10~ ° to 3 X 10 3. The death rate of latently infected cells is estimated from
studies of the rate of decay of the LRtobe d, = 4.6 X 10™* day™*
(corresponding to a 44 month half-life). We also present results for two
extremes: a half-life of only 6 months, and, d, = o. The basic reproductive ratio
for this model, defined as the expected number of new infected cells that a single
actively infected cell produces, is R, = Ab/(b + d). The average R, value is
estimated from time-to-rebound in HAART-interruption studies to be R, = 2
(which is lower than the values estimated for acute infection). R, does not
uniquely determine the dynamics of the stochastic model because b and A cannot
be simultaneously identified. Holding R, constant, the parameter A controls the

strength of random drift in the infection: for high A, reproduction resembles a
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“jackpot” event where a few infected cells give rise to many new infection events,
while many other infected cells die before infecting additional cells. Here we vary
A in the range 2 — 50 (see Sec. 3.4.2).

The initial conditions depend upon the number of latently infected cells that
survive LRA therapy. This quantity is defined by the latent reservoir size prior to
LRA therapy and the log-efficacy of LRA therapy (Fig.3.1.1(B)). The model aims
to determine whether or not this population of cells will escape drift and restart
the infection before all the cells die. These results are independent of the details
of how the drug is administered or the mechanism of action. As the model does
not provide for any limitation of growth as the infection becomes large, it is valid
only for the initial stages of viral rebound. Since clinical viral rebound thresholds
(viral load above 50 — 200 ¢ ml™*) are well below carrying capacity (typical
setpoint viral load of 10* — 10 ¢ ml™"), this model suffices to analyze the
probability and timing of rebound following LRA therapy and HAART
interruption.

We used several experimental findings to estimate the size range of the LR,
which we define as the number of resting CD4™ T cells with integrated HIV that
are capable of producing infectious virus upon reactivation (Fig. 3.2.1). We
considered three cases for the LR size distribution among patients. Limiting
dilution co-culture assays [283 ] are currently the gold standard for LR size
measurement. In case (i), we assume all patients have a reservoir size equal to the

average measured in these assays (= 1 X 10 cells), and in case (ii) we
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Figure 3.2.1 (following page): Experimental scheme for classifying rest-
ing CD4™" T cells based on HIV-1 infection and viral production, using data
from [89, 125]. Scheme starts at the top, with purified resting CD4™ T cells,
and proceeds downward through the experimental analyses listed. The f vari-
ables represent fractions of this resting CD4™ T cell pool with the charac-
teristics listed. “PCR": Digital droplet PCR identified cells containing HIV-1
DNA, nearly all of which is expected to be integrated. “Co-culture”: PHA
was used to induce viral replication in latently infected cells. “Seq. defect”:
Non-induced cells were analyzed for genetic defects preventing production of
replication-competent virus. A fraction i of these non-induced cells had no ob-
servable defects (all open reading frames intact); this fraction constitutes fy,;
of all resting CD4™" T cells. Question marks indicate that it was not possible
to determine by this analysis what fraction of cells would produce replication-
competent virus in vivo, due to integration site effects and undetectable se-
quence defects. Even defective provirus may be able to produce defective
virons that contribute to residual viremia (gray arrow). The latent reservoir
(shaded box) consists of induced and replication-capable non-induced cells.
Values shown are averages and ranges of & 30 patients.
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incorporate inter-patient variability in assay results [89]. PCR measurements
detect cells with HIV-1 DNA at a higher frequency than co-culture assays, but
much of this virus may be defective. Full genome clonal sequencing of provirus
from cells not induced in co-culture identifies a portion with all open reading
frames intact [ 125]. In case (iii), we include these cells in the LR. For all cases we
assume a total resting CD4 ™ cell count of 10*. The resulting distributions are
shown in Fig. 3.2.2(A), see Sec. 3.4.1.

The best-case outcome of LRA therapy, barring complete eradication of the
reservoir, is that none of the surviving latently infected cells activate and lead to a
resurgent infection. In this case, we say that LRA has cleared the infection. We
used the model to predict the relationship between LRA log-efficacy (denoted
Q) and clearance probability (Sec. 3.4.3). Fig. 3.2.2(B) shows results for the
three possible reservoir distributions (i) — (iii) described above.In cases (i) and
(ii), where the average pretreatment reservoir size is 10°, the reservoir must be
reduced by three to five orders of magnitude before half of patients clear the
infection. Including inter-patient variability only causes the clearance probability
to increase more gradually with Q. If co-culture does not detect all cells in the
latent reservoir (case iii), then Q of four to six is required for 0% clearance. In all
three cases, the clearance probability decreases with reservoir half-life. Clearance
probability also increases with infectivity variance A, as this parameter controls
the likelihood of viral lineage extinction by drift (Fig. 7.3.1B).

If LRA therapy fails to clear the infection, the next-best outcome is substantial

extension of the time until virologic rebound, defined as a viral load of 200 c ml™*
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(Sec. 3.4.2). We computed the relationship between efficacy of LRA therapy and
the median time until rebound, among the patients who do not clear the
infection (Fig. 3.2.2(C)). For an LR size of 10° (case i), only modest increases in
median rebound time are predicted for up to 100-fold reductions in the size of
the reservoir (Q < 2). In this range, the rebound time is independent of latent
cell lifespan, and it is driven mainly by the reactivation rate and the viral
reproductive ratio. The curve inflects upward at Q = 2 (on alog scale) and
reaches a ceiling as clearance of the infection becomes the dominant outcome
(Fig. 3.2.2(C)(i)). If cells in the reservoir are extremely long-lived, it is possible
for rebound to occur even after decades of apparent cure. If the LR size is larger
(case iii), then the median rebound time curve is shifted rightwards, requiring
higher LRA efficacy for the same outcomes (Fig. 3.2.2(C)(iii)). In all three cases,
the inflection point decreases in A. In case (i), this point varies between Q = 1.5
(forA = 50) and Q = 3 (for 2 = 2). Accordingly, the median rebound time
increases in A (Fig. 7.3.1C).

The upward inflection observed in median rebound time results from an
important change in the forces governing viral dynamics. If the reservoir is large
enough (low Q), a surplus of cell activation occurs such that the dominant
component of rebound time is the time that it takes for virus from one of the
many activated cells to grow exponentially to rebound levels; the system isin a
growth-limited regime. If the reservoir is small (high Q), the expected waiting time

until activation of the first cell fated to establish a rebounding lineage is the
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Figure 3.2.2 (following page): Clearance probabilities and rebound

times following LRA therapy predicted from model. A) Three cases for the
population-level distribution of LR size (Sec. 3.4.1). Case i) All patients have
the same latent reservoir size, Mg = 10°, estimated from the geometric
mean number of cells that are capable of producing infection in laboratory
co-culture assays. Case ii) Latent reservoir size is distributed according to
variation observed in co-culture assays, with geometric mean 10°. Case iii)
The latent reservoir includes many cells that fail to be detected in co-culture
but have intact viral genomes. B) Probability that the reservoir is cleared by
LRA. Clearance occurs if all cells in the reservoir die before a reactivating lin-
eage leads to viral rebound. C) Median viral rebound times, among patients
who do not clear the infection. D) Survival curves for patients following LRA
therapy. The percentage of patients who have not yet experienced viral re-
bound is plotted as a function of the time after interruption of LRA therapy
and HAART. Curve color indicates the efficacy of LRA in reducing the size
of the LR (Q = o to 6, see legend). Results are shown for a half-life of 44
months; other half-lives are shown in Fig. 7.3.3 Solid lines represent simu-
lations, and open circles represent approximations from a branching process
calculation (Sec. 3.4.3). All simulations included 10* — 10% patients and used
parameters a =7 X 1077, A = 20 and R, = 2.
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dominant component of rebound time; the system is in an activation-limited
regime. Since this waiting time is roughly exponentially distributed, times to
rebound in this regime can vary widely among patients. The “threshold Q”
defining the boundary of these two regimes matches the value where upward
inflections are observed (Fig. 7.3.2(A)).

The scope of predicted interpatient variability in outcomes can be seen in
survival curves, plotting the fraction of simulated patients maintaining virologic
suppression over time (Fig. 3.2.2D). For small reductions in LR size (Q < 2)
patients uniformly rebound within a few months, since rebound dynamics are
not in the activation-limited regime (Fig. 3.2.2(D)(i)). If LRA therapy manages
to decrease the reservoir size 1,000-fold (Q = 3), then about 20% of patients
remain rebound-free for at least a year. Higher Q leads to clearance in many
patients, though rebound can still occur after a decade without viremia.
Interpatient variation in LR size makes it more likely to observe long periods
without rebound (Fig. 3.2.2(A)(ii) ). Rebound delays of over three years are
achieved for 10% of simulated patients at Q = 3, versus only 1% in case (i). The
fortunate few who completely clear the infection started with an LR smaller than
the average size of 10° prior to treatment. Survival curves decline more rapidly if
the average LR size is larger (case iii) or if A is lower (Fig. 7.3.4), indiciating a less
beneficial outcome for LRA therapy.

For all three reservoir size distributions considered, rebound may occur even
after long periods of virologic suppression. Taking case (ii) for example, among

the patients without rebound at six months post-therapy, 71%, 38%, or 11% suffer
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Figure 3.2.3: Efficacies required for successful LRA therapy. Target LRA
efficacy values based on three different treatment goals are plotted versus
reservoir half-life (‘I;iz)z) and the reservoir reactivation rate (a). A) The target
efficacy Q at which at least 50% of patients still have suppressed viral load
one month after treatment interruption. B) The target efficacy Q at which at
least 50% of patients still have suppressed viral load one year after treatment
interruption. C) The target efficacy Q at which at least 50% of patients have
eradicated the reservoir without experiencing viral rebound. Because some pa-
tients may go for a year without rebound but then rebound later, the target

Q for one year off therapy is always less than that for a lifetime off therapy.
Results were calculated from the branching process description of the stochas-
tic process, which agrees with simulation (Sec. 3.4.3). All calculations used

A = 20 and varied R, to ensure baseline rebound time was constant (12 days).
Worst-case: a =3 X 1073, R, = 1.43, high: a = 4.6 X 107%,R, = 1.7, estimated:
a=7X10 5 R, =2, best-case: a =105, R, = 2.21.

rebound in the following six months, for efficacies Q = 2, Q = 3,0r Q = 4,
respectively (Fig. 3.2.2(A)(ii)).

To set goals for treatment efficacy, we calculate three “target values” of Q,
assuming a pretreatment reservoir size of 10°. One month is near the upper limit
of rebound times without LRA therapy, and we first calculate define the
log-efficacy for which 50% of patients exceed this limit (Fig. 3.2.3(A)). This
value is insensitive to the estimate for reservoir half-life and increases

logarithmically with the activation rate. For a broad range of activation rates, a

70



1.5- to 3-log reduction is needed for a one-month delay. We next calculate the
target efficacy for one-year delays (Fig. 3.2.3(B)). Using estimated parameter
values, this goal requires a 3-log reduction in reservoir size. This value is only
mildly sensitive to reservoir half-life (declining only for very short half-lives, at
which reservoir clearance is likely) and also scales logarithmically with activation
rate. If activation exceeds the estimated rate, then the target Q is closer to 4.5 —a
30,000-fold reduction. Finally, since the ultimate goal of LRA therapy is to clear
the reservoir completely, we determine the log-efficacy for which at least half of
patients clear the infection (Fig. 3.2.3(C)). This value consistently exceeds the
more modest one-year target and scales logarithmically with the product of
activation rate and half-life. Parameter scaling relationships follow from a
generating function analysis of the branching process (Sec. 3.4.3). All target Q
values also scale with the reservoir: a 1-log increase in reservoir size would
necessitate a unit increase in Q.

We evaluated the robustness of our conclusions to simultaneous changes in
latent cell activation and death rates, pretreatment reservoir size distributions,
and infectivity variance. For a worst-case analysis, the latent cell death rate was
set to zero (such that the reservoir decays only via activation), the pretreatment
reservoir size distribution was set to that of case (iii), and infectivity variance was
set to a low value. The resulting target Q for a one-month delay increased by 2,
and the clearance target Q increased by 3 versus baseline (Fig. 7.3.5(i) versus
(iii) ). For a best-case analysis, the latent cell activation rate was set to 7 times

lower than baseline and the death rate was increased to yield a reservoir half-life
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of only six months, the pretreatment reservoir size distribution was set to that of
case (i), and infectivity variance was set to a high value. The results were similar to
that of the baseline case, but with Q shifted upwards by 1, and with a lower ceiling
rebound time ( 200 days versus over 1,000 days) (Fig. 7.3.5(i) versus (iii) ).
Throughout our analysis, we have characterized LRA drug efficacy by the
log-reduction in reservoir size following therapy, which may not be observable.
Laboratory studies of cellular models of latency may estimate Q, but their
relevance in vivo remains unknown. It may not be possible to measure Q values
above 1 by quantifying reservoir size following LRA therapy, as current
co-culture assays cannot detect reservoirs smaller than about 10° cells [89]. Since
current approaches to LRA therapy seek to reduce reservoir size by inducing
activation of latently infected cells, Q may be estimated by measuring the
dynamics of viral load during simultaneous HAART/LRA therapy (Sec. 3.4.6).
Since the effect of LRA therapy on resting CD4 " T cell phenotype is not fully
characterized [275, 276], there is considerable uncertainty in this relationship;
nonetheless a sharp, transient peak viral load of at least several hundred c ml™* is

expected for highly effective therapy (Q > 2) (Table 3.4.1).

3.3 DISCUSSION

Our model is the first to describe the action of investigational latency reversing
agents and set quantitative goals for LRA therapy, offering guidance for the
design and testing of treatment protocols. There is currently little understanding

of the degree of reservoir activation required to provide meaningful benefit. We
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analyzed experimental findings regarding reservoir size and composition to
describe three plausible settings for LRA therapy (Fig. 3.2.2A). In each setting,
our model translates a reactivation measure of therapy efficacy (parameter Q),
which may be estimated in vitro, to a prediction of clinical benefits.

For a wide range of parameters, we find that LRAs must reduce the reservoir
by atleast 1.5—3 orders of magnitude to see a meaningful increase in the time to
virologic rebound after HAART interruption (upward inflection in Fig. 3.2.2C
and Fig. 7.3.1C), and that 3—5 orders of magnitude are needed for half of patients
to clear the infection (Fig. 3.2.3C and Fig. 7.3.2). Standard deviations in rebound
times of many months are expected to be the norm for successful therapy, owing
to variation in pretreatment reservoir size and roughly exponentially-distributed
reactivation times after effective LRA therapy brings the infection to an
activation-limited regime. While the required LRA efficacy for these beneficial
outcomes is almost certainly beyond the reach of current drugs, our results do
permit some optimism: reactivation of all cells in the reservoir is unlikely to be
necessary for complete reservoir clearance and safe cessation of HAART. This is
due to the reasonably high probability that a cell in the LR will either die before
reactivating or, following activation, fail to produce a chain of infection events
leading to rebound. On a more cautionary note, the wide distribution in
reactivation times implies that continual monitoring of patients is essential, as
rebound is possible even after long periods of viral suppression.

Clinical and laboratory findings constrain the basic reproductive ratio R, and

active cell death rate d, in a relatively narrow range. The rebound population size,
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while it may vary by over order of magnitude, has little effect on model outcomes,

especially in the activation-limited regime. Remaining parameters —

In(2)
a-‘rdz)

pretreatment reservoir size, latent cell half-life latent cell activation rate g,
and infectivity variance A — have profound impacts on treatment outcome, and
they are not well-established to within an order of magnitude. While LR size is
generally estimated at 10°, recent studies have shown that even co-culture assays
— recognized as the gold standard for latency measurement — may drastically
underestimate reservoir size (Fig. 3.2.2(A)(ii) versus 3.2.2(A)(iii) ). We
accounted for these studies to show that this underestimate may cause
expectations of LRA therapy outcomes to be unduly optimistic (Figs.
3.2.2(B,C)(ii) and 3.2.2(ii) versus Figs. 3.2.2(B,C) (iii) and 3.2.2(iii)).
Considering both variation in pretreatment reservoir size and latent cell
half-lives, the log-reduction needed to delay rebound for one year in half of
patients is & 3 to & 4.3 — a reduction of 1,000- to 20,000-fold (Fig. 7.3.3(C) (ii)
vs. (A)(iii) ). When broad variation in a and A is also considered, the range
expands to & 2 to & 5.2 (Fig. 7.3.5(C)(ii) vs. (C)(iii)).

Our analysis characterizing the required efficacy of LRA therapy does not rely
on the specific mechanism of action of these drugs, only the amount by which
they reduce the reservoir. We have assumed that the reservoir is a homogeneous
population without variation in activation and death rates. The presence of
reservoir compartments with different drug penetrations does not alter our
results, as they are stated in terms of total reservoir reduction. If, however, these

compartments vary in activation or death rates, or if viral dynamics of activated
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cells depends on their source compartment, then our model may need to be
modified. In the absence of clear consensus on compartments constituting the
LR, we have considered the simplest scenario with fewest assumptions, which
may be able to fit future LRA therapy outcomes.

To date, laboratory and clinical studies of investigational LRAs have generally
found weak potential for reservoir reduction, with Q < 1[9, 54, 327]. We predict
that much higher efficacy will be required for any hope of eradication. While we
have focused on the role of LRA therapy in reducing the reservoir size, our main
findings may also serve to interpret viral eradication or delays in rebound caused
by early treatment initiation [29, 243, 296] or stem cell

transplantation [121, 139], both of which also reduce the LR size.
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3.4 SUPPLEMENTARY METHODS

3.4.1 CHARACTERIZING THE LATENT RESERVOIR

This section details the calculations summarized in Fig. 3.2.1.

COMPONENTS OF THE LATENT RESERVOIR

Let M be the total number of resting CD4 " T cells in an individual. The fraction
of these cells containing HIV-1 DNA, written f,, is measured using PCR on
purified resting CD4 " T cells [89]. The total number of resting CD4™ T cells
with HIV-1 DNAis Mp = f,M.

Many of these cells may not be capable of producing infectious virions upon
reactivation. Limiting-dilution co-culture assays [283 ] measure the fraction f.
of resting CD4 ™ T cells that produce replication-competent virus following
cellular activation. The total number of these cells is Mcc = f. .M.

Experiments show that f;; exceeds f.. by more than two orders of magnitude,
but the reasons for this discrepancy are unclear. Some portion of cells with HIV-1
DNA may harbor defective provirus that cannot produce viral proteins. Others
may contain intact provirus, but evade co-culture detection for other reasons.
These two scenarios can be distinguished by full genome clonal sequencing of
integrated provirus, from which defects preventing viral replication may be
identified [ 125]. Among those cells infected with provirus but undetected in
co-culture, let i be the fraction that nonetheless are shown by sequencing to have

all open reading frames intact. Then f,;;, defined as the frequency of

76



non-induced, intact provirus-containing cells, is f,,; = i (fD — fcc) .

The quantity of interest for our model is the number of resting CD4™ T cells
harboring proviral DNA capable of causing infection of other cells. This latent
reservoir contains Mg cells, or a fraction f; , of M. At minimum, it includes those
cells tested positive by co-culture, and at maximum, it includes all cells containing
intact proviruses. It is likely to be less than the upper bound, since even cells with
intact provirus may be incapable of re-starting infection due to integration into a

transcriptionally silent site, or due to other defects that escaped detection.

SIZE OF THE LATENT RESEVOIR AND INTERPATIENT VARIABILITY

The size and composition of the latent reservoir can vary significantly between
patients. This variation is relevant to variation in rebound time. Based on results
in [89, 125], we can calculate the average parameters and estimate the population

level distributions:

Quantity Average Distribution
fp | 300 X 109 | LogNormal(—3.5,0.5)

fec 106 LogNormal(—6,0.5)

i 0.14 | LogNormal(—o0.85,0.2)

The distributions were estimated by assuming the ranges observed in these
study of approximately 30 patients represent the center 95% of the distribution
(ie 2 standard deviations). We examinine three different cases for inter-patient

variability:
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Case 1: All patients have the same LR size, which equals the average value
measured in co-culture assays (f;, = foc)-

Case 2: The fraction f.. varies among patients as in the table above, and
frr = fcc for each patient.

Case 3: The fractions f;,, f., and i are sampled from the above distributions,
subject to the constraint f. < f;,. Then fy;; is computed. The value log(f; . ) is
then sampled uniformly from the interval [log (fcc) , log (fNH)] .

Inter-patient variability in outcomes is lowest for Case 1 and highest for Case
3. Throughout this paper, we assume the only parameters that vary between

patients are those related the composition of the reservoir.

ESTIMATING THE NUMBER OF VIRION-PRODUCING CELLS

The value f;, is defined as the fraction of resting memory CD4 ™" T cells that are
capable of producing virions that are detected in viral load assays, regardless of
whether these virions are infectious. This value is used to calibrate the
reactivation rate a from observed residual viral load values (Eq. (3.2), below).
While f, , < f;, < f;,, we cannot establish the relationship between f;, and f,,, as
some cells in f,;;; may harbor transcriptionally silenced provirus, and conversely
some cells in f;, may harbor provirus with detectable defects. As an intermediate
estimate we assume f;, = f.. + fyg = 43 X 10~ %, though we also consider the
two extreme values in the best and worst case scenarios discussed in the main

text.
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3.4.2 ESTIMATING VIRAL DYNAMICS PARAMETERS
DEATH RATE OF ACTIVELY INFECTED CELLS dy

The parameter dy has been measured in many treatment initiation studies to be 1

day ™" [188]. In the stochastic model we constrain b + d = d,, = 1day™".

ACTIVATION RATE OF LATENTLY INFECTED CELLS d

Parameter a is estimated from observed viremia during fully supressive HAART
treatment (R, = 0). Among patients, residual viral load is highly correlated to
LR size [ 11]. Since reservoir decay is slow compared to the dynamics of actively
infected cells, the residual viral load reaches a quasi-steady-state relative to the
size of the latent reservoir (Section 3.4.3). At this level, the number of actively

infected cells is

Vo R —— (3.1)

Here z, is the number of cells in the LR capable of causing productive infection at
the time HAART is interrupted, which is equal to f; , M, as described in
Section 3.4.1, above.

The value y_ may be estimated from residual viral load measurements. Let o be
the proportionality constant such that v, (residual number of infectious virions
during HAART) equals oy,. Since viral load measurements do not distinguish
between infectious and noninfectious particles, the only quantity that may be

ascertained is the total number of virions w,, which exceeds v,. Assuming that
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infectiousness of the released virion affects neither viral burst rate nor decay rate,
the same proportionality constant o applies to the number of cells capable of
producing (infectious or noninfectious) virions, written y,, resulting in the
relationship w, = oy_. Since y_ = af,,M/d,, the value of a equals:

dyw,
a =
of M

(32)

A reasonable estimate for the proportionality constant is ¢ = 1, as discussed in
Suppl. Materials of [261]. We use w, = 2 HIV-1 RNA copies per milliliter
plasma, ¢ ml™*, corresponding to 3,000 plasma virions for a 70 kg person with 3L
plasma, and we use M = 10**. Based on the observed averages f, = 3 X 1074,
fec =107% and i = 0.14, we estimate f, = 4.3 X 10 *anda = 7 X 10 S day .
This activation rate is below previous estimates [ 254, 272 ], which would predict a
higher residual viral load than observed for patients on fully suppressive HAART.
However, because the size and composition of the LR are still a matter of debate,
we consider a range of values. For a worst-case scenario of high activation rate, we
suppose that only cells testing positive in co-culture contribute to residual
viremia (f, = fo. = 10 ®and a = 3 X 10~ 3). For a best-case scenario of low
activation rate, we suppose that residual viremia is seeded from all cells harboring
HIV-1 DNA (f, = f, = 3 X 10" *and a = 10™%). Results for these scenarios are

shown in Figs. 3.2.3 and 7.3.5.
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VIRAL REBOUND THRESHOLD #

A viral rebound threshold of 200 ¢ ml™* corresponds to 3 X 10° plasma virions
(for a 70 kg person with 3 L plasma). Using the estimate ¢ & 1 above, the
number of actively infected cells at rebound is n & 3 X 10°. Model results are not
sensitive to this value, as rebound probability depends on the logarithm of n

(Section 3.4.3, below).

DEATH RATE OF LATENTLY INFECTED CELLS dz

Resting memory CD4™ T cells die at a rate d,, which may be estimated from
studies measuring the total decay rate of the reservoir, a + d,. Given a mean

half-life of 44 months [284], we estimate d,, to be

In(2)
d,= ——————a
1320 days (3.3)

R 4.6 X 10 *day "

This parameter is varied to explore a range of half-lives in Figs. 3.2.2, 3.2.3,
7.3.3.
VIRAL FITNESS R,

The combined viral fitness parameter R, can be estimated from rebound times
measured in HAART-interruption studies [ 63, 263 ]. The average rebound time

in these studies is twelve days, which consists of both the time needed for drug
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levels to decay such that the infection can grow and the subsequent time needed
for exponential viral growth to rebound levels computed in Equation (3.23). For
estimating the drug decay time, we used the method of [ 144, 279] with a typical
regimen of AZT, 3TC, and SQV. For Equation (3.23), we used a rebound factor

(described in Section 3.4.5) of ¥ = 4,300, based on residual viral load

fee _

w, = 2 cml ', infectious residual viral load v, = w, -
v

0.0465 cmL " (using
average values of f. and f,, in Section 3.4.1, above), and detection at 200 ¢ ml ™.

We compute a value of R, = 2, at which it takes about four days for drug levels to

decay and another eight for viral growth to rebound levels.

INFECTIVITY VARIANCE A

Based on the rate at which patients fail therapy due to drug resistance, a previous
study estimated the rate at which cells that are fated to establish a lineage activate
from the latent reservoir to be about 4 per day, in the absence of treatment [238].
This estimate is highly uncertain, as it is sensitive to measured mutation rates and
fitness costs of resistance mutations.

Using our baseline values of a = 7 X 107% and Mz = 10°, the number of cells
activating per day is 70. An extinction probability of h, = 1 — 4/70 = 0.94
(defined in Equation (3.8)) would make our baseline values consistent with the
above estimate. Using R, = 2, the implied A to obtain this lineage extinction

probability is 28. To account for uncertainty, we consider A between 2 and so.
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BIRTH AND DEATH PARAMETERS b AND d

R, and d, do not uniquely determine the dynamics of the stochastic model
because b and A cannot be simultaneously identified. After choosing a value for A
between 2 and 50, the parameter b is calculated using the relationship

R, = b)/d,. The parameter d is then obtained from the relationship b + d = d,.

3.4.3 STOCHASTIC MODEL OF VIRAL DYNAMICS
STOCHASTIC PROCESS

The stochastic model of viral dynamics described in the text can be formally

represented as the reactions below:

Z — Y... rate constant: a

Z — o... rate constant: d,
(3.4)

Y — cY... rate constant: b * p, (c)

Y — o... rate constant: d

In this notation Y and Z are individual actively or latently infected cells,
respectively, and the arrows represent events that lead one type of cell to become
the other type. We assume that an actively infected cell can either die (at rate d)
or produce a burst of virions (at rate b) that results in the infection of c other cells,
where c is Poisson-distributed random variable with parameter 4,

p,(c) = M. After a burst event, the original cell dies. Since each birth event
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causes the death of the parent cell, the total death rate is d, := b + d. This model
describes a two-type branching process. The reproductive ratio for this model is
R, = bl%i ,where A > R,. We do not explicitly track free virus, but assume it is at
a level proportional to the number of infected cells. This assumption is valid
because the rates governing the production of virus from infected cells and the
clearance rate of free virus are much higher than other rates, allowing a separation
of time scales. Because we are not interested in blips or other intraday viral
dynamics, this assumption does not influence our results. A method for
calculating the proportionality between free virus and infected cells is provided

in Section 3.4.2, above.

GENERATING FUNCTION ANALYSIS OF THE MODEL

Let

LEL)=E |[£90 y(0) =1&z(0) =o|

(3:5)
650 =E #9750 5(0) = 0 kz(o) =1

be the basic generating functions for the stochastic process, starting with one
active cell and starting with one latent cell, repsectively. Dummy variables  and {
correspond to active and latent cells, respectively. The backward Kolmogorov

equations [ 152 ] can be represented by the system of coupled ordinary
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differential equations
0
L p(ep ) -f) + a0 f),

of, B
o _a(fl_fo)+dl(1_fo)7

(3.6)

with boundary conditions f, (£, ¢, 0) = {andf, (£, {, 0) = {. The birth term
exp (A (f, — 1)) follows from the Poisson-distributed offspring distribution with
parameter A.

After LRA therapy, the initial reservoir size is z,. The residual viremia y_ is

determined by activation-death equilibrium during HAART, and so it is

aze

Poisson-distributed with mean “%. The probability generating function
Y

corresponding to this initial condition is then

az,

600 ~LELO"ep |2 GE LD -0 G62)

If the initial reservoir size is heterogeneous, then the relevant generating
function is given by the sum ) 5 p_ ¢ (£, {,t), wherep__is the probability that a
patient has z, latently infected cells following LRA therapy.

PROBABILITY THAT LRA THERAPY CLEARS THE INFECTION.

The fixed points of the differential equations (3.6) give the ultimate extinction

probabilities h, and h,, starting with a single active cell and a single latent cell,
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respectively. The probability A, is the smallest root of the equation

b(h, —exp[-2(1—h)])=d(1—h), (3.8)

and the probability h, of extinction starting from one latent cell follows,

d,
- (3.9)

h, = + .
a+d, a+d,

Using the above initial condition (y o zo), the clearance probability P, is

determined by substituting these fixed points into the generating function g, :

Py, = h° exp [— o (1— hl)] . (3.10)
dy
Define £ = “S%;z‘) , the probability that a latently infected cell is fated to

activate and establish a rebounding lineage (assuming no interference from any
prior rebounding lineage). If this probability is small, then clearance probability

is approximately

_ &Ezo(atdztdy)
Py ~e &l

(3.11)

~ e—Ezo 7

where the second approximation follows from the fact that active cell dynamics
are faster than latent cell dynamics, d, > a + d. The key parameter determining
clearance probability is therefore £z,, the expected number of latent cells fated

to activate and establish a rebounding lineage.
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The observation in the main text that the target value of Q (Fig. 3.2.3A) scales

logarithmically with the product of a and reservoir half-life follows from this

computation, since reservoir half-life is ‘1::52 ,and Q o< log <i> .

APPROXIMATION OF REBOUND PROBABILITY WITH SIMPLIFIED BIRTH PROCESS.

By approximating the Poisson birth event with a simpler process where only two
new infections result per birth, closed forms for the generating functions can be
derived, allowing easier computation of rebound probabilities. In this
approximation, active cells die at “effective death rate” d, and give rise to two new
active cells at “effective birth rate” b,. Latent cell dynamics are the same as in the
full model. The two parameters are chosen to have the same extinction

probability as in the original model,
—=h, (3.12)
and the same expected growth rate (and thus the same R,)

be—d. =b(A —1) —d. (3.13)

The differential equation for active cells, analogous to the first line of (3.6), is

then

% =b(f, —f)+d(—f), (3.14)
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while the differential equation for latent cells is the same as in (3.6). The basic

generating functions for this simplified process can be solved in closed form,

bes - de + dE(l g) exp [(b d ) t]
be‘g_de—i_be(1 g t
{ (3.15)

Z/exp[a+d] (d,+af.(§, ¢,

o

L&) =

1

LE L) = oplatdlt

for the supercritical case b, > d..

The generating function g, (£, ¢, t) for the process starting at the initial
condition described above is again defined as in Eq. (3.7), now using the new
functions f,, f,. The probability that there are y active cells at time ¢, written
P(y, t), is equal to the coefficient of £ in the Taylor expansion of g(£, {, t) around
£ = 0, { = 1. Repeated differentiation is computationally costly and subject to
compounded rounding errors, and Cauchy’s integral formula provides an
effective alternative. Following [ 59], the probability that there are more than n

active cells at time ¢ equals

4

1 0 1—e i(n+1)0
P(>n,t) =1— ;/Re {gzo(e )1, t)ﬁ do. (3.16)

Let f(60) be the real integrand in this equation, which presents damped
oscillations of period 2%, where f (;LJ:) = o forintegers1 < k < . We treat
each half-period separately, defining a sequence of approximations a;

(k1) 225

(k=o0,1,...,n) wherear = |, = "™ f(0)d6. Each ai (k > o) is defined by a
+

trapezoidal rule, splitting the interval [k , (k+1)7% -] into 150 equal-width
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segments. Since a sharp peak appears at § = o for certain parameter values, the
value 4, is defined using a global adaptive numerical integration routine (quadgk
in Matlab R2012b).

Not every a; must be computed to approximate the integral. In Section 3.4.4
below, we describe an efficient method for selecting a small fraction of the ay for
computation, yielding a several hundred-fold speedup. This method is more

reliable for this integral than the Euler summation approach presented in [1].

ESTIMATING “TARGET Q” FOR 50% PROBABILITY OF REBOUND

A rough estimate of the initial reservoir size z, such that half of patients have
rebounded at time ¢ can be obtained directly from the generating function
g..(§,{,t) above. We used this rough estimate as an initial guess for the search
algorithm described in Section 3.4.4 below to identify the target Q values in
Fig. 3.2.3B,C.

The probability that there are no actively infected cells at time tis g (0,1,t). If
sufficient time has passed to allow for substantial exponential growth (i.e.,
ebe=d)t > 1) then the integral in Eq. (3.15) is dominated by values at large 7,
and so the fraction within the integral may be treated as a constant, “b—d:. The

probability is then

P(o,t) = g, (0,1,t)

~ az, (1 — h,) a —(a+dy)t -

a-+
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where the abbreviation r = b, — d, is shorthand for the expected growth rate. If,
furthermore, not so much time has passed that the reservoir may be depleted in
many patients, then (1 — e*(“erZ)t) < 1and the expression can be

approximated:

P@Q%QPPMJVWJG+i”. (3.18)

Note that d, has dropped out of this estimate; the rate at which active cells
become present is roughly az, (1 — h,).
To account for growth to the rebound threshold n, we can use a point estimate

for the rebound time based on deterministic exponential growth starting at one

In(n)

- The rebound estimate then becomes

active cell, tgro, &

m>momk¢@{w%o—m<pf%@+iﬂ. (3.10)

The required initial reservoir size — and the corresponding target Q — can
then be solved for, using P(> n, t) = 1/2 and the desired value of t. It follows
from this computation that the required z, scales inversely with a. Since
Q o log <i> , the target Q scales logarithmically with a and is relatively

insensitive to d,, as observed in the main text.

SIMULATION OF THE MODEL

We use the Gillespie algorithm to track the number of latently and actively

infected cells in a continuous time stochastic process. We start with an intial
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number of latent cells z, = 10~ M and an initial number of actively infected
cells y, chosen from a Poisson distribution with parameter a 10~ Mz /d,, where
Mg is the pretreatment latent reservoir size (described in Section 3.4.1). The
simulation proceeds until the number of actively infected cells reaches the
threshold for clinical detection given by a viral load of 200 ¢ ml™* (equivalent to
y = 3 X 10° cells total). Because stochastic effects are important only for small y,
we switch to a faster deterministic calculation when y reaches a level where the
probability of extinction is very low. This switch occurs when the probability that
no active cell currently alive establishes a growing infection, h}, declines below

10~ *. For each Q value we perform 10* simulations.

3.4.4 ADDITIONAL NUMERICAL METHODS USED IN ANALYSIS OF STOCHASTIC
MODEL

APPROXIMATION OF THE INTEGRAL IN EQ. (3.16)

The sum ) _;__ ai described following Eq. (3.16), above, was approximated using

the following algorithm:

1. Compute gy for k = o to k = INITIALBLOCKSIZE — 1. Store the sum of

these values as S.

2. Set NExXTK = INITIALBLOCKSIZE. Set BLOCKkS1ZE = MINBLOCKSIZE.

Set NuMToCoMPUTE = MINNUMTOCOMPUTE.
3. While NexTK < 1, do:
(a) Initialize A = o,B = o.
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(b) Split the block containing the values a; from k = NexTK to

k = NexTK + BLOCKSIZE — 1into three sections:

i. FIRSTPART contains a; for k from NEXTK to

NexTK + NUMTOCOMPUTE — 15

ii. LASTPART contains a; for k
NexTK 4+ BLockS1zE — NuMToCOMPUTE to

NEexTK + BLOCKSIZE — 15

ili. MIDDLEPART contains all a; in between. These values of aj. are
not computed.

NexTK+BLOCKSIZE—
(c) Compute an UPPERESTIMATE for the sum ) ;" = "ay

by adding together all g in FIRSTPART and LASTPART, and then
approximating the value of each a; in MIDDLEPART as the average of

the final two values in FIRSTPART.

(d) Compute a LOWERESTIMATE for the sum similarly, except now
approximating the value of each a; in MIDDLEPART as the average of
the first two values in LASTPART. Since the sequence a; decreases in

an alternating manner, LOWERESTIMATE < UPPERESTIMATE.

(e) If LoweRESTIMATE and UPPERESTIMATE are too far apart (see
Notes below), increase NuMToCoMPUTE by 2 and return to
Step 3b. Otherwise, add the average of the two estimates to S and

continue.

(f) IfNumToComruTe = MINNuMToComPUTE (indicating that the
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error between upper and lower estimates was never so far apart as to
require increasing NUMToCOMPUTE), increment A by 1; otherwise

increment B by 1.

(g) Set NexTK = NEXTK + BLOCKSIZE — 1. Reset NUMTOCOMPUTE

to MINNuMToCOMPUTE.

(h) IfA > 2B + NUMRECENTBLOCKS, then increase BLOCKSIZE by a
multiplicative factor of BLOCKINCREASEFACTOR, rounding to the

nearest even integer. Reset A = o, B = o.

NoTes. LoweRESTIMATE and UPPERESTIMATE are required to have a
difference of less than 2* x 107 (ensuring a total error in S of under 107%), and a
log-ratio of less than 0.04. The parameter BLOCKINCREASEFACTOR is itself
adaptive, increasing by 0.4/(1 + 0.5 * (BLOCKINCREASEFACTOR — 1)
immediately after Step 3h if B = o; but decreasing by 0.4 (never dropping below

1.05)if B > 1.

PARAMETERS USED. INITIALBLOCKSIZE = 200. MINBLOCKSIZE = 4o0.
MINNUMToOCOMPUTE = 6. BLOCKINCREASEFACTOR = 1.15.

NuUMRECENTBLOCKS = 6.

BINARY SEARCH FOR QFOR 50% PROBABILITY OF REBOUND

The estimate in Section 3.4.3 is used as an initial guess for the post-therapy
reservoir size z, that would produce a 50% chance of rebound. Survival

probability Pg,,, was computed for this initial guess, using the method of
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Section 3.4.3. While P, was not within 10™* of 0.5, a new guess for z, was made
using a bisection method: If Py, is too low (high), but a previously computed
value was too high (low), then linear interpolation was used between the current
and previous values to select a new z, that is estimated to have P, = 0.5. If
Pgury is too low (high), but no previously computed value was too high (low),
then the guess for z, was divided (multiplied) by 10. For all results reported,
between 3 and 8 iterations were required to obtain the desired Pgy,,. Results were

then converted to Q values for a given pre-treatment reservoir size.

3.4.5 DETERMINISTIC MODEL OF VIRAL DYNAMICS

A deterministic model was used for two purposes: to provide an estimate of R,
(described in Section 3.4.2, above) and to estimate the threshold Q separating the
growth-limited and activation-limited regimes. The threshold value is defined as
that which equalizes the deterministic rebound time and the expected waiting

time until activation of the first cell fated to establish.

MODEL DEFINITION

A complete model of viral dynamics including the latent reservoir is shown in the
flow diagram of Fig. 3.4.1. All variables respresent total amounts present in the
body. State variables , y, v, and z are the number of infectable CD4™ T cells, the
number of productively infected cells, the number of free virus particles, and the
number of latently infected cells, respectively. Productively infected cells produce

virus at rate k, die at rate d,, and transition into latency at a rate y. Virus is cleared
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at rate d,. The infectivity parameter f§ determines the rate at which virus infects
susceptible host cells. Host cell dynamics are determined by production rate 6
and death rate d,.. Latently infected cells reactivate at a rate g and die at a rate d,.
When population sizes are large, this model can be described with a set of

differential equations [161, 215, 240, 272]:

x=0— Pxv —dx

y = Bxv—dy+az—yy
(3.20)
v=ky—dyv

z=7y—az—d,zz

Here we make a number of simplifying assumptions valid for understanding
dynamics leading to rebound. Because the terms k and d,, are an order of
magnitude larger than other rates in the system, we can apply a separation of
timescales and assume that free virus particle levels change so quickly that they
track infected cell levels. Formally, this is accomplished by setting v = o, leading
to v = ky/d, and only three differential equations. For viral loads at or below
rebound levels, uninfected CD4™" T cells do not become limited and can be
assumed to remain at their pre-infection/post-long-term-HAART steady-state
level of x = 0/d,, and hence x = o. Moreover, at low viral loads, new influx into

the latent reservoir can be ignored (y = o).
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Latently

Infected

Figure 3.4.1: Schematic of the deterministic viral dynamics model including
the latent reservoir. State variables x, y, v, and z are the number of infectable
CD4™ T cells, the number of productively infected cells, the number of free
virus particles, and the number of latently infected cells, respectively. Pro-
ductively infected cells produce virus at rate k, die at rate d,, and transition
into latency at a rate y. Virus is cleared at rate d,. The infectivity parame-
ter B determines the rate at which virus infects susceptible host cells. Host
cell dynamics are determined by production rate 6 and death rate d,. Latently
infected cells reactivate at a rate a and die at a rate d,.
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These assumptions lead to the reduced set of equations:

y=az+ (R, —1)dy
(3.21)
z=—(a+4d,)z,

where R, is the combined viral fitness parameter (0kf3) / (dvdxdy) describing the
expected number of secondary infected cells produced by a single infected cell
introduced to an uninfected host. As in the stochastic model described in
Section 3.4.3, the initial conditions (y o) zo) are such that z, is the reservoir size
following LRA therapy, and — assuming that latent cell dynamics are much
slower than active cell dynamics (a + d, < d,) — the residual active infection is

Vo ~ azo/d}"

CALCULATING REBOUND TIME FROM THE DETERMINISTIC MODEL

Following HAART interruption (with or without LRA therapy), the number of
infected cells (and thus viral load) grows according to Equation (3.21) with
latent cells at a transiently constant value z,,. Let y, = ry_ be the infection size at
which rebound is detected (e.g.,, &~ 200 c ml™*). The parameter r is the “rebound
factor”, the amount by which the infection must grow in order for rebound to be
detected.

This equation can be solved exactly:

Roedy(Ro—l)t -1

— (322)

y(t) =y,
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giving the time to rebound as

In <1+r(RR:—1) >

to = m (3.23)

This equation is appropriate when cells exit the reservoir frequently (i.e.
without highly effective LRA therapy). Incorporating reservoir decay negligibly
changes the results because a + d, < 1. In Section 3.4.2 above, this equation was
used to calibrate R, based on observed rebound time f,,.

Following LRA therapy, the size of the reservoir is reduced to 10~ %V g. Let
q = 10~ <. Since the residual active infection y_ also scales by g, the rebound

factor increases to r/q. The time to rebound is now increased to

In (1+<r/q>(Roﬂ>>

y (3-24)

t, =
d)'(Ro -

Eradication therapy therefore extends the rebound time by an amount At:

At=t, —t,
_ 1 1+ (r/q)(R, — 1)
d,(Ry —1) In ( 1+ r(R, —1) ) (3.25)
~ _In0/q)
d,(Ry — 1)

where the approximation is valid for r(R, — 1) >> 1. This order relationship is
very likely to hold as the rebound factor is & 100 or more. The only way for the

relationship to fail would be for R, to be in a very narrow range just above 1.
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ABOVE A THRESHOLD Q, THE DETERMINISTIC MODEL DISAGREES WITH THE STOCHAS-

TIC MODEL

Under the deterministic model, rebound time increases only logarithmically with
the decrease in LR size. The stochastic model agrees with this relationship only in
the growth-limited regime, where activation of fated-to-rebound cells is common.
At higher Q, the waiting time until this activation occurs exceeds the
deterministic growth time; in this activation-limited regime, the stochastic model
predicts rebound times well in excess of those predicted by the deterministic
model (Fig. 3.4.2). As a rough estimate, the waiting time in the stochastic model
is m , where h, is the probability that a reactivating lineage goes extinct
(defined in Equation (3.8)). The threshold drug efficacy Q defines the
boundary between the two regimes. It can be estimated by solving numerically
for the log-efficacy that sets deterministic growth time from Equation (3.24)

equal to the stochastic waiting time:

In ( 1+7102 (R, —1) )

R, 1

= - . 6
d,(Ry —1) a(1—h,)Mpg10~ & (3:26)

This threshold can be observed in the upward inflection in the rebound time
curves in Figs. 3.2.2C and 3.4.2 occurring at Q ~ 1 — 2.

Fig. 7.3.2 shows that Q; increases with pretreatment reservoir size Mg and
decreases with variance parameter A, since higher values of A increase the

extinction probability h,. For pretreatment reservoir size Mz = 10°, reduction

99



Infectivity

100 R variance

80 — 12 — A=2
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Time to rebound (days)
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LRA efficacy (Q) LRA efficacy (Q)

Figure 3.4.2: A fully deterministic model is a poor predictor of rebound
times. A) Equation (3.25) was used to calculate the time to rebound for a
given LRA drug efficacy, Q. The deterministic model assumes that LRA re-
duces the size of the reservoir and hence the residual viral load by Q orders of
magnitude and then tracks the time for the viral population to grow to 200 ¢
ml~*. B) Rebound times calculated from the deterministic model for R, = 2
are compared to median rebound times calculated from the stochatic process.
The models agree only for small Q. The Q values where the models diverge
corresponds to the transition between the growth-limited regime and the acti-
vation limited regime.

of approximately 30- to 1,000-fold is required to reach the activation-limited

regime, in which substantial increases in rebound time may be achieved.

3.4.6 VIREMIA DURING ADMINSTRATION OF LRA THERAPY

If LRA therapy reduces reservoir size by inducing activation of latently infected
cells, then an increase in viral load during therapy can be expected. The precise
dynamics of viral load during LRA therapy depend on the efficacy and duration
of therapy. To model these dynamics, we assume LRA therapy is administered
continuously for a period of time 7 (ignoring pharmacokinetics) and increases
the reactivation rate of latently infected cells. During this time HAART is

co-administered, and we assume no new infections can occur. Since transcription
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Figure 3.4.3: Schematic of viral dynamics during LRA therapy. (A) The
model tracks latently infected cells, actively infected cells, and free virus, dis-
tinguishing between cells in which HIV-1 transcription is reactivated by LRA
(/') or naturally (y). (B) llustration of typical viral load dynamics during
course of LRA therapy. LRA therapy increases the reactivation rate of cells
from the LR, causing residual viral load to increase. The timing and magni-
tude of this peak allow for an estimation of the efficacy Q. We assume that
HAART is administered for a short while beyond the end point of LRA ther-
apy, preventing the reactivated cells from starting new infections. All symbols
are defined in the text.

Time of

Viremia at
<4— treatment end

at the HIV-1 LTR may be reactivated in resting CD4 ™ T cells while the cell
otherwise retains a resting phenotype, cellular functions in these LRA-activated
cells may proceed at a slower rate [275 ]. We therefore track those cells reactivated
by LRA separately from those reactivated normally by antigenic stimulus.

The model we use to consider this scenario is shown schematically in
Fig. 3.4.3A and described formally in the next section. Since our goal is to track
viral load during a period when HAART is administered, we consider all cells
capable of producing virions, regardless of replication capability. As this
collection of resting cells likely exceeds the LR by an order of magnitude or more
(fV versus f; », Fig. 3.2.1 ), and since therapy increases activation rate, large

numbers of cells can be assumed to activate daily, and a deterministic model
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similar to the one presented in Section 3.4.5, above, suffices. Latent cells (z) die
at arate d, and can be reactivated naturally (a) or by LRA-induced mechanisms
(a'). Naturally reactivated cells (y) die at rate d,, and LRA-reactivated cells (y')
die at rate d; (which may be lower than d,) [275]. Free virus is produced at a rate
k from naturally reactivated cells and a rate k' from LRA-reactivated cells. Since
induced cells may have smaller burst sizes [276], k' may be less than k.

We use this model to relate change in residual viremia over time to the
log-efficacy of LRA therapy, Q. Define a, = a + a’ + d,, the total rate at which z
decays during treatment. Assuming that this decay affects latent cells regardless
of whether the proviral sequence is able to replicate, the fraction of the latent
reservoir that remains after treatment duration 7 is ¢ = e~ *". Log-eflicacy of
therapy is Q = log,_(g), resulting in the relationship a, = In(10) - Q/7. Viral
load approximately follows a biexponential curve, generally reaching a peak
quickly (time determined by the faster of the two rates a, and d;) and then
decaying slowly (at the slower of the two rates) (Fig. 3.4.3B).

The height of this peak and the time after treatment initiation at which it

occurs are

(3.27)

bnax = T; (3-28)
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where w, &~ 2 c ml ™" is the residual viral load (not necessarily infectious) before
LRA therapy. This peak is reached before treatment ends if 7 > 1/ d; and

Q> $ /2 0.43. Derivations for these results are provided in the next section,
and examples for selected treatment parameters are provied in Table 3.4.1. Even
mildly effective therapy (Q = 1) can result in large increases in residual viremia
from the baseline level, appearing after a few days of treatment. Viremia is lower if
the same reservoir reduction Q is achieved over a longer treatment time 7.
Viremia is also decreased if LRA-induced cells have a lower burst rate than
normally activated cells (k'/k < 1). If LRA-induced cells have a longer lifespan
(d,/ d; > 1), then peak viremia increases but is delayed.

In vivo estimates of LRA therapy efficacy may be obtained from measurement
of viral load during therapy. Highly effective therapy is predicted to result in large,
observable increases in residual viremia during continuous administration (Table
3.4.1). It is important to note that this conclusion applies only to forms of LRA
that reactivate latently infected cells without damaging viral production in these

cells.

DETAILED CALCULATIONS

We extend Equations 3.20 and 3.21, tracking latently infected cells z,

productively infected cells reactivated naturally y, productively infected cells
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Table 3.4.1: The timing and size of peak viremia, as well as viremia at treat-
ment end, depend on the efficacy and duration of LRA therapy, the change
in burst size, and the change in infected cell lifespan. Therapy protocol is

described in the text and illustrated in Fig. 3.4.3. Time to peak viremia

was calculated using Eq. 3.28. Peak viremia was calculated using Eq. 3.34,
of which Eq. 3.27 is an approximation. Symbol definitions are provided in
the text. Parameters used: a = 7 X 10 5day !, d, = 4.6 x 10”4 day %,

zZo = M, = 43 x 10° cells, d, = 1day™, and w, = 2 cml™* (implying
F =2 cml™cel™).
.y 1500

Log-efficacy | Treatment | Foldincrease | Foldincrease || Time to Peak Viremia at
LRA (Q) time in burst in lifespan peak viremia treatment
(7) (days) | size (K'/k) (dy/d;) (days) | (cml™*) | end (cml™*)
1 15 1 1 2 3 X 103 500
1 60 1 1 3 103 100
1 180 1 1 4 300 30
1 180 0.1 1 4 30 4
2 15 1 1 2 5 X 10° 100
2 16 1 1 2 5 X 103 100
2 180 1 1 4 700 7
4 15 1 1 1 8 X 10° 5
4 15 1 10 4 2 X 10* 8 X 10°
4 15 0.1 1 1 800 <2
4 15 0.1 10 4 2 X 103 800
4 60 1 1 2 3 X 103 <2
4 180 1 1 3 103 <2
reactivated by LRA therapy y/, and free virus v:
z=—(a+d)z—dz
y=az—dy
(3.29)
y =dz— d;y’

v=ky+ky —dy
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These equations incorporate the simplifying assumptions that fully effective
HAART yields R, = o, that uninfected CD4" T cells do not become limited and
remain at their pre-infection/post-long-term-HAART steady state level, and that
new influx into the LR can be ignored.

Using the separation of timescale for virus dynamics (v) and the initial

conditions z(0) = zo, y(0) = az,/d,,y'(0) = o, these equations can be solved:

y(t) = - (e_azt_e—dyt) + Poo —dyt
Y z Y
/(1) = az, R (3.30)
J d;, a,
ky(t) + K'y/(t
o(t) = y(); y()’

where a, = a + a4’ + d,. Note that the timescale separation for v(t) is based on
the assumption that k, k', and d, greatly exceed other rates, which may be violated
if LRA-reactivated cells have much smaller burst rate k' and/or much higher
death rate d; than normally reactivated cells. In general this approximation may
only slightly overestimate viremia on the first day after LRA is started.

The amount by which LRA therapy increases the reactivation rate (a’) can be
related to the fraction to which the reservoir is reduced (q), or equivalently, to the

log-efficacy Q = log,_(q), after a treatment time

(3-31)
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and so the reactivation rate is:

(3.32)

Note that some natural activation and cell death contribute to Q, so that the
absence of treatment does not correspond to Q = o but to
Q = log, (e)(a + d,)7, which is generally small.

From these equations, we can determine the expected changes in residual viral
load over time during LRA therapy. The contribution to residual viremia from
naturally activating cells (initially w, = 2 ¢ ml™") only decreases during
treatment, as the reservoir is depleted. If any increases in observable residual
viremia occur in response to LRAs, it will come from compartment y’ activated
by the drug. This contribution follows a biexponential curve, increasing to peak
value quickly (at roughly the smaller of the two times 1/ d;, 1/a, days), then
decaying more gradually to zero (at the smaller of the two rates d;, a, per day).

We can calculate precisely the time of the peak in residual viremia due to
contributions from newly reactivated cells :

U
max = nidy) — Inlar) (3.33)

!
dy—az
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The viral load at this peak is:

= Wop — Ui (3-34)

where w, = ky_/d, is the residual viral load before LRA therapy and u = a,/ d;.
The first approximation holds when u is small (if Q/7 is small compared to d;) )
and the second holds when a + d, < a’ (Q/7 is large compared to a + d,). The
peak viral load occurs during treatment when t,,,,, < 7, which holds if and only if
both Td; > 1andIn(10) - Q > Td;, which places requirements on both treatment
time (7 > 1/ d;) and treatment strength (Q > ln(;lo) A 0.43). When LRA is
started, viral load approaches the peak linearly with an initial slope of a'z,.

Viremia at the end of treatment can be found by substituting in 7 for tin

Eq. (3.30).

3.5 MANUSCRIPT INFORMATION

3.5.1 IN SUBMISSION AS

This manuscript is being submitted as:
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Hill AL, Rosenbloom DIS, Fu F, Nowak MA, Siliciano RF. Predicting

outcomes of treatments to eradicate the HIV-1 latent reservoir.
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Imitation dynamics of vaccination

behavior on social networks

4.1 INTRODUCTION

PREEMPTIVE VACCINATION IS A FUNDAMENTAL STRATEGY for controlling
infectious diseases [43 ]. While there is vigorous debate about the civil liberties
implications of mandatory versus voluntary vaccination policies [ 57], mounting
evidence shows that voluntary vaccination plans fail to protect populations

adequately [22-25, 36, 38, 56,91, 98, 253, 316]. A recent example of this failure
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is the sharp decline in take-up of the combined measles-mumps-rubella
vaccination in Britain soon after administering it to children was made
voluntary [ 142]. Because of declining familiarity with the disease and rising fears
of vaccine complications, parents hoped to avoid the alleged vaccination health
risk to their own children while implicitly relying on enough other children
getting vaccinated to provide herd immunity. The “public good” created by herd
immunity gives rise to an enduring social dilemma of voluntary vaccination.

Classical game theory predicts that, when individuals act in their own interests
with perfect knowledge of their infection risk, their vaccination decisions
converge toward a Nash equilibrium, at which no individuals could be better oft
by unilaterally changing to a different strategy [24, 25]. Although this
equilibrium is the result of each individual following her self-interest, it may lead
to suboptimal vaccination coverage for the community [98]. The collective result
of vaccination decisions determines the level of population immunity and thus
the severity of an epidemic strain. With increasing levels of vaccination coverage
in the community, even the individuals who are unvaccinated are less likely to
become infected; therefore, they have less incentive to get the vaccine. This
scenario naturally leads to the “free riding” problem that is commonly observed
in public goods studies [ 116].

Previous studies of vaccinating dynamics have typically combined a
game-theoretic model assuming full rationality and complete information with a
model of disease transmission in either homogeneously mixed

populations [24, 25] or random networks [242]. In studies where the



assumption of rationality is relaxed, deterministic evolutionary dynamics still
recover equilibrium states equivalent to those predicted by models of rational
agents [23]. It is worth noting that aggregate population models have been
parameterized with empirical data to quantitatively predict vaccinating behavior
in some cases [22, 23, 98]. Here we extend this previous work by accounting for
decision-makers’ social networks and their use of anecdotal information in
making vaccination choices. Individuals have incomplete information and tend
to rely on salient anecdotes from friends and the media in order to form opinions
of disease risk and prevention [ 145, 228, 314]. The rise to prominence in the
British media of isolated cases linking the pertussis vaccine and brain damage
triggered a sharp decline in coverage in the late 1970s, demonstrating the power
of the anecdote [23, 208]. Apart from these prominent cases, each person can
encounter different anecdotal evidence, depending on her social

network [84, 242 ]. Illness of a close friend can impact one’s perception of
infection risk and the importance of prevention in far more powerful ways than
media reports can [228].

Motivated by the above considerations, we propose a simple agent-based
model in the spirit of evolutionary game dynamics [195, 213, 217] to study the
voluntary vaccination dilemma. In order to make precise predictions, we couple
the vaccination dynamics with an epidemiological model, in particular the SIR
model, which tracks populations of susceptible, infected, and
resistant/vaccinated individuals over time, within a single season or epidemic.

Such models have been used, for example, to design clinical trials of vaccines or



to predict whether a vaccination program will halt an epidemic before it spreads
to much of the population [72, 176].

Our model captures the strategic interaction between vaccinating and
free-riding individuals in the following way. Individuals decide whether to
vaccinate during a vaccination campaign, before the seasonal epidemic begins.
The epidemiological model then determines whether each susceptible
(unvaccinated) individual becomes infected at some point during the season.
Once the epidemic ends, individuals can revise their vaccination decision for the
next season. Such a model is most appropriate for describing infections such as
influenza. Flu vaccines are typically available prior to a predicted outbreak and
are effective for only one season due to mutation of pathogens and waning

immunity [38, 316].

4.2 MODEL & METHODS

Consider a well-mixed population of individuals with a voluntary vaccination
option. We model the vaccination dynamics as a two-stage game (as illustrated in
figure 4.2.1). The first stage is a public vaccination campaign, which occurs before
any infection. At this stage, each individual decides whether or not to vaccinate.
Vaccination incurs a cost, V, to the vaccinated individual, and it grants perfect
immunity from the seasonal infectious disease. The total cost of vaccination
includes the immediate monetary cost, the opportunity cost of time spent to get
the vaccine, and any perceived or actual adverse health effects. In the second

stage, the epidemic strain infects an initial number of individuals I, and then



spreads according to SIR dynamics, with per-day transmission rate r and recovery
rate g (see the supplementary materials for model details). The epidemic
continues until there are no more newly infected individuals (which occurred in
under 200 days for all cases simulated). The final size equation [72] gives the
infection risk for an infinite population (see supplementary materials for
derivations):

R(0) RoR(c0)

w(x) = — =1—¢ : (4.1)

where R(00) is the final size of the epidemic (fraction that have been infected at
some point in the season), which satisfies R(00) = (1 — x)(1 — e RR(>)); R_ is
the basic reproductive ratio; and « is the fraction of vaccinated individuals.

The infection cost I includes health care expenses, lost productivity, and the
possibility of pain or mortality. After the epidemic, the individuals with the
highest payofls are those who declined vaccination but avoided infection. We call
these lucky individuals successful free-riders, as they benefit from others’
vaccination efforts. The game dynamics remain unchanged if we rescale the
payoffs by defining the relative cost of vaccination ¢ = V/I (0 < ¢ < 1). The
values of ¢ appropriate for modeling a particular disease can be estimated from
surveys of health opinions, behaviors, and outcomes, as done by, e.g., Galvani
etal. [98], but in general vaccination cost should be low relative to the cost of
infection. The Nash equilibrium of this game can be solved by setting the

expected cost of vaccination equal to that of non-vaccination, which implies the
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Figure 4.2.1: Schematic illustration of our model. We model the vaccination
dilemma as a two-stage game. At Stage 1 (vaccination choice), a proportion x
of the population decides to vaccinate. Vaccination costs V and provides per-
fect immunity from the infectious disease. At Stage 2 (health outcome), we
use the Susceptible-Infected-Recovered model to simulate the epidemiological
process. Each unvaccinated individual faces the risk of infection during the
seasonal epidemic outbreak. The cost of infection is I. Those unvaccinated
individuals who remain healthy are free-riding off the vaccination efforts of
others, and they are indirectly protected by herd immunity.

mixed strategy

. In(1—¢)
X =1+ T. (4.2)

This level of vaccination uptake falls short of the social optimum x;, = 1 — 1/R,,
which both achieves herd immunity (full protection of unvaccinated individuals)
and minimizes the sum of all individuals’ costs related to both vaccination and
infection (see supplementary materials). The misalignment between individual

and group interests leads to a social dilemma.
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Here, we relax the assumption of rationality and study this vaccination
dilemma from an evolutionary perspective. Each season, an individual adopts a
pure strategy, which determines whether or not she vaccinates. At the end of the
season, each individual decides whether to change her strategy for the next
season, depending on her current payoff. Specifically, individual i randomly
chooses individual j from the population as role model. The strategy of a role
model with higher payoff is more likely to be imitated. We suppose that the
probability that individual i adopts individual j’s strategy is given by the Fermi
function [31,298,311,312]

1

J0 =) = e pe, R )

where B denotes the strength of selection (o < f < 00).

This updating dynamic diverges from a fully rational model in two ways. First,
individuals adjust their strategies retrospectively, in response only to the
observed payoft outcomes and not the expected payofls of strategies. In a
population with low vaccination uptake, most non-vaccinators fall ill, but if
individual i happens to choose one of the few successful free-riders as a role
model, then she will be more likely to imitate the free-rider’s strategy. Second, the
strength of selection parameter introduces a stochastic element to the model: for
small B (weak selection), individuals are less responsive to payoff differences, and
an individual with a high payoff may adopt the strategy of a less successful role
model. Large values of § (strong selection) diminish this stochastic effect, and

individuals reliably switch to (or keep) the strategy with the higher observed
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payoff, even if the payoff difference is small. Previous work using the same update
dynamic has characterized agents with high f as being more rational [298]. This
characterization is not appropriate in our context, as higher  only increases an
agent’s sensitivity to the (perhaps unrepresentative) observed payoff, not the
expected payoff.

The model presented here can be conveniently extended to structured
populations by restricting the neighborhood of individuals whom one can infect
or imitate. In addition to the well-mixed case, we simulated populations
structured as square lattices, Erd8s-Rényi random graphs [88], and
Barabdsi-Albert scale-free networks [20] (see supplementary materials). The
initial state consists of equal fractions vaccinators and unvaccinators, randomly
distributed throughout the population. Each two-stage iteration (vaccination
strategy updating followed by an epidemic process) updates the frequencies of
each strategy. Since we are interested primarily in the effect of population
structure on vaccination coverage (rather than on infection risk), we calibrated
epidemic parameters to ensure that the infection risk in an unvaccinated
population is equal across all population structures [242] (see supplementary
materials). Each simulation was run for 3,000 iterations. The long run
equilibrium results shown in figures 4.3.1-4.3.3 represent the average of
frequencies over the last 1,000 iterations in 100 independent simulations. Our
presented results are robust to population size N for all population structures

examined, as longas N > 200.
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4.3 RESULTS

In the vaccination game, if all of one’s neighbors adopt one strategy, then it is
advantageous to adopt the opposite strategy. We therefore always find persistent
polymorphisms of vaccinated and unvaccinated individuals for intermediate
values of c. Figure 4.3.1 plots both the equilibrium frequency of (a) vaccinated
and (b) infected individuals for different values of c and f in the well-mixed
imitation dynamics. We find qualitative agreement between stochastic
simulations and an analytical prediction that uses both the equation for infection
risk (4.1) and an infinite-population approximation of the imitation dynamics
(described in supplementary materials).

For weak selection (f = 1in figure 4.3.1), the imitation dynamics approximate
the rational equilibrium x* given in equation (4.2). One can understand this
observation analytically by noting that the strategy update equation (4.3) is
roughly linear for small f. First-order approximation of the imitation dynamics
closely approximates the replicator dynamics [133, 271, 306], which in this game
converge to the unique evolutionarily stable strategy—the Nash equilibrium (see
supplementary materials). As vaccination falls with increasing c, the final size of
the epidemic grows. Above a high cost threshold ¢y ~ 0.893, no one chooses
vaccination and the epidemic reaches its maximum size.

Strong selection in the imitation dynamics (represented by f = 10in

figure 4.3.1) can decrease vaccination uptake below the level predicted by the
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Figure 4.3.1 (following page): Vaccination dynamics in well-mixed popu-
lations. The fractions (a) vaccinated and (b) infected are shown as functions
of the relative cost of vaccination, ¢, for the intensity of selection p = 1 and
10. The lines are analytical predictions from deterministic equations (see sup-
plementary materials). The deviation between simulation and theory is largely
due to stochasticity in disease transmission: holding vaccination constant at
some level below the herd immunity threshold (1 — 1/R, = 0.6), simulated
infection risk is smaller than the prediction in equation (4.1) (see suppl. fig-
ure 4.5.1b). Individuals in the simulation respond to this decreased risk by
vaccinating less than in the theory, which in turn leads to a larger epidemic
versus the theory. Strong selection magnifies individuals' responses, producing
larger deviations. For vaccination coverage above the theoretical herd immu-
nity level, the deterministic approximation underestimates infection risk, lead-
ing to an opposite deviation at low c¢. Parameters: population size N = 5000,
R, = 2.5 (realized by setting r = 5/(6N) and g = 1/3), number of infection
seeds I, = s.
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Figure 4.3.1 (continued)
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rational equilibrium. In other words, individuals who carefully attend to peers’
health outcomes and reliably copy the behavior of successtul peers will end up
attempting to free-ride more than they rationally “ought” to. If, for example,
infection is twelve times as costly as vaccination (namely, c = 0.08, a reasonable
assumption for influenza, see supplementary materials), then strong selection in
our model lowers vaccination coverage by 8 percentage points versus weak
selection (figure 4.3.1a), which increases the epidemic size from 4% of the
population to 15% of the population (figure 4.3.1b). With increasing cost, the
equilibrium vaccination coverage follows a rotated “S” curve, dropping rapidly

(slope ~ —%) from the herd immunity threshold at low values of ¢, reaching a

2

plateau near1 — 112“ > for intermediate values of ¢, and then dropping rapidly to

zero as c grows large. The threshold cy increases with selection strength
(figure 4.3.1a).

Results are qualitatively similar for any basic reproductive ratio R, of the
infection. suppl. figures 4.5.5, 4.5.6 compare the cases R, = 2.5 and R, = 6. The
higher value increases infection risk, making the population respond with
increased vaccination. Increasing R, also raises the threshold cy.

Restricting interaction to local neighborhoods partly ameliorates the
free-riding problem, but introduces greater sensitivity to the cost parameter ¢
(figure 4.3.2). We consider a population of individuals arranged on a square
lattice where each individual has four immediately adjacent neighbors. While the

vaccination coverage in well-mixed populations drops from herd immunity levels
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Figure 4.3.2: Vaccination dynamics in lattice populations. Left panels (a),
(b) show the fractions vaccinated and infected, respectively, as functions of
¢ for the intensity of selection = 1 and 10. right panels (c), (d) show snap-
shots of the system at equilibrium frequencies with weak and strong selection,
respectively. Blue denotes vaccinated individuals, red successful free-riders,
and yellow infected individuals. Strong selection breaks apart clusters of vac-
cinators: 54% of vaccinated individuals' neighbors are also vaccinated in (c),
versus only 49% in (d). Parameters: population size N = 100 X 100 with von
Neumann neighborhood, disease transmission rate r = 0.46, recovery rate

= 1/3, number of infection seeds I, = 10, (c)(d) ¢ = 0.08, (c) B = 1, (d)
B =10. The lines in (a) and (b) are visual guides.
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as soon as c increases above zero, restricted spatial interaction promotes
near-universal coverage at a range of positive ¢, preventing the epidemic. To give
a simple operational definition, we say that vaccination “prevents the epidemic”
in a structured population if the average final epidemic size is less than twice the
size of the initial inoculum. Define as ¢;, the critical vaccination cost below which
the epidemic is prevented. For weak selection on the lattice (8 = 1in
figure 4.3.2), we get ¢, & 0.022. Above this threshold, the vaccination level drops
precipitously, causing an epidemic that is even larger than in the well-mixed case.

At higher selection strength, the threshold ¢y, is lower, and vaccination
coverage is even more sensitive to costs rising above ¢y, (figure 4.3.2a). The high
cost threshold cy rises with selection strength, meaning that the transitional
region between ¢, and ¢y, where vaccinated and unvaccinated individuals coexist,
widens with larger . Holding ¢ constant at a value above ¢y, increasing the
strength of selection leads to more free-riding attempts, breaking apart clusters of
vaccinators, thus allowing a larger epidemic to occur (figure 4.3.2c versus 4.3.2d).

Most actual populations are heterogeneous in the sense that different
individuals may have different numbers of neighbors (i.e., degree) [20]. To
account for this feature, we consider vaccination dynamics on Erdés-Rényi
random graphs, which have moderate degree heterogeneity; on scale-free
networks, which have an even more variable degree distribution, our results are
similar (see supplementary materials).

Higher vaccination coverage is typically required to achieve herd immunity in

populations with greater degree heterogeneity [237] (see also suppl.
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figures 4.5.2—4.5.4). This increased vulnerability to epidemic attacks reduces the
temptation to free-ride, actually making it easier for a population of selfish
imitators to achieve the high vaccination threshold required for herd immunity.
The threshold cost c;, therefore increases versus the lattice case. Vaccination
coverage drops after cost exceeds this threshold, although the effect is not quite
as extreme as in lattice populations (figures 4.3.3a and 4.3.3b). Similarly to lattice
populations, increased selection strength increases the size of the intermediate
region between g, and cy.

Degree heterogeneity triggers a broad spectrum of individual vaccinating
behavior. Specifically, an individual’s vaccination strategy is now influenced by
her role in the population, and “hubs” who have many neighbors are most likely
to choose to be vaccinated, as they are at greatest risk of infection (figures 4.3.3¢
and 4.3.3d). Hubs that do manage to free-ride successfully become victims of
their own success, as their vaccinated neighbors of smaller degree are likely to
imitate them and switch strategies, potentially infecting the hubs in the following

season.

4.4 DiscussioN & CONCLUSION

Our model shows how incomplete information and strong selection (high
payoff-sensitivity, parameterized by ) in a population of imitators causes the
vaccination coverage to fall well short of the social optimum, and even below the

Nash equilibrium. Weak selection in a well-mixed population recapitulates the
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Figure 4.3.3: Vaccination dynamics in random network populations. Left
panels (a), (b) show the fractions vaccinated and infected, respectively, as
functions of ¢ for the intensity of selection f = 1 and 10. Right panels: (c)
Snapshot of a single simulation on a random network at equilibrium frequen-
cies. The size of a node corresponds to its degree (number of neighbors).
Blue nodes are vaccinated, yellow are infected, and red are successful free-
riders. (d) The frequency of vaccination on a random network, as a function
of the number of neighbors an individual has. The inset in panel (d) shows
the degree distribution of the random network. Parameters: (a)-(d) average
degree k = 4, disease transmission rate r 0.51, recovery rate g = 1/3;
(a)(b)(d) N = 1000, I, = 10; (c) N = 500, I, = 5; (c)(d) ¢ = 0.1, p = 10. The
lines in (a) and (b) are visual guides.
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replicator dynamics, converging to the Nash equilibrium. Strong selection, on
the other hand, drives individuals to imitate successful free-riders based on a
single observation, even when a rational agent with complete information would
realize that attempted free-riding does poorly in expectation. This “paradox of
imitation” is a very general phenomenon [267] and may in part explain cases
where public vaccination levels are low. In particular, for the range of vaccination
cost appropriate to influenza (i.e., ¢ & 0.002 to 0.08, see supplementary
materials), the imitation dynamics with strong selection in the well-mixed case
falls well short of the rational optimum, leading to over-exploitation of herd
immunity and an increase in preventable infections. Our model describes the
admittedly extreme case in which each individual observes only one randomly
chosen role model each round. Allowing imitators to learn from a somewhat
larger group of peers could lessen the sampling error, but would not eliminate it.
This kind of error is reminiscent of, but distinct from, the phenomenon of
“information cascades” that generate rationalized conformism or “groupthink”
[18, 28]. Such cascades may also be obstacles to high vaccination coverage [21].
To explore conformism (or, alternatively, stubbornness) in the context of our
model, one might include an additional cost 7 of switching strategy in the
thermal updating rule [297, 312]; thatis, f(AP) = 1/[1 + exp(B(AP + 1))]. A
large negative (positive) T would then represent the tendency to copy one’s peers
(stick with the current strategy), regardless of payoff comparisons. Previous
studies have shown in detail how this sort of payoff-neglecting imitation can lead

to widespread conformism and adoption of sub-optimal strategies [ 18, 28].
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It is widely known that population structure can promote the evolution of
cooperative behavior [211, 214, 222, 223, 303, 304]. We have shown, however,
that population structure is a “double-edged sword” for public health: It can
promote high levels of voluntary vaccination and herd immunity, but small
increases in cost beyond a certain threshold ¢, cause vaccination to plummet —
and infections to rise — more dramatically than in well-mixed populations. For
example, the random network population under strong selection (f = 10) can
prevent the epidemic completely for costs up to ¢ = 0.04, but 11% of the
population become infected at cost ¢ = 0.08. In the well-mixed population, the
epidemic grows gradually, from 8% to 15%), over the same cost range. This
threshold effect is robust to changes in population structure and exists in lattice
(figures 4.3.2a and 4.3.2b) and scale-free network (suppl. figures 4.5.7a and
4.5.7b) populations as well.

In social networks, individuals’ degrees vary greatly, and highly-connected
individuals (hubs) can spread disease to a large number of peers if infected. The
vaccination of hubs can play a vital role in containing infections [237], and public
health programs often try to promote herd immunity by allocating vaccinations
preferentially to these hubs [ 19]. Physicians who are hubs in a
disease-transmission network, for instance, have high rates of vaccine
uptake [41]. Our model shows that even individuals with incomplete
information can self-organize to achieve this pro-social outcome (figure 4.3. 3).
Since hubs generally face greater infection risk than small-degree individuals do,

they have increased incentive to vaccinate; hubs’ self-interest is therefore
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relatively well-aligned with overall welfare.

Recent work with a detailed model designed to mimic a smallpox outbreak on
arandom network [242] reaches a complementary conclusion about the fragility
of high-coverage equilibria: voluntary vaccination can contain a disease in
low-degree networks, but as the average degree increases, the system reaches a
critical threshold past which it behaves like a well-mixed population and the
epidemic spreads. This work focused on vaccination decisions made during the
course of an epidemic in response to local disease prevalence, as opposed to
season-by-season updating of preemptive vaccination decisions. Taken together,
our current work and this previous result demonstrate how local disease
transmission and decision-making based on local context change the character of
vaccination dynamics. Voluntary vaccination can be a viable policy for achieving
high coverage and eradicating disease, but the final outcome is sensitive to small
changes in (actual or perceived) vaccination cost and in the social network. This
sensitivity may in part explain how anecdotal evidence of vaccine-related health
risks has been able to trigger steep declines in coverage and loss of population
immunity [23, 142, 208]. Policy levers that subsidize vaccination can take
advantage of these threshold effects to promote disease containment and
eradication.

Achieving socially optimal coverage through voluntary vaccination is a
problem of cooperation with limited information and uncertainty about
outcomes. The problem is similar to public goods games studied by economists

[230], as herd immunity provides a communal benefit. Individuals’ use of salient
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anecdotes to cope with uncertainty, however, is not a typically studied feature of
public goods games. Two sources of uncertainty face an individual deciding
whether to vaccinate: uncertainty about contracting the infection if
unvaccinated, and uncertainty regarding adverse reactions to the vaccine itself.
Our current work focuses on the former uncertainty, treating the vaccine cost as a
fixed quantity, which is a summary of all expected costs. It may also be instructive
to treat vaccine cost as a random variable, as a way of explicitly modeling public
fears concerning vaccine safety. These fears often have a tremendous impact on

vaccine take-up and public health [77, 208].

4.5 SUPPLEMENTARY MATERIALS

4.5.1  EPIDEMIC MODELING

We use the Susceptible-Infected-Recovered (SIR) model for the disease
transmission process. The SIR model is appropriate for a large class of infectious
diseases such as influenza and measles, and is widely studied in

epidemiology [ 154]. In this model, the population is divided to three classes:
susceptible individuals (S), who are healthy but can catch the disease if exposed
to infected individuals; infected individuals (I), who have the disease and can

pass it on; and recovered individuals (R), who acquire immunity to the disease.
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SIR MODEL IN WELL-MIXED POPULATIONS

Suppose the disease transmission rate is r, and the rate of recovery from infection
is g. The fraction of susceptible, infected, and recovered individuals is S, I, and R,
respectively, in a population of size N. For well-mixed populations, the time
evolution of the population states can be expressed as the following deterministic

ordinary differential equations:

ds

= = _/NSI .
7 rNSI, (4.4)
A NsT— ol (05)
dt - T ga 4-5
dR

= = 4 6
7 g (4.6)

The initial condition for an epidemic introduced by one infected individual is
S(o) =1—1/N =~ 1,I(o) = 1/N,and R(o) = o. Denote rN/g by R, commonly
called the “basic reproductive ratio” [119]. Here R, is the mean number of
secondary infections caused by a single infected individual, during his/her entire
infectious period, in a completely susceptible population.

Dividing Eq. (4.4) by Eq. (4.6), we obtain

das

- RS (4.7)

Integrating above equation from time o to 00, we get the transcendental equation
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for the final epidemic size R(00):

S(00) = S(o)e RelR(>)=R(e)], (4.8)

Using the initial condition S(0) ~ 1and R(0) = o, and the final state I(c0) = o

and §(00) =1 — R(0), we obtain:

R(oo) =1 — ¢ ReR(), (4-9)

R(00) is the final fraction of individuals who had been infected during the
epidemic outbreak, i.e., the final epidemic size, which can be calculated
numerically from the above equation. Differentiating both sides of Eq. (4.9) with
respect to R(00), we can see that the final size is positive if and only if R, > 1. If
R, < 1,the disease does not spread.

If we consider preemptive vaccination by supposing that a portion x of the

population initially vaccinated, Eq. (4.9) can be rewritten as

R(o0) = (1 —a)(1 — e RR2)), (4.10)

Increasing vaccination decreases the final size of the epidemic, and if

L

z;» we have R(00) = o. The critical value x, is called the “herd

X > Xy =1—
immunity threshold,” above which the infection does not spread through the

population. For vaccine-preventable diseases, herd immunity therefore grants

indirect protection to unvaccinated individuals; it is a public good that vaccinated
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Figure 4.5.1: Epidemic spreading in well-mixed populations. (a) The frac-
tions of susceptible, infected, and recovered individuals as a function of time.
(b) The fraction of individuals who had been infected as a function of preemp-
tive vaccination level. The solid line in panel (b) is numerically determined
from Eq. (4.10). Parameters: (a) N = 10%, g = 1/3, R, = 2.5, the number of
initial infection seeds I, = 10; (b) N = 1000, R, = 2.5, I, = s, results averaged
over 50 runs.

individuals create and unvaccinated individuals can free-ride on.

We use the Gillespie algorithm in our stochastic simulations (detailed in
section 4.5.1). To lower the chance that an epidemic outbreak fails merely due to
stochastic effects, we make the initial number of infection seeds I, more than one.
Figure 4.5.1 shows the epidemic spreading in well-mixed populations. For
R, = 2.5, the final epidemic size with zero vaccination is ~ 0.893, and the herd
immunity threshold is x;, = 0.6. Our simulation results agree with the
deterministic model given by Egs.(4.4)-(4.6) (figures 4.5.1a and 4.5.1b). Note
that for intermediate initial fractions of vaccinated individuals (0.2 < x < 0.6),
the final epidemic size resulting from simulations is lower that than the analytical

prediction (Eq. 4.10). Stochastic effects due to finite infection size cause this
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deviation.

EPIDEMIC SPREADING IN STRUCTURED POPULATIONS

It is not typically possible to derive explicit equations for epidemic spreading in
structured populations [ 154 ], so we use stochastic simulations. It is widely
accepted that population structure can substantially alter epidemiological
dynamics from the well-mixed case [207]. To identify only the effects of
population structure, we must calibrate epidemic parameters to ensure that
infection risk is equal in all structures examined [242]. We use as the base case a
well-mixed population with R, = 2.5, which is within the typical R, values for
influenza (1. 5 <R, < 3). We fix the recovery rateatg =1 / 3 (rates may be
interpreted as per-day, so the mean infectious period is 3 days), and choose the
transmission rate r such that the final epidemic size is that of the well-mixed
population without vaccination.

We simulated populations structured as square lattices, Erds-Rényi random
graphs [88], and Barabdsi-Albert scale-free networks [20]. To account for the
increased risk that individuals with many connections face, we assume that the
infection probability of a susceptible individual i is proportional to the number of
her infected neighbors Nj(i). The transition rate from S to I for individual i is
then Ny (i) [154].

For lattice populations, the final epidemic size shows a clear phase transition
from zero to one with increasing r values (figure 4.5.22). For low r values, the

epidemic spreading is inhibited due to local spatial clustering effects. We select

132



10— 11 ,A—I/— B o e e LI B s s s
A a (b)
0.893 & @
0.8 J E 0.8 |1 i
N 8
[ 2]
o 0.6 _ 3 06| i
£ £
@ @
o he)
o 041 — Q 04+ E
(0] (9]
2 2
L o2 p w02 i
L y L
0.0k A-A—A'A. | | N | N o | h ¢

: : 0.0 L~ .
0.0 0.2 04046 0.6 0.8 1.0 00 01 02 03 04 05 06 07 08 09 1.0
Disease transmission rate, r Fraction of vaccinated individuals

Figure 4.5.2: Epidemic spreading in lattice populations. (a) The final epi-
demic size is shown as a function of the transmission rate r with zero vacci-
nation coverage. (b) The final epidemic size as a function of vaccination level
(preemptive, random vaccination). The arrow notes where vaccination brings
the final epidemic size below 0.2% (twice the size of initial inoculum), repre-
senting an approximate herd immunity threshold. Parameters: N = 100 X 100
with von Neumann neighborhood (four adjacent neighbors), (a)-(b) ¢ = 1/3,
I, =10, (b) r = 0.46. Results are averaged over 100 runs.

r = 0.46, which gives a final epidemic size of ~ 0.893, approximately equal to the
base case. Using this transmission rate, we simulate the effect of preemptive,
random vaccination on the epidemic (figure 4.5.2b). The final epidemic size
decreases more precipitously than in the well-mixed case (cf. figures 4.5.1b and
4.5.2b). At vaccination levels greater than about 0.3, the disease cannot persist in
the population (marked by the arrow in figure 4.5.2b).

Compared to spatial lattices, both the absence oflocal clustering and the
presence of degree heterogeneity (different individuals can have different
numbers of neighbors) in random graphs and scale-free networks make it easier
for the disease to spread at lower transmission rates and higher vaccination rates

(figures 4.5.3 and 4.5.4). Using the same method as above, we choose r = 0.51
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Figure 4.5.3: Epidemic spreading in Erdés-Rényi random networks. (a) The
final epidemic size as a function of the disease transmission rate r with zero
vaccination coverage. (b) The final epidemic size as a function of the vaccina-
tion level (preemptive, random vaccination). The arrow notes where vaccina-
tion brings the final epidemic size below 2%, representing an approximate herd
immunity threshold. Parameters: (a)-(b) N = 1000, average degree k = 4,

I, =10, g=1/3; (b) r = 0.51. Results are averaged over 100 runs.

for random graphs (figure 4.5.32) and r = o.55 for scale-free networks (figure
4.5.4a). Notice that even for vanishingly small r values, scale-free networks are
fragile to epidemic attacks, consistent with previous findings [236]. Accordingly,
the vaccination level needed to contain the disease is the highest among all the

population structures we studied (figure 4.5.4).

STOCHASTIC SIMULATION PROCEDURE: (GILLESPIE ALGORITHM

We use the Gillespie algorithm to simulate the epidemiological process [106].
The simulation procedure works as follows:
Step 1: At time ¢, calculate each susceptible and infected individual’s transition

rate, p,(t). The rate at which a susceptible individual becomes infected is
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Figure 4.5.4: Epidemic spreading in Barabasi-Albert scale-free networks. (a)
The final epidemic size as a function of the disease transmission rate r with
zero vaccination coverage. (b) The final epidemic size as a function of the
vaccination level (preemptive, random vaccination). The arrow notes where
vaccination brings the final epidemic size below 2%, representing an approxi-
mate herd immunity threshold. Parameters: (a)-(b) N = 1000, average degree
k=4, I, =10, g=1/3; (b) r = 0.55. Results are averaged over 100 runs.

p,(t) = r x number of infected neighbors. The rate at which an infected
individual recovers from the disease is p,(t) = g. The total transition rate is
A(e) = Xp0)

Step 2: The time at which the next transition event occursis ' = t + At
where At is sampled from an exponential distribution with mean ﬁ (Generate
a uniform random number u € [0, 1). Then the time interval is At = — %)

Step 3: Choose the individual whose state changes at time ¢ by sampling
proportional to p,(t). Generate a uniform random number v € [o,1). If

]’.:11 p].(t) JAE) <v < z;;l p].(t) /A(t), then individual k is chosen to change
state. (Define Z;’:lpj(t)/?u(t) =o0.)

Step 4: Repeat Steps 13 until the number of infected individuals I(¢) is zero,

or stop after a predetermined time period.
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4.5.2 COSTS OF VACCINATION AND INFECTION IN TYPICAL INFLUENZA SEASON

Values of ¢ are supported by data from [98], which estimates the cost of health
outcomes: Vaccination costs $37 on average, and the expected cost of infection

for non-vaccinated individuals is given for four cases:

« Young individuals (< 65 years) during normal seasons: $570

Elderly individuals (> 65 years) during normal seasons: $4,160

« Young individuals during pandemics (e.g, 1918 influenza): $21,220

Elderly individuals during pandemics: $16,170

To represent the imperfect effectiveness of vaccination (roughly 80%

effectiveness for the young and 60% for the elderly), we scaled the vaccination

1 1

costby 507 = 1.25and J5; = 1.67 for each group, respectively. The relative

vaccination costs (as a fraction of infection costs) are then:

« Young, normal seasons: ¢ = 0.08

Elderly, normal seasons: ¢ = o.01

Young, pandemics: ¢ = 0.002

Elderly, pandemics: ¢ = 0.004

Based on these estimates, we propose that it is reasonable to use values of ¢ in

the range 0.001 to 0.1in our model to discuss influenza.
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4.5.3 NASH EQUILIBRIUM AND SOCIAL OPTIMUM
NASH EQUILIBRIUM

Here we demonstrate the existence and uniqueness of the Nash equilibrium (i.e.,
individual rational optimum) in the vaccination game, provided that individuals
have perfect knowledge of the vaccination coverage level and infection risk.
Propose strategy x (representing the probability of vaccination) to be a Nash
equilibrium: if most of the population plays strategy x, then individuals adopting
a different strategy y can do no better than the resident. For an ¢-size invasion

(¢ < 1), the new vaccination coverage is p := x(1 — ¢) + ye. The expected payoff

to strategy y is then

E(y,p) = —ye+ (1= y) {L = w(p)] - o + w(p) - (-1)}, (4.11)

where w(p) is the infection risk for an unvaccinated individual, given that a
proportion p of the population is vaccinated. Strategy x is Nash if it is a best

response to itself, which requires the conditions

% = w(x) —c—e(1—x)w'(x) = o, (4.12)
N N

OB @ - (e ) S0 (en)
A

Note that w(x) strictly decreases with x, until x reaches the herd immunity
threshold x;. For x < 3, the inequality (4.13) is therefore strict for a sufficiently

small invasion ¢, and so higher-order conditions are not required. Also, for small
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invasions, the ¢ term in Eq. (4.12) can be safely neglected. The vaccination cost

falls into one of three ranges:

o Case1,0 < ¢ < w(o). Since w(x) strictly decreases, there is a unique x*

that solves w(x*) = c. This value x* is the Nash equilibrium.

« Case 2,c > w(o). As the derivative in Eq. (4.12) is negative, the best
response is x as small as possible; that is, the pure Nash equilibrium

X = 0.

« Case 3, ¢ < o. As the derivative in Eq. (4.12) is positive, the best response

is x as large as possible; that is, the pure Nash equilibrium x* = 1.

Moreover, strictness of the inequality (4.13) in Case 1 implies that an
alternative strategy y # x* does strictly worse, meaning that the Nash
equilibrium is also evolutionarily stable [132].

Furthermore, we can show that the unique Nash equilibrium x* in this game is
globally stable. For any proportion ¢ € (o, 1) of individuals playing strategy

y # «x*, we always have

AE = E(x",p) — E(y,p) = (" —y) w(p) — ] > o, (4.14)

which means that the strategy x™ is favored against any alternative strategy at any

frequency.

CALCULATING THE NASH EQUILIBRIUM FROM EPIDEMIOLOGICAL PARAMETERS

For well-mixed populations, w(x) is the ratio of the number of individuals who
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acquired disease, R(00), to the total number of susceptible individuals, S(o).

Therefore we obtain

R(o0 —R.R(oo
w(x) = () =1 — ¢ ReR(), (4.15)
1—x
Using Eq. (4.10) and the Nash condition w(x*) = ¢, we have e RR(0) — 1 ¢
and R(00) = (1 — x*)c. We then obtain the Nash Equilibrium
. In(1—¢)
=14+ ——", 16
* =it = (4.16)

which is plotted in figure 4.5.5. This equation holds for o < ¢ < w(o) (recall,

—Row

w(o) = 1 — e R¥(9)), Cases 2 and 3 above cover the alternatives.

SocCIAL OPTIMUM

The population’s optimal vaccination coverage can be obtained by minimizing
the total expected cost from both vaccination and infection. If a fraction x of the

population is vaccinated, the expected cost is

E(x) = N{xc+(@—x){o-1—w(x)]+w(x) 1}}, (4.17)
= Nxc+ R(c0)], (4.18)

= Nlxc+ (1—x)(1— e_R"R(OO))] .
We show that the social optimum is exactly the herd immunity threshold,
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xp, =1—1/R,.
For x above 3, the final epidemic size R(00) is zero. E(x) therefore increases

as x rises above x;,.

dR(c0)
dx

} . Itis easy to show that R() o, that

For x below x3,, B _ N [C + dx

dx

is, that final infection size decreases with vaccination coverage. Furthermore,
differentiating both sides of Eq. (4.10) with respect to x, we obtain:
dR(o0) eRoR(0) 4

dx - ¢RoR(c0) _ (1 — x)RO’ (4.19)

which is guaranteed to be less than —1 for (1 — x)R, > 1;i.e, x < x3,. Hence we
know that di—ix) =N [c + %} is negative for c < 1and x < xy,.

Since E(x) decreases for x < xy, and increases for x > xy, the socially optimal
vaccination level is precisely x;,.

For any ¢ € (o, 1), the Nash equilibrium falls short of the social optimum,

leading to the well-known dilemma of voluntary vaccination in a population of

selfish, rational individuals.

EFFECTS OF R, ON VOLUNTARY VACCINATION

For a fixed relative cost of vaccination, the Nash equilibrium increases with rising
R, (figure 4.5.5): given a higher risk of infection, rational individuals are more
likely to vaccinate. In the limiting case R, — 00, unvaccinated individuals
cannot free-ride on the immunity generated by others, and so they eventually get
infected. In this case, the Nash equilibrium and social optimum converge to

100% vaccination. For the opposite limiting case R, < 1, individuals have zero
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Figure 4.5.5: Nash equilibrium as a function of relative cost of vaccination
cost ¢ with different disease transmissibility R,. The horizontal lines corre-
spond to socially optimal vaccination levels.

risk of infection, so that the Nash equilibrium and social optimum again agree —

no one is vaccinated.

4.5.4 EVOLUTION OF VACCINATING BEHAVIOR IN WELL-MIXED POPULATIONS

Above, we analyzed the vaccination dilemma from the perspective of classical
game theory. Here we consider vaccination dynamics from an evolutionary game
perspective. We derive a diffusion approximation for large populations of size N.
Let m/N be the fraction of vaccinated individuals, who are immune from the
seasonal infectious disease. Individuals imitate others based on the pairwise
comparison rule, which preferentially copies others with higher payoffs [311].

Each round, a randomly chosen individual i selects another random individual j
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as role model, and compares her own payoff to that of the role model. Individual i
adopts the strategy of individual j with the probability given by the Fermi

function

1

1+ exp[—pB(P; —

o(si < 5;) =f(P, — P;) = 0k (4.20)

where f represents the intensity of selection. The population can change only if
individuals i and j have different strategies. Hence, the probability that the
number of vaccinated individuals increases from m to m + 1 (denoted T) and

the probability that the number decreases from m to m — 1 (denoted T, ) are

mN —m 1

Tt = )

) + w(m/N)

1
"N N 1+ eTA(Pa—Ps, 1 -+ ¢FA(Pa—Ps,) } ’

(4.21)
where P, is the payoft of vaccinated individuals, Py the payoft of unvaccinated
(and healthy) individuals, and Pj, the payoff of unvaccinated (and infected)
individuals (see Table 4.5.1).

For large populations [310], this process can be approximated by a stochastic
differential equation with drift T, — T, and diffusion \/W\T )

yielding

i = x(1—x) {[1 _ w(x)] tanh E (P — pBo)} + w(x) tanh [f (Pa— pBl)} }+\/ it N %)

(4.22)

where x = m /N is the fraction of vaccinated individuals and £ is Gaussian white

noise with variance one. For N — 00, the stochastic term vanishes. As a result,

142



Table 4.5.1: The fraction of individuals with different states and their corre-

sponding payoffs.

vaccinated | unvaccinated and infected | unvaccinated and healthy
fraction x R(o0) 1—x — R(00)
payoft | Py = —c¢ Pp = —1 Pg, =0

for large populations, we can use the deterministic approximation

= x(1—x) {[1 — w(x)] tanh [

[SE I o

(—c— o)] + w(x) tanh [f (—c+ l)] } |

(4-23)

At equilibrium where a fraction x is vaccinated, the fraction infected is

expected to be R(00) (as given in Eq. (4.10)), and the fraction that are successful

free-riders (unvaccinated and healthy) is expected to be 1 — x — R(c0) (see Table

4.5.1).

A.ForsMaLL B, we have tanh(fx) ~ Px. Thus Eq. (4.23) simplifies to

x(1—x) | —c[1 — w(x)]

B

= B — ) — 4.

2

—+w
2

@Ea—

(4.24)

The replicator dynamics is recovered in this limit, § < 1, but with the time scale

adjusted by a factor g For any vaccination cost o < ¢ < w(o0), the system

converges to the interior equilibrium x* = 1+ In(1 — ¢) /(cR,), which is

evolutionarily stable as remarked above.
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B. FOR LARGE f:

B1. Forc — o (c < 1/B), —% — o, Eq.(4.23) becomes

x=x(1— x) —gc[l —w(x)] +w(x)|, (4.25)

which has a stable interior equilibrium x* =1 — (1 + %) In(1 + %) / (%RO). For

Bc

. . . Lo 1+ .
small ¢, the first-order approximation of this expression is 1 — —*. Comparing

this approximation to the Nash
equilibrium(x* =1+ In(1 — ¢)/(cR,) ~ 1 — %), we note that the effect of

large B can be described as rescaling small values of ¢ by a factor of ‘g

B2.c = 1(c>1—1/p), —B(l—z_c) — o, Eq.(4.23) becomes

i=sti-{bowl + -} o

2

The third factor in Eq. (4.26) equals zero for vaccination level

. (+60—0) In( 55 . N S
Xi=1— X (h=s) . If this value is positive, then the stable interior

equilibrium is x* = x; otherwise, x* = o.

B3. FOR INTERMEDIATE ¢ (1/f < ¢ <1—1/p), the vaccination level

Eq. (4.23) depends little on f and can be approximated as

x = x(1— x)[2w(x) — 1], (4.27)
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21ln

which has a stable interior equilibrium x™ = 1 — **. Therefore the vaccination
-0

21ln

level has a plateau at1 — 2 2 for large B and intermediate c values.

2ln2
R,

Notice thatatc = 0.5, " =1 — is an equilibrium for any f value
(figure 4.5.6).

Figure 4.5.6 shows the effects of selection strength f and R, on equilibrium
vaccination coverage (figures 4.5.6a versus 4.5.6¢) and final epidemic size
(figures 4.5.6b versus 4.5.6d). We can see that for low 8 the equilibrium
vaccination level under imitation dynamics converges to the Nash Equilibrium.
Strong selection (large  values) causes the vaccination level to drop below the
Nash equilibrium when vaccination cost is low. Furthermore, greater risk of
infection (higher R,,) does prompt higher levels of vaccination among imitating

individuals, shrinking the gap between the utilitarian optimum and the voluntary

outcome (cf. figures 4.5.6a and 4.5.6c).

4.5.5 VACCINATION DYNAMICS ON SCALE-FREE NETWORKS

In addition to random graphs reported in the main text, we consider vaccination
dynamics on scale-free networks. The degree distribution of real-life social
networks follows a power law, which can be represented using a Barabasi-Albert
scale-free network model [20]. Scale-free networks generally possess larger
degree heterogeneity than random graphs, leading to more severe persistence of
epidemic outbreaks, making herd immunity more difficult to achieve (cf. figures
4.5.3 and 4.5.4). As a consequence, network heterogeneity further promotes

individuals’ vaccination on scale-free networks (figure 4.5.7). The range of ¢ that
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Figure 4.5.6: Imitation dynamics in a large, well-mixed population (diffusion
approximation). Upper panels (a), (c) show the equilibrium vaccination level,
as a function of relative cost of vaccination ¢ with different intensities of se-

lection B. Lower panels (b), (d) show the final epidemic size, as a function of
relative cost of vaccination ¢ with different intensities of selection f. Parame-

ters: (a)(b) R, = 2.5, (c)(d) R, = 6.
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promotes 100% vaccination is larger than in the case of random graphs (for
B = 1: ¢ < 0.3 for scale-free versus ¢ < 0.2 for random; for f = 10: ¢ < 0.1
versus ¢ < 0.05).

Despite this difference, the overall pattern of equilibrium vaccination coverage
in scale-free networks is similar to that of random networks: “hubs” with many
neighbors tend to vaccinate more often than small-degree individuals do (figure
4.5.7d). The particular structural characteristics of the Barabasi-Albert scale-free
network model seem to complicate this pattern slightly, in that the most likely
free-riders actually have intermediate degree (k = 3, 4, 5 in figure 4.5.7d) rather
than lowest degree (k = 2). Since many degree-two nodes are connected only to
large hubs, their vaccination decisions are determined by imitation of these hubs.
This peer influence appears to outweigh the fact that they can easily free-ride on
the hubs’ immunity, increasing the vaccination frequency of degree-two nodes
above that of slightly better-connected individuals.

Although degree heterogeneity promotes vaccination, the equilibrium
vaccination coverage is still sensitive to the cost of vaccination. Above a critical
cost, the vaccination coverage rapidly falls below both the herd immunity
threshold (figure 4.5.7a) and the final size of the epidemic grows (figure 4.5.7b).
For influenza, the estimated relative cost of vaccination to infection is less than
0.1, which is approximately the threshold found in the f = 10 case. Misperceived
vaccination risks and individual variation in attitudes towards vaccination may,

however, tip the effective value of ¢ above this threshold.
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Figure 4.5.7: Vaccination dynamics on scale-free networks. Left panels show
the fractions of (a) vaccinated and (b) infected individuals as a function of
relative cost of vaccination ¢ with the intensity of selection p =1 and 10. Right
panels: (c) Snapshot of a single simulation on a scale-free network. The size
of a node corresponds to its degree. Blue nodes are vaccinated, yellow are in-
fected, and red are successful free-riders. (d) The frequency of vaccination on
a scale-free network, as a function of the number of social contacts an indi-
vidual has (node degree). Parameters: (a)—(d)average degree k = 4, disease
transmission rate r = o.ss, recovery rate g = 1/3, I, = 10; (a)(b)(d) N = 1000,
(c) N = 500; (c)(d) ¢ = 0.2, p = 10. Results in panels (a), (b), and (d) are
averaged over 100 runs. The lines in (a) and (b) are visual guides.
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Frequency-dependent selection can lead

to evolution of high mutation rates

5.1 INTRODUCTION

IN POPULATIONS THAT ARE WELL-ADAPTED TO A STATIC ENVIRONMENT, most
mutations are neutral or deleterious, and we may generally expect mutation rates
to evolve to levels as low as feasible, given physical constraints and costs
associated with faithful DNA replication [163, 174, 175, 295 ]. However,

theoretical [69, 85, 141, 158, 174, 226, 299,313, 326 and
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empirical [ 107, 260, 294, 321] findings indicate that in novel or rapidly changing
environments, evolution may select for higher mutation rates. While strains with
higher mutation rates will experience increased mutational load, they also stand a
better chance of giving rise to beneficial alleles, upon which the linked genes
coding for increased mutation may “hitchhike” to fixation. High-rate mutator
alleles can have a competitive advantage if beneficial mutations are strong and
frequent enough to outweigh deleterious load [7, 69, 105, 307, 326].

Most studies that examine the role of environmental change in mutation rate
evolution have considered exogenous fluctuations in the
environment [ 141, 163, 174]. More recently, researchers have studied how
host-parasite coevolution may generate an environmental feedback loop that
drives mutation rates upward [ 150, 201, 227]. Yet the possibility that mutation
rate evolution may be influenced by evolutionary dynamics within a single
species remains largely unexplored [6]. Frequency-dependent competition, by
which the composition of the population determines the fitness of
phenotypes [120], can generate complex, unstable trait
dynamics [132, 134, 192, 194, 218], which may in turn generate selection
pressures on the mutation rate. Frequency dependence is common in
nature [288] and occurs in a wide range of interactions: predator-prey
systems [ 60, 169, 192 ], host-parasite systems [193, 274 ], niche
competition [ 42, 177], cooperative dilemmas [73, 108, 109, 212, 251], and
nontransitive competition dynamics [ 157, 165, 289, 290].

The evolution of high mutation rates may be an important force determining
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the fate of obligately asexual lineages. When alleles increasing the genomic
mutation rate (“global mutator alleles”) are fully linked to the beneficial
mutations that they promote (as in an ideal asexual population), the mutation rate
may quickly rise beyond a maximum tolerable level, dooming the population to
extinction within as few as several thousand generations [ 105]. This catastrophe
occurs due to the myopia of natural selection, which can favor a mutator for its
short-term beneficial consequences, despite the increased mutational load that
eventually results as a strain bearing a mutator allele converges to
mutation-selection equilibrium [7, 105 ]. Unlike Muller’s ratchet and the related
“mutational meltdown” phenomenon [ 115, 184], this effect can burden even a
large population, with many available beneficial mutations, with a maximum
possible “lifespan.” The dynamics of mutation rate evolution in large populations
with little or no recombination should therefore have broad implications for early
microbial evolution, particularly regarding the evolution of sex.

Here we show how frequency-dependent dynamics can promote evolution of
high mutation rates, both in the presence and absence of recombination. Our
framework combines methods of evolutionary game
theory [61, 132, 134, 195, 196, 218, 266, 320] and adaptive
dynamics [70, 103, 131, 199, 216] to find and understand evolutionarily stable
mutation rates (ESMRs, 141). We previously introduced our mathematical
framework and used it to show that if trait frequencies converge to a stable
equilibrium, then mutation rates evolve downward [6]. This result extends the

classical observation that mutation rates evolve to zero in constant fitness
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landscapes, if no new beneficial mutations are available [163, 174, 175]. Outside
this special case, it is not known how mutation rates evolve under
frequency-dependence, or even if they tend toward a single value. We therefore
analyze and numerically simulate competition between strains of different
mutation rates, in which the traits subject to mutation follow
“rock-paper-scissors” dynamics. In most cases, the evolutionary dynamics
converge upon a unique positive ESMR that depends on the rate of trait
substitutions. The emergence of a unique ESMR is perhaps surprising against the
backdrop of trait frequencies that are continually in flux. If mutation rates evolve
in large steps, as can occur through damage to the mismatch-repair

system [65, 191], we find that bistable outcomes may result: a high and a low rate
may each resist invasion by the other. Recombination lowers the ESMR, but it
also allows for stable mutation rate polymorphism, occurring between mutation
rates above and below the ESMR.

The sort of cyclical dynamics that promote evolution of high mutation rates
may be common in many species [157, 165, 288292 ]. These dynamics involve
periodic or chaotic transitions between population trait distributions, causing the
favored phenotype(s) to change over time. Each transition provides another
opportunity for a strain with high mutation rate to seize upon a beneficial
mutation, thus giving it a fitness advantage over other strains. This scenario, in
which a steady supply of beneficial substitutions can select for high mutation
rates, is similar to those contemplated by other authors investigating constant

selection [ 105, 307, 326]. We primarily study this scenario in an idealized infinite
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population, using replicator-mutator equations to track the expected population
trajectory. Strains with relatively low mutation rates face a disadvantage during
each substitution event, as it takes longer for them to produce the optimal trait at
high frequency. This idealized framework contrasts with finite-population
models in which each strain must wait for a beneficial mutation to arrive
stochastically, after which the mutator allele associated with that beneficial
mutation may hitchhike to fixation [307, 326]. To highlight the relevance of our
infinite-population model to finite populations, we demonstrate that both the
ESMR and the invasion dynamics of mutator lineages in the infinite-population
model coincide with a model of a small population (N = 100), in the regime
where the ESMR greatly exceeds 1/N (implying that population waiting times for
beneficial mutations are minimal).

Recombination inhibits the evolution of high mutation rates by separating the
genetic determinants of the mutator phenotype from the beneficial mutations it
produces [147, 175,295, 308]. To analyze the effect of recombination under
frequency-dependent selection, we introduce the replicator-mutator-recombinator
equations. For a wide range of plausible recombination rates and frequencies of
unconditionally deleterious mutations, the model supports local mutator alleles
with ESMR values far above rates in the 107*° — 10~ ® range that is typical for
cellular division in most species. In the Discussion, we outline a diverse set of
genetic mechanisms that may meet our model’s criteria for producing favored
local hypermutation. We also find that the ESMR concept supports global

hypermutation in asexual populations, as mutator hitchhiking is not disrupted by
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recombination. More generally, while sufficiently strong recombination can drive
the ESMR to zero, there still exist, for any frequency of recombination less than
unity, evolutionary games that select for positive mutation rates. This finding
bears similarity to the result of Ishii, et al. (1989) that for strongly beneficial
mutations, recombination decreases the ESMR, but does not drive it to zero. In
the rock-paper-scissors game we discover an elegant rule for recombination:
evolution favors positive mutation rates if the selective advantage of beneficial
mutants exceeds the ratio of recombining to non-recombining offspring. This

rule holds regardless of the frequency of unconditionally deleterious mutation.

5.2 MODEL

We explore the evolution of mutation rates with a two-locus, many-allele model:
the trait locus encodes the phenotype under frequency-dependent selection,
while the modifier locus controls the rate at which the trait locus mutates. For
simplicity, we assume that mutation on the modifier locus occurs on a slower
time-scale than trait mutation, which puts aside the extinction risk presented by
rapid evolution of mutation rates [ 78, 105 ]. Appealing to this separation of
time-scales, we focus on competition between just two mutation rates at a time,
following the approach of adaptive dynamics [70, 131, 199, 216]. We call a
collection of individuals with the same modifier allele a strain. When a small
strain of mutation rate ' (the “invader”) appears in a population of mutation rate
u (the “resident”), these two rates act as “meta-traits,” as each strain can consist of

different trait distributions. Competition between these mutation rates emerges
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from the dynamics of the resident and invader trait distributions.

§5.2.1 SHORT TIME-SCALE: TRAIT FREQUENCY DYNAMICS

Frequency-dependent competition is studied using evolutionary game

theory [132, 134, 195, 196, 218], in which the reproductive fitness of an
individual depends on the average of fitness payoffs obtained from interacting
with other individuals according to a game. The distribution of traits found in the
population evolves over time through the processes of interaction, reproduction,
mutation, and death.

A game is characterized by a nonnegative payoff matrix A, where A;; is the
fitness that an individual of trait i obtains by interacting with an individual of trait
j. Given a randomly interacting population with trait frequencies described by
the nonnegative column vectorx = (x,, . .., x,)7, the fitness of trait i is (Ax);.
This definition of fitness ignores random deviations from the total population
trait distribution in the subset that an individual meets for interaction. Note that
the special case where each trait has a constant (frequency-independent) fitness is
recovered by setting all columns of the matrix A equal. We assume reproduction
is proportional to fitness and death occurs at the same rate for all traits.

The replicator equations describe the deterministic, infinite-population model
without mutation, approximating the situation where all phenotypes are typically

present in the population, though possibly at very low frequency [270, 305 ]:

;= Vi(Al‘)i — @, (5-1)
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Fig. 5.2.1(A) depicts one possible trajectory of the replicator equations where
payoff matrix A describes a rock-paper-scissors game (formally defined below, Eq.
(5.8)). This is the simplest model of cyclical population dynamics.

The replicator-mutator equations modify this basic model by assuming that
each offspring adopts the trait of its parent with probability 1 — u and otherwise
chooses from among all traits (including that of its parent) with equal

probability [114, 128, 221]:
. u
% = (1 — u)x;(Ax); + ;(p — Qx;, (5-2)

Fig. 5.2.1(B) depicts one possible trajectory of the replicator-mutator
equations with the same cyclical payoff matrix. Compared to the case without
mutation, the population in (B) is always highly polymorphic. Mutation is only
one possible mechanism that can preserve trait coexistence in rock-paper-scissors
interactions; spatial population structure [83, 157] and alterations in the payoff

matrix [ 132] also promote coexistence.

§5.2.2 COMPETITION BETWEEN MUTATION RATES

To extend this model to competition between two mutation rates, we describe
the system state by two nonnegative vectorsr = (r,, ..., r,) and
z = (z,,...,2,), giving the relative abundances (with respect to the whole

population) of residents and invaders of each trait. We denote the total relative
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Scissors Scissors

Rock (A) Without mutation Paper  Rock  (B) With mutation  Paper

Figure 5.2.1: Example trajectories depicting evolution of the population ac-
cording to (A) the replicator equations (s.1) and (B) the replicator-mutator
equations (s5.2) with n = 3 traits. Payoff matrix A determines a rock-paper-
scissors game (described in Eq. (5.8)). Each trajectory is drawn on the “pop-
ulation simplex,” where each point represents the trait distribution of the
population at a particular time: points close to a vertex represent popula-
tions consisting mostly of one trait, while points close to the center of the
simplex represent populations with a nearly equal mixture of traits. The tra-
jectory in panel (A) starts near the center of the simplex and proceeds for 50
timesteps, spiraling outward and converging to the simplex boundaries. Once
near the simplex boundaries, the population spends most of the time consist-
ing mostly of one trait, and it transitions infrequently to the next trait in the
cycle. The trajectory in panel (B) starts at the lower-left vertex, representing
a population of 100% rock, and proceeds for 100 timesteps, spiraling inward
and converging to a limit cycle. Once on this cycle, the population is always
highly polymorphic, and the trait frequencies oscillate periodically. Compar-
ing this limiting behavior to that of panel (A) shows that mutation acts to
maintain trait diversity. The light blue vectors in both panels show the action
of selection, directing the population counterclockwise around the simplex as
determined by the game. The short red vector in panel (B) shows the action
of mutation, pointing toward the center of the simplex, generating increased
trait diversity. The trajectory determined by the replicator equations follows
the selection vectors (A). The trajectory determined by the replicator-mutator
equations follows the sum of the selection and mutation vectors — the re-
sultant vector, in purple (B). Thin gray lines are axis guides meeting at the
center of the simplex. Parameters: Fitness benefit for winning a = o.s5 (both
panels); mutation rate u = o.07 (panel B only).
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abundances of residents and invaders by R and Z respectively,

R = zn:ri, Z
i=1

We note that at every point in time, R + Z = 1. These assumptions lead to the

dynamical equations

fi = (1= w)r(A(x +2)); + ~Re, — o,
" (5.3)
4= (—w)z(Alr +2)) + —Zp, — oz,
n

where

p=(r+2)"A(r+2),
9, = orAlr +2). (5.4)
9, = %ZTA(I‘ +2z)
are the average fitnesses of the whole population and of the two strains,
respectively.
Initial success of the invading strain when it first appears in the population is
measured by its invasion fitness s, (u'). This value is defined as the time-averaged
exponential growth rate of the frequency of the invading strain when rare [6].

Taking the time-average is required in this setting, as growth rate at each point in

time depends on the current trait distributions, which themselves evolve. This
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concept is formalized as

s,(') = lim i/ ) dt, (5.5)

or equivalently,

T
) = Jim £ [ (5. =) e (5.6)
These definitions coincide with other notions of fitness as time-averaged
exponential growth rate [198, 252]. As a practical matter, the dynamics (5.3) can
be used to compute positive invasion fitness values only if the limiting value of T
used in equations (5.5), (5.6) is not so large as to allow Z to reach a substantial
frequency. In Eq. (5.20) in Methods we describe modified dynamics that keep
the invader forever rare, avoiding this complication.

Replicator-mutator dynamics can yield a wide variety of behaviors, including
multiple attractors, limit cycles, and chaos [ 132, 194, 268]. Invasion fitness is
therefore difficult to compute in general and may depend on initial trait
distributions. In certain cases, the limits taken in Egs. (5.5), (5.6) do not even
exist [282]. To minimize these complications, we focus on the simplest type of
payoff matrix A that supports the evolution of high mutation rates: n-trait
rock-paper-scissors interactions where no stable equilibrium trait distribution
exists. This form of competition is simple enough that the dynamics have global,
nonchaotic attractors; invasion fitness is readily computed; and ESMRs can be

approximated analytically.
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Many researchers have observed that the evolution of high mutation rates is
particularly sensitive to population size effects, as mutator alleles must often wait
long periods before giving rise to a beneficial mutation on which they can
hitchhike, and they may drift to extinction before that time
comes [7, 69,299, 307, 321, 326]. Although invasion fitness and the ESMR are
here defined with respect to a deterministic model in which drift plays no role,
the same concepts can be recast in a stochastic model; to do so, we impute an
effective invasion fitness from the fixation probability in simulation of a small

population (N = 100) (see Methods).

5.2.3 LONG TIME-SCALE: ADAPTIVE EVOLUTION OF MUTATION RATES

Strain u’ is favored to invade strain u if s, (4’) > o. In all cases examined in this
article, if the invading rate u’ is sufficiently close to u, an initially successful
invasion leads to the eventual fixation of #. This principle, central to adaptive
dynamics theory, is known as “invasion implies substitution” and has been
proven for simpler models of evolving quantitative characters [67, Appendix B].
In order to understand the long-term behavior of a gradually evolving trait that
adheres to this principle, it suffices to analyze invasion fitness alone. Curiously,
this principle fails for mutation rate evolution in general, and even a simple
two-trait frequency-dependent interaction can support the coexistence of two
arbitrarily close mutation rates [6].

An evolutionarily stable mutation rate (ESMR) u is defined as one that is favored

against invasion by any other mutation rate; that is, for all &’ # 1, it is the case
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that s;(4') < o. While it is possible for multiple ESMRs to exist, all examples
that we explore have no more than one ESMR. When it exists, the ESMR can be

thought of as the unique mutation rate favored by evolution [6].

5.2.4 UNCONDITIONALLY DELETERIOUS MUTATION

The two-strain replicator-mutator equations (5.3) treat the modifier locus as
determining the mutation rate on a single trait locus. In an actual genetic setting,
a mutator allele may target other genomic regions to cause unconditionally
deleterious mutations. This effect is known to weaken — or eliminate —
selection for high mutation rates [85, 295, 313 ]. To capture the aggregate effect
of a modifier determining a mutation rate u on other parts of the genome, we
subtract a mutational load uf from the fitness of each individual in the strain,
representing the cost that the strain bears at mutation-selection

equilibrium [162]. To ensure nonnegative fitness, we also add a sufficiently large
baseline value f, to all fitnesses. Here, £ represents the size of the region targeted
by the modifier relative to the size of the frequency-dependent trait locus. We
assume that no beneficial mutations occur at this target in the time-scale under
consideration. We also assume that deleterious mutations are strong enough so
that the population’s approach to mutation-selection equilibrium occurs more
rapidly than trait substitution does; otherwise, the full cost uf would not be

realized [69, 105, 146].

162



5.2.5 RECOMBINATION

Recombination between the mutation-controlling locus and the trait locus is also
known to weaken or eliminate selection for high mutation

rates [85, 141,295, 313]. Recombination can be modeled using the following
simple scheme: After adults interact and reproduce proportional to fitness, the
(possibly mutant) offspring pair randomly with one another. Each pair
exchanges traits with probability c. The offspring then disperse and join the adult
population. This lifecycle implies the following dynamics, which we dub the

replicator-mutator-recombinator equations:

fi = (1 —ct CR§’> [(1 —wfiri+ (Z) R%}
(22) o=t ()

- @ria

e rer st (o
# (22 [0= s+ (%) o]

- (sz

(5.7)

where f, | is the fitness of trait i subject to mutation rate u,
fi, = A(r 4+ z); + f, — ul. The first two lines of each equation provide the

iu

contribution from non-recombinant and recombinant individuals, respectively.
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5.3 REsuULTS

§5.3.1 CYCLICAL POPULATION DYNAMICS CAN FAVOR HIGH MUTATION

Rock-paper-scissors games are a simple class of interactions that can exhibit
cyclical replicator-mutator dynamics [ 132]. We study an n-trait generalization of

the game (n > 3), with n X n payoff matrix A given by

1 o o - o 1+a
1+a 1 o .- 0 o
o 1+a 1 --- o o
(5.8)
o] o o 1 o
o) o o -+ 1-4+a 1

For each trait, there is another trait that gets a fitness benefit a > o from it (that
is, there is a “scissors” for every “paper”), while all other traits do worse. The
traditional rock-paper-scissors game corresponds to n = 3. Selection causes the
population to cycle through successive traits, while mutation increases
polymorphism in the population (Fig. 5.2.1). If all traits are present in equal
proportion (that is, at the frequency vector (ﬁ, cee i) ), neither selection nor
mutation causes the trait distribution to change. In the absence of mutation
(using Eq. (5.1)), this fixed point is stable if a > n — 2. We focus on the case

a < n — 2, which guarantees that a nonmutating population will produce

unstable cyclical dynamics: any population that starts as a mix of all traits (but
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not at the fixed point), converges to a heteroclinic orbit [ 129], meaning that it
cycles between nearly-monomorphic states in order, as each trait is displaced by
the one that defeats it [ 132, 136]. Long-term average population fitness
approaches 1 in this case since, as the system converges to the heteroclinic orbit, it
spends progressively more time near each monomorphic state, with transitions
between them taking relatively little time. Increasing mutation draws this cyclical
trajectory closer to the fixed point (i.e., towards greater polymorphism), causing

long-term average fitness to fall. As the mutation rate crosses a threshold value of

1+ (1+4a cos(;”)

3+a-+ (14 a)cos (7”)’ (5:9)

Uuo =

the interior fixed point becomes a stable equilibrium (calculation in Online

Appendix B), at which each trait has fitness Hﬂ'—“

MUTATOR INVASION OF NONMUTATORS

Before carrying out any numerical simulations of mutation rate competition, we
show that the zero mutation rate is evolutionarily unstable in the absence of
recombination and unconditionally deleterious mutations when a < n — 2; that
is, there always exists some positive mutation rate #’ that can invade a resident
strain of nonmutators.

As noted above, the resident strain exists for long periods of time effectively
consisting of a single trait, which has fitness ¢, = 1, given by the diagonal entries
of payoft matrix A. While the invading strain is of negligible size, trait fitnesses are

therefore constant: 1 for the resident trait, 1 + a for the favored trait, and o for all
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other traits. The dynamics of the invading strain, given by (5.3 ), can then be

rewritten in matrix form as

z=(Q,F—1)z, (s.10)

where I is the identity matrix, Q,, is the mutation matrix

/
n—i_./ u
1— "—u =
n

3=

_ n—1 ./

Qu/ _ ! .n ' , (5.11)

!
u n—i1_./
= .« 1— —U
n n

and F is a diagonal matrix with f,, the fitness of the ith trait, as the ith diagonal
entry.

Based on this dynamic, invasion fitness s, (1'), defined by (s.5), is equal to the
largest eigenvalue of the product matrix Q,,F, minus 1. Since this matrix has only

two nonzero columns, the condition for invader success, s,(#') > o, can be

computed directly as

a(n—1)

0<u/<m.

(5.12)

In the limit of large n, most mutations are deleterious. Mutant offspring face a
near-certain chance of mutating to a trait of zero fitness, while the nonmutator

strain faces no such risk. Despite this large cost of mutation, mutators with
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mutation rate less than - can invade nonmutators for any combination of a and
n. This condition can be derived by taking the limit as n — 00 of Eq. (5.12), or
alternatively, by recognizing that the mutating strain incurs a fitness cost equal to
the mutation rate #’, but attains fitness advantage = versus the resident (relative
to the fitness of the optimal trait). The mutator can invade whenever this benefit
exceeds the cost.

The analysis is similar if recombination ¢ and load ¢ are introduced, again

assuming a < n — 2. The equation describing invader dynamics, analogous to

(5.10), is now

1= (CQF;, —I(1+f, +ul))z, (5.13)

where Q, is as above, F is a diagonal fitness matrix where the baseline fitness f|
isincluded, and C is a matrix whose ijth entry gives the probability that an

invader of trait j will have trait i after recombination,

1—c+cr; fori=j,
Cij:

cr; otherwise.

In the present scenario, recall that 7, = 1and r; = o forall i > 1. Invasion now

succeeds if and only if the largest eigenvalue of CQ,,/Fy, exceeds1 + f, + u'(. In
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the case f, = o, this condition simplifies to

a(1 — ) (M +1) — Mc

o<u < ai—c )M =)+ M@Ha—c+10)’

(5.14)

where M = nl + (1 — ¢)(n — 2). Selection favors positive mutation rates if this

threshold value of ' is positive, which occurs when —#— > c. For arbitrarily

M1

high  and /, this bound can be no worse than = > c. I the baseline fitness f is
positive, however, the expression for the maximum invading 4’ admits no simple
formula. Selection is guaranteed to favor positive mutation rates if the largest

eigenvalue of CQ_F; exceeds 1 + f,, which is equivalent to

a
1+f +a

> c. ( 5.1 5)
That is, the selective advantage — as a fraction of maximum possible fitness —
must exceed the recombination rate in order for positive mutation to be favored.
The above calculations can be carried out for any game in which competition
is nontransitive (each pure strategy is bested by another) and the dynamics cycle
between nearly-monomorphic states (formally, the monomorphic states

constitute an attracting heteroclinic cycle). In all such games, there exist positive

mutation rates that can invade nonmutating residents [6].
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COMPETITION BETWEEN STRAINS OF DIFFERENT MUTATION RATES, WITHOUT

UNCONDITIONALLY DELETERIOUS MUTATION OR RECOMBINATION

Interaction between two strains of nonzero mutation rates u, < u, introduces
new features into the evolutionary dynamics. Our numerical analysis of (5.3)

(see Methods) has shown three possible outcomes:

(i) The higher-rate strain can invade and replace the lower, and not vice-versa,

sul(uz) >0 > suz(ul);

(ii) The lower-rate strain can invade and replace the higher, and not vice-versa,

Su, (u) > 0 > s, (u,);
(iii) Bistability (neither can invade the other), s, (u,) < oands,, (4,) < o.

Absent recombination, we have not observed any cases of coexistence between
strains of different mutation rate in the rock-paper-scissors game.

To show a representative example of outcome (i), we consider competition
between strains with mutation rates u = 0.02 and ' = 0.15, usingn = 3 and
a = o.1. The faster-mutating strain succeeds because it is better able to adapt to
the changing fitness landscape created by the population dynamics, shown in Fig.
5.3.1. Fig. 5.3.2 shows that the rise in abundance of an invading strain is not
necessarily monotonic: there may be an initial decrease if the invader is initially
in a disadvantageous state, and there may be periodic decreases as the fitnesses of
traits shift. Each episode of trait substitution (e.g., scissors replacing paper) is

accompanied by a rise in invader abundance; there are 13 such episodes between
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timesteps ~ 10 and ~ 190 in the scenario depicted, during which time the
invader reaches 1:1 parity with the resident. At the end of each episode, the
substitution has occurred in the resident strain as well, causing mutation rate
evolution to pause, but also setting the stage for frequency-dependent selection
to favor a new substitution. The average slope of invader growth in Fig. 5.3.2 in
this initial growth phase equals the invasion fitness s, (1). After timestep ~ 230,
the invader is a large majority of the population, and its growth rate relative to the
resident is nearly constant: instead of discrete episodes of substitution and stasis
as before, the prevailing mutation rate in the population is so high that the
slower-mutating strain never manages to “catch up” to the favored trait.

This example scenario illustrates an important possibility: competition
between mutation rates often takes the form of a cooperative dilemma [ 13 ], with
the strain of higher mutation rate playing the role of defector. When such a strain
invades and grows, it increases polymorphism in the population, decreasing
overall population fitness. Fig. 5.3.3 shows how fitness depends on the
frequencies of A and B. Specifically, when A is abundant and B is rare, the two
strains have time-averaged fitnesses ¢, = 0.87, ¢, = 0.91. When B is abundant
and A is rare, the fitnesses are ¢, = 0.7, ¢, = 0.72. Written in matrix form, this

“Mutator’s Dilemma” is
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Figure 5.3.1: Dynamics of a faster-mutating strain successfully invading a
slower-mutating resident. Trait distributions of residents (blue trajectories)
and invaders (red trajectories) are shown at time intervals (A) o to 25, (B) 135
to 175, (C) 200 to 230, and (D) 280 to 300. For each interval, the trajectories
proceed counter-clockwise, indicated by shading from darker to lighter. Thick-
ness of each curve indicates relative abundance of the corresponding strain;
the thicker trajectories of the invaders in (C) and (D) partially obscure the
resident trajectories. At t = o, the resident strain is at the point on its stable
limit cycle where frequency of Rock is greatest, and the invading strain is at
100% Scissors with a total frequency of o.o1. Invaders initially decline due to
their disadvantageous trait distribution, but eventually sweep to fixation. Thin
gray lines are axis guides meeting at the center of the simplex. Parameters:
Resident mutation rate u = o.02, invader mutation rate ' = o.15, fitness
benefit for winning a = o.1, and n = 3 traits.
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Figure 5.3.2: Ratio of faster-mutating invader frequency to slower-mutating
resident frequency (log-scaled), showing the indirect route to fixation of a mu-
tator allele. The slope equals the relative fitness of the invading strain. The
shaded regions correspond to the panels of Fig. 5.3.1, highlighting the four
phases of a successful mutator invasion: (A) a possible initial decline due to
disadvantageous invader trait distribution, (B) a first growth phase in which
fitness fluctuations result from trait dynamics of the slower-mutating residents,
(C) a rapid transition as invader abundance surpasses resident abundance, and
(D) a second growth phase in which fluctuations are due to the now-abundant
invaders. The top-left inset shows one fluctuation during (B), corresponding
to one trait substitution; this fluctuation includes a small dip and a rapid rise
in invader frequency. The bottom-right inset shows one fluctuation during
(D), also corresponding to a substitution of the predominant trait; here fre-
quency increases smoothly since trait substitutions are less dramatic. Both
insets use a linear scale. Parameters (same as Fig. 5.3.1): Resident mutation
rate u = o.02, invader mutation rate ' = o.15, fitness benefit for winning

a = o.1, and n = 3 traits.

172



0.95:
0.90-

0.951 0.85
Population
average 0.80

fitness 0.75

0.901

0 100 200 300 400 500 600

085— Time
T|me_-averaged 0.804
fitness
0.751
0.701
065_ T T T T T T
0 0.2 0.4 0.6 0.8 1.0

Frequency of invader

Figure 5.3.3: Time-averaged fitnesses of fast-mutating invaders (upper
curve) and slow-mutating residents (lower curve), as functions of invader fre-
quency. To calculate the strain fitnesses at a particular invader frequency,
equation (s5.3) was modified so that the resident / invader frequency remains
constant, permitting only trait fluctuations within a strain (see equation (s.21)
in Methods). Evolution always favors the invading strain, but each strain’s fit-
ness decreases monotonically with invader frequency; mutator competition is
therefore a cooperative dilemma. Inset: Average fitness of the population os-
cillates and falls over time, as invader abundance increases. Parameters (same
as Figs. 5.3.1, 5.3.2): Resident mutation rate u = o.02, invader mutation rate
u' = o.15, fitness benefit for winning a = 0.1, and n = 3 traits.
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This interaction differs from matrix games as typically considered in evolutionary
game theory, since the fitnesses of the two strains depend nonlinearly on their
frequencies and fluctuate in time. It does, however, exhibit a key feature of the
Prisoner’s Dilemma: competition unequivocally favors a strategy that reduces
average population fitness.

Considering the entire range of possible mutation rates, the pairwise
invasibility plot Fig. 5.3.4(A) shows invasion fitness s, () as a function of u and
u' for a representative example with n = 4, a = 0.4 (see Methods). This plot
shows that, in general, residents of very low mutation rate can be invaded by
slightly higher mutation rates, and residents of very high mutation rate can be
invaded by slightly lower rates. Bistability can occur between strains of low and
high rates. It appears in these cases that the lower-rate strain is not able to adapt
to the fluctuating fitness landscape created by the higher-rate strain, while the
higher-rate strain mutates too rapidly away from advantageous traits when the
fitness landscape is more stable.

For the traditional rock-paper-scissors game (n = 3) witho < a < 1, our
simulations show that any resident strain of mutation rate u < ug = :;_Z can be

invaded by a strain of rate ' slightly larger than u. For u > ug, the resident
y ghtly larg

distribution converges to the equilibrium frequencies ( ), at which all
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Figure 5.3.4: Pairwise invasibility plots describe the adaptive dynamics of
mutator competition (A) without recombination and (B) with recombination.
Panels show contour plots of invasion fitness s,(u'), computed using Eq. (s5.20)
in Methods, as a function of resident and invader mutation rates u and v'.
The white x's in (A) mark the region of bistability, where neither mutation
rate in a pair can successfully invade the other (negative invasion fitness at

a point and at its reflection across the diagonal). The black +'s in (B) mark
the region of coexistence, where both mutation rates in a pair can successfully
invade the other (positive invasion fitness at a point and at its reflection).
Recombination reduces the ESMR from & & o.25 to # ~ 0.04. Since dynamics
are discontinuous at resident mutation rate u =
resident nonmutators is plotted separately, in Suppl. Fig. 7.4.1. Parameters:
n=4,a=o0.4, c=o0 (A)orosz(B).
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traits are equally fit and the invasion fitness of any other strain is zero. So ug is
stable against invaders from below, and it is neither favored nor disfavored against
invaders from above. Strictly speaking, there is no ESMR in this instance, though
perturbation of the system by introducing rare deleterious mutations would
make uq the unique evolutionary endpoint.

For the generalized game with n > 3, our simulations consistently show a
single ESMR i between o and uq, which is also an evolutionary endpoint [6], as
plotted in Fig. 5.3.5. The value of # increases with a (up to the point where
U = ug), as the potential benefit of a change in trait increases. It decreases with n,
as the probability that a mutation is disadvantageous increases.

If mutations are common, the qualitative invasion dynamics appear insensitive
to population size, as an analogous finite-population model returns similar results.
Fig. 5.3.6 plots the effective invasion fitness implied by the fixation probability of
the invading strain, in a population of size N = 100, where the invader starts as a
single individual. This effective fitness parameter is defined as the constant
selective advantage in a Moran model that would produce the same fixation
probability as observed in the simulation (see Methods). In a finite population,
although an invader may replace the ESMR, it does so only with probability less
than the neutral value 1/N. The ESMR is approximately the same in both the
infinite-population and finite-population scenarios (# X 0.25, see Figs. 5.3.4 and
5.3.6). The magnitudes of the effective invasion fitnesses are overall smaller in the
finite case, likely owing to additional stochastic effects introduced by mutator

dynamics; for instance, the time that a lone invader must wait before it produces

176



Number of

0.4+
] traits, n ~

"sewww=s 3 | T NEaL o

0_3-: o— [T .-....’\ ‘M ®

ESMR 0.2-
0.14
o A Y
S 'S 2 < “‘ “~~...
e aes S e E s R AL R e
103 0.01 0.1 1 10 100

Fitness benefit for winning (a)

Figure 5.3.5: The ESMR increases with fitness benefit a (plotted on a log
scale) and decreases with number of traits n; no recombination is shown in
this figure. Points show simulated ESMR values (see Methods), and solid lines
show approximations using Eq. (s5.17). Dashed lines plot uq, which is “quasi-
stable” for cases where an actual ESMR is not defined (see text). For the case
n = 3 (black), there is no ESMR and only ugq is shown. For n = 4 (dark red)
and n = 5 (not shown), the ESMR increases with a until it reaches uq; for
higher values of a there is no ESMR. For n = 6 (medium red), the ESMR
appears to converge to ug as a increases. For n > 6 (n = 20 in pink), the
ESMR is bounded below uq, which is greater than o.4.
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a beneficial mutation varies between runs. In general, this factor substantially

influences survival and fixation of an invading mutator strain [302,307].

RECOMBINATION LOWERS THE ESMR

Fig. 5.3.4(B) shows the effect of recombination on an invasion fitness landscape,
using the replicator-mutator-recombinator equations (5.7). In the case
illustrated, the value of the ESMR decreases but remains positive when
recombination is introduced. One important effect of recombination is that
coexistence between mutation rates above the ESMR and below the ESMR
becomes possible. In this case, the two rates appear to serve complementary
functions: beneficial mutations acquired by the higher-rate mutators are
transferred by recombination to lower-rate mutators, which faithfully replicate
them. Numerical simulations show, however, that a third, intermediate mutation
rate can invade this polymorphic state. If the mutation rate evolves in small steps
(such that an intermediate rate is attainable), then the ESMR is still the unique
endpoint of evolution in this game [103]. Moreover, if two competing strains
have very similar mutation rates, coexistence is never observed. In other words,
even with recombination, the rock-paper-scissors game appears to behave
according to the “invasion implies substitution” principle of adaptive

dynamics [67].
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Figure 5.3.6: Stochastic simulation confirms that deterministic replicator-
mutator-recombinator equations can be used to determine the structure of
mutator competition in finite populations without (A) and with (B) recom-
bination, as long as uN > 1. Panels show contour plots of effective invasion
fitness s, ,(u"), computed using Eq. (5.23) in Methods, as a function of res-
ident and invader mutation rates u and v'. If s.,(4') > o, then the invader
has fixation probability greater than neutral probability 1/N; the opposite is
true for s.,(#') < o. The white x's in (A) mark the region of bistability, where
neither mutation rate in a pair is favored to invade the other (negative effec-
tive invasion fitness at a point and at its reflection across the diagonal). The
black +'s in (B) mark the region of coexistence, where both mutation rates
in a pair are favored to invade the other (positive effective invasion fitness at
a point and at its reflection). The black region between positive and negative
fitness shows nearly neutral competition (effective invasion fitnesses within (A)
s x 1073 or (B) 4 X 107* of zero). Population size N = 100, other parameters
(same as Fig. 5.3.4): n=4,a=o0.4, c=o0 (A) or 0.3 (B).
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UNCONDITIONALLY DELETERIOUS MUTATION LOWERS THE ESMR

Introduction of unconditionally deleterious mutation with a target size £ further
decreases the ESMR. In the absence of recombination, the ESMR scales roughly

as 1/(. With recombination, it decreases by a larger negative power of ¢ (Fig.

5.3.7).

ESTIMATING THE ESMR IN THE ABSENCE OF RECOMBINATION

To gain insight into how the ESMR depends on the costs and benefits of
mutation, we develop an analytical approximation of the ESMR as a function of
fitness benefit for winning a and deleterious target size /. We adapt an argument
made in a frequency-independent setting [ 174] that itself has its roots in an
earlier model of trade-offs between time required for adaptive substitutions
(minimized by a high mutation rate) and mutational load (minimized by a low
mutation rate) [162, 163].

We first consider the case without unconditionally deleterious mutation,
¢ = o. For values of a and u that are not too large, the trait frequencies transition
between consecutive nearly-monomorphic states, each of which is a temporary
balance between mutation and selection. For each state, there is a newly favored
trait that starts to grow. The long-term performance of a strain therefore depends
on how quickly its frequency within a newly favored trait increases.

At one of these temporary mutation-selection equilibria, each minority trait is

present essentially only due to the action of mutation; we suppose that the next
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Figure 5.3.7: The ESMR declines with the target size of unconditionally dele-
terious mutation (¢) and the recombination rate (c). Solid trend lines (shown
for all series except ¢ = 0.016) on the log-log axes track the decline of ESMR
with ¢; the slope for the series ¢ o is approximately —1, as predicted by

Eq. (5s.17). Series with higher ¢ have steeper slopes and lower intercepts. The

horizontal dashed line at u = 5 X 107'° represents a typical per-site, per-
replication mutation rate for eukaryotes; below this level, simulation was not
reliable due to numerical error in the stiff system. The dotted line for the se-
ries ¢ = o0.016 is a rough estimate; only one reliable ESMR value was com-
puted. Though the ESMR falls rapidly with increasing ¢ and ¢, Eq. (5.14)
guarantees a positive ESMR for any ¢ < &

o = i Parameters: n = 3 traits,
fitness benefit for winning a = o.5, baseline fitness f, = 3o.
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round of frequency-dependent selection has not yet made an appreciable
contribution to the abundance of the newly favored trait. The frequency of the
newly favored trait within a strain is therefore proportional to that strain’s
mutation rate. If trait i has just been selected, then the ratio of invader to resident
within trait i 4 1is ”7/ This ratio represent’s the invader’s relative advantage due to
mutation; if &' > u, then the invader has a “head start” in the race to increase its
frequency within the soon-to-be-majority trait.

As trait i 4 1 grows, its representatives in each strain experience a mutational
load per generation equal to their respective deleterious mutation rates — u*—*
for the resident, u'*— for the invader [ 162, 163]. Since nearly all mutations away
from the optimal trait are lethal, this cost is fully realized, with negligible delay
(cf. 105). If the entire limit cycle has period T, then one substitution in the cycle
takes time Z. The total multiplicative effect of mutational load on the invader
population (i.e., the factor by which it shrinks, relative to the ideal case without
load) during this leg is e VI where fis the geometric mean fitness of the
favored trait. Note that both fand T depend only on the resident’s mutation rate,
as the invader has negligible effect on the fitness landscape and dynamics.

Combining both the advantageous and disadvantageous effects of mutation,
the relative performance of the invading strain is proportional to W e Tw)

This expression attains its maximum at

2
’ n

u = — : (5.16)

T(u)f(u)(n — 1)

If the rate u is an ESMR, then the mutation rate best equipped to invade u is u
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itself. Thus u satisfies

n?.

uf(i) ~ @)=

m— (5.17)
Both f(u) (calculated as the geometric mean of the optimal trait’s fitness) and
T(u) can be obtained numerically as functions of u through simulation of the
resident replicator-mutator equations (5.2) (see Methods). This method yields
an accurate prediction of ESMR values, particularly for small a (Fig. 5.3.5). The
ESMR increases with g, unless it reaches uq, after which there is no ESMR, as
invaders 4’ > ug have zero invasion fitness against the resident uq. Forn > 6,

the ESMR never reaches ug, and so it always exists and increases with a.

As an alternative to numerical simulation, the fitness f(1) can be approximated

by

o~ ot (1) (519
n n

This approximation is based on the notion that the transient equilibrium state
describes the typical trait distribution and represents a mutation-selection
balance, at which one trait has frequency ~ 1 — u + % and the remaining
population is divided roughly equally among the other strategies. Using this
approximation in Eq. (5.17) gives an ESMR estimator that only requires
measurement of the period. This approach is appropriate forn > 6 and a < 1,

but Eq. (5.18) substantially overestimates fitness for larger a or smaller #,

producing an ESMR prediction well below the actual value (Suppl. Fig. 7.4.2).
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If the deleterious target size ¢ is positive, then the above argument is modified

slightly. The mutational load per generation is instead u ("71 + ﬁ) for the

n

resident, with u replaced by «’ for the invader. The ESMR # then satisfies

nz
~

() ~ T(#)(n(1 + 0) — 1)’ (s:19)

which scales as 1// in the limit of large /. Numerical simulation confirms this

asymptotic relationship between # and ¢ (Fig. 5.3.7,¢ = o).

5.4 DiscussioN

5.4.1 OVERVIEW

Sustained adaptive evolution of high mutation rates requires neither exogenous
environmental variation nor an inexhaustible pool of possible adaptive
mutations; rather, it may result from cyclical competition dynamics taking place
within a population. The fitness benefit for prevailing in competition, the number
of possible deleterious mutations, and the recombination rate together determine
the evolutionarily stable mutation rate, or ESMR. This mutation rate can exceed
typical per-generation mutation rates by several orders of magnitude. Strong
cyclical competition such as that considered in Fig. 5.3.7 (fitness bonus a = 0.5
as a fraction of maximum fitness f, + 1+ a = 31.5 corresponding to a selection
coefficient 0f 1.6%) selects for particularly high mutation rates in the absence of
recombination, even for lethal mutation target sizes of 10* — 10° sites (Fig. 5.3.7).

This mechanism is one means by which global hypermutators may be selected
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for, and it may help explain the prevalence in the wild of mismatch
repair-deficient bacterial strains with genome-wide mutation rates 100- to
1,000-fold that of wild type [65, 191]. Recent experimental and theoretical work
suggests that host-pathogen competition, which can be thought of as a type of
cyclical competition with two separate populations, also supports evolution of
high mutation rates [ 150, 201, 227].

Whether a mutator strain can invade a resident with low mutation rate
depends on the period of the resident’s trait substitutions; a shorter period favors
faster-mutating invaders (Eq. (5.16)). If the mutator achieves fixation, it
generally does so in a succession of “mini-sweeps,” each one corresponding to a
single trait substitution (Fig. 5.3.2). Patterns of episodic partial sweeps have also
been observed in stochastic models of mutator evolution [302, 307]. Given the
infinite population in our model, the limiting factor on sweep timing is not the
appearance of mutations, but rather the time it takes for the
frequency-dependent fitness landscape to shift, favoring the next trait in the
cycle. This timing depends on the strength of selection itself. One aspect of
frequency-dependent competition that we did not explore is that an ESMR need
not be unique. Since the favored mutation rate depends on the period of trait
cycling, we expect that systems with multiple cyclical attractors of different
periods will have multiple ESMRs, such that long-term mutation rate evolution
would depend on initial trait distributions.

Recombination is known to temper selection for global mutator

alleles [ 147, 175,295, 308], and our model agrees with others in this respect. We
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introduced and analyzed replicator-mutator-recombinator equations (5.7) to
conclude that the selective advantage from winning the cyclical competition
must exceed the recombination frequency between the trait and mutator loci in
order for a mutating strain to be favored over nonmutators (Eq. (5.15)). This
conclusion holds regardless of the deleterious load incurred. The favored positive
mutation rates may, however, become very small as load and recombination
increase: For a selection coefficient of 1.6% and deleterious target size of 10%,
introducing recombination at a distance of 0.4 centimorgans between the two
loci causes the ESMR to drop from 3 X 1077 to 10~ ®. Doubling the distance to
0.8 centimorgans brings the ESMR below 10 *° (Fig. 5.3.7). At this value, the
infeasibility of achieving perfectly faithful replication would enforce a floor on
the mutation rate, rather than any adaptive benefit of the ESMR. Recombination
also permits stable coexistence between multiple mutation rates

(Figs. 5.3.4(B), 5.3.6(B)) by allowing a “division of labor” in adaptation:
beneficial traits arise more frequently within the high-rate strain, but they are
more likely to persist after crossing into the low-rate strain. If fine-tuning of the
mutation rate to the ESMR is not possible, the next-best state of affairs may
involve such coexistence. A previous modeling study demonstrated that even the
low rates of recombination found in bacterial species are sufficient for
non-mutating lineages to “steal” adaptive mutations generated by a mutator
strain, increasing the population’s rate of adaptation while severely limiting the
mutator’s chance of fixation [308]. Stable coexistence was not observed in that

study, however, as the simulated genome contained few sites at which beneficial
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mutations could appear, and simulation ended once most of the population
carried all favorable alleles at these sites. The adaptive complementarity of
mutator and non-mutator phenotypes is also suggested by evidence that
mismatch repair genes in Escherichia coli have undergone frequent horizontal

transfer [65].

5.4.2 LIMITATIONS OF THE MODEL

Our model is situated in an adaptive dynamics framework that we introduced for
studying evolution of mutation rates under general cases of frequency-dependent
competition [6]. Within this framework, adaptive evolution of high mutation
rates may occur only in the absence of a stable equilibrium trait distribution —
hence our choice to analyze “rock-paper-scissors” competition, the simplest
unstable case. Our framework relies on two simplifying assumptions:
competition between two mutation rates follows deterministic population
dynamics and is fully resolved before a third mutation rate is introduced. These
two formal assumptions constrain the biological scenarios to which the
framework applies. First, population size must be sufficiently large that both
beneficial and deleterious mutations appear with some regularity (as in

Fig. S. 3.6) ; if there are many generations between mutations (even those caused
by the high-rate strain), then fitness differences between the two strains will be
negligible for long periods of time, during which mutation rate competition
would be governed by neutral drift [ 307]; this scenario is not contemplated by

our model. Second, the framework rules out cases of runaway selection for high
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mutation rates: if the mutation rate is itself labile and most deleterious mutations
are mild, it is possible for rapid increases in the mutation rate to occur, subjecting
the population to rapid fitness declines (or error catastrophe) when mutational
load equilibrates [ 7, 105 ]. Since our framework assumes that deleterious
mutations are strong, all mutational load costs are fully realized by the prevailing
mutation rate. Though our framework makes strong assumptions, we anticipate
selection pressures for increased mutation rates to be a general consequence of

cyclical and other unstable frequency-dependent interactions.

5.4.3 THE MUTATOR’S DILEMMA

Though mutator alleles are commonly viewed as mechanisms for increasing the
adaptation rate and fitness of populations, our model postulates a mechanism by
which a high mutation rate, though favored by evolution, can cause average
population fitness to decrease over time (Fig. 5.3.3). If, as in the payoff matrix
considered, population fitness declines with trait diversity, then a successful
mutator allele essentially behaves as a selfish variant in a cooperative dilemma.
Prior findings that mutator lineages generate “social cheats” in microbial
populations demonstrated that mutator evolution can lead to a breakdown in
cooperative scavenging behaviors [39]. Our model broadens the concept of
mutator-mediated selfishness by showing how a cooperative dilemma may
emerge from the dynamics of mutator competition, even though the underlying
interaction does not involve cooperative or selfish traits. Together with the case

of runaway selection described above, our model represents a third possible
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mechanism by which mutator alleles may prevail but subvert natural selection.

5.4.4 MECHANISMS FOR MUTATION RATE EVOLUTION

Our model can represent a range of different biological mechanisms controlling
mutation rates. Mechanisms that modulate the genome-wide mutation rate, such
as altered DNA polymerases, would have large associated rates of deleterious
mutation and recombination (large ¢ and ¢ values), suggesting that their role in
adaptive mutation may be limited in sexual species [204, 278, 295]. On the other
hand, mechanisms affecting local mutation rates correspond to lower ¢ and ¢
values, and should be more responsive to selection for increased mutation rate on
a trait locus. A number of such mechanisms have been identified, typically
involving features of the immediately surrounding sequence.

First, the rates of different types of nucleotide substitutions appear to be
modulated by the frequency of certain short (3 bp) sequences up to 100 bp
away [82, 127] and by GC content up to 1500 bp away [87, 95, 183, 330]. In the
latter case, each individual site contributing to local GC content may act as a
“fine-tuning” local mutator allele. One consequence not explored in our model is
that certain features have a directional effect; e.g., low GC content promotes
methylation-dependent mutation of C to T (G with A), but not the
reverse [87, 95, 183,330].

Second, short DNA repeats, which can experience frequent duplication and
deletion events caused by slipped-strand mispairing, may be potent local

mutators. If a repeat originates within an open reading frame and its subsequent
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duplication or deletion would result in a downstream frame shift, the increased
mutation rate can cause rapid switching between alternate gene

products [37, 164, 178, 179, 205, 278]. Even if the repeat itself does not appear in
a coding region, the sequence length heterozygosity that it generates can increase
nucleotide substitution rates by an order of magnitude within a 100 bp radius,
with smaller noticeable effects out to 600 bp [46, 82, 309].

Since alocal mutator tends to remain linked to the nearby mutations that it
causes, recombination is unlikely to substantially impede selection for increased
mutation. Consider the 3-trait competition in Fig. 5.3.7 with a trait-controlling
site at the end of a 500 bp effect radius of a local mutator. The deleterious target
size £ would be on the order of 103, the sequence length afflicted by increased
deleterious mutation. The ESMR in this scenario is # = 6 X 10~ °. To obtain
five-fold reduction in the ESMR, the recombination probability would need to be
¢ = 4 X 10" 3; over 500 bp, this value requires a recombination rate of 8oo
cM/Mb, extraordinarily high among multicellular eukaryotes, even at
hotspots [ 5, 143, 171, 172, 200, 322].

Our model can also describe migration of a trait-controlling gene to a region
with a different mutation rate. Mutation rates vary across regions of the genome
due to features such as DNA structure, conformation, and replication
timing [ 14, 35, 173, 246, 286]. In the asexual (c = o) case, our model can treat
individuals affected by the gene movement as the invading strain. Parameter ¢
then describes the deleterious target size of the region that is transferred to the

new mutational milieu, including the trait-controlling gene. Recombination
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would introduce genetic incompatibilities, requiring modifications to the model.

5.4.5 OuUTLOOK

The predictions of our model apply broadly, as cyclical competition is present in
diverse biological scenarios. The strategic dynamics among male mating
strategies in the side-blotched lizard, Uta stansburiana [289, 290], is a
well-documented example. The three male morphotypes of this species vary in
aggressiveness, territoriality, and cooperation in territory defense, generating a
rock-paper-scissors game and cyclical population dynamics among the

types [289-291]. Similar dynamics have also been observed in the viviparous
lizard, Lacerta vivipara [292]. E. coli also exhibits rock-paper-scissors dynamics
with regard to production of and resistance to colicins, a form of

bacteriotoxin [ 157, 165]. More generally, cyclical competition should be
common wherever individuals face fitness tradeofts on multiple interacting
dimensions, such as life history characters, sexual behaviors, and social
behaviors [288]. Since selection coefficients for social or sexual traits tend to be
large, we believe that the 1.6% advantage considered in Fig. 5.3.7 is quite
reasonable. Our model predicts elevated levels of mutation on the loci
contributing to behavior in these cyclical interactions, as compared with the
genome-wide average. Moreover, global mutation rates are generally predicted to

be higher in asexual species where cyclical dynamics are common.
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5.5 METHODS

5.5.1  NUMERICAL SIMULATION OF ODE AND INVASION FITNESS CALCULATION

Numerical analysis of the replicator-mutator-recombinator equations (5.7) was
done using Mathematica version 7.0 for Linux x86 (64-bit), using default options
unless otherwise specified. To compute invasion fitness, the following modified

dynamics were used to treat the invader strain as forever rare:

fl' = (1 - u)fi,uri + (g) @r - q)rr“

/
G690t (1)l (s.20)
u

+e [(1 —ulfy it (;) ‘Pr]

— 9,2
Here, r; and z; are interpreted as the proportion of trait i within the resident strain
and invader strain, respectively, not within the total population. Accordingly, the
final term of each equation uses ¢, or ¢_, not ¢, ensuring that > = > Zi =1
at all times. Fitness computation ignores the rare invader, and sof; | = Ar — u/.
From the resident perspective, recombination with an invader never occurs, and
so the equation for r; recapitulates the form of the replicator-mutator equation.
From the invader perspective, all of the fraction ¢ offspring that recombine do so
with a resident. The dynamics were simulated using the NDSolve option,

“MaxSteps -> 100000” and numerical integration of equation (5.6) was done
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using the NIntegrate option, “Method -> LocalAdaptive”. The population started
with only trait 1, and the first 1500 timesteps were discarded to ensure
convergence to the limiting trajectory. The time limits of integration in (5.6)
were then chosen to contain an integer number of oscillations (at least 10 as
counted by the method below, and not more than 1500 timesteps). In the case
where the resident was a nonmutator, there are no oscillations, and the limits of
integration were [1500, 3000].

For the time-averaged fitness calculation in Fig. 5.3.3, a modified version of

(5-3) was used to keep the invader/resident ratio constant:

= (=W (A (= 2) 1+ 22), + 29, — o1 -
, 5.21
4= =)z (A(G-2)r+ 2Z2)),+ 9, — 9.z

As above, r; and z; are interpreted as trait frequencies within the respective strain.
The value of Z determines the invader/resident ratio and is constant. Numerical
integration proceeded as above to obtain the time-average values of ¢_and ¢,

5.5.2 MEASURING THE PERIOD OF OSCILLATIONS

To measure the period of oscillations when just the resident strain is present, a

piecewise projection function 7 was devised to track the resident population
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vector’s progress around the cycle:

(

"m+1—Tm—1 :
L e —— ity < rmiy
z(r) = _ _TmoTmdn §5.22
( ) m Fmrm——2Fmts if 7y > Tm-tu) ( )
m iy = Tmia,

\

where m = argmax(r), m + 1is replaced with 1if m = n,and m — 1is replaced
with n if m = 1. This quantity progresses from o to n + 1, though not
monotonically or continuously, as the vector r traverses the cycle. For the
purpose of counting the number of oscillations, the small discontinuities and
declines can be handled by the following algorithm: Data from the first 1500
timesteps were not used, to allow the period to stabilize, and then the value of
7(r) was calculated from timestep 1500 to 3000, in increments of o.1. Each
timestep where 7(r) € (0.1, 0.9) was marked with an A, each timestep where
7(r) € (1.1,1.9) was marked with a B. Each yet-unmarked timestep was then
marked with the symbol of the most recent marked timestep. A new oscillation is
then deemed to start at each transition from A to B. The average period of all

oscillations was then used.

5.5.3 ESMR CALCULATION

A binary search algorithm was used to find the ESMR via simulation of (5.7).
Mutation rates strictly between o and uq were explored to find a value u that
could resist invasion both by 1.01 X # and by #/1.01. This analysis is justified for

the generalized rock-paper-scissors game based on the observations that (1) if u
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can be invaded from slightly above, then # > u, (2) if u can be invaded from
slightly below, then & < u, (3) if u resists nearby invaders, then u resists all
invaders. These observations need not hold for more complicated games. The
rate uq /(50 + £) was used as an initial guess for #. At time o, all individuals were
of trait 1 and the invading strain frequency was 10~*. Invasion was deemed to fail

if the invader frequency after 3000 timesteps was less than this initial value.

5.5.4 FINITE POPULATION SIMULATION

Finite population dynamics were simulated as a frequency-dependent Moran
process with constant population size 100. Each timestep, every individual
interacted with every individual (including itself), receiving fitness 1 from
interaction with another of the same trait, fitness 1 + a from interaction with one
of the trait that it defeats, and o from all other interactions. One individual was
chosen proportional to fitness to reproduce, its offspring replacing one randomly
chosen (regardless of fitness) individual (possibly the parent). At each
reproduction event, the offspring inherited its parent’s trait with probability 1 — u
and selected a random trait with probability u, where u is the parent’s mutation
rate. The offspring’s mutation rate always equaled that of the parent. The
offspring then replaced a randomly chosen individual in the population (possibly
its parent).

For simulations with recombination, with probability ¢ each timestep, two
(possibly mutated) offspring are generated and produce a recombinant, which

has the mutation rate of one and the trait of the other. This recombinant then
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replaces a randomly chosen individual in the population (possibly one of its
parents).

The Moran simulation was first run with only the resident strain, to create
representative initial trait distributions in which the invader would appear:
starting from a population with 25 of each trait, the resident population evolved
for 5000 timesteps, after which the population frequencies were sampled every
1000 timesteps thereafter. 1000 frequency distributions were sampled in all. In
each of the sampled populations, one individual was randomly designated to be
the initial invader, with mutation rate u’.

Next, to determine the fixation probability of an invading strain for a particular
pair of values (u, u'), 5,000,000 separate invasion attempts were simulated, each
starting at a trait frequency distribution randomly selected from the 1000
distributions created previously. Each simulation progresseed until one of the
two strains reached fixation.

Effective invasion fitness s, , (') was computed by solving for s in the equation

1 — ;
p=—-" (5.23)

1 — ——

(14N
(see [90], Eq. 3.66) where N = 100 is the population size and p is the fraction of
the 5,000,000 simulations for which the invader went to fixation.
While it may be more plausible to suppose that the initial invader is a
randomly chosen offspring that had just mutated to the new mutation rate «/,
rather than a randomly chosen individual, this method would unduly favor the

invading strain, as it would be more likely to start as the high-fitness offspring of a
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high-fitness parent. In that case, a strain would be favored to invade against a
resident of the very same mutation rate, invalidating the ESMR concept.

All finite population simulations were carried out using Matlab R2o10b.
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Mutation rate evolution in replicator

dynamics

6.1 INTRODUCTION

THE MUTATION RATE OF AN ORGANISM IS SUBJECT TO HERITABLE VARIATION,
and therefore evolves [4, 85, 166, 244, 250, 295, 317, 319]. In populations that
are well-adapted to a static environment, most mutations are neutral or
deleterious, and mutation rates are therefore expected to evolve to levels as low as

feasible, given the constraints and costs associated with faithful
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replication [ 163, 174, 175, 295 ]. However,

theoretical [85, 141,158, 174,226,299, 307,313, 326] and

empirical [ 107, 260, 294, 324] evidence is growing that in novel or rapidly
changing environments, evolution may select for higher mutation rates. While
strains with higher mutation rates are susceptible to increased mutational load,
they are also more likely to produce beneficial mutations, upon which the linked
genes coding for increased mutation may “hitchhike” to fixation. The success of
mutator strains depends on whether beneficial mutations occur with sufficient
frequency and strength to outweigh load [326].

Theoretical study of mutation rate evolution has focused principally on cases
where the environment is either static or fluctuates independently of the evolving
population. Cases of fitness fluctuations generated by the evolving population
itself remain unexplored. Such fluctuations may arise through
frequency-dependent selection [ 120, 288] in scenarios such as predator-prey
systems [60, 169, 192] (including Red Queen dynamics [68, 71, 159, 190])
host-parasite systems [ 193, 274 ], cooperative dilemmas [ 108, 203, 212,251], and
nontransitive competition systems [40, 157,165,231, 289, 290].

This work introduces a theoretical framework for studying the evolution of
mutation rates in a large population subject to frequency-dependent selection.
Our framework combines two major approaches to evolutionary modeling:
replicator dynamics [132, 134, 135, 218, 270, 305 ], which studies the
demographic dynamics of trait frequencies in a large population, and adaptive

dynamics [70, 103, 131, 199], which studies long-term evolution through
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sequences of trait substitutions.

The model we describe considers two loci, a trait locus determining the
phenotypic traits that are affected by frequency-dependent selection, and a
mutation rate locus determining the rate of mutation on the trait locus. Replicator
dynamics with mutation [114, 128, 221] are used to model evolution on the trait
locus, while evolution on the mutation rate locus is studied using the adaptive
dynamics approach. We assume that that evolution is faster on the trait locus
than on the mutation locus, allowing a separation of timescales. Classic
theoretical works on the evolution of mutation rates [7, 147, 174] implicitly
make a similar assumption, by focusing their analysis on the fate of a given
mutation rate modifier over long periods of time involving multiple selective
sweeps of beneficial mutations.

We present results on both the upward and downward evolution of mutation
rates. We show that when frequency dependence leads to a stable
mutation-selection equilibrium, mutation rates will evolve downward. However,
when trait dynamics converge to a heteroclinic cycle, as can occur in
“rock-paper-scissors” scenarios and other cases of non-transitive competition,
positive mutation rates can arise and persist. This suggests that genetic loci
coding for such rock-paper-scissors traits may have abnormally high mutation
rates.

We also show, perhaps surprisingly, that mutating and non-mutating strains
can coexist indefinitely. This coexistence is possible—and occurs

generically—whenever there exists an evolutionarily stable state of the replicator

200



dynamics in which all traits are present in a selective balance.

We caution that since our model focuses on just a single trait locus, it does not
incorporate the broader (often deleterious) effects that mutation can have on the
rest of the genome. Our work therefore most clearly addresses cases such as short
sequence motifs and DNA repeats that modify only the mutation rate in the
immediate genetic
neighborhood [37, 46, 82, 87, 95, 127, 164, 178, 179, 183, 205, 278, 309, 330].
Mutator alleles of global effect, as have been discovered in a number of bacteria
(45,107,224, 260, 294, 324], could be incorporated into our model by adding
terms that describe genome-wide mutational load [ 163 ]; however, we do not
pursue this avenue here.

We first review necessary background on dynamical systems theory and
standardize our notation in Sect. 6.2. Section 6.3 presents our two-locus model
and describes how evolution proceeds on each locus. Our results on the

evolution of mutation rates are discussed in Sect. 6.4.

6.2 DYNAMICAL SYSTEMS THEORY BACKGROUND AND NOTATION

We first introduce several notions from dynamical systems theory that are used in
our work. For this section, let D be the closure of a bounded open set in R?.
Consider a differential equation on D of the form x = g(x), whereg : D — R%is
smooth. The solution to this equation can be described by a smooth flow on D,
that is, a collection of smooth maps ¥, : D — D satistyingy,, = ¥, o ¥,. The

orbit associated with a given initial condition x(0) = x, € D is described by
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x(t) = ¥,(x,). We assume g is such that y,(x) € Dforallx € D, t € R (that s,

solutions persist indefinitely both forwards and backwards in time).

6.2.1 w-LIMIT SETS

The w-limit set of a pointx € D, which we denote w(x) C D, is the set of points

i=

y € D for which there exists an increasing sequence of real numbers {t;}3°, with

e lim t; = o0,
i—00

« lim 1//ti <X> =Y

i—00
In words, w(x) is the set of points that are asymptotically approached by the orbit
V,(x) as t — 00. w-Limit sets are invariant (both forwards and backwards); that

is, ify € w(x) theny,(y) € w(x)forallt € R (e.g., 47.

6.2.2 ATTRACTORS

An attractor is a set to which an open set of points converge under a flow as
t — 00. This notion has been mathematically formalized in various ways. The
definition we use is adopted from Gyllenberg et al. [113] and Geritz et al. [104].

We define an attractor as a subset A C D satisfying the following conditions:

1. There exists an open neighborhood U of A for which

lim dist(y,(x),A) = o,

t—00
forallx € U.
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2. For each open neighborhood V' of A, there exists an open neighborhood W

of A for which y,(x) € Vforallx € Wandt > o.

6.2.3 THE SOJOURN TIME MEASURE

We will be also be interested in describing the asymptotic behavior of an orbit in
statistical terms. To this end, we define a probability measure that captures,
roughly, the probability that an orbit occupies a certain region of D after along
amount of time has passed. This measure was introduced by Takens [301] and
was named the sojourn time measure by Bonneuil [34].

Given an initial pointx € D, and a closed subset U C D, the sojourn time

measure of Uis defined by
. . l .
ox(U) = 11_r>rc1) 1}1_>rr()10 ?1({1& to <t < T, dist(y,(x),U) < 5}), (6.1)

where A is the Lebesgue measure on IR. The closed subsets of D for which the
above limits exist are taken as a basis for a o-algebra, to which the measure oy is
extended. Informally, o, (U) quantifies the asymptotic proportion of time that
the orbit ¥, (x) spends in or near U, as t — 00.

The sojourn time measure is a probability measure, meaning that o, (D) = 1,
for eachx € D. Moreover, it satisfies oy (w(x)) = 1; that is, it is concentrated
entirely on the w-limit set of x. The sojourn time measure is also invariant: for
each measurable U C D, ox(y,(U)) is constant in .

As a trivial example, we observe that if the orbit associated with x converges to

a fixed point x, then the sojourn time measure is a point mass (Dirac
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§-distribution) at x.

6.3 MODEL

Here we outline a mathematical framework for studying the evolution of
mutation rates under frequency-dependent selection. Section 6.3.1 introduces
the two loci in our model: one controlling the traits subject to
frequency-dependent selection, and the other controlling the mutation rate.
Section 6.3.2 presents our model for evolution on the trait locus, using the
framework of replicator dynamics. The model for evolution of the mutation rate,

based on the adaptive dynamics approach, is presented in Sect. 6.3.3.

6.3.1 'TWO-LOCUS DESCRIPTION

Our model considers two evolving loci:

« 'The trait locus controls the traits that are directly affected by
frequency-dependent selection. We consider n competing alleles on the

trait locus, indexed i = 1, . . ., n. Each allele produces a distinct trait.

« The mutation rate locus controls the rate of mutation on the trait locus.
Alleles on the mutation rate locus are represented by the mutation rate

u € [o,1].

We assume that mutation on the mutation rate locus is rare, compared to
typical mutation rates on the trait locus. Thus, evolution of the mutation rate u

occurs on a longer timescale than evolution of the traitsi = 1, ..., n. (Here and
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henceforth, the term “mutation rate” refers to the rate of mutation on the trait
locus, as determined by the mutation rate locus.) Appealing to this separation of
timescales, we suppose that at most two mutation rates are present at any given
time. That is, we assume that competition between any two mutation rates will be
resolved before any third mutation rate can appear.

To standardize terminology, we use the term “strain” to refer to a
subpopulation with a given mutation rate (e.g. “a strain of mutation rate u”).
Multiple traits may be present within one strain. The frequency distribution of

traits within each strain evolves over time, due to frequency-dependent selection.

6.3.2 SHORT-TERM EVOLUTION ON THE TRAIT LOCUS

We model frequency-dependent selection on the trait locus using replicator
dynamics [132, 134, 135, 218, 270, 305 ], which describe the dynamics of
competing traits in a large population by a system of ordinary differential

equations.

REPLICATOR DYNAMICS

Replicator dynamics study the dynamics of the frequency vector
x = («,,...,x,), where x; is the frequency of trait i. The state space is the
n-simplex

A, = (xl,...,xn):xiZo,in:1

Frequency dependence is described by the fitness functions f; : A, — R for

i =1,...,n,wheref,(x) gives the fitness of trait i when the population state is
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x € A\,. We require that each f; be smooth and positive forallx € A,,.
Replicator dynamics are most often studied using linear f;; however, none of the
results of this work requires linearity.

When mutation is absent, trait dynamics are governed by the replicator

equations

% = x(fi(x) — o), (6.2)

fori=1,...,n,withg =>"

i=1

x;f, denoting average population fitness.

Equation 6.2 can also be written in vector form as
x = (F(x) — ¢I)x,
where F(x) is the n X n diagonal matrix with ith diagonal entry f,(x).

REPLICATOR-MUTATOR DYNAMICS

Incorporating mutation of rate u into the replicator equation yields the

replicator-mutator equations [114, 128,221]:

% = (1— u)xf(x) + gtp — oux;, (6.3)

or in vector form:

& = (QF(x) — 9D)x. (6.4)
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Above, the matrix Q, describes mutation:

l_n_lu u u
n n
P u
Q, = =(—ul+ -1
: : .. : n
u u 1 — =ty
n n n

The symbol 1 above denotes the square matrix of all ones. In Eq. 6.3, and in the
remainder of this work, it is assumed that each mutation on the trait locus is
equally likely to result in any one of the  traits. We will refer to the fixed points of

Eq. 6.3 as mutation-selection equilibria.

6.3.3 LONG-TERM EVOLUTION ON THE MUTATION RATE LOCUS

We study the long-term evolution of the mutation rate under the assumptions of
the adaptive dynamics framework [ 70, 103, 131, 199]. This framework assumes
that long-term evolution proceeds by a sequence of substitution events. In each
such event, an invading strain successfully displaces the resident strain and
becomes the new resident. Mutation (on the mutation rate locus, in our case) is
assumed rare, so that the possibility of concurrent invasions by multiple strains
can be disregarded.

Section 6.3.3 extends the replicator-mutator equations to competition
between two strains of different mutation rates. Then in Eq. 6.3.3 we formally
state our model for evolution on the mutation rate locus, inspired by adaptive

dynamics. Items 6.3.3 and 6.3.3 introduce the concept of invasion fitness, and
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discuss the extent to which it predicts the outcome of invasion events.

COMPETITION BETWEEN STRAINS

Here we extend the replicator-mutator equations, Eq. 6.3, to the case of two
competing strains: a resident strain of mutation rate u, and an invading strain of
mutation rate u’. We denote the resident trait frequenciesby r = (r,,...,r,),
and the invader trait frequenciesbyz = (z,, . . ., z, ). These frequencies are

relative to the whole population; hence the state space is the simplex

Azn: (l‘,Z) :riZO7ZiZO7Z(ri+Zi):1

i

Evolutionary dynamics are described by the system of equations

fi=(0—urfi(r+z)+ ERgvr — or;
nu/ (6-5)
zi=(1—u)zf(r+2) + —Zp, — 9z,
n

where R and Z, respectively, are the total frequencies of residents and invaders,

Il

R = zn:r,-, Z
i=1
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and

n

o= (rit+z)fr+2),

i=1

9, = 1% Z rfi(r +2), (6.6)

L n
(Pz = ZZZiﬂ(l“f“Z),

are the average fitness functions of the whole population and the two strains,

respectively.

Note that when restricted to either of the subsets

Don|z=0 = {(r,z) € A,z = o}, (67)
7

AQ.n\R:o = {(l‘, Z) € A2n|r = 0}7
then Eq. 6.5 reduces to Eq. 6.3 (with u := u/ in the latter case).
For a given orbit of Eq. 6.5, we say that the invading (resp., resident) strain
fixates if Z(t) — 1, (resp., R(t) — 1) ast — 00. The question of whether
invaders or residents fixate depends, in general, on the initial conditions

(r(o),z(0)) € A,, that define this orbit. It is also possible for neither strain to

fixate, as we discuss in Eq. 6.3.3.

THE PROCESS OF MUTATION RATE EVOLUTION

This section presents a model of mutation rate evolution as an iterative process.

In each iteration, an invading strain arises, competes with the resident strain, and
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either displaces the resident strain (becoming the new resident) or goes extinct.
This process is motivated by the adaptive dynamics framework discussed in the
beginning of Sect. 6.3.3.

This process depends on the following data:
« the fitness functions f, : A, = Rsofori=1,...,n,
« the initial mutation rate u, € [o, 1],
« the initial trait distributionx, € A,
. the initial frequency a € (o, 1) of invading strains,

« a probability measure M giving the probability that mutation on the

mutation rate locus yields a change Au in the mutation rate.

We require that M be supported on the interval [—v, v] for some constant
v > 0. We also require that M assign positive probability to the intervals [—v, o)
and (o, v], and zero probability to {o}. (In other words, mutation on the
mutation rate locus can either increase or decrease the mutation rate, but does
not leave it unchanged.)

To formally define this iterative process, let u; and x; be the mutation rate and
trait distribution, respectively, after k > o iterations of this process. The next

iteration then proceeds as follows:

1. Atrait distribution x;; € A\, is sampled from the sojourn time measure oy,

associated with the flow on /A, defined by the replicator-mutator



equations, Eq. 6.3. (The point x; represents the trait distribution state of

the resident population when an invading strain appears.)

2. Avertex vy of A\, is randomly chosen, with the probability that vertex i is

chosen given by

(1= ) () %) e

px;) n

(The vertex v} represents the initial trait distribution within the invading
strain. This distribution is monomorphic, reflecting the biological fact that
the invading strain must be seeded by a single individual. The probability

associated to vertex i represents the probability that a randomly chosen

offspring from the current resident population will have trait i.)
3. A mutation rate change Auy is sampled from M. The mutation rate uj, of
the invading strain is defined as

(
up + Au  if up + Auy € [o,1],

L .
W -=193o ifup + Aug < o,

1 ifue + Ay > 1.

4. Apoint (rf,z) € A\,, is sampled from the sojourn time measure
O ((1—a)xf av}) associated with the flow on A, defined by Eq. 6.5, with
u := upand v’ := u}. (The point (r}, z; ) represents the state of the system

after resident-invader competition is resolved.)

5. The (k + 1)st mutation rate and trait distribution are defined as follows:



. ifr; = o, thenx;, := z and uyy, := v’ (invaders replace

residents),

. ifz; = o, thenxy,, := rf and uy, := u (invaders go extinct).

Iterating this process yields a sequence {(uy, x¢) } 2. The sequence {u; }72
describes the long-term evolution of the mutation rate.

It is possible for neither r; = o norz; = o to be satisfied in Step 4, as we
discuss in Eq. 6.3.3. In this case, the process ceases to adequately describe
mutation rate evolution, and is formally terminated.

Although this process is well-defined for any values of the required data, we
will be most interested in the case where v and a are small. This means that we
consider mutation on the mutation rate locus to be incremental, and invading

strains to initially comprise only a small fraction of the population.

INVASION FITNESS

The invasion fitness of a strain is defined as its exponential growth rate when rare
[70, 120,198, 199, 252]. Invasion fitness is used in adaptive dynamics to predict
the outcomes of invasion events.

For so long as the invading strain remains rare, the trait distribution among
invaders has negligible effect on the trait dynamics within the resident strain. The
resident trait dynamics are in this case closely approximated by the single-strain
replicator-mutator equations, Eq. 6.3.

We can therefore quantify invasion fitness by assuming that x = x(¢) has

dynamics given by Eq. 6.3, and that z evolves according to the time-dependent



linear equation,

= (QUF(() — ¢,(01) 2. (69)
where ¢_(t) = Y7 f.(x(t))x;(t) is the average fitness of the resident strain at
time t. The state space for Eq. 6.8 is the set of all nonnegative vectors in IR".

Using this simplification, we define the invasion fitness of an invading strain
with mutation rate /, which appears with internal trait distribution x' when the
resident strain (of mutation rate u) has trait distribution x, by

S B A ()
sux(v,X') = lim —/O Tt) dt, (6.9)

if this limit exists (otherwise the invasion fitness is undefined). Above,

Z(t) = Y. z(t), the dynamics of z are given by Eq. 6.8 with initial condition
z(0) = X/, and x gives the initial condition for Eq. 6.3. This extends previous
definitions 70, 198, 252] to the case in which both the resident and invading
strains contain a number of sub-populations (in our case, bearers of different
traits), which are themselves evolving on a fast timescale. We caution, however,
that time-averaged quantities of the form 6.9 may be undefined for orbits

approaching heteroclinic or strange attractors; see Ref. [282] for a general

discussion.

THE INVASION IMPLIES FIXATION CONJECTURE

Positive invasion fitness does not necessarily imply that the invading strain will

ultimately displace the resident strain. The two strains may evolve towards a
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stable or dynamic coexistence.

This issue arises more generally in studying the adaptive dynamics of an
arbitrary quantitative trait x. In general, coexistence of resident and invader
strains is possible. However, it is reasonable to suppose that if the invasion fitness
function s, (x") is nonsingular at ' = x, and if «’ is sufficiently close to x, then
positive invasion fitness implies fixation of the invading strain [67]. This
proposition, known as “invasion implies fixation” (hereafter, IIF), was a
long-standing conjecture until proofs were discovered by Dercole [66] and
Geritz [102].

Neither proof applies directly to our situation of two loci evolving on different
timescales, though it appears likely that the techniques used in these proofs might

extend to the present case. For our purposes, we state IIF as a formal conjecture:

Conjecture 1 (Invasion Implies Fixation; IIF). Consider given fitness functions
f; : Ay — R, mutation rate u € [0, 1], and trait distributions x,x' € /\,. Suppose

that
« x lies in the basin of attraction of an attractor of the replicator-mutator
equations, Eq. 6.3, with mutation rate u,
o thereisa§ > o such thats,,(u',X) is strictly monotonic (either increasing or
decreasing) in ', on the interval ' € (u — 8§, u+ 8) N [o,1].

Then there exists ¢ > o such that for all v’ with |/ — u| < eandallo < a < ¢,

invaders (resp,, residents) fixate in Eq. 6.5 from the initial conditions

(r(o),z(0)) = ((1 — a)x, ax’'), (6.10)
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if sux(u/,X) > o (resp, s,x(v',X') < o).

We will specify, in the remainder of this work, those of our results that depend

on this conjecture.

6.4 RESULTS

Replicator-mutator dynamics can yield a wide variety of behaviors, including
multiple attractors, limit cycles, and chaos [ 132, 194, 268]. Invasion fitness is
difficult to compute analytically when the replicator-mutator dynamics are
complex. We therefore limit our focus to simple cases for which analytical results
can be obtained.

We first consider cases in which the mutation rate evolves downwards.
Section 6.4.1 shows that such downward evolution can be expected whenever
residents are at mutation-selection equilibrium. This downward evolution
continues until either this equilibrium is lost or the mutation rate reaches zero.

We then investigate the upward evolution of mutation rates in Sect. 6.4.2. We
derive conditions under which a mutator strain can invade and persistin a
non-mutating resident population initially at equililbrium. We then show that if
the replicator dynamics, Eq. 6.2, admits a globally attracting heteroclinic cycle
between monomorphic states, the zero mutation rate is evolutionarily unstable.

Last, Sect. 6.4.3 explores cases in which mutators and non-mutators can stably
coexist. This coexistence can occur when the replicator dynamics, Eq. 6.2, admits

a stable polymorphic fixed point.
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6.4.1 DOWNWARD EVOLUTION OF MUTATION RATE UNDER STABLE MUTATION-

SELECTION EQUILIBRIA

This section shows that mutation-selection equilibria lead to the downward
evolution of mutation rates. This extends the classical observation that mutation
rates evolve to zero in constant fitness landscapes, if no new beneficial mutations
are available [ 163, 174, 175].

We start by showing how invasion fitness can be related to an eigenvalue
characterizing the growth rate of the invading strain. Consider a resident strain of
mutation rate 4 > o, and suppose the trait distribution within this resident strain
is at a fixed point x of the replicator-mutator equations, Eq. 6.3. We introduce the
notation}i = f,(X) for the fitness of trait i at this equilibrium, ¢ = Zi}i&i for the

average fitness of the resident strain, and F for the diagonal matrix with entries](i.

Lemma 1. For any invading strain with trait distributionx’ € /\,, and mutation rate

u' > o, the invasion fitness of this strain is given by

Su,i(ulyxl) = @z - (PH

where ¢_ denotes the largest eigenvalue of the matrix Q,, F.

Proof. Since the resident strain is at equilibrium, Eq. 6.8 for invader dynamics is

time-independent:

7= (Qu,F - @rl) zZ. (6.11)
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The solution is given by

z(t) = exp (H{Q,F — ¢,I)) X' Z,.

Above, Z, is the (small) initial frequency of invaders.

Sinceu’ > o and]‘i > o for each i, then Q,, F has strictly positive entries. By
the Perron-Frobenius theorem, Q,, F has a positive simple largest eigenvalue 9,
with associated strictly positive eigenvector z (which we normalize so that
> .z = 1). The matrix exp (Qu/ﬁ) is also strictly positive, has Perron-Frobenius
eigenvector z, and associated largest eigenvalue ¢f:. Applying the

Perron-Frobenius theorem to exp (Qu/l:") further yields that

lim wx’ —fa,
t—00 e'?.

where k € Ris a constant. (Specifically, kz is the Perron projection of X; that is,
the eigenspace projection of x’ onto z.)

‘We now consider the limit

I z(t) i P (H(Q.F — ¢,1)) Xz,

m — — = lhm N =

t=oo exp (K9, — ¢,)) 2 exp (Ho, — ¢,))
7 i ), (6.12)
- ° tirlgo eté)z X
— 7 ki.
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Summing Eq. 6.12 over all components yields

lim Z(t)
t=o0 exp (H($, — ¢,))

= Z.k. (6.13)

Separately, left-multiplying both sides of Eq. 6.12 by Q,,F — ¢ Iand

comparing to Eq. 6.11 yields

z(t) -

lim ———— = Z.k(Q,F— ¢ 1)z
t—00 exp (t((PZ - (Pr)) (614)
= Z.k(p, — ¢,)z.
Summing Eq. 6.14 over all components, we obtain
Z(t
lim (1 = Z.k(p, — ¢.). (6.15)

=0 exp (9, = ,))
Finally, dividing Eq. 6.15 by Eq. 6.13 yields

Z) .
m_:(Pz_(Pr’

i
t—00 Z(t)
Comparing to the definition of invasion fitness, Eq. 6.9, we conclude that

Su,i(ulax,) = (i’z - (Pra

as desired. L]

Intuitively, the Perron-Frobenius eigenvector z represents the invader trait

distribution that is stable under mutation and selection when the invader
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frequency is small. The corresponding eigenvalue ¢_ equals the average fitness of
invaders at this trait distribution. Thus Lemma 1 confirms that an invading strain
succeeds when its average fitness exceeds that of the resident.

Using the above lemma, we now show that, when the resident trait
distribution is at a mutation-selection equilibrium, an invading strain succeeds if
and only if its mutation rate is lower than that of the resident population. The
only exception is the non-generic case in which all traits are equally fit, in which
case all invading strains are selectively neutral (we will discuss this case later in

this section and in Sect. 6.4.3).

Theorem 1. Consider a resident strain of mutation rate u > o, and suppose the trait
distribution within this resident strain is at a fixed point X of the replicator-mutator

equations, Eq. 6.3. Then for allx’ € A\, andu’ > o,
o Ifthef, = f,(X) are all equal, s, 5(',X') = o.

o Ifthef, are not all equal, s,5(u',X') > 0 & u' < u.

Proof. We claim, and prove below, that Zif < o, with equality if and only if all the
]fi are equal. Thus by Lemma 1, s,x(4/,X') = ¢, — ¢, is decreasing in v if the}i are
not all equal, and constant in 4’ otherwise. We also note that by Eq. 6.3, the fixed
point X is an eigenvector of the (strictly positive) matrix Q,F, with eigenvalue .
By the Perron-Frobenius theorem, §_is the unique eigenvalue of Q,F whose
associated eigenvector is nonnegative. In the case u’ = u, this eigenvalue is, by

definition, ¢,. Thus for ' = u, ¢, = ¢, and therefore s, 3(1,x’') = 0. Combining

this with the above-mentioned decreasing behavior of s, z(1/, X') in t/ proves the
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theorem.

déz
du’

To demonstrate the claim regarding -, we first observe that the positive and

symmetric matrix F/>Q,, F/* has Perron-Frobenius eigenvalue ¢, and associated
eigenvector F/>z. Applying a standard formula for the derivative of the

eigenvalues of a real symmetric matrix [138, 186], we write

dy,  (Bra) Pl (LQ,) P (F)
' EBHER
2"F (57 Qu) F2
2TFz
- (fa) + 2 (T )

2'Fz

2

(6.16)

But Jensen’s inequality implies that

Zifi%i < Zi(fizi)z
n - n )

Hence the numerator of Eq. 6.16 is < o, with equality if and only if the terms]‘iii
are equal for all i. In the latter case, we write F2 = a1, for some constant a, where
1 denotes the vector with each entry equal to one. We then have

¢,2 = Q,F2 = Q,(a1) = a1. Thus the trait abundances z; = a/$, are constant
over i, and the fitness functions]‘i must be constant over i as well. We also note
that the denominator of Eq. 6.16 is positive in all cases, since Fisa diagonal
matrix with strictly positive elements and is therefore positive definite. This

Zif < o, with equality if and only if the}i areallequal. [

proves the claim that
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A similar result holds when the invading strain is non-mutating (1’ = o).
However, in this case, the invasion fitness s, ;(0, X') depends on the initial
distribution x’ of traits within the invading strain, as we state in the following

proposition.

Proposition 1. Consider a resident strain of mutation rate u > o, and suppose the
trait distribution within this resident strain is at a fixed point X of the
replicator-mutator equations, Eq. 6.3. For anyx’ € A\, s,3(0,X) > o if and only if

max{f, : ] > o} exceeds §, = 3., f .

Proof. This follows immediately from observing that for #' = o, Eq. 6.11

simplifies to

z; :Zi(f,- - %)a
foreachi=1,...,n. [

In particular, if X' € int A\, then the condition max{fi 1x; > o0} > ¢ of
Proposition 1 becomes equivalent to the condition of Theorem 1 that the}i are
not all equal. This is because forx’ € int A, max{_;‘i :x; > o} > ¢_holdsifand
only if there is any i for which}i > ¢,. Since X must also be in int A\, by the fact
that x is a fixed point of Eq. 6.3 with u > o, then ¢_is a weighted average of the](i
with positive weighting for each component. Thus};. > ¢_for some i if and only if
the}i are not all equal.

At the other extreme, if X' is a vertex of /A, (as is always the case for invading
strains that appear in the mutation rate evolution process described in Eq. 6.3.3),

then the condition of Proposition 1 becomes simply f, > ¢ , where i is the index
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of the trait represented by x'.

We remark that, according to Theorem 1, if the trait fitness functions f,(X) are
all equal at a mutation-selection equilibrium x, then all invading strains of
different mutation rate are selectively neutral. This can be explained by observing
that when all traits are equally fit, all mutations are themselves selectively neutral.
This situation can only occur in very particular circumstances. Indeed, setting

f,(x) = ¢ for each i at a fixed point X of the replicator-mutator equations, Eq. 6.3,

1 ~
=i -5).

for each i. The average fitness ¢ is positive since f,(X) > o for each i and

yields

Y i, f.(X) > o. Hence if all traits are equally fit at X, then either u = o (mutation
is absent) or xis located at the centroid1/n = (1/n,...,1/n) € A, (all traits are
equally abundant). We explore the u = o case further in Sect. 6.4.3.

Our next result applies Theorem 1 to the mutation rate evolution process
defined in Eq. 6.3.3. It shows that if, at some step k in the process, the resident
trait distribution is at a stable mutation-selection equilibrium, and if v and « are
sufficiently small, then not only will the mutation rate at step k + 1 be less than or
equal to the mutation rate at step k, but the new resident trait distribution will

again be at a stable mutation-selection equilibrium.

Theorem 2. In the process of mutation rate evolution outlined in Eq. 6.3.3, suppose
that for some k > o, uy > o and thatx; # 1/n is a stable hyperbolic fixed point of the
replicator-mutator equations, Eq. 6.3, with mutation rate uy. Then if v and a are

sufficiently small and IIF is assumed, then upy, < uy and Xy, is a stable hyperbolic
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fixed point of Eq. 6.3 with mutation rate u,.

Proof. We begin by noting that, as a consequence of the implicit function
theorem, there is some relatively open neighborhood U C [o, 1] of uy, and a
differentiable curve y : U — A\, such that for each u € U, y(u) is a stable
hyperbolic fixed point of Eq. 6.3 with mutation rate u.

We will prove that, for the mutational step Ay sampled in Step 3,

(a) If Aup < oandup > o, then up;, = uj with probability one.

(b) If Aux < oand uj = o then uy;, = o with positive probability (otherwise
Uk = Mk).

(c) If Auy > othen up,, = uy with probability one.

(d) Inall cases, xo, = 7(tgs, )

The claims of the theorem follow from the above statements.

We note that since x; is a fixed point of Eq. 6.3, then x;, = x;. By the remarks
following Proposition 1, since x; 7# 1/nand u > o, then the fitness functions
f,(x;) are not all equal. Therefore, in the case uj, > o, Theorem 1 implies that
Supne (4, v) > oifand only if Auy < o, regardless of which vertex vy is sampled
in Step 2. In the case u; = o, Proposition 1 implies that there is at least one vertex
vof /A, such that s, y= (4, vi) > o, and this vertex has nonzero probability of

being sampled in Step 2 since x; € int A\,,. In summary,
o If Aup < oand . > o, thens,, (14, vi) > o with probability one.

o If Aup < oand . = o, thens,, 4 (14, vi) > o with positive probability.
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o If Aug > othens, (14, Vi) < o with probability one.

IIF now guarantees that (a), (b), and (c) are satisfied as long as v and a are
sufficiently small.

To verify claim (d), we invoke the Tube Theorem [ 104]. Applied to Eq. 6.3
and Eq. 6.5, the Tube Theorem guarantees the following: Let x be a stable
hyperbolic fixed point of Eq. 6.3. Then for each ¢ > o there existsa § > o such
thatif [’ — u| < §and |r(0) + z(0) — x| < ¢, then |r(t) + z(t) — x| < eforall
t > ounder the dynamics of Eq. 6.5. In words, the trait distribution in the whole
population (residents and invaders combined) stays close to the fixed point x, as
long as the difference in mutation rates [’ — u| is sufficiently small.

Consider the w-limit set w; := w((1 — a)x}, avy) C A,, associated with the
flow defined by Eq. 6.5 with u := u and v := uj (that is, the flow considered in
Step 4). IIF and the Tube Theorem jointly imply that for each ¢ > o there exists

8 > osuchthatifv < §and a < §, then

wy C {(1‘, z) €A, :r=oand |z — y(u)| < s} ifsuk,x; (4, v5) > o,
wp C {(r,2) € A, iz =o0and|r — ()| < ¢} if 5 e (1, v3) < 0.
(6.17)
Let wp C A, denote the image of w; under the identifications A, <+ A, r—o
or A, > A\pz—0, in the cases s,y (u),v;) > oand Sugxt (4, vy) <o,
respectively. By Eq. 6.17, @y is a subset of the open ball B(y(u), ) of radius ¢
around 7 (uy ). Additionally, since wy is an invariant set of Eq. 6.5, then ;. is an

invariant set of Eq. 6.3. Since y(u4.,) is a nondegenerate fixed point of Eq. 6.3,
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there is some neighborhood of U C A, of y(uy, ) such that {y(ut+,) } is the
only invariant subset of U. The continuity of y implies that B(y(u), ¢) C U for
sufficiently small e. Consequently there exists a § > o such that |Au| < §
implies w, C U. Since wy is an invariant set of Eq. 6.3 and a subset of U, then w;
must consist only of the single point y(u4., ). Finally, since sojourn time
distributions are concentrated on the corresponding w-limit sets, the point x;;,
assigned in Step 5 can only be y(ug+, ), as long as v is sufficiently small. This

proves claim (d), completing the proof. [

One can guarantee that the downward evolution of mutation rate will
continue for any desired finite number of steps by setting v and a sufficiently
small and applying Theorem 2 inductively. However, it is not possible in general
to guarantee that this downward evolution will continue indefinitely or until the
zero mutation rate is reached. This is because the bounds on v and a needed to
guarantee that uy,, < upand xp, = (us4,) are not necessarily uniform in uy.
In less technical language, for any fixed values of v and a, the mutation rate may
evolve downwards to the point that the mutation-selection equilibrium
disappears or loses stability, at which point upward mutation rate evolution is

again possible.

6.4.2 EVOLUTION OF POSITIVE MUTATION RATES

Having identified conditions under which mutation rates evolve downwards, we
now turn our attention to the upward evolution of mutation rates. In Sect. 6.4.2,

Theorem 3 and Corollary 1 give conditions under which a strain of positive
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mutation rate can invade a non-mutating resident population which is at a
(possibly unstable) selection-induced equilibrium. Theorem 4 shows that, in this
case, successful invasion implies persistence of the mutator strain.

Equations 6.4.2 focuses on the case where the replicator equations, Eq. 6.2, admit
a globally attracting heteroclinic cycle. In this case, the zero mutation rate is

evolutionarily unstable.

CONDITIONS FOR MUTATOR INVASION OF NON-MUTATING RESIDENTS AT EQUI-

LIBRIUM

In this section we ask whether a strain of positive mutation rate 4’ can invade a
non-mutating resident strain at equilibrium. As discussed in the proof of
Theorem 1 (and using the notation defined there), the invasion fitness is equal to
the largest eigenvalue of Q,/F — ¢_I. The following theorem gives necessary and
sufficient conditions for this invasion fitness to be positive, avoiding the need for

an eigenvalue calculation:

Theorem 3. Letx be a fixed point of the replicator equations, Eq. 6.2, and let
f =f(X)ando =>""_ lfx, Then for anyx’ € A\, andu' > o,s,5(u/,X) > o/if
and only if either

(a) (1—u)f, > ¢, for somei, or

b >
(b) ;% 1—u)f>u’

Proof. Let the matrix F, the Perron-Frobenius eigenvalue ¢, of Q,/F, and the

associated eigenvector z be defined as in Sect. 6.4.1. The eigenvector equation
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Q F1 = ¢,z can be rewritten as
—Zi = (6.18)

for each i. Summing over all i yields

= lz;% 1—u)}' (6.19)

Equation 6.18 and the positivity of z and ¢, imply that (1 — ' )}l < ¢, foralli.
Thus, if (1 — u’)]N‘l. > ¢_foranyi, then ¢, > ¢_and hence s, 5(u,x') > oby
Lemma 1. This proves that condition (a) is sufficient.

We now restrict to the case that condition (a) is false (thatis, (1 — «/ )}; <9,
for all i), and show that in this case condition (b) is necessary and sufficient.

Consider the real-valued function

Aslongas (1 — )]‘l < yforalli, g(y) is monotone decreasing in y. Equation 6.19
implies that g(¢,) = n/u; hence, ¢, > ¢_ifand onlyifg(¢.) > n/u, which is
equivalent to condition (b). Since ¢, > ¢_is equivalent to s, 3 (1, x') > o, this

proves the theorem. O]

We can also ask whether there exists any strain of positive mutation rate that
can invade non-mutating residents at the equilibrium x. This question has a much

simpler answer: if there is any trait whose fitness is larger than the average
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resident fitness, then there exists a mutator strain that can invade. We state this

formally as:

Corollary 1. Letx be a fixed point of the replicator equations, Eq. 6.2. ﬂzen]‘i >,
forsomei € {1,...,n} ifand only if there exists u' > o such that s, (v, x') > o for

allx’ € A\,

Proof. The “only if” direction follows immediately from Theorem 3. For the “if”
direction, suppose]‘i < ¢ foralli. Theng, = ) J‘iii andz € A, imply that

¢, < ¢,and hence sox(v/,x') < oforallx’ € A, [

The IIF conjecture does not necessarily apply to the scenarios considered in
Theorem 3 and Corollary 1. In particular, if the non-mutating resident strain is
monomorphic (thatis, if x = visavertexof AA,) and s, (4, v) > o, then the
monotonicity condition of the ITF conjecture is not satisfied: thereisno § > o
for which s, (¢, v) is monotonicin ' for ' € [o, §). This follows from
observing that (a) s,v(0,v) = 0, (b) s,v(#/, v) > o for all sufficiently small
u' > o by Theorem 3, and (c) s, (¢, v) is decreasing in v’ for ' € (o, 1] by the
proof of Theorem 1.

We therefore cannot use IIF to argue that a mutator strain that successfully
invades a monomorphic non-mutating resident strain (in the sense of having
positive invasion fitness) will eventually rise to fixation. We can, however, prove a
weaker result: if s, (', v) > o, then an invading strain of mutation rate v’ will

persist indefinitely. We state this formally in the following theorem:
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Theorem 4. Let v be a vertex of /\, and suppose s, (u',v) > o for someu’ > o.
Then, for the orbit of the two-strain replicator-mutator equation, Eq. 6.5, withu = o
and initial conditions (r(0),z(0)) = ((1 — a)v, av), the resident strain does not

fixate.

Proof. Without loss of generality, suppose v = (1,0, ..., 0). Note that fori # 1,
ri(t) = oforall times t > o. We can therefore disregard the coordinates

fa, ..., r,and rewrite Eq. 6.5 as

r= rl(fl<r+z> - (P)
, (6.20)

zi=(1—u)zf(r+2z)+ u—Zcpz — oz,
n

fori=1,...,n.

Assume for contradiction that the resident strain fixates; then the orbit in
question must converge to the fixed point (r,,z) = (1, 0). By the
Hartman-Grobman theorem, the dynamics of Eq. 6.20 are, in a neighborhood of

this fixed point, conjugate to the dynamics of the linearized system
i=1 (6.21)

Above,}i, ¢ and F are the values of f» @ and F, respectively, at the fixed point

(r.,z) = (1,0).

From any initial conditions (r,(0), z(0)) withz(o) # o, the dynamics of
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Eq. 6.21 will converge to (r,,z) = (1, o) if and only if the dynamics of

z= (Qu’F - {51)17

with initial condition z(0), converge to z = o. By the reasoning used in the first
part of the proof of Theorem 1, this can only occur if the Perron-Frobenius
eigenvalue ¢_ of Qu,INJ is less than or equal to than ¢, which contradicts

Sov(U', V) > o. 0

REMARKS ON THE SPECIAL CASE OF A HETEROCLINIC CYCLE

Another interesting case occurs when the replicator dynamics admit a globally
attracting heteroclinic cycle, the fixed points of which are vertices of AA,.. Such
cycles may occur in “rock-paper-scissors” systems, in which each trait is bested by
another [ 130, 132].

Let the fitness functions f, be such that the replicator equations, Eq. 6.2, admit
a globally attracting heteroclinic cycle whose fixed points are vertices of A\,,.. In
this case, the invariance of the sojourn time measure implies that for each
x € /\,, 0y is concentrated entirely on the fixed points of this cycle, i.e. the
vertices of A\,.!

Consider the mutation rate evolution process defined in Eq. 6.3.3, and suppose

'Perhaps contrary to intuition, the value of oy is in general undefined on the individual fixed
points of such a heteroclinic cycle. This is because, if v is a fixed point on this cycle, and if all
fixed points are hyperbolic—the generic case—then o ({v}) will not converge according to the
limit definition 6.1 [101, 282]. Thus, according to our definition, the singleton {v} is a non-
measurable subset, as is any proper subset of the vertex set. However, this does not affect our
current argument, which requires only that the entire vertex set is assigned probability one.
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that u; = o for some k > o. By the above remarks, the state x; sampled in Step 1
will be a vertex of A\,,. By Theorem 4, the invading strain of mutation rate u, > o
that arises in Step 2 will persist indefinitely, so long as u} is small enough that the
conditions of Theorem 3 are satisfied. In this case, either the invading strain will
fixate, or neither strain will fixate and the process will be formally terminated.

In short, the zero mutation rate is evolutionarily unstable for such fitness
functions. Any non-mutating strain is vulnerable to invasion by strains of positive
but sufficiently small mutation rate. This result is intuitive: in rock-paper-scissors
type scenarios, any pure strategy is bested by another. Thus if a non-mutating
resident population converges to a monomorphic state, there must be at least one
beneficial mutation available, upon which mutator alleles may hitchhike.

This result raises the question of how mutation rates ultimately evolve under
the process outlined in Eq. 6.3.3, in the case that the fitness functions f, induce an
attracting heteroclinic cycle in the replicator system, Eq. 6.2. In our preliminary
simulations, using n-strategy games of rock-paper-scissors type, we have found
that mutation rates tend to converge under this process to a stable intermediate

rate. We will report these results in full in forthcoming work.

6.4.3 COEXISTENCE BETWEEN MUTATING AND NON-MUTATING STRAINS

An interesting situation occurs when the replicator equations, Eq. 6.2, admit an
equilibrium x at which all types are present (thatis, x € int AA,,). In this case,
Eq. 6.2 implies that all trait fitness functions f(X) are equal.

Stable coexistence between mutating and non-mutating strains is possible in
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this case. To see this, consider the two-strain replicator-mutator equation,

Eq. 6.5, and suppose that only the invading strain has positive mutation rate (i.e.
u = o,u' > o). Then the point (r,z) € A,, is a fixed point of Eq. 6.5 whenever
z/Z = 1/n (that s, all traits are equally present in the invading strain), and

r + z = x. Note that the set of all such fixed points of Eq. 6.5 comprise a
one-dimensional submanifold of AA,,; therefore these fixed points are all
non-hyperbolic.

The linear snowdrift game (also known as the hawk-dove game) is a simple
example admitting such stable coexistence. In this game there are two traits,
cooperator (C) and defector (D), and the fitness functions of the types are given
by

fe(x) R S xc

= , (6.22)
fo(x) T P Xp

with T > R > § > P > o. This game admits a mixed evolutionarily stable
state—that is, a stable hyperbolic fixed point of the replicator equations,
Eq. 6.2—with trait frequencies

S—P T—R

T T_Rys—p T T_R+S—pP

XD

Then the fixed points of Eq. 6.5 that describe coexistence between a resident
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non-mutating strain and an invading mutator strain are given by

) S—p z  z
rce= — /= — — Zc = —

T—R+S_P 2 2 (62)
. T-R z . Z 23
T T_RyS—p . P77

valid for any value of Z for which all of the above quantities are positive.

This raises the question of whether an invading strain of positive mutation rate
will generally coexist indefinitely with a non-mutating resident strain in such
situations, or whether one of the two strains will generally fixate. The IIF
conjecture is uninformative on this question, since ifx is a fixed point of Eq. 6.2
for which all traits are present, then all traits must be equally fit according to
Eq. 6.2, and thus Theorem 1 implies that s, 3 (', X') = o, forany v’ € [o, 1],

x € A,. So such an invading strain will have zero invasion fitness.

To investigate this question, we simulated Eq. 6.5 numerically in the case of the
snowdrift game discussed above (see Fig. 6.4.1). We found that whenever both
traits are present in the initial non-mutating resident population (rc(o) > o and
rp(0) > o), the dynamics of invading mutators and resident non-mutators
converge to a fixed point of the form 6.23. In this system, the asymptotic
frequency of invaders depends on the initial conditions. This result is robust to
variations in the payoff matrix, initial strain abundances, initial trait distributions,

and the mutation rate of the invading strain.
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Figure 6.4.1: Numerical simulation of the two-strain replicator-mutator equa-
tions, Eq. 6.5, for the snowdrift game, varying the initial proportion of trait C
(cooperation) within the non-mutating resident strain (rc(o)/(1 — a)). Panels
show features of the stable equilibrium (r,z). (a) Equilibrium proportion of
strategy C within the resident strain (?c/f{, dashed line and circle), within the
invading mutator strain (EC/Z, dotted line and triangle), and within the popu-
lation overall (7¢ + zc, solid line). The value xc = 7c + zc = 1/3 is the stable
fixed point of the replicator equations, Eq. 6.2. (b) Equilibrium frequency of
the invading mutator strain (Z solid line and square). The open/closed sym-
bols in both panels indicate the discontinuity at r¢c(o)/(1 — @) = 1; at this
point, the non-mutating resident strain contains only trait C and goes extinct,
while the invading strain converges to the mutation-selection equilibrium of
the single-strain replicator-mutator equations, Eq. 6.3. Parameters: game pay-
offs R=3, S =2, T =35, P =1; mutation rates u = o, 4’ = o.01; initial invader
frequency a = o.1; initial invader trait distribution z¢(o) = o, zp(o) = a (i.e.,
the invading strain starts with only trait D, defection).
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6.5 DiscussioN

Our work investigates how frequency-dependent selection within a population
affects the evolution of mutation rates. The framework we present in Sect. 6.3 for
studying this question merges the fields of replicator dynamics (including
mutation) and adaptive dynamics. This framework is simple to state, but complex
in the variety of behaviors it can yield.

Our work shows that frequency-dependent selection can induce either upward
or downward selective pressure on the mutation rate. Specifically, when
frequency dependence leads to a stable equilibrium trait distribution, mutation
rates evolve downwards (possibly converging to zero); but when these dynamics
converge to a heteroclinic cycle, the zero mutation rate is evolutionarily unstable.
Our findings extend the general understanding that stable (resp., unstable) fitness
landscapes lead to downward (resp., upward) mutation rate evolution
(85,107,141, 163, 174, 175, 294, 295, 299, 307, 313, 326 to the case where the
fitness landscape depends on the population itself.

Our work also highlights an interesting scenario of coexistence between
mutating and non-mutating strains. While previous work [69, 148] has
considered coexistence of mutation rates due to mutation-selection balance
between them, we show that such coexistence can occur in the absence of
mutation between the mutation rates. This coexistence occurs only at equilibria
of frequency-dependent selection, in which all traits have equal fitness. Since it

relies on one strain having an exactly zero mutation rate—a biologically unlikely
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scenario—the relevance of this result remains to be shown.

Of course, the replicator and replicator-mutator equations can yield a wide
variety of dynamics beyond the cases examined here [132, 194, 268]. It will be
especially interesting to see whether cyclical or chaotic dynamics lead to the
upward evolution of the mutation rate. Such questions may be beyond the reach
of analytical treatment, and are perhaps best studied using simulations.

Of particular theoretical interest is the identification of evolutionarily stable
mutation rates, which cannot be invaded by strains of either lower or higher
mutation rate. This extends the concept of an evolutionarily stable strategy (ESS)
[196] to mutation rate evolution. More generally, adaptive dynamics can lead to
a wide variety of behaviors, including limit cycles, chaos, and evolutionary
branching [67, 103 ]. Identifying which of these behaviors can occur for mutation
rate evolution, and then relating these behaviors back to the underlying trait
dynamics, is a promising avenue for future research.

Our framework makes use of the mathematical notion of invariant measures
[86, 262]. Invariant measures are a formal mathematical representation of the
ergodic principle: that the long-time behavior of a dynamical system can be
understood from a statistical point of view by studying an invariant probability
distribution over the set of possible states. Ergodic theory has long been applied
to many areas of physics, but has seen only sporadic application in ecology and
evolution [70, 75, 76, 252]. Invariant measures arise naturally when considering
two dynamical processes on different timescales. An invariant measure can serve

as probability distribution for the state of a fast process (e.g., demographic
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dynamics) when a rare event (e.g.,, mutation, environmental change) occurs.
Finally, our work suggests new empirical hypotheses. A number of species,
including Escherichia coli [ 157, 165], the common side-blotched lizard Uta
stansburiana [289, 290], and the yeast Saccharomyces cerevisiae [23 1], show
nontransitive competition between bearers of different traits. We have shown in
Eq. 6.4.2 that in some cases, such nontransitive competition can induce upward
evolutionary pressure on the mutation rate. We therefore conjecture that in such

species, the mutation rate on loci coding for these traits may be abnormally high.
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7.1 SUPPLEMENTARY TABLES REFERENCED IN CHAPTER 2
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Table 7.1.1: Pharmacokinetic and pharmacodynamic parameters for anti-HIV
drugs used in the study [265]

Class Drug | IC,, (yuMol) | slope | Cpax (uMol) | half-life (hrs) | dosing (d ™)
NRTI 3TC 0.0298 1.15§ 15.3 10.0 2
ABC 0.0381 0.93 10.5 21.0 2
AZT 0.1823 0.85 4.5 8.5 2
d4T 0.5524 1.13 2.3 3.5 2
ddI 0.1795 1.07 39.4 18.0 1
FTC 0.0079 1.20 7.3 39.0 1
TDF 0.0561 0.97 1.1 60.0 1
NNRTI EFV 0.0035§ 1.69 12.9 35.8 1
ETV 0.0050 1.75 1.6 41 2
NVP 0.0490 1.49 25.2 21.5 1
PI ATV 0.0150 2.90 3.3 6.5 1
ATV/r 0.0150 2.90 6.3 8.6 1
DRV/r 0.0265 3.55 14.8 15.0 2
1DV 0.0550 4.5 10.9 1.8 3
IDV/r 0.0550 4.5 12.5 3.5 2
LPV/r 0.0380 2.1 15.6 9.9 2
NFV 0.2360 1.88 5.1 4.0 3
SQvV 0.0550 3.74 3.1 4.3 3
SQV/r 0.0550 3.74 7.9 4.3 2
TPV/r 0.2500 2.55 77.6 6.0 2
II EVG 0.0280 0.94 1.7 8.6 1
RAL 0.0150 1.03 4.0 10.0 2
FI ENF 0.0349 1.60 1.1 3.8
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Table 7.1.2: Parameters for all single-point mutations considered in the study
[265]

Class | Mutation | Cost (s) u Drug | p o

NRTI K6sR 0.41 1.1 X 10 % | 3TC 61 -0.19
ABC 47 0.01
ddI 20 | -0.09
FTC 29 -0.04
TDF 43 0.00
Mi184V 0.46 1.1 X10 ° | 3TC | 963 | -0.58
ABC | 9.5 | -0.44
AZT | 0.28 | -0.03
ddI 9.5 | -0.21
FTC | 1186 | -0.49
TDF | 3.0 | -0.27

Mg41L 0.17 1.3X10% | AZT | 2.2 | o.07
d4T 1.0 | 0.07
T215Y 0.05 * AZT | 3.1 | -0.34

d4T | 1.08 | -0.12
NNRTI G190S 0.79 2.2 X105 | EFV 70 | -0.40
NVP | 237 | -0.34
Kio01P 0.7 * ETV | 5.00 | -0.27
Kio3N 0.3 1.5x10 ¢ | EFV | 85 | -0.17
NVP 94 -0.15
Y181C 0.26 1.1 X100 ° | EFV | 2.6 | -0.11
ETV 11 -0.26
NVP | 234 | -0.40
Y181l 0.44 * ETV | 100 | -0.37
NVP | 1309 | -0.50
* Indicates mutation that requires two nucleotide changes;

mutation rate depends on prevalence of intermediate states.
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Table 7.1.3: Parameters for all single-point mutations considered in the study
(Cont'd) [265]

Class | Mutation | Cost (s) u Drug | p o
PI D3oN 0.27 5.5 x10 ° | NFV | 2.3 -0.29
G48V 0.4§ 8s5x10° 7 | SQV | 2.0 | -0.23
I147A 0.9 * LPV | 5.8 | -0.40
147V 0.05 1.1 X105 | LPV 1.8 | -0.29
IsoL 0.7§ 9.0 X107 | ATV 1.2 -0.34
IsoV 0.93 1.1 X105 | DRV | 0.68 | -0.07
Is4L 0.05 9.0x10 7 | DRV | 0.98 | -0.01
184V 0.82 1.1 X105 | ATV | 0.60 | -0.34

DRV | 0.94 | -0.01
IDV | 0.73 | -0.39
TPV | 0.26 | -0.39

L33F 0.49 6.3x10° % | TPV | 1.4 | o.02
LooM 0.30 3.2 X 10°% | NFV 1.5 0.01

SQV | 1.1 | -0.28
My61 0.05 5.6 X 10 % | IDV 1.0 | -0.29
M46L 0.05 1.3 X 10°¢ IDV | 0.76 | -0.24
N88S 0.5§ 1.1 X103 | ATV | 3.1 -0.31
V32l 0.09 4.1X10° | LPV | 0.53 | -0.16
V82A 0.59 1.1 X 103 LPV | 1.03 | -0.33
V82F 0.79 3.4 X10°7 | IDV | 0.89 | -0.58

LPV | 1.45 | -0.44
V82T 0.22 * IDV | 0.98 | -0.34

LPV | 0.87 | -0.17
TPV | 0.68 | -0.20
II G140S 0.71 2.2 X10 % | RAL 2.1 0.03
NissH 0.55 5.3 X107 | EVG 20 0.00
RAL 27 0.02
Qi48H 0.73 2.0 X 10°% | EVG 6.8 -0.04
RAL 86 0.06
Q148K 0.76 6.5x10 ¢ | EVG 19 0.03
RAL 128 | -0.06
Qi148R 0.61 1.1 X105 | EVG | 68 0.06
RAL 90 0.04

Y143C 0.74 1.1 X 10793 RAL 3.6 0.06
Yi43H 0.55 1.1 X 103 RAL 2.7 -0.04
Yi43R 0.32 * RAL 75 -0.01
FI G36D 0.12 2.2 X 10 ° | ENF 1.7 | -0.45
N42T 0.54 5.3 X107 | ENF 2.9 -0.13
N43D 0.88 1.1 X 10~ % | ENF 13 -0.06
Q4o0H 0.26 1.5 X 10°% | ENF 12 -0.31
V38A 0.17 1.1 X 10~ 5 | ENF 11 -0.32

* Indicates mutation that requires two nucleotide changes;
mutation rate depends on prevalence of intermediate states.
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Table 7.1.4: Parameters for pre-existing frequency of mutations and exit rate
from the latent reservoir. See Methods and Supplementary Methods for
explanations.

class mutation | equilibrium frequency | reservoir exit (days)
NRTI K65R 2.7 X 103 12
Mi184V 2.4 X103 14
Mg1L 7.8 X 109 43
T215Y * *
NNRTI Gi190S 2.8 X 1073 12
Kio1P * *
Kio3N 4.9 X 1079 68
Y181C 4.3 X 1079 8
Y181l * *
PI D3oN 2.0 X 10~ 4 2
G48V 1.9 X 109 177
I47A * *
147V 2.2 X 10 #4 2
IsoL 1.2 X 106 279
IsoV 1.2 X 1079 28
Is4L 1.8 X 107 19
184V 1.4 X109 25
L33F 1.3 X 103 26
LooM 1.1 X 1075 31
M461 1.1 X 103 < 0.5
M46L 2.6 X 1073 13
N88S 2.0 X 107 ° 17
V32l 4.6 X 10”4 1
V82A 1.9 X 10~ % 18
V82F 4.3 X 1077 769
V82T * *
I G140S 3.1 X 10 % 11
NissH 9.6 X 1077 349
Qu48H 2.0 X 1076 166
Q148K 8.5 X 107¢ 39
Qi48R 1.8 X 1073 18
Y143C 1.5 X 10 ° 22
Yi43H 2.0 X 10°% 17
Yi143R * *
FI G36D 1.8 X 10 # 2
N42T 9.8 X 1077 342
N43D 1.3 X 1073 27
Q4oH 5.6 X 107¢ 59
V38A 6.5 X 109 5

* Indicates mutation that requires two nucleotide changes;
equilibrium frequency depends on prevalence of intermediate states.
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Table 7.1.5: Parameters for pre-existing frequency and exit rate from the
latent reservoir for best “synthetic” mutation for each drug. See Methods and

Supplementary Methods for explanations.

class | drug | equilibrium frequency | reservoir exit (days)

NRTI | AZT 2.4 X 10 ° 14
d4T 7.8 X 10°¢ 43
3TC 2.7 X 10 ° 12
FTC 2.7 X 1077 12
ABC 2.7 X103 12
ddI 2.7 X 10 ° 12
TDEF 2.7 X 1077 12
NNRTI | EFV 4.3 X 10 ° 8
NVP 4.3 X 1073 8
ETV 4.3 X 1073 8
PI DRV 1.8 X 107° 19
NFV 2.0 X 10™*4 2
SQv 1.1 X 1079 31
LPV 4.6 X104 1
ATV 2.0 X 10" ° 17

1DV 1.1 X 1073 < 0.5
TPV 1.4 X 10 % 25
1I RAL 3.1 X 10 % 11
EVG 1.8 X 10°° 18
FI ENF 1.8 X 10~ * 2
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Table 7.1.6: Viral dynamics parameters in the absence of drug therapy

Parameter Value Units Reference
R, | Baseline basic reproduction ratio 10 (unitless) See text
d, | Death rate of actively infected cells 1 d— [188]
Vo Residual plasma viral load 2 RNA copies [74]
maintained by activation from per ml plasma
latent reservoir, absent
viral replication
A Latent reservoir exit rate 3000 cells.d™* Based on v,
see text

Table 7.1.7: Nucleotide substitution rate parameters for HIV. Each entry
gives the per-site transition probability from row base to column base in one
round of viral replication. For derivation and source see Section 2.5.2. The
extraordinary skew of this matrix (the largest entry, G-to-A mutation, is more
than 300 times the smallest, C-to-G mutation) reflects the base composition
of the genome, particularly the bias towards A. Values less than 10~ are par-
ticularly uncertain, as they were computed from fewer than 5 substitution ob-

servations each.

U C A G
U 11X10% | 1.3X10°% | 3.6X10 ¢
C|l24X%X10° 6.5X10 % | 1.7 X107
A|79X1077 | §3X107 1.1 X 10 °
G|85X107|85X107 ]| 55X10°
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7.2 SUPPLEMENTARY FIGURES REFERENCED IN CHAPTER 2
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Figure 7.2.1: Simulated clinical outcomes versus adherence for all drugs. In
“Suppression” trials, patients begin with a realistic distribution of treatment-
naive viral loads (between 3000 and 10° c¢.ml™*) and undergo monotherapy
for a full 48 weeks. Virologic failure (VF) is defined as a viral load above 50
c.ml™*at Week 48. VF is classified as “via resistance” if at least 20% of the
viral population at the time of detection is mutant. Adherence (x-axis) is
measured as the fraction of scheduled doses taken. The height of the area
shaded indicates probability of the corresponding outcome at that adher-
ence level. 3TC, lamivudine; ABC, abacavir; AZT, zidovudine; d4T, stavu-
dine; ddl, didanosine, FTC, emtricitabine; TDF, tenofovir disoproxil fumarate;
EFV, efavirenz; ETV, etravirine; NVP, nevirapine; ATV, atazanavir; DRV,

darunavir; IDV, indinavir; LPV, lopinavir; NFV, nelfinavir; SQV, saquinavir;
TPV, tipranavir; EVG, elvitegravir; RAL, raltegravir; ENF, enfuvirtide.
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Figure 7.2.2: Simulated clinical outcomes versus adherence for all drugs. In
“Maintenance” trials, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at week 5) with viral load above 200 c.ml™*. VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of scheduled
doses taken. The height of the area shaded indicates probability of the corre-
sponding outcome at that adherence level.
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Figure 7.2.3: Simulated clinical outcomes versus time for all drugs. In “Sup-
pression” trials, patients begin with a realistic distribution of treatment-naive
viral loads (between 3000 and 10° ¢.ml™*) and undergo monotherapy for a vari-
able time (x-axis). "Detectable viral load" is defined as above 50 c.ml™*and is
classified as “via resistance” if at least 20% of the viral population at the time
of detection is mutant. The height of the area shaded indicates prevalence of
the corresponding outcome at that time. Patients have a realistic distribution
of adherence levels with an average of 70%.
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Figure 7.2.4: Simulated clinical outcomes versus time for all drugs. In
“Maintenance” trials, patients begin the trial with full viral suppression and
undergo monotherapy for a variable amount of time (x-axis) or until “de-
tectable viral load” is observed, whichever occurs first. “Detectable viral load”
is defined as “confirmed rebound”: two consecutive weekly measurements
(starting at Week 5) above 200 c.ml™". It is classified as “via resistance” if
at least 20% of the viral population at the time of detection is mutant. The
height of the area shaded indicates prevalence of the corresponding outcome
at that time. Patients have a realistic distribution of adherence levels with an
average of 70%.
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Figure 7.2.5: Simulated clinical outcomes versus time for all drugs. In
“Maintenance with recovery” trials, patients begin the trial with full viral sup-
pression and undergo monotherapy for a variable amount of time (x-axis).
“Detectable viral load” is defined as “confirmed rebound”: two consecutive
weekly measurements (starting at Week 5) with viral load above 200 c.ml|™".
It is classified as “via resistance” if at least 20% of the viral population at the
time of detection is mutant. We allow recovery, meaning that patients stay in
the trial to see if they will re-suppress, instead of being removed immediately
like in regular "Maintenance” trials. The height of the area shaded indicates
prevalence of the corresponding outcome at that time-point. Patients have a
realistic distribution of adherence levels with an average of 70%.
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Figure 7.2.6: Simulated clinical outcomes versus adherence for all drugs,
distinguishing pre-existing from de novo mutations. In the “Suppression” tri-
als shown, patients begin with a realistic distribution of treatment-naive vi-
ral loads (between 3000 and 10° c¢.ml™*) and undergo monotherapy for a full
48 weeks. Virologic failure (VF) is defined as a viral load above 50 c.ml™*at
Week 48. VF is classified as “via resistance” if at least 20% of the viral pop-
ulation at the time of detection is mutant. Resistance is classified as de novo
if the majority of mutants at the time of failure descended from a mutation
event that occurred during replication since the start of the trial. Otherwise,
resistance is classified as “pre-existing,” which includes mutants arising from
both the pre-treatment plasma population and the latent reservoir. Adherence
(x-axis) is measured as the fraction of scheduled doses taken. The height of
the area shaded indicates probability of the corresponding outcome at that
adherence level.
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Figure 7.2.7: Simulated clinical outcomes versus adherence for all drugs, dis-
tinguishing pre-existing from de novo mutations. In the “Maintenance” trials
shown, patients begin with full viral suppression and undergo monotherapy

for 48 weeks or until virologic failure (VF), whichever occurs first. VF is de-
fined as “confirmed rebound”: two consecutive weekly measurements (starting
at Week 5) with viral load above 200 c.m|™*. VF is classified as “via resis-
tance” if at least 20% of the viral population at the time of detection is mu-
tant. Resistance is classified as de novo if the majority of mutants at the time
of failure descended from a mutation event that occurred during replication
since the start of the trial. Otherwise, resistance is classified as “pre-existing,"
which includes mutants arising from both the pre-treatment plasma popula-
tion and the latent reservoir. Adherence (x-axis) is measured as the fraction of
scheduled doses taken. The height of the area shaded indicates probability of
the corresponding outcome at that adherence level.
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Figure 7.2.8: Simulated clinical outcomes versus adherence for all drugs,
R,0=20. Results are shown for “Maintenance” trials only. In the “Mainte-
nance” trials shown, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at Week 5) with viral load above 200 c.ml™*. VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of sched-
uled doses taken. The height of the area shaded indicates probability of the
corresponding outcome at that adherence level. As compared to R,,=10, in-
creasing Ro, to 20 leads to higher adherence levels being required for treat-
ment success, and it extends the range of adherence levels (in both directions)
for which resistant strains can cause failure. Mutant VF becomes a possible
outcome for the Pls ATV, ATV/r, IDV, IDV/r, and SQV/r, and treatment
success cannot occur at any adherence level for ddl and NFV.
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Figure 7.2.9: Simulated clinical outcomes versus adherence for all drugs,
R,,=b5. Results are shown for “Maintenance” trials only. In the “Mainte-
nance” trials shown, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at Week 5) with viral load above 200 c.m|™*. VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of sched-
uled doses taken. The height of the area shaded indicates probability of the
corresponding outcome at that adherence level. As compared to R,,=10, de-
creasing Ry, to 5 leads to lower adherence levels being required for treatment
success, and it reduces the range of adherence levels for which resistant strains
can cause failure. A range of high adherence levels appears where there is
treatment success for ABC and AZT, and near-perfect adherence is no longer
required for ddl and NFV success. Mutant VF no longer occurs for SQV, and
for AZT and ddl, wild-type failure may be the first outcome to occur as ad-
herence levels decrease from the successful range.
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Figure 7.2.10: Simulated clinical outcomes versus adherence for NRTls with
large inter-experimental variation in half-life. The ranges included were {10,
16, 22} for 3TC, {4, 8.5, 11} for AZT, {3.5, 7, 10} for d4T, {15, 18, 20}
for ddl, and {60, 120, 180} for TDF. Results are shown for “Maintenance”
trials only. In the “Maintenance” trials shown, patients begin with full viral
suppression and undergo monotherapy for 48 weeks or until virologic failure
(VF), whichever occurs first. VF is defined as “confirmed rebound”: two con-
secutive weekly measurements (starting at Week 5) with viral load above 200
c.ml™*. VF is classified as “via resistance” if at least 20% of the viral popu-
lation at the time of detection is mutant. Adherence (x-axis) is measured as
the fraction of scheduled doses taken. The height of the area shaded indicates
probability of the corresponding outcome at that adherence level. Compared
to the half-lives used throughout the rest of the paper (see Supplementary
Table 7.1.1), the results barely change for 3TC or d4T. For AZT, varying the
half-life changes the adherence level where wild-type failure becomes more
likely than mutant failure. For ddl, the adherence level where treatment suc-
cess occurs shifts. For higher TDF half-lives, mutant VF becomes the only
outcome, with the exception of rare (< 3%) wild-type failure at the lowest
adherence levels for t,/, = 120 hours,
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Selection regimes for DRV//r-RAL two-drug therapy. Depend-

ing on the length of a treatment interruption to one or both drugs, treatment
may be fully suppressive or select for the wild-type strain, a mutant resistant
to DRV, a mutant resistant to RAL, or combinations of these strains. The yel-
low region, where the MSW for both drugs overlap, is barely visible, and it is
located where the other MSW regions meet, near the center of the graph.
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Figure 7.2.12: Relative risk of wild type- vs. mutant-caused virologic failure
for anti-HIV drugs, considering the best “synthetic” mutation defined in Sec-
tion 2.5.3. Two metrics can be used to compare the risk of resistance to the
likelihood of wild-type growth, shown on both axes. The x-axis measures the
time until a patient interrupting treatment reaches the MSW, divided by the
time until that patient reaches the WGW. The y-axis measures the number
of days that a patient spends in the MSW during a treatment interruption.
Drugs tend to cluster near the endpoints of the x-axis: most NRTIs, the lls,
and the FI are on the left, meaning that the patient enters the MSW immedi-
ately or soon after interruption, and most Pls are on the right, meaning that
the patient waits relatively long to enter the MSW. Section 2.5.7 further de-
scribes the two metrics and explains how they were used in Fig 2.2.2f in the
main text to rank the drugs by relative risk of mutant-based versus wild type-
based VF. Note that the symbol for DRV/r is obscured behind the symbol for
d4T at (1,0).
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Figure 7.2.13: Distribution of a) viral load setpoints [160] (data available at
www.hiv.lanl.gov/content/immunology) and b) adherence levels [16] used in

simulations.
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Figure 7.3.1: Clearance probabilities and rebound times following LRA ther-
apy predicted from model, versus infectivity variance A. A) Three cases for
the population-level distribution of LR size (see Section 3.4.1). Case i) All
patients have the same latent reservoir size, M;g = 10°, estimated from the
geometric mean number of cells that are capable of producing infection in lab-
oratory co-culture assays. Case ii) Latent reservoir size is distributed according
to variation observed in co-culture assays, with geometric mean 10°. Case iii)
The latent reservoir includes many cells that fail to be detected in co-culture
but have intact viral genomes. B) Probability that the reservoir is cleared by
LRA. Clearance occurs if all cells in the reservoir die before a reactivating lin-
eage leads to viral rebound. C) Median viral rebound times, among patients
who do not have clearance. Each point shows the average of 10* — 10° sim-
ulated patients. D) Survival curves for patients following LRA therapy. The
percentage of patients who have not yet experienced viral rebound is plot-

ted as a function of the time after LRA therapy and interruption of HAART.
Curves are colored based on the efficacy of LRA in reducing the size of the LR
(Q = o to 6, see legend). Results are shown for 10* —10° patients, a half-life of
44 months, R, =2, and a =7 X 10~ % day™ .
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Figure 7.3.2: LRA therapy efficacies required for different goals, plotted ver-
sus reservoir size Mg for different infectivity variances 1. A) The threshold

Q that takes the patient into the activation-limited regime, where stochastic
waiting time contributes substantially to rebound time (defined in Sec. 3.4.5).
B) The target efficacy Q at which at least 50% of patients still have sup-
pressed viral load one month after treatment interruption. C) The target ef-
ficacy Q at which at least 50% of patients still have suppressed viral load one
year after treatment interruption. D) The target efficacy Q at which at least
50% of patients have eradicated the reservoir without experiencing viral re-
bound. Because some patients may go for a year without rebound but then
rebound later, the target Q for one year off therapy is always less than that for
a lifetime off therapy. Results are shown for 10* — 10° patients, a half-life of 44
months, R, =2, and a = 7 X 1073 day™ .
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Figure 7.3.3: Survival curves for patients following LRA therapy depend on
the size of the latent reservoir and the reservoir half-life (varying d,).The per-
centage of patients who have not yet experienced viral rebound (viral load

> 200 ¢ ml™") is plotted as a function of the time after LRA therapy and
interruption of HAART. Curves are colored based on the efficacy of LRA in re-
ducing the size of the LR (Q = o to 6, see legend). A) d, = o day*, half-life
is 330 months (27 years). B) d, = 4.6 x 107* day™*, half-life is 44 months.
C) d, = 4 x 1073 day™*, half-life is 6 months. Decreasing the LR half-life
(increasing d,) makes survival times longer and clearance more likely. Includ-
ing interpatient variation (ii) makes the survival curves fall off more gradually,
while allowing for higher reservoir sizes (iii) increases the required drug effi-
cacy. Solid lines represent simulations, and open circles represent approxima-
tions from a branching process calculation (Section 3.4.3). Results are shown
for 10* — 10° patients, A =20, R, =2, and a =7 X 107 % day™*
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Figure 7.3.4: Survival curves for patients following LRA therapy depend on
the size of the latent reservoir and the infectivity variance A. The percentage
of patients who have not yet experienced viral rebound (viral load > 200 c
ml~*) is plotted as a function of the time after LRA therapy and interruption
of HAART. Curves are colored based on the efficacy of LRA in reducing the
size of the LR (Q = o to 6, see legend). Increasing the infectivity variance 2
makes survival times longer and clearance more likely. Including interpatient
variation (ii) makes the survival curves fall off more gradually, while allow-
ing for higher reservoir sizes (iii) increases the required drug efficacy. Solid
lines represent simulations, and open circles represent approximations from a
branching process calculation (Section 3.4.3). Results are shown for a half-life
of 44 months, R, =2, and a =7 X 1075 day™ .
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Figure 7.3.5 (following page): Clearance probabilities and rebound times
after LRA predicted from model for alternate parameter choices. i) Best-
estimate parameter values shown in the main text: reservoir size is pre-
dicted by the distribution of co-culture results (case i), a = 7 X 1075 day ™ *,
d, = 4.3 X 10~ * day™ ! (half-life of 44 months), R, = 2. ii) Best-case-scenario,
where reservoir size is predicted by mean co-culture results (case i), half-life
is short and strong stochastic effects decrease clearance probability. Param-
eter values are a = 1075 day ™}, d, = 4 x 1072 day " (half-life 6 months),
R, = 2.2, 1 = 50, and Mg = 10°. This low estimate for a follows from the
assumption that all cells with HIV-DNA contribue to the residual viral load
observed during HAART. iii) Worst-case-scenario, when LR is large (case iii),
cells reactivate frequently, are extremely long lived, and smaller stochastic
effects mean most reactivating cells lead to rebound. Parameter values are
a=7x10%day™", d, = oday™*, R, = 2, A = 2, median Mg ~ 7 X 10°.
This high estimate for a follows from the assumption that all virions in the
residual viral load come from cells with virus with intact provirus. The lower
limit on d, is realized if homeostatic proliferation or other mechanisms balance
reservoir decay caused by mechanisms other than reactivation. R, is always
adjusted to ensure that the baseline rebound time following HAART interrup-
tion was constant. All results are for 104 — 10 simulated patients.
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Figure 7.4.1: Invasion fitness of a mutating invader against a nonmutating
resident, for varying levels of recombination ¢, computed as the largest eigen-
value of the matrix CQ,, F minus 1, from Eq. (5.13). There is a discontinuity
at &' = o not shown in the graph: the invasion fitness s,(0) is zero for all
parameter values. Parameters are as in Fig. 5.3.4: n =4, a = 0.4.
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Figure 7.4.2: ESMR (plotted on a log scale) versus fitness benefit a and
number of traits n, comparing the estimate presented in Fig. 5.3.5 (thick solid
lines) to an alternate estimate (thick lines with white stripe in middle). Points
show simulated ESMR values (see Methods) and dashed lines plot ug. The
alternate estimate uses Eq. (5.18) to approximate fitness of the optimal trait
within the resident strain; it only requires simulation to measure the resident
strain’s period. The fitness approximation is accurate if n > 6 and a < 1. No
recombination is shown in this figure.
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